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Abstract

The concept of Wang tiles, investigated in this thesis, generalizes the standard microstruc-
tural representation based on a Periodic Unit Cell. Replacing a single cell with a set of
domains—Wang tiles—with predefined mutual compatibility enables an efficient gener-
ation of stochastic, arbitrarily large realizations of the compressed microstructure. The
Wang tile concept thus represents a reduced geometrical model for materials with ran-
dom heterogeneous microstructures, appealing to applications where multiple stochastic
realizations are needed.

In the first part of the thesis, two methods for designing the morphology of Wang tiles
are presented. The first method modifies an existing design approach reported in Com-
puter Graphics and supplements it with quantification via spatial statistics. The method
constructs individual tiles by merging partially overlapping segments of a provided mi-
crostructural specimen. Albeit very efficient, this design method struggles with complex
geometries such as foams. For these microstructures, an existing framework developed
originally for Periodic Unit Cell’s design is extended with the generalized periodicity con-
straints arising in the concept of Wang tiles. This method relies on an implicit description
of the microstructural geometry via level-set fields to accelerate a standard packing algo-
rithm and generate foam-like microstructures with simple morphing operations.

The next part of the thesis is focused on concept’s applications in numerical homog-
enization. First, the particular case of a simplified two-dimensional beam model and its
suitability for predicting the effective response of Alporas R© foam is studied. In particular,
the influence of neglecting the real geometry of foam ligaments on the overall response is
investigated, comparing the values predicted for the simplified Voronoï and the real geom-
etry. Second, a methodology for identifying the numerical Representative Volume Element
size for a user-defined accuracy is developed, utilizing statistical sampling and the Parti-
tion theorem, which allows for bounding the apparent properties of a large material sample
with calculations performed on a set of sub-samples.

In the final part of the thesis, a numerical scheme suited for macroscale analyses with
a fully resolved microstructural geometry generated with the Wang tile concept is pro-
posed. This scheme combines pre-calculated fluctuation fields, obtained without any prior
knowledge about the shape of a macroscopic domain or its loading, and the Generalized
Finite Element ansatz to construct microstructure-informed reduced modes for a given
macroscopic problem.
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Abstrakt

Koncept Wangova dláždění, jehož aplikace v úlohách spojených s modelováním materiálů
se stochastickou mikrostrukturou jsou řešeny v rámci předkládané disertační práce, před-
stavuje zobecnění v současné době hojně využívaného popisu materiálové mikrostruktury
pomocí periodické jednotkové buňky (PUC). Nahrazení této buňky sadou více modulů s
předem definovanou návaznosti, tzv. Wangových dlaždic, umožňuje velmi efektivně vy-
tvářet virtuální vzorky materiálové mikrostruktury o libovolné velikosti. Tento koncept je
především zajímavý pro všechny aplikace, které řeší vliv náhodnosti v mikrostruktuře na
odezvu zkoumaného materiálu.

První část disertační práce se věnuje metodám návrhu samotných dlaždic. První me-
toda kombinuje již existující přístupy počítačové grafiky a statistický popis materiálové
mikrostruktury. Jednotlivé dlaždice vznikají spojením částečně se překrývajících poskyt-
nutých materiálových vzorků. Ačkoli je tento přístup výpočetně velmi efektivní, není scho-
pen dobře postihnout materiály, jejichž mikrostruktura obsahuje tenké filamenty. Pro tyto
případy je vhodná druhá metoda, která upravuje existující způsob tvorby komplexních
pěnových mikrostruktur vyvinutý pro periodickou jednotkovou buňku a rozšiřuje jej tak,
aby zahrnoval zobecněnou periodicitu vyskytující se v konceptu Wangova dláždění. Tato
metoda využívá implicitního popisu materiálové mikrostruktury založeného na úrovňo-
vých množinách k urychlení standardních částicových modelů a následné tvorbě pěnové
mikrostruktury pomocí jednoduchých operací.

Druhá část disertační práce řeší aplikace konceptu Wangova dláždění v úlohách výpo-
četní homogenizace. Prvně je tento koncept využit pro studii vhodnosti dvourozměrného
prutového modelu k predikci makroskopických mechanických vlastností hliníkové pěny
Alporas R©. Především je zde řešená otázku vlivu zjednodušení geometrie porovnáním vý-
sledků pro modely založené na Voroného diagramu a modely, jejichž geometrie odpovídá
získanému vzorku materiálu. Dále je v této části vyvinut postup pro určení velikosti re-
presentativního objemového vzorku (RVE) na základě uživatelem požadované přesnosti.
Tento postup je založen na statistickém výběru a Partition teorému, který umožňuje od-
hadnout meze efektivní vlastnosti materiálového vzorku ze znalosti mezí určených pro jeho
části.

V poslední části práce je představena numerická metoda vyvinutá pro makroskopické
úlohy zahrnující materiálovou mikrosturu, která byla vytvořena pomocí konceptu Wangova
dláždění. Tato metoda využívá předpočítané charakteristické odezvy Wangových dlaždic
na parametrické zatížení. Tyto charakteristické odezvy jsou dále kombinovány se stan-
dardní diskretizací makroskopické úlohy v rámci zobecněné metody konečných prvků, čímž
vzniká vhodná aproximační báze pro danou makroskopickou úlohu.
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Chapter 1

Introduction

The majority of engineering materials exhibit heterogeneous composition (usually dif-
ferent compositions at different length scales). Their macroscopic response thus stems
from the interplay between the properties and arrangement of individual components—
the material microstructure. The ubiquitous emphasis on the efficiency of products, ac-
cented further by more recent environmental concerns related to a carbon footprint and
material consumption in general, has been a driving force behind the quest for a better
understanding of this structure-property relation since the first applications of composite
materials [1].

A current trend is thus towards advanced computational schemes that incorporate
increasingly more knowledge of the underlying material microstructures in order to en-
hance their predictive capability. With ever-growing and more available computational
power, the traditional analytical homogenization methods, see e.g. the overview in [2],
which typically include only selected statistics of the microstructural geometry (such as
volume fractions or two-point probability functions), are being succeeded by computa-
tional homogenization approaches [3] in order to accurately capture the non-linear re-
sponse and complex composition of microstructural constituents. For problems featuring
a pronounced influence of microstructural geometry (such as crack initiation and propa-
gation) without a clear separation of the micro- and macroscopic length scale, numerical
models with fully [4, 5] or partially [6, 7] resolved material microstructure have even
emerged recently. Microstructure modelling therefore continues to play an important role
in advanced analysis strategies.

Compared to materials with regular, usually periodic microstructures, modelling ma-
terials with stochastic microstructural geometry is more demanding because any fixed size
representation automatically induces information loss. Choosing a suitable microstruc-
tural model thus usually means finding the optimal balance between its applicability and
accuracy. Since the seminal work of Povirk [8], many procedures have been developed
for generating a compressed form of a microstructure by minimizing the discrepancy be-
tween spatial statistics of a reference microstructural sample and the artificially generated
representation. Conversely, Liu and Shapiro [9] defined a model of a random heteroge-
neous material as a process—rather than a single representation—capable of generating
microstructural samples with similar spatial statistics [10, 11, 12]. In the spirit of this
definition, several methods that generate microstructural samples either from parts of a
provided microstructural specimen [9, 13] or by mimicking a (proxy) process of material
genesis were proposed; a more detailed overview is given in the following chapters and
in Chapter 3, in particular.
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The Wang tile concept generalizes the standard microstructural representation based
on a Periodic Unit Cell (PUC) or its stochastic counterpart such as the Statistically
Equivalent Periodic Unit Cell. Instead of characterizing the investigated microstructure
with a single cell, the information about the material microstructure is compressed into a
set of domains—Wang tiles—with predefined compatibility represented with edge codes.
This generalization enables capturing higher variability in the microstructure. Unlike
PUC, whose applicability is predominantly limited to multi-scale simulations in which the
modelling error caused by artificial periodicity is acceptable, the Wang tile concept can
be used to generate statistically consistent yet random virtual microstructural samples of
arbitrary size. Moreover, due to the simplicity of an assembly algorithm, these samples can
be generated almost instantly, including a finite element discretization if provided at the
compressed level. This makes the concept particularly appealing for applications when
stochastic microstructural realizations are needed, such as investigating the underlying
size of Representative Volume Element or analyses of a macroscopic response’s sensitivity
to microstructural variations.

In the perspective of the aforementioned, the concept of Wang tiles represents a bridge
between (i) a PUC-based representation, which can generate only a deterministic micro-
structure with pronounced artificial periodicity when used for microstructure generation,
and (ii) approaches where a microstructural sample is generated each time anew such as
optimization-based [8, 10, 11, 12] or newly emerging deep learning [14] methods, which
are usually limited by their computational cost or predefined output size.

Following the two initial publications of Novák et al. [15, 16] on using the tiling concept
in problems related to modelling materials with random heterogeneous microstructures,
the objectives of this thesis were threefold:

i) Develop algorithms for generating the compressed, tile-based representation of mate-
rial microstructures that would complement the computationally intensive, optimization-
based approach reported in [15].

ii) Demonstrate the applicability of the Wang tile concept in numerical homogenization,
and establish a statistical-based methodology to identify the necessary size of the
numerical Representative Volume Element for a user-defined accuracy.

iii) Extract microstructure-informed fluctuation fields characteristic for the compressed
tile-based representation, and develop a numerical scheme that will reuse these
pre-computed responses to accelerate macroscopic analyses with fully-resolved mi-
crostructural details, following suggestions from [16].

The thesis is a collection of five manuscripts (published, under review, or in prepara-
tion) that are related to utilizing the tiling concept in modelling microstructures of het-
erogeneous materials and address the above-mentioned objectives. In these manuscripts,
the author of the thesis carried out most of the studies, including implementation of
the proposed algorithms, post-processing and interpretation of results, and drafting the
manuscripts. Other authors contributed mainly to formulating the methodologies, over-
seeing the research, and reviewing the manuscripts.

The first two chapters are dedicated to development of methods for generating the
compressed form of a material microstructure. Chapter 2 adopts the sample-based design
of Wang tiles used in Computer Graphics [17] and supplements it with spatial statistics’
quantification, which then governs the choice of optimal algorithm parameters. Chap-
ter 3 builds on the unified framework for generating complex microstructures based on the
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implicit description of microstructural geometry via level-set fields that was proposed by
Sonon et al. [18, 19]. This framework is extended to take into account the generalized peri-
odicity inherent to the Wang tile concept. Several modifications to the original algorithm
are proposed, including a procedure capable of identifying the underlying vertex-based
definition of a tile set.

Next two chapters demonstrate the use of the tiling concept in numerical homogeniza-
tion, and determination of the Representative Volume Element (RVE) size in particular,
benefiting from the concept’s appealing ability to quickly generate stochastic realizations of
the investigated microstructure. Chapter 4 deals with a specific case of a two-dimensional
model of Alporas R© aluminium foam. Motivated by the analysis of Němeček et al. [20], we
investigate the adequacy of a two-dimensional beam model as a surrogate for a complex
foam-like microstructure and the simplifying assumptions made in [20]. We also study
the influence of approximating the real geometry of foam ligaments with Voronoï tessella-
tion. Chapter 5 then formalizes the methodology for computing the numerical RVE size
pertinent to a level of accuracy defined by a user, making use of a statistical hypothesis
testing and confidence intervals obtained from statistical sampling. The procedure is il-
lustrated with standard continuum models, and the related calculations are accelerated
by implementing elementary ideas of domain decomposition.

Finally, in Chapter 6, a method for extracting characteristic fluctuation fields from
the compressed microstructural representation based on Wang tiles is developed with an
accompanying numerical scheme that uses these field as microstructure-informed enrich-
ments in Generalize Finite Element method’s ansatz in order to define macroscopic basis
functions suited to analyses with fully-resolved microstructural details. The last chap-
ter then summarizes the thesis and discusses potential extensions and outlooks for future
work.

Since each chapter constitutes a standalone publication, certain overlaps may occur
mainly in the introductory and summary parts of each chapter. Note also that the chap-
ters’ ordering does not strictly follow the chronological order of the individual manuscripts’
publication; most notably, results from Section 4 motivated the development of the tile
design strategy presented in Section 3.
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Chapter 2

Tile design based on image
quilting algorithm

Abstract:
The paper presents a concept/technique to compress and synthesize complex material
morphologies that is based on Wang tilings. Specifically, a microstructure is stored in
a set of Wang tiles and its reconstruction is performed by means of a stochastic tiling
algorithm. A substantial part of the study is devoted to the setup of optimal parameters
of the automatic tile design by means of parametric studies with statistical descriptors
at heart. The performance of the method is demonstrated on four two-dimensional two-
phase target systems, monodisperse media with hard and soft discs, sandstone, and high
porosity metallic foam.

Reproduced from: Doškář, M., Novák, J., Zeman, J., 2014. Aperiodic compression and
reconstruction of real-world material systems based on Wang tiles. Physical Review E 90,
062118. [21]
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2.1 Introduction

Randomness and heterogeneity govern majority of real world processes. Indeed, mate-
rials which are considered as macroscopically homogeneous usually display heterogeneity
across multiple scales, e.g. defects in crystalline or quasi-crystalline lattice, imperfect or
entirely random particle packings, random distribution of pores or inclusions, etc. [2]. Re-
garding the incorporation of morphological information in multiscale simulations, it has
progressed namely through a unit cell definition for heterogeneous materials exhibiting
locally periodic arrangement of constituents [22, 23]. Moreover, the unit cell approach has
also penetrated into the framework of random microstructures, namely due to the lack of
an appropriate alternative, e.q. [8, 10, 24]. In this paper, we thus bring a generalization to
the single unit cell concept that is based on Wang tiles and tailored especially for computer
simulations of disordered material systems.

The concept of Wang tiles was introduced by Hao Wang in 1961 as a method to
decide whether a certain class of logical statements can be proven by means of axioms of
mathematical logic encoded in planar patterns [25, 26]. Afterwards, a focus was on the
discovery of a finite set of tiles that could tile the infinite plane aperiodically in order to
find counterexamples to Wang’s decidability conjecture on statements mirrored in periodic
sets1.

The first result in this direction was obtained by Berger in 1966, who established a
relation between aperiodic Wang tilings and the Turing-Davis halting problem and in-
troduced the first finite aperiodic set consisting of 20,426 tiles [27], reduced to 104 later
on [28]. Further developments were brought by Amman [28], who originated the discovery
of the set of 16 tiles, and by Culik and Kari [29], who scored 13. Kari and Culik also
introduced an extension to three dimensions by means of Wang cubes [30].

In addition to the strictly aperiodic constructions, tile sets that are not aperiodic
themselves may allow for aperiodic tilings in a stochastic sense. This was first recognized
by Cohen et al. [17], who used Wang tiles to produce irregular patterns for purposes of
computer graphics as an extension of Stam’s seminal idea based on aperiodic Amman’s
set [31]. Conforming edge information of Wang tiles was also instrumental in syntheses
of biological motifs. In particular, the tiles were exploited for the assembly of DNA
double-crossover molecules with edges playing the role of peptide bonds according to the
Watson-Crick molecular complementarity [32]. In addition, the motifs based on DNA
branched junctions were used together with tiles for self-assembly of aperiodic scaffolds in
order to produce devices or specifically structured nanometre grids [33].

Wang tiles have also found use in Statistical Physics. To name a few, Amman’s set
was used for the modelling of nucleation of a metastable quasicrystalline phase [34] whose
formation depends on the cooling rate of the alloy melt [35]. The model was based on the
thermodynamics of Wang tilings studied earlier by Leuzzi et al. [36].

As for the micromechanics of materials, the application of Wang tiles to the compres-
sion of geometry of particulate suspensions was proposed in [15]. In this work, the tiles
carry microstructural patterns designed to minimize a difference between spatial statistics
of a target system and the reconstructed media. Preliminary results for tiles carrying
patterns of mechanical fields were reported in [16].

1“What appears to be a reasonable conjecture, which has resisted proof or disproof so far (as of 1961)
is: 4.1.2 The fundamental conjecture: A finite set of plates (meaning tiles) is solvable (has at least one
solution) if and only if there exists a cyclic rectangle of the plates; or, in other words, a finite set of plates
is solvable if and only if it has at least one periodic solution.” [25]



Graphical design 9

In this paper, we further examine the potential of Wang tiles in compression of real
world material systems. To this goal, tiles whose design rests on image fusion tech-
niques [37, 17] are investigated and combined with statistics arguments in order to de-
termine optimal setting of design parameters. The methodology is demonstrated on mi-
crostructural patterns of the media with uniformly distributed equi-sized hard and soft
discs, sandstone, and closed cell aluminium foam Alporas R©. The proximity of synthesized
microstructures to reference specimens is quantified by means of the one- and two-point
probability functions, and the two-point cluster function.

2.2 Background
Techniques combined in the present paper originate from various fields. A brief

overview of relevant basics is given first as their omission would make the paper diffi-
cult reading.

2.2.1 Concept of stochastic Wang tilings

Basic elements of the concept are Wang (i) tiles, (ii) tile sets, and (iii) tilings. Wang tile
is a square, jigsaw-like, quatrominoe piece capable of carrying arbitrary microstructural
patterns within its entire domain including edges [26]. It is not allowed to be rotated or
reflected when placed into a tiling, so that the tiles with an identical sequence of edges
mutually rotated by kπ/4 where k ∈ N are considered different.

N

W

S

E

21 3

4 5 6

7 8

71 4 8 5

5 7 ?

4 3

(a) (b) (c)

Figure 2.1: Wang tiling concept: (a) tile with coloured edges, (b) set W8/2-2, i.e. nc
1 =

nc
2 = 2, nt = 8, nNW = 2, c1 ∈ {green, red}, c2 ∈ {blue, yellow} , and (c) single step of

CSHD algorithm.

In applications, the edges are usually distinguished by colours [17], alphabetical codes [15],
or enumerated by integers [29, 34], cf. Fig. 2.1a. A collection of tiles that enables to cover
up an open planar domain is called a tile set, Fig. 2.1b, here referred to as Wnt/nc

1 − nc
2,

with cardinality nt and nc
i representing number of unique codes on horizontal (i = 1) and

vertical (i = 2) edges, respectively [15]. The magnitude of nt depends on the choice of
nc
i , so that it holds nt = nNW√ncs, where nNW ∈ M = {2, . . . ,

√
ncs}. ncs stands for

the number of all four-tuples given by the admissible permutations of edge codes ci, or
in other words, it refers to the cardinality of the so called complete stochastic Wang tile
set. Having the above notion at hand, notice that the set W1/1-1 corresponds to a single
periodic unit cell (PUC).

Reconstruction/synthesis of a piece of microstructure gives a tiling. It is a discrete
mapping of tiles from the set onto the centres of a square planar lattice, where each tile
conforms with its neighbours through coincident edge codes or is bounded from outside.
In addition, we assume that there are no gaps in the tiling.
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When tiling the plane stochastically, the tiles are randomly selected from the set and
successively placed one by one, either row-by-row or column-by-column, so that the edge
codes of a newly placed tile must comply with those of its neighbours placed beforehand.
Owing to the rectangular nature of Wang tiles, a pair of edges adjacent to north-western
(NW) corner is controlled, Fig. 2.1c. The index of the tile to be placed is selected randomly
from the subset, which stores the tiles of identical NW edge code combinations. Recall,
nNW must equal at least 2, the minimal cardinality of the subset, in order to keep the
procedure random. Aperiodicity of resulting tilings is guaranteed assuming the random
number generator to never return a periodic sequence of numbers. We call the resulting
algorithm CSHD, in honour of its authors [17]. In order to give an impression on the
distinction between tilings made up of aperiodic and stochastic sets, respectively, compare
results in Fig. 2.2a and Fig. 2.2b. Clearly, the first method produces rather artificially
looking patterns, while the latter leads to tilings with randomly distributed periodic clus-
ters, e.g. the circled purple region in Fig. 2.2b. This phenomenon can be controlled by
increasing nNW, though at the expense of larger sets.

(a) (b)

Figure 2.2: Wang tilings consisting of 50× 50 tiles (10× 10 tiles in zoomed area) created
by (a) Kari-Culik 13-tile set and related cellular automaton, and (b) W8/2-2 and CSHD
algorithm. Individual tiles are distinguished by solid colours.

2.2.2 Image quilting

The proposed automatic design of tiles rests on the Image Quilting Algorithm (IQA)
due to Efros et al. [37] that allows for the fusion of raster images without severe visual
defects. It seeks for a continuous path along which the desired pieces of microstructure
are glued together, minimizing the sum of square differences of pixel values (1/0 for binary
media) restrained to a certain overlap. Assume a pair of samples A and B, both of the
same height h and overlaying in a strip of the width ω. The local error in coincident pixels
is defined as

e(i, j) = [A(i, j)−B(i, j)]2for (i, j) ∈ {1, . . . , h} × {1, . . . , ω} (2.1)
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It gives rise to the cumulative error

E(i, j) =
{
e(i, j) i = 1
e(i, j) + min{E(i− 1, j − 1), E(i− 1, j), E(i− 1, j + 1)} i ∈ {2, . . . , h}

(2.2)
where the non-defined entries E(i, 0) and E(i, ω+1) are excluded from consideration. The
minimal cumulative error within the bottom row

EQ = E(h,Q(h)) = min{E(h, j), j ∈ {1, . . . , ω}} (2.3)

thus characterizes defects caused by the image fusion and determines the horizontal coor-
dinate of sought quilting path Q(h) in the bottom row. The remaining path coordinates
Q(i), i = 1, . . . , h− 1, are found recursively by decrementing i

E(i, Q(i)) = min{E(i, Q(i− 1)− 1), E(i, Q(i− 1)), E(i, Q(i− 1) + 1)} (2.4)

The simplicity of the algorithm is redeemed by noticing that the path can propagate
only straight ahead or diagonally upwards. Moreover, it does not distinguish whether
the path runs through inclusions or the matrix phase, yielding the inclusion shapes to
deteriorate. This disadvantage, pronounced namely for binary media, can be reduced by
recasting Eq. (2.1) as

e(i, j) =
{

0, for A(i, j) ∧B(i, j) in matrix ,
1, otherwise (2.5)

which leads to a modified algorithm referred to as IQAM in the sequel.

2.2.3 Statistical quantification of microstructure

Assuming a statistically homogeneous quasi-ergodic binary composite [38], we can best
quantify the microstructure morphology by means of the n-point probability function Sn,
which gives the probability of locating n points x1, . . . ,xn in a given phase. This phase
corresponds to inclusions in what follows. In particular, it is understood as the white
phase for hard discs, soft discs and sandstone, and black phase for Alporas R©, see ahead
Fig. 2.5. The second phase is referred to as a matrix.

Since we are primarily concerned with spatial correlations of multiples of the tile edge
length `, induced by the proposed compression framework, it is sufficient to limit the
exposition to the two point probability S2(x1,x2) = S2(x2 −x1), which can be evaluated
effectively in the Fourier space [2].

Short range defects arising from the quilting technique will be investigated by the
two-point cluster function C2(x1,x2) = C2(x2 − x1) [39], which can be understood as a
special case of S2 function as it gives the probability of finding a pair of points x1 and
x2 not only in the same phase, but also in the same cluster. The cluster is understood as
the part of a phase where the two points x1 and x2 can be reached through a continuous
path [40]. Thus, in addition to the information on distribution of inclusions in the matrix
phase given by S2, C2 provides us with a short-range order description of inclusion shapes.
A few limit cases can be distinguished. For distances |x2 − x1| > bmax, where bmax refers
to the maximum dimension of the largest inclusion, we have C2 = 0. The limit case
|x2 − x1| = 0 yields C2 = S2 = S1 = φ, where φ symbolizes the volume fraction (the
one-point probability function).
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2.3 Automatic design of tiles

In order to arrive at microstructure compressions consistent from the statistical view-
point, the techniques introduced above are combined. Contrary to our previous study
based on an optimization approach [15], the automatic design of tiles is proposed as it
suits better complex morphologies under consideration and is computationally more effi-
cient.

Following [37], an automatically designed tile arises as a diamond shape cut out from
the aggregate of four overlapping square reference samples, here called r-samples, that are
placed accordingly to the edge codes of the tile to be produced, Fig. 2.3. The four r-samples
are fused within an overlap ω by means of the quilting algorithm and the resulting tile
rotated by π/4. Its edge length yields from the r-samples dimension h and overlap width
ω as

` = d
√

2(h− ω)e (2.6)

where d·e denotes the round up operation to the nearest integer.
The quilting paths among individual r-samples always propagate from the tile corners

towards the centre. The continuity of the tiling microstructure across the edges is ensured
by the facts that the cut is taken diagonally across the r-sample, and that the same
r-sample is used for all edges sharing the same code.
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Figure 2.3: Illustration of Automatic tile design due to Cohen et al. [17] (a, b), and the
proposed patch enrichment (c).

It has been shown in previous works that a specific morphology design technique may
have an impact on the accuracy of the representation of long range orientation orders [15,
41, 16]. Induced artefacts related to repeating tile edges or interiors may dominate spatial
features of synthesized microstructures [15]. Taking this into consideration, the automatic
design procedure based on the fusion of the four r-samples leads to compressions that
strongly emphasize tile edges to the interiors. This is obvious from Fig. 2.3b, noticing
that almost the entire tile quarter is related to the edge information. A possible remedy
proposed here is to replace a piece of the microstructure around the centre of automatically
designed tiles by a square patch of the reference microstructure taken independently of
the r-samples and quilted around its perimeter as drawn in Fig. 2.3c.
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2.3.1 Optimal overlap and best quilting performer

QUILTING ANALYSIS TILE DESIGN

Target System

SELECTION OF

find: ω
choose: IQA

IQAM

inspect:

ωopt

IQA or IQAM

hmin, hmax

nc
i,min, n
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i,max

h ∈ [hmin, hmax]
nc
i ∈ {nc

min, . . . , n
c
max}

nt

`

user’s choice based on

EΦ, Ŝ2,EC

{Wnt{nc
i ,n

c
i}}

Target System

Wnt{nc
i ,n

c
i}

COMPRESSED SYSTEM

Figure 2.4: Sensitivity study flowchart to be passed through automatic tile design proce-
dure. User defined input parameters are placed underneath arrow lines among individual
cells. Outputs entering consecutive steps are written above them.

Four different target microstructures were considered in order to perform a sensitivity
study on parameter values ω, h, and nc

i with respect to the choice of the quilting algorithm
IQA or IQAM, Fig. 2.4.

In particular, we have explored hard discs monodisperse (referred to as h-discs), Fig. 2.5a,
soft discs monodisperse (p-discs), Fig. 2.5b, sandstone, Fig. 2.5c, and a large planar scan
of Alporas R© foam, Fig. 2.5d. Notice that several cross-sections of sandstone CT data were
used due to the insufficiency of microstructural information contained in a single one.

The first aim was to find the optimal width of the overlap ω. For each material system,
a pair of r-samples of h = 300 px was chosen randomly from the reference microstructure.
We varied the parameter ω from 1 pixel up to 10 × b pixels, where b =

√
b21 + b22, and bi

is the length of the mean inclusion bounding box in ith spatial direction. The minimum
error path was sought after each increment and quantified according to Eq. (2.2). The
whole process was repeated a hundred times to identify the sensitivity of the results to
selection of different r-sample pairs, while keeping their height h unchanged.

Quite surprisingly at first glance, IQA outperforms IQAM in the sense of the norm
defined by Eq. (2.2). For example, it can be observed that for the target system consisting
of h-discs, Fig. 2.6a, IQA returns zero-error quilting path for ω/b > 6, whereas its modified
version IQAM increases the value ω/b over 9.5. No zero cumulative error path Q could
be found for other material systems no matter the quilting algorithm we used. The errors
exhibit similar asymptotic decay but the magnitude of the limit plateaus and oscillatory
behaviour of the sandstone microstructure. Finding a quilting path as such is not the
only problem related to the automatic design of tiles. Another difficulty arises from the
random selection of r-samples and from the fact that we take systematically into account
only a portion of the microstructural information they contain. Moreover, the quilting
algorithms bring additional very local defects into the morphology which influences the
quality of the designed tiles.

Therefore, we explored the quilting process also from the perspective of normalized
deviation between phase volume fractions of the target and synthesized/reconstructed
systems, φTS and φRS, respectively,

Eφ = |φ
RS − φTS|
φTS (2.7)

and the relative error of the two-point cluster statistics defined as

EC =
∫

(ω×h) |C2
RS(x)− C2

TS(x)| dx∫
(ω×h)C2

TS(x) dx
(2.8)
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(a) (b)

(c) (d)

Figure 2.5: Target systems: (a) h-discs, (b) p-discs, (c) sandstone (Courtesy of Adrian
Russell, UNSW, Sydney, Australia [42]), and (d) Alporas R© (Courtesy of Jiří Němeček,
CTU in Prague, Czech Republic [20]).
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Figure 2.6: Optimal overlap width ω with respect to IQA (solid line), IQAM (dashed line),
and various error measures. Plotted values represent means from 100 realizations.

Both IQA and IQAM demonstrate almost monotonic convergence in Eφ to a plateau
value of about 0.05 for all materials except sandstone for which the error is still decreasing,
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however, we were not able to proceed with the analysis further due to the limited dimen-
sions of input microstructures, Fig. 2.6b. Almost the same behaviour can be observed for
EC , Fig. 2.6c.2 It is also interesting to observe that the behaviour of IQAM in terms of
spatial statistics is superior to the original version, namely for Alporas R© and h-discs.

In summary, we can deduce that weakly packed dispersions are microstructural systems
of the least complexity from the viewpoint of the automatic tile design, recall Fig. 2.6a.
The performance of IQA seems less powerful compared to the results provided by its
modified version, however, both procedures are equivalent for remaining material systems
and larger overlaps.
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Figure 2.7: Relative error of pore phase volume fraction versus tile edge length and car-
dinality of sets. The results are normalized against φTS. (a) h-discs, (b) p-discs, (c)
sandstone, and (d) Alporas R©.

