
Czech Technical University in Prague

Faculty of Electrical Engineering

Doctoral Thesis

August 2019 Jan Kohout

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Representation of
Communication in Computer

Networks Security

Doctoral Thesis

Jan Kohout

Prague, August 2019

Ph.D. Program: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Supervisor: doc. Ing. Tomáš Pevný, Ph.D.
Supervisor-Specialist: Martin Rehák, Ph.D., Ingénieur ECP

Acknowledgments

First, I would like to express my deep and sincere gratitude to my supervisor Tomáš Pevný
and supervisor-specialist Martin Rehák who guided me in my research and were ready to
discuss all the research topics with me.

My special thanks belong to Petr Somol who provided me the opportunity to finish this
work during my engagement at Cisco Systems and also for giving his valuable feedback on
this thesis.

I would like to thank my former and recent colleagues for their support and inspiring
discussions, especially Martin Grill, Martin Kopp, Ivan Nikolaev and Tomáš Komárek.

My thanks also go to Jakub Lokoč and Přemysl Čech from the Faculty of Mathematics
and Physics, Charles University in Prague, for the great collaboration during our work on
the topics from similarity search in large databases.

I gratefully acknowledge the funding sources thanks to which all the scientific work pre-
sented in this thesis could be done, specifically the Grant Agency of the Czech Republic,
projects number P103/12/P514 and 15-08916S.

Abstract

In current solutions for network security analysis, monitoring and management, machine
learning algorithms play an important role. The increasing volume of traffic and number of
devices connected to networks, rapidly changing variants of malware and also dynamically
changing configurations of networks are all factors that increase the difficulty of manual
analysis of network traffic. Involvement of algorithms that help to automate such processing
is therefore a logical step in development of modern systems. In order to apply the machine
learning algorithms effectively, proper representation of the network traffic needs to be used
which can be consumed and understood by the algorithms.

While there have been many works published that employ machine learning for network
traffic analysis, there have been almost no works that would study the representations of
traffic in general. In this thesis, we propose a generalizing view on building network traffic
representations that is independent of the any specific application scenario. We base our
approach on a probabilistic look on the problem and derive several ways of representing the
traffic that stem from representations and comparison of probability distributions. We put
emphasis on usability of the proposed representations for different cases in network security
and management which we demonstrate in experimental evaluations on data from real large
networks.

We start with studying histogram representations and their applications in network outlier
detection, unsupervised analysis of servers’ behavior and large scale similarity search utilized
for identification of network hosts infected with malware. This approach proves to be able to
provide sparse representations of the traffic that can be effectively stored and processed and
do dot require any optimizations of the representations’ parameters beforehand.

Next, we move our attention to kernel embedding of probability distributions from which
we derive an alternative representation framework. This approach enables us to represent the
traffic patterns without explicit estimation of probability densities of the underlying distribu-
tions while preserving enough information. Thanks to this, better accuracy in analytical tasks
can be achieved compared to the histogram representations at the cost of higher but still ac-
ceptable computational requirements. Moreover, multivariate distributions of more variables
can be considered in these representations. Again, we demonstrate general usability of this
framework in multiple scenarios including both supervised and unsupervised analysis of the
traffic.

Finally, we present a way how to capture network entities’ long-term behavior using
discrete categorical features for which the previous frameworks can not be directly used.
Using this representation, we experimentally show that basic characteristics of the network
entities can be identified using only very lightweight information extracted from the network
traffic logs.

Abstrakt

V současných bezpečnostńıch řešeńıch pro analýzu, monitorováńı a správu poč́ıtačových
śıt́ı hraj́ı algoritmy strojového učeńı d̊uležitou roli. Zvyšuj́ıćı se objem provozu a počet zař́ızeńı
připojených do śıt́ı, rychle se měńıćı varianty malwaru a také dynamicky se měńıćı konfig-
urace śıt́ı jsou faktory, které zvyšuj́ı obt́ıžnost ručńı analýzy śıt’ového provozu. Zapojeńı
algoritmů, které takové zpracováńı automatizuj́ı, je proto logickým krokem ve vývoji mod-
erńıch bezpečnostńıch systémů. Pro efektivńı použit́ı algoritmů strojového učeńı je však
třeba použ́ıt předevš́ım vhodnou reprezentaci komunikace, ze které mohou algoritmy źıskat
potřebné informace.

Přestože bylo publikováno mnoho praćı, které využ́ıvaj́ı strojové učeńı pro analýzu
śıt’ového provozu, neexistuje téměř žádná práce, která by studovala reprezentace komu-
nikace v śıti obecně. V této práci navrhujeme zobecňuj́ıćı pohled na budováńı reprezentaćı
provozu v śıti, který je nezávislý na jakémkoli konkrétńım scénáři. Náš př́ıstup je založen
na pravděpodobnostńım pohledu na problém, ze kterého odvozujeme několik př́ıstup̊u, jak
provoz v śıti reprezentovat. Důraz je kladen na použitelnost navrhovaných reprezentaćı v
r̊uzných př́ıpadech z oblasti zabezpečeńı a správy poč́ıtačové śıtě, což dokazujeme v experi-
mentálńım vyhodnoceńı na datech ze skutečných śıt́ı.

Nejprve jsou studovány reprezentace založené na histogramech a jejich aplikace v detekci
anomálíı, v analýze chováńı server̊u a pro rozsáhlé podobnostńı vyhledáváńı použitelné pro
identifikaci poč́ıtač̊u infikovaných malwarem. Tento př́ıstup ukazuje, že je schopen poskyto-
vat ř́ıdké reprezentace provozu, které lze efektivně ukládat a zpracovávat, a to bez jakékoli
optimalizace parametr̊u těchto reprezentaćı předem.

Dále se zaměřujeme na tzv. vnořováńı pravděpodobnostńıch distribućı pomoćı jádrových
funkćı, na kterém je založen daľśı př́ıstup k reprezentaci komunikace. Tento př́ıstup nám
umožňuje reprezentovat chováńı v śıti bez explicitńıho odhadu hustoty pravděpodobnosti
daných distribućı při současném zachováńı dostatečného množstv́ı informace. Dı́ky tomu
je dosaženo větš́ı přesnosti při analýze provozu za cenu vyšš́ıch, ale stále akceptovatelných
výpočetńıch nárok̊u, nav́ıc lze v tomto př́ıstupu také lépe využ́ıt v́ıcerozměrných náhodných
veličin. Všeobecná použitelnost tohoto př́ıstupu je opět doložena několika experimenty, které
zahrnuj́ı strojové učeńı s učitelem i bez učitele.

Závěrem představujeme zp̊usob, jak zachytit dlouhodobé chováńı jednotlivých zař́ızeńı v
śıti pomoćı diskrétńıch př́ıznak̊u, pro které nelze předchoźı metody př́ımo použ́ıt. S využit́ım
této reprezentace je ukázáno, že základńı charakteristiky zařizeńı lze odhalit pouze pomoćı
velmi omzené informace, kterou lze źıskat ze záznamů provozu v poč́ıtačové śıti.

Contents

1 Introduction . 17
1.1 Use-cases of machine learning in traffic analysis . 18

1.1.1 Anomaly detection . 18
1.1.2 Traffic and behavior classification . 18
1.1.3 Clustering and unsupervised analysis of data . 19

1.2 Thesis goals and key contributions . 19
1.3 Outline of this thesis . 20

2 Domain background and representations used in prior art 23
2.1 TCP/IP stack . 23

2.1.1 HTTP(S) connections and traffic logging . 25
2.2 Representations used for C&C channels detection . 27
2.3 Representations used for applications identification . 30
2.4 Summary of the prior art . 33

3 Formal model of network communication . 35

4 Datasets . 37
4.1 Persistent connections . 37
4.2 Web servers . 38
4.3 Large scale HTTPS . 39
4.4 TCP flows . 40
4.5 Hostnames . 41

5 Histogram representations . 43
5.1 Soft histograms . 43
5.2 Experimental evaluation . 45

5.2.1 Detection of malicious persistent connections . 45
5.2.2 Servers clustering . 48

5.3 Chapter summary . 53

6 Large scale processing of histograms . 55
6.1 Similarity search on histograms . 56
6.2 Efficient k-NN search using metric indexing . 57

6.2.1 Basic principles of metric indexing . 57
6.2.2 Metric index for k-NN search on histograms . 57
6.2.3 k-NN search optimization . 59

6.3 MapReduce implementation . 59
6.3.1 MapReduce programming model . 59
6.3.2 Histograms building implementation . 60

6.3.3 Similarity search implementation . 60
6.4 Experimental evaluation . 64

6.4.1 Scalability of histograms building . 64
6.4.2 Classification . 64
6.4.3 Grouping strategy evaluation . 66

6.5 Chapter summary . 68

7 Representations based on kernel embedding of probability distributions 69
7.1 Kernel functions and Hilbert spaces . 70
7.2 Kernel embedding of distributions . 71
7.3 Related works on kernel and MMD approximations . 72

7.3.1 Kernel function approximations . 72
7.3.2 Approximations of MMD . 74

7.4 Proposed approximate computation of MMD. 76
7.4.1 Construction of the set L . 78

7.5 Experimental evaluation — Classification . 78
7.5.1 Compared prior art methods . 79
7.5.2 Application identification . 80
7.5.3 Further study of the AMRep representation . 83

7.6 Experimental evaluation — Clustering . 87
7.6.1 TCP flows clustering . 87

7.7 Chapter summary . 89

8 Dictionary representations of persistent behavior . 93
8.1 Modeling of persistent behavior . 94
8.2 Experimental evaluation . 95

8.2.1 Operating system family classification . 95
8.3 Chapter summary . 99

9 Conclusions . 101
9.1 Thesis achievements . 102
9.2 Author’s publications . 103
9.3 Other author’s publications . 104

References . 105

List of Figures

2.1 Encapsulation of data in the TCP/IP model . 26
2.2 Illustration of HTTPS communication going through a web proxy 27
2.3 Capture of network activity of a bot . 28

4.1 Data of a TCP flow collected by theAnyConnect client . 40
4.2 Definitions of messages in the TCP flows dataset . 41

5.1 Example of a one-dimensional soft histogram update . 44
5.2 CDFs of non-zero bins in background and malware . 46
5.3 CDF of non-zero bins in servers’ soft histograms . 48
5.4 Marginal probability distributions of features observed on Dropbox servers . . . 51
5.5 Similarity graph of Dropbox servers . 52
5.6 Similarity graph of Windows Live servers . 52

6.1 Visualization of similarities of soft histogram representations 56
6.2 Illustration of the lowerbounding principle. 58
6.3 Illustration of 2D Voronoi partitioning (here in 2D space) with index. 58
6.4 A scheme of the histograms building program. 61
6.5 A scheme of the MapReduce implementation . 63
6.6 Time needed for building soft histograms from the input data 65
6.7 FP-50 error for different values of k. 67
6.8 FP-50 error for different values of the replication threshold tr. 67

7.1 Relative execution times . 83
7.2 Average accuracy depending on the ratio of samples used for training 84
7.3 Confusion matrix for AMRep on the Any-P dataset . 85
7.4 Average accuracy depending on the maximal number of messages 86
7.5 Average accuracy and running times for AMRep and SPID 87
7.6 Visualization of similarities of TCP flows . 91

8.1 Illustration of the persistent behavior representation . 96
8.2 Visualization of operating systems similarities . 98
8.3 Results of the operating system family identification . 99

List of Tables

2.1 Example of fields logged by a web proxy . 27
2.2 Summary of representations used in prior art . 34

4.1 Operating system families prevalence . 42

5.1 Average AUCs for all combinations of histograms and detectors 47
5.2 ARI values for clusterings of Dropbox servers . 50
5.3 Dominant Dropbox servers in the clusters . 51

6.1 Comparison of the k-NN and ECM classifiers, including three different values
of the replication threshold tr. 66

6.2 Comparison of the grouping strategies for different replication thresholds. 68

7.1 Average accuracy on the Any-P dataset . 82
7.2 Average number of non-zero elements in different representations 82
7.3 Average execution times of individual methods . 83
7.4 Comparison of clustering results . 89
7.5 Example of 8 clusters with the highest silhouette score . 90

1

Introduction

Securing computer networks has been without any doubts recognized as a very complex
and challenging task. While the ultimate goal is clear — to identify any threats that my
compromise the network and to prevent them from getting to the network — it is composed
of many partial tasks that might be very diverse. Not only the knowledge of malicious software
itself, but also an insight into the protected network and its functional parts is needed in order
to apply the security measures effectively. Naturally, many tools have been developed that
help the administrators and security specialist to get such knowledge and insight. Among
other solutions, the purpose of Intrusion Detection Systems (IDS) deployed in computer
networks is to detect presence of unwanted or malicious activities in the network and report
them to the operator.

Traditionally, the IDS have been divided into two groups: the host-based IDS and network-
based IDS. While the host-based IDS detects presence of the malicious activity on single hosts
in the network, the network-based IDS gathers information about traffic in the entire network
and detects the malicious activities based on this information. Both types of IDS are often de-
ployed concurrently in corporate networks to improve security countermeasures. Traditional
approaches used in the IDS for threats detection were based on static signatures matching —
the activities of network hosts were recorded and then matched against a database of known
signatures of malicious activities. If a matching activity was found in the database, the IDS
raised an alarm. The signatures matching approaches were traditionally valued for their sim-
plicity, results that were easy to interpret by the operators and low false positive rates of the
detection. However, during the last years, the malware landscape has been changing faster
and faster and also the total volume of traffic in networks has been growing. Moreover, usage
of encrypted network communication to protect users’ privacy has been on the rise, too. Each
of these trends hardens the application of signature matching solutions — new signatures
have to be published with very low delays in order to capture rapid changes of malware and
also the encryption brings more obstacles as the signatures-based solutions often use content
inspection to extract the signatures from the observed traffic. For these reasons, especially
the network-based IDS begun to adopt detection algorithms that employ machine learning
to identify malicious activities based only on high level information about the hosts’ be-
havior and without inspecting the contents of communication. Nowadays, machine learning
algorithms that can be found in an IDS include various methods from anomaly detection to
clustering and classification. Regardless of the specific algorithm which is applied, a suitable
representations of the users’ and machines’ behavior must be first created and then passed to
the detection algorithm. The network traffic is usually analyzed at different levels of granu-
larity, from single packets to complex descriptions of behavior of each user or server. At each
level, some representation of the behavior of the observed entities is created and processed.

However, the detection of malware’s activity or presence is not the only task of current
security solutions. Simultaneously with the detection of malware presence, the administrators
and network operators need to react on increasing complexity of the networks. Due to many

trends like the Internet of Things (IoT) or bring-your-own-device (BYOD), the structure of
networks is becoming more unclear and very hard to manage manually. The insight of ad-
ministrators into such rapidly changing networks is therefore limited which hardens detection
of policy violations, identification of suspicious devices in the networks and other security
events that might become a starting point of a security incident. Moreover, many services
that used to be operated within the managed network like data storages or accounting sys-
tems are now being moved into third-party cloud solutions which imposes new challenges in
detection of insider threats and data exfiltrations. In order to keep such environment man-
ageable, solutions that help to monitor behavior of the network need to be developed. These
methods include monitoring of users’ behavior and automatic identification of anomalies in
it, algorithms that automatically check users’ identities based on their behavior (so called
User and Entity Behavior Analytics — UEBA) to prevent user accounts misuses or solutions
like Cisco Tetration [30] that are used to monitor cloud services usage. Similarly as an IDS,
also these solutions designed for automatization of network management and network struc-
ture discovery leverage machine learning algorithms for which the accurate representations
of behavior is crucial.

1.1 Use-cases of machine learning in traffic analysis

Similarly as in other domains like images processing and computer vision, natural language
processing or text analysis in which machine learning methods were widely adopted for pro-
cessing of data, also in the domain of computer networks security we can find many different
ways how machine learning contributes to improved performance of the target system and
reduces the burden that is put on human operators. Below we list the main use-cases in
which the machine learning is typically employed for analysis of network traffic for security
reasons. Therefore, in all of these cases a good representation that allows comparison of the
analyzed traffic is essential.

1.1.1 Anomaly detection

The anomaly detection (or outlier detection) gathers methods that aim at identification of
those data samples that are somehow very different for the majority. According to [70], a
statistical outlier ”is an object which deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism”. In network security, for example,
it means that behavior of a machine infected by malicious software should be statistically
different form behavior of those that are not infected, given a proper representation of their
behaviors is used. Many different algorithms for detection of anomalies have been proposed
for various domains of application [2]. However, anomaly detection methods — when used
on their own — often suffer from relatively high number of false alarms (so called false
positives) [64]. Therefore, techniques for further dealing with the false positives from anomaly
detection have been developed. In [63], a complex system is presented in which outputs from
many different anomaly detectors are aggregated in a multi-layered architecture to reduce
false positive and create a network intrusion detection system whose detection core is based on
anomaly detection. Similarly, Cisco’s Cognitive Threat Analytics [136] — a security product
with worldwide deployment which processes billions of network traffic log entries per day —
uses anomaly detection consisting of about 40 detection algorithms as its first layer filter to
select the most anomalous events that are passed for further processing by the system.

1.1.2 Traffic and behavior classification

Unlike the anomaly detection, whose aim is to detect possibly unknown but outlying samples,
classification — as a part of the supervised learning methods family — aims at assigning a

18

specific label to each classified sample. The label can be either binary (e.g., malicious or
benign activity, infected or not infected machine etc.) or multi-class (e.g., family of malware
to which given sample belongs or a name of the communicating application). There is a
large variety of classification tasks in analysis of network data that can include, for example,
identification of malicious relations between a client and a server using multiple instance
learning together with support vector machines (SVMs) [49], usage of decision trees for multi-
class classification of malware categories using logs from web proxies [17] or identification
of application layer protocol from sequences of packets [145]. More complex surveys on this
topic can be found in [101] and [140]. The above mentioned Cognitive Threat Analytics [136]
system uses multiple different classification algorithms in its second layer to classify the most
anomalous part of the traffic preselected by the anomaly detection.

1.1.3 Clustering and unsupervised analysis of data

Besides finding the outlying data objects or classifying them to target classes that are known
in advance, finding a structure and similarities in a corpus of initially unknown data plays an
important role as well. Clustering algorithms — as representatives of unsupervised learning
methods — are employed to discover groups (called clusters) of objects that are mutually
similar to each other while they are dissimilar to objects from other groups. No matter
which specific algorithm is used to achieve this, there is a need to properly represent the
clustered objects such that this representation allows to assess similarity (or distance) of two
objects. This is a necessary precondition to form meaningful clusters that would then allow
discovery of new patterns in the data. Clusters discovered by a clustering algorithm can be
then used to define new target classes for which classifiers can be trained, can be passed to
anomaly detectors where they are used to build better baseline of normal behavior (outliers
are expected to be dissimilar to most fo the clusters) [85] or simplify analysis of the data by
humans by focusing on the entire clusters instead of single objects. In the domain of computer
networks security, clustering has been used to identify communication channels of bots [66]
or to group malicious binaries for identification of their underlying malware families [128].
Various algorithms can be used, depending on the properties of objects’ representations
and definition of the similarity or distance function. If the representations live in a metric
space, then the k-means algorithm [87] is a popular choice, if only pair-wise similarities are
available, then spectral clustering [100] can be applied or even algorithms for identification of
communities in graphs can be implemented [16]. For example, the latter one was used in [81]
to discover clusters of domains that are contacted by similar malware samples.

1.2 Thesis goals and key contributions

The previous section provided a brief overview of use-cases in which machine learning can
be applied in analysis of network traffic. As we suggested, for all the use-cases — no matter
which specific algorithm is used — it is essential to be able to correctly represent the network
communication such that it captures the important patterns of the traffic or the modeled
entities and this information can be utilized by the algorithms. While some solutions might
use representations that are tightly connected with the specific algorithm used on top of
them, it is in general very practical to design the representations independently of the specific
machine learning algorithm. For example, there are many algorithms for clustering of data
and most of them operate only with the notion of similarity of dissimilarity between pairs of
objects.

Hence, given a representation that allows for evaluation of pair-wise similarities or dissim-
ilarities between objects, different out-of-the-box clustering algorithms can be immediately
applied, evaluated and compared to select the one which is the most suitable for the given
scenario. Correspondingly, an anomaly detection algorithm operates with the notion of sim-
ilarity, too — it looks for objects, the outliers, that are dissimilar to the others. And finally,

19

a classifier can be seen as looking for objects that are similar enough to the pattern charac-
teristic for the target class such that it can be classified as belonging to that class.

Building on these observations, the main goal of this thesis is to propose methods for rep-
resentation of communication in computer networks that are easily portable and adjustable
for different use-cases while allowing the algorithms to evaluate similarity or dissimilarity
between two communication samples. Specifically:

• We introduce an underlying model of network communication from which the represen-
tations can be derived in different scenarios and use-cases. The model treats the commu-
nication as identically and independently distributed messages drawn from a probability
distribution which characterizes the given communication.

• We propose two main representation frameworks based on that model and present their
applications — a histogram-based representation which excels in its sparsity and scal-
ability and a representation derived from kernel embedding of probability distributions
which significantly improves performance of algorithms working on top of it.

• We experimentally show on data from real computer networks that the representations
are able to provide solid background for algorithms that leverage pair-wise similarities
between the analyzed objects and improve the results achieved by prior methods.

• In case of each proposed representation, we show that they fulfill the following main
requirements: The are general enough, such that they allow to model and compare sam-
ples of communication from different sources of data, at various levels of abstraction and
are independent of any specific algorithm working on top of them. This is important,
because representations having these properties allow effective development of modular
analytical systems, enable easy comparisons of individual algorithms and can be quickly
deployed when new types of input data or modeled entities appear. Therefore, we exper-
imentally test the representations on different types of network traffic logs and together
with algorithms for anomaly detection, clustering as well as classification.

1.3 Outline of this thesis

With respect to the goals presented above, this thesis is structured as follows:

• In Chapter 2, we review the TCP/IP stack of network communication protocols and
representations of network traffic that can be found in prior art works which employ those
representations as input for different machine learning algorithms. These algorithms have
been deployed in the prior art works for analysis of traffic or detection of malware’s
presence.

• In Chapter 3, we introduce a formal definition of so called message sets — a universal
term introduced here to refer to any snapshot of communication that is about to be
represented and analyzed. The formal definition is derived form a probabilistic view on
the network communication and the representations discussed in ongoing chapters are
all designed with respect to this unifying view. The model views the traffic as composed
of identically and independently distributed messages. Using this assumption which does
not incorporate order of the messages, we are able to model traffic even in case when the
order of messages is random (e.g., servers contacted by multiple users).

• In Chapter 4, we describe all the datasets that are used for experimental evaluations
throughout this work.

• Chapter 5 then describes an approach for representation the traffic, which is based on
joint sparse histograms. We present multiple scenarios in which the histogram represen-
tations are used for anomaly detection or unsupervised analysis of the network traffic
logs. We specifically study an extension of the definition of standard histograms which
decreases the effect of strict quantization and we show that this type of histograms out-
performs the standard ones in the experimental evaluation.

20

• In Chapter 6, we use the histogram representation on large scale data. We design a
method for effective similarity search on large data, demonstrating that the histograms
can be used together with optimized similarity search on large databases of network
traffic representations. Moreover, this chapter presents usage of the histogram approach
specifically for malware detection in encrypted HTTPS (Hypertext Transfer Protocol
Secure) which is considered very challenging.

• Chapter 7 then describes representations that build upon kernel embedding of proba-
bility distributions. The experimental results presented in the chapter show that these
representations can help to achieve significantly better performance of an algorithm work-
ing on top of the representations when compared to the histogram representations at the
cost of increased storing requirements. However, these requirements are still much lower
in the prior art representations that were derived from the kernel embedding of distribu-
tions, too.

• Chapter 8 extends the aim of this work to cover also discrete domains by presenting an
approach to representation of persistent behavior of network entities using a dictionary
of categorical features.

• Finally, Chapter 9 concludes this work, summarizes the key achievements and shows
possible ways of further research based on the results presented in this thesis.

21

2

Domain background and representations used in prior
art

In this chapter, we first review the well-known and established stack of protocols from the
TCP/IP family. In vast majority of current networks, including the Internet, all the commu-
nication is implemented and organized with respect to this layered protocol stack. Therefore,
reviewing it here helps to establish all the terms used in further chapters. Moreover, it helps
to put the reviewed representations into context as they typically work at one or more levels
of that stack and we often refer to these layers.

After reviewing the TCP/IP stack, we move to overview of network traffic representations
used in prior art works. The idea of modeling behavior of network communication has been
identified as useful for different applications and studied in many prior art works. Regarding
the works that aim at detection of malware’s presence, we emphasize the publications that
aim at detection of so called command & control (C&C) channels of malware — the com-
munication channels used by malware creators to coordinate the activity of malware and to
possibly build and remotely maintain whole networks of computers infected with malware
that participate in coordinated illegal activities — so called botnets. Due to the mecha-
nisms used to manage the botnets, the representations of long-term communication channels
play very important role in the process of their detection. We review works from this area
separately in Subsection 2.2.