2.3.2 Optimal tile edge length and cardinality of sets

The optimal overlap ω, the second row of Tab. 2.1, determines together with the
dimension of r-samples h, length of tile edges `, Eq. (2.6). In addition, the size of r-samples
depends on ` and cardinality of sets given by nt, dominant parameters in terms of the
storage of required amount of microstructural information.

2Degenerated inclusions at the boundary of overlap regions were excluded from calculations as they do
not result from quilting algorithms.
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Table 2.1: Optimal parameters of automatic design with respect to studied material sys-
tems

h-discs p-discs sandstone Alporas R©

ω/b [-] 5 5 6 6
ω [px] 40 75 120 180
h [px] 200 250 300 400
` [px] 227 107 255 312

To asses the optimal nt − ` combinations, various complete stochastic Wang tile sets
were created. From each of those, subsets of nt tiles with minimum errors Eφ were chosen.

By analogy to the paragraphs above, 100 realizations of 5× 5 tilings were synthesized
by means of CSHD algorithm. The optimal setup of sought objectives, particularly `
versus nt, were assessed from the viewpoint of φ, S2 and C2. In addition, we quantify the
secondary extremes of S2 by means of a set

Ŝ2 =
{
S2(m× `, n× `), ∀(m,n) ∈ Z2 \ (0, 0)

}
(2.9)

First, the behaviour of the relative error Eφ with respect to ` is displayed for individual
sets in Fig. 2.7. From the graphs, it can be deduced that the scatter in volume fractions
decreases for larger tiles and sets of higher cardinalities, independently of the material
system. However, in some cases (h-discs W8/2-2 and W18/3-3, sandstone all sets but
W50/5-5, and Alporas R© W18/3-3) the error suddenly increases after the initial decay. In
general, the reconstructions for h-discs, Fig. 2.7a, possess the least scatter from the target
data, while the largest error is attributed to sandstone, Fig. 2.7c. As for the higher order
statistics, obtained results (not shown) proved the tile edge length ` to have a negligible
effect on reducing secondary extremes of S2, Eq. (2.9), as well as no impact on the deviation
between the two-point cluster functions of target and synthesized systems quantified by
Eq. (2.8), this time, with integrals over the domain of the tilings instead of ω × h.

On the other hand, the benefits of increasing the set cardinality are doubtless. In
Fig. 2.8a, we show the statistics of the secondary extremes Ŝ2, Eq. (2.9), by means of
whiskerbar plots. The mean value of the set of secondary extremes Ŝ2 seems to correspond
well with the relation proposed in [15]

Ŝp
2 = φt

nt

[
φ+ (nt − 1)φ2

]
+ max

i

{
φe

nc
i

[
φ+ (nc

i − 1)φ2
]}

(2.10)

where φt and φe = 1−φt gives the portion of microstructural information attributed to tile
interior and edges, respectively. We can clearly observe the proximity of simulated data
to the estimate with φe = 1, which is attributed to the fact that the entire microstructural
information in automatically designed tiles is associated with edges, contrary to the op-
timization based design [15]. On top of that, observe a notably larger scatter (whiskers)
in simulated data for individual tile set cardinalities compared to that discussed in [15].
It stands to reason that the choice of tiles in explored sets preferred correct phase vol-
ume fractions to the uniform distribution of edges in synthesized tilings, which violates
fundamental assumptions of Eq. (2.10) as justified in [15]. Therefore, the reconstructed
microstructures are prone to repeat patterns specific to edges of higher frequencies, e.g.
Fig. 2.9c, thereby increasing Ŝ2 in magnitude. A remedy consists in the use of patched
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Figure 2.8: Reduction of secondary extremes of S2 with respect to number of edge codes:
(a) conventional tiles – majority of microstructural information is carried by edges, and
(b) comparison between conventional and patched tiles of sandstone microstructure –
in patched tiles microstructural information is optimally distributed among edges and
interiors. The boxes and whiskers, respectively, involve 50% and 75% of realizations
proportionally distributed about the median. Continuous curves follow predictions given
by Eq. (2.10).

tiles, compare Figs. 2.8a,b and Figs. 2.10 and 2.9.

2.4 Examples of compressed and synthesized microstruc-
tures

Following the above indicators, one can select the optimal set with respect to the
desired compression capabilities and the level of induced degeneracy in terms of spurious
long range orientation orders quantified by Ŝ2. For instance, examples of synthesized
microstructures of target systems from Fig. 2.5 are displayed in Fig. 2.9. These particular
reconstructions are formed by tilings made up of 10 × 10 tiles. The zoomed left upper
corners contain only 3×3 tiles for better visualization of short range features. In Fig. 2.10,
we further show synthesized sandstone microstructures created by means of unpatched
and patched tiles of the set W18/3-3 displayed at the two top rows. The conjectures
coming from Fig. 2.8b are very difficult to follow by visual inspection, however the patched
reconstruction in Fig. 2.10b seems to us less polluted by repetitive patterns then that
without the patches, see also Figs. 2.10a and 2.11.
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(a) (b)

(c) (d)

Figure 2.9: Examples of synthesized microstructure in 3× 3 tiling: (a) h-discs (W50/5-5),
(b) p-discs (W50/5-5), (c) sandstone (W50/5-5), and (d) Alporas R© (W32/4-4).

2.5 Conclusions and future developments
In general, the microstructure compression is subject to a compromise among various

factors. The design of a compression technique calls into question the degree of com-
pression (dimensions of tiles and tile set cardinality), the amount of distortion induced
(parasitic long range orientation orders along with the short range defects in compressed
microstructures, e.g. due to quilting), and the computational overhead required to com-
press and uncompress the data.

In this work, we have proposed an approach to compression and reverse synthesis
of microstructural patterns of real world microstructures based on Wang tilings, image
processing techniques, and statistical quantification. The method goes beyond periodic
representations, and provides a natural generalization of PUC concept (recall, W1/1-1
equals PUC). It allows to represent complex microstructural patterns by making use of
small data sets called the Wang tile sets. The properties of the automatic tile morphology
design were investigated by means of a number of sensitivity analyses whose objective
was to determine the optimal values of the input parameters, such that the compressed
microstructure contains maximum microstructural information and is small enough for an
inexpensive treatment. From our results, we conjecture that the width of the overlapping
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(a) (b)

Figure 2.10: Example of synthesized sandstone microstructure of 3× 3 unpatched (a) and
patched (b) tiles.

region of about nine times the mean characteristic inclusion size was suitable for all inves-
tigated microstructures. However, no general rule regarding the input values was observed
besides. A similar sensitivity study, following the flowchart in Fig. 2.4, is therefore recom-
mended any time the compression based on Wang tiles is desired. The extension of the
concept to three dimensional setting by means of Wang cubes is fairly straightforward and
is in the focus of our future work. Preliminary outcomes are demonstrated by an example
shown in Fig. 2.12.
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(a) (b)

(c) (d)

Figure 2.11: S2 statistics of h-discs microstructure: (a) target system, (b) W1/1-1 (PUC),
(c) W16/2-2, and (d) W16/2-2 with patches.

(a) (b)

Figure 2.12: Illustration of (a) a tile set W3/3-3-3, and (b) a tiling consisting of 3× 3× 2
tiles.



Chapter 3

Tile design based on level-set
approach

Abstract:
Microstructural geometry plays a critical role in the response of heterogeneous materials.
Consequently, methods for generating microstructural samples are increasingly crucial to
advanced numerical analyses. We extend Sonon et al.’s unified framework, developed orig-
inally for generating particulate and foam-like microstructural geometries of Periodic Unit
Cells, to non-periodic microstructural representations based on the formalism of Wang
tiles. This formalism has been recently proposed in order to generalize the Periodic Unit
Cell approach, enabling a fast synthesis of arbitrarily large, stochastic microstructural sam-
ples from a handful of domains with predefined microstructural compatibility constraints.
However, a robust procedure capable of designing complex, three-dimensional, foam-like
and cellular morphologies of Wang tiles has not yet been proposed. This contribution fills
the gap by significantly broadening the applicability of the tiling concept.

Since the original Sonon et al.’s framework builds on a random sequential addition of
particles enhanced with an implicit representation of particle boundaries by the level-set
field, we first devise an analysis based on a connectivity graph of a tile set, resolving
the question where a particle should be copied when it intersects a tile boundary. Next,
we introduce several modifications to the original algorithm that are necessary to ensure
microstructural compatibility in the generalized periodicity setting of Wang tiles. Having
established a universal procedure for generating tile morphologies, we compare strictly
aperiodic and stochastic sets with the same cardinality in terms of reducing the artificial
periodicity in reconstructed microstructural samples. We demonstrate the superiority of
the vertex-defined tile sets for two-dimensional problems and illustrate the capabilities of
the algorithm with two- and three-dimensional examples.

Reproduced from: Doškář, M., Zeman, J., Rypl. D., Novák, J. Level-set based design of
Wang tiles for modelling complex microstructures (under review). [43]
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3.1 Introduction
The geometrical details of a material composition drive many macroscopic phenomena

such as crack initiation and propagation [44] or meta-behaviour [45]. Advanced computa-
tional strategies thus tend to incorporate knowledge of material microstructures1 in order
to enhance their predictive power. [3]

When micro and macro scales are well separated, a microstructural response is typically
up-scaled through homogenization methods. Albeit computationally intensive, numerical
homogenization methods [3] now supersede analytical methods [2] because of their ability
to handle complex microstructural geometries and non-linear problems. With increasing
computational power, numerical models that fully resolve the microstructural geometry
in the whole macroscopic domain, e.g. [4, 5], or in regions of interest [6, 7], have emerged,
addressing problems without clear scale separation.

For both strategies, however, accuracy critically depends on the representativeness
of the provided microstructural geometry, accenting the crucial role of microstructure
modelling in multi-scale approaches.

Compared to materials with regular microstructures, characterized entirely by Periodic
Unit Cells (PUCs), modelling random heterogeneous materials is more intricate; any finite-
size representation automatically implies information loss. The optimal microstructure
representation should capture intrinsic randomness and fluctuations in a microstructure
while remaining computationally tractable (for numerical homogenization) or inexpensive
to construct (for fully resolved simulations).

Figure 3.1: Illustration of a synthesized sample of a closed-foam microstructure obtained
as a 4×2×2 tiling assembled from a set of pre-generated Wang cubes. Individual face codes
that encode the geometrical continuity of individual tiles and play the role of compatibility
constraints during a tiling assembly are shown in semi-transparent colours.

3.1.1 State-of-the-art in modelling random microstructures

One of the widely adopted approaches for modelling heterogeneous materials rests on
an extension of PUC generated such that its spatial statistics match that of a reference
microstructure. This procedure appears in the literature under various names such as
Statistically Optimal Representative Unit Cell [11], Repeating Unit Cell [46], Statistically

1We use the term “microstructure” in a broader sense, without referring to a specific scale length.
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Similar Representative Volume Element [12], or Statistically Equivalent Periodic Unit
Cell (SEPUC) [10], among others. The spatial statistics involved range from Minkowski
functionals [47] to multi-point probability functions [2], out of which the two-point prob-
ability [48, 49, 50], two-point cluster [39], and lineal path [51, 52, 10, 53] functions are the
most frequently used.

Following Povirk’s seminal work [8], the majority of cell representations are generated
using optimization procedures, minimizing the discrepancy between the statistical char-
acterization of the reference microstructure and its compressed, PUC-like representation.
The particular choice of optimization algorithm currently varies with several options in-
cluding simulated annealing [54, 52, 10], genetic [55, 56, 11, 46] and gradient [8, 57], or
phase-recovery [58] algorithms.

The second approach to microstructure generation utilizes reference samples of the
microstructure. New realizations are then obtained with a Markovian process, taking
individual voxels [9] or a patch of voxels [13] from the provided reference samples according
to the proximity of the spatial statistics computed for their surroundings. Alternatively,
searching for statistics proximity can be replaced with a classification tree-based supervised
learning model [59].

The previous two approaches suffer from high computational costs related either to
optimization or to training the learning models. The applicability of their outputs is
also sensitive to the spatial statistics considered, attesting to the ill-conditioning of the
microstructure reconstruction problem itself. Achieving a good match in selected statistics
does not automatically guarantee similar overall behaviour; for instance, Biswal et al. [60]
demonstrated that realizations with similar two-point probability functions could have
significantly different percolation characteristics that govern overall transport properties.

Complementary to the statistics-informed methods, a third approach to generating mi-
crostructural realizations relies on meta-modelling the genesis of a microstructure. These
methods range in complexity and include the Monte-Carlo Potts [61] and phase field mod-
els [62] of grain growth; sedimentation-and-compaction models [60]; and various particle
packing algorithms, e.g. [63, 64, and references therein], based on either Random Sequen-
tial Adsorption (RSA)2 [66, 67] or molecular dynamics [68, 69, 70].

The relevance of packing algorithms extends beyond simple particle-matrix microstruc-
tures because the resulting packings often serve as initial seeds for tessellation-based mod-
els applicable to polycrystals [71, 72], foams [64], and cell tissues [73, 74]. Due to its
straightforward implementation, Voronoï tessellation is the most common choice; however,
the resulting geometry is oversimplified for many materials. For instance, Voronoï-based
models overestimate overall stiffness for high porosity foams [75]. The curvature of cell
walls [71, 76] and heterogeneity in cell size [64, 72] and wall thickness [72] must be addition-
ally introduced to obtain realistic geometries. Similar effects can be achieved by modifying
the distance measure used during tessellation, e.g. models based on the Laguerre variant
generate microstructures with multi-mode cell size distribution [77, 72, 64, 63]. Inspired
by Laguerre tessellation, Chakraborty et al.[74] proposed Adaptive Quadratic Voronoï
Tessellation, attributing a distinct anisotropic metric to each seed and thus allowing for
additional control over the resulting geometry.

The original RSA method [65] suffers from O
(
N2) complexity for N particles due to

overlap checks and is impractical for generating large, densely packed systems. Conse-
quently, several accelerations have been proposed. For Dart Throwing Algorithm [65],

2In its simplest setting of packing circular or spherical particles, RSA corresponds to the Dart Throwing
Algorithm [65].
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which is a simplified case of RSA with equisized circular/spherical particles, Dunbar and
Humphreys [78] introduced a scalloped sector representation of non-overlap guaranteed
regions. In the same year, Jones [79] proposed an alternative bookkeeping of the regions
based on an adaptively updated Voronoï tessellation. Moreover, both approaches utilize
a tree data structure and improve the algorithm complexity to O(N logN). For gen-
eral RSA, Yang et al. [46] proposed an acceleration based on a combination of a spline
description of particle shapes and hierarchically refined bounding boxes of each parti-
cle. Recently, Sonon et al. [18] introduced a method building on an implicit, level-set
based description of particle shapes, achieving O(N) complexity (see Section 3.3 in [18]).
Moreover, Sonon et al.’s method readily facilitates generating complex microstructures
using linear combinations of the nearest neighbour distance functions and dedicated mor-
phing operations [18, 80, 19, 81]. In a sense, this approach introduces the anisotropic
pseudo-metrics3 of [74] in a geometrically-motivated way by considering arbitrarily-shaped
particles. As a result, Sonon et al.’s method enables refined control over generated micro-
structure unattainable with standard Voronoï or Laguerre tessellations; see Section 3.3.2.

Albeit significantly faster than RSA or optimization-based approaches, the latter method
still starts anew every time an additional realization is required, imposing overhead on,
e.g., investigations of the Representative Volume Element (RVE) size that require multiple
microstructural samples to be generated, see [82, 83, 84]. Alternatively, larger microstruc-
tural realizations can be assembled from (SE)PUC; however, such construction introduces
non-physical, long-range, periodic artefacts in a microstructural geometry and its local
response.

3.1.2 Wang tiling in microstructure modelling

(a) (b) (c)

Figure 3.2: Formal definition of three Wang sets with the equal cardinality of 16 tiles:
(a) an edge-based set with two horizontal and vertical codes, (b) a vertex-based set over
four horizontal and vertical codes, and (c) the aperiodic Ammann’s set [85] over six hori-
zontal and vertical codes. Similar to Fig. 3.1, the compatibility codes playing the role of
constraints during the tiling assembly are illustrated with colours assigned to individual
edges. The corresponding vertex codes are depicted in light and dark grey corner squares.
While in the vertex-based set (b), edge codes were obtained by mapping two vertex codes
uniquely to one edge code, the potentially different vertex codes for sets (a) and (b) were
identified using the analysis from Section 3.2.3 of connectivity graphs shown in Fig. 3.5.

3Level-set description based on the signed distance to the nth nearest particle boundary does not fulfil
all metric criteria.
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Inspired by applications in computer graphics [17], we have introduced the formal-
ism of Wang tiles as a suitable generalization of SEPUC representation of heterogeneous
materials [15]. The formalism provides a compromise between the SEPUC approach and
the use of a microstructure generator for each new realization. The concept of Wang
tiles decomposes microstructure generation into an offline phase, which can possibly be
computationally intensive, and a nearly instantaneous online phase. In the offline phase,
information regarding a heterogeneous microstructure is compressed into a set of smaller
domains—Wang tiles—with predefined compatibility constraints on the compressed mi-
crostructural geometry. In the online phase, microstructural realizations are assembled
from these domains with a fast, linear algorithm that produces stochastic realizations
with suppressed periodicity. The merits of the tiling concept for RVE size analyses were
demonstrated in [75, 86].

Optimization-based approaches developed initially for the SEPUC design can be ex-
tended to incorporate generalized periodic boundary conditions and used to generate the
morphology of tiles [15, 16]. However, the extension amplifies the major weakness of opti-
mization approaches—their computational cost—making them prohibitively expensive for
complex three-dimensional models. As a remedy, we have proposed a method motivated
by Cohen et al. [17] that combines a sample-based approach with quantitative spatial
statistics [21]. While this method is by orders of magnitude faster than the optimization
approach, it has difficulties handling complex, percolated microstructures such as foam,
and produces corrupted ligaments in sample overlaps [75].

In this paper, we extend Sonon et al.’s method to Wang tiles in order to produce tile-
based representations of microstructures intractable by the former methods [15, 16, 21],
see Fig. 3.1. To this end, in Section 3.2, we review the fundamentals of the Wang tile
concept and discuss, in detail, connectivity and mapping between vertex- and edge/face-
based definitions of Wang tiles. Next, we outline Sonon et al.’s method [18, 19] and describe
modifications necessary to accommodate generalized periodicity, see Section 3.3. Finally,
equipped with the adapted procedure, we illustrate sample outputs of the procedure in
two and three dimensions. We also compare three tile sets—two stochastic and a strictly
aperiodic one—with the same cardinalities in terms of periodicity artefacts, complementing
our previous study [21] that dealt only with the distribution of tile types.

3.2 Wang tiles

Wang tiles constitute the building blocks of the abstract concept used in this work.
Albeit the shape of the tile domains can be any parallelogram (or a parallelepiped in 3D),
for simplicity’s sake we assume only square (or cubic) domains in the sequel. All tiles
from the tile set have compatibility codes attributed to their edges (faces), illustrated
using colours in Figs. 3.1 and 3.2. These codes play the role of constraints during an
assembly process of tile instances in a tiling—a portion of a plane (space) without any
voids or overlaps; only tiles with the same codes on the abutting edges (faces) can be placed
side by side. In addition, tiles can be neither rotated nor reflected during the assembly.
Even though the last two requirements can be eliminated by modifying the definition of
compatibility codes [87], we retain them for practical purposes since they preserve the
orientation of the microstructure compressed within the tile set. The particular version of
an assembly algorithm depends on the type of the tile set, discussed below.

Originally, the concept of Wang tiles was introduced in first-order predicate calculus as
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Figure 3.3: Illustration of a step in the stochastic assembly algorithm [17]. A tiling
of a given size is filled sequentially; for each position in a tiling, a final tile is chosen
from candidate tiles that are filtered out from a given tile set based on the compatibility
constraints posed by the previously placed tiles. The candidate tiles for the particular
position denoted with the question mark are highlighted in the tile set shown on the right.

a visual surrogate to a decision problem of ∀∃∀ statements4 [25, 26]. The initial conjecture
that a whole plane can be covered only if a periodic tiling exists [25] was disproved shortly
after [27], triggering the pursuit of the smallest tile set allowing for strictly aperiodic tiling
of the plane, see the classical monograph [28] and [88] for historical overviews. This quest
for the smallest set appears to be over; supported by an extensive computer-aided search,
Jeandel and Rao [88] announced a set of 11 tiles over 4 codes for each edge orientation,
stating that no smaller set exists.

3.2.1 Stochastic tile sets

Similar to applications in biology [89], physics [36], and computer graphics [90, 17], we
use the concept only in its geometrical interpretation as a suitable formalism the describing
mutual compatibility of small domains. Except for the comparison study in Section 3.4.1,
we also limit ourself to the stochastic tile sets introduced by Cohen et al. [17]. Besides the
fact that deterministic tilings of the aperiodic sets often exhibit locally ordered patterns,
the stochastic sets offer higher flexibility in terms of design, i.e. choosing the number of
tiles and codes and their distribution within the set5.

The assembly algorithm for stochastic sets works sequentially: an initially empty grid
is traversed in a scanline [91] way; at each grid node, possible candidates compatible with
previously placed tiles are identified in the set and one candidate tile is randomly chosen
and placed; see the illustration in Fig. 3.3. Thus, the only requirement for the set design is
that there is at least one tile (but optimally two or more to preserve the stochastic nature
of the assembly) for every possible combination of codes on the upper and left-hand edges.
In principle, the random choice from the subset can be replaced with an informed selection
preferring e.g. different phase volume fractions in different regions of a domain according
to a pre-generated Gaussian random field. This modification allows for correlations in
the microstructure at length scales larger than the tile size. For the sake of brevity and
without loss of generality, however, we use only the standard stochastic algorithm in this
work.

4A statement containing one existential (∃) and two universal (∀) quantifiers.
5The limitations of aperiodic sets are especially critical in 3D, because only one aperiodic set of Wang

cubes has been published to date [30].
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The tiling concept’s ability to generate naturally looking patterns from a limited
amount of samples—which proved highly appealing in computer graphics [17, 90]—stems
from the reduced periodicity in tiling assemblies. This feature complies well with our
ambition to replace a SEPUC-based description of random heterogeneous materials with
its generalization that would allow for fast synthesis of stochastic microstructural samples
or microstructure geometries for entire macroscopic domains.

The design of a compressed microstructural representation consists of two steps. First,
the cardinality of the tile set and a particular distribution of edge (face) codes is cho-
sen. This controls the frequency of tile occurrence in a tiling. Next, tile interiors are
designed such that (i) the generated microstructure is continuous across the compatible
edges and (ii) assembled tilings resemble the desired microstructure. Note that the latter
requirement is not imposed on individual tiles. On the contrary, variability in the com-
pressed representation is the main merit of the tiling concept. Tile interiors together with
edge compatibility carry local microstructural characteristics, while the fluctuations over
distances larger than the tile size are facilitated via the tile assembly algorithm.

3.2.2 Edge- vs. vertex-based tile definitions

Complementary to the edge-based specification introduced above, Wang tiles can be
defined using vertex codes. Unlike the standard edge-based definition, the vertex-based
definition allows for direct control of tile states across vertices, preventing pronounced
repetitiveness when a visually distinctive microstructural feature falls into the vertex re-
gion [17]. To avoid this “corner problem”, Cohen et al. [17] proposed marking the tile
vertices with an additional set of codes, essentially overlaying two tile set definitions. Sub-
sequently, Lagae and Dutré [91] retained only vertex codes, reporting superior spectral
properties for assembled patterns compared to edge-based sets with the same cardinality.

Albeit the two definitions yield the same cardinality of tiles (C4) in the complete set,
i.e. the set that contains all combinations of C codes, they differ when it comes to minimal
stochastic sets, i.e. sets that contain at least two tiles for each admissible code combination
of already placed neighbouring tiles (2C2 for edge-based sets vs. 2C3 in the case of vertex-
based ones). The difference is even more pronounced in three dimensions: a full face-
defined set contains C6 cubes compared to C8 cubes in a vertex-defined set. Theoretically,
Wang cubes can be also defined with edge codes in three dimensions; however, cardinality
exceeds both the face- and vertex-based definitions without any known benefits.

Mapping vertex-defined tiles6 to the original definition is straightforward: two vertex
codes define one edge code. Hence all the above-mentioned design and assembly procedures
directly apply to the vertex-based definition as well. In fact, the mapping provides an
effortless way to produce a minimal stochastic edge-defined set with equal occurrence
probability of each tile, the set characteristics sought for in [16]. On the other hand,
because the mapping is injective only, it is generally not possible to map an edge-defined
set to a vertex-based one.

3.2.3 Vertex analysis of a tile set

Here, we outline a tile set analysis capable of revealing the underlying vertex definition,
if it exists. The motivation behind this analysis is the pragmatic question which arises
when implementing generalized periodicity: If a particle intersects a tile boundary, what

6The same procedure holds also for Wang cubes, where four vertices define one face code.



Level-set design 28

Figure 3.4: Illustration of the generalized periodicity effect on the particle copy process.
The three steps shown illustrate how a particle initially placed at the top left corner of the
first tile (grey particle on the left-hand side of the figure) is sequentially copied to other
loci following the edge codes it intersects. Dashed particle outlines loci where the particle
will be copied in the next step.
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Figure 3.5: Comparison of graphs pertinent to the tile sets from Fig. 3.2, identifying a
potential vertex-based definition of the sets. Each graph node corresponds to a code on a
half of a tile edge (either left/right for horizontal codes, or top/bottom for vertical codes),
and graph arcs correspond to tile vertices. As there are multiple vertices—and hence
parallel arcs—connecting the same nodes, the graphs should be drawn as a multigraph.
However, multiple arcs are collapsed into one for the sake of brevity; only in (a) multiplicity
is indicated by tile indices attached to each arc. Independent sub-graphs indicating the
vertex character of the set are shown in distinct light and dark grey, which correspond to
the vertex codes in Fig. 3.2.

other tiles should it be copied to? While the answer is straightforward for a particle
intersecting a tile edge, vertex overlap is more involved. A particle overlapping a vertex
is carried to other tiles by both the horizontal and vertical edges. Because the particle
overlapped a vertex in the original tile, its images overlap vertices of the other tiles as
well. Consequently, these images are propagated further by the newly affected edge codes,
see Fig. 3.4. Whether the particle is eventually copied to all vertices or appears only in a
selected subset depends on the allocation of codes to individual tiles.

Assume an undirected graph7 where each node represents the code on a particular half
of an edge (either top/bottom for vertical or left/right for horizontal codes, resulting in
two occurrences of each edge code) and each arc corresponds to a tile vertex. The graph

7Instead of the standard vertex-edge nomenclature for a graph, we use node and arc terms in order to
avoid confusion with similar geometrical notions related to Wang tiles.
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is by definition bipartite, because each vertex connects horizontal and vertical codes, and
represents a multigraph since there are usually more vertices with the same adjacent edge
codes in the tile set. To answer the aforementioned question, we identify connected com-
ponents of the graph using the Depth-First Search algorithm [92, Section 18.2]. Each
independent sub-graph then corresponds to a distinct vertex code and the arcs pertain-
ing to the sub-graph determine the vertices to which a vertex-overlapping particle will
be propagated. See Fig. 3.5 for a comparison of three graphs pertinent to the tile sets
depicted in Fig. 3.2. The subgraphs (if present) are plotted in distinct grey colours, which
correspond to the colours of vertex codes shown in Fig. 3.2.

In three dimensions, a set of Wang cubes can be analysed analogously with only a
minor modification: a graph node represents one corner of a cube face. Thus, each face
code appears four times in the graph. In addition, cube edges with the same direction
vector must be also classified, addressing the situation when a particle intersects a cube
edge. The classification follows the exact same procedure as vertex identification in two
dimensions, neglecting the codes on faces perpendicular to the analysed edges.

3.3 Tile design using level-set functions

As mentioned in Section 3.1.1, Random Sequential Adsorption (RSA)8 is one of the
most frequent algorithms for generating particle packings and microstructural geometries.
It follows the simple idea of throwing particles of an arbitrary shape into a given domain
and keeping those that do not overlap with previously placed ones. In its original setting,
however, the algorithm poses a critical drawback for higher volume fractions: the success
rate for accepting the particle position rapidly decays in later stages because the majority
of the randomly selected positions collide with the already placed particles. Optimally,
the remedy would be to sample the new particle position directly from a domain that is
certified to result in a non-overlapping composition.

Several such remedies have been listed in Section 3.1.1. Here, we recall the approach
of Sonon et al., because we have extended their methodology to Wang tiles. Sonon et
al. [18, 80, 19, 81] adopted the implicit, level-set-based description of a microstructural
geometry and demonstrated that it enables—in addition to the desired sampling from
a valid domain loci—generating complex microstructural geometries (such as open and
closed foams) in a unified framework, using suitable morphing operations. Moreover,
both features are independent: if a particle packing is the desired output, the morphing
operations can be neglected. On the other hand, any distribution of points or particles
obtained by different packing methods can serve as the input for the morphing operations.

In the the remainder of Section 3.3, we revise individual steps from the Sonon et al.’s
framework and introduce necessary modifications facilitating the compatibility constraints
arising in the concept of Wang tiles. For the sake of clarity, all procedures are presented
in the two-dimensional setting with comments about three-dimensional problems when
necessary. Section 3.4 then presents both two- and three-dimensional results.

3.3.1 Generating particle packings

The original Sonon et al.’s approach [18] rests on describing the geometry of particle P
with a level-set function LP , which gives the signed distance of point x from the nearest
particle boundary ΓP (with negative values inside the particle), such that

8Sometimes, the term Random Sequential Addition, e.g. [93], is used interchangeably.
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Figure 3.6: Implicit representation of particle geometry with the level-set function LP .
The boundary of particle P is obtained as a zero-value contour of LP (plotted in a black
line).

LP(x) = min
y∈ΓP

d (x,y) , (3.1)

with the signed distance function d (x,y) given by

d(x,y) =
{
−‖x− y‖ if x ∈ P,
‖x− y‖ otherwise .

(3.2)

Consequently, the zero iso-line of LP represents the particle boundary ΓP , as depicted
in Fig. 3.6. Note that unlike many applications of the level-set method where the im-
plicit geometry description evolves in time according to the Hamilton-Jacobi equation,
see [94, and references therein], LP is computed for the given geometry of a particle and
remains fixed.

Assume for now that we have domain Ω that contains set R of already placed particles
and their geometry is encoded in a single level-set field LΩ,

LΩ(x) = min
P∈R
LP(x) , ∀x ∈ Ω ; (3.3)

see Fig. 3.7 for an illustration. Knowing the radius r of the smallest circumscribed circle
as the only characterization of the new particle, overlaps with the existing particles can
be readily prevented by sampling its centre from the domain

A =
{
x ∈ Ω | LΩ(x) ≥ r

}
. (3.4)

After placing the new particle P, the level-set field LΩ is updated with LP ,

LΩ(x) = min
(
LΩ(x),LP(x)

)
, ∀x ∈ Ω . (3.5)

This procedure repeats until either a pre-defined stopping criterion (e.g. a desired volume
fraction) is met or A = ∅.

To increase the volume fraction that can be achieved with this procedure, two addi-
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(a) (b)

Figure 3.7: Two consecutive steps of the level-set based RSA algorithm for a Periodic
Unit Cell: (a) level-set field LΩ with previously placed particles (values of LΩ outside the
admissible sampling domain A are displayed as translucent) at the nth step; (b) updated
state of LΩ and A after placing a new particle at step n+ 1.

tional restrictions can be posed on the admissible subdomain A. First, a maximal distance
ρ from existing particle boundaries can be added to Eq. (3.4), preventing too large gaps
between particles. (If requested, a minimal distance κ between two particles can be further
enforced as well.) Second, to prevent locally jammed states with large interparticle gaps,
an additional field LΩ

II storing the shortest distance to the surface of the second nearest
particle can be included in Eq. (3.4) and limited from above with σ, see [18] for additional
details. With all these constraints in action, Eq. (3.4) takes the form

A =
{
x ∈ Ω | r + κ ≤ LΩ(x) ≤ r + ρ, LΩ

II ≤ r + σ
}
. (3.6)

Enforcing periodicity of the packing is also straightforward: upon placement of a new
particle, the domain level-set field is also updated with the particle’s periodic images (eight
in 2D; recall the grid in Fig. 3.8, and 26 in 3D).

3.3.1.1 Extension to Wang tiles

Compared to generating PUCs, the additional compatibility constraints among indi-
vidual Wang tiles necessitate several modifications in the original Sonot et al.’s algorithm
to generate continuous microstructural morphology of a tile set. For the Poisson discs
distribution, Lagae and Dutré [95] modified the Dart Throwing algorithm by partitioning
tile domains into separate regions pertinent to vertices, edges, faces, and tile interiors, and
filling the regions sequentially, starting with the vertex regions. Here we present a different
approach better suited to packing particles of different sizes and shapes that processes all
tiles simultaneously and does not require a priori partitioning of tile domains.

As LΩ we use a level-set field LS =
⋃
T ∈S LT defined on a regular grid for each tile T

in the tile set S. For each tile in a pre-processing stage, we identify potential neighbouring
tiles and store their indices in a grid (3 × 3 or 3 × 3 × 3 in two or three dimensions,
respectively), see Fig. 3.8, which will be used later in the updating phase.

For further description, we define a copy-inducer as a geometrical entity that is re-
sponsible for inducing particle copies to other tiles. Hence, a copy-inducer can be either
a vertex, edge, face, or formally the tile itself and is related to a code identified in Sec-
tion 3.2.3. The particular type of the copy-inducer stems from particle’s intersections with
a tile boundary (if a particle does not intersect a boundary, the tile is the copy-inducer,
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Figure 3.8: Neighbourhood grid identified for each tile in a tile set (here shown for tile
V6 from Fig. 3.2b) containing codes of tiles that can occur at given positions. Light and
dark grey regions depict individual entities in the bookkeeping structure, which prevents
calculations. (During the update procedure described in the text, the blue particle can
be accounted for either in tile 6 at the centre, or from tiles 3, 6, 11, or 14 at the first
column, second-row position. With the bookkeeping structure considered, only one update
is performed.) The blue square illustrates the use of acceleration via a precomputed patch;
values of LP are computed only once and used for all particle occurrences during an update.
If requested, values outside the patch are computed in a regular way.

indicating that no copy is necessary. If a particles intersects one edge, the edge is the
copy-inducer, and so on).

Modification 1: Update The main structure of the modified algorithm follows the
original one. After sampling a particle location from A ⊆ S, which yields tile Ti and
centre xPc ∈ Ti where the new particle will be placed, the particle’s intersections with
the boundary of Ti are determined, and—based on the intersections—a copy-inducer is
identified. Images of the particle are subsequently copied to the relevant tiles following
the matching codes on the corresponding copy-inducers. A level-set field of the whole set
is then updated tile-wise as described below.

For each tile, we sequentially loop over all tile positions in the neighbours grid shown
in Fig. 3.8 (including the centre position as well) and check each of the potential tiles at
that position for a new particles added in the current step. If any, the central tile’s level-set
field is updated according to Eq. (3.5). Clearly, a new particle can appear several times in
the same place. To avoid duplicated calculations, we set up a bookkeeping structure that
records which copy-inducer in the neighbouring grid was already used during the update
and run only the unperformed updates, see Fig. 3.8.

Two implementation approaches are possible at this stage: (i) LP is computed anew for
each tile and position in the bookkeeping structure, or (ii) provided that LS is represented
with discrete values on a regular grid, LP is precomputed for an auxiliary domain/patch
aligned with the particle centre before any update and this field is then reused for all
particle instances. Moreover, we combine both approaches with the pre-screening acceler-
ation proposed in [18] that resorts to computing potentially demanding surface-distance
functions only when the L value of a circumscribed circle/sphere—which is fast and easy
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to calculate—is less than the actual LΩ value for a given x.
While the pre-screening acceleration is significant in all cases, the benefits of a precom-

puted patch depend mainly on the patch size relative to the particle circumscribed radius,
the LS field resolution, and the cardinality of the tile set. Especially in the later stages
of the algorithm, when only relatively small parts of LS are updated, pre-computing a
patch for a particle that is not copied to other tiles might cause unnecessary overhead.
Therefore, we use the patch approach only for particles with either vertex, edge, or face
copy-inducers.

For the three-dimensional set of 16 cubes used in Section 3.4.3 with ellipsoidal particles
of circumscribed radius r = 0.15, the patch pre-calculation delivered 10% saving in com-
putational time on average. Note also that the multi-query problem of finding the shortest
distance to a particle boundary from a set of points is trivially parallelizable, changing the
trade-off between patch pre-computations and direct calculations with available threads.

When all tiles are updated, the algorithm proceeds with identifying A for the next
particle.

Modification 2: Artificial level-set field Definition of the admissible domain A
must also be modified for Wang tiles; particle centres cannot be sampled directly from A
obtained from LS . The reason for this is that the near-boundary parts of each tile must
be informed about the interiors of related tiles in order to prevent insertions similar to the
one depicted in Fig. 3.9a, where a copied instance of a newly placed particle collides with
interior particle(s) of other tiles. The problem arises only when a particle image is added
to a copy-inducing entity with the same orientation as the actual inducer (left-hand side
edges in Fig. 3.9a); particles copied to the opposite copy-inducers automatically meet the
non-overlap requirement thanks to the first update modification described above.

To avoid this problem, we replace LS in Eq. (3.4) or Eq. (3.6)9 with a modified field L̃S
which is equal to LS except for boundary regions, whose width is dictated by the radius
r of the circle/sphere circumscribed to the current particle. Each boundary region is then
constructed as a point-wise minimum over all regions related to the same copy-inducers
with the same code and the same orientation; see Fig. 3.9c. This construction propagates
the close-boundary state across relevant tiles and thus prevents overlapping insertions
similar to the one depicted in Fig. 3.9a. Note that a similar modification is not required
for LΩ

II because all information necessary to prevent the collisions is already contained in
L̃S .

Modification 3: Breaking regular grid The level-set field LS is typically imple-
mented on a regular grid and the particle centres xPc thus end up aligned with the grid.
To break this artificial ordering, after sampling a new particle centre, we check whether
the surrounding points belong to A. The belonging points then define quadrants/octants
in which the particle can be moved freely. We generate a random shift within these quad-
rant/octants and update the particle centre accordingly. However, this modification is
possible only if the grid spacing is sufficiently small compared to the particle size; other-
wise, the implicitly assumed linear approximation of LS is inaccurate and might result in
particle intersections at intermediate locations.

The modifications described above are sufficient for extending the original Sonon et al.’s
level-set-based packing algorithm to the concept of Wang tiles. Note that all control vari-

9Recall that the tile set domain LS substitutes a generic LΩ in both equations from Section 3.3.1.1
onwards.
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(a)

(b) (c)

Figure 3.9: (a) Illustrations of particle intersections that can happen due to copying
particle images without considering artificially updated level-set field L̃S in the definition
of A. The problematic overlaps occur only at inducer places (highlighted in blue) with
the same orientation as the particle copy-inducer (dashed outlined grey particle on the
left-hand side). Figures (b) and (c) depict the original LS and its modified version L̃S
that communicates necessary data across boundary regions to prevent intersections from
(a).

ables, e.g. particle radius r or minimal and maximal distances ρ and σ, can change while
the algorithm operates. For instance, to achieve denser packings for multi-modal particle
size distributions, it is preferential to start placing large particles first and sequentially
proceed to the smaller ones.

Nonetheless, our extension inherits the weakness of the original algorithm when it
comes to particles whose shapes are significantly different than their circumscribed cir-
cle/sphere, e.g. prolonged ellipsoids. In particular, the more the particle volume deviates
from the volume of the circumscribed sphere, the less dense the final packing can be. While
the geometry of the already placed particles is described exactly with LS (up to inaccura-
cies due to grid spacing in x), the newly placed particle is represented only approximately
during selection of a centre, yielding a pessimistic estimate of mutual intersections. The
potential remedy is to translate the particle centre right after sampling according to some
heuristic rule aimed at producing denser packings; however, we leave this issue unaddressed
in this paper.

3.3.2 Morphing operations

The acceleration of RSA by adopting the level-set approach is attractive on its own;
however, the main appeal of the Sonon et al.’s level-set framework is the elegance with
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which complex microstructures can be generated. As the simplest example, adding a
constant γ to LS enables (i) fine-tuning of particle volume fractions, (ii) smoothing of sharp
corners of polyhedral particles, and (iii) particle coating, e.g. for defining the Interfacial
Transition Zone.

Combinations of LS and LSII permit rendering interparticle bridges and controlled
Voronoï-like tessellations; see [18], where these morphing operations were used to mimic
microstructural geometry of clay/sand mixed soils and irregular masonry. Considering also
the shortest distance to the boundary of the third nearest particle LSIII, Sonon et al. [19]
demonstrated that their framework can produce highly adjustable models of foam-like mi-
crostructures, including features such as a smooth transition from open to closed foams,
concavity of foam ligaments, their coatings and hollow interiors, and variable thickness
of foam ligaments and cell walls. As in Section 3.3.1, we present only the essentials of
generating foam-like microstructures and introduce necessary modifications. The reader
is referred to [18, Section 4] and [19, Sections 3 and 4] for details regarding the above-
mentioned local adjustments, since they remain unchanged. Assume we have at our dis-
posal all three fields LS , LSII, and LSIII, containing the shortest distance to the boundary
of three nearest particles (either computed a posteriori for a given particle assembly or
already tracked during the packing algorithm).

In a manner similar to classical Voronoï tessellation, where a domain is partitioned by
boundaries that have the same distance to the two closest seeds, thresholding the modified
difference

Fc =
(
LSII − LS

)
+ tc (3.7)

yields a closed-cell, foam-like geometry with tc indirectly controlling the thickness of foam
cell walls. In the same spirit, the centrelines of the open-foam ligaments can be viewed as
loci with the same distances to the boundary of three nearest particles; hence thresholding

Fo =
(

1
2(LSIII + LSII)− LS

)
+ to , (3.8)

produces open-foam ligaments with to governing their thickness. Finally, combining Eqs.
(3.7) and (3.8)

F(x) = min (Fc(x),Fo(x)) , ∀x ∈ S , (3.9)

allows for more realistic geometries with material concentration at wall intersections,
see Fig. 3.10.

It is critical when extending the original framework to Wang tiles, with respect to the
morphing procedures, to ensure that all three fields are continuous across the relevant
tile edges/faces. As illustrated in Fig. 3.11, copying particle images introduced in the
previous subsection is insufficient in this regard. To guarantee the required continuity,
we define a wider domain margin as a subdomain related to individual copy-inducers.
Instead of computing intersections with a tile boundary, we compute them for a virtual
inset boundary (inset by r is usually enough) and copy the particles according to the
virtual copy-inducers. Consequently, wider portions of tile domains are restrained near
boundaries, resulting in restored continuity. This modification is also reflected in the
construction of auxiliary field L̃S .



Level-set design 36

(a) (b)

Figure 3.10: Influence of morphing operations on resulting (a) two- and (b) three-
dimensional geometry. From the original particle distribution (depicted with light grey),
the closed-cell, foam-like geometry (shown in blue) is obtained by Eq. (3.7) and the open-
like features (plotted in red) follow from Eq. (3.8).

(a) (b) (c)

Figure 3.11: Assembled level-set fields composed of 2 × 2 tiles without (top row) and
with (bottom row) a virtual boundary inset taken into account during particle placement.
Note that even the nearest-neighbour distance L (a) is not continuous across vertices when
the virtual inset is not considered, albeit the particle boundaries, i.e. zero-value contours
outlined in grey, are. Severe discontinuities then appear for the second-nearest LII (b) and
the third-nearest LIII (c) neighbour distance without the inset boundaries.

3.4 Results

3.4.1 Comparison of 16-tile sets

First, we compare the periodicity reduction in three planar sets depicted in Fig. 3.2,
which have the same cardinality but different tile definitions. We supplement our earlier
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(a) (b) (c)

Figure 3.12: S2 cross-sections along an x1 coordinate for 10× 10 tilings for (a) the edge-
defined tile set C16, (b) the vertex-defined set V16, and (c) the Amman set A16, considered
in Section 3.2.3. Thin grey lines depict the average over 100 realizations of each tile set
morphology, solid blue line shows the overall average (i.e. over realizations and mor-
phologies) and the green area captures the range between minimal and maximal values.
Dashed grey line marks the asymptotic value φ2, where the average volume fraction φ is
considered.

observations [21] regarding suppressed artificial periodicity compared to PUC-based re-
constructions and better fitness of stochastic tile sets over their aperiodic counterparts.
Namely, we consider: (C16) an edge-based stochastic set over four colours,10 (V16) a
vertex-based stochastic set over eight colours, and (A16) the aperiodic Ammann’s set [85]
over 12 colours11.

Assuming ergodicity of a microstructure, we quantify the artificial periodicity in the
tiling assemblies by means of the secondary peaks in the two-point probability function
S2(x) [2]. S2(x) states the chance of finding two points separated by x in the same phase.
Hence, S2(x) attains its maximum at x = 0, where it equals the volume fraction φ of
a chosen phase. For microstructures without any internal ordering, S2(x) → φ2 with
‖x‖ → ∞ because two sufficiently distant points are uncorrelated. On the other hand,
if a microstructure is composed of a repeating (SE)PUC, S2(x) exhibits secondary peaks
having the same magnitude as S2(0) at nodes of a regular grid whose spacing corresponds
to the (SE)PUC size. Thus, in the intermediate case of Wang tiling, the magnitude of
secondary peaks indicates the remaining artificial ordering in the reconstructed microstruc-
ture, see [15, 21] for details. For computing S2(x), we used the Fast Fourier Transform
(FFT) instead of random sampling, because the bias in the statistics caused by the im-
plicit periodicity introduced with FFT is negligible for reasonably large microstructural
realizations [96]. Recall also that the two-point probability function S2, widely used for
statistical quantification of material microstructures, e.g. [2], is the inverse Fourier Trans-
form image of the power spectral density (or its estimate via periodogram) traditionally
used in the Computer Graphics community, e.g., [17, 90, 95].

For each of the three tile sets we ran the presented algorithm 25 times and thus
generated 25 different tile set morphologies. Aiming at capturing the artificial periodicity
related to the limited number of edge codes and tiles, we resorted to the simplest set-up
with circular inclusion of a fixed radius r = 0.1 in order to minimize the influence of
particle shapes. In addition, we prevented the particles from overlapping tile vertices in

10This set corresponds to the set reported in [17].
11For the aperiodic assembly, we used the substitution rule from [31].
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order not to favour the vertex-based tile set a priori12. The level-set fields of each unit-size
tile (Ω = [−0.5, 0.5]2) were discretized using a regular grid comprising 201 × 201 points.
Finally, we posed two constraints, κ = 0.01 and ρ = 0.03, on A, recall Eq. (3.6).

Figure 3.13: Box-and-whisker plot of the normalized maximal secondary peaks Ŝ2 over
100 realizations and 25 tile set morphologies for each tile set. The central lines mark the
median; edges of each box denote the first and third quartiles; and whisker lines contain
all data not considered as outliers (marked as dark blue dots).

We assembled 100 microstructural realizations, i.e. tilings, containing 10 × 10 tiles
for each tile set and tile morphology and computed S2 statistics for the inclusion phase.
Cross-sections of S2 along the x1 coordinate are plotted in Fig. 3.12 for the tile sets
considered. As expected, the secondary peaks appear at loci with integer coordinates.
Excluding the primary peak, we picked the second highest extreme Ŝ2 normalised against
the averaged asymptotic value φ2 for each realisation and plotted the obtained data with
box-and-whisker diagrams in Fig. 3.13.

While the Ammann’s tile set A16 seems promising locally—note the suppressed sec-
ondary peaks at x1 = 1.0 and x1 = 4.0 in Fig. 3.12c—its deterministic aperiodic structure
leads to pronounced secondary extremes in other regions, e.g. x1 = 3.0. This observation
corroborates our previous conclusions, based solely on the distribution of individual tiles
within tilings, that strictly aperodic sets such as the Ammann’s or Culik’s set considered
in [21] lead to higher secondary peaks than stochastic sets [17] with the same cardinality,
which feature more uniform secondary peaks. Figs. 3.12 and 3.13 clearly show that, out
of the two stochastic sets, the vertex-based definition performs better as expected, even
despite the prevented vertex overlaps. This superiority of vertex-based tile sets in two
dimensions is further supported by additional results comparing vertex- and edge-based
sets comprising 81 tiles, see Fig. 3.13.

3.4.2 2D example

Second, we present an example of a two-dimensional microstructure based on polygonal
particles. The geometry of each particle was derived from an originally regular, randomly-
oriented polygon with the number of vertices being sampled from a normal distribution
with the mean value 0.6 and the standard deviation 0.5, N

(
6.0, 0.52), and rounded to

the nearest integer. The angle between two rays connecting the particle centre and neigh-
bouring vertices was perturbed with a value randomly chosen from N

(
0.0, 0.52). Finally,

12From Fig. 3.5 it follows that a particle will be copied to all tiles if it overlaps any vertex for the A16
and C16 tile sets.
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each vertex was placed on its corresponding ray at a distance sampled from N
(
0.95, 0.052)

(and capped by 1.0) relative to the particle’s circumscribed radius.
Following the outcomes of Section 3.4.1, we picked the vertex-based set with 16 tiles

depicted in Fig. 3.2b. Similarly to the previous set-up, the size of each tile was Ω =
[−0.5, 0.5]2 and the corresponding level-set fields were discretized using a regular grid
comprising 201 × 201 points. The initial value of the circumscribed radius was set to
r = 0.08. After 40 algorithm steps, the radius was increased to 0.1, and eventually we
reduced it to 0.06 after next 60 steps. The number of algorithm steps and related radii
were chosen randomly to illustrate the algorithm’s control options. Only the first two
constraints on A from Eq. (3.6) were posed. We fixed the minimal particle distance at
κ = 0.01; the maximal distance ρ was set to 0.05 in the first 50 steps and decreased to
0.02 later. The width of the virtual boundary inset was kept constant at 0.1.

(a) (b)

Figure 3.14: Results of the algorithm set-up described in Section 3.4.2: (a) A composed
view of the tile set with highlighted edge and vertex codes. The particulate assembly is
drawn in grey; the corresponding foam-like microstructure is shown in blue (similar to
Fig. 3.10); (b) An example of a 10× 5 tiling.

Fig. 3.14 depicts a composed view of the resulting particle assembly and the related
closed-cell, foam-like microstructural geometry obtained by considering tc = 0.015 and
to = 0.020 in Eq. (3.9).

3.4.3 3D example

Finally, we demonstrate a three-dimensional output of the algorithm for a set of 16
Wang cubes with two codes for each face orientation uniformly distributed in the set.

Again, we used centred tile domains of a unit size discretized with a grid of 101 ×
101×101 points. For the packing part of the algorithm, we considered ellipsoidal particles
with a random orientation and a fixed circumscribed radius r = 0.10. The ratio between
the middle and the major semi-axes lengths was sampled from a uniform distribution
U (0.7, 0.9); the minor to the major semi-axes length ratio was randomly generated from
U (0.6, 0.7). The admissible domain at each algorithm step was dictated both by LS and
LSII with constraints κ = 0.02, ρ = 0.05, and σ = 0.05 in Eq. (3.6). Since we aimed at
modelling a foam-like microstructure, the width of a virtual inset boundaries was set to
0.1.

The final microstructure was obtained by performing the morphing operations accord-
ing to Eq. (3.9) with tc = 0.02 and to = 0.03. For the sake of brevity, we do not show
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Figure 3.15: A microstructural realization assembled as a 5× 5× 3 tiling from the Wang
tiles generated in Section 3.4.3.

individual Wang cubes, and we plot only a microstructural sample comprising 5 × 5 × 3
tiles in Fig. 3.15.

3.4.4 Computational cost

Our extension inherits the O(N) complexity of the Sonon et al.’s method [18, 19],
as shown in Fig. 3.16. However, the actual time needed to generate particle packings or
complex morphologies depends on several factors. While the impact of the grid resolution
is straightforward (computational time scales linearly with the number of grid points), the
effect of other factors such as particle shape and compatibility constraints due to different
definitions of a tile set is less obvious.

To illustrate the influence of these factors, wall-clock time for several settings is plotted
in Fig. 3.16. Tile sets considered for the analysis are the two-dimensional ones used in
Section 3.4.1 and the three-dimensional sets from Section 3.4.3; in addition, a PUC was
included in the comparison as a trivial case of a tile set. For all settings, tile domains of
unit size were discretized with 401×401 grid points in two and 101×101×101 grid points
in three dimensions. The circumscribed radius of particles was set to r = 0.02 for two-
dimensional and r = 0.05 for three-dimensional problems. The algorithm was terminated
once the desired number of placed particles was achieved. Computational time13 for each
setting was measured 10 times.

Interestingly, albeit of the same cardinality, individual tile sets from Section 3.4.1
exhibit significantly different computational times. This is due to the distribution of
edge codes within a set, because a larger part of the tile set domain must be updated with
each particle copy in sets with fewer codes, recall Section 3.3.1.1. Note that Ammann’s
set with six codes for both horizontal and vertical edges behaves nearly the same as PUC.

Computational time related to the morphing operations depends on the operational
13 All computational times are reported for a workstation equipped with an IntelR© XeonR© E31280 3.50

GHz processor and 16 GB RAM running Windows 10 version 1903. The algorithm was implemented in
the latest standard of C++ language (C++17), relying on parallel algorithms from the C++’s Standard
Template Library.
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(a) (b)

Figure 3.16: Wall-clock time needed to pack N particles into (a) two-dimensional and
(b) three-dimensional tile sets. Results for different particle shapes are drawn in distinct
line styles; considered tile sets (including the trivial case of PUC) are distinguished with
distinct colours. Error bars show the standard deviation for each setting. PUC results
in two dimensions are limited by the number of particles that can be packed in a unit
domain.

mode of the algorithm. If the algorithm is used for both packing and morphing at the same
time, the level-set fields used during the particle packing phase can be directly utilized for
the morphing operations. On the other hand, when the morphing part runs separately,
all the distance fields must be calculated again. Yet this recalculation is typically faster
than the packing because all copies and compatibility constraints are already taken into
account; for instance, generating the particle packing for the microstructure presented
in Section 3.4.3 took 1,280 s while the recalculation needed for the morphing operations
finished in 420 s.

3.5 Summary

In this work, we have extended Sonon et al.’s level-set based framework [18] to mi-
crostructural models based on the formalism of Wang tiles. The extension enables gen-
erating compressed representations of complex microstructural geometries such as open
and closed foams or cells, which have been nearly impossible [21] or very expensive [15] to
generate for Wang tiles to date.

Advancing from the standard Periodic Unit Cell to the generalized periodicity of Wang
tiles necessitated several modifications of the original algorithm that addressed difficul-
ties originally not encountered in the case of PUC. Driven by the geometrically-motivated
question of where a vertex-overlapping particle should be copied to, we have come up with
a simple procedure based on graph analysis capable of revealing the underlying vertex def-
inition of a tile set, if present. We have also demonstrated that a straightforward copying
of boundary-intersecting particles according to the edge and vertex codes is insufficient for
preventing spurious particle overlaps because the information about the interior of a tile is
not automatically communicated across individual tiles. As a remedy, we have introduced
an artificially updated level-set field that facilitates this necessary communication. The
width of the updated region in this field is dictated by the required final geometry. If only
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a particle distribution is to be generated, the width equal to the particle radius r suffices.
On the other hand, if foam-like microstructures are desired, the virtual boundary inset by
r is necessary in order to preserve continuity of the level-set fields LSI and LSII across tile
edges, resulting in the updated region of width 2r.

Additionally, we have devised two minor modifications, one capable of breaking a
regular underlying grid of possible particle centres by introducing their random shifts
within an admissible region, the other accelerating the LS updates by pre-computing LP
on a patch. The importance of the latter modification grows with higher LS resolutions
and larger cardinality of a tile set.

Having a universal framework for generating Wang tile morphologies at our disposal,
we have supplemented our previous comparison of strictly aperiodic and stochastic tile
sets [21] and confirmed the superiority of vertex-defined tile sets in suppressing artificial
periodicity in assembled microstructural samples. Given the same cardinality of the edge-
and vertex-based tile sets in two dimensions, we recommend using the latter. On the other
hand, the same comparison in three dimensions is more subtle and the choice should be
always a compromise between available computational resources and required periodicity
reduction, following e.g. the approximate formula proposed in [15].

Admittedly, the presented modification inherits certain limitations posed by the orig-
inal framework; namely, it provides only indirect control of a resulting microstructural
geometry and no spatial statistics are involved in the particle placing process. Albeit
addressing these limitations remained out of the scope of this work, ideas conceptually
similar to [46], i.e. optimizing the particle positions a posteriori to minimize the discrep-
ancy between target and computed spatial statistics, could be potentially applied to steer
the generated microstructure to the desired statistics.

Albeit our extension features linear complexity as in the original Sonon et al.’s frame-
work, the generalized periodicity brings increased computational cost compared to PUC
generation, see Section 3.4.4. Recall though that tile-based compression is intended pri-
marily for generating numerous stochastic realizations with arbitrary sizes. Thus, more
time can be spent on preparing the initial microstructure because the increased cost will
be amortized later during repeated use of the same compression.

Our current focus is on developing a robust finite element discretization tool that would
enable meshing both outputs of the framework, i.e. analytical geometries of particulate
microstructures and complex geometries implicitly defined via level-set fields and processed
with the marching-cube algorithm. In both cases, special attention will be paid to ensuring
topological and geometrical compatibility of the resulting finite-element meshes across the
corresponding faces/edges.



Chapter 4

Homogenization of high porosity
foams

Abstract:
An approach to homogenization of high porosity metallic foams is explored. The emphasis
is on the Alporas R© foam and its representation by means of two-dimensional wire-frame
models. The guaranteed upper and lower bounds on the effective stiffness coefficients
are derived by the first-order homogenization with the uniform and minimal kinematic
boundary conditions at heart. This is combined with the method of Wang tilings to gen-
erate sufficiently large material samples along with their finite element discretization. The
obtained results are compared to experimental and numerical data available in literature
and the suitability of the two-dimensional setting itself is discussed.

Reproduced from: Doškář, M., Novák, J., 2016. A jigsaw puzzle framework for homoge-
nization of high porosity foams. Computers & Structures 166, 33–41. [75]
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4.1 Introduction

Highly porous metallic foams possess an extensive application potential. These mate-
rials feature high energy absorption, strength, and stiffness at very low weight, which
makes them appealing for the automotive, aircraft, and defense industry, to name a
few [97, 98, 99]. In order to foster new application areas, a qualified understanding of
the foam behavior and relevant predictive tools are required. Computer models, in par-
ticular, are regarded as a key ingredient to optimization of either/both the microstructure
geometry or/and final products made of these materials [100]. A consensus regarding the
approximation of the behavior of porous solids seems to exist. Open-cell foams1 are usually
represented with the three-dimensional beam models, while their closed-cell counterparts
require an addition of membrane elements acting as the cell walls [101]. Nevertheless, in
the case of very thin walls even the behavior of closed-cell foams can be approximated
with beams [98, 102, 97, 103]. Following this assumption, Ashby and Gibson presented a
three-dimensional beam model of the unit cell and derived solutions to the overall thermo-
mechanical parameters based purely on material porosity [101]. Our goal is to explore the
adequacy of a two-dimensional wired model discretized with beam elements. We build on
the recent outcomes by Němeček et al. [20], who developed a planar beam model based on
the approximation of foam ligament geometry by the Voronoï tessellation. The objectives
of the paper are threefold:

1. to investigate the influence of real geometry of foam ligaments and the proper size
of computational models [20];

2. to provide the upper and lower bounds on the effective stiffness coefficients for the
two-dimensional beam model via the first-order homogenization procedure;

3. to validate obtained results against the experimental and numerical results from [20]
and to question the assumption of the vanishing Poisson ratio made therein.