The second group of related works in which representation of the communication plays
very important role include works whose goal is to identify an application layer protocol
(such as HTTP, SMTP or FTP) or even the concrete communicating application from the
traces of network communication. These solutions are important, for example, for automatic
policy violation detection and for identification of unwanted applications in a network. We
review these works in Subsection 2.3.

2.1 TCP/IP stack

The TCP/IP family of protocols — the TCP/IP stack or TCP/IP model — is a layered
suite of network communication protocols that define communication of peers in a computer
network [133]. The model solves processing of the communication from the level of local
transmission of the data in a local network up to the level of end-to-end communication
between individual user applications that need to interchange data. As already mentioned, the
whole TCP/IP stack is composed of multiple layers, where each layer specifies communication
at one specific level of abstraction. Specifically, the model is composed of the four following
layers [18]:

• Link layer — The lowest layer of the model solves communication within one local
network. This is called the link in the TCP/IP terminology, hence the name of the layer.
The link layer takes data from the upper layers and encapsulates them to so called
frames that are then passed to the hardware implementation of the local network to be

transmitted on the media. A frame is a basic unit of communication at this layer. To
identify who is the transmitter and who is the receiver of the given frame, link layer
addresses are used — for example, the MAC (media access control) addresses in 6-byte
format like:

00 : 0d : 83 : b1 : c0 : 8e

where the first three bytes identify the manufacturer of the given network adapter and
the last three bytes identify the specific instance of the adapter. Besides that, special
MAC addresses exist, e.g. broadcast addresses used to broadcast frames to all peers on
the link.

• Network layer — The network layer (or the IP layer) handles communication between
hosts that are in different local networks. According to the principle used in the entire
design of the TCP/IP stack, it accepts data from the upper layers and encapsulates them
into IP packets that are sent between the networks. To deliver packets to the desired hosts,
the IP layer uses IP addressing scheme, either the IPv4 or IPv6 [108, 36], and so called
packets routing. While the purpose of IP addressing is to uniquely identify each host
within the different networks (e.g., within the Internet), the purpose of packets routing is
to provide rules how to forward each packet on its way through different networks such
that it successfully reaches the target host. The IP addresses are hierarchically organized
numerical identifiers (for example, a 4-byte identifier like 173.38.220.43 in case of IPv4
scheme) of the hosts and the routing process uses this addressing to find way for each
packet thorough a system of multiple connected networks. The routing is handled by
routers, which are devices at the edges of networks that receive and forward the packets
from/to the neighboring networks. The rules that determine where to forward each packet
based on its destination IP address are stored on the routers in a form of routing tables.
The tables are maintained and updated using routing protocols (like RIP, OSPF, BGP
and others) [108, 8].
The IP layer sends each packet independently of other packets and it is up to the upper
layers to verify that all data were successfully transmitted. The motivation is to avoid the
burden of maintaining the packet streams when it is not necessary (if it is really needed,
then it is implemented within the above layers).

• Transport layer — This layer extends the inter-hosts communication to service-to-
service communication. Therefore, this layer distinguishes different services (applications)
running on each host and conveys communication between them. To distinguish individ-
ual services on one host, the transport layer introduces so called ports, which are integer
identifiers that specify the services within each host. The most used protocols at this
layer are the Transmission Control Protocol (TCP) [109] and the User Datagram Pro-
tocol (UDP) [107]. While UDP is a very lightweight protocol which technically provides
really just an extension in the from of port numbers on top the IP layer, TCP is much
more complex protocol used to convey reliable end-to-end streams of packets between two
hosts. As such TCP ensures that all the packets in the stream were received correctly
and handles initialization and termination of each connection. Therefore, it offers a reli-
able tunnel through which two applications running on different hosts can communicate.
Which of these protocols to select for communication depends on what kind of appli-
cation is performing the communication. Fro example, downloading resources for a web
page like images will likely use the TCP protocol because there will a larger amount of
data transferred and both sides of the communication will need to ensure that all packets
transferring individual parts of an image were transferred successfully. On the other hand,
for lightweight services such additional control is not necessary. For example, in case of
the Domain Name System (DNS) which is used to resolve IP address of a host given its
hostname, both the query and the answer will likely fit into one packet. Therefore, no
maintenance of the communication stream is needed and lightweight UDP is used for this
purpose.

24

The port numbers that identify the services are 16-bit unsigned integers. Theoretically,
an arbitrary port can be used for any service. However, to simplify orientation in the
world of inter-networking, the lowest port numbers were assigned and reserved for well-
known services. The list of these assignments is maintained by the Internet Assigned
Numbers Authority (IANA) organization. For example, the web traffic (HTTP protocol)
is expected to use port number 80, the DNS service uses the port number 53 etc.
Because the whole communication streams can be observed at this layer of the TCP/IP
model, many traffic logs that are further processed by analytical systems are generated at
this level. For example, the Cisco NetFlow records or IETF IPFIX [73] provide aggregated
information from this layer. Similarly, many of the further reviewed works utilize logs from
this layer.

• Application layer — This layer contains protocols that specify format of the application
data exchange. Using the protocols provided by the transport layer, the application layer
protocols specify format of messages interchanged between the applications, e.g. between
a user’s web browser and a web server. This layer contains a large variety of protocols. To
provide some examples, the Hyper Text Transfer Protocol (HTTP) [47] is definitely one
of the most prevalent protocols and was originally proposed for transferring data of web
pages. It defines messages used by a client to request a specific resource of a web page,
to provide additional information about its configuration etc. We discuss properties of
this protocol in more detail in Subsection 2.1.1. Among HTTP, the DNS (Domain Name
Service) protocol for resolving IP addresses for devices’ hostnames, the SMTP (Simple
Mail Transfer Protocol) for handling electronic mail (e-mail) or Telnet for remote terminal
are other examples of widespread application protocols.
Similarly as at the transport layer, many types of log records can be created at the ap-
plication layer and then used for security analytics. The advantage is that the logs can
contain application-specific fields that can provide very useful information. For example,
web proxy logs are produced at this layer that provide information about HTTP connec-
tions observed in the network. Logs of this type are used also in this thesis for multiple
experiments presented in further chapters.

The entire TCP/IP model is based on the principle of data encapsulation. At each layer,
a packet (sometimes called a datagram) from an upper layer is treated as data part of the
packet at the current layer. The current layer then appends its header to this data and passes
the whole packet to the lower layer. Each layer’s header contains layer-specific information
about the packet that are used by that layer on the packet’s way through the network (or
networks). This is illustrated in Figure 2.1. Similarly, when a frame is received at the link
layer, it goes through the upper layers and at each layer, the header is removed and the
packet is processed with respect to the information contained in the respective header. For
packets that are only forwarded to other hosts it means that not all the layers need to be
actively involved — the routing is done at the network layer, hence when a device discovers
in the packet’s IP header that its destination is not the current host, it immediately forwards
it according to the rules in its routing table without any processing at the upper layers.

2.1.1 HTTP(S) connections and traffic logging

In this subsection we review in more detail the way how web proxies produce their logs from
the application layer of the TCP/IP stack. The reason why we specifically discuss this logging
here is that datasets used for experimental evaluations in this thesis are mostly created based
on the web proxy logs. Hence, it is important to review the basic properties of the logging
process here.

The Hyper Text Transfer Protocol (HTTP) became a very popular and widespread ap-
plication layer protocol for communication and transferring data over Internet (not only for
web pages for which it was originally designed but also for many other applications). In its
original form, it is based on plain text messages interchanged between a client and a (web)

25

Application data message

Application data message

Application data message

Application data message

TCP/
UDP

header

TCP/
UDP

header
IP

header

TCP/
UDP

header
IP

header
Frame
header

Frame
footer

Application layer

Transport layer

Network layer

Link layer

HW network interface

Fig. 2.1: Encapsulation of data by individual layers in the TCP/IP model. At each layer,
packet from the upper layer is treated as the data part (grey color in the figure) and the
layer-specific header is appended.

server. This allows easy implementations of both the client and the server side as well as
logging of interesting characteristics of the connections at a web proxy.

Web proxies are devices commonly used in corporate environments that act as gateways
between the clients and the web servers. Therefore, they are able to see all the HTTP head-
ers (defined in [47]) of requests and responses and log the information extracted from them.
These logs are then used as input data for various analytical systems. Besides the amounts of
transferred data and timings, a web proxy can log the UserAgent string (a string identifying
the software which issued the request), the exact URL which was contacted or the referrer
string (an URL from which the client was redirected to the current URL). All such infor-
mation can become very helpful in forensic analysis of the data and for discovering security
incidents. Despite that the proxy is potentially able to see the contents of the transferred
data (for example, the contents of a requested web page), such information is not directly
logged due to both capacity and privacy reasons.

However, in case of encrypted HTTPS protocol, which improves users’ privacy by encrypt-
ing the communication between the client and the server using additional TLS (Transport
Layer Security) sub-layer (or SSL - Secure Sockets Layer which is the predecessor of TLS),
the proxy — as the encryption is designed as end to end between the client and the server
— is not able to log the specifics of the HTTP protocol as it only sees the transport layer
data, i.e. characteristics of the TCP tunnel through which the client communicates with the
server. An example of a single datum provided by a web proxy for an HTTPS tunnel is shown
in Table 2.1. When a client in an environment equipped with the proxy wants to contact
a web sever using HTTPS, the client typically uses a CONNECT method to ask the proxy
to arrange the connection for him/her but only at the transport layer of the TCP/IP stack.
This scenario is illustrated in Figure 2.2. The proxy then continues to maintain the TCP
tunnel through which this communication is sent but is not able to distinguish individual
requests and responses. Therefore, it might happen that multiple requests are sent in the
same tunnel which are not directly observable by the proxy.

26

timestamp 1467816731

user j.smith

URL https://www.google.com/

duration 253

requestBytes 120

responseBytes 560

port 443

Table 2.1: Example of fields logged by a web proxy for one HTTPS request-response pair.

Solutions to overcome this limited insight have been proposed. These are mainly based
on ”man-in-the-middle”-like inspection of traffic going through the proxy. If the networking
environment is set to do so, the proxy can intercept the connections by decrypting the
communication, logging the necessary information and encrypting it again. This, however,
requires full trust of the clients in the proxy as this concept goes against the the end-to-
end encryption of the communication between a client and a target server. Additionally, it
introduces new security risks because the proxy becomes a single point of failure in the sense
that if the proxy is compromised by an attacker, privacy of all the users in the network is at
risk no matter that they use HTTPS. Furthermore, the users have very limited capabilities
to detect such compromise. Finally, it is usually not possible to analyze all the encrypted
connections in this manner due to their total volume. Therefore, the proxy has to select only
a limited portion of connections that will be analyzed in this way according to some rule
or heuristic. Because of these limited capabilities for inspection of the HTTPS traffic by a
proxy, it is very challenging to develop methods that would be able to analyze traffic logs for
the encrypted connections.

Fig. 2.2: Illustration of differences between HTTP and encrypted HTTPS communications
going through a web proxy device. While in case of HTTP the proxy is able to see HTTP
headers of individual requests and responses, in case of HTTPS there is only a TCP tunnel
established through which the encrypted communication is sent directly between the client
and the server.

2.2 Representations used for C&C channels detection

Botnets — the networks of machines (called bots) connected together to allow their collab-
oration and co-ordination — have been of high interest in the security research community

27

Fig. 2.3: Capture of the network activity (transferred bytes) of a bot during a period of
57 days. The communication within the C&C channel is marked by green (HTTP) and red
(TCP) color. This figure demonstrated the high regularity of the particular C&C channel
with respect to the transferred bytes in time. This figure was originally published in [53], we
reuse it with permission from the authors of the original work.

because of their computational power and potential. When the infected machines are misused
for a malicious activity like sending spam, denial of service attacks or sensitive information
harvesting and exfiltration, the impact on the target of that malicious activity can be indeed
devastating. Therefore, significant effort has been invested into development of techniques
capable of detection of machines infected with such malware. Despite that the purposes of
botnets can differ, the detection techniques mostly rely on basic properties of the botnets
which is the mechanism used by the coordinator of the botnet (the botmaster) to send in-
structions to the bots and receive data gathered by the bots. The need to manage the bots
implies that there has to be a communication channel between each bot and the botmaster
through which the instructions and data are transferred. These channels are referred to as
the command and control (C&C) channels. As the botmaster typically needs to keep the bots
operable for a longer period of time, the C&C channels often have a long-term nature hence
the communication within a C&C channel can be observed repeatedly in time. Because of the
specialized purpose and the need to coordinate the bots effectively with minimal delays, the
C&C channels often exhibit specific regularities in their behavior. For this reason, the meth-
ods designed for detection of botnets’ communication often employ some representation of
the behavior of communication channels discovered in the network to identify possible C&C
communication. The importance of modeling the long term behavior of the C&C channels
is emphasized in [53] in which the authors deeply studied the behavior of one concrete C&C
channel for a period of 57 days. Based on their observations, the authors created a stateful
model which characterizes the behaviour of the C&C channel. This shows a good chance
that the behavior of a C&C channel can be well captured by a representation which models
its communication patterns in time. This is also illustrated in Figure 2.3 which shows the
behavior of the bot malware studied in [53]. We can see that the C&C communication (green
and red) is very regular (unlike the communication to Google which is marked by purple
color) with relatively low variability of the amounts of bytes transferred in one hour.

During the recent years a large volume of works dealing with the behavioral detection
of C&C channels has been published. Therefore, it is not feasible to review here all the
representations of communication that were proposed in those works. However, a common
trait of the vast majority representations used in the prior art is the assumption that C&C will
exhibit some kind of regularity which is taken into account when the features are designed.

28

Below, we review several selected approaches as a representative sample of the prior art.
Surveys containing references to other detection methods can be found in [46, 7] and [54].

BotMiner

This detection framework was described in [66] and it is a very complex system designed for
detecting C&C channels by correlating communication patterns of network hosts, working at
the level of TCP/UDP flows (e.g., IPFIX or Cisco NetFlows). The entire system is composed
of several stages each of which assesses different aspect of the network hosts’ behavior. One of
these stages is focused on discovering communication channels, called C-flows, that could be
the C&C channels of the same botnet due to their mutual similarity. To identify these groups
of similar C-flows it employs two-step clustering of their vector representations. The vectors
are built in the following way: One C-flow is defined as a set of flows that share the same
source IP address, destination IP address and destination port observed within a predefined
epoch of time, e.g., one day. Therefore, it typically represents the communication channel
between a user in the local network and a server identified by the tuple [destination IP,

port]. The following four features are extracted from the flows within each C-flow:

• Number of flows per hour
• Number of packets per flow
• Average number of bytes per one packet
• Average number of bytes per second in a flow

The frequencies of observed values of each feature are captured by a histogram with 13
bins whose centers are set using 13 quantiles of the global distribution of the feature values
observed in all C-flows. Finally, the numerical vector representing the given C-flow is obtained
by concatenating the histograms for all the features. Therefore, each C-flow is represented
by a 52-dimensional real vector.

BotFinder

The work [134] uses similar definition of the communication channel as BotMiner mentioned
above. As it also works at the level of TCP/UDP flows, it defines the communication chan-
nel as a sequence of flows (chronologically ordered) between a local endpoint (e.g., an IP
address in the local network) and a remote endpoint (e.g., a tuple consisting of the remote
server’s IP address and port). As the authors want to avoid the inspection of the commu-
nication contents, it uses only features based on the sizes and timings of the flows within a
communication channel. Specifically, it uses these features to represent each communication
channel:

• Average inter-arrival time between two consecutive flows
• Average duration of one flow
• Average number of bytes sent in a flow from the local endpoint to the remote endpoint
• Average number of bytes sent in a flow from the remote endpoint to the local endpoint
• FFT value — this feature reflects the empirical observation that C&C channels tend to

be very regular thus there is a good chance that the communication will be periodic. The
value of this feature is computed in the following way: The communication channel is
divided into smaller time windows and the communication within the channel is treated
as a binary signal in which the value 1 represents that there was some communication
observed in the given time window and the value 0 represents that there was no com-
munication present in the time window. Consequently, the power spectral density of the
fast Fourier transformation ([56, 31]) of that signal is computed and the most significant
frequency is used as the feature value.

29

Disclosure

The system called Disclosure described in [14] was designed for identification of C&C servers
from Cisco NetFlow traces. To identify possible C&C servers it represents the behavior of
each server using features extracted from NetFlows going to or from that server. Therefore,
it also represents the behavior of the communication channels to these servers. The features
are designed under similar assumptions as in the previous works hence they are created to
capture regularities in sizes and timings of the NetFlows. The features used to represent the
behavior of the server include:

• Mean and standard deviation of the servers’ flows sizes, separately for the incoming and
outgoing flows

• Autocorrelation ([67]) coefficients computed from the time series containing sizes of in-
coming and outgoing flows’ of the server

• Minimum, maximum, median, and standard deviation of inter-arrival times of flows from
the same client to the server

• Unmatched flow density which is defined as the difference between the number of flows
incoming to the server and the number of flows outgoing from the server. The motivation
for this feature is to enable detection of C&C channels that try to contact servers that
are no longer reachable, which can happen relatively often due to takedown of already
discovered servers

Other works

Furthermore, the work [150] represents behavior of packet streams within 5-minute time
windows as numerical vectors and use them for training classifiers that detect C&C channels
utilizing peer to peer (P2P) architectures of communication. The features introduced in the
paper include average size of packets’ payload (but deep packet inspection is not applied),
variance of the packets’ payload size, number of exchanged packets, number of transmitted
packets per second, size of the first packet in the stream, and average inter-arrival time
between packets.

Among the other remaining works from this area, we will mention here the work [45] which
also uses the features derived from mean values and standard deviations of sent and received
bytes or packets within a communicational channel but accompanies them with the value
of so called persistence of the communication channel. The persistence value is computed
by the algorithm proposed in [59] and it counts the number of sub-windows within a longer
time window in which the communication was active. This reflects the fact that the C&C
channels need to be long term thus the communication within the channels occurs repeatedly
though not necessarily with exact periodicity. This way of measuring persistence motivated
our work presented in Chapter 8 of this thesis. The authors used time windows composed of
24 sub-windows, and each sub-window had length of 10 minutes for this measurement.

2.3 Representations used for applications identification

In this section, we review several selected works that also employ modeling of behavior of
communication in the network but they do not aim exactly at detecting communication be-
longing to malware. Again, the volume of works published in this area is large, therefore
we review just a representative selection here which provides insight into the approaches
adopted in prior art. Dominant topics studied by the works in this category are the prob-
lems of identifying the communicating application or application layer protocol (e.g., SMTP
or FTP) by fingerprinting the communication without content inspection. The problem of
identification of an application communicating over the network without inspecting the com-
munication’s contents became more intensively studied during the last years, because the
amount of encrypted communication is increasing which notably hardens the utilization of

30

traditional approaches based on deep packet inspection. Moreover, the approaches relying
on assumption that the applications will use ports assigned by the standards can easily fail
because there is no guarantee that an unknown application will use the standard port, either
intentionally to mask itself as another application or because some type of tunneling is used.

Reviews of selected prior art works are summarized in the paragraphs below.

The packets’ sizes and inter-arrival times extracted from TCP flows are used to build sta-
tistical fingerprints of application layer protocols in [33]. The flows are defined as streams
of packets that share the same communicating endpoints. The fingerprints are based on
probability density functions (PDFs) of tuples containing the packets’ sizes and inter-arrival
times. The fingerprinting works in the following way: each packet in a flow is represented by
a pair (si, ∆ti) of values characterizing its size si (in bytes) and inter-arrival time ∆ti elapsed
between the given packet and the previous packet in the flow. Each protocol’s fingerprint
is then composed of L estimations of PDFs where the i-th PDF captures joint distribution
of the packets’ sizes and inter-arrival times estimated from the (si, ∆ti) pairs representing
the i-th packets in each flow belonging to the given protocol. The motivation for using L
different probability density functions to represent each protocol is, as stated by the authors
of the paper, the demand to capture also order of the packets in the flows of the fingerprinted
protocol. The authors refer to the proposed algorithm as TunHunter. As this is one of the
methods that we used in experimental comparison further in this thesis, it is also discussed
in Chapter 7.

Similar features to those used in the previously reviewed work [33] are used in [41] to rep-
resent behavior of TCP flows that are also treated as ordered packet streams between two
endpoints. The goal of the work is to use this representation to train a classifier which is able
to identify tunneling of one application over the application layer protocol which was not
originally developed for that application. The authors provide concrete examples of tunneling
different applications over SSH and HTTP protocols. The rationale behind the representation
proposed in their work is that the sizes and timings of packets that transfer some payload are
expected to be determined by the communicating application, especially in the early phase
of the session. One flow f , composed of r packets represented by pairs (si, ∆ti) similarly as
in the previous work, is represented as follows:

f =

(
s1 s2 ... sr

log(∆t1) log(∆t2) ... log(∆tr)

)
For each known application A, these representations are used for estimation of probability
densities p(fi|A) which are the probability distributions of values (si, log(∆ti)) observed
at the i-th positions of packet sequences (i.e., flows) belonging to the application A. The
classifier then uses these probability densities to compute likelihood for an unknown flow
which appears to the system as belonging to the application A (e.g, by using the transport
layer port which is normally assigned to application A) to assess whether the the flow indeed
belongs that application or whether it belongs to another application which tries to mask
itself as A .

The work [145] has the similar goal as the work [33] — to identify application protocol,
namely HTTP(S), AIM, SSH, SMTP and Telnet, from the stream of TCP packets carrying
encrypted data. As the authors assume that the data are encrypted, they use only sizes of
packets and their directions (i.e., from client to server or from server to client) within the

31

stream to represent the protocols’ behavior. They propose two different representations in
the work:

The first representation is based on counting packets of several different types within a
time epoch to create behavioral profiles of the protocols. Based on its size and direction, each
packet is assigned to one of M predefined types and the behavioral profile of the protocol in
time epoch s is created by counting the packets of each type that were observed during the
epoch s in a stream belonging to the given protocol. Therefore, the profile of the protocol for
one time epoch s is a histogram with M bins in which the value of i-th bin represents the
number of packets of type i that were observed during the epoch s. The authors use M = 4
in their experiments (distinguishing packets based on their direction and testing whether
the size of the packet is under 64 bytes or above). Furthermore, in order to represent the
behavior of the protocols in multiple time epochs, the histograms from consecutive epochs
are put in a sequence which is then the final representation of the protocol’s profile within a
longer time period.

The second approach is based on Hidden Markov Models (HMM) [10] and is inspired by
models used for protein sequences alignment in bioinformatics. The modeled packet sequences
are treated as Markov chains with one hidden Markov state for each packet position in the
sequence. The emitted symbols in each hidden state are theM possible packet types described
in the previous paragraph. The proposed HMM uses four hidden states: Server Match and
Client Match whose probability distributions for symbols emission match the structure of
sequences which was learnt from the training sequences of the given protocol (either for
packets traveling from server to client (Server Match) or for packets traveling from client to
server (Client Match)). The remaining two hidden states are called Insert and Delete and
their purpose is to model cases in which one or more packets were inserted into or deleted
from the sequence of packets. The authors use these two states to model retransmissions of
the same packets (Insert) and packets lost in the network (Delete).

Besides the works reviewed in more detail above, many other publications can be found
in the area of network protocols and applications fingerprinting that employ some kind of
representation of behavior of the communication to achieve their goals. For example, in [86],
similar features as mentioned above, namely the distributions of sizes and directions of packets
in encrypted streams, were used for profiling web pages. Very similar approach as in [33] was
used by the same authors in [32] for detection of HTTPS tunnels. Hermann et al. in [71] aims
at fingerprinting of websites from streams of TCP packets captured during loading of web
pages to identify which web page was accessed by encrypted communication. The classifier is
implemented as Naive Bayes with histograms of packets’ sizes as the feature vector. SPID [72]
is a modular framework for identification of application layer protocols (BitTorrent, HTTP,
SSH,...). Depending on the specific source of data, it can use different number of features.
Independently of the particular feature set which is used, observed values of each feature
are modeled separately by a histogram. The classifier is implemented as a nearest prototype
classifier with distance defined by Kullback-Leibler divergence between the known protocol
models and a representation created from the classified sample of communication. These two
last works ([71] and [72]) were also included in our experimental comparison, hence they are
further discussed in Chapter 7.

The work [98] proposes a representation of TCP flows based on aggregate statistics of
transferred packets and bytes in each flow (like means and variances of times and sizes or
selected TCP parameters). This representation is then used by an SVM classifier to identify
communicating application, browser or operating system. A disadvantage of this represen-
tation is that it is not easily extendable to cases when it is needed to represent unordered
sets of packets or flows (e.g., for representing servers instead of individual flows as in our
experiments in Chapter 5).