The first objective is addressed with the help of Wang tilings, a concept recently intro-
duced to Materials Engineering community [15]. In particular, the foam microstructure is
compressed within a set of smaller domains, called Wang tiles. The morphology of the tiles
is designed such that the tiles are microstructurally compatible across the corresponding
edges. As a result the reconstructed material microstructure remains continuous across
the gridline of the regular lattice to which the tiles are accommodated during synthesis
of a computational model, see Fig. 4.3c. The method is extremely efficient in producing
arbitrarily diverse ensembles of arbitrarily sized and geometrically consistent microstruc-
ture realizations in a fully stochastic setting [21]. Moreover, creating the finite element
mesh on the level of tiles avoids expensive mesh generation of each microstructure real-
ization. Altogether, we are able to reach for a proper size of the computational model,
which is expected to be relatively large because of the infinite contrast in constituent
properties [84].

As regards the second objective, we reformulate the first-order homogenization pro-
cedure for the wire-frame finite element models by means of macroscopic degrees of free-
dom [22]. The upper bound on the apparent stiffness is obtained from the ensemble of mi-
crostructures exposed to the kinematic uniform boundary conditions (KUBC). The lower
bound is rendered by applying the minimal kinematic boundary conditions (mKBC) [104].

1As Banhart [98] pointed out, sponge would be an appropriate term for open-cell highly porous solids.
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Table 4.1: Properties of Alporas R© foam [97]. Here K, G and E stand for the bulk, shear
and Young moduli, respectively, and ν is the Poisson ratio.

K [GPa] G [GPa] E [GPa] ν [-]
0.9 - 1.2 0.30 - 0.35 0.4 - 1.0 0.31 - 0.34

In order to compare our results with those reported in [97, 98, 105, 20], the bulk and shear
moduli are derived from the homogenized stiffness matrices by assuming material isotropy.

The paper is structured as follows. In the next chapter Alporas R© aluminum foam,
the material of interest, is characterized in brief. Section 4.3 covers the adopted mod-
eling strategy addressing the first objective. In particular, Wang tilings are presented
first together with their use in the context of numerical homogenization. Description of
microstructure discretization into planar beams is also provided in this section. The first
order homogenization is reviewed in Section 4.4 with emphasis on the beam model and the
boundary conditions connected to the upper and lower bounds on the effective stiffness.
Numerical results are provided in Section 4.5 and discussed in the last section.

We use the following nomenclature within the text. Scalar quantities are denoted by
plain letters, e.g. a or A, matrices by bold sans-serif font, e.g. a or A, and tensorial
quantities by bold serif letters, e.g. a or A. In addition, we adopt the standard Voigt
matrix representation of symmetric second- and fourth-order tensors.

4.2 Alporas

Alporas R© is the closed-cell aluminum foam commercially produced by Shinko Wire
Company, Ltd. [105] with porosity between 90% and 92% [97]. The pore space is composed
of approximately polyhedral voids with the mean size of around 3 mm. The main field of
its application lies in the energy absorption structures. Predominantly, Alporas R© is used
in production of self-supporting sound absorbers [105]. The sandwich plates comprising
of Alporas R© foam core were also reported to outperform common steel plates under blast
loading in e.g. [106].

Regarding the linear elastic behavior, the design guide to metallic foams [97] suggests
the overall parameters enlisted in Tab. 4.1. However, the region of linear elastic behavior is
rather limited. Nonlinear or inelastic behavior develops soon after the loading onset due to
wall buckling, contacts between ligaments, and local yielding, which makes interpretation
of overall elastic parameters from experimental data a challenging task.

Two distinct phases, (i) the aluminum rich phase, and (ii) the phase of precipitates
consisting of titanium and calcium, were identified by Němeček et al. at the level of cell
walls for the investigated specimen displayed in Fig. 4.1. In [20] the Mori-Tanaka ho-
mogenization scheme was employed to estimate the values of effective Young’s modulus
of 70 GPa and Poisson’s ratio of 0.35 of the bulk material. In order to obtain compa-
rable data with [20], the values were taken here as the reference parameters of the solid
(ligament) phase for the homogenization at the level of foam.

4.3 Modeling strategy
Numerical homogenization is closely connected with the notion of Representative Vol-

ume Element (RVE), a characteristic sample of a microstructure large enough to provide us
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(a) (b) (c)

Figure 4.1: Alporas R© foam: (a) Visualization of raw µ-CT data, (b) image from optical mi-
croscope, and (c) binary image of polished cross-section, courtesy of Ondřej Jiroušek [107]
(a) and Jiří Němeček [20] (b,c).

with the effective material properties. From this viewpoint, a method capable of rendering
stochastic microstructure realizations of arbitrary sizes is desirable.

Our approach rests on Wang tiling, a multicell generalization of the Periodic Unit
Cell concept [15], see Fig. 4.2. We adopt the premise that a microstructure represented
to a high degree of accuracy automatically provides us with a broad range of effective
properties [108, 10]. Starting with a binary two-dimensional image of a material, we
compress the microstructure into a set of Wang tiles. Subsequently, the Finite Element
(FE) mesh composed of planar beams conforming through the edges of identical codes
is generated within each tile. Finally, in the numerical homogenization we benefit from
the ability of the tiling concept to produce ensembles of microstructure realizations and
corresponding computational models of arbitrary sizes using a stochastic tiling algorithm.

reference specimen

co
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es
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(set of Wang tiles)
RVE/SVE ensemble

(tilings)
compressed FE mesh
(set of Wang tiles)

Figure 4.2: Illustration of adopted modelling strategy.

4.3.1 Wang tilings

Wang tiles are square domino-like pieces with codes assigned to their edges, Fig. 4.3a.
The codes represent binding constraints such that only the tiles with the same codes on
the adjacent edges may be placed next to each other when assembled into a tiling. By
definition, the tiles can be neither rotated nor reflected [25], hence the two tiles of identical
code sequences mutually rotated by π

2 are considered as different. The term tile set denotes
the union of all tiles available for the tiling synthesis. The set is characterized with the
number of tiles and the number of distinct codes on their horizontal and vertical edges.
The composition of codes within the tile set governs the probability of occurrence of each
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tile in the tiling.
Specific families of tile sets can be identified. Each of the families usually comes

with a unique tiling algorithm. A great attention, especially from Discrete Mathematics
community, has been paid to the family of aperiodic sets in the last 50 years. How-
ever, in agreement with Computer Graphics applications [17], we prefer stochastic sets
to strictly aperiodic ones as the former provide us with more freedom in their design.
The stochastic sets also correspond better with the purpose of modeling of materials with
random/disordered microstructure.

Tiles of a stochastic tile set can be easily assembled into tilings by making use of the
stochastic tiling algorithm proposed by Cohen et al. [17]. First, a regular lattice of desired
size is created, see Fig. 4.3c. The grid is sequentially filled up with tiles in either column-
by-column or row-by-row order. At each step, a tile is randomly chosen from a subset of
tiles that satisfy edge constrains given by the previously placed tiles and positioned. The
randomness is guaranteed by the existence of at least two distinct tiles for each admissible
edge code combination on the top and left-hand side edges. A schematic of the procedure
is displayed in Fig. 4.3c. The tiles 4 and 3 from the tile set, Fig. 4.3b, form the unique
subset for one step in the stochastic tiling algorithm sketched in Fig. 4.3c. Either of the
tiles is randomly chosen and fixed at the spot indicated with the asterisk mark.

1 2 3

4 5 6

7 8

1 4 8 5 7

75

4 3

*

(a) (b) (c)

Figure 4.3: Illustration of: (a) a Wang tile, (b) a set of 8 Wang tiles, and (c) a single step
of the stochastic tiling algorithm.

4.3.2 Tile-based microstructure compression

In order to make the Wang tile concept applicable to modeling of random heteroge-
neous materials, microstructural information has to be attributed to each tile such that a
tiled domain (a tiling) corresponds to the original microstructure and the microstructure
continuity is not violated across the congruent edges. By analogy to the Periodic Unit
Cell (PUC) morphology design [10, 54], a way to meet those requirements is to employ
optimization methods, e.g. Simulated Annealing [15]. Although this approach is fully gen-
eral, the computational cost is tremendous especially for larger sets, high microstructure
resolution, multiphase media, and/or multi-point spatial descriptors. Therefore, in this
study we employ the automatic design procedure proposed originally for compression of
digital textures [17] and explored later in materials modeling [21].

In brief, we take a number of samples from the reference specimen of the investigated
microstructure. Each of the samples is associated with a unique edge code from the tile
set. Each tile is then constructed as a square cut, rotated by π

4 , out of partially overlapping
samples that are positioned according to the tile edge codes they are associated with [17].
Since the cut goes diagonally through the samples, the microstructure continuity is au-
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tomatically preserved as the sample leftovers are used as microstructural information for
the tiles having the same codes on the opposite edges. The samples are seamlessly fused
in the tile interiors by making use of the Image Quilting algorithm due to Efros et al. [37].
We have augmented the procedure by optimizing the design input parameters to achieve
maximum proximity in spatial statistics of synthesized tilings and the original microstruc-
ture. Namely, volume fraction, two-point probability and two-point cluster functions were
considered. This approach appears extremely efficient from the viewpoint of both the
quality of compressed microstructures and computational overhead, see [21] for details.
Thus, after the compression based on the automatic tile design algorithm we have a bi-
nary representation of the Alporas microstructure in the form of a set of Wang tiles at
hand.

4.3.3 Discretization

Validity of three-dimensional beam models for predicting elastic behavior of foams
has been reported several times, e.g. [101, 97, 103]. In the recent work [20], Němeček
et al. presented promising results also for the two-dimensional beam representation of
foam motivating our modeling strategy. In their approach the foam microstructure was
represented as the Voronoï wired model consisting of straight beams with the centroids of
individual pores taken as the Voronoï diagram seeds. The wired model was preferred to the
two-dimensional finite element analysis as the latter would have required modifications to
ligament walls thickness in order to fit the volume fraction from the weighting experiment.
Its difference against the volume fraction determined from the area of ligaments in the
reference planar scan was attributed to the preparation procedure, in which the saw cut
was not perpendicular to most of the cell walls yielding the apparent solid phase volume
be higher than the true one.

The size of the model used by authors of [20] was limited by the extent of the given
scanned image. However, this is not the case of Wang tiles, which enable to investigate
series of models yielding adequate RVE dimensions. In addition, the beam geometry
conforming with the real shape of ligaments allows us to explore the inaccuracy resulting
from the Voronoï tessellation based idealization. We started with the foam geometry
compressed within the set of 32 tiles with four distinct edge codes on vertical and horizontal
edges (8 in total), Fig. 4.4a. First, a parametric beam discretization of tile geometries
was created manually by employing a specifically designed GUI tool written in Matlab
environment2, Fig. 4.4b. It enabled us to control the mesh compatibility across tile edges
and to fix ligaments disrupted by quilting or faults due to the sample preparation, Fig. 4.1.
Computational domains were assembled from the individual tiles by making use of the
stochastic tiling algorithm described in Section 4.3.1, the nodes on the coincident edges
were identified, merged, and the entire record renumbered to maintain the sparsity of
algebraic systems.

The cross-sectional parameters of individual beams were determined by analogy to [20].
Beams were assumed straight and prismatic with a rectangular cross-section of the unit
width. The total length of beams LΣ is given by the mesh geometry. Hence, the only
degree of freedom, the depth of the cross-section H, is governed by the volume fraction of
the solid phase ρ and RVE volume/area |Ω|. It reads as

H = ρ|Ω|
LΣ

(4.1)

2available at http://mech.fsv.cvut.cz/~doskar/software/MeshMaker.zip

http://mech.fsv.cvut.cz/~doskar/software/MeshMaker.zip
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(a) (b)

Figure 4.4: Alporas R© microstructure compressed within 32 tiles: (a) microstructure of
individual tiles, (b) corresponding wired model (beam discretization of ligaments).

Together with the assumption of unit beam width, Eq. (4.1) further yields expressions for
the cross-sectional area A and the second moment of area I

A = H, I = 1
12H

3 (4.2)

In order to analyze precisely the effect of beam geometry, a separate beam model,
Fig. 4.5c, was created directly from the reference geometry (referred to as real geometry
mesh onwards) in our in-house developed GUI tool. It was accompanied also with the
microstructure represented as the Voronoï diagram, Fig. 4.5b, to compare with the results
published in [20]. For visual comparison, a tiling-based geometry of similar size (composed
of 6× 6 tiles) is shown in Fig. 4.5d.

(a) (b) (c) (d)

Figure 4.5: Comparison of various representations of Alporas R© geometry: (a) reference
microstructure (courtesy of Jiří Němeček [20]), (b) Voronoï mesh, (c) mesh of real geome-
try, and (d) tiling-based representation of beam mesh (6×6 tiling). The red line highlights
boundary beams such that they coincide with ∂Ω.

4.4 Numerical homogenization

In general, the homogenization process provides a homogeneous substitute for a hetero-
geneous material composed of constituents of different properties. Limiting the exposition
to linear elasticity, with Hooke’s Law

σ(x) = D(x) : ε(x) , forx ∈ Ω , (4.3)



Homogenization of high porosity foams 50

relating local stresses σ(x) to strains ε(x) and Ω being the microscale domain of interest
representing a macroscopic material point, we wish to replace the heterogeneous material
stiffness tensor D(x) with its homogeneous counterpart Dhom independent of microscale
coordinates x. An equation analogical to Eq. (4.3), namely,

Σ = Dhom : E , (4.4)

then relates the macroscopic strains E and stresses Σ, defined as spatial averages 〈·〉

E = 〈ε(x)〉 = 1
|Ω|

∫
Ω
ε(x) dx and

Σ = 〈σ(x)〉 = 1
|Ω|

∫
Ω
σ(x) dx ,

(4.5)

respectively.
Homogenization of parameters describing linear problems is a well resolved area nowa-

days. For simple microstructural compositions and relatively low contrast in constituent
properties analytical homogenization schemes yield accurate estimates, often based on the
Eshelby solution, or narrow bounds, e.q. Voigt-Reuss-Hill or Hashin-Shtrikman, of the
sought homogenized property [38, and references therein]. On the contrary, for materials
with high contrast in properties of its constituents the actual microstructural geometry,
simplified in the analytical homogenization methods, influences significantly the material
response. Consequently, the analytical methods are suitable only for quick precursory es-
timates of the overall material stiffness. In the particular example of highly porous foams,
even the closest estimates obtained with the Mori-Tanaka and the differential schemes
differ from the experimental data by 20% [109, 38].

Hence, to determine the overall properties we resort to a numerical homogenization
that, albeit more computationally intensive, gives us an insight into the size of the related
RVE and mechanics of deformation of the investigated microstructure. In particular,
we adopt the first-order numerical homogenization method described comprehensively in
work of Michel et al. [22]. First, the general concept is recalled in the tensorial notation
and the variational setting. Then, we reformulate the approach for a two-dimensional
beam model, using the matrix notation. Numerical homogenization, unlike the analytical
schemes, calls for a suitable computational domain – RVE, and for specific boundary
conditions in order to render bounds of the effective property. We address these issues
in Section 4.4.3 and discuss incorporation of different boundary conditions by means of
the Lagrange multipliers.

4.4.1 First order homogenization

In the first order homogenization, the total displacement field u(x) can be decomposed
as [22]

u(x) = uE(x) + u∗(x) = E · x+ u∗(x) , forx ∈ Ω , (4.6)

where uE(x) is coupled with the homogeneous strains E and u∗(x) are displacement fluc-
tuations induced by presence of material heterogeneity. Applying the symmetric gradient
operator ∇s = 1

2

(
∇ + ∇T

)
to the displacement fields in Eq. (4.6) provides us with the

total strains in the form

ε(x) = ∇su(x) = E + ∇su∗(x) , forx ∈ Ω . (4.7)
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Thus, the strain energy density on microscale reads

W (x,E,∇su∗(x)) =
1
2 (E + ∇su∗(x)) : D(x) : (E + ∇su∗(x)) .

(4.8)

For the purpose of variational formulation, we distinguish between the true fields E
and u∗ and the corresponding test fields denoted with tilde. Let C be a set of all admissible
fluctuation displacement fields complying with the boundary conditions, further specified
in 4.4.3. For arbitrary test fields ũ∗ ∈ C and Ẽ ∈ Rd×dsym , where d is the dimension of the
model under consideration (d = 2 in our particular case), we define the macroscopic strain
energy density Ŵ as

Ŵ (Ẽ, ũ∗) =
〈
W (x, Ẽ,∇sũ∗(x))

〉
. (4.9)

Assume the stress Σ to be prescribed on macroscale. The elastic energy potential J(Ẽ, ũ∗)
for a macroscopic material point is then specified in the form

J(Ẽ, ũ∗) = Ŵ (Ẽ, ũ∗)−Σ : Ẽ . (4.10)

The true fields E and u∗ are obtained by minimizing the latter equation following the
minimum total potential energy principle. Finally, combining the stationary conditions of
Eq. (4.10) and Eq. (4.4) results in the expression

Dhom = ∂2Ŵ

∂Ẽ2 (E,u∗) . (4.11)

4.4.2 Discretization - Macroscopic Degrees of Freedom

As discussed in the previous sections, we assume Ω to be a planar model discretized
by straight beams. The model is embedded in the x-z plane, thus the unknowns of the
beam model are nodal displacements u, w along x, z axes, and rotations φ about y. The
dual quantities are normal forces N , shear forces V and bending moments M acting at
beam ends (denoted by subscript indices 1 and 2). It holds

fe = Keue , (4.12)

where fe = {N1, V1,M1, N2, V2,M2}T, Ke is the element stiffness matrix calculated accord-
ing to the Timoshenko theory [110], and ue = {u1, w1, φ1, u2, w2, φ2}T.

The displacement decomposition in Eq. (4.6), rewritten in the matrix form, gives

ue =
[
I Ae

]{u∗e
E

}
, (4.13)

where I is the identity matrix of 6× 6 entries and

AT
e =

 x1 0 0 x2 0 0
0 z1 0 0 z2 0

1
2z1

1
2x1 0 1

2z2
1
2x2 0

 (4.14)

couples the nodal degrees of freedom (DOFs) with the applied macroscopic strains E =
{Ex, Ez,Γxz}T. Thus, the components of the macroscopic strain play the role of additional



Homogenization of high porosity foams 52

macroscopic degrees of freedom of the discretized system, cf. [22].
In the variational setting, contributions of individual finite elements to the overall

strain energy density are

Ŵe(Ẽ, ũ∗) = 1
2|Ω| ũ

T
e Keũe

= 1
2|Ω|

{
ũ∗e
Ẽ

}T [
I Ae

]T
Ke

[
I Ae

]
︸ ︷︷ ︸

Kex
e

{
ũ∗e
Ẽ

}
,

(4.15)

where Kex
e is the extended element stiffness matrix of the form

Kex
e =

[
Ke KeAe

AT
e Ke AT

e KeAe

]
. (4.16)

With the extended discrete system (4.15) at hand, the macroscopic strain energy can be
written as

Ŵ (Ẽ, ũ∗) = 1
2|Ω|

{
ũ∗
Ẽ

}T

Kex
{

ũ∗
Ẽ

}
, (4.17)

where ũ∗ = Ane
e=1 ũ∗e, Kex takes the form

Kex =
ne

A
e=1

Kex
e =

[
Kex

11 Kex
12

Kex
21 Kex

22

]
, (4.18)

and Ane
e=1 is the finite element assembly operator. The submatrices Kex

ij arise from the
assembly of the submatrices on the right-hand side of Eq. (4.16) and ne denotes the number
of elements.

4.4.3 RVE size and boundary conditions

The above procedure yields the homogenized parameters providing the computational
domain coincides with the RVE related to the investigated microstructure and physical
phenomenon. According to Hill [111], RVE is the sample of a material that incorporates
enough geometrical information to render the effective stiffness parameters regardless the
prescribed boundary conditions as long as they would result in the uniform stress and
strain states if the microstructure were homogeneous. For smaller domains, here called
Statistical Volume Elements (SVEs), Eq. (4.11) gives only the boundary condition depen-
dent apparent stiffnesses. Thus, when homogenizing, the size of Ω is usually increased
step by step until the apparent properties resulting from different boundary conditions
either coincide, i.e. meeting Hill’s criterion [111], or the variance in the sought quantity
computed from different realizations of the same size reaches a given limit [82].

Among the admissible boundary conditions yielding the uniform strain in the homo-
geneous medium, three are commonly used. The periodic boundary conditions show the
fastest convergence as the size of SVEs approaches that of RVE, however they render only
the estimate of the effective stiffness and are cumbersome to impose if the microstructure
is in general non-periodic, which is also the case of Alporas R©. The remaining two, Kine-
matic Uniform Boundary Conditions (KUBC) and Static Uniform Boundary Conditions
(SUBC), are known to result in the upper and lower bounds of the apparent stiffness coef-
ficients of each SVE, refining so the Voigt-Reuss-Hill bounds [82, 112]. To the best of our
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knowledge, the exact form of SUBC is unknown for beam models. We thus circumvent
this drawback prescribing the Minimal Kinematic Boundary Conditions (mKBC) due to
Mesarovic and Padbidri [104], since these were shown to equal SUBC [113].

To preserve the structure of the resulting algebraic system, both boundary conditions
are prescribed as an additional constraint3 in the form

Cũ∗ = 0 (4.19)

defining so the kinematically admissible nodal displacements and rotations stored in ũ∗.
The boundary ∂Ω has been determined from the beams fully contained in the domain,
highlighted in red (light gray in BW version) in Fig. 4.5.

In the case of KUBC, the displacement fluctuations have to vanish at the boundary,
i.e. ũ∗(x) = 0 for x ∈ ∂Ω . In the discrete beam model we prescribe zero fluctuation
displacements u and v for all nodes at the boundary, the corresponding rotations φ are
left unknown. With n∂Ω boundary nodes and ntot nodes in total, the matrix of constraints
CKU for the KUBC case consists of

[
2n∂Ω × 3ntot

]
components and is defined as

CKU
ij =

{
1 , for i = j ∈ G ,
0 , otherwise, (4.20)

where G is the set of all code numbers corresponding to the fixed fluctuation displacements.

In contrast to KUBC, mKBC [113] do not require the fluctuation field to vanish at
the boundary point-wise but they enforce the field to vanish on average. The definition
of the macroscopic strain tensor E, Eq. (4.5), along with the local strain field decompo-
sition, Eq. (4.7), yields the minimal condition posed on ũ∗ (also called the normalization
condition [114]) in the form

0 = 1
|Ω|

∫
Ω

∇sũ∗ dx = 1
|Ω|

∫
∂Ω
n⊗s ũ∗ dx , (4.21)

where n is the outer normal and ⊗s denotes the symmetric part of the tensor product
defined as (n⊗s ũ∗) = 1

2 (n⊗ ũ∗ + ũ∗ ⊗ n). In addition to the three conditions defined
by Eq. (4.21) (for the two-dimensional setting), we prescribe zero fluctuations u∗ and w∗
at the bottom-left and w∗ at the bottom-right corners to restrain the rigid body modes.
Plugging the shape functions of the beam element in Eq. (4.21) along with the three
additional conditions mentioned above give rise to the matrix of constraints CmK with[
(3 + 3)× 3n∂Ω

]
entries, see 4.A for additional details.

Having the matrices CKU and CmK at hand, the constrained minimization of Eq. (4.10)
can be reformulated by making use of the Lagrange multipliers λ̃, which act as reactions
and generalized reactions for KUBC and mKBC, respectively. To this goal, we define the
energy potential J̄(ũ∗, Ẽ, λ̃) similarly to Eq. (4.10)

J̄(ũ∗, Ẽ, λ̃) = 1
|Ω|

1
2

{
ũ∗
Ẽ

}T

Kex
{

ũ∗
Ẽ

}
+ λ̃

TCũ∗
− ΣTẼ . (4.22)

3We assume that the assembly operator Ane

e=1 does not involve boundary conditions.
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The stationary conditions posed on J̄ , namely,

∂

∂ũ∗ J̄
∣∣∣
ũ∗=u∗

= 0 , ∂

∂Ẽ
J̄
∣∣∣
Ẽ=E

= 0 , ∂

∂λ̃
J̄
∣∣∣
λ̃=λ

= 0 , (4.23)

form the following algebraic system for the true fields
0
Σ
0

 = 1
|Ω|

Kex
11 Kex

12 CT

Kex
21 Kex

22 0
C 0 0




u∗
E
λ

 . (4.24)

Finally, condensing u∗ and λ from Eq. (4.24) yields the homogenized stiffness matrix
Dhom equivalently to Eq. (4.11). For large and sparse systems of linear equations direct
condensation of Eq. (4.24) would be inefficient. We thus compute individual columns of
Dhom in three consecutive steps as the responses Σ(i) to the unit load cases E(i) defined as
E(1) =

{
1, 0, 0

}T
, E(2) =

{
0, 1, 0

}T
, and E(3) =

{
0, 0, 1

}T
.

4.4.4 Extraction of isotropic parameters

The approach outlined above leads to the homogenized material stiffness matrix with
components encoding the anisotropic behavior. If the degree of anisotropy is small, it is
convenient to describe the constitutive behavior of the homogenized material with scalar
quantities K and G, see Tab. 4.1. To this goal, we perform spectral analysis of Dhom to
determine the effective moduli from its eigenvalues [41]. For the plane strain conditions,
the stiffness matrix of isotropic material Diso and its eigenvalues λiso in terms of K and G
read

Diso=

K + 4
3G K − 2

3G 0
K − 2

3G K + 4
3G 0

0 0 G

, λiso=


G
2G

2
3G+ 2K

 (4.25)

Note, that the min→ max ordering of the λiso components holds for non-auxetic materials
only, i.e. for those with ν > 0. Since the calculated overall stiffness matrix Dhom and the
matrix eigenvalues λhom may not obey Eq. (4.25) exactly we employ the Least Square
Method to obtain the moduli as{

Ghom

Khom

}
=
[

1
5

2
5 0

− 2
30 − 4

30
1
2

]
λhom , (4.26)

see 4.B for additional details.

4.5 Results

The cross-sectional characteristics of beams, Tab. 4.2, for the three different geometries,
Fig. 4.5, were derived through the approach outlined in Section 4.3 with the target ligament
volume fraction set to 8.6% [20]. Note that the depth of beams (corresponding to the cross-
section area A, recall Eq. (4.2)) in the tiling-based representation is about 10% smaller than
for the previous two. We attribute this reduction to the automatic tile design, namely
local modifications to the geometry within the overlap region, and corrections induced
by manual mesh generation which may resulted in longer beams and the corresponding
smaller depth H.
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Table 4.2: Cross-sectional characteristics of beams conforming with weighted volume frac-
tion.

Voronoï real-geometry tiling-based
A [m2] 1.431× 10−04 1.469× 10−04 1.317× 10−04

I [m4] 2.443× 10−13 2.643× 10−13 1.904× 10−13

We have computed the apparent parameters for square computational domains/tilings
of sizes ranging from 1× 1 up to 300× 300 tiles. For each size, we generated 32 different
stochastic realizations so that the number of realizations equals the number of distinct tiles
in the set. Thus, results for 1 × 1 tilings correspond to the averages over the individual
tiles.

The means of the effective stiffness coefficients for models consisting of 300 × 300
tiles are enlisted in Tab. 4.3 together with the homogenized parameters arising from the
Voronoï and real-geometry meshes as presented in Fig. 4.5. As expected, the upper bounds

Table 4.3: Apparent elastic parameters of individual models.

Khom Ehom Ghom νhom

[MPa] [MPa] [MPa] [-]

Voronoï
KUBC 1435 238 81 0.472
mKBC 1027 51 17 0.492

real-geometry
KUBC 203 220 84 0.319
mKBC 61 34 12 0.409

tiling-based
KUBC 107(144) 42(57) 15(20) 0.435(0.434)
mKBC 104(141) 38(53) 13(18) 0.439(0.438)

generated with KUBC and the lower bounds rendered by means of minKBC converge to
each other with increasing size of computational domains, Fig. 4.6; even for tilings of
300×300 tiles they do not fully coincide. Nevertheless, we consider the difference between
the bounds acceptable. This conclusion can be justified also in terms of the variance of
the bounds. Fig. 4.7 shows the asymptotic decay of coefficient of variation with the values
less than 1h in the vicinity of 300× 300 tiling.

Since we failed to predict the reported stiffness parameters of Alporas R© foam, Tab. 4.1,
with the cross-sectional characteristics derived for tiling-based geometries, we performed
the same computations also for cross-sectional parameters derived for the real-geometry
mesh, Tab. 4.2. The results, in brackets in Tab. 4.3, were approximately 40% higher
reflecting nearly linearly the 40% increase in the second moment of area. However, they
do not fall within the reported range of overall Alporas R© properties either.

4.6 Conclusions and discussion

We presented a modeling strategy for Alporas R© foam having at heart the synthesis of
stochastic microstructure realizations based on the concept of Wang tiling. Besides the
standard upper bounds on the effective stiffness given by Kinematic Uniform Boundary
Conditions, we obtained the guaranteed lower bounds by means of minimal kinematic
boundary conditions. With this formulation, shown to equal the common Static Uniform
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Figure 4.6: Relationship between homogenized elastic parameters and dimensions of com-
putational domains: (a) Bulk modulus K, (b) Young’s modulus E, (c) Shear modulus G,
(d) Poisson’s ratio ν.

Boundary Conditions in [113], we can avoid the question of an appropriate beam loading
that would yield macroscopically uniform stress field. Hence, both bounds were rendered
prescribing relevant boundary displacement.

Based on data in Fig. 4.6, we conclude that RVE for the two-dimensional model of
highly porous materials should be about hundreds of the characteristic pore diameter
length in dimensions. This finding corresponds with statements made in [108] regarding
the minimal size of RVE in the case of infinite contrast of phase properties. On the other
hand, it contradicts the recommendation of Ashby et al. [97] who propose RVE size of
approximately seven times the mean pore diameter. However, this recommendation is
given for three-dimensional samples and does not need to be valid for planar analyses.