In [141], a mechanism based on Hidden Markov Models (HMM) is introduced to build
profiles of users behind a NAT (a network address translation device like, for example, a
gateway router of a local network or its part). The representation uses only elementary fea-

32

tures like sizes, packet counts and inter-arrival times of NetFlows to represent users’ behavior.
However, the training of the underlying HMMs is supervised (needs a training set with labels
determining which NetFlow belongs to which user), which makes the representation unusable
for cases with little or no labelled data.

The paper [34] deals with the problem of identifying the application layer protocol when
the port-based identification is not reliable enough. Specifically, the authors focus on distin-
guishing HTTP(S), SMTP, FTP, BitTorrent, msn, netbios-ssn, oms and IMAP4 protocols in
a scenario when all these protocols are using TCP port number 80 and no content inspec-
tion is possible. The authors propose using directions and sizes of the first four packets in
a TCP flow as features. The method then uses a set of heuristic filters and decision trees
to distinguish the protocols. The work [43] considers the similar scenario (identification of
an application protocol from packet streams) with the same features (sizes and directions of
the first n packets) but uses different classification techniques — namely SVMs, Gaussian
Mixture Models (GMMs) and a decision tree as well. Furthermore, it considers the reject
option for cases when an unknown protocol (a protocol which was not in the training data)
is encountered.

In the work [50], the authors aim at identification of Skype traffic within the HTTP traf-
fic, because Skype uses the communication over the port 80 as well to prevent blocking on
firewalls (similarly as many other applications). The work introduces so called HTTP work-
load model using features observed at the level of HTTP request-response pairs, specifically:
request size, response size, inter-arrival time of requests, number of requests per page and
page retrieval time. Using these features, model of normal HTTP behavior is created. Given
a set of new request-response pairs, statistical tests — namely the χ2-test or Kolmogorov-
Smirnov test — are then used to identify whether they come from the normal HTTP traffic
or not (which might indicate the Skype traffic).

The aim of [3] is to identify operating system family and its version by fingerprinting net-
work communication of the classified device. The authors use features from multiple layers of
the TCP/IP model — the IP time-to-live (TTL) value (extracted from headers of IP packets),
list of TCP options extracted from TCP packets, selected extensions extracted from Client
Hello packets used by the TLS protocol (a protocol used for encryption of communication at
the application layer) and User-Agent strings observed in HTTP requests.

Despite the high number of works in this area, the limited information available when no
content inspection is applied cause that the features used for the communication representa-
tions are often very similar among these works. Besides the selected works reviewed above,
this is also the case with works [120], [116], [12] or [83] with the exception that in the latter
work, the representation is enriched with information extracted from payload data which
involves the content inspection.

2.4 Summary of the prior art

There have been many works published in both of the areas of the reviewed publications.
The works mostly differ in the proposed algorithms but regrading the features used for
representations of the communication, the differences are not very significant. This is mainly
caused by the limitation resulting from the fact that we are focused on works that do not use
content inspection for modeling of the communication. As a consequence, the information
about volume of the transferred data and timing of the communication are typically used.
One of the reasons to do so is that this type of information is always available. Concerning the
way how the features are used to build the representations, the differences are slightly more
distinctive. Despite that, there are not many works (if any) that would focus primarily on the
representation of the communication itself. The representations proposed so far are created
based on empirical experience only and to fit the specific algorithm or application scenario.
To best of our knowledge, there has been no work which would focus just on the design of

33

the communication representation in general, and which would try to formalize the concept
of the communication and justify its representation with some theoretical background.

Based on the reviewed works, we can introduce an abstraction of the modeled commu-
nication — we can view it as an (un)ordered sequence of (possibly bidirectional) messages
interchanged between the communicating endpoints during a certain period of time. The
messages form the basic building blocks of the communication and they can be, for example,
single packets, individual flows or any other basic actions, depending on the specific scenario
in which the communication is modeled. A common aspect of all the representations is that
the features used to build them are extracted with respect to these messages. This therefore
forms the basis of the general view on the communication modeling that we present in this
thesis and is formalized in the next chapter.

To conclude this chapter, we present an overview of the representations found in prior art
in Table 2.2 in which we summarize the basic types of messages and features used for building
behavioral representations of network communication in each work, providing references to
particular works that use them.

Example works Messages Features

[33], [41], [32] packets sizes and inter-arrival times

[141] flows sizes, packet counts, inter-arrival times

[145], [86], [34],
packets sizes and directions

[43], [71]

[66] flows volume-based features
(e.g., bytes per second)

[134] flows size, duration, inter-arrival time
FFT value

[14] flows several volume-based and timing-based features
autocorrelation coef.

[45] flows several volume-based and timing-based features,
persistence

[150] packets several volume-based features, inter-arrival time

[50]
HTTP

sizes, inter-arrival times, durations, counts
request-response pairs

[98] packets (aggregated) multiple aggregated statistics (means, variances,...)

Table 2.2: Summary of features and basic messages used for representation of network com-
munication in the reviewed prior art.

34

3

Formal model of network communication

Works that employ various machine learning algorithms for analysis of network traffic data
typically use a proprietary representation, often without deeper theoretical background. This
often implies, that the given representation is not easily transferable to other scenarios and
also not well suitable for changing a classifier, a detector or any other algorithm working
on top of that representation. Alternatively, if the representation is easily portable to other
domains, it is often thanks to its simplicity due to limited information used by the represen-
tation.

However, network communication can be observed and modeled at many levels and from
various sources of input data. Therefore, one of the aims of this thesis is to provide a sys-
tematic view on the representation of the traffic, which is independent of specific scenario
and can, thus, be easily adapted for different use-cases. Examples of different cases when it
is desirable to model the traffic include sequences of packets or datagrams observed at the
transport layer of the TCP/IP stack, NetFlow/IPFIX records, communication of end users
with specific application layer servers (e.g., web servers) or even modeling of behavior of
entire domains on the Internet. We therefore introduce an abstract model of communication
which can be used to model any of the above mentioned cases. The representations described
in further chapters can then be viewed as specific realizations of this abstract model. The
basic idea of the approach presented in the thesis is to treat each communication as a set of
observations which are realizations of a random variable with (mostly) unknown probability
distribution. To describe models of communication independently of the the specific case, we
introduce the term message as a basic unit of communication at the given level and the term
message set which refers to the modeled communication. Below we formalize these entities
of network communication:

Definition 1. Message is a basic unit of communication exchanged between two communi-
cating peers. The exact definition of message is dependent on the level at which the commu-
nication is observed. It can be a single IP-layer or transport layer packet, a transport layer
flow or even a request-response pair in a client-server communication. It is assumed that each
message can be represented as a point

m ∈ Rd

in an d-dimensional Euclidean space and is characterized by a set of d features (attributes).
Attributes of a single message can be its size (e.g., number of bytes transferred in a packet),
duration (if measurable, e.g., duration of a request-response loop in client-server communi-
cation), or time elapsed since the previous message was received (often called inter-arrival
time). However, in general, the attributes can be any features observable and relevant for
messages in the given scenario.

Definition 2. Message set is a set (or, possibly, a multiset1) of messages

R = {m1, . . . ,mn}

sharing the same identifier of the communication. Again, the specific identifier of the message
set is dependent on the level of observation and it can vary from a single flow specified by
the both communicating endpoints to entire server specified by its IP address or hostname.

For example, if messages are defined as individual TCP packets, then a message set can be
defined as one TCP flow of packets that share the same source and destination IP addresses
and ports. Naturally, different message sets might have different cardinalities due to the
different number of observed messages in them.

For purposes of a message set representation, each message m ∈ Rd in a message set R
is treated as a realization of a d-dimensional random variable with a probability distribution
PR ∈ P, where P is the set of all probability distribution on the space of messages Rd. The
underlying assumption is that the message set R is fully determined by its distribution PR
followed by its messages. In practice, PR is never precisely known, but it is observed through
that finite set of messages:

R =
{
mi ∈ Rd | i = 1, ..., n

}
.

Designing of a proper representation and analysis of network communications is therefore
transformed to the problem of proper representation and analysis of a probability distribution
from a finite sample set of observations.

Definitions 1 and 2 are general and representations presented further were derived in-
dependently of any specific features observed on messages or the type of communication
identifier. Thanks to this they can be easily adapted to different scenarios, algorithms work-
ing on top of them and sources of data.

As can be seen from the definitions above, the proposed formal model treats the messages
as independent and identically distributed (i.i.d.) realizations of a random variable. Therefore,
the model ignores order of the messages within a message set. While this might seem limiting,
we are aware of this possible oversimplification and we use this approach for the following
reasons:

1. In certain cases, the order of the messages is irrelevant and we want to cover also these
cases. For example, when we aim at modeling of behavior of entire server which is con-
tacted by many users concurrently and independently in random order, the order will be
likely irrelevant (moreover, it can introduce unwanted artifacts if it is considered).

2. A logging system from which the messages are read might not be always able to guarantee
the correct order of the messages or the underlying communication protocol might not
support it (e.g., UDP protocol).

3. Considering the order of the messages would significantly increase the computational
requirements on the representations which prevent their practical deployment on larger
data.

4. Treating each message set as an i.i.d. sample allows to leverage the large variety of
approaches to modeling of probability distributions that were mostly developed under
the i.i.d. assumption.

1 By a multiset we mean a set in which each value can occur more than once.

36

4

Datasets

In this chapter, we describe all the datasets that are in further chapters used for experimental
evaluations. Network communication can be modeled at different layers and with different
granularity. To reflect this, multiple datasets capturing various types of traffic were created
during the work on this thesis and are summarized here.

For each dataset, we specify the definitions of messages and message sets in that particular
case with respect to the formal model introduced in Chapter 3 and we also motivate the usage
and purpose of each dataset.

4.1 Persistent connections

As we discussed in Section 2.2, persistent network communication (i.e., communication that
appears repeatedly over time) can be found in many instances of malware. For example, the
C&C channel of a bot malware is maintained throughout the life of the bot, and once it is
lost, the control over the bot is lost, too. This condition implies that the channel needs to be
persistent in the sense that the bot receives the commands repeatedly in time. However, bots
are not the only type of malware which produces persistent communication. Malware can
repeatedly check connection to the Internet, perform click fraud, or download advertisements
all of which can manifest as a persistent communication.

On the other hand, legitimate activities of a user produce persistent communication as
well. Repeated visits of a news portal, e-mail account, favorite social network or an application
checking for updates are just few examples. All of these make the communication within
a typical corporate network very heterogeneous and therefore provide good conditions for
malware to hide its activities.

This dataset is composed of benign and malicious persistent connections that use the
HTTP or HTTPS protocol to enable experiments focused on identification of malicious per-
sistent connections in a network.

This datasets was created using web proxy logs from three companies, customers of Cisco
Cognitive Threat Analytics [136], from one day of traffic in the year 2014. These companies
are referred as A, B and C. A message in this dataset is defined as one request-response
log entry logged by a proxy (e.g., a request for a particular HTTP resource). A message
set is defined as one connection which is a set of web request-response pairs that share the
same local and remote endpoints. The endpoints are identified by local user’s username (local
endpoint) and target second level domain (remote endpoint). Finally, a persistent connection
is here defined as a connection in which requests occur repeatedly over a certain time period,
e.g., one day. We used the modification [80] of the original approach [59] (see Chapter 2) to
measure persistency of a connection and to identify the persistent ones.

To represent each web request-response pair (a message), following features are used:

1. bytes sent rup from the client to the server,

2. bytes received rdown by the client from the server,
3. duration: rtd (in milliseconds) of handling the request (i.e., duration of the request-

response loop),
4. inter-arrival time rti (in seconds) elapsed between start of the current and previous

request.

Thus, a request-response pair is reduced to a 4-tuple (rup, rdown, rtd, rti) which represents the
message.

Totally, this dataset contains 3249 persistent connections (1732 in company A, 681 in
company B, and 836 in company C). Because reliable manual labelling of all 3249 persis-
tent connections in the dataset is difficult and subjective to human judgement, we treated
all these persistent connections as legitimate (which is an acceptable assumption as they
all come from monitored corporate networks). Malicious connections produced by malware
were obtained from 14 different malware binaries executed in a malware laboratory. These
binaries included variants of malware labelled by AV engines as ZeroAccess, Kelihos, ZBot,
Asprox, Win32.Injector, Wapomi, Somoto, SS.Worm-generic and Downloader.UFN. From
them, we isolated totally 50 persistent connections. Infection of a user by a malware sample
was simulated during the experiments in which this dataset was involved by adding all the
traffic from the malware sample’s persistent connections to the background data. Because
none of the domains utilized in malicious persistent connections were visited by any user in
the background data, there was no risk of collision.

This dataset is used in experimental evaluation in Chapter 5.

4.2 Web servers

Many contemporary services have rather complex structure, as they are composed of several
sub-services fulfilling specific tasks. The knowledge of this structure can simplify services’
monitoring and improve security countermeasures against their misuses. However, the struc-
ture is not typically publicly known and its analysis by hand often includes reverse engineering
of the communication protocol [38], which is time consuming and frequently too costly. More-
over, the rise of popularity of the encrypted HTTPS protocol, through which the data are
often transferred, makes deep packet inspections difficult and also rules-out any port-based
identifications.

The above described situation motivated the creation of this dataset which contains
network communication belonging to web servers handling two widely used services, namely
the Dropbox file storage and Windows Live platform. The purpose of this dataset is to
enable experiments that aim at revealing structure of a service from its network behavior by
assigning each server to the appropriate functional part of a service.

Similarly as the dataset of persistent connections described in Section 4.1, this dataset
was created based on web proxy logs, too. Therefore, a message in this dataset is again one
request-response log entry represented by the same four features (bytes sent, bytes received,
duration and inter-arrival time). However, as in this case the services use the HTTPS protocol
for communication, one request-response log entry might actually represent the entire HTTPS
tunnel (see Section 2.1.1). A message set here is identified by a server’s hostname. Hence,
one message set aggregates all requests that were contacting the same server.

For the Dropbox service, the dataset captures network traffic of 188 servers under the
dropbox.com domain from 5 days of traffic coming from a larger corporate network with
approximately 10000 active users in the network and contains 17000 requests-response log
entries per server on average. The data were collected during the year 2013. 95% of servers
fell into 4 categories out of 11 identified in [38], namely: clientX.dropbox.com (meta data
management), dl-clientX.dropbox.com (client storage), dl-debugX.dropbox.com (excep-
tions back-traces) and notifyX.dropbox.com (notifications about changes), where the letter
X stands for one or more digits in the hostname.

38

For the Windows Live service, the dataset contains traffic belonging to 310 servers revealed
under the live.com second level domain. The source data were the same as for the Dropbox
service. However, unlike in the case of Dropbox, there exists no published ground truth for
this service which would assign each server to its functional category.

This dataset was also used in experiments in Chapter 5.

4.3 Large scale HTTPS

In Chapter 2 (Section 2.1.1) we showed that information available for HTTPS connections
— because of the encryption — is very limited in the logs produced by web proxies. This,
collaterally with the trend of increasing the total portion of web traffic which is using HTTPS,
makes the identification of HTTPS connections related to malicious activity a very pressing
research problem. This motivated formation of this dataset which is created purely from log
entries of HTTPS tunnels.

One message in this dataset is defined as one log entry containing information about
one HTTPS tunnel (log entries of unencrypted HTTP requests were ignored for purpose of
building this dataset). Representation of one message is similar as in the datasets described
above in Sections 4.1 and 4.2. However, we emphasize that the encrypted tunnels may be in
fact composed of multiple request-response pairs for which the volumetric information was
aggregated by the proxy when the log entry was created. The features that represent one
message are therefore:

1. bytes sent through the tunnel from a client’s machine to a target server,
2. bytes received through the tunnel by a client’s machine from a server,
3. duration of the tunnel, i.e., length of the time interval for which the tunnel was active,
4. inter-arrival time (in seconds) elapsed between two consecutive requests for estab-

lishing a tunnel from a client’t machine to the same server. The inter-arrival times are
computed separately for each server visited by the given client, independently of other
servers. For example, if a client is repeatedly contacting google.com and yahoo.com

domains, then the 4-tuples representing tunnels to google.com will contain values of
inter-arrival time between the consecutive tunnels established to google.com, indepen-
dently of tunnels established to yahoo.com (that might be interleaved with them).

One message set in this dataset spans all messages originating from the same client within
a 5-minute window. Therefore, it contains the entire HTTPS communication of one client
in the given time window. The motivation for modeling of the whole client machine is to
capture the entire context in the message set. Malware infections might not use only one
isolated connection to perform all their activities. Instead, the malware can, for example,
test availability of Internet connection, get information about the timezone or geolocation
of the infected user, then it may start trying to contact one or more of its command and
control servers. These all might be weak indicators of the malware’s presence that influence
the overall profile of the infected client’s behavior and can be contained in a message set.

In order to enable experiments on large scale data, this dataset was created from logs
reported by web proxies during the period of one day from 500 corporate networks that were
using Cisco’s Cognitive Threat Analytics [136] cloud solution. Besides the features of the
HTTPS tunnels, the proxies were able to log also SHA hash of the process’ binary that initi-
ated the given HTTPS connection. These hashes were used to annotate the dataset. Specifi-
cally, a process binary was considered malicious if its corresponding process was marked as
malware by at least 20 anti-virus engines used by the Virustotal1 service. Subsequently, these
labels were propagated to individual messages (the HTTPS tunnels) — a message was la-
belled as malicious if it originated from a binary which was labelled as malicious. Otherwise,

1 virustotal.com

39

a message was considered legitimate. Finally, a whole message set was labelled as malicious
if it contained at least one malicious message.

In total, the dataset contains 145 822 799 messages to 475 605 unique servers which result
in 8 642 368 unique message sets. 44 213 message sets were labelled as malicious. The total
volume of data transferred by the messages was approximately 10 TB.

This dataset is utilized in Chapter 6 for the experiments on large scale similarity search.

4.4 TCP flows

This dataset contains logs of flows of TCP packets collected during one work day in February
2015 in a corporate network of a company with 550 active users with computers running
mostly Windows or OSX (macOS) operating systems. To access internal network and the
Internet, these users used the AnyConnect VPN client [29] modified such that it exported
names of the processes running on users’ machines that generated the network communication
(this feature is not present in the standard AnyConnect VPN client and the users were
informed about the extension). The modified client collected following information about
each flow of TCP packets: name of the process (and its hash) which generated the flow, local
user IP address, remote server IP address, remote server port, number of bytes and packets
sent to and received from the server, and duration of the particular flow. Additionally, since
the AnyConnect client is able to see also packets at the transport layer within each flow,
it was possible to log the sequence of their sizes and inter-arrival times for each flow. An
example of collected data for a single TCP flow (in JSON format as provided by the logging
software) is shown in Figure 4.1.

{"flow" :

{"an" : "APSDaemon.exe",

"t start" : 1424178205, "t end" : 1424178207,

"sa" : "192.168.2.105" , "sp" : 59453,

"da" : "80.239.137.24", "dp" : 80,

"user" : "john.smith",

"packets" : [

{"dir" : ">", "b" : 138, "ipt" : 0}
{"dir" : ">", "b" : 115, "ipt" : 50}
,{"dir" : "<", "b" : 268, "ipt" : 0}
,{"dir" : "<", "b" : 1336, "ipt" : 248}
] }}

Fig. 4.1: Data of a single TCP flow collected by the modified AnyConnect client (in JSON
format), including the application label (the ”an” field).

The data collected by the AnyConnect client thus allowed to define the message either:

• as a TCP packet at the transport layer in which case a single TCP flow corresponds to
one message set. Tthis dataset is further called Any-P.

• or as an entire TCP flow in which case one message set corresponds to all TCP flows
interchanged between the client and the server endpoint, with identifier of a message set
defined as the triplet [client IP, server IP, server port], this dataset is further
called Any-F.

Differences in both definitions are outlined in Figure 4.2. Each message at the transport
layer (in the Any-P dataset) is represented by its size (in number of bytes), direction and
time elapsed from its predecessor (i.e., the inter-arrival time). Similarly as in work [71], the
direction of each message is encoded by the sign of its size and inter-arrival time. In the

40

Any-F dataset, each message is represented by the number of bytes and packets sent to and
received from the server, and by the duration of the flow.

Since the modified AnyConnect Client included names of clients’ processes initiating the
connection, this information was used as ground-truth labels for message sets of this dataset.
Both datasets contain message sets belonging to 69 applications, with 198 786 flows in total.
The number of flows per application varies from 550 to 9800. A complete list of application
names can be found in Appendix.

Fig. 4.2: Two definitions of messages in the TCP flows dataset. Any-P dataset defines a
message as one packet at the transport layer (solid and dashed rectangles), while a message
set is defined as one TCP flow of packets. Any-F dataset defines a message as one TCP flow
and a message set as a set of all TCP flows interchanged between a client and a server.

This dataset is used for experiments in Chapter 7, where it is also used for comparison
of the representations proposed in this thesis and to prior art methods, because due to data
retention policies, the older datasets Persistent connections and Web servers were not avail-
able to us at the time of designing the representation described in Chapter 7. Additionally,
this dataset allowed to perform the comparison at different levels — at the level of TCP
packets (Any-P) and at the level of TCP flows (Any-F).

4.5 Hostnames

The motivation for creating this dataset was to enable experiments that test identification
of operating systems running on network devices based on observing only web servers that
the devices contact.

One message in this dataset is a pair of contacted web server’s hostname and a timestamp
indicating when the given contact was observed. A message set is defined as communication
belonging to one network device (e.g., a PC, laptop or cell phone) in the entire time period
from which the dataset was created. Each message set is labelled by the operating system
family that the given device was running. The dataset contains devices running three main
operating system families that are most prevalent across corporate networks which are: Apple
devices (running iOS/macOS/OSX operating systems), Android devices (i.e., mostly mobile
devices running Android-based operating systems) and Windows devices (running Microsoft
Windows-based operating systems).

The dataset was created from web proxy logs coming from three larger companies and
covers approximately 28 hours of traffic (collected in February 2019). The prevalence of
individual operating system families in these companies is summarized in Table 4.1.

The dataset is used for the testing the representation proposed in Chapter 8

41

Android Apple Windows

Company 1 2394 2431 30986
Company 2 490 2710 23459
Company 3 1477 3043 24713

Table 4.1: Prevalence (numbers of unique devices) of the three operating system families in
companies from the Hostnames dataset.

42

5

Histogram representations

Histograms are a widely adopted method to capture distribution of an observed random
variable in many domains. Let’s have an univariate real random variable f with unknown
probability distribution observed through a set of realizations R = {f1, ..., fr} ⊆ R and so
called histogram bins b1, ..., bm ∈ R. A histogram capturing its distribution can be viewed as
an m-dimensional real vector h ∈ Rm in which the i-th element hi represents the number of
elements from R that are closest to the i-th bin bi of the histogram among all bins b1, ..., bm.
The set of histogram’s bins is determined beforehand. A common practice is that the bins
are centered equidistantly to cover the domain of the variable f . Nevertheless, equidistant
bins are not always necessary and, in general, bins’ centers b1, ..., bm can be placed arbitrarily
to cover the interesting regions of the target domain to balance accuracy of the produced
representations and sizes (number of elements) of the histograms ([142, 123]). However, in
the domain of network communication representation, we use the equidistant bins because
we do not assume that anything is known about the modeled distribution beforehand (in
practical deployments the histogram will be often built on-line as new observations arrive).

To illustrate the histogram representation by an example, let us consider that 5 bins are
centered equidistantly at values 1, 2, ... ,5 and we collected 6 observations of the variable f
such that

R = {1.3, 2.3, 2.4, 1.8, 3.2, 2.1}.

Then, the histogram h will be a 5-dimensional vector with following values:

h = (1, 4, 1, 0, 0)

Here we can see that most of the observations fell into the bin b2 which is centered at value 2.
Specifically, the observations 2.3, 2.4, 1.8 and 2.1 contributed to that bin. Therefore, the value
of the element h2 in the histogram h is 4. In case of the other bins, the principle is analogous.

A histogram h can be L1-normalized to capture relative frequencies. This is done by
multiplying all its elements by 1

|R| . The normalization assures that the sum of all histogram’s

elements is 1 and the relative frequency at the i-th element of h can be interpreted as an
estimation of probability that the next realization of f will be close to the center of bin bi.
Naturally, histograms can be extended to capture distributions of multivariate d-dimensional
random variables with bins b1, ..., bm ∈ Rd.

5.1 Soft histograms

Commonly used approach to build a histogram, which we call hard histogram here to distin-
guish it from the studied modification, is to use each observation to update only the one bin
into which the given sample falls (i.e., the closest bin). For example, in a one-dimensional
case, the i-th bin with bounds [bi, bi+1) is updated by 1 irrespectively if the sample is close

0 1 2 2.6 3 4 5
0

0.4

0.6

1

Fig. 5.1: Example of updating a one-dimensional soft histogram with value 2.6. It contributes
with 0.4 to the bin centered in 2 and with 0.6 to the bin centered in 3. Filters that influence
the contribution are highlighted.

to bi or bi+1, as can be seen in the example above (consider values 1.8 and 2.4 that both
contribute to the bin b2 centered at 2). This strict quantization makes values of histogram
bins relatively sensitive to small variations and noise in the data. In the domains of image
and signal processing [48, 112], this sensitivity is removed by using so-called soft histograms,
where each sample updates two (in the one-dimensional case) closest bins by values pro-
portional to their distance. In the simplest form, the sample’s contribution to two nearest
bins depends linearly on distance to them, which corresponds to the triangular filters used
in signal processing [112]. When a soft histogram is updated by a new observed value u, the
two nearest bins with centers in buc and buc+ 1 are updated by 1− (u− buc) and u− buc,
respectively. The situation is depicted in Figure 5.1, where a one-dimensional histogram is
updated by a sample u = 2.6. Its two nearest bins centered in buc = 2 and buc + 1 = 3 are
updated by 1− (u− buc) = 0.4 and u− buc = 0.6, respectively.

To capture joint frequencies of multiple quantities, the soft histogram is naturally ex-
tended to multiple dimensions. Without loss of generality, it is assumed that a d-dimensional
soft histogram has equidistant bins centered at integer lattice points bi ∈ {0, ..., n}d, where
n acts as an upper bound in each dimension on values to be inserted to the histogram. Up-
dating a soft histogram with a tuple (u1, u2, . . . , ud) then means first calculating indices li
and contributions vi to ”left” bins as

li = buic, vi = 1− (ui − li),

and then updating all bins centered in vertices

{(l1 + i1, . . . , ld + id)|(i1, . . . , id) ∈ {0, 1}d}

with values
d∏
j=1

v
1−ij
j (1− vj)ij .

The histogram construction is finalized by mapping the histogram to an (n+1)d-dimensional
column vector in order to simplify further processing. This way the soft histograms are able
to estimate the underlying probability density in more accurate way than the commonly used
hard histograms.

Additionally, the term frequency - inverse document frequency (TF-IDF) weighting is
applied on the histograms, which puts more emphasis on less frequent non-zero items. It

multiplies each bin bi in all histograms by log
(
N+1
Nbi

+1

)
, where N is the total number of

44

histograms and Nbi is the number of histograms with non-zero value of the bin bi. TF-IDF
weighting is very common in fields utilizing sparse representations, such as text documents
analysis [78] or computer vision [27].

An advantage of the joint histogram is that it captures dependencies between the quan-
tities. Its disadvantage is that in order to capture the dependencies accurately, the number
of bins can be high. However, we argue that the total dimension of the histogram is not a
problem because as shown below in the experiments, the histogram will be typically very
sparse. Moreover, we note that, for example, the field of text document analysis [119] works
with high dimensional yet sparse data as well.

Histograms are therefore a straightforward way how to represent the message sets based on
messages as individual observations according to the definitions in Chapter 3. The histograms
provide a method how to represent each message set as a real vector that can be consumed
by other algorithms and compared to each other using similarity functions applicable to
histograms. In further text, we refer to the histogram representations of message sets as
fingerprints.

5.2 Experimental evaluation

In the following experiments, we present two different scenarios in which we verify that the
soft histogram representations improve the results of traffic analysis. First, we show that the
soft histograms improve performance of an outlier detector focused on detection of malicious
persistent connections. Second, we demonstrate that the soft histograms are able to improve
unsupervised discovery of a web service’s structure. Furthermore, in both experiments, we
show that the histogram-based representations are very sparse and can be thus effectively
stored.

5.2.1 Detection of malicious persistent connections

In this experiment, we study outlier detection run on top of the histogram representations
and show that the soft histograms are able to improve its results. For this experiment, we
use the dataset called Persistent connections described in Section 4.1.

Representations of persistent connections — their fingerprints — are created by using
tuples representing all messages belonging to the given connection to build a joint histogram.
In order to narrow the range of modeled values and to equalize variances on low and high
values, all values in tuples are transformed to logarithmic scale before calculating the joint
histogram. Based on values observed in the data, we set n = 10 to be sufficient implying the
total number of bins to be 114 = 14641. The fingerprint of a connection is therefore a joint
histogram of the four quantities estimated from all tuples from a given persistent connection.

We additionally use a limit Ku to filter out persistent connections to remote endpoints
that were contacted by more than Ku local users. The reason is that these domains are
expected to be very popular services and therefore not serving malicious purposes (e.g.,
Google). For such popular services, it would be possible to build a special model to identify
outliers within them, which can be an indication of service misuse. Based on the total volume
of traffic in the dataset, we set the limit Ku = 10.

Before diving into the outlier detection, we verify that the soft histogram representations
are indeed sparse. This is illustrated in Figure 5.2 which shows the cumulative distribution
of non-zero bins in histograms of malicious and background persistent connections from the
dataset used. By background connections we mean all connections coming from the three
companies in the dataset. The fingerprints of malicious connections were computed from all
50 persistent connections in the dataset that belong to malware. We can see that more than
80% of fingerprints have less than 250 non-zero bins out of 14641. This confirms that the
soft histogram representations are very sparse and can be effectively stored. The curve for

45

fingerprints of malware is even steeper which means that the number of non-zero bins in
histograms is lower and the connections are more regular. This confirms that malware has
more regular behavior as the histogram fingerprints have lower entropy.

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Nr. of non-zero bins

C
D

F

Background
Malware

Fig. 5.2: Cumulative distribution functions (CDF) of number of non-zero bins in soft his-
tograms of background (i.e., assumed to be mostly benign) and malicious persistent connec-
tions.

Outlier detection

In this part of the experiment, we compare the performance of the traditional hard histograms
and the proposed soft histograms in outlier detection setup which is employed to identify the
malicious persistent connections.

The histogram representations of persistent connections are numerical vectors of fixed
length on which most of outlier detection algorithms can be readily applied [1]. Since we
can expect that malware’s fingerprints form small clusters (because multiple connections
of malware can have very similar properties), we decided to use primarily the OutRank [94]
algorithm, because it was designed to be robust against cases when outliers form small clusters
(for details, see Appendix). The formation of small clusters can be caused, for example, by
multiple infections of the same malware family with similar behavioral patterns or by a
single malware instance maintaining several persistent connections with the same purpose
(to improve robustness of the channel).

Together with the OutRank algorithm, we test the histogram fingerprints also with the k-
nearest neighbors (k-NN) based detector [126], which is an asymptotically consistent density
level estimator. Therefore, the k-NN based detector would provide good performance if each
of the malicious connections would be an isolated outlier very dissimilar to others.

The core idea behind the OutRank algorithm is similar to that behind the famous PageR-
ank [104]. The outlier score assigned to each object in the dataset is based on random walks
in a similarity graph which is built to represent the dataset. Nodes of the similarity graph
are the individual objects and weighted edges between them represent their pair-wise simi-
larities. By converting the weights of the edges into transition probabilities, i.e. probabilities
of moving from one node to an adjacent one during a random walk in the graph, a transition

46

matrix for the entire graph is obtained. Using this transition probability matrix, its dominant
eigenvector is computed which determines the outlier scores for individual nodes, i.e. for the
objects in the dataset. The rationale behind this approach is that if we consider all possible
paths in the similarity graph, nodes that are outliers (connected with the majority of the
remaining nodes via paths with low transition probabilities) will be visited only rarely by the
random walks. This is valid even if the outlying nodes form small internally connected clus-
ters, because these clusters will be still separated from the majority by the low probability
paths.

In case of the k-NN detector, the outlier score for each object is assigned based on the
average distance to its k nearest objects in the dataset. Therefore, it directly aims to identify
objects that lay in a region with very low density of other objects. Therefore, it exactly stems
on the very basic definition of an outlier which states that ”an outlier is an observation that
deviates so much from other observations as to arouse suspicion that it was generated by
a different mechanism” [70]. However, this approach is sensitive to cases when the outliers
might form small clusters, because in such cases the average distance to the nearest objects
is significantly influenced.

The main difference in the OutRank and the k-NN approaches is therefore in the global
versus the local view of the detectors. While OutRank assigns outlier scores using the global
properties of the dataset, the k-NN paradigm considers the local properties induced by those
k nearest neighbors of the object in question (which, on the other hand, might be convenient
in certain cases as we will see in further chapters of this thesis).

The choice of distance measure between two histograms which is used by the outlier
detection algorithms was inspired by measuring similarity of vectorized text documents, be-
cause in analogy to them, histogram fingerprints are sparse. We therefore use cosine distance
defined as

d(h1, h2) = 1− hT1 h2
||h1|| · ||h2||

,

where h1, h2 are histogram fingerprints of two persistent connections that are being compared.
The quality of detection was measured by the area under the ROC (receiver operat-

ing characteristic) curve (AUC) [44], which is a common measure in cases when detection
threshold can not be determined beforehand. AUC was calculated for every combination of
background data set (i.e., for each of the three companies A, B and C) and each malware
sample (out of 14), which lead to 3×14 evaluations of every detector. Average AUCs over all
14 malware samples for combinations of outlier detection algorithm and histogram types are
presented in Table 5.1. We can see that in all cases detectors employing representations based
on soft histograms performed better irrespectively to the used outlier detection algorithm.
This confirms that the soft histograms indeed contribute to improved quality of the detection
independently of the outlier detection method.

hard histograms soft histograms
Data set k-NN OutRank k-NN OutRank

A 0.855 0.892 0.862 0.942
B 0.889 0.896 0.912 0.935
C 0.871 0.867 0.880 0.933

Table 5.1: Average AUC values (computed over the 14 malware samples) for all combinations
of hard and soft histograms, and OutRank and k-NN outlier detection algorithms. Higher is
better with one being maximum, best results on each company are bold-faced.

To get further insight into the detections we analyzed 10 persistent connections with
the highest outlier scores assigned by the best detector from each data set. Deeper analysis
of these most anomalous connections revealed 3 persistent connections in data set A, 1

47

connection in data set B and 2 connections in data set C that were provably related to
malicious activity. The most frequently observed type of possibly legitimate but anomalous
connections were those trying to reach a web server which was either unavailable (returning
response code 50X) or the requested resource could not be accessed.

We can conclude that the soft histogram representations of messages sets are a suitable
way how to capture behavioral patterns in persistent connections using very lightweight
features. The results achieved in outlier detection provides solid basis for using this approach
in intrusion detection systems. The performance measured by means of the AUC is sufficient
for including this detector in an ensemble of detection methods within a more complex
system [63].

5.2.2 Servers clustering

In this experiment, we study the improvement gained from using the soft histogram in a
clustering algorithm applied to identify groups of similarly behaving servers. The dataset used
for this experiment is the Web servers dataset described in Section 4.2. We use separately
both services that are contained in the dataset — the Dropbox service for which the ground
truth is available, and the Windows Live platform.

Because the messages in the Web servers dataset are 4-tuples of the same type as in
the Persistent connections dataset used above, the representation of servers (their histogram
fingerprints) are built in the same way as fingerprints of persistent connections.

First, we again verify that the soft histogram fingerprints are sparse even in the case
of servers’ representations. This is illustrated in Figure 5.3 which shows the cumulative
distribution function of the number of non-zero bins in fingerprints of all servers in the
dataset. We can see that fingerprints of more than 95% servers have less than 5% of non-
zero bins. Besides demonstrating the sparsity of the representation, it also verifies that the
behavior of servers is very regular. This provides good dispositions for identification of servers’
functionality.

0 100
(0.68%)

200
(1.37%)

300
(2.05%)

400
(2.73%)

500
(3.42%)

600
(4.10%)

700
(4.78%)

0

0.2

0.4

0.6

0.8

1

Number of non-zero items

C
D

F

Fig. 5.3: Cumulative distribution function (CDF) of the number of non-zero bins in finger-
prints of all servers in the Web servers dataset. The CDF plot demonstrates that fingerprints
are typically very sparse — the total number of bins in a fingerprint was set to 114 = 14641,
thus more than 95% of fingerprints have less than 5% of non-zero bins.

48

Clustering of servers’ fingerprints in order to discover the functional groups follows the
usual clustering steps. First, similarities between all fingerprint pairs are calculated. Then,
optionally τs smallest similarities are set to zero to accentuate true clusters, and finally the
chosen clustering algorithm is applied. The steps are detailed below.

Similarity measure

While in the outlier detection we employed cosine similarity to compare two fingerprints, in
this experiment we evaluated two similarity measures between fingerprints h1 and h2. sc is
the previously used cosine similarity while se is based on Euclidean L2 distance scaled to
[0, 1] such that both similarity functions have the same range. The scaling leverages the fact
that the upper-bound on L2 distance between h1 and h2 is

√
2, because L1 norms of the

normalized fingerprints are 1 and their items are non-negative (for purpose of computing
the similarity measures, the fingerprints are L1-normalized). These similarities are formally
defined as

sc(h1, h2) =
hT1 h2

||h1||2 · ||h2||2
(5.1)

se(h1, h2) =

√
2− ||h1 − h2||2√

2
(5.2)

Discarding low similarities

τs percent of the lowest similarities are set to zero making the respective servers completely
dissimilar. Although this filtering might decrease noise and accentuate the true clusters, it
can also discard too much information rendering the true clusters unrecognizable. The impact
of this filtering on the accuracy of clustering is investigated further as part of this experiment.

Clustering algorithm

In general, any clustering algorithm accepting either feature vectors from Rd or a similarity
matrix of the clustered objects can be used ([146, 100]). The clustering algorithm primarily
chosen for this experiment is the Louvain method [16] designed for discovering communities
in graphs.

The nodes of the graph on which the Louvain clustering is applied represent servers’
fingerprints while the similarity measures sc or se determine weights of the edges between the
nodes. The filtering described in the previous paragraph therefore has an effect of removing
edges with low weights. An advantage of the Louvain method is the optimization of the
number of clusters, which is useful for applications when the desired number of clusters is
not known beforehand. While the representation of the data by a similarity graph might
seem counterintuitive, it proved to be very helpful in a similar task of discovering groups of
malicious servers in [81]. Additionally, it allows for easy visualizations of the data even in
case of non-metric spaces.

The evaluation of the clustering is primarily done on servers belonging to the Dropbox
service, because the ground truth exists for these servers. Additionally, we show the results of
clustering of servers that belong to the Windows Live platform to illustrate that the method
can be used for analysis on various types of services.

Dropbox analysis

For purposes of the evaluation, we refer to the four groups of Dropbox servers that are in
the dataset labeled as different functional parts as ground truth groups.

The quality of produced clustering solutions was measured by the Adjusted Rand Index
(ARI) ([114, 74]) measure, which is a general measure taking value in the range [−1,+1]
evaluating agreement of two clustering solutions (higher value means better match of the

49

solutions). In our case, we always compared outcome of an evaluated clustering method to
the ground truth groups.

The experimental results of comparison between the hard histograms and the soft his-
tograms are shown in Table 5.2. The table compares the histograms by means of ARI of
the produced clustering solutions in different settings specified by the similarity function,
filtering level τs and a clustering algorithm. Besides the Louvian clustering algorithm we
include the spectral clustering [100] which is closely related to the k-means algorithm but is
applicable also in non-metric spaces.

The results show superiority of the soft histograms over the traditional hard ones for any
combination of similarity measure, filtering level and clustering algorithm.

H
is

to
g
ra

m
s

C
lu

st
er

in
g

Filtering level τs
Similarity 0% 20% 50% 70%

so
ft L
o
u
v
.

Cosine 0.947 0.947 0.947 0.443
Euclidean 0.723 0.732 0.732 0.948

S
p

ec
t. Cosine 0.887 0.853 0.860 0.788

Euclidean 0.793 0.582 0.751 0.746

h
a
rd L
o
u
v
.

Cosine 0.740 0.945 0.441 0.310
Euclidean 0.722 0.723 0.723 0.933

S
p

ec
t. Cosine 0.849 0.822 0.138 0.035

Euclidean 0.786 0.489 0.653 0.699

Table 5.2: Values of Adjusted Rand Index (ARI) comparing agreement between the ground
truth clustering of the Dropbox servers and the clustering produced by the evaluated combi-
nations of histogram type, clustering algorithm, similarity measure and filtering level (higher
is better, minimum is -1, maximum is 1).

To illustrate how well the obtained clusters represent functional parts of Dropbox, Fig-
ure 5.4 shows empirical estimates of marginal probability distributions of all four modeled
quantities. The distributions were estimated from soft histogram fingerprints in four largest
clusters obtained by the Louvain clustering with cosine similarity and τs = 0%. Titles of the
groups correspond to the most dominant part of Dropbox service in the cluster.

We can see that requests to notifyX servers have zero uploaded bytes, nearly constant
number of downloaded bytes, they are periodic and of the same (relatively long) duration.
This well corresponds with the notify servers informing clients about changes by implement-
ing a push mechanism. Contrary to that, connections to dl-clientX are aperiodic with rela-
tively large amounts of uploaded and downloaded bytes. This is caused by the fact that these
servers are used to upload and download content to/from the storage. Servers in dl-debugX

are used to send debug data and requests to them have long durations like requests to
notifyX, but unlike those they have non-zero uploaded bytes and are aperiodic. The higher
volume of transmitted bytes can be caused by the long duration of requests. Finally, requests
to clientX have the shortest durations among all groups and in comparison to requests to
dl-debugX and dl-clientX the amount of transferred bytes is smaller. According to [38],
these servers handle meta-data (but the exact protocol is not discussed in the work).

To verify quality of the clusters, Table 5.3 shows clusters’ purities and recalls. Purity of a
cluster is defined as the ratio of dominant ground truth labels within the cluster to its size.
Similarly, the recall is defined as the ratio of the dominant ground truth labels within the

50

0 5 10
0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
il
it

y

A – clientX

0 5 10
0

0.2

0.4

0.6

0.8

1

B – dl-clientX

0 5 10
0

0.2

0.4

0.6

0.8

1

Feature values

P
ro

b
a
b
il
it

y

C – dl-debugX

0 5 10
0

0.2

0.4

0.6

0.8

1

Feature values

D – notifyX

Bytes sent Bytes received Duration Inter-arrival time

Fig. 5.4: Marginal probability distributions of the four observed features, estimated from
fingerprints of Dropbox servers found in the four largest clusters.

Cluster Ground truth group Purity Recall

A clientX 1.00 1.00
B dl-clientX 0.86 1.00
C dl-debugX 1.00 1.00
D notifyX 1.00 1.00

Table 5.3: Dominant types of Dropbox servers in the four largest clusters.

cluster to the total number of those labels in the entire dataset. We can see that all clusters
are pure and servers with the same functionality are in one cluster (with the only exception
of cluster B (dl-clientX) which contains some servers from the remaining 5% of servers
providing other Dropbox functionality).

A similarity graph (using the cosine similarity function) of Dropbox servers is visualized in
Figure 5.5 with the help of Gephi [9] tool and the Force Atlas 2 drawing algorithm [76]. This
algorithm attracts graph nodes with high similarities towards each other while separating
pairs of nodes with low similarities. The graph supports conclusions drawn above — despite
that marginal distributions of the features for the dl-debugX (blue) and dl-clientX (red)
servers are more similar, nodes representing servers from the same ground truth groups are
attracted together because of high similarities of servers inside both of the ground truth

51

groups. Therefore, the clustering algorithm using the soft histograms is able to separate
these servers correctly.

Fig. 5.5: Cosine similarity graph for the Dropbox servers. Servers from the four ground truth
groups are highlighted by different colors: clientX servers are purple, dl-clientX servers
are red, dl-debugX are blue, and notifyX servers are green. The remaining 5% of servers
are grey.

Fig. 5.6: Cosine similarity graph for the servers belonging to Windows Live platform. Five
largest clusters discovered by the Louvain method are highlighted with color, the red cluster
and the blue cluster contain servers probably involved in mail-related services while the green
cluster and the purple cluster contain servers that handle instant messaging. The yellow
cluster gathers servers related to storage services. The remaining nodes (6%) are grey.

52

Windows Live analysis

The ability to distinguish servers hosting different applications within the Windows Live
service is demonstrated in Figure 5.6. The figure shows a cosine similarity graph of Windows
Live servers from the Web servers dataset. Again, the graph was visualized with help of the
Force Atlas 2 algorithm and five largest clusters (containing 94% of all servers) discovered
by the Louvain method are highlighted with different colors (red, blue, green, purple, and
yellow). For these servers, we did not have the exact ground truth like in the case of Dropbox,
thus, the detailed analysis of the method’s performance could not be performed. However, as
shown in Figure 5.6, the servers form several well-shaped clusters which suggests that these
clusters likely gather servers running different applications. Indeed, the analysis of hostnames
belonging to servers in the five largest clusters revealed that 76% of servers in the blue and
in the red cluster have a word ”mail” in their hostnames. This might be an evidence that
these clusters likely represent servers engaged in mail services of the Windows Live platform.
On the other hand, 99% of servers in the green cluster and in the purple cluster contain a
word ”messenger” in their hostnames. This points out that these two clusters gather servers
handling the instant messaging service (Windows Live Messenger). Similarly, 67% of servers
in the yellow cluster have a ”storage” substring in their hostnames. Thus, we can assume
that the servers from the yellow cluster are involved in storing users’ data.

5.3 Chapter summary

In this chapter, we studied a method for representation of network communication which is
based on empirical histograms. The proposed representation uses so called soft histograms,
which apply triangular filters to distribute contribution of each observation among multiple
bins. This helps to suppress noise in the observations and, as proved by the experiments,
brings significant improvement in quality of results of algorithms working on top of this
representation.

In the experimental evaluation we showed that the histogram representations can be
successfully used in tasks of unsupervised analysis of network communication — the outlier
detection and clustering of servers to identify groups that provide the same type of service.
In both cases the soft histograms showed that they are able to capture important behavioral
patterns in the traffic at different levels — either at the level of individual connections or at
the level of entire servers — and they provide significantly better performance compared to
traditional hard histograms.

53

6

Large scale processing of histograms

The last chapter demonstrated that fingerprints based on soft histograms are successfully
used in analysis of network communication. Thanks to their sparsity, these representations
are very economic and can be efficiently processed. Hence, computational requirements are
not a primary concern. However, the volume of network communication has been constantly
rising [132], and analytical systems have to face scalability issues even in case of such economic
representations. Furthermore, data from multiple networks are often aggregated in order to
extend the knowledgebase of malware [81, 79] which again increases the amount of data that
needs to be processed by one system.

This chapter is therefore devoted to construction of a pipeline which enables analysis of
soft histogram fingerprints on large volumes of data. Specifically, we are focused on designing
an effective similarity search method which is able to perform high number of k nearest
neighbors search queries on a large database of histogram fingerprints. This is motivated by
the properties of data visualized in Figure 6.1. The figure shows a t-SNE [137] similarity plot
of fingerprints representing message sets from the Large scale HTTPS dataset described in
Chapter 4 (Section 4.3).

As we can see in the figure, malicious fingerprints tend to be grouped together in many
smaller clusters. Therefore, using a large database of annotated fingerprints which can be
searched for fingerprints that are most similar to an unknown one provides a good way
how to analyze new fingerprints. This is in fact similar to the situation which we faced in
outlier detection in Chapter 5. While in the outlier detection setup this formation of clusters
decreased performance of the detector based on k-NN search, it can be leveraged here to use
the k-NN queries on known data to describe the unknown.

In a straightforward implementation, the k-NN search is computationally very demand-
ing because it computes pair-wise distances among all objects in the database. However, if
we leverage properties of metric spaces to organize the data, unnecessary comparisons of
objects can be avoided. If we additionally allow approximate search results (which does not
guarantee that exactly the nearest neighbors will be always returned), the k-NN search can
be successfully implemented in a MapReduce programming model allowing its deployment
on large databases of fingerprints.

The structure of this chapter is as follows: We introduce the problem of similarity search
on the histogram data (Section 6.1). Then, in Section 6.2 we propose a method for effective
k-NN similarity search and discuss the optimizations used. In Section 6.3, we present a
parallelized implementation of the similarity search that uses the MapReduce programming
model. Finally, we perform experimental evaluation of the proposed method on the dataset
Large scale HTTPS in Section 6.4, showing that the large scale similarity search can be used
to detect malware in HTTPS traffic.

Fig. 6.1: Visualization of similarities of soft histogram representations of message sets in the
Large scale HTTPS dataset by the t-SNE algorithm. Red dots represent message sets that
were labeled as malicious while green dots represent benign message sets.

6.1 Similarity search on histograms

Before describing the actual method of the similarity search, we formally define the problem
that is being solved.