Comparison of the homogenized stiffness coefficients with the reference values reported
by Ashby et al. [97], Tabs. 4.1 and 4.3, leads us to unambiguous conclusions. Despite the
several times reported aptness of the spatial wired model [97, 101, 103], it can be conjec-
tured that the adopted planar beam representation has a limited capability in predicting
the complex behavior of Alporas R© foam. Possibly, it lacks the stiffness contribution from
the out-of-plane beams and membranes as well as the cell walls parallel to the investigated
plane, though, the membrane contribution of cell walls was reported negligible in the case
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Figure 4.7: Coefficient of variation of the upper and lower estimates on K and G.

of high-porosity foams [103].
The qualitative analysis of the impact of the geometry representation clearly shows

that the Voronoï mesh adopted in [20] leads to the overestimated value of bulk modulus.
Assuming only the volumetric deformation, the axial stiffness of straight beams dominates
the behavior of the Voronoï model resulting in nearly incompressible behavior, whilst in the
case of real-geometry and tiling-based meshes the axial and bending stiffness contribute
equally. This explains the results reported in [20] where the authors considered only
the volumetric excitation. On top of that, based on their experimental observations,
they assumed negligible Poisson’s effect and equated Young’s modulus to the oedometric
component of the homogenized stiffness matrix. However, if the homogenization procedure
was performed carefully, they would arrive at similar results as in Tab. 4.3. It is worthwhile
to note that zero Poisson’s ratio is in contradiction also with the characteristics listed
in Tab. 4.1, see [97] for further details.

Despite the incapability of the two-dimensional beam model to capture behavior of
complex materials such as highly porous metallic foams, the concept of Wang tilings proved
to be a valuable technique to generate large computational domains of desired geometrical
characteristics. Moreover, it allows to circumvent meshing of every single microstructure
realization if the dicretization mesh is constructed on each tile separately such that it
satisfies the given compatibility constrains. There is a promising possibility to extend
the presented modeling strategy to three dimensions via Wang cubes, a spatial variant of
Wang tiles, along with the spatial Voronoï tessellation to compress the true geometry of
Alporas R© foam, and to perform a similar analysis using shell elements instead of prismatic
beams.

Appendix

4.A Minimal kinematic boundary conditions for beammodel

In the two-dimensional wireframe setting, Eq. (4.21) defining Minimal Kinematic
Boundary Conditions can be rewritten into the following form

0 =
n∂Ω

e∑
i=1

∫
L(i)


n

(i)
1 u(x`)

n
(i)
2 w(x`)

n
(i)
1 w(x`) + n

(i)
2 u(x`)

 dx` , (4.27)
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where n∂Ω
e stands for the number of the boundary beams, L(i) is the length of the i-th

boundary beam, n(i)
1 and n(i)

2 are the components of the outward unit normal vector n(i),
and x` is the local coordinate measured along the beam axis. Eq. (4.27) allows to compute
the i-th boundary beam contribution to the constraint matrix CmK, Eq. (4.19) as

CmK,(i) =

n
(i)
1 0
0 n

(i)
2

n
(i)
2 n

(i)
1

T`-g M Tg-` , (4.28)

where the matrices T`-g and Tg-` transform the corresponding quantities between the local
and the global coordinate systems. Namely,

T`-g =
[
cosα(i) − sinα(i)

sinα(i) cosα(i)

]
(4.29)

and

Tg-`=



cosα(i) sinα(i) 0 0 0 0
− sinα(i) cosα(i) 0 0 0 0

0 0 1 0 0 0
0 0 0 cosα(i) sinα(i) 0
0 0 0 − sinα(i) cosα(i) 0
0 0 0 0 0 1


, (4.30)

where α(i) is the directional angle of the i-th beam. The matrix M

M =
[
L(i)

2 0 0 L(i)

2 0 0
0 L(i)

2
L(i)2

12 0 L(i)

2
−L(i)2

12

]
(4.31)

is obtained by plugging the the shape functions for u and w, e.g. [115],

Nu1
u (ξ) = 1− ξ ,

Nu2
u (ξ) = ξ ,

Nw1
w (ξ) = 1

1 + 2κ
[
(1 + 2κ)− 2κξ − 3ξ2 + 2ξ3

]
,

Nφ1
w (ξ) = L

1 + 2κ
[
− (1 + κ) ξ + (2 + κ) ξ2 − ξ3

]
,

Nw2
w (ξ) = 1

1 + 2κ
[
(2κξ + 3ξ2 − 2ξ3

]
,

Nφ2
w (ξ) = L

1 + 2κ
[
κξ + (1− κ) ξ2 − ξ3

]
,

(4.32)
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where ξ is the normalized coordinate ξ = x`

L(i) , κ = EI
kGA and k is the Timoshenko shear

coefficient, in the approximation of the local beam displacements

{
u`

w`

}
=
[
Nu1
u 0 0 Nu2

u 0 0
0 Nw1

w Nφ1
w 0 Nw2

w Nφ2
w

]


u`1
w`1
φ`1
u`2
w`2
φ`2


(4.33)

and evaluating the integral in Eq. (4.27).

4.B Least square method
The eigenvalues of the isotropic plane-strain stiffness matrix written as a linear com-

bination of parameters K and G read as

λiso = Ad =

1 0
2 0
2
3 2

{G
K

}
. (4.34)

The least square method applied to Eq. (4.34) results in minimizing the distance between
the calculated eigenvalues λhom of the homogenized stiffness matrix and λiso in the Eu-
clidean norm ∥∥∥λiso − λhom

∥∥∥2
=
(
λiso − λhom

)T (
λiso − λhom

)
. (4.35)

Plugging Eq. (4.34) into Eq. (4.35) and minimizing it with respect to d yields the param-
eters Khom and Ghom explicitly approximated as a projection of λhom onto the range of A

dhom =
(

ATA
)−1

ATλhom =
[

1
5

2
5 0

− 2
30 −

4
30

1
2

]
λhom, (4.36)

where
(

ATA
)−1

AT is the left pseudoinverse of A.
Note that applying the above procedure in plane-stress conditions leads to non-linear

relation between the eigenvalues and the elastic parameters

λiso =
{
G 2G 18KG

4G+3K

}T
. (4.37)

As a result, no explicit formula can be derived and an iterative Least square method must
be used instead.
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Chapter 5

Statistical determination of the
Representative Volume Element
size

Abstract:
Wang tile based representation of a heterogeneous material facilitates fast synthesis of
non-periodic microstructure realizations. In this paper, we apply the tiling approach in
numerical homogenization to determine the Representative Volume Element size related
to the user-defined significance level and the discrepancy between bounds on the apparent
properties. First, the tiling concept is employed to efficiently generate arbitrarily large, sta-
tistically consistent realizations of investigated microstructures. Second, benefiting from
the regular structure inherent to the tiling concept, the Partition theorem, and statistical
sampling, we construct confidence intervals of the apparent properties related to the size of
a microstructure specimen. Based on the interval width and the upper and lower bounds
on the apparent properties, we adaptively generate additional microstructure realizations
in order to arrive at an RVE satisfying the prescribed tolerance. The methodology is illus-
trated with the homogenization of thermo-mechanical properties of three two-dimensional
microstructure models: a microstructure with mono-disperse elliptic inclusions, foam, and
sandstone.

Reproduced from: Doškář, M., Zeman, J., Jarušková, D., Novák, J., 2018. Wang tiling
aided statistical determination of the Representative Volume Element size of random het-
erogeneous materials. European Journal of Mechanics - A/Solids 70, 280–295. [86]
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5.1 Introduction

The Representative Volume Element (RVE) is the key concept in modelling of het-
erogeneous materials. The original definition by Hill [111] requires an RVE to (i) be
“structurally entirely typical of the whole mixture on average” and (ii) “contain a suffi-
cient number of inclusions for the apparent overall moduli to be effectively independent
of the surface values of traction and displacement, so long as these values are ‘macroscop-
ically uniform’.” For materials with periodic microstructure, these requirements are met
by any periodic part of the microstructure under periodic boundary conditions [116].

However, the majority of real-world materials display randomness in their microstruc-
tures. Sab [117] proved that microstructure ergodicity and statistical homogeneity are the
essential requirements for the existence of an RVE. He also showed that the second Hill
requirement is attainable only in the infinite-size limit and, thus, homogenized proper-
ties determined from any finite-size microstructure realization are biased by the adopted
boundary conditions. For this reason, an error measure and its threshold have to be in-
troduced in order to define an RVE for random heterogeneous materials (also referred
to as a “computational RVE” [118] or a “numerical RVE” [119]). In practice, the RVE
size is also limited from above by the requirement of separation of scales. When violated,
the finite-size bounds can serve only as an input to stochastic finite element calcula-
tions [118, 120] or higher-order terms have to be introduced in a fully nested numerical
homogenization [121, 23, 3, and references therein].

The RVE size depends on the type of treated physical phenomena, microstructure
geometry, and contrast in microstructure constituent properties [122]. In the case of high
contrast [84] or non-linear behaviour [122, 83, 123] the influence of particular geometry
gets significantly pronounced, leading in turn to much larger RVE sizes or even to non-
existence of an RVE [83]. Therefore, any recommendation on the RVE size, e.g., those
for carbon reinforced polymers made by Trias et al. [124] or for particulate media [125,
and references therein], are always highly material-specific and cannot be applied to other
materials [3]. Consequently, similar procedures have to be performed for each investigated
material, making the RVE determination still an open topic.

Plenty of works have been devoted to numerical studies of the RVE size; see Sec-
tion 5.3.2 for an overview. The prevalent scheme is to (i) generate an ensemble of Sta-
tistical Volume Elements (SVEs), i.e., stochastic microstructure realizations smaller then
an RVE, and (ii) compute their apparent properties under suitable boundary conditions.
Then, depending on convergence criteria related to distribution of apparent properties
within the ensemble, either a new ensemble of larger SVEs is produced or the generated
SVEs are declared RVEs for the given threshold. The criteria typically involve fluctu-
ations in the apparent properties [82, 122], their discrepancy under different boundary
conditions [120], or a combination of both [124, 118, 119]. Such an approach is involved
because of (i) the need to generate statistically representative microstructure realizations
of increasing size and (ii) the computational cost of calculating the apparent properties.
For the former reason, most works resort to simple microstructure models, e.g., particulate
media [126, 67, 122, 127, 128, 129] or Voronoï tessellations [82].

In this contribution, we address these drawbacks simultaneously by exploring the for-
malism of Wang tiling, recalled in Section 5.2. Our approach decouples the microstructure
generation into the off-line and on-line phases. In the off-line phase, the microstructure
is compressed in a set of mutually compatible domains—Wang tiles. During the calcu-
lations, microstructure realizations are assembled from the compressed set following a
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simple on-line stochastic algorithm. As a result, arbitrarily large yet statistically coherent
realizations of the compressed microstructure can be generated almost instantly.

Additional advantages of the tiling concept follow from the natural decomposition of
the tiling-based microstructure realisations into regular non-overlapping domains. This
allows us to employ the Partition theorem by Huet [112], revisited in Section 5.3.4, to
infer confidence intervals of the homogenized properties by statistical sampling. Moreover,
the computational cost of determining apparent properties can be alleviated by standard
domain decomposition techniques [130].

Taking the aforementioned benefits into account, in Section 5.4 we propose a method-
ology to identify the RVE size for a user-defined accuracy. New microstructure realizations
are added on-the-fly to the sequentially generated ensembles of SVEs of increasing size
in order to achieve a prescribed confidence in apparent properties, computed with the
first-order numerical homogenization recalled in Section 5.3. The termination criterion,
i.e., whether the RVE size has been reached, is based on statistical hypothesis testing
related to the provided accuracy, similarly to, e.g., [127, 131]. In Section 5.5, we apply the
proposed methodology to the RVE size determination of three microstructure models: a
microstructure with mono-disperse elliptic inclusions, foam, and sandstone.

(a) (b) (c)

Figure 5.1.1: Illustration of (a) the abstract definition of a Wang tile, (b) a compressed
microstructure within a tile set with highlighted tile indices (note that tiles 4, 5, and 7
are self-compatible and, thus, each can stand as a Statistically Equivalent Periodic Unit
Cell), and (c) a partially reconstructed microstructure and the underlying tiling, where a
step in the stochastic assembly algorithm is depicted. Based on the codes of previously
placed tiles 8 and 6, at this step, either tile 2 or 7 will be placed at the position marked
with “?” and the algorithm will continue with the remaining empty position.

Scope restrictions In what follows, we consider only two-dimensional problems for the
sake of clarity, but the extension to three dimensions in the form of Wang Cubes is straight-
forward [30, 21]. We take existing tiling-based compressions of material microstructures,
obtained with methods described in our previous publications, e.g., [15, 21], as fixed inputs
capable of sufficiently accurate representation of the microstructure, and perform para-
metric studies on these geometries. We also restrict our attention to linearised elasticity
and thermal conduction, because an RVE for these linear problems is well defined. In
the general case of non-linear models, for instance due to the deterministic size effect in
the softening regime, an RVE may not exist in the classical sense [83], and appropriate
modification has to be adopted, e.g., a traction-opening formulation [132] or averaging
only over active damaging domain [133].
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Notation Throughout the paper, we employ the tensorial notation: scalars are denoted
with plain letters, e.g., a; first- and second-order tensors are typeset with bold italic letters,
either a or A; and fourth-order tensors are written in regular bold letters, A.

5.2 Wang tiling for random heterogeneous materials

5.2.1 Background

The idea of Wang tiling resembles a game of jigsaw puzzle, except that there is only a
small set of distinct jigsaw pieces with an infinite number of copies. The jigsaw pieces—
Wang tiles—have codes attributed to their edges. The goal is to cover a portion of a
plane, denoted as a tiling, with tile instances from a given tile set, such that the adjacent
tiles share the same code on the corresponding edge, see Fig. 5.1.1. The codes thus play
a role of compatibility constraints during an assembly. Moreover, the tiles can be neither
rotated nor reflected during a tiling procedure.

The particular set needs to be accompanied by an assembly algorithm capable of
producing valid tilings. In our applications, we prefer the stochastic assembly algorithm
introduced by Cohen et al. [17] over deterministic automata, e.g., [28, Chapters 10 and
11], because the former allows for larger variability in design of the tile set. The stochastic
assembly algorithm depicted in Fig. 5.1.1 works as follows: an empty grid is sequentially
filled with tile instances in the row-by-row order, the so called scanline algorithm [91]. At
each step, a tile to-place (denoted with “?” in Fig. 5.1.1) is randomly chosen from a subset
containing only admissible tiles with respect to the codes of the previously places ones.
In Fig. 5.1.1 the candidate tiles are 2 and 7 as they have red code on the right-hand edge
and blue code at the bottom. Randomness of the whole procedure is ensured with presence
of at least two tiles for each combination of codes on horizontal and vertical edges [17].
Example of the tile sets and generated tilings are provided in Section 5.5, Figs. 5.5.2, 5.5.7,
and 5.5.12.

5.2.2 History and relevant applications

Outside discrete mathematics, Wang tiling has found its use in Computer Graphics
for an efficient real-time synthesis of a blue noise, which is an essential point distribu-
tion for anti-aliasing and dithering, e.g., [90, and references therein]. In addition, Co-
hen et al. [17] demonstrated that Wang tiles deliver excellent performance in generating
naturally looking textures. This development directly motivated our application of Wang
tiles in microstructure modelling as discussed next.

5.2.3 Tiling in modelling of heterogeneous materials

In what follows, a computer model of a material microstructure is understood as a
process of generating individual realizations with spatial statistics corresponding to the
investigated material [9]. Pioneered by Povirk [8], most representations are generated
with optimization algorithms that minimize discrepancy in statistical characterization
of the reference and the generated microstructure. Due to the multi-modal nature of
the optimization problem, the simulated annealing, e.g., [54, 52, 10], holds a prominent
place among the algorithms; however, other methods such as gradient algorithms [8, 57],
genetic algorithms [10, 11], or phase-recovery [58] have been successfully applied. The
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microstructural morphology is usually characterised by means of either Minkowski func-
tionals [47] or set of n-point correlation functions [2]. In the latter, the two-point proba-
bility function [48, 49, 50] supplemented either with the two-point cluster [39] or the lineal
path [51, 52, 10, 53] functions proved to be sufficient to capture major geometrical features
at acceptable computational costs.

Recently, new approaches to microstructure models have emerged, inspired by texture
synthesis in Computer Graphics [134], that make use of samples of the reference micro-
structure. Individual realizations are sequentially generated as a Markovian process with
voxels [9, 59] or whole patches [13] from the reference sample. The suitable voxel/patch
values are either chosen according to the statistical proximity of their surrounding in the
reference sample to the previously generated portion of the new microstructure realiza-
tion [9, 13], or generated by a supervised learning model based on classification trees [59].

The common feature of these approaches is that they deliver a statistically similar real-
ization under periodic boundary conditions, which is referred to as a Statistically Optimal
Representative Unit Cell [11], a Statistically Similar Representative Volume Element [12],
or a Statistically Equivalent Periodic Unit Cell (SEPUC) [10]. Consequently, each new
microstructure realization requires a new, often computationally intensive run of the gen-
erating procedure. An alternative is to tile periodically a larger domain with a previously
generated cell; however, this introduces long-range periodic artefacts.

From this viewpoint, the stochastic Wang tiling concept presents a compromise be-
tween the two aforementioned approaches. The tile set generalizes the notion of SEPUC;
instead of being attributed to a single cell, the microstructural information is compressed
in a handful of tiles with defined mutual compatibility. While the short-range features of
a microstructure are present predominantly in the tile interiors, the long-range character-
istics are captured through the particular distribution of the tile edge codes, governing
the compatibility requirements. Once the microstructure is compressed in the off-line
phase, its realizations of any size are generated almost instantly by the assembly algo-
rithm introduced in Section 5.2.1 (and illustrated with Fig. 5.1.1). In contrast to the
above-mentioned periodic extension, the assembled realizations—tilings—are stochastic
and exhibit suppressed periodicity artefacts; see [15, 21]. These features make the micro-
structure representation based on the Wang tile formalism appealing in applications where
multiple (possibly large) microstructure realizations are required.

5.2.4 Microstructure compression

Microstructure compression amounts to designing a tile set (i.e., its cardinality and
distribution of the tile edge codes) and morphologies of tiles within the tile set such that
(i) the microstructure remains continuous across the congruent edges and (ii) assembled
realizations match the reference microstructure, usually in terms of target spatial statis-
tics. Note that spatial statistics of an individual tile differ from that of the compressed
microstructure in general and the proximity of the spatial statistics is required only for
assembled tilings.

Because the Wang tile based representation generalizes the SEPUC approach, methods
developed for SEPUC can be extended to the generalized periodic boundary conditions
appearing in the Wang tiling concept. We have already reported approaches based on
optimization algorithms with objective function taking into account the discrepancy in the
two-point probability functions [15] or inter-tile traction jumps [16]. In order to circumvent
the computational complexity of the optimization approach, we have also adopted the
Computer Graphics approach of Cohen et al. [17], which generates the tile morphology
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from provided samples of a texture, and we enhanced it with spatial statistics, namely,
the two-point probability and cluster functions in [21]. This procedure was used to design
the tile set in Fig. 5.5.12.

The methodology developed in the following sections holds for arbitrary tile sets, ir-
respectively of the specific tile design algorithm, providing that the microstructure is
accurately captured in the tile set; see [15, 21, 75, for additional details].

5.3 RVE and numerical homogenization

In this work, we assume the simplest linear constitutive laws at both the micro and
the macro scales. Consequently, knowledge of microstructure compositions can be read-
ily propagated to the upper scale by homogenized parameters of an effective constitutive
model. The first-order numerical homogenization is summarized in Subsection 5.3.1, pro-
viding us with boundary-condition biased apparent properties. Next, the notion of RVE
is introduced in Subsection 5.3.2. Finally, Subsections 5.3.3 and 5.3.4 recall the hierarchy
of bounds and the Partition theorem, respectively, relating the apparent properties of a
domain and its subdomains.

5.3.1 First-order numerical homogenization

5.3.1.1 Linear elasticity

Assume the first-order decomposition of a displacement field ũ in the form;

ũ(x) = E · x+ ũ∗(x) ∀x ∈ Ωs, ũ
∗∈ UBs , (5.1)

where E is the (prescribed) macroscopic strain tensor, Ωs ⊂ Rd denotes the d-dimensional
finite-size domain of a microstructure sample of characteristic size s, and UBs defines a set
of admissible displacement fluctuation fields ũ∗.

For a given Ωs and UBs , we define the apparent stiffness tensor DBs with the variational
equality

E : DBs : E =
inf

ũ∗∈UBs
〈(E +∇sũ∗(x)) : D(x) : (E +∇sũ∗(x))〉Ωs

, (5.2)

where D(x) is a local stiffness tensor, ∇s stands for the symmetric part of the gradient,
and 〈•〉Ωs

denotes spatial averaging defined as

〈•(x)〉Ωs
= 1
|Ωs|

∫
Ωs

•(x) dx . (5.3)

The actual strain ε and stress σ fields then follow from the minimizer1 u∗ of Eq. (5.2)
through the standard expressions

ε(x) = E +∇su∗(x) and σ(x) = D(x) : ε(x) , (5.4)

where we have used the generalized Hooke’s law.

1For the sake of conciseness, we do not state the explicit dependence u∗ = u∗(E).
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Allowing only UBs such that ε and σ satisfy the energy consistency, also known as Hill’s
condition [111],

〈σ(x) : ε(x)〉Ωs
= 〈σ(x)〉Ωs

: 〈ε(x)〉Ωs
, (5.5)

allows us to directly relate DBs to the average stress,

〈σ(x)〉Ωs
= 〈D(x) : ε(x)〉Ωs

= DBs : E , (5.6)

which will be later used for computing the apparent properties.
Posing Eq. (5.2) as a Boundary Value Problem, Hill’s criterion is satisfied by adopting

UBs from the family of Mixed Uniform Boundary Conditions [135],

UK
s ⊆ UBs ⊆ US

s , (5.7)

where UK
s and US

s represent the sets of admissible fields ũ∗ compliant with the Kinematic
and Static Uniform Boundary Conditions.2 The particular forms are specified as follows:

Kinematic Uniform Boundary Conditions (KUBC) impose a prescribed displace-
ment at the domain boundary ∂Ωs in the form ,

ũ(x) = E · x ∀x ∈ ∂Ωs , (5.8)

resulting in vanishing fluctuation displacements at ∂Ωs. This corresponds to setting

UK
s =

{
ũ∗ : Ωs → Rd; ũ∗|∂Ωs = 0

}
. (5.9)

Static Uniform Boundary Conditions (SUBC) are traditionally defined with affine
traction vectors at ∂Ωs, leading to a stress-controlled problem. However, Miehe [113]
proved that SUBC correspond to the so-called minimal Kinematic Boundary Conditions,
used in e.g. [104, 137, 75], that require

E = 〈∇sũ(x)〉Ωs
. (5.10)

Similarly to Eq. (5.9), this provides the specific form of UBs as

US
s = {ũ∗ : Ωs→ Rd;

∫
∂Ωs

n⊗ ũ∗ dΓ = 0, 〈ũ∗(x)〉Ωs
= 0} . (5.11)

Note that the boundary integral contains also non-symmetric part of the gradient, which
along with the last condition in Eq. (5.11) prevents rigid body modes.

5.3.1.2 Thermal conduction

For thermal conduction, we can proceed analogously to linear elasticity with only minor
modifications: Generalized Hooke’s law is replaced with Fourier’s law, q(x) = −K(x) ·
g(x), which governs the relation between a heat flux q and a temperature gradient g = ∇θ̃
via a thermal conductivity tensor K. The first order decomposition of an admissible

2Although the Periodic Boundary Conditions usually provide reasonable estimates of the homogenized
properties even in the case of a non-periodic microstructure [22, 82, 136], our RVE criterion is based on
the discrepancy between the bounds on the apparent properties. Therefore, we omit discussion on Periodic
Boundary Conditions onwards.
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temperature field θ̃(x) reads

θ̃(x) = G · x+ θ̃∗(x) ∀x ∈ Ωs, θ̃
∗ ∈ T Bs , (5.12)

with G denoting the prescribed macroscopic temperature gradient and T Bs being, again,
the set of admissible temperature fluctuation fields compliant with Hill’s condition

〈q(x) · g(x)〉Ωs
= 〈q(x)〉Ωs

· 〈g(x)〉Ωs
. (5.13)

Consequently, the variational definition of the apparent conductivity tensor KBs ,

G ·KBs ·G =
inf

θ̃∗∈T Bs
〈G+∇θ̃∗(x)) ·K(x) · (G+∇θ̃∗(x))〉Ωs ,

(5.14)

is equivalent to the volume averaging of the heat flux obtained from the minimizer θ(x)
of Eq. (5.14)

〈q(x)〉Ωs
= 〈−K(x) · ∇θ(x)〉Ωs

= −KBs ·G . (5.15)

As in the previous section, Eq. (5.13) can be ensured with a proper choice of T Bs that falls
within the following two limit cases:

Uniform Temperature Gradient Boundary Conditions prescribing values at the
boundary in the form

θ(x) = G · x ∀x ∈ ∂Ωs , (5.16)

which translates to
T G
s = {θ̃∗ : Ωs → R; θ̃∗|∂Ωs = 0} , (5.17)

and

Uniform Heat Flux Density Boundary Conditions defined analogously to Eq. (5.10)
and represented by

T F
s = {θ̃∗ : Ωs → R;

∫
∂Ωs

θ̃∗ndΓ = 0,
〈
θ̃∗(x)

〉
Ωs

= 0} . (5.18)

5.3.2 Notion of RVE

The apparent properties introduced above are in general boundary condition biased
and individual realizations of the microstructure yield different tensors, which contradicts
the original requirement of Hill [111]. However, Sab [117] proved that boundary-biased
apparent properties converge to the homogenized ones with increasing size s, thus

DBs
s→∞−−−→ Dhom and KBs

s→∞−−−→Khom , (5.19)

see also [138].
As discussed in Introduction, the theoretical RVE is conventionally replaced with a

finite size numerical counterpart [119]. The common approach to the determination of
the numerical RVE size rests on generating ensembles containing sequentially larger SVEs
until statistics of the obtained data comply with a user-defined threshold. The investigated
data ranges from classical overall stiffness parameters [139, 140, 124, 118] and elastic strain
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energy density [131], to mean values or concentrations in microstructural stress and strain
fields [140, 122, 125, 83, 124], to deviations from assumed macroscopic isotropy [119, 127].
Statistical control usually includes output variance for different realizations of the same
size and convergence of the mean value from one SVE size to another. Relying on a
single criterion, especially when combined only with one type of boundary conditions
(e.g., Periodic Boundary Conditions), can lead to pre-mature convergence [119]; therefore,
more recent works combine both characteristics [124, 118, 119, 131].

In order to alleviate the computational cost related to the above mentioned approach,
Kanit et al. in their seminal work [82] adopted the notion of the integral range allowing
them to establish a power-law relation among an SVE size, cardinality of an ensemble, and
the variation of apparent properties. Parameters of the relation are calibrated with only
a handful of computations and the RVE size is then derived with respect to a user-defined
statistical variation threshold. Moreover, the expression also allows to substitute a single
RVE with a set of smaller SVEs. Pelissou et al. [123] enhanced the original approach by
introducing uncertainty to both the mean value and the variance, using the bootstrap-
ping method, and applied it to non-linear problems. Recently, Dirrenberger et al. [84]
extended Kanit et al.’s approach to an artificial microstructure with infinite integral range
demonstrating that the approach is applicable even for highly complex materials. The
method of Kanit et al. [82] has also been successfully applied to the real world tasks aris-
ing, for instance, in the food industry [141, 142]. However, the variance based criterion
of Kanit et al. relies on an implicit assumption that the mean value is not significantly
biased by the prescribed boundary conditions. This assumption is usually valid for large
SVEs under Periodic Boundary Conditions [22, 136], but the assumption becomes ques-
tionable for complex microstructures with high contrast in phase properties [84].

A different approach to an RVE definition was proposed by Drugan and Willis [143].
Estimating the effect of strain average fluctuations in a non-local constitutive equation al-
lowed them to derive the RVE size of two particle diameters for a microstructure composed
of non-overlapping spheres. Their analytical findings were later corroborated in numerical
studies of Gusev [126] and Sequrado and Llorca [67]. Another alternative definition of an
RVE has been recently proposed by Hoang et al. [144], who combined incremental ana-
lytical and numerical homogenizations. Their RVE criterion rests on the convergence of
parameters in the analytical homogenization identified to follow results of the numerical
homogenization.

Some authors, e.g., [140, 124, 108], also incorporated additional statistics into their
definition of the RVE. Following Kanit et al.’s idea of replacing a single RVE with a set
of smaller ones, Niezdgoda et al. [108] introduced the notion of RVE Set composed of
optimally chosen SVEs from an ensemble whose convex combination best matches the
ensemble average of given microstructural statistics, namely, the two-point correlation
function. The optimal convex combination is then used for computing all macroscopic
properties.

5.3.3 Bounds on the apparent properties

For the sake of conciseness, we recall the hierarchy of bounds for linear elasticity only;
however, the exposition can be straightforwardly applied also to the problem of thermal
conduction.

In linear elasticity, KUBC and SUBC hold a prominent place as they provide bounds
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on the apparent property [111, 112]

DS
s 4 DBs 4 DK

s , (5.20)

with the ordering relation 4 defined for fourth-order tensors A and B in the sense

A 4 B ⇐⇒ a : (B−A) : a ≥ 0 ∀a ∈ Rd×d . (5.21)

This classical ordering directly follows from the principle of minimum potential energy, Eq. (5.2),
and the definition of the kinematically admissible spaces, Eq. (5.7).

Beside the realization-to-realization convergence of the apparent properties to the ho-
mogenized ones, Sab [117] also proved that the homogenized properties can be bounded
by ensemble averages. In particular, it holds(

sup
s

E
(
CS
s

))−1
= Dhom = inf

s
E(DK

s ) , (5.22)

where E(•) denotes the expected value of an ensemble average over all microstructure
realizations of the same size and CS

s =
(
DS
s

)−1
.