We consider the following scenario: Given two sets, a reference set S (which contains an-
notated fingerprints) and a query set Q (which contains unknown fingerprints), of histogram
fingerprints that are in a form of vectors from a d-dimensional space Rd, the task is to find
for each fingerprint q ∈ Q the k nearest fingerprints from the reference set S with respect to
a given distance function δ : Rd × Rd → R.

The k-NN query result set is then defined for k ∈ N, q ∈ Q and the reference set S as:

kNN(q) = {X ⊂ S; |X| = k ∧ ∀x ∈ X,∀y ∈ S\X : δ(q, x) ≤ δ(q, y)}.

The goal is therefore to perform k-NN queries for all objects in the query set Q and return
their results. We consider batch processing of all queries from Q. This operation is called
similarity join of the sets S and Q in literature from the field of database research.

Results of the k-NN queries can be utilized in multiple ways — either they can be passed
directly to an analyst for further analysis or information about their elements can be ag-
gregated in order to directly provide a decision about the query object in which case the
similarity search is equivalent to a k-NN classifier or detector.

56

6.2 Efficient k-NN search using metric indexing

To perform the k-NN search fast and effectively on large volume of data, a database in-
dex [110] is needed that provides either exact or approximate k-NN search over a large set of
high-dimensional sparse fingerprints of the communication. During last decades, there have
been investigated many approaches to search efficiently in huge collections of (sparse) high-
dimensional vectors. The approaches use various techniques to reduce the negative effect of
high dimensionality of the data. For example, the dimension reduction techniques that try to
find new low-dimensional representations of the original vectors while preserving distances
or the locality sensitive hashing [58] that tries to map close vectors to the same buckets with
high probability.

Within the vast portfolio of database techniques implementing the two principles, we
focus on metric indexing (specifically the M-Index [102]) which represents a metric variant
of the locality sensitive hashing [103]. M-Index is a suitable basis for the task as it represents
efficient yet extensible solution for fast similarity searches.

6.2.1 Basic principles of metric indexing

First, we formally introduce a metric space on top of which metric indexing operates.
A metric space (U, δ) consists of a domain U (in our case, the domain is a space of all

possible fingerprints, i.e. U ⊆ Rd) and a distance function δ which satisfies the metric axioms
of identity, non-negativity, symmetry, and triangle inequality, defined ∀x, y, z ∈ U as:

δ(x, y) = 0 ⇔ x = y identity

δ(x, y) ≥ 0 non-negativity

δ(x, y) = δ(y, x) symmetry

δ(x, y) + δ(y, z) ≥ δ(x, z) triangle inequality

Metric indexes ([19, 28, 24, 148, 23, 102]) organize database objects from the reference
set S by grouping them based on their distances, with the aim of minimizing not only tradi-
tional database cost like input/output operations but also the number of distance function
evaluations. The fundamental trick of metric indexes lies in using lower bounds that can be
used to filter out irrelevant objects from the search cheaply and, thus, avoid unnecessary
comparisons of objects.

To illustrate the lower bound principle, let us assume that in order to create the index
structure, so called pivot objects P = {pi} were selected from the set S and all distances
δ(pi, o), pi ∈ P, o ∈ S were precomputed and are kept in the memory as a part of the index
structure. Let us further assume that we are performing a k-NN search for a query object q
for which the distances δ(pi, q), pi ∈ P are known, too. Now, for a certain object o ∈ S and a
pivot p ∈ P, we would like to decide whether the object o lies within a query ball centered at
q with radius r (i.e., to know whether δ(q, o) < r) without explicitly computing the distance
δ(q, o). Thanks to the triangle inequality, we can safely decide that the object o lies outside
the query ball if the triangular lower bound δT(q, o) = |δ(p, q) − δ(p, o)| is greater than the
query ball radius r without need to know the value δ(q, o). This lower bounding principle is
illustrated in Figure 6.2.

Therefore, an important feature of a metric index is that it keeps pivot–objects distances
and uses them to filter out objects during the search queries.

6.2.2 Metric index for k-NN search on histograms

There have been developed many metric indexes varying in the application purpose, however,
for purpose of the similarity search on histogram fingerprints, we introduce a simple main-
memory variant of the state-of-the-art structure M-Index [102] that fits the requirements of

57

q p

o

d (q,o)T

query
ball

r

Fig. 6.2: Illustration of the lowerbounding principle.

the problem (high-dimensional but sparse data, relatively cheap distance computation due
to their sparsity, many queries processed). Inspired by the approaches used in [19], [102]
and [28], we assume a set of pivots P = {pi|i = 1, ..., n} is selected from the reference set S,
each defining a partition in the given metric space. The remaining objects are partitioned
such that each object is assigned to the partition of its nearest pivot. In such a way we
obtain the Voronoi partitioning [5] (complete and disjoint), see Figure 6.3. The partitions
are therefore further called Voronoi cells C1, ...,Cn. Moreover, for each partition we store the
distance ri between its pivot and the furthest object within the partition (so called partition
radius):

ri = δ(pi, o), o ∈ Ci,∀oj ∈ Ci : δ(pi, oj) ≤ δ(pi, o).

Radius r2 of the Voronoi cell C2 is marked by the dotted circle in Figure 6.3. Moreover,
for each cell we also store the distances from the objects within that cell to its pivot pi.
Therefore, we keep the values

δ(pi, oj), oj ∈ Ci
These distances are marked by the dashed lines in Figure 6.3 for the cell C2.

Fig. 6.3: Illustration of the Voronoi partitioning (here in 2D space) and the index built on
top of it. The dotted lines mark boundaries between the Voronoi cells.

58

The resulting index corresponds to one level GNAT [19] or M-index [102]. The structure
stores radius of each cell and distances from cell objects to corresponding pivots similarly as
utilized by the M-Tree [28] (where they are called distances to parent). Note that also the
M-Index considers the distances from cell objects to cells’ pivots to construct a key value
that is stored in the B-Tree [11] structure and used later for efficient searching.

In the following subsection, we describe how the index structure introduced here is utilized
for optimization of k-NN search queries.

6.2.3 k-NN search optimization

Given a k-NN query for a query object q ∈ Q and k ∈ N, the search progresses in the following
way: First, Voronoi cell with the pivot which is the nearest to q is searched, then the cell
with the second nearest pivot is searched, and so on. During the search, the nearest k objects
to q found in the cells searched so far are maintained as the k-NN candidates. The search
ends when all cells have been searched and the actual k-NN candidates are returned as the
query result set. In order to speedup the search, the following optimizations that leverage
the index structure are applied:

1. When a cell Ci is about to be searched, its radius ri is checked whether the cell ball
centered in pi with radius ri overlaps with the query ball or not. The query ball is
formed by a ball centered in q with radius equal to the distance to actual k-th nearest
neighbor candidate. If the query ball and the partition ball do not overlap, the entire cell
Ci can skipped.

2. Whenever an object o from an actual cell is to be checked whether it is contained within
the actual query ball or not, prior to computing the distance δ(q, o), the triangular lower
bound δT(q, o) is computed (as described in Section 6.2.1). If the lower bound is greater
than the actual query radius, the object can not become a k-NN candidate, hence the
object is filtered without computing the distance δ(q, o).

3. It is not always necessary to perform the exact k-NN search that could lead to exhaustive
search in many of the partitions. In order to speed-up the search even more, the k-NN
search can be stopped after a predefined number of objects were inspected (e.g., 4% of
all objects in the database). In this case, the exact results of the k-NN query can not be
guaranteed. Therefore, this approach is called approximate k-NN search or approximate
similarity join.

6.3 MapReduce implementation

In this section, we describe parallelized implementation of the similarity search on his-
togram fingerprints which was described in the previous section. The implementation uses
the MapReduce programming model to achieve parallel processing of the data. We describe
building of the histograms from input tuples for both the reference set S and the query set
Q (Section 6.3.2) which is followed by the (approximate) similarity join of these sets in order
to obtain the k-NN query results for all histograms from the query set (Section 6.3.3).

6.3.1 MapReduce programming model

Before we dive into details of the implementation, we present a brief overview of the MapRe-
duce programming model which is used for the implementation.

The MapReduce model [35] was designed for massive parallelization to allow processing of
large data on a cluster of computers which are called nodes. The cluster contains one master
node which manages the computation and multiple worker nodes that realize the distributed
computations. The master node accepts the request for a computation and distributes it over
the worker nodes. The entire computation is composed of two phases — the Map phase and

59

the Reduce phase. In the Map phase, a user defined map function is applied on the input data
that are stored in a form of (key,value) pairs and transforms each pair a to new (key2,value2)
pair. When the map function is performed on all input pairs, the Map phase finishes and the
the Reduce phase is started. In the Reduce phase, a user defined reduce function is applied
which aggregates the (key2,value2) pairs that share the same key to produce the final result.
Worker nodes that realize the Map phase are called mappers, while worker nodes that realize
the Reduce phase are called reducers.

An important feature of the MapReduce model is that the map function is applied in
parallel on all input pairs while the reduce function is applied in parallel on all groups
that share the same key. Thanks to this, high degree of parallelization of the processing
can be achieved. On the other hand, the user needs to take this into account when the data
format and the map and reduce functions are designed in order to use the MapReduce model
effectively.

6.3.2 Histograms building implementation

This MapReduce program performs transformation of raw input data — the tuples that
contain the observed feature values — to soft histogram representations as described in
Chapter 5. We assume that the input tuples are stored in a tabular format in the distributed
files system of the MapReduce cluster and can be directly read by the mappers. Each row
in the input table contains one tuple of observations and an identifier, which specifies the
histogram to which the given tuple should contribute.

In the Map phase, (key; value) pairs for further processing are generated. Each pair is
generated from one row of the input table. The key part is composed of the identifier which
specifies which histogram will be updated. The value part then contains the values from the
given tuple (the observations) which are used to update the histogram.

The Reduce phase then aggregates the tuples with the same key into one histogram, using
the soft histogram update procedure described in Chapter 5. As we can expect that most of
histogram’s bins will be empty (equal to zero), we use the sparse format for storing the created
histograms. More specifically, each soft histogram is stored using sparse representation as a set
of pairs (binID : value), where pairs with value equal to zero are omitted. The reduce phase
outputs the key which remains the same (in order to keep the identifiers of the produced
histograms) and the created soft histogram. A scheme of the entire histograms building
program is shown in Figure 6.4.

We note that building of histograms is a very suitable task for the MapReduce program-
ming model because the individual updates of one histogram are independent. Hence, the
order in which they are applied to build the histogram does not influence the result and the
parallel processing can be effectively used.

6.3.3 Similarity search implementation

The second MapReduce program is dedicated to performing the similarity join of the sets S
and Q that were created by the Histograms building program.

A MapReduce implementation of exact similarity join has been introduced in [90], where
the authors propose a method employing the Voronoi partitioning and metric filtering rules
for the index structure and replication of the Voronoi cells to all reducers (where the k-NN
queries are computed) for parallelized exact similarity join processing. The replication of
Voronoi cells among reducers is needed to ensure the exact results of k-NN searches, because
in order to achieve parallel processing of the queries, the query set is distributed over the
reducers and a k-NN query for an object q ∈ Q is computed using only the data that were
assigned to the same reducer as the query object q.

Despite that the authors propose several filtering rules to avoid total replication of all
Voronoi cells to all reducers, good efficiency results of exact similarity joins were reported only

60

Map

Key Value

Histogram identifier Feature 1 Feature 2 Feature 3 … Feature N

ID1 5.61 4.89 8.52 … 1.23

ID2 8.79 9.60 7.35 … 2.67

ID1 5.61 4.89 8.52 … 2.34

ID3 7.55 8.80 11.58 … 1.08

… … … … … …

Reduce

Key Value

Histogram
identifier

Soft histogram
(sparse format)

ID1 0;266:0.018495;267:0.051387;…

ID2 0;266:0.000005;267:0.000275;…

ID3 1;519:0.006944;520:0.047396;…

… …

Reduce outputMap output

Input table

Fig. 6.4: A scheme of the histograms building program.

for data with different properties than of the soft histograms used here. Whereas in their
paper [90] the authors used low-dimensional real vectors, the soft histograms investigated
here are sparse but potentially high-dimensional vectors, with possibly imbalanced sparsity
settings across the whole dataset. This prevents direct application of the method [90] in our
scenario unless the MapReduce cluster would be really large and composed of worker nodes
with high computational power. Therefore, we design here a method for the parallelized
similarity join on soft histograms which uses approximate k-NN searches within each reducer
in order to limit the replications of data and, thus, the computational requirements on each
reducer.

The proposed method can be viewed as composed of three main steps:

1. Preprocessing — the index structure based on Voronoi partitioning is prepared and ob-
jects from the reference set S and query set Q are assigned to their respective Voronoi
cells.

2. Replication — Voronoi cells are distributed to reducers. Furthermore, reference objects
from each Voronoi cell are replicated to limited number of other reducers.

3. Approximate similarity search — k-NN similarity searches are performed on the reducers
and the results are returned.

These steps are in more detail described below and also illustrated in Figure 6.5.

Preprocessing

In this step, pivots P = {pi|pi ∈ S, i = 1, ..., n} from the reference set S are first selected.
Since we assume large sets of data, random pivots selection is employed as a sufficient and not
computationally demanding method. The exact number of pivots can be determined based on
the volume of data and parameters of the MapReduce cluster. Given the set of selected pivots
P, the partitioning of objects from both sets Q and S to Voronoi cells C1, ...,Cn according to
the selected pivots is performed (as described in Section 6.2.2).

When the partitioning is computed, the Voronoi cells are ready to be distributed to
reducers. However, the number of pivots and, thus, the number of cells will be typically larger
than the number reducers. Therefore, multiple cells need to be assigned to each reducer. To
specify which cell will be assigned to which reducer, groups of cells G1, ...,GN are created

61

(where N is equal to the number of reducers that will be used for running the similarity
searches), where the group Gj contains Voronoi cells that will be assigned to the j-th reducer.
In order to balance the workload of individual reducers, the cells are put into groups by using a
modification of the geometrical grouping algorithm used in [90]. While the original algorithm
builds the groups such that the total counts of objects assigned to individual reducers are
balanced, we introduce an algorithm which balances the total sizes of objects on the reducers.
The motivation for this approach is the observation that even though that the histogram
fingerprints are generally sparse, the absolute number of non-zero bins can differ. Therefore,
the grouping algorithm aims at balancing the smaller and larger histograms on each reducer.
Pseudocode of this grouping algorithm is presented in the listing of Algorithm 1.

Algorithm 1 Geometric grouping by size

1: N = number of reducers
2: pk = max

pj∈P

∑
pi∈P δ(pi, pj) //find the most distant pivot from others

3: P = P\{pk} //all pivots except the initial one
4: U = {pk} //used pivots
5: G1 = {Ck} //first group initialized
6: G2, ...,GN = ∅
7: for (i = 2; i ≤ N ; i++) do //initialize the remaining groups
8: pk = max

pj∈P

∑
pi∈U δ(pi, pj)

9: P = P\{pk}; U = U ∪ {pk}; Gi = {Ck}
10: end
11: while P 6= ∅ do
12: Gi = group with the smallest total size of objects
13: pk = min

pj∈P

∑
pi∈Gi

δ(pi, pj) //the nearest pivot to all pivots of cells in Gi
14: P = P\{pk}; Gi = Gi ∪ {Ck}
15: end
16: return G1, ...,GN

Replication

After preprocessing, the groups of Voronoi cells are sent to reducers. Specifically, all the
Voronoi cells from a group Gj are assigned to the j-th reducer. Therefore, after this assignment
of cells to reducers, each reducer contains a subset of both the reference set and the query set.
Additionally, replication of reference objects from each cell to selected reducers is performed.
The scale of replication is determined by the replication threshold tr which is used in the
following rule:

Given a Voronoi cell Ci, its pivot pi and a reducer j (Ci 6∈ Gj), reference objects from the
cell Ci are replicated to reducer j if:

∃Ck ∈ Gj :
∑
p′∈P

[δ(pi, p
′) ≤ δ(pi, pk)] < tr

Therefore, reference objects from Ci are replicated to the j-th reducer only if there is another
cell on the j-th reducer, whose pivot is within the tr nearest pivots to pi.

Approximate similarity search

In this step, the k-NN search queries are performed on individual reducers. For a query
object q ∈ Q assigned to the j-th reducer, the reference objects belonging to Voronoi cells
from the group Gj and reference objects from cells that were replicated to the j-th reducer are
searched. The search is performed in the similar way as described in Sectioin 6.2.3, including
the optimizations in order to make the search more effective, namely the cells filtering rule

62

and the triangular lower bounds filtering. When the search finishes, the query result set for
the given query object is sent to output. This procedure is performed for all query objects
assigned to the given reducer. We note that the results are approximate, because only part
of the original reference set S is searched on each reducer.

Implementation remarks

The three steps described above are in practice implemented as two MapReduce programs.
The first program performs the preprocessing step, while the second program performs the
replication step and the similarity search step. More specifically, the preprocessing is per-
formed in Map phase of the first program (the Reduce phase is empty), while the replication
step is performed in Map phase of the second program, followed by the similarity search step
implemented in Reduce phase of the second program. For a pseudocode of the implementa-
tion, we refer to Appendix.

Partitioning Grouping

Distribution to reducers

Reducers

Limited replication

Fig. 6.5: Illustration of the MapReduce implementation of the approximate similarity search
described in Section 6.3.3.

63

6.4 Experimental evaluation

In this section, we experimentally evaluate the proposed MapReduce solution for processing
of histogram fingerprints. First, we demonstrate that the histogram fingerprints can be effi-
ciently built using the MapReduce programming model. Then, we move to evaluation of the
proposed approximate k-NN search method in a role malware detector. We show that even
a small scale replication of reference objects is enough to significantly improve the detection
performance which proves that the approximate similarity search is a promising way of im-
proving scalability of a similarity search in the network security domain. Moreover, we show
that a k-NN detector which uses the proposed method for approximate search outperforms a
prior-art detector which was directly designed to optimize the FP-50 error rate [106] which is
used to measure the performance of the detectors. Finally, we show that the proposed group-
ing strategy used to distribute data among the reducers is able to achieve more effective
processing than the original method proposed in [90].

For all the evaluations below, we used the dataset Large scale HTTPS (Chapter 4, Sec-
tion 4.3), because it is large enough to enable testing of the parallelized processing of message
sets’ representations on a cluster. Moreover, it presents a very challenging problem of malware
detection when only logs of encrypted HTTPS communication are used. All the experiments
presented here employ the soft histogram representations of message sets from the dataset.
As the format of individual messages is similar to those used in experiments of Chapter 5
(they are 4-tuples of similar features), we used similar settings to build the soft histogram
fingerprints of the message sets. Specifically, logarithmic transformation is applied on all fea-
tures of the messages and we used equidistant bins centered at points {0, 1, ..., 10} in each
dimension. Therefore, the total number of bins in a joint soft histogram fingerprint was 114

similarly as in the previous chapter.
All the experiments were run on a Hadoop cluster with 100 worker nodes, each with 8GB

RAM and 2 core CPU (Intel(R) Xeon(R) running at 2.20GHz).

6.4.1 Scalability of histograms building

The aim of the this experiment was to measure the gain of using the MapReduce framework
for building the histogram fingerprints of message sets. We measured the computational time
needed for building the fingerprints from the input data for different numbers of utilized
mappers and reducers. All the 8 642 368 message sets composed of 145 822 799 messages
were used for this experiment.

The process of building the fingerprints was described in Section 6.3.2. For the Map
phase, the input data were split into blocks and each block was processed by one mapper.
The number of reducers was set directly. The computational time needed for building the
fingerprints depending on the number of mappers and reducers used is shown in Figure 6.6.

The graph demonstrates that moving the fingerprints building to the MapReduce en-
vironment is a promising and scalable way to process large volumes of data as even the
relatively low number of reducers can significantly contribute to the decrease of time needed
for the computation. Specifically, by using 80 mappers and 16 reducers, we were able to
build representations of more than 8 million message sets in less than 90 seconds. While the
number of mappers is not that important, even a low number of reducers significantly speeds
up the computation. This is because the main part of the work is done on the reducers —
the aggregations of message tuples into histograms, while the mappers only emit the tuples
with the appropriate histogram identifier.

6.4.2 Classification

In this experiment, the proposed framework for approximate similarity search is evaluated in
a role of k-NN classifier and compared to a reference prior art classifier. Moreover, we study

64

1 2 4 8 16
50

100

150

200

250

300

350

400

Number of reducers

Ti
m

e
(s

ec
on

ds
)

80 mappers
40 mappers
20 mappers
5 mappers

Fig. 6.6: Time needed for building the soft histogram fingerprints of message sets from the
Large scale HTTPS dataset depending on the number of mappers and reducers used.

the dependence of the classifier’s performance on the scale of replication of reference objects
which is determined by the replication threshold tr (see Section 6.3.3). We show that even a
small replication is sufficient to significantly improve the classification results.

In order to evaluate the similarity search implementation as a classifier, the reference set
S is treated as a training set for the classifier and the query set Q is treated as a testing
set. Results in a query result set kNN(q) for a query object q ∈ Q are aggregated using the
inverse distance weighting to obtain continuous classification score as the classifier’s output.
The classification score is defined as:

s(q) =

∑
x∈kNN(q)

1
δ(q,x) [x ∈ S+]∑

x∈kNN(q)

1
δ(q,x)

,

where S+ ⊆ S is a set of positive objects (i.e., malicious message sets in this particular
experiment) from the training set S and [x ∈ S+] is the Iverson bracket notation, which has
value 1, if the proposition inside the brackets is true, and 0 otherwise.

For evaluation of the classifier’s performance, we use the FP-50 error measure proposed
in [106] specifically for detectors in security domains which measures the false-positive rate
at the level of 50% recall of an evaluated classifier. Besides introducing the FP-50 measure,
the work [106] also proposes a classifier called Exponential Chebyshev Minimizer (ECM),
which aims at minimizing the FP-50 error in its training process (for details, see Appendix).
Therefore, we compare this reference ECM classifier to the k-NN classifier based on the
similarity search framework proposed here.

Comparison of the k-NN classifier and the ECM classifier is summarized in Table 6.1.
The table contains results averaged over 5 cycles, where in each cycle 1 000 000 message sets
where randomly sampled from the dataset (out of 8 642 368) and used to create the testing
set Q on which the classifiers were evaluated, while the remaining message sets (7 642 368)
were used to form the training set S. In each cycle, the parameter k of the k-NN classifier was
selected from a set of possible values {5, 10, 15, 20, 25} by cross-validation on the training set.
The parameter tr (replication threshold) was in each case fixed at the given value as shown

65

in Table 6.1. The k-NN search used Euclidean L2 distance as the distance function δ and he
number of pivots used for building the Voronoi partitioning was always fixed at 2000.

Classifier FP-50 error (%)

k-NN (tr = 1) 6.790
k-NN (tr = 2) 0.739
k-NN (tr = 5) 0.655
ECM 6.434

Table 6.1: Comparison of the k-NN and ECM classifiers, including three different values of
the replication threshold tr.

As we can see in Table 6.1, even for the very limited scale of replication (tr = 2), the
k-NN classifier is able to significantly outperform the ECM classifier which was designed to
directly minimize the FP-50 error. On the other hand, the results show that at least minimal
replication is needed to obtain good results (tr = 1 actually means that no replication is
performed at all).

Further study of the influence of replication on similarity search results is presented in
Figures 6.7 and 6.8. The graphs confirm that even the small-scale replication significantly
boosts the classifier’s results, especially for higher values of k. Specifically, for k = 20 the
classification error drops rapidly from more than 6% that was achieved without replication
(tr = 1) to less than 1% achieved with the minimal replication (tr = 2) but then improves
only slowly with further increases of the replication threshold. This confirms that only the
nearest cells are important for the classification and that the proposed approximate similarity
search performed only within the nearest cells of a query object is able to provide reliable
results.

In case of small k, the influence of replication is not that significant because all the nearest
neighbors are often found in the same Voronoi cell as the query object. Hence, the replicated
cells do not influence the results at all and the higher FP-50 error is caused mainly by the
insufficient number of nearest neighbors that are taken into account, not by the approximate
similarity search.

6.4.3 Grouping strategy evaluation

This experiment was devoted to comparison of the grouping strategy of Voronoi cells proposed
in Section 6.3.3 (Algorithm 1), which we further call grouping by size, to the original grouping
strategy used by the state of the art implementation of the exact similarity search in [90],
which we further call grouping by count. The experiment used similar settings as the previous
one (Section 6.4.2) — namely the Large scale HTTPS dataset was used, number of pivots in
Voronoi partitioning was set to 2000 and k was fixed at 20. Sizes of the sets S and Q were
always 7 642 368 and 1 000 000 objects, respectively. Varied was the replication threshold
and the grouping strategy.

Results of this comparison are shown in Table 6.2. For each combination of the replication
threshold and the grouping strategy, we primarily measured the computational time needed
to classify the set Q using the approximate similarity join of the sets S and Q and the
FP-50 error achieved. Additionally, we measured the total number of reference objects in
the database (which increases due to replication) and also the total number of pair-wise
comparisons computed.

Foremost, the results prove that the proposed grouping by size strategy is able improve
the computational time independently of the replication threshold used. Moreover, we can
observe improvements in the FP-50 error as well. The computational time improvements are
significant — from approximately 30% up to nearly 60% in case of tr = 2. This improvement

66

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

18

20

k

FP
-5

0
er

ro
r

(%
)

tr = 1
tr = 5

tr = 10

Fig. 6.7: FP-50 error for different values of k.

1 2 3 5 7 10
0

2

4

6

8

10

12

14

16

18

20

Replication threshold tr

FP
-5

0
er

ro
r

(%
)

k = 5
k = 10
k = 20

Fig. 6.8: FP-50 error for different values of the replication threshold tr.

was achieved even though that the total number of reference objects and the total number of
comparisons increased. This can be attributed to better distribution of the data among the
reducers in case of the grouping by size strategy, which is exactly its goal. Moreover, in case
of the grouping by count strategy, the computation was not able to finish at all for tr = 10
(marked by dashes in Table 6.2).

67

Grouping tr Time (s) Ref. objects Comparisons FP-50 (%)

by size

1 1227 7.6 · 106 7.0 · 109 6.855
2 1841 11.1 · 106 12.0 · 109 0.746
3 2586 14.1 · 106 17.3 · 109 0.731
5 4017 18.7 · 106 26.9 · 109 0.668
7 7425 23.1 · 106 37.1 · 109 0.548
10 14828 28.9 · 106 50.7 · 109 0.551

by count

1 2333 7.6 · 106 7.0 · 109 8.043
2 4417 11.0 · 106 12.4 · 109 0.756
3 5554 14.0 · 106 17.6 · 109 0.700
5 8165 18.4 · 106 26.9 · 109 0.672
7 10972 22.5 · 106 36.4 · 109 0.620
10 – – – –

Table 6.2: Comparison of the grouping strategies for different replication thresholds.

6.5 Chapter summary

This chapter proposed a framework for approximate similarity searches on large datasets
of histogram fingerprints of network communication, enabling usage of the k-NN detector
or classifier on such massive data. To achieve scalability, the framework is implemented
using the MapReduce programming model which enables effective building of the histogram
fingerprints and parallel processing of similarity search on top of them.

A method which uses approximate k-NN search was proposed to make the similarity
searches on large datasets computationally feasible. The method uses parallelized similarity
search processed on reducers in the MapReduce environment with limited replication of data
among the reducers. The experimental evaluation proved that even a very limited replication
of data is sufficient for significant improvement of the k-NN classification and outperforms
a prior art classifier. Furthermore, improvement of the strategy used for distribution of data
on the reducers was proposed which considerably decreases the computational time of the
similarity search when compared to the strategy proposed in prior art.

A dataset created purely from logs of encrypted HTTPS traffic was used for evaluation
of the classifier with promising results, showing that the k-NN similarity search is able to
detect users infected with malware that communicates over HTTPS.

68

7

Representations based on kernel embedding of
probability distributions

In previous chapters, we studied representations of message sets at different levels by means
of joint sparse histograms. They proved to be effective for modeling communication with
small number of features observed on the messages such that it is possible to construct the
joint histogram. By their nature, the histograms fall into methods that explicitly estimate the
probability density in order to enable comparison of the distributions. However, this explicit
estimation is not always necessary. As we discussed in previous parts of this thesis, the
main purpose of the representations is to enable reliable comparison of the distributions. To
identify how similar or dissimilar are two message sets that capture the network behavior is
the fundamental operation in most of the analytical tasks. Therefore, this chapter is devoted
to designing a representation which would have the following properties:

1. There exists a distance metric on top of the representations, which can be used to measure
distance between the underlying probability distributions that generated the represented
message sets.

2. There is no need to explicitly estimate the probability density of the underlying distri-
butions for purpose of measuring the distance, which is the case for many commonly
used distance measures for probability distributions such as Kullback-Leibler divergence,
Total Variation, Bhattacharyya distance, Hellinger distance or Rényi entropy [21] (we
note that not all of these functions are indeed metrics as they do not satisfy all axioms
of a metric), while preserving enough information about the distribution. This is im-
portant, because joint distributions can provide rich information about the features but
direct estimation of the probability density would be often impossible due to demand for
extremely high number of observations.

3. The representations can be stored as points from a Rd space such that they can be
immediately consumed by most algorithms that assume input of this type.

4. Each representation can be easily updated with new observations as new messages are
captured.

As we show below, solution for this can be found in the field of kernel embedding of
distributions ([125, 97, 127]). Building on the results obtained for the feature maps in kernel
methods for single data points, this approach extends the feature mapping to probability
distributions by representing them as elements of a reproducing kernel Hilbert space. This
then allows direct comparison of the distributions without estimating their density functions.

In this chapter, we therefore build on the idea of probability distributions embedding and
study the applications of this approach in the domain of network communication represen-
tations.

7.1 Kernel functions and Hilbert spaces

Before we focus on embedding of probability distributions, we present a brief overview of
basic properties of kernel functions and related Hilbert spaces upon which the entire field of
study is built.

A kernel function k on a domain X is a symmetric function

k : X × X → R

Specifically, the most important in the area of machine learning are the positive definite
kernels, which are kernel functions that fulfill the following condition (Mercer’s condition):

∀n ∈ N ∀x1, ..., xn ∈ X ∀c1, ..., cn ∈ R :

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

Examples of positive definite kernels on X = Rd include the linear kernel

k(x, y) = xTy

or the Gaussian kernel
k(x, y) = exp(−γ‖x− y‖2), γ > 0.

Tightly connected with the positive definite kernels are the reproducing kernel Hilbert spaces
(RKHS). A reproducing kernel Hilbert space is a Hilbert space H of functions f : X → R
with inner product 〈f, g〉H for f, g ∈ H (and a norm ‖f‖2H = 〈f, f〉H) which has the following
reproducing property:

∀x ∈ X ∃Kx ∈ H such that ∀f ∈ H : f(x) = 〈f,Kx〉H
This means that if this property holds, a reproducing kernel k for the given Hilbert space H
can be defined:

k(x, y) = 〈Kx,Ky〉H , x, y ∈ X
The connection between RKHS and positive definite kernels is that it can be proved that for
each positive definite kernel k, there exists a Hilbert space H for which k has the reproducing
property and vice versa — a kernel which has the reproducing property for some RKHS is
positive definite [4].

The importance of RKHS and positive definite kernels for machine learning is that they
enable the so called kernel trick. Given a domain X on which pair-wise comparisons of
objects are made, e.g., for purposes of training a classifier, objects from X can be mapped
to a Hilbert space H (referred as feature space) via a feature map φ : X → H where the
pair-wise comparisons of objects x, y ∈ X are replaced by the inner product 〈φ(x), φ(y)〉H.

Thanks to mapping the objects to the feature space which has higher dimension (possibly
infinite), the analysis of data might become easier — for example, in classification tasks, two
classes of objects might be separated by a classifier which is linear in the feature space
which would not be possible in the original space X . The problem is that computing the
feature maps directly is often impossible (due to their infinite dimensionality). However, the
properties of RKHS can be leveraged to compute the desired values of 〈φ(x), φ(y)〉H. without
explicitly computing the feature maps.

If a positive definite kernel (which can be directly computed, e.g. the Gaussian kernel
mentioned above) on X is used to express the pair-wise comparisons of objects from X , then
we know there exists a Hilbert space H for which the kernel k has the reproducing property
k(x, y) = 〈Kx,Ky〉H. Therefore, we can choose the feature maps as

φ(x) = Kx

which means. that we have
k(x, y) = 〈φ(x), φ(y)〉H .

Thanks to this property, the comparisons in the feature spaces can be computed without
need of direct computation of the feature maps which would be infeasible.

70

7.2 Kernel embedding of distributions

In the kernel embedding of probability distributions, each distribution P over a domain X is
represented as a point in a reproducing kernel Hilbert space H of functions f : X → R using
so called mean map µ:

µP =

∫
x∈X

k(x, ·)dP (x),

where k is the reproducing kernel for the space H. In practice, usually a limited sample
X = {x1, ..., xn} of n observations from each distribution is available, hence the mean map
is estimated from that sample in the following way:

µP =
1

n

n∑
i=1

k(xi, ·) (7.1)

Note that the mean map is a function of one variable, which is marked by the · symbol in
the definitions above. Therefore, µ(t) = 1

n

∑n
i=1 k(xi, t), t ∈ X .

Having the distributions represented by the mean maps, kernel functions working on top
of them can be introduced. These kernels can be then used by a classifier similarly as kernels
working with single points are used. The work [96] proposes multiple different kernels for
probability distributions, e.g. the linear kernel:

κ(P,Q) = 〈µp, µQ〉H, (7.2)

where P,Q are two probability distributions. This kernel can be empirically estimated
from the finite sample sets of observations as:

κ(P,Q) ≈ 1

nm

n∑
i=1

m∑
j=1

k(xi, yj),

where xi ∼ P, yj ∼ Q are the collected observations from the distributions P and Q. Fur-
thermore, similarly as Gaussian kernel or other non-linear kernels can be used instead of the
linear one, the same can be done in case of probability distributions. The Gaussian kernel
for distributions ([96]) is then defined as:

κ(P,Q) = exp(−γ‖µP − µQ‖2H) (7.3)

The distances ‖µP − µQ‖2H used in the Gaussian kernel (7.3) correspond to values of the
maximum mean discrepancy (MMD) — a kernel two-sample test proposed in [61]. If the
kernel k is characteristic ([61, 52], a kernel k is characteristic, if the mapping which maps a
distribution P to its mean map µP is injective), then MMD defines a metric on the space
of probability distributions and it holds that MMD(P,Q) = 0 if and only if P = Q. This
makes it suitable for use in various cases where similarities or distances between probability
distributions are assessed. According to [61], MMD is defined as

MMD(P,Q) = sup
f∈F
{Ex∼P [f(x)]− Ey∼Q[f(y)]} ,

where F is a unit ball in the reproducing kernel Hilbert space H ([4, 127]) associated with
the kernel function k : X × X → R (here X = Rd).

In this chapter, we derive the representation of message sets from MMD, because it
can be estimated from a small number of observations with enough accuracy, even if the
observations are high-dimensional [61]. Moreover, it enables to compare joint distributions
of features without explicitly estimating their probability density functions.

As already mentioned, an important advantage of MMD is that it can be well estimated
from a limited set of observations. Given two sample sets of observations X = {xi}n1

i=1,

71

Y = {yi}n2
i=1 (with distributions PX and PY), an estimate of MMD2(PX , PY) can be calcu-

lated ([61]) as

MMD2(X,Y) =
1

n21

n1,n1∑
i,j=1

k(xi, xj)+

+
1

n22

n2,n2∑
i,j=1

k(yi, yj)−
2

n1n2

n1,n2∑
i,j=1

k(xi, yj) (7.4)

The above estimate can be compactly written as the norm of estimates of means in the
Hilbert space H as

MMD2(X,Y) = ||µX − µY ||2H, (7.5)

where

µX =
1

n1

n1∑
i=1

k(xi, ·), µY =
1

n2

n2∑
i=1

k(yi, ·) (7.6)

are the empirical estimates of mean maps as in (7.1) of the distributions PX and PY , respec-
tively.

Although the MMD is a theoretically well justified distance on probability distributions,
its practical use (not only in the field of network communication modeling) might be limited
due to the excessive computational and memory requirements. Memory requirements grow
linearly with size of the set of observations and system’s memory could be quickly exhausted
(when we do not want to discard old observations in order to avoid loss of information).
Moreover, calculation of the distance between two sets of observations X and Y is of order
O(max{|X|, |Y |}2), which is prohibitive in practice. Therefore, the main limitations of direct
computation of MMD are:

• Storing of possibly high number of observations which is increasing over time and makes
it more difficult to use the sets of observations in algorithms employed for their further
analysis based on their similarities or distances.

• Direct computation of full kernel matrices when two sets of observations are compared.

These constrains motivated our research for an alternative representation and approximate
calculation that would replace the original MMD (7.5) with a calculation which has compu-
tational complexity independent of sizes of individual sets of observations.

In further text, we first review existing methods that aim at approximate computation of
MMD in order to decrease its computational requirements. Then, we derive a new method
for approximate MMD computation and observations storing which enables to represent the
sets of observations as real vectors of fixed dimension that can be easily updated with new
observations. The computation of full MMD is replaced by L2 distance on the vectors that
represent the sets of observations.

7.3 Related works on kernel and MMD approximations

This section provides overview of methods used to speed up computation of kernel matri-
ces and kernel function evaluations. Then, we review methods that aim at approximation
of computation of MMD as some of them build upon the methods developed for kernel
approxiamtions.

7.3.1 Kernel function approximations

Nyström approximation

A well established way which proved to be useful in many machine learning tasks to speed-up
computation of large kernel matrices takes use of methods based on low-rank approximations

72

of the full kernel matrix. Given a kernel k(x, y) and n points x1, ..., xn ∈ Rd, the methods
are based on approximating the full kernel matrix K : Kij = k(xi, xj)) in the form:

K ≈ CW−1CT,

where C is a n × c matrix composed of c columns selected form K (i.e., Cij = Kij , i =
1, ...n, j = 1, .., c, c < n) and W is a c × c matrix defined as Wij = Kij , i, j = 1, ..., c.
This approximation allows to find solution for a kernel-based classifier or predictor in time
O(c2n), which for c significantly lower than n means significant speed-up, because the time
complexity without using any approximations might be O(n3) [6] (as the training procedure
of a classifier often involves kernel matrix inversion or eigenvalue decomposition). Works in
this area differ in the way how the c columns are selected. For example, [144] chooses the c
columns from K uniformly at random without replacement. In [39], the columns are sampled
with replacement (i.e., by c independent trials) and with respect to a non-uniform probability
distribution over all columns of K which is dependent on the input data. Moreover, the matrix
W is replaced by its rank-k approximation Wk (which further reduces the computational
cost) and Moore-Penrose ([95, 15, 105]) generalized inversion W+

k is used to ensure that it
can be always computed.

In general, approximations of kernel matrices based on the Nyström method are suitable
for cases when the n × n square kernel matrix is very large and the data are static in the
sense that new observations are not continuously added to the dataset (e.g., for training a
classifier). For purposes of MMD approximation, the Nyström method could be considered
for computing the kernel matrices between two sets of observations. However, in the area of
network communication modeling, we are mainly interested in cases when all the observations
are not collected at once, but they are coming continuously as new messages are collected
(e.g., from a long-term monitoring of network traffic and building models of behavior of
individual users). In this scenario, it is crucial that the representations of individual sets can
be simply and repeatedly recalculated as new observations arrive. For this reason, we do not
consider approximations of this type for our work.

Random features

A Monte Carlo approximation of the kernel computation was proposed in [113]. The method
builds on Bochner’s theorem [57, 118] stating that for a continuous positive definite kernel
k(x, y), x, y ∈ Rd (e.g., the Gaussian kernel), there is a probability measure p such that:

k(x, y) =

∫
Rd

p(ω) exp(iωT∆)dω,

where i is an imaginary unit and ∆ = x − y1. Because here ∆ ∈ Rd and p is a probability
measure over Rd, the above integral can be rewritten as ([113]):

k(x, y) =

∫
Rd

p(ω) cos(ωT∆)dω,

In other words, the value of kernel k in the points x, y can be expressed as an expected value
of function cos(ωT∆) when ω is drawn from the distribution p(w):

k(x, y) = E[cos(ωT∆)], ω ∼ p(ω) (7.7)

The method of kernel approximation proposed in [113] uses Monte Carlo estimation of the
expected value (7.7). It holds that:

cos(ωT∆) = cos(ωT(x− y)) = cos(ωTx) cos(ωTy) + sin(ωTx) sin(ωTy) (7.8)

1 Accordingly to notations used in the related literature, we use the kernel k(x, y) and its signature
k(x− y) interchnageably.

73

By defining

φω(t) =

[
cos(ωTt)
sin(ωTt)

]
,

sampling L samples ω1, ..., ωL from p(ω), and using the identity (7.8), the expected value (7.7)
is approximated by using as:

k(x, y) ≈ φ(x)Tφ(y),

where

φ(t) =
1√
L

φω1(t)
.
.
.

φωL
(t)

 .
The work [26] is inspired by the above described approach and proposes a technique to

optimize both the quality of the approximation and dimensionality of the resulting feature
maps φ. It approximates the kernel value using the feature maps φω defined as follows:

φω(t) =

[√
αω cos(ωTt)√
αω sin(ωTt)

]
,

where ω ∈ Ω are now selected from a predefined fixed set Ω (i.e., not sampled as in [113]) and
αω ≥ 0 are non-negative weights of individual features in the feature map. Dimensionality of
the resulting feature map φ is then given as:

D =
∑
ω∈Ω

[αω > 0]Dω.

Dω represents dimensionality of φω, i.e. Dω = 2 for ω > 0 and Dω = 1 if ω = 0 (because
sin(ωt) = 0 for ω = 0). The goal of the work is to optimize values of αω-s such that both
D and discrpenacy between the values of the original kernel and the approximation are
minimized. Evaluation of the kernel values for purposes of the optimization is performed on
a preselected fixed set of points. Limitation of this method is the dimensionality of the input
observations if the kernel k is not additive - in such cases, size of the set Ω increases very
quickly (possibly exponentially with the number of input dimensions).

Related to these approaches are [138], [139] and [129] and various other works that, in
general, replace non-linear kernels in classifiers (e.g., SVMs) by linear kernels on feature maps
that have higher dimension but they are sparse and they are effective to compute.

Random features have been considered for approximation of kernel two-sample tests in-
cluding MMD in [89], [131] and most importantly in [151], which is in more detail reviewed
further.

7.3.2 Approximations of MMD

In this subsection, we review methods that aim at approximation of MMD computation.

Linear MMD

An approximation of MMD computation which can be computed in O(n) time for two sets
of n observations X = {xi}ni=1, Y = {yi}ni=1 was proposed in [61] and [62]. The speed-up
is simply achieved by not evaluating all the pair-wise kernel values between each pair of
observations in the samples. In literature, this approximation is known as Linear MMD (due
to the linear time complexity) and is computed as:

MMD2(X,Y) ≈ 2

n

n
2∑
i=1

k(x2i−1, x2i) + k(y2i−1, y2i)− k(x2i−1, y2i)− k(x2i, y2i−1) (7.9)

74

B-test

In [147], a generalization of the Linear MMD approach is proposed which approximates the
MMD by dividing the data in both sample sets into blocks of size B on which the full MMD
is computed (hence the name B-test). Then, the MMD is approximated by averaging the
results for individual blocks.

For sample sets X = {xi}ni=1, Y = {yi}ni=1 and B which determines the size of one block,
MMD for the b-th block is computed as:

ηb =
1

B(B − 1)

bB∑
i,j=(b−1)B+1

i 6=j

k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi),

for b = 1, ..., nB . The final approximation is obtained as an average of ηb-s:

MMD2(X,Y) ≈ B

n

n
B∑
b=1

ηb

Time complexity of this approximation is O(Bn) as the MMD computation for one block
takesO(B2) time and it is repeated on n

B blocks. By varying the parameterB, approximations
of different quality and computational requirements can be obtained — from the Linear MMD
to full MMD for B = n.

FastMMD

Applications of random features (reviewed above in Section 7.3) for MMD approximation
were shortly discussed in [131]. In [151], they are used to develop the FastMMD algorithm
which stems from the original work [113]. It uses the similar Monte Carlo estimation as
described for random features above to compute kernel matrices for two compared sets of
observations. Additionally, the computational complexity is further decreased by applying
Harmonic Addition Theorem [99]. Thanks to this seed-up, FastMMD can be computed in
time O(Ln) (where L is the number of ω-s sampled for the Monte Carlo estimation, n is
the number of observations in the compared sets) while the original MMD’s computational
time is quadratic in the number of observations n. However, this means that the speed-up
is significant only in cases when L � n (the authors assume L to be in hundreds in their
experiments in [151]).

Because FastMMD is based on random features as proposed in [113], the sets of obser-
vations can be represented and continuously updated with new observations in the following
way: Given two sets X = {xi}n1

i=1, Y = {yi}n2
i=1, a shift-invariant kernel k (e.g., the Gaussian

kernel) and the probability distribution p(ω) from its Fourier transformation as described
above, L samples ω1, ..., ωL are drawn from p(ω) and φω-s are computed for each observation
xi and yj from X and Y , respectively. This is done similarly as computing φω-s and the
feature maps φ for individual points in [113] as described above. Then, representations of the
sets X,Y are computed:

φ(X) =
1

n1

n1∑
i=1

φ(xi)

φ(Y) =
1

n2

n2∑
i=1

φ(yi)

Approximation of MMD between X and Y is then computed as the distance between
φ(X) and φ(Y):

MMD2(X,Y) ≈ ‖φ(X)− φ(Y)‖2

Representation of a set is therefore computed as a mean of representations of individual
observations in the set. This allows the representations to be updated on the fly. The repre-
sentation is of fixed dimension L which is determined by the number of samples drawn from
p(ω).

75

7.4 Proposed approximate computation of MMD

As we discussed above, computational complexity of the original MMD is often prohibitive
because of the quadratic number of computations needed to evaluate it. It is O(max(n21, n

2
2))

where n1 and n2 are the number of observations in samples that are compared. This means
that in case of straightforward implementation, three kernel matrices of sizes n1×n1, n1×n2
and n2×n2 have to be computed. Furthermore, we demand reasonably compact representa-
tions of the samples that would allow not only their comparison using MMD but also easy
updating as new observations arrive and their effective storage in memory.

In order to satisfy these needs, we below derive the representations of sample sets such that
they are formed by vectors of fixed dimension whose L2 (Euclidean) distances approximate
the values of MMD computed between the sample sets. Our approach is partially inspired
by works [124] and [139]. The above mentioned work [139] replaces the computation of a
kernel function which is non-linear in the input space by a kernel on feature maps of finite
dimension which is linear in the feature space. Hence, the original kernel k(x, y) is evaluated
as:

k(x, y) ≈ 〈φ′(x), φ′(y)〉H′ ,

where φ′(x) is an approximation of the original feature map φ(x) of finite dimension. The
approximated feature maps are designed to be elements of a subspaceH′ ⊂ H (whereH is the
original RKHS associated with the kernel k) which is a span of feature maps φ(z1), ..., φ(zn)
for preselected representative points from the input space z1, ..., zn. Coordinates of the ap-
proximated features maps φ′ are then coefficients in the linear combination of φ(z1), ..., φ(zn)
such that the norm ‖φ(x)− φ′(x)‖H is minimized.

The method which we propose approximates the mean maps (7.6) as a linear combination
of a fixed base set of basis functions K = {k(li, ·)|i ∈ {1, . . . , |L|}}, where L ⊂ Rd is a set of
points chosen from the same space in which the observations exist. For now, it is assumed
that the set L is already given and its construction is deferred to the end of this section.
Given a sample set of observations X = {xi}ni=1, to express its respective mean map µX in
K, i.e. to find coefficients of basis function amounts α, the following optimization problem is
solved:

α = argminα

∥∥∥∥∥∥
|L|∑
i=1

αik(li, ·)− µX

∥∥∥∥∥∥
2

H

(7.10)

= argminα

∥∥∥∥∥∥
|L|∑
i=1

αik(li, ·)−
1

n

n∑
i=1

k(xi, ·)

∥∥∥∥∥∥
2

H

, (7.11)

Denoting the kernel matrix of points from L as Kij = k(li, lj),K ∈ R|L|,|L| and kernel matrix
of points from L and points from X as Qij = k(li, xj),Q ∈ R|L|,n, the solution of (7.11) is

α =
1

n
K−1Q1n. (7.12)

where 1n is a vector of ones of size n. The solution vector α is therefore of fixed dimension
α ∈ R|L|, which depends on the cardinality of the set L.