5.3.4 Partition Theorem

Figure 5.3.1: Illustration of the Partition theorem: The apparent properties DK
st+4 and

CK
st+4 of the rightmost, yellow-bordered tiling are consecutively bounded by the hierarchies

DK
st

< DK
st+1 < DK

st+2 < DK
st+4 and CS

st
< CS

st+1 < CS
st+2 < CS

st+4 of ensemble averages of
consecutively smaller subdomains of side length sk.

In the case of a finite-size domain, a hierarchy of bounds similar to Eqs. (5.20) and
(5.22) can be established for the apparent properties of the domain and its subdomains.
This was first recognized by Huet [112] under the name Partition theorem with implications
for physical testing of materials whose representative volumes are unattainable for practical
experiments. Later, the same hierarchy appeared in [117] as the sub-additivity property
of apparent tensors, and in [145, and subsequent works] as a consequence of error bounds
in the substructuring method [128].

Assume partitioning of the domain Ωs into n equi-sized non-overlapping subdomains
Ω(i)
r , i = 1 . . . n, of the characteristic size r < s. By solving the variational problem (5.2)

independently for each subdomain under KUBC, we obtain the collection of solutions{
u(i)(x),x ∈ Ω(i)

r

}
. Clearly, a displacement field ū defined for the whole domain Ωs as

ū(x) =
{
u(x) : Ωs → Rd; u|Ω(i)

r
= u(i)

}
(5.23)



Statistical determination of RVE size 71

is an admissible field satisfying Eq. (5.8). Hence, plugging ū in Eq. (5.2) leads to

E : DK
s : E ≤ 〈∇sū(x) : D(x) : ∇sū(x)〉Ωs

=
n∑
i

|Ω(i)
r |
|Ωs|

〈
∇su(i)(x) : D(x) : ∇su(i)(x)

〉
Ω(i)

r

= 1
n

n∑
i

E : DK,(i)
r : E ,∀E ∈ Rd×d

sym ,

(5.24)

which provides us with the relation

DK
s 4

1
n

n∑
i

DK,(i)
r = DK

r . (5.25)

From the Principle of minimum complementary energy, an analogous result for SUBC
follows in the form

CS
s 4

1
n

n∑
i

CS,(i)
r = CS

r . (5.26)

By recursive partitioning of subdomains and making use of Eq. (5.20) and the convergence
property (5.19), the final hierarchy of bounds can be established(

CS
0

)−1
4 · · · 4

(
CS
sk

)−1
4
(
CS
sk+1

)−1
4 · · · 4

Dhom 4 · · · 4 DK
sk+1 4 DK

sk
4 · · · 4 DK

s0 ,
(5.27)

where sk = 1
q sk+1 with q ∈ N; see Fig. 5.3.1 for an illustration with q = 2. Note that

the outermost bounds DK
0 and

(
CS

0

)−1
, obtained as the limit states for s → 0, are the

classical Voigt and Reuss bounds which are derived under the assumption of homogeneous
strain and stress field within the sample.

5.4 RVE size determination
Equipped with a procedure for computing apparent properties and with a realistic

microstructure generation that also provides partitioning in the spirit of Huet [112], we
formulate a two-level method for identification of the RVE size for a user-defined tolerance
and confidence level.

Similar ideas have been presented in several works; here, we attempt to encompass
the best of these in a comprehensive yet straightforward framework. We build on two
assumptions:

• statistical homogeneity and ergodicity of the microstructure itself to ensure existence
of an RVE [117];

• sufficiently accurate compression of the microstructural information in the form of a
Wang tile set. We assume that all essential features of the investigated microstruc-
ture are present in reconstructed samples3 and hence the RVE size identified for the
tile-based compression corresponds to the RVE size of the microstructure.

3Albeit reduced compared to the periodic extension of a SEPUC, reconstructed realizations exhibit
secondary peaks in spatial correlation functions [15, 16, 21]. These peaks are further reduced in solutions to
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Note that the latter assumption is inherently present in any microstructure compression
technique, including the SEPUC approach [10, 108].

Our approach resembles the work of Saroukhani et al. [131], especially in deriving
bounds on the homogenized properties with methods of statistical sampling. General
bounds on statistical moments were also presented in [146, 147]. Contrary to the afore-
mentioned works, which does not provide any quantitative definition of the RVE, we
introduce an RVE criterion that is based on hypothesis testing similar to, e.g., [125, 124].
Unlike the latter works, the number of microstructure realizations is not defined a pri-
ori in our approach, as we control their number on-the-fly in order to meet a prescribed
confidence in bounds on the apparent properties.

The key idea is to relate the theoretical RVE to an infinite tiling. Any finite-size
tiling can thus be considered as a subdomain of the RVE. The bounds in Eq. (5.27)
then implicitly contain infinite sums. Therefore, at the first level of our methodology, we
identify the minimal number of microstructure realizations that delivers the bounds with
a user-defined uncertainty. At the second level, we assess the discrepancy between the
bounds and, based on statistical hypothesis testing, we decide whether the actual size of
microstructure is the RVE size for the defined tolerance.

5.4.1 Level I: Bounds for apparent properties

To keep the exposition concise, we adopt a certain abuse of notation in the sequel:
L stands for apparent tensors rendered by prescribing the zero fluctuation unknowns
point-wise at the boundary (i.e., L = DK in the case of linear elasticity and L = KG

for the thermal conduction), whilst M denotes the complementary quantity obtained by
enforcing the zero fluctuations in the weak, boundary-integral sense (M = (DS)−1 or
M = (KF)−1). Analogously to the linear elasticity problem, the superscripts •G and
•F denote the apparent conductivity tensors obtained under Uniform Gradient Boundary
Conditions and Uniform Flux Boundary Conditions, respectively, recall Section 5.3.1.2.

For each realization Ω(i)
s of a s× s tiling4 we define two scalar values

l(i)s =
∥∥∥L(i)

s

∥∥∥ and m(i)
s =

∥∥∥M (i)
s

∥∥∥ , (5.28)

that are used to quantify variability of a s-size SVE ensemble. The particular type of the
norm in Eq. (5.28) is a modelling choice to be made by a user. We assume the obtained
data to be in the form

l(i)s = lhom + δls + el,(i)s = ls + el,(i)s ,

m(i)
s = mhom + δms + em,(i)s = ms + em,(i)s ,

(5.29)

where lhom and mhom correspond to the norms of the sought homogenized tensors Lhom

andMhom = (Lhom)−1, δls and δms denote the systematic bias caused by specific boundary
conditions and the finite size of the domain, and e

l,(i)
s and e

m,(i)
s are random, normally

distributed errors from N(0, (ς ls)2) and N(0, (ςms )2) related to the stochastic nature of the
microstructure. Recall that the systematic errors and the variances (ς•s )2 of the random
errors vanish as s→∞, Eq. (5.19).

homogenization-related Boundary Value Problems and averaged; therefore, the influence of the secondary
peaks on the apparent properties and the RVE size is marginal.

4Size of a realization is always an integer multiple of the tile size.
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In Eq. (5.29) and in the sequel, the bar-denoted quantities •s represent the theoretical
mean value, obtained by averaging the quantity over all possible realizations. Due to the
assumed infinite size of the theoretical RVE, these values are unattainable and must be
replaced with confidence intervals. To this purpose, for both quantities l and m of ns
realizations of s× s tiling, we compute the sample mean values

•̂s = 1
ns

ns∑
i=1
•(i)s (5.30)

and the unbiased sample standard deviations

ς̂•s =

√√√√ 1
ns − 1

ns∑
i=1

(
•(i)s − •̂s

)2
, (5.31)

with • denoting either l or m. From the Central Limit Theorem, the deterministic value
•s falls with (1− P̃ε)× 100% probability within the confidence interval

•s ∈ [•̂s − α•s; •̂s + α•s] , (5.32)

with the width of the interval given by

α•s = t−1
ns−1(1− P̃ε/2) ς̂•s√

ns
, (5.33)

where t−1
n (P ) denotes the inverse cumulative distribution function of Student’s t-distribution

and P̃ε is a significance level provided by the user for Level I.
The ratio

ε•s = α•s
•̂s

(5.34)

provides a natural uncertainty measure in the bounds. Note that, due to the presence of
t−1
ns−1(1− P̃ε/2) in Eq. (5.33), the ratio does not correspond to the (biased) estimation of
the coefficient of variation (CoV) used in, e.g., [118, 124]. This complies with our intention
to assess the uncertainty of ensemble mean value determination rather than the variation
inherent to the limited realization size and the imposed BC.

Microstructure realizations are being added on-the-fly to the ensemble of size s samples
until the uncertainty in both upper and lower bounds drops below a given threshold, i.e.,
ε•s < εusr, which translates to asserting that the actual mean value •s falls outside the
interval [(1 − εusr)•̂s, (1 + εusr)•̂s] with less than probability P̃ε. Once this condition is
satisfied, we assume that the ensemble contains sufficient number of realization to provide
the desired accuracy for the RVE size criterion, controlled next.

5.4.2 Level II: RVE size criterion

Proximity of each realization to the RVE size is assessed using a discrepancy between
L(i)
s and (M (i)

s )−1. Recall that L(i)
s andM (i)

s are reciprocal in the RVE case, see Eq. (5.22).
For each realization, we define the proximity error as

ξ(i)
s =

∥∥∥L(i)
s ·M (i)

s − I
∥∥∥ , (5.35)
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where · denotes the corresponding tensorial contraction5 and I is the corresponding unit
tensor (with the pertinent symmetries). Again, the particular type of the norm is a
modelling choice; for instance, Sab [117] used the infinity norm.

Finally, the RVE size criterion is based on testing the hypothesis

H0 : ξs ≥ ξusr against H1 : ξs < ξusr ,

where ξusr is a given threshold discrepancy defining the computational RVE. This results
in the one-tailed hypothesis test

ξ̂s + t−1
ns−1(1− P̃ξ)

ς̂ξs√
ns

= ξtest
s ≤ ξusr . (5.36)

If the condition (5.36) is satisfied for user-defined P̃ξ and ξusr, the current tiling size s is
declared to be the computational RVE size; otherwise, we proceed with an ensemble of
larger tilings.

The proposed methodology is summarized in Algorithm 5.1. For practical purposes,
size and number of realizations are limited with smax and nmax, respectively. Moreover,
the first nmin realizations of each size are generated and their apparent properties L(i)

s and
M (i)

s computed without comparing ε•s to the threshold value, in order to acquire reliable
data statistics for the RVE size criterion. Characteristics of 1 × 1 tilings are computed
independently beforehand, because they correspond to the properties of individual tiles
weighted by the probability of occurrence of each tile in an infinite tiling, which follows
directly form the definition of the tile set, cf. the idea of RVE Sets [108].

5.4.3 Alleviating computational cost

High computational cost is a common sore of procedures aimed at identifying the RVE
size. We exploit the repeating occurrence of individual tiles in the microstructure realiza-
tions to accelerate solution of the Boundary Value Problems (BVP). Namely, we consider
each tile to be a macro-element whose stiffness matrix is obtained using static condensa-
tion of internal unknowns of the finite-element (FE) stiffness matrix of the tile. Thus, the
tile stiffness matrix is factorized only once at the beginning of the RVE size analysis. In
the spirit of the Schur complement method, BVP of each microstructure realization then
corresponds to a coarse grid problem composed of the macro-elements [130], resulting in
significantly less unknowns. In particular, the number of unknowns was reduced from
46 millions to 250 thousands for the largest investigated system in Section 5.5. Macro-
elements also improve spectral properties of the final algebraic system, which is especially
significant when investigating composites with high contrast in material properties of in-
dividual components. As a result, iterative solvers—such as the preconditioned conjugate
gradient method used in this work—for the coarse grid problem require less iterations to
achieve desired accuracy.

Moreover, components of the apparent tensors are obtained as averaged dual quantities
after solving BVP with a prescribed macroscopic tensor E or G, respectively, keeping one
component equal to unity while the others remaining zero, recall Eq. (5.6). We also
accelerate the averaging by constructing matrices that relate tile boundary degrees of
freedom to the sought averages in the off-line phase.

5A single contraction for conductivity and a double contraction for the elasticity problem.
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Algorithm 5.1 Identification of the numerical RVE size
Require: εusr, P̃ε, ξusr, and P̃ξ
s← 1 . Skip 1× 1 tilings
repeat

s← s+ 1
i← 0 . Level I
for i < nmin do

i← i+ 1
generate a tiling s× s
synthesize a microstructure from the tiling
compute L(i)

s and M (i)
s

compute l(i)s and m(i)
s

end for
compute ensemble statistics l̂s, m̂s, ς̂ ls, and ς̂ms
compute εls and εms
while

(
εls > εusr

)
∧ (εms > εusr) ∧ (i < nmax) do

i← i+ 1
generate a tiling s× s
synthesize a microstructure from the tiling
compute L(i)

s and M (i)
s

compute l(i)s and m(i)
s

update ensemble statistics
compute εls and εms

end while
ns ← i
compute ξ̂s and ς̂ξs . Level II
compute ξtest

s

until
(
ξtest
s ≤ ξusr) ∨ (s ≥ smax)

5.5 Numerical tests

Performance of the proposed methodology and the sensitivity of the RVE size with
respect to an investigated physical phenomenon, morphology of the microstructure, and
contrast in constituent properties are illustrated with three distinct two-phase microstruc-
tures: a suspension of non-penetrable elliptic inclusions, Fig. 5.5.2; a foam-like microstruc-
ture, Fig. 5.5.7; and sandstone, Fig. 5.5.12.

In order to circumvent the need for meshing complex geometries while maintaining the
mesh compatibility across the relevant tile edges, we resorted to regular pixel-like grids.
Each pixel represented a quadrilateral FE element with bilinear Lagrange basis functions.
Following a sensitivity analysis of the tile apparent properties with respect to the mesh
density, the resolution of each tile was determined as a compromise between accuracy and
computational cost, see Tab. 5.5.1 for the chosen values. Because the first-order apparent
properties are length-scale free, we set the pixel size to be the reciprocal value of a tile
resolution, resulting in a unitary tile size.

In order to relate the tile and RVE sizes to an intrinsic scale of a material, the charac-
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Table 5.5.1: Single tile resolution and characteristics of the compressed microstructure
systems. Standard deviation of the volume fraction φ computed over the tile set is reported
in parentheses.

ellipse foam sandstone
resolution 100×100 px 402×402 px 354×354 px
χ 0.157 0.047 0.051
φ 0.359 (0.023) 0.742 (0.008) 0.169 (0.013)
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Figure 5.5.1: Sections of the inclusion two-point probability function S2 along x1 and x2
axes and the highlighted characteristic length χ of: (a) the microstructure with mono-
disperse elliptic inclusions, (b) foam, and (c) sandstone. In legends, φ denotes the volume
fraction of the inclusions. Data was obtained by averaging S2 statistics computed for 10
realizations of 40× 40 tilings.

teristic length

χ =
√

1
φ− φ2

∫
T
|S2(x)− φ2| dx , (5.37)

was identified for each microstructure, similarly to [141]. In Eq. (5.37), φ denotes the
volume fraction of the inclusion phase6 and S2(x) stands for the two-point probability
function [2], which gives the probability of finding two points separated by x in the same
constituent—the inclusion phase in our case. The integral in Eq. (5.37) is computed
over T = [0, 0.5] × [0, 0.5] in order to mitigate the effect of assembly-induced artefacts,
see [21] for further details. The characteristic lengths of the investigated microstructures,
averaged from 10 realizations of 40× 40 tilings, are plotted in Fig. 5.5.1 and summarized
in Tab. 5.5.1.

Within our numerical tests, microstructure constituents were assumed isotropic. For
the thermal conduction problem, the conductivity tensor K of the i-th constituent then
takes the form

Ki = λiI , (5.38)

with λi being the conductivity of the i-th phase and I standing for the second order unit
tensor. In the case of linear elasticity, the material stiffness tensor D is given as

Di = λiI ⊗ I + 2µiIs , (5.39)

where λi and µi are the first and second Lamé coefficients of the ith phase, respectively,
6We consistently refer to the continuous phase as a matrix and to the discontinuous phase as inclusions.

Consequently, the volume fraction reported here for the foam microstructure is complementary to the
standard notion of foam volume fraction.
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Table 5.5.2: Combination of material parameters for individual contrasts

κ thermal conductivity linear elasticity
λ1 λ2 λ1 µ1 λ2 µ2

1:100 1 0.01 1 0.5 0.01 0.005
1:50 1 0.02 1 0.5 0.02 0.010
50:1 1 50 1 0.5 50 25
100:1 1 100 1 0.5 100 50

and Is denotes the fourth order unit tensor with major and minor symmetries. We further
assumed plane strain conditions.

For each type of microstructure and each phenomenon, we investigated four material
property contrasts κ defined as

κ = λ2
λ1
. (5.40)

The material parameters of the matrix-like phase (denoted with index 1 and depicted
in dark gray colour in Figs. 5.5.2, 5.5.7, and 5.5.12) were kept fixed at unity while the
parameters of the second inclusion-like phase (indexed with 2 and shown in light gray
colour) were proportionally scaled by the factors 0.01, 0.1, 10, and 100; see Tab. 5.5.2.

Finally, for scalar characterization of an apparent tensor, recall Eq. (5.28), we used the
operator norm of the corresponding matrix representation, employing the Mandel notation
in the case of linear elasticity. The proximity error ξ was calculated using the Frobenius
norm in Eq. (5.35). Both significance levels P̃ε and P̃ξ were set to 0.01 and the related
limit errors were defined as εusr = 0.01 and ξusr = 0.05‖I‖Fro, respectively, where the norm
of a unitary tensor was used to cover consistently both thermal conductivity and linear
elasticity. In all cases, we set nmin = 5; the upper limit was nmax = 30 for the first and third
microstructure and nmax = 25 for the foam microstructure. Data reported in this Section
follows from a single run of the proposed methodology. However, results of multiple runs
with different random realizations (not reported here) show that the identified RVE size is
consistent throughout different runs, albeit the number of realizations of intermediate SVE
sizes may vary to accommodate the required accuracy εusr. Especially for small SVEs, the
scatter in the number of realization can be significant due to the random sampling.

5.5.1 Impenetrable elliptic inclusions

First, we analysed a microstructure comprising impenetrable, mono-disperse elliptic in-
clusions of 0.75 aspect ratio. The inclusion phase constituted 35.9% of the microstructure.
Microstructural information was compressed in the set depicted in Fig. 5.5.2, containing
eight tiles with two edge codes on horizontal and vertical edges, respectively.

Recall that the identified RVE size is always a multiple of the tile size, which defines
the smallest attainable RVE size in turn. Thus, the tile-based approach is appealing par-
ticularly for problems with a high contrast κ resulting in large RVEs. Here, the ratio 0.157
between the characteristic length and the tile size, see Tab. 5.5.1, allow us to investigate
also 1:10 and 10:1 contrasts, which are neglected for the remaining two microstructures
because these contrasts result in small RVE sizes of one or two tiles, dominated by the
tile size rather than the RVE criterion.

The distribution of scalar quantities l(i)s and m(i)
s , characterizing the apparent proper-

ties of individual tiling realizations, are depicted using a box-and-whisker plot in Fig. 5.5.3
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(a) (b)

Figure 5.5.2: A microstructure with impenetrable mono-disperse elliptic inclusions com-
pressed in a tiles set composed of 8 Wang tiles, (a), and a tiling sample with partially
highlighted edge codes, (b).

for the problem of thermal conductivity and in Fig. 5.5.4 for linear elasticity. Box bound-
aries and a mid-band denote the first and third quartile Q1 and Q3, and median Q2,
respectively; whisker ends mark an interval defined as Q2± 1.5(Q3−Q1); and the crosses
indicate potential data outliers. Dotted lines connect data averages.

The number of realizations of each SVE size required to meet the εusr criterion is given
in Fig. 5.5.5; cases when the number of realizations was restricted by the upper limit nmax
are denoted with empty triangle markers. Note that due to the combinatorial nature of the
SVE synthesis, the number of unique SVE realizations of given size s is limited. However,
the number grows exponentially7 and therefore poses no practical restriction for larger
SVEs. The number of 1× 1 realizations was limited by the number of individual tiles and
the results are shown only for completeness. Finally, Fig. 5.5.6 shows the convergence of
the proximity error ξ to its limit value ξusr.

As expected, higher contrast in constituent properties led to increase in the RVE size,
which ranged from four times the tile edge length for 1:10 and 10:1 contrasts up to 36 in
the case of linear elasticity and contrast 100:1. The maximum number of realizations was
set to 30 for this microstructure, which did not influence identification of the RVE size,
see Fig. 5.5.5.

In the particular problem of thermal conductivity, values l(i)s and m
(i)
s have direct

physical interpretation as the largest and the inverse of the least principal conductivity.
Comparing the values obtained for the RVE size indicates anisotropy in the homogenized
material behaviour, which can be anticipated considering different x1 and x2 cross-sections
of the two-point probability functions shown in Fig. 5.5.1a.

7By construction, the tile sets in Fig. 5.5.2a and Fig. 5.5.7a allow for at least two distinct tiles for
each position in a tiling; thus the number of unique SVEs is bounded from below by 2s2

. For sandstone
compression, see Fig. 5.5.12a, the lower bound is 4s2

.
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Figure 5.5.3: Box-and-whisker plots of the norms l(i)s and m(i)
s for thermal conductivity of

the microstructure with elliptic inclusions and contrasts in material properties: (a) 1:100,
(b) 1:50, (c) 1:10, (d) 10:1, (e) 50:1, and (f) 100:1 .
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Figure 5.5.4: Box-and-whisker plots of the norms l(i)s and m(i)
s for linear elasticity of the

microstructure with elliptic inclusions and contrasts in material properties: (a) 1:100, (b)
1:50, (c) 1:10, (d) 10:1, (e) 50:1, and (f) 100:1 .



Statistical determination of RVE size 81

0

5

10

15

20

25

30

02 52 102 152 202 252 302

n
s

Number of tiles in Ω

nmin

100:1
50:1
10:1
1:10
1:50

1:100

0

5

10

15

20

25

30

02 52 102 152 202 252 302 352 402

n
s

Number of tiles in Ω

nmin

100:1
50:1
10:1
1:10
1:50

1:100

(a) (b)

Figure 5.5.5: Number of SVE realizations for the microstructure with elliptic inclusions:
(a) thermal conductivity, (b) linear elasticity.
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Figure 5.5.6: Convergence of the proximity error ξ with increasing tiling sizes for the
microstructure with elliptic inclusions: (a) thermal conductivity, (b) linear elasticity.

5.5.2 Foam

Motivated by our earlier study on elastic properties of aluminium foams [75], the
second investigated microstructure was chosen to represent a two-dimensional sample of a
closed cell foam. The system was compressed into the same tile set, in terms of tile code
definition, as the previous microstructure. The internal geometry of tiles was artificially
designed with a modified version of the level-set based approach developed by Sonon
et al. [19]. The compressed geometry, displayed in Fig. 5.5.7, features large irregular
inclusions separated with thin ligaments that form 25.8% of the microstructure volume.

With infinite contrast, foams are typical representatives of complex materials with
pronounced influence of actual microstructure composition on their overall response. Our
previous work [75] corroborated this claim in two-dimensional setting, reporting the RVE
size approximately in the order of magnitude of thousands of inclusion (voids) diameters.
Even thought we do not assume the extreme case of voids, large RVE sizes are expected
for higher contrasts as well.

Statistics of l(i)s and m(i)
s for increasing tiling sizes are plotted in Figs. 5.5.8 and 5.5.9

for thermal conductivity and linear elasticity, respectively. Number of realizations for each
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(a) (b)

Figure 5.5.7: A foam-like microstructure compressed in a tiles set composed of 8 Wang
tiles, (a), and a tiling sample with partially highlighted edge codes, (b).

tiling size is shown in Fig. 5.5.10 and the convergence towards the prescribed proximity
limit ξusr is depicted in Fig. 5.5.11. The identified RVE sizes ranged from three to 12
times the tile size in all analyses, the number of equi-sized realizations was limited to
25, see Fig. 5.5.10. Compared to the microstructure with elliptic inclusions, the nominal
RVE sizes are smaller, however, the tile size is a characteristics of microstructure repre-
sentation not its geometry. RVE sizes of different microstructures have to be compared to
their characteristic length, see Fig. 5.5.17, which supports the assumption of larger RVE
than in the case of the microstructure with inclusions; see also additional discussion in
Section 5.5.4. Finally, the converged values of l(i)s and m(i)

s in Fig. 5.5.8 imply isotropy of
the microstructure, observable also in Fig. 5.5.1b.
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Figure 5.5.8: Box-and-whisker plots of the norms l(i)s and m
(i)
s for thermal conductivity

of the foam-like microstructure and contrasts in material properties: (a) 1:100, (b) 1:50,
(c) 50:1, and (d) 100:1 .
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Figure 5.5.9: Box-and-whisker plots of the norms l(i)s and m(i)
s for linear elasticity of the

foam-like microstructure and contrasts in material properties: (a) 1:100, (b) 1:50, (c) 50:1,
and (d) 100:1 .
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Figure 5.5.10: Number of SVE realizations for the foam-like microstructure: (a) thermal
conductivity, (b) linear elasticity.
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Figure 5.5.11: Convergence of the proximity error ξ with increasing tiling sizes for the
foam-like microstructure: (a) thermal conductivity, (b) linear elasticity.

5.5.3 Sandstone

(a) (b)

Figure 5.5.12: A microstructure of Gosford sandstone [42] compressed within a set of 16
tiles, (a), and a tiling sample with partially highlighted edge codes, (b).

The last investigated microstructure is a two-dimensional representation of the Gosford
sandstone studied in [42]. The microstructure was compressed using the sample-based
quilting algorithm [21]. Two distinct codes were assumed at horizontal and vertical edges.
Based on our previous study [21] and to emphasize that the tile set can be arbitrarily large,
we used a richer tile set that contained all possible combinations of the codes. Similarly to
the previous section, the second phase (displayed in light grey in Fig. 5.5.12) was originally
void; in our parametric analysis, we reused only the geometry and assumed a solid second
phase with parameters from Tab. 5.5.2.

Again, scalar characterization of particular contrast settings and physical phenomena
is summarized in Figs. 5.5.13 and 5.5.14; the number of realizations generated for each
tiling size is shown in Fig. 5.5.15; and Fig. 5.5.16 depicts convergence of the RVE criterion.
Low volume fraction of the second phase along with a large tile size to characteristic length
ratio are likely the cause of small nominal RVE sizes, which were identified as seven times
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Figure 5.5.13: Box-and-whisker plots of the norms l(i)s and m(i)
s for thermal conductivity

of the sandstone microstructure and contrasts in material properties: (a) 1:100, (b) 1:50,
(c) 50:1, and (d) 100:1 .

the tile size for contrasts 1:100 and 100:1 for thermal conductivity and twelve times the
tile size in the case of linear elasticity and 1:100 contrast. On the other hand, more tiles
in the compressed set and higher variability of the microstructure itself resulted in larger
scatter of individual results, compare number of realizations in Figs. 5.5.15 and 5.5.10
and note that the characteristic length of the sandstone microstructure was similar to the
foam-like microstructure. The converged values in Fig. 5.5.13 indicate slight anisotropy,
which is emphasized when the inclusions are more conductive/stiffer than the matrix.
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Figure 5.5.14: Box-and-whisker plots of the norms l(i)s and m
(i)
s for linear elasticity of

the sandstone microstructure and contrasts in material properties: (a) 1:100, (b) 1:50,
(c) 50:1, and (d) 100:1 .

0

5

10

15

20

25

30

02 22 42 62 82 102 122

n
s

Number of tiles in Ω

nmin

100:1
50:1
1:50

1:100

0

5

10

15

20

25

30

02 12 22 32 42 52 62 72

n
s

Number of tiles in Ω

nmin

100:1
50:1
1:50

1:100

(a) (b)

Figure 5.5.15: Number of SVE realizations for the sandstone microstructure: (a) thermal
conductivity, (b) linear elasticity.
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Figure 5.5.16: Convergence of the proximity error ξ with increasing tiling sizes for the
sandstone microstructure: (a) thermal conductivity and (b) linear elasticity.

5.5.4 Discussion
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Figure 5.5.17: Comparison of ξ convergence with increasing SVE sizes normalized against
the characteristic length χ for all investigated microstructures: (a) thermal conductivity,
(b) linear elasticity.

As stated above, the nominal sizes of RVE identified in terms of tile multiples have
to be scaled with the corresponding characteristic length χ of the microstructure to allow
mutual comparison. The scaled RVE sizes % are plotted against the contrast κ of con-
stituent properties in Fig. 5.5.18. Similarly, Fig. 5.5.17 shows the ξ convergence lines from
Figs. 5.5.6, 5.5.11, and 5.5.16 as functions of the scaled size of Ω.

Data in Fig. 5.5.17 confirms that the RVE size is indeed problem dependent and there
are no universal scaling parameters common to both thermal conductivity and linear
elasticity. For thermal conductivity, the inverse contrasts, i.e., 1:n and n:1, resulted in
nearly identical RVE sizes. On the other hand, for linear elasticity, cases with matrix
stiffer than inclusions required approximately twice the RVE size, compared to the RVE
size of the inverse contrast, to satisfy ξusr, compare Figs. 5.5.17a and 5.5.17b or note the
inclination of dash-dotted lines in Fig. 5.5.18. Asymmetry was observed in a whole range
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Table 5.5.3: Values of Linear Least Square fit parameters from Eq. (5.41)

Ellipse Foam Sandstone
TC LE (κ < 1) LE (κ > 1) TC LE (κ < 1) LE (κ > 1) TC LE (κ < 1) LE (κ > 1)

a 3.944 8.874 5.995 4.465 4.867 15.928 3.7457 11.910 3.292
b 0.812 -0.711 0.628 0.872 -0.865 0.485 0.781 -0.628 0.737

# data 11 4 3 5 3 2 5 3 2

of κ and for all investigated microstructures.
Plotting data from Fig. 5.5.18 in a log-log graph Fig. 5.5.19 and modifying the hori-

zontal axis such that the contrasts 1:n and n:1 coincide reveal a power-law relation in the
form

% = a (κ)b , (5.41)

with fitting parameters a and b. The observed symmetry of the RVE size for thermal
conductivity allows for replacing κ with 10|log10 κ| in Eq. (5.41) and consequently fitting
only one set of parameters for the whole contrast range; linear elasticity problem requires
separate handling of κ < 1 and κ > 1. Parameters reported in Tab. 5.5.3 were obtained
with a linear least square regression, taking into account also unreported results obtained
for contrast 1:20 for all six combinations and 1:75, 1:25, 25:1, and 75:1 for the problem
of thermal conductivity of the microstructure with elliptic inclusions. For the sake of
brevity, the predicted fits are plotted in Fig. 5.5.19 only for the thermal conductivity
problem. While the parameters a and b for thermal problems were obtained from ten and
five data points, respectively, in certain cases fits for linear elasticity were based only on
two data points and, thus, the identified values are inconclusive.