Let us now consider two sets X and X with mean maps expressed in the base K as αX
and αY . Their MMD distance can be then approximated as:

MMD2(X,Y) ≈

∥∥∥∥∥∥
|L|∑
i=1

(αX)ik(li, ·)−
|L|∑
i=1

(αY)ik(li, ·)

∥∥∥∥∥∥
2

(7.13)

= αT
XKαX − 2αT

XKαY + αT
Y KαY . (7.14)

76

Since K is positive semi-definite (if k is Mercer’s kernel), there exists a Cholesky decom-
position such that

K = LLT,

and L is a triangular matrix. Using L, the approximated MMD distance (7.14) can be com-
pactly expressed as

MMD2(X,Y) ≈
∥∥LTαX − LTαY

∥∥2 . (7.15)

Substituting the calculation of α from (7.12) and using the property of Cholesky decompo-
sition that

K−1 = (LLT)−1 = LT−1

L−1,

the approximate MMD becomes

MMD2(X,Y) ≈
∥∥LT(αX − αY)

∥∥2
=

∥∥∥∥LTK−1
(

1

n1
Q11n1

− 1

n2
Q21n2

)∥∥∥∥2
=
∥∥∥LTLT−1

L−1 (ϕ(µX)− ϕ(µY))
∥∥∥2

=
∥∥L−1 (ϕ(µX)− ϕ(µY))

∥∥2 .
where ϕ : H → R|L| is a functional evaluating a mean map µ = 1

n

∑n
i=1 k(zi, ·) of a sample

{zi}ni=1 at points from L:

ϕ(µ) =

µ(l1)
.
.
.

µ(l|L|)

Note that it holds that

ϕ(µ) =
1

n
Q1n

=
1

n

∑n
i=1 k(zi, l1)

.

.

.∑n
i=1 k(zi, l|L|)

 .
Therefore, after pre-computing the inverse L−1 which is relatively easy as the matrix L

is triangular, MMD distance ‖µX − µY ‖2H is replaced by Euclidean distance ‖L−1(ϕ(µX)−
ϕ(µY))‖22.

In other words, the MMD distance between µX and µY in H is replaced by generalized
Mahalanobis distance (as introduced in [143] and [115]) between ϕ(µX) and ϕ(µY) in R|L|,
determined by the matrix

L−1
T
L−1 = LT−1

L−1 = K−1,

where the Mahalanobis distance δM determined by a matrix M ∈ Rd×d is for x, y ∈ Rd
defined as:

δM(x, y) = (x− y)TM(x− y)

A representation of a set of observations is therefore computed and stored using the
function ϕ in a form of an |L|-dimensional real vector, which can be updated on-line as
new observations are collected, which removes the need to keep all observations in memory
individually. Storing the representation as ϕ(µ) is preferred to L−1ϕ(µ) (which would save

77

computational resources) as significant portion of its components can be close to zero (or very
small such they can be replaced by zero without loss of accuracy), enabling more memory
efficient storage in sparse structures.

In further text, this proposed representation is called Approximated MMD representation
— AMRep. Computing the AMRep representation from an input set of observations thus
includes these steps:

1. Forming the set L with respect to the given input set of messages.
2. Computing the matrix L−1.
3. Computing and maintaining the function ϕ for each message set.

7.4.1 Construction of the set L

To this end it has been assumed that the set L is given. The method how L is constructed
should reflect the intention of its use. For determining the set L, we can expect there will
be an input training set of observations O available, that can be used to compute L. In a
typical case, O will be a set of all observations obtained as training data for a classifier, or
all observations contained in some unknown data that are about to be analyzed. A common
requirement would be to select L such that |L| � |O|. Otherwise, storing of the resulting
representations and all computations would be expensive.

If the representations will be used to model majority behavior, then items of L should
be located in parts of the space where most observations are concentrated (i.e., in the most
”populated” areas of the input space) and algorithms like self-organising maps [84] are appro-
priate. Contrary to that, if representations will be used to distinguish many different events
or to detect rare events like in anomaly detection, elements of L should cover the entire in-
put space, including regions with low density of observations. The latter approach is followed
in the ongoing experiments, as it matches the needs in analysis of network communication
which is the focus of this thesis. Formally, the cover set L should in this case satisfy the
following condition:

∀o ∈ O ∃l ∈ L : ‖l − o‖2 ≤ ε,
where ε is a preset constant. This parameter determines granularity (and thus sensitivity of
the representation) and size of the cover L. In experiments, we used this condition to build
L, when a sub-optimal solution to the class cover problem ([20, 91, 111]) was obtained by a
greedy algorithm shown in the listing of Algorithm 2. However, the AMRep representation
is not limited to this specific algorithm and any method which is able to construct L with
desired properties can be potentially considered.

Algorithm 2 Greedy ε-cover of a set O
1: procedure Cover(O, ε)
2: L← {o}, o randomly selected from O
3: for o ∈ O do
4: if ∀l ∈ L : ‖o− l‖2 > ε then
5: L← L ∪ {o}
6: end if
7: end for
8: return L
9: end procedure

7.5 Experimental evaluation — Classification

This section is devoted to experimental comparison of the proposed representation framework
AMRep to the most relevant related methods [71], [72] and [42] (reviewed in detail in the

78

next subsection) from prior art. These works were selected because (i) they can be extended
to different definitions of messages and message sets and (ii) they cover principles of most
approaches proposed by the state of the art algorithms that rely on modeling of probability
distributions.

Additionally, the soft histogram representations described in Chapter 5 and representa-
tions based on FastMMD (described above in Section 7.3.2) are included as well to compare
pros and cons of both representations. Thanks to its design, FastMMD allows to build repre-
sentations that satisfy our requirements that we set in the introduction of this chapter — it
allows computing distances between probability distributions without estimation of probabil-
ity densities and it provides representations that are of fixed dimension and can be updated
on the fly. Moreover, as the authors show in their paper [151], FastMMD is able to achieve
better approximation than the previously proposed approximations of MMD (Linear MMD
and B-test). For these reasons, we include it in the experimental comparison as the most
related method for approximate computation of MMD.

All the comparisons are made on the TCP Flows dataset (described in Chapter 4, Sec-
tion 4.4) using both levels of communication which this dataset enables to use (the level
of TCP packets referred as Any-P dataset and the level of TCP flows referred as Any-F
dataset). The older datasets used in Chapter 5 could not be considered, because due to data
retention policies, they were not available to us at the time of running these experiments.

7.5.1 Compared prior art methods

This subsection provides overview of the prior art methods that are used for the experimental
comparison.

Multinomial Naive Bayes (MNB)

Hermann et al. [71] models encrypted communication by one-dimensional histogram of packet
sizes with packets’ direction encoded by sign. In the formal model introduced in Chapter 3,
one message in [71] corresponds to one packet and a message set corresponds to a set of
packets interchanged during loading of one specific web page. As individual messages are
represented by scalar values (which are their sizes), MNB uses a one-dimensional hard his-
togram hR to represent a message set R. The histogram has m bins hR1 , ..., h

R
m and the i-th

bin captures the number of messages of size i observed in R. Each target class ω is repre-
sented by a set of empirical probabilities {P (i|ω)|i = 1, ...,m}, where P (i|ω) is an estimation
of probability that a message of size i will be observed in a message set belonging to class ω.
An unknown message set R is then assigned to the most probable class ω∗, which satisfies:

ω∗ = arg min
ω
−

m∑
i=1

hRi logP (i|ω).

Since the motivation behind this representation was to treat histogram bins as words,
the histogram bins are scaled using term-frequency inverse document frequency (TF-IDF)
paradigm. The TF-IDF scaling is applied on each bin of the histogram from which the
probabilities P (i|ω) are estimated. The best results were reported for the combination of
term-frequency normalization (which is implemented by using logarithmic scale for bins’ sizes
in the histograms) combined with L2 normalizations of the histograms. These transformations
were implemented in the below comparison. Therefore, this approach also represents usage
of common empirical histograms with hard bins for representing the traffic.

Despite the above representation was originally proposed for fingerprinting web sites, it
can obviously be used with other definitions of messages and message sets for classification
of network communication.

79

Statistical Protocol Identification (SPID)

SPID [72] is designed to identify application protocols on basis of variable number of mes-
sages’ attributes. Looking at this framework by the formalism used in this thesis, SPID
represents a single message set as well as a model of a single protocol by a set of d em-
pirical estimates of marginal probability densities of d features observed on the messages.
A classified message set R is then assigned to protocol ω∗ which minimizes the following
Kullback-Leibler divergence averaged over the observed features:

ω∗ = arg min
ω

1

d

d∑
i=1

DKL(Pωi ‖PRi),

where Pωi and PRi are estimates of probability density functions of the i-th feature for the
protocol model ω and for the classified message set R, respectively. Individual features are
therefore considered to be independent of each other and only their marginal distributions
are modeled, using conventional empirical hard histograms.

Tunnel Hunter (TunHunter)

Tunnel Hunter [42] identifies application-layer protocols tunneled through other protocols.
Its main difference to all related methods is that it captures packets’ order by modelling
separately the first, the second, . . . , up to the N -th packet in a TCP flow. Models of pro-
tocols are implemented as joint empirical hard histograms of packets’ sizes and inter-arrival
times and they are estimated from a set of TCP flows with the same protocol label. Unlike
most of other works, TunHunter has stricter requirements for deployment, as the order of
packets matters. The histograms are then smoothed by a Parzen window estimator (in im-
plementation used for comparison in this work, Gaussian kernel was used for this smoothing
as suggested in the original work). The classification is a variation of the likelihood-based
classifier, where a message set R = {mi}n

′

i=1 (a TCP flow) is assigned to a protocol ω∗ which
minimizes the following log-likelihood:

ω∗ = arg min
ω
− 1

min{n′, n}

min{n′,n}∑
i=1

logP (mi|ω),

where n is the number of messages (e.g., packets) used to model each protocol, n′ is the
number of messages observed in the classified message set R and P (mi|ω) is a probability of
observing the i-th message mi ∈ R (we note that in this case the message set is ordered) in
a TCP flow belonging to the protocol ω.

7.5.2 Application identification

In this section, the AMRep representation of message sets is compared to the methods
described in Section 7.5.1 on a problem of identifying an application to which the observed
network communication belongs.

The comparison is done at the level of individual TCP flows, where one message cor-
responds to a single TCP packet (Any-P dataset) and at the level where a message set is
identified by unique tuple of client IP, server IP and server’s destination port, and one mes-
sage corresponds to one TCP flow (Any-F dataset). Since AMRep representation is designed
as a replacement of the original MMD distance between two probability distributions, it
is primarily used with the k-nearest neighbors (k-NN) classifier [51] for which a meaning-
ful definition of distance between two points is crucial. Also, the k-NN classifier naturally
well extends to multi-class problems (recall that the dataset used in this section contains
69 different classes — the individual applications). Similarly, FastMMD and soft histogram

80

representations were used with the k-NN classifier too in order to rule out differences caused
by different classification algorithm.

The implementation of the k-NN classifier was taken from the PRTools toolbox for Mat-
lab [40], which has advantage in having its own routine for determining the proper value of k
from the training data (using cross-validation). Other parameters of the AMRep representa-
tion (ε for the cover computation and γ for the width of the Gaussian kernel used in the mean
map) were determined by exhaustive search over all combinations of values ε ∈ {0.5, 0.6, ..., 2}
(Any-P dataset) and ε ∈ {0.5, 0.6, ..., 5} (Any-F dataset) and γ ∈ {2n|n ∈ {−2,−1, ..., 4}}
for the kernel width values. Each combination of the parameters’ values was evaluated by
5-fold cross-validation and the combination with the highest classification accuracy was used
to train the final classifier which was then evaluated on a testing set. We note that the clas-
sification accuracy is defined as the ratio of the number of correctly classified messages sets
to the total number of classified messages sets.

The evaluated soft histogram representation used 11 bins in each dimension similarly as
in experiments in Chapter 5. Therefore, total number of bins in a histogram was 11n where
n was the number of features observed on the messages.

For the compared representation based on FastMMD, the parameters were also deter-
mined by cross-validation. Specifically, the width of the Gaussian kernel γ, which has the
similar role as in the case of AMRep, was selected from the set {2n|n ∈ {−2,−1, ..., 4}} (i.e.,
similarly as for AMRep). The parameter L, which determines the size of the representation,
was chosen (based on the results presented in [151]) from the set {300, 350, ..., 1200}.

Presented experimental results are averages over ten repetitions, where each iteration used
10 000 randomly selected samples (message sets) from the entire dataset (Any-P or Any-F).
This sample was used to create the training and the testing sets in the given iteration.
Each iteration used 10-fold cross-validation to estimate the classification accuracy. However,
since ground-truth (true labels) is notoriously difficult to obtain in the network security, this
scenario was simulated by using only 10% of samples available in each iteration for training
in one fold of the cross-validation. Remaining 90% of samples were used to estimate the
accuracy of identifying the application corresponding to testing samples. Average accuracy
computed over all 69 applications (and all 10 iterations) is shown in Table 7.1, presenting
results also for different combinations of messages’s features used. According to the results,
AMRep with k-NN outperforms representations and methods proposed in the prior works.
Moreover, the results show that statistics of packets are more informative for application
identification than statistics of flows, which is expected. Interestingly, according to these
experiments, inter-arrival times of packets improved the accuracy only by 0.3% on the Any-
P dataset. However, paired t-test at 5% significance level does not reject the hypothesis that
the accuracies achieved with and without the inter-arrival times are the same. Hence, this
improvement can be considered statistically significant.

Additionally, we will separately discuss differences in results of the representations AM-
Rep, FastMMD and the representation based on soft histograms (SoftHist). As can be seen
from the results in Table 7.1, AMRep outperforms both of the other representations. While
the difference between AMRep and FastMMD is smaller, it is much higher with respect to the
SoftHist representation. This shows that the kernel embedding of distributions can indeed
capture much richer information than the histogram-based representations.

However, there are also differences in the size of the produced representations. This is
compared in Table 7.2. From the table we can see that while FastMMD is able to achieve
accuracy which is in certain cases comparable to AMRep, it is at the cost of significantly
lower sparsity of the produced vectors (by sparsity we mean the number of non-zero elements
of a vector). Technically, both representations (AMRep and FastMMD) produce dense rep-
resentations, however some elements can be very close to zero (e.g., below 10−9) and can
be safely set to 0 in order to make the representation sparse. Therefore, for evaluation of
sparsity of the produced representations, we counted as non-zero only those elements that
were greater than 10−9.

81

On the other hand, in case of soft histograms, the situation is opposite. The SoftHist’s
accuracy is lower than of the kernel-based representations (although still higher than of the
methods from prior art) but it can benefit from extremely sparse representations (see Ta-
ble 7.2) which allows to store the vectors very efficiently. Based on these results, we can
conclude that on a smaller volume of data or if the computational requirements are not cru-
cial, it is more desirable to use the representation based on kernel embedding of distributions
because of the higher accuracy and richness of the representation. However, if a very large
volume of data is about to be analyzed (e.g., as presented in Chapter 6), it might be beneficial
to choose the soft histogram representation instead because of its effective processing.

Besides the accuracy, we also empirically estimated running times of each method in
the classification phase. Runtimes (in seconds) of individual methods needed for computing
classifications of the testing data in one fold (approximately 9000 message sets) are compared
in Table 7.3. The table presents runtimes averaged over all folds of the cross-validation on a
personal computer with Intel Core-i7 CPU (4 cores, 2.2GHz) and 16GB RAM. The evaluation
environment was implemented in Matlab R2016a software.

First, we can conclude that the representations based on kernel embedding of distributions
are able to achieve significantly higher accuracy without considerable time trade-off. Second,
the computation times for soft histograms again confirm their effectivity as they are by more
than 10% faster than the representations that use kernel embedding of distributions. Finally,
the fast computation of MNB can be attributed to its simplicity, as it uses only one feature
(message sizes) and a Naive Bayes classifier, which can be computed very quickly. However,
it is at the cost of significantly decreased accuracy.

In order to provide better illustration of differences in the runtimes, relative comparison
is provided in Figure 7.1 which shows the times relatively to AMRep (used with the k-NN
classifier).

Features MNB SPID TunHunter AMRep FastMMD SoftHist

A
n
y
-P sizes 33.43% 41.23% — 66.83% 62.93% 60.02%

sizes, inter-arrival times — 43.59% 58.31% 67.19% 63.03% 62.28%

sizes 21.80% 39.67% — 51.94% 46.75% 40.8%

A
n
y
-F

sizes, durations — 43.21% — 53.29% 48.05% 45.17%

sizes, durations, packets — 44.17% — 53.26% 49.68% 49.03%

Table 7.1: Average accuracy of application identification on the Any-P dataset (top half of
the table) and on Any-F dataset (lower).

AMRep FastMMD SoftHist

Any-P (sizes) 11.2 272.2 (24.3) 4.7 (0.42)
Any-P (sizes, inter-arrival times) 171.8 579.1 (3.37) 13.2 (0.07)
Any-F (sizes) 18.7 495.3 (26.4) 6.8 (0.36)
Any-F (sizes, durations) 135.9 592.1 (4.36) 17.6 (0.13)
Any-F (sizes, durations, packets) 347.8 788.5 (2.27) 81.2 (0.23)

Table 7.2: Average number of non-zero elements (greater than 10−9) of AMRep, FastMMD
and SoftHist representations for different datasets. The value in parenthesis is the number
of non-zero elements relative to AMRep.

82

Method Any-P dataset Any-F dataset

AMRep + k-NN 0.13s 0.20s
FastMMD + k-NN 0.12s 0.21s
SPID 0.46s 0.26s
MNB 0.07s 0.03s
TunHunter 4.36s —
SoftHist 0.08s 0.18s

Table 7.3: Average execution times of individual methods needed for classification of the test
data.

AM
Rep
+

k-N
N

Fast
M

M
D
+

k-N
N

SPID
M

NB

Tun
Hun

ter

Soft
Hist

1

2

3

4

1 0.
92

3.
54

0.
54 0.
62

R
un

tim
e

re
la

tiv
e

to
A

M
R

ep

(a) Any-P dataset

AM
Rep
+

k-N
N

Fast
M

M
D
+

k-N
N

SPID
M

NB

Soft
Hist

1

2

3

4

1 1.
05 1.

3

0.
15

0.
9

R
un

tim
e

re
la

tiv
e

to
A

M
R

ep

(b) Any-F dataset

Fig. 7.1: Average execution times of individual methods, relative values to AMRep + k-NN
classifier.

7.5.3 Further study of the AMRep representation

In this subsection, we further study properties of the AMRep representation and compare it
to the prior art methods for traffic classification.

Training data influence

Since results in Table 7.1 used only 10% of available samples for training (see Section 7.5.2), it
is interesting to study how the accuracy improves as the number of training samples increases.
This has been investigated by holding 20% of samples in each iteration for testing and varying
the size of the training set from 10% to 80% randomly selected from remaining 80% of
samples. Resulting graphs for AMRep and the best prior art method (based on the results
achieved in Section 7.5.2) for each version of the dataset are shown in Figure 7.2. As expected,
the accuracy improves as the size of the training set increases, especially for models based
on AMRep. Contrary, the accuracy of SPID quickly reaches flat region when the size of the
training set is 20% of all data. SPID’s behavior can be explained by histograms in its model
being estimated with sufficient accuracy, therefore the approach hits its boundary and only

83

adding new features could probably further improve the accuracy. As seen in Figure 7.2, the
accuracy of AMRep with k-NN classifier improves as the amount of training data increases,
reaching accuracy of 84.7% on Any-P dataset and 74.6% on Any-F dataset when 80% of
messages sets are used for training. This makes it always the best performing classifier on
given dataset.

10 20 50 80
0

20

40

60

80

100

Training samples ratio (%)

A
ve

ra
ge

ac
cu

ra
cy

(%
)

TunHunter
AMRep + k-NN

(a) Any-P dataset

10 20 50 80
0

20

40

60

80

100

Training samples ratio (%)

A
ve

ra
ge

ac
cu

ra
cy

(%
)

SPID
AMRep + k-NN

(b) Any-F dataset

Fig. 7.2: Comparison of average accuracy for AMRep and the best prior art methods de-
pending on the ratio of samples used for training.

Confusion matrix

To further discuss AMRep’s performance, Figure 7.3 shows confusion matrix in form of a
heat map for all 69 applications on the Any-P dataset. Each row and each column in the
figure corresponds to one application and the color of each cell (i, j) represents the ratio of
message sets of application i classified as application j. The lighter the color of a cell, the
higher the ratio which the cell represents. Cells on the main diagonal therefore represent
accuracies achieved on individual applications while cells outside the diagonal represent mis-
classifications. Due to the large number of classes, the names of individual applications are
omitted in the figure. The confusion matrix shows that for the vast majority of applications
the classification is very accurate, which also means that statistics of their packets are very
distinctive. However, there are few pairs which are frequently confused, some of them are
discussed in detail below:

• GoogleSoftwareUpdateAgent and ksfetch — ksfetch is an OSX process involved in
downloading updates for Google products, hence these two misclassified applications are
related and might share the code base.

• SoftwareUpdateCheck and softwareupdate — Both of these are names of processes
running on OSX systems and involved in checking for updates of software installed on
the system. Hence, there is clear relation between these processes.

• WmiPrvSE.exe and lsass.exe These are processes that are essential parts of Windows
operating systems. Their roles in the system are different but it might be possible that
they share the same libraries for network communication. However, this would have to
be verified by deep analysis of the implementations.

• cma and DropboxOriginal — cma is a part of McAfee software, while DropboxOriginal

is part of the Dropbox file storage service. These two are likely unrelated and this is an
example of a mis-classification.

84

Fig. 7.3: Confusion matrix of AMRep on the Any-P dataset for all 69 applications. Each row
and each column in the figure corresponds to one application and the color of each cell (i, j)
represents the ratio of message sets of application i classified as application j. The lighter
the color of a cell, the higher the ratio which the cell represents.

• helpd and com.apple.WebKit.Networking — helpd is a process running on Apple de-
vices which connects to on-line support of Apple and downloads the help pages. WebKit
is an engine for rendering web pages used, for example, by Apple Safari browser. It is
likely that the helpd process could use this engine, too.

• googledrivesync and netsession win — while the googledrivesync process is respon-
sible for synchronizing Google Drive content between a user’s computer and the on-line
storage, the netsession win process is part of Akamai NetSession Client which is, as
stated by Akamai, ”a tool to improve the speed, reliability, and efficiency for downloads
and streams”. While these two applications are not closely related, their basic behavioral
patterns might be similar — both of them are likely transferring batches of larger data
which explains why the classifier mismatched them.

Accuracy with limited number of observations

The quality of representation of probability distributions typically depends on the number
of observations. To study how the AMRep representation and the prior art classification
methods are sensitive to limited number of observations, the main classification experiment
described in Section 7.5.2 was repeated while limiting the number of observed messages for
each repeated communication to 5, 10, 15 and 20. The rest of the experimental settings
remained the same as in the previous subsection and the classifiers used all features avail-
able for a given dataset. Classification accuracies of different methods are summarized in
Figures 7.4a and 7.4b for Any-P and Any-F datasets. For easier comparison of the results
achieved by the version of the classifier without upper bound on the number of messages per
message set, these results are shown in Figures 7.4a 7.4b as well under the tick ”unlimited”
on the x-axis. As expected, with decreasing the limit on maximum messages used the accu-
racy of methods decreases. The only exception seems to be the MNB classifier which uses
only the messages’ sizes and is therefore less prone to errors caused but insufficient number
of observations (messages). However, the AMRep representation with the k-NN classifier still

85

outperforms the other methods, despite that it uses joint distributions of all the features.
This is because MMD metric does not need to explicitly estimate the shape of probability
distributions, it can effectively operate even with very limited number of observations from
each distribution. This efficiency in terms of number of observations is in fact one of the main
features of MMD.

5 10 15 20 unlimited
0

20

40

60

80

100

Maximum messages per message set

A
ve

ra
ge

ac
cu

ra
cy

(%
)

AMRep + k-NN
SPID
MNB

TunHunter

(a) Any-P dataset

5 10 15 20 unlimited
0

20

40

60

80

100

Maximum messages per message set

A
ve

ra
ge

ac
cu

ra
cy

(%
)

AMRep + k-NN
SPID
MNB

(b) Any-F dataset

Fig. 7.4: Comparison of average accuracy depending on the maximal number of messages
used from each message set.

Dependency on a classifier

The k-NN classifier is for AMRep a natural choice, since it leverages the well-defined pairwise
distances between classified objects. Because the classifier uses local neighborhoods of the
queried objects, it can well capture multi-modal behavior of the applications (k-NN classifier
is asymptotically consistent [37]). Flows belonging to the same application (e.g., Dropbox)
can belong to different modes of the application’s behavior (e.g., regular polling for change
notifications, files upload, filed download etc. — as presented in Chapter 5). While flows
from different modes are dissimilar to each other, behavior within one mode of operation is
homogenous which allows the k-NN classifier to correctly classify most of the unknown flows
(this is illustrated in the visualization of the clustering of flows in the next section). However,
the AMRep representation is not tightly connected with one specific classifier, as it is a gen-
eral algorithm for building representations of message sets. Similarly, the SPID [72] method
can be viewed as an implementation of the nearest prototype (NP) classifier paradigm [13]
with Kullback-Leibler divergence as distance metric. The SPID method can be therefore ex-
tended to use the k-NN classifier with Kullback-Leibler divergence instead of the originally
proposed NP classifier, while AMRep can be on the other hand used with the NP classifier
by creating the applications’ prototypes by merging all training messages belonging to the
same application into one message set and then using the AMRep algorithm to create its
representation.