For a given contrast κ, the corresponding RVE size % is smallest for the sandstone
microstructure, followed by the microstructure with elliptic inclusions and the foam-like
microstructure. The ordering closely follows the volume fraction of the second phase;
observe that the RVE sizes of the sandstone microstructure and the microstructure with
elliptic inclusions are always closer together, compared to the foam-like microstructure.
On the other hand, the influence of particular microstructure composition varies depending
on a problem and chosen κ.

For the extreme contrasts and thermal conductivity, % seems to be governed primarily
by the volume fraction, due to the large difference between individual microstructures,
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Figure 5.5.18: Lin-log plot of dependence of the scaled RVE-size % on the contrast κ of
constituent properties for thermal conductivity (TC) and linear elasticity (LE).
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Figure 5.5.19: Log-log plot of the RVE-size dependence on the absolute contrast of con-
stituent properties, defined as 10|log10 κ|. The fit (solid lines) of the power-law relation
(5.41) is shown only for the thermal conductivity problem.

and insensitivity to swapping material properties of the phases, see Fig. 5.5.17a. On the
contrary, in linear elasticity, complexity and the actual microstructure composition have a
pronounced effect especially when the inclusions are stiffer; instances in which the matrix
phase is stiffer seem to be dominated mainly by the contrast itself.
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Figure 5.5.20: Log-log dependence of the norms lhom and mhom of the identified homog-
enized tensors, recall Eq. (5.29), on contrast κ of constituent properties. Values for unit
contrast were computed from material characteristics of the matrix phase.

Influence of the inclusion parameters on the converged values lhom and mhom, respec-
tively, is shown in a log-log graph in Fig. 5.5.20. Unlike the RVE-size dependence, curves
in Fig. 5.5.20 indicate that no power law in the form of a monomial can be established
except for the linear elasticity of the foam-like microstructure with κ < 1. In all other
cases, the overall scalar characteristics plateau soon and further increase of |log10(κ)| does
not lead to their significant change.

Also note in the box-and-whisker plots that the RVE size criterion ξ is driven by ls for
κ > 1; and vice versa, the initial and final values of ms differ more for κ < 1.

Finally, the last observation regards the necessary number of realizations, shown in
Figs. 5.5.5, 5.5.10, and 5.5.15. Within a chosen microstructure, problems with similar final
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RVE sizes required approximately the same number of realizations at intermediate sizes.
Moreover, as the SVE size approached the RVE one, the minimal number of realizations
sufficed to meet εusr limit for all microstructures, except for sandstone.

Thus, the RVE size, at least in the context of our methodology, seems to be driven
mainly by the ensemble average and not its variation, which corroborates conclusions of
Moussaddy et al. [119], who warned against using the variance of apparent properties as
the only RVE criterion.

5.6 Summary

We demonstrated that the compressed representation of materials with random micro-
structure by means of Wang tiles is an appealing framework for numerical homogenization
and problems of RVE size determination, in particular. Upon an off-line phase of compress-
ing the microstructural information into a set of tiles, the framework facilitates instant
on-line random generation of statistically coherent realizations of compressed microstruc-
tures. Moreover, adopting elemental ideas of domain decomposition and considering each
tile as a macro-element reduce significantly the number of degrees of freedom and improve
the condition number of the resulting algebraic system, a desirable feature especially when
dealing with highly contrasted problems.

With the emphasis on obtaining bounds on the effective property, we established a
methodology that identifies the RVE size for a user-defined accuracy. The methodology
benefits from a regular partitioning inherent to the tiling concept and directly utilizes
the Partition theorem and statistical sampling to construct confidence intervals of the
apparent properties. The proposed methodology works at two levels:

1. For a fixed domain size, new microstructure realizations are generated on-the-fly and
their apparent properties are computed until the confidence intervals narrow below
a user-defined threshold;

2. The convergence criterion is checked and the algorithm either moves to larger do-
mains or terminates identifying the sought RVE size. The methodology takes into
account both the statistical deviation of apparent properties and the discrepancy
between their mean values. This makes it robust against premature convergence.

The efficiency of the Wang tiling concept allowed us to illustrate the methodology with
a large set of problems. We performed the RVE size identification for three materials from
a class of microstructures with clearly identifiable matrix- and inclusion-like phases, yet
of different volume fraction and complexity of internal composition. For each material,
we investigated two homogenization problems—linear heat conductivity and elasticity.
Unlike the majority of similar studies, we kept the volume fraction of inclusions fixed
and scaled the ratio between the matrix and inclusion material parameters. Without
claiming observations to be general rules, for our particular setting, the RVE size seems
to be driven mainly by the mean values of the apparent properties, which corroborates
conclusions of Moussaddy et al. [119]. The effect of the actual microstructure composition
and the role of matrix or inclusion material is significantly pronounced in the case of
linear elasticity, while swapping the constituents has negligible effect on the RVE size
for heat conductivity. Data also indicates a power-law relation between the RVE size
expressed in terms of the microstructure characteristic length χ and the contrast κ of
constituent properties. However, note that the power-law relation common to both the
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thermal and linear elasticity problems may stem from the adopted simultaneous scaling of
Lamé coefficients in Tab. 5.5.2, which resembles the scaling of the conductivity coefficient.
Conversely, a scaling in the form of a simple monomial cannot be established for the
converged scalar characteristics of the overall material behaviour but for the compliance
of the foam-like microstructure with κ < 1.

The present approach directly extends to linear three-dimensional problems, in which
the acceleration through pre-computed factorization of each tile will be even more pro-
nounced. However, robust methods for compressing three-dimensional microstructures,
complemented with a tool for generating topologically and geometrically consistent dis-
cretization of Wang cubes, are yet unavailable and constitute our current work.



Chapter 6

Microstructure-informed reduced
modes synthesised with
Generalized Finite Element
Method

Abstract:
A recently introduced representation by a set of Wang tiles—a generalization of the tra-
ditional Periodic Unit Cell based approach—serves as a reduced geometrical model for
materials with stochastic heterogeneous microstructure, enabling an efficient synthesis of
microstructural realizations. To facilitate macroscopic analyses with fully resolved mi-
crostructural details generated with the Wang tile concept, we develop a reduced order
modelling scheme utilizing pre-computed characteristic responses of the microstructure.
First, inspired by computational homogenization, we present a method for extracting the
characteristic, continuous fluctuation fields from the compressed microstructral represen-
tation based on a set of Wang tiles, without any prior knowledge about the shape of a
macroscopic domain or its loading. Second, using the ansatz of Generalized Finite Ele-
ment Method, we combine these fields with a coarse finite element discretization to create
microstructure-informed reduced modes specific for a given macroscopic problem. We
illustrate the proposed scheme with a two-dimensional scalar elliptic problem.

Reproduced from: Doškář, M., Zeman, J., Krysl, P., Novák, J. Microstructure-informed
reduced modes synthesised with Wang tiles and Generalized Finite Element Method (in
preparation).
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6.1 Introduction

Reduced Order Modelling (ROM) has become an established way to accelerate nu-
merical analyses by exploiting the information contained in previously obtained solutions
(snapshots)—be it time-steps/load increments [148] or solutions to other parametriza-
tions [149]—to construct an approximation space better suited to the investigated problem.
ROM is thus particularly appealing to problems such as optimization/parameter identifi-
cation [149], system control [150], or real-time simulations [151, 152, 153, 154, 155, 156],
i.e. scenarios where the increased cost of an off-line phase (collecting and processing snap-
shots) can be amortized in the subsequent calculations. Many strategies in multi-scale
modelling have a similar multi-query character; ROM thus allows for significant accel-
eration of FE2-like computational homogenization approaches [157, 158] and the closely
related applications in multi-scale topology optimisation [159, 160].

In general, the projection-based ROM works particularly well for problems with a
relatively low-dimensional parametrization space (e.g. variation in geometrical or loading
parameters, or prescribed macroscopic strain) and mild non-linearities [161, 162]. To avoid
a significant increase in dimensions of the reduced approximation space for more severe
non-linearities, several strategies were proposed that approximate a solution manifold with
multiple reduced approximation subspaces along with procedures allowing for interpolat-
ing/transition among them, e.g. [163, 164, 165]. Besides these local approaches in terms
of parametrization partitioning [164] or solution characteristics [163, 165], ROM can be
utilized locally in problem’s subdomains; for instance, Kerfriden et al. [161] proposed us-
ing reduced modes only in regions without localized damage. In the FE2 setting, Oliver
et al. [158] split a Representative Volume Element into a linear subdomain and a region
of softening cohesive bands, extracting reduced modes for each subdomain separately.
Radermacher and Reese [162] introduced an adaptive sub-structuring ROM in forming
process simulations, in which only the parts of the domain with mild non-linearity were
reduced while highly non-linear regions remained fully resolved. Similarly, Niroomandi et
al. [166] combined global ROM with Generalized Finite Element Method (GFEM), intro-
duced locally in a patch near simulated surgical cut, in order to capture localized solution
characteristics efficiently. Using Partition of Unity (PU) [167], underlying all the previ-
ously mentioned GFEM approaches, Ibáñez et al. [168] recently proposed a local variant
of Proper Generalized Decomposition.

Still, the parametrization space of problems with fully resolved, stochastic microstruc-
tural details is inherently too high-dimensional, see Section 6.5.2.2 for an explicit example,
and hence difficult to address within the standard ROM setting. Even though Kerfriden
et al. [161] adopted a ROM strategy for fracture modelling in domains with a stochastic
microstructure, only the parameters of a damage model varied within the macroscopic
domain. Consequently, the regions excluding the damage localization, which were ac-
celerated with ROM, effectively behaved homogeneously in the linear regime. Numeri-
cal strategies based solely on PU/GFEM thus seem to be better suited for simulations
with stochastic microstructural details. Covering linear problems, Strouboulis et al. [169]
introduced a dictionary of pre-computed local solutions to selected microstructural fea-
tures, which were then used as enrichment functions within GFEM. Fish and Yuan [114]
proposed a multiscale enrichment method, combining PU and responses of a periodic
microstructure representation to unit loading cases from the computational homogeniza-
tion [170]. Efendiev et al. [171] developed Generalized Multiscale Finite Element Method
which extracts local enrichments in subdomains from a collection of pre-computed general
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responses using eigenvalue analyses. In a similar spirit but without pre-calculations, Plews
and Duarte [172] generated the microstructure-specific enrichments on-the-fly by subject-
ing subdomains with finer discretization to boundary values obtained from a coarse global
solution, building on the local-global enrichment framework [173].

In the series of our previous works [15, 21, 43], we have introduced the framework
of Wang tiles as a suitable extension of the (Statistically Equivalent) Periodic Unit Cell
methodology for modelling microstructural geometry of random heterogeneous materi-
als. We have shown that replacing the unit cell based representation with a set of
domains—Wang tiles—with predefined mutual compatibility enables an efficient gener-
ation of stochastic microstructural realizations that feature suppressed periodicity arte-
facts [15, 21, 43] Even though the spurious periodicity is significantly reduced in the
generated microstructural samples, they are still composed of only a handful of tiles. The
Wang tile concept thus provides a finite-size discrete parametrization space of the gener-
ated realizations.

Combining both GFEM and ROM approaches recalled above and benefiting from the
discrete parametrization, we develop a reduced order modelling scheme for problems with
fully resolved microstructural details generated by the tile-based approach. We first re-
call the essentials of Wang tile concept and its use in modelling heterogeneous materials
in Section 6.2. Next, inspired by computational homogenization approaches as in [114],
we propose a method for extracting the characteristic responses of the compressed mi-
crostructural representation to parametrized macroscopic loading in Section 6.3. These
general, tile-wise defined responses are constructed such that they can be assembled in
the same way a microstructural sample is synthesized from the individual Wang tiles,
and they serve as an approximation to the fluctuation part of a macroscopic solution.
Section 6.4 then introduces the macroscopic numerical scheme that combines the gen-
eral pre-computed characteristic responses using the Generalized Finite Element ansatz
to generate the microstructure-informed reduced modes, specific for a given macroscopic
problems. Finally, we illustrate the proposed methodology with two-dimensional, scalar,
elliptic examples in Section 6.5.

6.2 Wang tiles as microstructural ROM

The concept of Wang tiles was originally proposed as an equivalent problem in predi-
cate calculus [25]: instead of proving a mathematical statement of a certain class directly,
it was converted to a set of square tiles with codes attributed to their edges and inves-
tigated whether the given set is able to tile an infinite plane such that the adjacent tiles
have the same code on the corresponding edges. Later, this abstract concept was adopted
in the Computer Graphics community as a convenient formalism for encoding continuity
constraints in the design of pre-generated modules along with the rules for assembling
the modules into larger blocks—tilings. Adopting the tile concept has enabled fast syn-
thesis of point patterns with desired blue noise spectrum [174, 90] and naturally looking
textures [17, 175, 176]. The latter applications inspired utilisation of the tile concept in
modelling materials with random heterogeneous microstructures [15].

Currently, characterization of a microstructural geometry in a compressed form is
mostly based on a Periodic Unit Cell (PUC) representation (under different names such
as Repeating Unit Cell [46], Statistically Similar Representative Volume Element [12], Sta-
tistically Optimal Representative Unit Cell [11], or Statistically Equivalent Periodic Unit
Cell [10]). Although such compression is lossless only for a narrow range of materials with
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(a) (b) (c)

Figure 6.2.1: (a) A set of Wang tiles with the compressed microstructural representation
used in the work (including a detail of the finite element discretization in (b)) and (c)
an illustration of a step in the tiling procedure (with partially assembled microstructural
geometry and finite element discretization). In the next step of the assembly algorithm,
either τ9 or τ10 will be placed at the position highlighted in grey.

a periodic arrangement of constituents, the modelling error caused by the enforced period-
icity and limited variability is negligible in standard concurrent multiscale schemes, such
as FE2 [177]. On the other hand, the PUC-based compression is unsuitable for generating
microstructural geometry for macroscale analyses with a fully resolved microstructure for
two reasons: (i) it produces only a deterministic sample and (ii) the produced microstruc-
tural sample exhibits artificial periodicity. Wang tile concept addresses both drawbacks,
and allows to avoid computationally intensive optimization algorithms traditionally used
to generate an ensemble of stochastic microstructural samples [10].

In Wang tile concept, a material microstructure is represented with a set of square
(or cubical) domains with codes attributed to their edges (or faces). Interior of each
tile is designed such that (i) the contained microstructural geometry remains continuous
across the parts of tile boundary with the same code and (ii) when assembled following
the compatibility constraints posed by the codes, the resulting tile assembly resembles the
original microstructure; see the illustration in Fig. 6.2.1.

So far, three design strategies have been proposed: an optimization approach to min-
imize a discrepancy between spatial statistics of the reference specimen and generated
assemblies [15], a sample-based strategy [21], and a level-set based framework for par-
ticulate and foam-like microstructures [43]. However, most of the methods developed for
generating PUC can in principle be modified to take the generalized periodicity constraints
of Wang tiles into account.

Unlike mathematicians that focus mainly on tile sets for strictly aperiodic tiling, see the
overview in [28, Chapter 11], we prefer stochastic tile sets introduced by Cohen et al. [17]
because these sets perform better in terms of suppressing periodic artefacts [21, 43] and
are less constrained in their construction. Using the assembly algorithm described next, a
sufficient condition for a tile set is that it contains at least one tile for each admissible code
combination on the left and top tile edges. Otherwise, number of tiles and code distribution
within the set can be chosen arbitrary, e.g., to control the distribution of individual tile
types in the assembled tilings. Individual microstructural samples are generated with a
stochastic assembly algorithm that sequentially fills a grid of a predefined size with tile
instances from the set. For each positions in the grid, the algorithm identifies potential
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candidate tiles from the set based on the codes of previously placed neighbouring tiles,
randomly selects one tile from the candidates, places it, and proceeds to the next grid
position. A step of the assembly algorithm is shown in Fig. 6.2.1.

In the perspective of Liu and Shapiro [9], who define a model of a material micro-
structure as a process capable of generating microstructural samples with similar spatial
statistics, Wang tile concept can be seen as a reduced model with spatially local modes
(with PUC being a trivial instance with one mode only). Characteristic microstructural
information is compressed into the set of tiles in the offline phase, while geometries of
individual microstructural samples are generated almost instantly when required. The
tile-based representation thus can be advantageously used in. e.g., analyses of the Rep-
resentative Volume Element (RVE) size [75, 86]. The concept can also serve as a mi-
crostructural generator for Monte-Carlo-based simulations investigating the influence of
microstructural variability on a macroscopic response.

6.3 Extracting characteristic fluctuation fields

(a) (b) (c)

Figure 6.3.1: Decomposition of (a) a Direct Numerical Solution resolving all microstruc-
tural details into (b) a homogeneous part and (c) fluctuations caused by the presence of
heterogeneities.

The idea of approximating fluctuation fields in microstructural samples generated by
means of Wang tiles was first outlined in Novák et al. [16]; see Fig. 6.3.1 for an illustra-
tion of a fluctuation field. Aiming at stress enrichments for Hybrid-Trefftz finite element
formulation such as [178], Novák et al. proposed extracting tile-wise defined fields from a
response of a selected tiling to a prescribed macroscopic strain under periodic boundary
conditions. Continuity of traction forces across the corresponding tile edges was incorpo-
rated in the objective function during the optimisation-based tile design, resulting in a
trade-off between randomness in the system and traction jumps [16].

Here, we present a method for extracting the characteristic response of a compressed
system in primal variables. Unlike [16], the tile-wise defined fields are continuous across
the corresponding edges by construction and the methods is non-intrusively applicable
to existing microstructural compressions. Our only assumption is that the finite element
discretization of individual tile domains ΩT is geometrically compatible across the edges
with the same code.

We illustrate the method with a scalar, elliptic problem represented by heat conduction.
Combining the Fourier law

q(x) = −K(x)∇θ(x) , ∀x ∈ Ω , (6.1)
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which links temperature θ and heat flux q fields in a given domain Ω via a conductivity
tensor K, with the conservation of the heat flux (neglecting any heat sources and sinks)

∇ · q(x) = 0 (6.2)

yields the governing equation

−∇ · (K(x)∇θ(x)) = 0 . (6.3)

Similarly to the ansatz traditionally used in computational homogenization, we as-
sume that a solution field for each tile T in a tile set S can be decomposed using a Taylor
expansion into a macroscopic part controlled by a prescribed macroscopic (potentially
higher-order) gradients and the fluctuation part caused by the presence of heterogeneities
in the microstructure. Restricting ourself to the second-order Taylor polynomial, we as-
sume the temperature field θ(x) in the form

θ(x) = G(1) · x+ 1
2x ·G

(2) · x+ θ̃(x) , ∀x ∈ ΩT , ∀T ∈ S, (6.4)

where G(i) is the prescribed ith-order macroscopic gradient playing the role of loading and
θ̃(x) is the fluctuation complement.

Following the standard finite element procedures for solving the weak form of Eq. (6.3),
we construct a stiffness matrix for each tile independently, and we reorder and split the
unknowns u into interior, ui, and exterior, ue, ones.[

KTee KTee
KTee KTee

] [
uTe
uTi

]
=

fTe
(
G(1),G(2)

)
fTi
(
G(1),G(2)

) (6.5)

Note that the force term is induced by the prescribed macroscopic gradients and the
degrees of freedom (DOFs) correspond to the fluctuation part of the ansatz Eq. (6.4). The
interior DOFs are then condensed out, leaving us with effective stiffness matrix K̂T and
load vector f̂T for each tile:

K̂T = KTee − KTei KTii
−1 KTie , (6.6)

f̂T = fTe − KTei KTii
−1 fTi , (6.7)

where the explicit dependence on the macroscopic gradients was omitted for the sake of
brevity.

In order to enforce continuity of the solution across individual tiles, the remaining
boundary DOFs are consistently renumbered and assembled into us such that the corre-
sponding DOFs at edges with the same code share the same number throughout the tile
set. While uniquely enumerating DOFs that belong exclusively to a tile edge is straightfor-
ward, enumerating vertex DOFs requires an analysis of the tile set outlined in [43, Section
2.3] in order to identify how many unique DOFs are needed for the vertices. Depending on
the code distribution within the set, it may happen that certain vertices will never coin-
cide during the tile assembly, thus constituting separate vertex group with distinct DOFs.
This typically happens for tile sets derived from the vertex-defined Wang tiles [91]. In the
three-dimensional setting, where individual Wang tiles are defined by codes attributed to
domain faces, a similar analysis must be performed also for edge DOFs; see [43, Section
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2.3] for details.
Finally, treating each tile as a macro-element, the tile effective stiffness matrices and

loading vectors are assembled according to the DOF numbering,

KS = A
T ∈S

K̂T and fS = A
T ∈S

f̂T , (6.8)

forming a system that encodes a collective response of all tiles in the set to a prescribed
loading,

KSus = fS . (6.9)

Without loss of generality, we assume all tile domains are centred, making them virtually
stacked one atop each other. However, their interaction is facilitated only through the
shared DOFs.

Figure 6.3.2: An example of a tile-wise defined fluctuation field obtained for G(1) =[
1.0 0.0

]T
and considering Eq. (6.13) only.

6.3.1 Constraints

The assembled set problem, Eq. (6.9), must be equipped with additional constraints.
First, the problem is ill-posed because it contains a zero-energy mode. This can be fixed
either by prescribing a value for one DOF or by imposing the average value constraint∫

ΩS
θ̃(x) dx = 0 , (6.10)

where ΩS =
⋃
T ∈S ΩT .

Second, additional constraints are needed to prevent the fluctuation field from com-
pensating for the prescribed loading. This corresponds to prescribing suitable boundary
conditions at the microscale problem in the computational homogenization, e.g. [170].

In the standard first-order computational homogenization, the fluctuation field θ̃ is
required to satisfy ∫

Ω
∇θ̃ dx =

∫
∂Ω
θ̃nds = 0 , (6.11)



Microstructure-informed ROM 100

where n denotes the outer normal to the RVE domain boundary ∂Ω. This is typically
ensured either with the uniform Dirichlet, periodic, or uniform Neumann type of bound-
ary conditions. Albeit the particular selection is a modelling choice, periodic boundary
conditions are the most frequent due to their fastest convergence of effective properties
with respect to the size of an RVE, e.g. [82].

Loosely inspired, we implement the following three options:

i) We set all fluctuation DOFs to zero at the tile boundaries,

θ̃|∂ΩT = 0 , ∀T ∈ S ; (6.12)

ii) We enforce vanishing gradient of the fluctuation field tile-wise,∫
∂ΩT

θ̃nds = 0 , ∀T ∈ S ; (6.13)

iii) We require zero gradient of θ̃ within the tile set on average,∫
∂ΩS

θ̃nds = 0 , (6.14)

where ∂ΩS =
⋃
T ∈S ∂ΩT , similarly to Eq. (6.10).

Treating second-order gradients is more involved. Since we assume the classical first-
order constitutive and conservation equations and we want to pose the extraction of char-
acteristic modes as a boundary value problem, we cannot straightforwardly enforce a direct
analogue of Eq. (6.11) for the second-order gradient. Addressing this limitation in the fi-
nite strain setting, Kouznetsova et al. [121, 179] derived a condition on the fluctuation part
of the solution that ensure the equality between the prescribed second-order gradient and
its average over a Periodic Unit Cell, see [121, Appendix A]. Adapted to the illustrative
problem of heat conduction, Kouznetsova et al.’s condition reads∫

∂Ω
θ̃ (x⊗ n+ n⊗ x) ds = 0 , (6.15)

where ⊗ denotes the vector outer product defined in the index notation as (n⊗x)ij = nixj .
Similarly to the previous paragraph, constraint (6.15) can be ensured

i) point-wise (leading to the same constraints as in Eq. (6.12)),

ii) tile-wise ∫
∂ΩT

θ̃ (x⊗ n+ n⊗ x) ds = 0 , ∀T ∈ S , (6.16)

iii) set-wise ∫
∂ΩS

θ̃ (x⊗ n+ n⊗ x) ds = 0 . (6.17)

Note that, unlike the finite strain problem in [121, Appendix A], the second order gradient
for the scalar problem is by definition symmetric. Hence, conditions (6.16) and (6.17)
constitute only three constraints for a two-dimensional scalar problem.
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(a) (b) (c)

Figure 6.3.3: Illustration of (a) a global approximation ψ(x) assembled from the tile-
wise defined fluctuation field, (b) a standard macroscopic shape function N(x) used as
a Partition of Unit function in Generalized Finite Element Method, and (c) the final
microstructure-informed reduced mode N(x)ψ(x).

All constraints introduced above are linear in the fluctuation field θ̃. Therefore, within
the finite-element implementation, they can be recast to the form

Cu = 0 , with C =

C0
CI
CII

 , (6.18)

where C0, CI, and CII are related to the elimination of the zero-energy mode, and enforcing
first- and second-order gradients, respectively.

However, depending on the particular constraint choice and the distribution of edge
codes with the tile set, matrix C can be rank-deficient. This deficiency arises in several
situations. For instance, a tile with periodic codes (i.e. the same codes on the opposite
edges) automatically satisfies Eq. (6.13). In a similar manner, a tile set with an equal
occurrence of individual codes on opposite edges yields trivial CI for Eq. (6.14).

In principle, it is possible to list all such situations and handle them during the assembly
of matrix C. Yet, in order to avoid an involved analysis of codes in a tile set and complicated
assembly, we perform the singular value decomposition of the rank-deficient matrix C and
replace it with Ĉ containing of the right-singular vectors related to non-zero singular values
as its rows.

Ultimately, the modified constraints represented by Ĉ are enforced via Lagrange mul-
tipliers λ, forming the final saddle-point problem[

KS ĈT

Ĉ 0

] [
us

λ

]
=
[

fS
0

]
. (6.19)

Once solved for the exterior DOFs us common to all tiles, the remaining interior DOFs
follow from back-substitution1 in Eq. (6.5),

uTi = KTii
−1 (fTi − KTieuTe

)
. (6.20)

1In the case of zero fluctuations prescribed at tile boundaries, i.e. Eq. (6.12), the above described
treatment is only formal. In practice, solving Eq. (6.19) is skipped, and only the interior DOFs are sought
for because no information is effectively communicated across individual tiles.
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6.3.2 Field options

In the illustrative linear two-dimensional problem, five basic macroscopic loading cases—
consecutively prescribing a unit value to the individual components of the first- and second-
order macroscopic gradient, respectively—suffice. Each load case is further complemented
with one of the constraint options mentioned above. Unlike in computational homoge-
nization, where a particular type of boundary conditions is assumed a priori, we combine
the characteristic responses of the compressed system extracted for different constraint
options in order to enrich the basis for the fluctuation approximation.

While this approach allows for a range of combinations regarding which gradients are
prescribed and restricted, we consider only three choices for the rest of the paper, labelled
as 1st, 1st ∨ 2nd, and 1st ∧ 2nd, respectively. The first choice denotes the fluctuation
fields extracted by prescribing and constraining only the first-order macroscopic gradient,
i.e. G(2) = 0 and only the constraints (6.12)–(6.14) are considered. The second choice
stands for the case where the first and second-order macroscopic gradients were prescribed
independently, i.e. extending the set of fields from the previous choice with additional ones
obtained similarly by settingG(1) = 0 and prescribing only the second-order gradient along
with constraints (6.12), (6.16), or (6.17). Finally, the last choice corresponds to the setup
in which both gradients are prescribed simultaneously and all constraints are successively
imposed.

The first option thus results in six fluctuation fields (two unit loading cases and three
constraint types), while the latter two yield 15 fluctuation fields.

6.4 Macroscopic numerical scheme

(a) (b)

Figure 6.4.1: The resulting temperature field θ from a Direct Numerical Simulation (DNS)
of a square domain with a microstructure assembled from 5 × 5 tiles and subjected to a
macroscopic temperature gradient

[
0.6 0.3

]T
under (a) periodic boundary conditions and

(b) Dirichlet boundary conditions.

From the procedure outlined in the previous section, each tile carries a set of tile-
wise defined fields, which can be assembled using the same procedure as in generating
microstructural geometry in order to define a set of continuous approximation basis func-
tions ψi in the macroscopic domain Ω; see Fig. 6.3.3 Note that the tile-wise defined fields
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are universal in the sense that they are not extracted with respect to a particular macro-
scopic geometry or loading; each ψi approximates the microstructural response to a con-
stant or linear macroscopic gradient. However, the general macroscopic problem (with
arbitrary geometry and loading) usually does not yield a uniform macroscopic gradient in
the domain. Thus, the macroscopic numerical scheme must be able to locally interpolate
between individual ψi basis functions.

To facilitate such interpolation, we resort to the Generalized Finite Element Method
(GFEM) strategy [180, 181, 182]. We assume two levels of finite element discretization
for the macroscopic problem. The first level comprises the fine discretization that comes
directly from the tile-wise discretization already used to pre-compute the tile characteristic
fluctuation fields. Recall that the individual tile discretizations must be geometrically and
topologically compatible for the strategy outlined in Section 6.3 to work. Hence, these
discretizations can be assembled along with the microstructural geometry, yielding nf

shape functions Nf (x) defining a finite element approximation space Uf = span{Nf
i }, in

which ψi’s are defined, i.e. span {ψi} ⊂ Uf .
The second level contains a coarse discretization of the macroscopic domain Ω that

does not resolve microstructural features. With nc shape functions N c
i (x), it serves two

purposes: (i) the related approximation space Uc, Uc = span {N c
i }, captures the ho-

mogeneous part of the solution (recall that ψi approximate only fluctuations caused by
material heterogeneity), and (ii) the shape functions form a Partition of Unity basis for
interpolating between individual ψi’s.

Following the GFEM ansatz, we seek a solution to a macroscopic problem in the form

θ(x) =
nc∑
i=1

N c
i (x)a0

i +
nc∑
i=1

nr∑
j=1

N c
i (x)ψj(x)aji

=
nc∑
i=1

nr∑
j=0

N c
i (x)ψj(x)aji , x ∈ Ω ,

(6.21)

where nr denotes the number of provided fluctuation fields and ψ0 is artificially defined
as a constant unit function.

In order to avoid difficulties common to GFEM, namely the questions of imposing
essential boundary conditions and numerical integration, we adopt the perspective of Re-
duced Order Modelling. We benefit from the availability of the fine discretization of the
macroscopic domain; plugging the fine discretization in the form

θ(x) =
nf∑
i=1

Nf
i (x)ui , x ∈ Ω , (6.22)

the weak form of Eq. (6.3) yields the standard, fine-scale system of linear equations

Kfu = ff . (6.23)

However, instead of solving Eq. (6.23), we approximate

u ≈ Φ a , (6.24)

where the matrix Φ ∈ Rnf×nc(nr+1) collects as its columns the individual productsN c
i (x)ψj(x)

from Eq. (6.21) projected onto Uf , and a contains the related aji DOFs. The final reduced
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system to solve thus follows from the Galerkin projection,

ΦTKfΦ︸ ︷︷ ︸
Kr

a = ΦTff︸ ︷︷ ︸
fr

, (6.25)

where the projection supersedes numerical integration in the standard GFEM.

(a) (b) (c)

Figure 6.4.2: The magnitude of discrepancy between the direct numerical simulation and
the result of the proposed reduced scheme for a square domain with periodic microstruc-
ture: a two-element coarse discretization (a) with only selected fluctuation fields obtained
under the periodic constraint Eq. (6.13) and (b) with the all fluctuation fields labelled
1st, and (c) a refined discretization with all fluctuation fields considered. Edges of the
macroscopic discretization are plotted in the light grey colour.

Regarding the imposition of essential boundary conditions at the macroscale, we ex-
clude the prescribed DOFs from Φ. Their presence is then indirectly imposed by the action
of relevant elements. Consequently, the unknown aji ’s corresponding to macroscopic ele-
ments influenced by the prescribed values are not set to zero by construction.

Note also that the projection strategy enables trivial switching to fully resolved mi-
crostructural details in parts of the macroscopic domain when desired, see Section 6.5.2.1.

6.5 Numerical examples

For the numerical examples in this section, we used the two-dimension set of 16 Wang
tiles depicted in Fig. 6.2.1. Geometry of each tile was discretized using linear triangular el-
ements. On average, each tile contained approximately 25,500 DOFs and 50,500 elements,
which are refined along the inclusion boundaries.

Both material phases (depicted in light and dark grey) are considered as linear isotropic
with conductivities K = 10I for the matrix phase and K = 100I for the inclusion phase,
respectively, where I denotes the second-order identity tensor.

6.5.1 Uniformly loaded square sample

As the first example, we considered a simple square domain composed of five tiles in
each direction with the size of the domain scaled to unity. The domain was loaded with a
uniform macroscopic gradient

[
0.6 0.3

]T
with boundary conditions similar to the stan-

dard first-order computational homogenization: periodic and Dirichlet ones, see Fig. 6.4.1.
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(a)

(b)

Figure 6.5.1: Evolution of the relative L2-norm error (εL2) and the relative error in energies
(εE) with a uniform refinement of the macroscopic discretization for the simple square
domain with (a) a periodically repeating microstructure under the Dirichlet boundary
conditions and (b) a microstructure assembled from the set of 16 tiles under both periodic
and Dirichlet boundary conditions. Average and the standard deviation of results obtained
for 50 different realizations are plotted in (b). Data labels correspond to the different
choices of fluctuation fields: 1st denotes the fields extracted with prescribing only the
first-order macroscopic gradient; 1st ∨ 2nd and 1st ∧ 2nd stand for the case when the first
and second-order macroscopic gradients were prescribed independently or simultaneously,
respectively. Additionally, a case when no fluctuation fields are considered (labelled w/o)
is plotted for comparison.

6.5.1.1 PUC

As a sanity check, we first tested the proposed framework with a trivial case of a Wang
tile set—a Periodic Unit Cell. The self-compatible tile 16 from the set shown in Fig. 6.2.1
was chosen as the PUC and the microstructure-informed modes were recomputed consid-
ering only this tile. Note that in the particular case of PUC, the tile-wise and set-wise
constraints coincide and thus only one has to be considered in order to avoid ill-posedness
of the reduced problem.

As expected, due to the linearity of the problem, the proposed reduced numeri-
cal scheme (ROM) yields exactly the same results as the Direct Numerical Simulation
(DNS) even for a very coarse macroscopic discretization containing two elements, depicted
in Fig. 6.4.2a, when the periodic boundary conditions are assumed. Moreover, only the
fluctuation modes extracted under the periodic constraints and the first order macroscopic
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gradient, Eq. (6.13), are sufficient in this case. However, the same conclusions do not hold
when a domain with the same periodically repeating microstructure is subjected to the
macroscopic gradient under the Dirichlet boundary conditions.

In such a case, the numerical scheme only approximates the reference solution. Fig-
ure 6.4.2a illustrates the discrepancy between DNS and ROM solutions with the coarsest
macroscopic discretization (which was sufficient for the previous loading) and only the
modes extracted under periodic constraints. Enriching the approximation space with
fluctuation fields obtained under the Dirichlet-type constraints localizes the solution dis-
crepancy predominantly to the tile edges; see Fig. 6.4.2b. The local difference both in
its magnitude and localization can be further improved by refining the macroscopic dis-
cretization, e.g. Fig. 6.4.2c.

In addition to the local discrepancy, we quantify the error of ROM solution using (i)
a relative L2-norm of the results difference,

εL2 = ‖θ
DNS − θROM‖L2

‖θDNS‖L2
, (6.26)

where

‖θ‖L2 =
(∫

Ω
θ2(x) dx

) 1
2
, (6.27)

and (ii) a relative error in energy,

εE = |E
DNS − EROM|
EDNS , (6.28)

with
E• =

∫
Ω

1
2∇θ•(x) ·K(x) ·∇θ•(x) dx . (6.29)

Figure 6.5.1a illustrates the evolution of these errors with a uniform refinement of the
macroscale discretization. The results are shown for three choices of fluctuation fields: 1st,
1st ∨ 2nd, and 1st ∧ 2nd; recall their definition in Section 6.3.2. In addition, the results for
a case when no fluctuation fields are assumed is also plotted (labelled as w/o) in order to
illustrate the influence of fluctuation fields.

6.5.1.2 Set of 16 tiles

Finally, the same analysis is repeated for a domain with a microstructure assembled
from the tile set instead of a PUC. The global errors shown in Fig. 6.5.1b were obtained
as an average over 50 stochastic realizations. Results for both the periodic and Dirichlet
boundary conditions and different fluctuation field choices are reported. For the sake of
brevity, we omit 1st ∧ 2nd fluctuation field choice in Fig. 6.5.1b because its results were
very close to those of 1st ∨ 2nd.

6.5.2 L-shape domain

As the second example, we chose an L-shaped domain with values θ̂b = 0 and θ̂r = 5
prescribed at the bottom and right part of the domain, respectively; see the illustration
in Fig. 6.5.2. The domain was scaled such that its both ends had a unit length. How-
ever, the number of tiles s along each edge varied, giving a notion of scale separation
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of the problem. This time, only the microstructures assembled with Wang tilings were
investigated.

θ̂r = 5

1 (s tiles)

1

θ̂b = 0

1 (s tiles)

1

p

x

y

Figure 6.5.2: Illustration of the L-shape domain problem. Values θ̂ are prescribed at the
grey-shaded edges. The red dashed line (with the parametrization coordinate p) indicates
a cross-section along which the local error profile was extracted. The triangulation depicts
the initial discretization for the macroscopic problem.

Similarly to the previous section, we ran 10 realizations for s ∈ {5, 10, 15, 20} with four
sequential refinements and different fluctuation field choices, and we recorded the global
errors εL2 and εE ; see Fig. 6.5.3. Similarly to the results in Fig. 6.5.1b, only the 1st and
1st∨2nd fluctuation field choices are eventually shown, because the results of 1st∨2nd and
1st ∧ 2nd were rather similar.

(a) (b)

Figure 6.5.3: Evolution of the relative errors (a) εL2 and (b) εE in the L-shape domain
problem with a uniform refinement of the macroscopic discretization and different combi-
nations of the considered fluctuation fields and values of s = {5, 10, 15, 20}. The average
and standard deviation of the results were obtained from 10 different realizations.

Figure 6.5.4 illustrates the point-wise convergence for one microstructure realization
for s = 5 with a solution profile along the cross-section depicted in Fig. 6.5.2. The cross-
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section was chosen such that it cuts through the centres of tiles. However, similar trends
were observed also in the cross-section coinciding with the tile edges.

Figure 6.5.4: The point-wise convergence of a solution profile for s = 5 along a selected
cross-section when uniformly refining the macroscopic discretization.

6.5.2.1 Local refinement

As mentioned in the previous section, adopting the viewpoint of Reduced Order Mod-
elling with GFEM as a mean of constructing the final reduced modes allows for straightfor-
ward switching to a discretization resolving all microstructural details in selected regions.
As an illustration, Fig. 6.5.5a depicts a solution to the L-shape problem for one realization
with s = 3. The plot of local differences, Fig. 6.5.5b, reveals that the largest local errors
are expectedly concentrated around the re-entrant corner.

Thus, a region containing 3 tiles around the corner was marked for the local refinement
and the analysis was repeated. Local errors of this refined model are shown in Fig. 6.5.5c.
Global errors reduced from 2.654 × 10−3 to 1.393 × 10−3 for εL2 , and from 1.055 × 10−2

to 5.712× 10−3 for εE , respectively. Note that, given the small separation of scales (only
27 tile domains were present in the domain altogether), the local refinement leads to a
significant increase in unknowns from 0.14% to 11.16% of all DOFs present in the domain.

(a) (b) (c)

Figure 6.5.5: An example of (a) a DNS solution for s = 3 and the local errors of the reduced
scheme without (b) and with (c) the microstructure fully resolved in the highlighted region.
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(a) (b) (c)

Figure 6.5.6: Results of the snapshot-based Reduced Order Modelling (labelled as sROM)
scheme described in Section 6.5.2.2 for the L-shape domain example with s = 4: (a) eigen-
values from Singular Value Decomposition of 10,000 collected snapshots, and the relative
(b) L2-norm error εL2 and (c) error εE in energies computed for 50 unique microstructure
realizations both contained in the snapshots (in blue) and not used in the training phase
(in green), compared to the proposed microstructure-informed reduced scheme (in red).

6.5.2.2 Comparison against ROM

In order to put the number of necessary modes into perspective of the classical,
snapshot-based Reduced Order Modelling strategy, we devise the following test. While
keeping the same microstructural geometry as the one shown in Fig. 6.2.1, we replace the
unstructured finite element discretization with a regular, pixel-based mesh, in which two
triangular elements with alternating orientation constitute one pixel. Each tile is then
represented with 100 × 100 nodes and 19,602 elements. Consequently, each microstruc-
tural realization features the same discretization and hence solutions of the illustrative
L-shape domain example can be straightforwardly stored as a snapshot without the need
for a remapping/projection onto a fixed mesh.

We generate 10,000 distinct microstructural realizations for the L-shape domain with
s = 4 and solve the temperature field for each. We then perform Singular Value Decom-
position for the matrix containing individual snapshots as its columns; Fig. 6.5.6a displays
the eigenvalue magnitudes. Next, we replace the GFEM-based microstructure-informed
modes Ψ in the analysis with n eigenmodes corresponding to n largest eigenvalues and
compute the response of the compressed system for n ∈ {50, 100, 250, 400, 500, 550, 1000}
and plot the global errors εL2 and εE in Figures 6.5.6a and 6.5.6b, respectively. The errors
of the snapshot-based ROM are also compared with the scheme proposed in this work
applied to the above mentioned discretization.

6.6 Conclusions

Incorporating the pre-computed fluctuation fields as a basis for constructing the problem-
specific microstructure-informed reduced modes enables analyses of models with fully re-
solved microstructural details with a fraction of degrees of freedom compared to the fully
detailed model The comparison against the coarse discritization without enrichments,
recall Fig. 6.5.1, clearly demonstrates that a similar reduction in unknowns cannot be
achieved without the modes, which efficiently approximate the local character of the solu-
tion. Even for the coarsest discretizations with four orders of magnitude fewer DOFs than
the fully resolved models, both the relative global errors εL2 and εE were already below
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3% in all examples.
Higher accuracy can be achieved in two ways: (i) by considering more fluctuation

fields when constructing the microstructure-informed reduced modes, recall Eq. (6.21),
or (ii) by refining the coarse discretization of the macroscopic domain. Irrespectively
whether the domain is loaded in such a way it exhibits a constant (Section 6.5.1) or
varying (Section 6.5.2) macroscopic gradient, the benefits of refining the discretization
while assuming only 1st fluctuation fields prevail only to a certain threshold. With the size
of macroscopic elements below the size of a tile, adding the fluctuation fields obtained also
for the second-order macroscopic gradient results in lower errors and better convergence
rate. Interestingly, the convergence rate of εL2 was almost identical for 1st case in all
tested values of s, while it exhibited dependence on s in 1st ∨ 2nd case of εL2 and in both
cases of εE .

Except for the simplest example of a uniformly loaded domain with periodic micro-
structure, we also observed only a minor difference between the fluctuation fields obtained
for the first- and second-order macroscopic gradient prescribed separately (1st ∨ 2nd) or
simultaneously (1st ∧ 2nd), with the latter option slightly outperforming the former for
refined macroscopic discretizations.

Local discrepancy between the reduced models and DNS appears in two forms. First,
more uniformly distributed discrepancy arises from an insufficiently coarse macroscopic
discretization unable to capture the overall kinematics of the problem, see Fig. 6.5.5b.
The straightforward remedy here is to refine the dicretization. For instance, the local
solution profile in Fig. 6.5.4 improves significantly already upon the first refinement; since
the second refinement, the solution of the reduced scheme is almost indistinguishable from
the direct numerical simulation.

The second form of discrepancy reflects the underlying microstructure and stems from
an inaccurate approximation by the pre-computed fluctuation fields; compare e.g. Figures
6.4.2a and 6.4.2b. Taking into account more fluctuation fields improves this local errors.
Yet, because the number of fluctuation fields is limited, some errors will always linger
(albeit with a diminishing magnitude). The lingering erros localize mainly along tile
boundaries, where the effect of the modelling assumptions during the extraction of the
fluctuation fields is the most pronounced.

Finally, the solution of the reduced model can be further enhanced by resorting to the
fine, microstructure-resolving discretization in selected parts of the macroscopic domain
as demonstrated in Section 6.5.2.1; see also Fig. 6.5.5.

Admittedly, the proposed microstructure-informed reduced scheme requires signifi-
cantly more degrees of freedom than the standard snapshot-based ROM. Thus, the re-
ported reduction in degrees of freedom may seem unsatisfactory given the fact that we
are dealing with a linear, scalar problem. However, despite the linearity, results from
Section 6.5.2.2 show that problems with fully resolved stochastic microstructure are in-
herently high dimensional. Even a very small problem with s = 4 and a simplified finite
element discretization requires ≈ 500 modes for an acceptable accuracy. Thus, even in the
most favourable case, at least 500 simulations with fully resolved microstructures must
be performed in order to extract a relevant basis for the snapshots-based Reduced Or-
der Modelling scheme. Note that for the vertex-based tile set considered throughout this
work, the L-shape problem with s = 4 allows for 265 ≈ 3× 1019 unique microstructure re-
alizations; however, the drop threshold in required modes seems to be proportional to the
number of tile positions multiplied by tile types, i.e. 48× 16 = 768 in this particular case.
Note also that any significant change in macroscopic loading necessitates recalculation of



Microstructure-informed ROM 111

the basis. By contrast, our fluctuation fields are pre-computed only once at the level of
tiles and they can be re-used for different macroscopic analyses when transformed into the
microstructure-informed reduced modes using GFEM ansatz.

6.7 Summary

Corroborating the potential that the tiling concept has in modelling heterogeneous
materials with stochastic microstructure, we have introduced a numerical scheme which
reduces the number of unknowns in macroscopic analyses with underlying microstructural
geometry generated from a set of Wang tiles.

Unlike our previous work [15], which approximates stress fields in heterogeneous mate-
rials and must be directly incorporated in creating the compressed microstructural repre-
sentation, we have developed a procedure that extracts primal-unknown fluctuation fields
non-intrusively, and can be therefore used with any existing Wang-tile based representa-
tion. Inspired by computational homogenization, we extract the characteristic fluctuation
fields as a collective responses of individual Wang tiles to a parametrized loading, repre-
sented in our case with uniform and linear macroscopic gradients.

Since the extracted fields defined at the tile level are by construction continuous across
edges with the same code, they can be assembled within a macroscopic domain in the same
manner as the microstructural geometry, creating an approximation for the fluctuation
part of the solution providing the macroscopic domain is homogeneously loaded. These
approximations are finally transformed into a microstructure-informed reduced modes us-
ing the Generalized Finite Element Method’s ansatz in order to locally interpolate between
individual approximations and thus to adapt to a non-uniform macroscopic loading.

We have illustrated the proposed approach with two numerical examples. Even with
a relatively coarse discretization (containing fewer than 0.01% of the unknowns in the
unreduced problem), we were able to achieve less then 3% error in the relative L2-norm
and energy difference. We demonstrated that the accuracy is further improved by (i)
refining the macroscopic discretization and (ii) considering more pre-computed fluctuation
fields. Moreover, the proposed numerical scheme allows for a simple transition to a fully-
resolved/high-fidelity model in regions of interest.

Admittedly, compared to the traditional, snapshot-based Reduced Order Modelling
scheme, our approach requires more modes for a comparable accuracy. This stems from
the fact that, unlike the standard applications where modes are obtained from a very
similar macroscopic problems, our modes are pre-computed without any information on
the macroscopic geometry or loading. However, we have demonstrated that problems with
a fully resolved stochastic microstructure inherently feature a high dimensional solution
manifold and, consequently, a relative higher number of training problems must be solved
in order to extract accurate basis. Conversely, our pre-computed fields are universal and
can be used in various macroscopic analyses.

Even thought the proposed methodology for extracting the characteristic responses
and reusing them in macroscopic analyses was illustrated with the simplest case of a
two-dimensional, scalar problem, it can be straightforwardly applied to mechanical and
three-dimensional applications as well. This only requires replacing the particular form of
constraints (Eqs. (6.12)–(6.17)) with a form related to a chosen problem and/or consid-
ering the corresponding unit load cases.

The same procedure can be principally also used for a non-linear material response. In
such a case, the extraction of fluctuations fields for the unit load cases is insufficient. In-
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stead, the space of the parametrized macroscopic loading during the fields’ extraction must
be carefully explored, e.g. [183], and the pre-computed fields stored and post-processed
using, for instance, Proper Orthogonal Decomposition approach [184]. However, applica-
bility of such an approach depends on the number of resulting fields, since too many fields
needed to capture the characteristic fluctuations in microstructural response make the re-
duced model inefficient. Covering material non-linearities within the proposed framework
constitutes the next step in our research.

Related to the non-linearities is also a question of numerical efficiency. Common to all
reduced order modelling schemes, reducing the number of unknowns does not translate
directly to the same reduction in computational times when it comes to non-linear prob-
lems. As a remedy, Hyper-reduction [185], Discrete Empirical Interpolation Method [186],
any many other methods have been developed to approximate the Galerkin projection
in Eq. (6.25) with only a subset of unknowns/quadrature points; see e.g. a brief overview
in [187]. Our preliminary tests with Hyper-reduction indicate that modifications of these
methods are necessary for our microstructure-informed modes, because these methods have
been developed primarily for modes with global support. However, due to the GFEM-
based construction, our modes have a local support inherited from the macroscopic dis-
cretization. Consequently, the standard strategies for choosing the suitable subset of un-
knowns do not work in our case. Therefore, efficient implementation and the right choice
and modifications of the acceleration methods remains an open question to be investigated
in our future work.



Chapter 7

Conclusions and summary

The objective of the thesis was to investigate the applicability of the Wang tile concept
in problems related to modelling of materials with random heterogeneous microstructures,
elaborating further the initial works of Novák et al. [15, 16].

In the first part of the thesis, two methods for designingWang tiles were developed. The
first method was directly inspired by Cohen et al. [17] and supplemented their approach
with a spatial statistics quantification. For each edge code in a tile set, a sample from a
reference microstructural specimen was taken. Each tile in the set was then cut out of
partially overlapping edge samples arranged such that they corresponded to the tile codes.
Consequently, continuity of the compressed representation across the edges with the same
code was automatically ensured by a diagonal cut across the code-related samples. In
order to enhance the variability of the compressed information, adding a unique patch
sample to the interior of each tile was proposed. The optimal parameters of the Image
Quilting algorithm used for seamless merging of the overlapping samples were chosen
from sensitivity studies that compared errors in spatial statistics of the reference and
reconstructed microstructural realizations. As a general rule, an overlap width larger
than nine times the characteristic microstructural length was recommended.

While the sample-based design method is computationally very efficient, it is suitable
mainly for materials featuring particles embedded in a continuous matrix. When it comes
to complex geometries such as foams, the merging algorithm struggles with maintaining
continuity of foam ligaments. For this reason, in Chapter 3, the framework of Sonon et
al. [18, 19], originally developed for an efficient generation of complex microstructures, was
extended. The framework adopted the implicit description of a material microstructure
via level-set fields. First, particles were packed in a domain, keeping track of the shortest
distance to the nearest particle boundary in order to avoid the critical slowdown of the
classical particle packings algorithms when higher volume fractions are desired. Unlike the
classical Random Sequential Adsorption method, the level set based modification features
linear complexity in the number of packed particles. Second, combining the first-, second-,
and third-nearest distance fields enabled straightforward generation of complex, foam-like
geometries with additional morphing operations for further tuning of local geometrical
features. Several modifications of the original framework were proposed in order to ac-
count for the generalized periodicity arising in the tiling concept, allowing us eventually
to design Wang tiles with open and closed-cell foam-like microstructures both in two and
three dimensions. With a sufficiently robust method for particle packing, the comparison
of different tile set in terms of the secondary extremes in two-point correlation function,
tentatively outlined already in Chapter 2, was corroborated. This illustrated the superi-
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ority of the vertex-based definition of Wang tiles, especially for two-dimensional problem
where the resulting tile sets have the same complexity as for their edge-based counter-
parts. As a by-product of resolving the question of where a particle should be placed
when intersecting a tile edge during the packing step, a simple graph analysis capable of
revealing the underlying vertex-based definition of a tile set was devised.

Benefiting from the fast generation of microstructural realizations provided by the
tiling concept, Chapters 4 and 5 demonstrated the use of the concept in numerical homog-
enization and determination of the Representative Volume Element (RVE) size. In Chap-
ter 4, motivated by [20], the appropriateness of the simplified beam model with its geom-
etry derived from Voronoï tessellation to capturing the overall response of Alporas R© foam
microstructure was studied. In this study, a pronounced influence of neglecting the real
geometry of foam ligaments on the macroscopic stiffness was demonstrated by comparing
the values predicted for the simplified Voronoï and the real ligament geometry extracted
from a microstructural specimen. The limited capability of the planar beam model in
predicting the overall response of closed-foam materials, mainly due to missing stiffening
contributions from the out-of-plane microstructural features, was reported and the reasons
behind the contradicting results of [20] were elucidated. On the other hand, the Wang tile
concept proved to be an indispensable tool in this analysis; similarly to [84], we showed
that the standard definition of the RVE size in the spirit of Hill [111] leads to extremely
large RVEs for models with the infinite contrast in material properties.

Building on the results from Chapter 4, a methodology for identifying the numerical
RVE size for a user-defined accuracy was developed in Chapter 5. Our methodology was
based on the combination of statistical sampling and the Partition theorem [112], which
allowed for bounding the apparent properties of a large material sample with calculations
performed on a set of sub-samples. We kept adding and analysing microstructural samples
of a given size to an microstructural ensemble until the confidence intervals for the upper
and lower bounds on the sought-for effective property fell below a user-defined threshold.
Next, the convergence criterion based on hypothesis testing was checked and the algorithm
either stopped, identifying the RVE size, or increased the sample size and performed
the analysis again. The methodology was illustrated with three material microstructures
for problems of linear heat conductivity and elasticity, and the influence of the contrast
in material properties on the resulting RVE size was studied. Within the investigated
problems, the RVE size was driven primarily by mean values of the apparent properties
and could be approximated by a power law of the contrast in material properties, when
normalized with the characteristic microstructural length.

Finally, Chapter 6 was dedicated to exploiting the repetitive nature of microstruc-
tural realizations generated from Wang tiles in macroscopic analyses with a fully resolved
microstructure. In particular, a procedure for extracting characteristic fluctuation fields
at the level of a tile set as a collective response of individual tiles to prescribed macroscopic
loading, represented by the first- and second-order macroscopic gradient, was developed.
Following the tile codes, corresponding boundary degrees of freedom were tied within a
set, resulting in tile-wise defined fields continuous across the edges with the same code.
Consequently, the same assembly procedure that was used to generate microstructural
realization for a macroscopic domain yielded a set of continuous fields, which would ap-
proximate the fluctuation part of a solution if the macroscopic domain was loaded uni-
formly. In order to interpolate between the assembled approximation fields, the fields were
combined with a coarse macroscopic discretization by means of the Generalize Finite El-
ement Method’s ansatz, constructing microstructure-informed reduced modes specific for
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a given macroscopic problem. Adopting the perspective of Reduced Order Modelling en-
abled replacing numerical integration with Galerkin projection and simplified prescribing
the essential boundary conditions for the macroscopic problem. Moreover, it allowed for
a straightforward transition to a fine, microstructure-resolving discretization in regions of
interest.

With numerical examples, we demonstrated that even with a relatively coarse macro-
scopic discretization (leading to four orders of magnitude fewer unknowns than the ref-
erence direct numerical simulation), it was possible to achieve relative errors below 3%
both in energies and the L2-norm in all cases, which could not be achieved without the
microstructure-informed modes. Refining the macroscopic discretization and/or consider-
ing more fluctuation fields further improved accuracy of our reduced scheme. Admittedly,
standard snapshot-based Reduced Order Modelling schemes achieve comparable accu-
racy with fewer modes. However, we demonstrated that the problems involving stochas-
tic microstructural geometry inherently feature a high-dimensional solution manifold and
thus relatively many macroscopic problems must be calculated with different microstruc-
tural realizations in order to obtain an accurate reduced basis, which is then specific
only for a particular combination of a macroscopic problem and loading. Contrarily, our
microstructure-informed modes are based on the fluctuation fields characteristic for a
given compressed representation of a material microstructure. Hence, they can be reused
in different analyses.

7.1 Extensions and outlook

The methods and approaches presented in the thesis allow for continuation and poten-
tial extensions, some of which are listed below:

• The limitations of the forward propagating Image Quilting algorithm in Section 2
can be alleviated with the GraphCut algorithm [188] and the sample-based design
can be extended for three-dimensional problems, replacing the square planar samples
with octahedral spatial ones [175].

• Applicability of the proposed tile design methods in finite element analyses depends
on the availability of meshing tools capable of producing geometrically and topolog-
ically compatible finite element discretizations across corresponding edges and faces.
Albeit we have developed such a tool for media with particles of simple shapes both
in two and three dimensions, a robust method for the implicitly defined geometries
from Chapter 3 is still in development. The authors of the original level-set design
frameworks have recently reported advances in this direction [189], introducing con-
formity constraints in surface mesh generation of a Periodic Unit Cell via additional
forces in the truss structure equilibrium based optimization [190]. This may serve
as a stepping stone for an extension to Wang tiles.

• The regular structure and repeating patterns in algebraic systems arising in prob-
lems whose underlying microstructure is generated with Wang tiles hold a promise
for development of an iterative solver, and problem-specific preconditioners, in par-
ticular.

• In order to achieve a significant reduction in the computational times of the scheme
proposed in Chapter 6, an approximation strategy capable of handling only lo-
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cally supported and partially overlapping modes is needed to replace the expensive
Galerkin projection.

• Except for the application of Schur complements in Chapter 5, domain decomposition
approaches were not investigated in the thesis. However, the inherent partitioning of
the tile-assembled microstructural samples and the repetitive occurrence of a handful
of tile types create a suitable set-up for adaptive strategies such as [7, 6], where
different levels of model simplifications are adopted across a macroscopic domain to
attain maximal computational efficiency while maintaining the model’s accuracy.

Although this thesis focused on modelling existing materials with random microstruc-
ture, the Wang tile concept seems to be a promising framework also for designing material
microstructures optimized for a selected application. The first steps in this direction were
made by Tyburec in his master thesis [191], where he introduced a modular topology
optimization based on Wang tile formalism. He developed a two-level method that alter-
nately optimizes tile interiors (using truss topology optimization) and distribution of tile
types within a macroscopic domain (using meta-heuristics). Unlike standard multi-scale
topology optimization [192], modular topology optimization automatically ensures conti-
nuity and modular manufacturability of the optimized microstructure. It also reduces the
number of design variables, albeit at the cost of a combinatorial problem at the macroscale.

Modular design may also present a way to broaden the design space of meta-materials [193,
194], prominent examples of the pronounced microstructure influence on the effective re-
sponse. Recently, we have designed and tested a self-similar jigsaw puzzle module [195]
that can be assembled either in an auxetic or non-auxetic arrangement, allowing for a
local tuning of Poisson’s ratio similar to Mirzaali et al.’s continuous approach [196].
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