This motivates the experimental comparison of these four different configurations, namely
AMRep with the k-NN classifier, SPID with the k-NN classifier, AMRep with the NP clas-
sifier and the original version of the SPID method (with the NP classifier). The method
are compared in the same evaluation setup as in Section 7.5.2 and the average classification
accuracy and running times are measured. According to classification accuracies presented
in Figure 7.5, the k-NN classifier always significantly outperforms the NP classifier, which is
likely due to the multimodality of individual classes discussed above. The unimodal behavior

86

implicitly assumed by the NP classifier seems to be oversimplified. Furthermore, AMRep
outperforms the SPID representation regardless the used classifiers. Finally, running times of
classifiers that use AMRep are considerably lower, which makes them more suitable solution,
especially for real-time deployment.

AM
Rep
+

k-N
N

SPID
+

k-N
N

AM
Rep
+

NP

SPID
ori

g.

40

50

60

70
67
.1

9

64
.1

56
.1

2

43
.5

9

53
.2

6

44
.3

5

51
.5

5

44
.1

7

A
ve

ra
ge

ac
cu

ra
cy

(%
)

Any-P dataset Any-F dataset

(a) Average accuracy (higher is better)

AM
Rep
+

k-N
N

SPID
+

k-N
N

AM
Rep
+

NP

SPID
ori

g.

1

2

3

4

0.
13

3.
59

0.
09

0.
46

0.
03

0.
43

0.
02 0.

26

A
ve

ra
ge

ru
nt

im
e

(s
)

Any-P dataset Any-F dataset

(b) Average runtime (lower is better)

Fig. 7.5: Average accuracy and running times for AMRep and SPID used either with the
k-NN classifier or with the nearest prototype (NP) classifier.

7.6 Experimental evaluation — Clustering

Clustering algorithms are essential in unsupervised analysis of unlabelled data, since they
reveal groups of similar objects. One example of such application was shown in Chapter 5.
In this section, we demonstrate how the AMRep representation can be used in analysis of
unlabelled traffic.

7.6.1 TCP flows clustering

In this scenario, the goal is to cluster individual flows (Any-P dataset), which can be used
to identify similar applications active in a network. Results of such clustering can be used,
for example, to uncover new and possibly unwanted applications in the network or as a basis
of anomaly detectors that discover outlying flows that do not belong to any widely used
application.

Since graphical representation of clustering results enables an analyst to quickly identify
groups of similar objects, we again chose to use similarity graph to visualize the results. Since
AMRep is designed such that Euclidean distance between two representations approximates
the MMD distance between the underlying distributions, calculating similarity with Gaussian
kernel as

sim(s1, s2) = exp(−γ′‖s1 − s2‖2), (7.16)

corresponds to a kernel over the space of probability distributions as introduced in [25].
si = L−1ϕ(µi), i ∈ {1, 2}, in Equation 7.16 are AMRep representations of the two compared
message sets as defined in Section 7.4 and γ′ is the width parameter of the Gaussian kernel

87

on the space of representations (which is different from γ used to calculate si). The width
parameter γ′ can be used to change sensitivity of the similarity function, the experiments
presented here used inverse of the median of squared distances between all pairs of repre-
sentations, which is a ”rule of thumb” recommended in [121]. The similarity graph is then
visualized in two-dimensional plane by means of Force Atlas 2 algorithm [76], which causes
highly similar vertices to be attracted to each other, while those with low similarity are
repulsed. Again, to further improve visualization qualities of the graph, edges with weights
close to zero can be omitted to make groups of similar vertices more distinct.

We note that the visualization algorithm and clustering were chosen to enable easy assess-
ment by a human analyst. However, any other clustering algorithm requiring only pairwise
distances, similarities, or even existence of the clustered objects in a metric space could be
used. Examples include k-means, spectral clustering ([68, 69]) or the Louvain method [16],
which can be even applied directly on the similarity graph and is able to optimize also the
number of clusters.

The demonstration of clustering of application flows (Any-P dataset) uses a subset of 5000
TCP flows of 69 different applications used in the previous section. The subset was selected
randomly, but with the restriction that there were at least 10 flows from each application.
Restricting the experiment to only 5000 samples was to enable comprehensive visualization
of results, as more samples would make the graph cluttered.

The similarity graph drawn as described above is shown in Figure 7.6. Nodes are colored
according to different applications (we recall that ground truth is known in this case) to
which the respective flows belong. Flows (nodes) belonging to same applications mostly form
well separated clusters which asserts that AMRep representation is able to distinguish the
applications, using only information about packets’ sizes and their inter-arrival times.

This visualization also helps to understand why the k-NN classifier outperforms the NP
classifier, as discussed in Section 7.5.3. For example, the application ”Cisco Jabber” is spread
over multiple clusters which indicates that it has multiple types of behavior. However, each
cluster is homogenous which allows the k-NN classifier to correctly classify flows from dif-
ferent clusters (it uses the k nearest neighbors that will be likely from the same cluster).
As in previous section, some clusters contain multiple applications mixed together. A closer
inspection of flows of these clusters shows that they have indeed something in common. Few
larger clusters with mixed application contain:

• com.apple.WebKit.Networking, WebProcess and Google Chrome, which can be ex-
plained by WebKit (as already mentioned in the previous section) being a widely used
rendering engine for web pages and being used as a component of many other applications
including the Chrome browser.

• Dropbox.exe, DropboxOriginal and Dropbox109 are different names of the Dropbox
application running on different operating systems that appeared in the network from
which the data were collected.

• Mail, CalendarAgent and AddressBookSourceSync are all processes running on Apple’s
devices responsible (as their names suggest) for a mail client operation and the Calendar
application. These two applications frequently work in tandem, e.g., when a user connects
to Microsoft Exchange server which manages e-mails, meeting invitations etc.

To further review the results of AMRep in a clustering task, the Louvian clustering
algorithm [16] was applied to the same 5000 TCP flows, using the same similarity function
and graph as used in visualization in Figure 7.6. The algorithm returned 73 clusters, which
is surprisingly close to the true number of different applications in the data, which was
69. Furthermore, the same similarity graph was constructed for similarities determined by
FastMMD and also for soft histogram representations (in which case the cosine similarity
was used as it performed better in experiments in Chapter 5) and Louvian clustering was
applied on these graphs, too. Results of these three clusterings are compared by means of
the ARI index [114] in Table 7.4. As we can see, the results follow the trend observed in the

88

previous section — representation based on kernel embedding, especially AMRep, provide
more accurate results when compared to soft histogram ones.

Representation ARI

AMRep 0.71
FastMMD 0.68
SoftHist 0.66

Table 7.4: Values of Adjusted Rand Index (ARI) for clustering of 5000 TCP flows (Any-P)
dataset based different representations.

Although the ARI value 0.71 might seem to be low (given that the ideal solution should
achieve 1.00), an inspection of applications in 8 clusters with the highest silhouette score [117]
(shown in Table 7.5) reveals that the real number will be higher, because of multiple applica-
tions with different labels are in fact very similar — often just different variants of the same
application. For example, Dropbox clients running on different platforms, as can be seen in
Figure 7.6, or the cluster number 5 in Table 7.5 containing only flows belonging to applica-
tions Meeting Center and atmgr.exe that are both related to Cisco Webex service, or the
cluster number 8 which contains mixture of Cisco Jabber and Cisco Webex/Meeting Center
applications that can all work integrated together to allow communication and organizing
calls or teleconferences.

7.7 Chapter summary

This chapter presented an alternative approach to representing network communication based
on kernel embedding of probability distributions. The proposed representation is derived
from a well defined distance on spaces of probability distributions used in kernel two-sample
hypothesis test (known as Maximum Mean Discrepancy). The main advantage of this repre-
sentation is that it does not need to estimate the shape of the probability density functions
to compare the distributions which enables modeling multivariate distributions of higher
dimension even from limited number of observations.

The representation was evaluated and compared to the prior art in the supervised setting
on the problem of identification of application from the observed traffic at two different
levels: (i) identification of application from a set of measurements on TCP packets and (ii)
identification of application from a set of flows that a client exchanged with a server. The
representation was also tested in an unsupervised scenario of identifying groups of TCP flows
initiated by the same applications. The experimental results showed promising potential of
the representation also in this area.

Additionally, the representation was also compared to the soft histogram representation
described in Chapter 5. While the AMRep representation was able to achieve better accuracy
in classification of the network traffic, the soft histograms are on the other hand able to
produce sparser representations. Therefore, both approaches can find their utilization in
practice. When the amount of data to be processed is smaller and the accuracy is very
important, the AMRep should be preferred. When the scalability and fast processing of large
volumes of data (e.g., as a pre-filtering step in more complex security solutions) plays the
most important role, the soft histogram representations can be successfully deployed.

Finally, the approximate computation of distances between probability distributions pro-
posed in this chapter is not limited to the domain of network traffic modeling. It can be
considered for any problem in which the analyzed objects are samples from probability dis-
tributions. This includes multi-instance learning problems (MIL) or Support Measure Ma-

89

Cluster Application Percentage

1 Box Sync 100.00%

2 Dropbox.exe 50.00%
DropboxOriginal 50.00%

thunderbird.exe 89.33%
vmnat.exe 3.37%
Meeting Center 3.00%
vmware-vmrc.exe 2.00%

3 ssh 100.00%

4 APSDaemon.exe 99.49%

5 Meeting Center 55.56%
atmgr.exe 44.45%

6 com.apple.WebKit.Networking 89.47%
Google Chrome 5.26%
firefox.exe 5.26%

7 Dropbox.exe 50.00%
Dropbox109 12.50%
DropboxOriginal 12.50%
Cisco Jabber 12.50%
Google Chrome 12.50%

8 Cisco Jabber 45.45%
Meeting Center 18.18%
Cisco Webex Start 15.15%
CiscoJabber.exe 9.09%
com.apple.WebKit.Networking 6.06%

Table 7.5: Example of 8 clusters with the highest silhouette score produced by the Louvain
algorithm applied on a similarity graph created using AMRep representations of data used
in Section 7.6.1. For each cluster, applications with at least 1% representation in the cluster
are presented.

chines [96]. To better illustrate this, Appendix of this thesis includes an experiment which
shows that AMRep can be used to speed-up a Support Measure Machine classifier.

90

Fig. 7.6: Visualization of similarities of TCP flows (each treated as a message set of pack-
ets) belonging to different applications. Each node represents one TCP flow. The vertices
are colored according to the ground-truth application labels contained in the TCP Flows
dataset. Clusters of nodes containing the most prevalent applications are labelled with those
applications’ names.

91

8

Dictionary representations of persistent behavior

In previous chapters, we studied representations based on the formal model proposed in
Chapter 3 which assumed that the messages interchanged in the communication can be
represented as points in a d-dimensional real space. In other words, the representations
expected that all the features observed on the messages are real-valued. However, in certain
cases, behavior of a network entity can be characterized also by features that do not come
from a continuous domain with ordering. To illustrate this, let us consider following examples:

• It can be expected, that a server providing a specific service can be very likely identified
based on the distribution of transport layer port numbers that it uses. At the transport
layer, the service can be identified by its assigned port number. Although the server can
also communicate on other ports because of other applications running on it (e.g., oper-
ating systems updates, remote logins for administration purposes and server maintenance
and similar purposes), if the main role of the server is to provide that specific service,
its assigned port can be expected to be dominant over other ports observed as active on
the server. While, of course, a service can be configured to use some non-standard port
for its activity which would make this approach ineffective, in many cases this relatively
simple heuristic of marching by port is still successful in discovery of network assets.

• Similarly, user’s identity can be characterized by a set of web pages that he or she fre-
quently visits. Naturally, a user will likely visit many different sites during a period of
a day or two. However, many of these visits will be emphemeral as they are more or
less random visits not tightly connected with user’s identity. On the other hand, users
tend to have their favorite sites that they check repeatedly for new content and updates.
A user will likely check his/her favorite social networks, read news published on news
sites that he or she likes or even use other services that utilize HTTP communication
and communicate to specific servers and domains (e.g., cloud storage services like Box,
Dropbox or Amazon S3, cloud computing services like Amazon Web Services and similar
platforms). The combination of these repeatedly contacted sites can be very specific for
the given user and, as such, can be used to model baseline of user’s normal behavior to
detect anomalies. These approaches form foundations of User and Entity Behavior An-
alytics [55, 77, 122, 82, 60] that are being developed as a protection against so called
insider threats.

• A device, like a cell phone, tablet, laptop or desktop PC can be identified and profiled, for
example, by distribution of UserAgent strings observed in its HTTP communication [65].
The User-Agent field passed in headers of the HTTP protocol is designed to identify the
client’s application which is requesting the given resource from a web server. Therefore, it
may contain a lot of information characterizing the application and the device on which it
is running. For example, in case of web browsers, it typically contains the browser’s name,
version, version and type of the browser’s core and other information that even allow to
infer the device’s operating system from it. By observing the User-Agent strings that are
repeatedly reported from the given device its profile can be built and used, for example,

to track the device over different IP addresses (if no other identifiers are available) or
to detect suspicious changes in its behavior (which, again, falls into the UEBA models
mentioned above).

All the above listed examples show use-cases in which discrete features are used to model
long-term (or persistent) behavior of a user or device. This discrete (or categorical) nature of
the features does not allow to directly represent the messages in a communication as points
in a d-dimensional real space and directly apply the representations described in previous
chapters.

While approaches based on string kernels [88] or semantic word embedding [93] could be
in theory used, in practice it is problematic due to unclear semantic relations and similarities
within features. Moreover, whenever a new feature of this type appears, the embedding
mechanism needs to be trained for it. Therefore, more lightweight ways how to represent
the network entities’ behavior using such features need to be found. An easier to maintain
way is to use an approach inspired by the Bag-of-Words (BoW) representations applied often
in natural image processing, text analysis or even computer vision [135]. In this case, the
definition of a message from Chapter 3 can be further relaxed such that a message m is
represented as an instance from some dictionary D of possible feature’s instances. The BoW
representation is a frequency vector in which each element represents one possible instance
from the dictionary and the value of the respective element represents the frequency of
observing this specific instance for the given object that is being represented.

To illustrate this by an example, let us assume that the messages are contacted servers’
hostnames (hence, the dictionary D contains all hostnames that can be possibly con-
tacted). The observed instances can be, for example, www.google.com, mail.google.com,
www.yahoo.com etc. If a user (whose behavior is the represented message set) issued, for ex-
ample, two requests to www.google.com, two requests to mail.google.com and one request
to www.yahoo.com within the time frame in which the observations are collected, then the
resulting representation looks like:

(www.google.com : 2, mail.google.com : 2, www.yahoo.com : 1)

Many different variants of the BoW model have been proposed in the literature, focusing
on different aspects of the representation, including automatic learning of the dictionary
or enforcing sparsity of representations ([130, 152, 149, 92]). The produced representations
are potentially high-dimensional but sparse vectors that can be thus effectively processed
using similar algorithms as shown in Chapters 5 and 6, as they can be treated as histogram
representations, too. However, a problem of this straightforward approach shown in the above
example is that if the pattern which is the most important for the given message set is not
prevalent enough, it might be easily suppressed by other communication which is not that
specific for the represented entity. Consider, for example, a device whose operating system is
periodically checking for updates on its vendors’ web server. These regular checks for updates
are a good indicator of what type of device it is and what kind of operating system it is
running. On the other hand, if the device is not left idle and is used for common work, much
more communication activity can be observed from it which will overwhelm the relatively
lightweight activity related to that update checks. This hardens the correct inference the
device type. Therefore, we further propose a representation which is inspired by the idea of
the BoW model but is designed to capture persistent behavior of the modeled entity and to
suppress the influence of high but short-term bursts of communication that could hide the
important patterns specific for the given entity.

8.1 Modeling of persistent behavior

As was stated above, for cases when it is desired to capture long-term (which we call persis-
tent) patterns in behavior of modeled entities, the BoW model needs to be properly modified.

94

The modification which we propose is distantly inspired by the method of measuring per-
sistence published in [59]. The core idea is not to capture raw frequencies of the observed
messages, but to capture in how many different time windows the message was observed.
This approach can be viewed as a kind of de-noising. While the raw counts of message’s
observations can significantly vary even for the same entity, the number of time windows in
which a message was observed will tend to be more stable if a given message indeed belongs
to a persistent behavioral pattern. Formally, the method can be described as follows:

Let us consider a dictionary of possible messages’ instances D and a message set R =
{m1, ...,mn|mi ∈ D} which captures behavior of the represented entity. Additionally, we
assume that for each message mi, we have a timestamp indicating the time when the message
was observed, denoted as tmi

. This is not a constraint in practice, as most of the logging
systems (such as routers or web proxies) provide a timestamp for each log entry anyway.
The time period for which the representation is built is divided into T consecutive time
windows W = {w1, ..., wT } of the same length L. The values T and L are parameters of the
representation and can be set arbitrarily with respect to the given situation. For example, if
L is set to 1 hour and T to 24, then the representation will cover 1 day of behavior composed
of 24 time windows, each spanning 1 hour.

The frequency vector h representing the given message set is then constructed in the
similar way as in the standard BoW model but the value for an entry m ∈ D is given by the
formula:

hm =

T∑
i=1

[∃m ∈ R : tm is within wi] . (8.1)

Instead of counting the raw occurrences of m ∈ D in the message set R, the proposed
representation counts the number of windows in which the message m was observed. This
suppresses the effect of messages that would appear as bursts within a small number of time
windows.

The above described process of building a representation of persistent behavior using the
modified BoW model is illustrated in Figure 8.1. In this example, the dictionary D consists
of servers’ hostnames. In the upper part of the figure, we can see the message set R for which
the representation is built, containing hostnames that were contacted by the modeled entity
(e.g., a client’s personal laptop) together with timestamps indicating when the connections
to those servers were issued. Then, in the middle part of the figure, we can see the time
windows W and values of the Iverson bracket term used in Equation (8.1) (indicated by 0/1
values). The example uses 6 windows (T = 6) of length 5 minutes (L = 5 minutes). Finally,
in the bottom part of the figure, we can see the BoW frequency vector created by summing
the results of the predicate for each message D.

8.2 Experimental evaluation

In this section, we evaluate the method for representation of persistent behavior using discrete
features described in this chapter. We show that by using the proposed representation, an op-
erating system type can be classified using only information about hostnames of servers that
were contacted by the classified device. The dataset Hostnames was used for this evaluation
which is described in Chapter 4 (Section 4.5).

8.2.1 Operating system family classification

Motivation

An administrator of a corporate network is typically able to identify a device type or operating
system of only a fraction of the network connected devices that have manually assigned
static IP addresses or IP range and serve some specific purpose. However, devices in the

95

13:01 update.apple.com
13:02 www.seznam.cz
13:06 www.google.com
13:07 www.google.com
13:16 update.apple.com
13:16 www.google.com
13:26 update.apple.com

www.google.com

www.seznam.cz

update.apple.com

10 0 0

0 0

0 1

0

13:00 13:05 13:10 13:15 13:20 13:25 13:30

1 0

01 0

1 0 10

(www.google.com : 2, www.seznam.cz : 1, update.apple.com : 3)

Message set

Fig. 8.1: Example of building a BoW representation which captures persistent behavior of
the modeled entity.

dynamically assigned ranges (e.g. guest networks, campus networks, bring-your-own-device
(BYOD) networks, etc.) cannot be tracked this way. However, logs of network activity of a
device can contain information which helps to identify its kind. Among other activities, an
operating system occasionally contacts specific servers and services, for example, to check
the Internet connection, to check and download software updates and applications from
repositories or to report technical issues. Therefore, logs of these connections can be leveraged
to identify what type of operating system is running on an unknown device. This helps an
administrator to get insight into the network and might help to identify devices that are not
allowed in the network or to identify potential risks.

Network traffic logs were utilized in prior art works to identify the devices. User-Agent
strings were leveraged in several earlier works to identify operating systems. The work [3]
used the User-Agent strings together with additional features extracted from encrypted TLS
communication to classify operating systems. Similarly, the work [75] uses a dictionary of
fingerprints of initial packets in TLS connections and User-Agent strings to identify client
devices (their types including operating systems). The User-Agent strings are used as labels
to identify an unknown device when only the TLS fingerprints are available from it.

Unlike User-Agent strings or parameters of TLS connections, information about the des-
tination of a connection — the target server — can be obtained from almost all logs of
communication. Hostname of the target server can be either logged directly (for example, in
case of web proxy logs) or it can be inferred from the IP address of the server using passive
DNS records. Despite that, to best of our knowledge, there is no prior art work that would
deal with devices identification based purely on the logs of contacted servers.

Therefore, this experiment had two main goals. First, to verify that even the relatively
limited information in the form of contacted hostnames can be used to identify the types of
operating systems. Second, to show that the performance of operating systems classification
improves with the increasing number of time windows that are used to capture the behavior
of devices, because the modified BoW model focuses on persistent behavior which we assume

96

is more distinctive after longer period of observation. Additionally, the experiment shows
how long a device’s activity needs to be observed in order to achieve good classification
performance.

Dictionary

The Hostnames dataset uses hostnames of contacted servers as individual messages. There-
fore, the dictionary D could be a set of all possible hostnames in the Internet, which would
be huge. Because of that, we employed the following heuristic selection of hostnames for the
dictionary in order to make it more compact and suitable for processing.

A large corpus of HTTP requests coming from 500 corporate networks and spanning one
week of traffic was obtained (we emphasize that the three companies from which the dataset
Hostnames was created were not included in those 500). Then, we selected requests that were
identified as belonging to devices running one of the three operating systems contained in the
Hostnames dataset (i.e., Apple, Android or Windows) by using the information contained in
the User-Agent strings when available as in [75].

Next, we uniformly sampled from the corpus equal number of requests for each operating
system family, namely 3 000 000 requests for each. These sampled data were then used to
estimate a conditional probability P (os|h) for each hostname h and operating system family
os in the sampled data, i.e. conditional probability distributions over the three operating
system families conditioned on each hostname. The motivation for this is that if the condi-
tional distribution has a very low entropy, the given hostname h is a good candidate for the
dictionary as it is possibly indicative for one of the operating system families.

Finally, the hostnames were sorted in ascending order by entropies of their respective
conditional distributions to reveal the most indicative ones and 120 hostnames were selected
after manual analysis for the dictionary. Therefore, the dictionary D used for this experiment
contained 120 selected hostnames.

Classification

The experiment simulates the case when there are labeled data available to build a classifier
which is then able to classify representations of devices in an unknown network (or its part)
for which the labels can not be obtained. The evaluation was performed in the ”leave-one-
company-out” manner. In each fold, data from networks of two companies from the dataset
were used as labelled data for building a classifier and data from the third company were
used for evaluating performance of the classifier. The final results were then averaged over
all three folds. This setup well simulated the case when a trained classifier is deployed in a
new unknown network.

The parameter L (time period covered by one time window), which is the size of one
time window, was set to 5 minutes. The parameter T (i.e., the number of consecutive time
windows used to build the representation) varied from 96 (to cover 8 hours of behavior) to
336 (to cover 28 hours of behavior).

To provide the first insight into the problem, we present a t-SNE [137] plot created using a
sample of data from these three companies in Figure 8.2. Each dot represents one device and
distances between dots follow L2 distances between the respective BoW vectors that represent
the devices. Dots are colored with respect to the operating system family determined by the
ground truth label contained in the dataset. The plot shows that significant portion of devices
form smaller and clear clusters of those that are running the same type of operating system.
On the other hand, the total composition of the dots — especially in the middle region —
promotes usage of a classifier which would leverage the local similarities. This, therefore,
leads us to apply the k-NN classifier again which is exactly able to leverage these properties.

The value of parameter k in the k-NN classifier was in each fold of the ”leave-one-company-
out” evaluation determined by cross-validation performed on data from the two companies
that were used as the training set in the given fold. The searched values of k ranged from 1

97

Fig. 8.2: Visualization of similarities of different operating system families (Windows class
was uniformly sampled).

to 20. The k-NN classifier used the L2 distance function and the majority voting among the
nearest neighbors was used to obtain the classifier’s output.

Results of the classification are shown in Figure 8.3. We present classification precision
and recall for individual operating system families depending on the parameter T (the number
of time windows used). First, as can be seen from the graphs in Figure 8.3, the results prove
that basic identification of operating systems using only the information about contacted
servers is possible. Furthermore, we can see that as the parameter T increases and the
representation covers longer time period, both the precision and recall show rising trends,
too. This confirms the assumption that as we observe the behavior of the devices for a
longer time, the behavioral patterns specific for individual operating system families emerge
more clearly and the representation of the behavior is able to capture them. Differences in
classification performance of individual operating systems exist — the most is successful
is the identification of Windows-based systems (which is almost perfect), mainly because
their behavior is very specific with respect to the persistently contacted domains hosted by
Microsoft (the clear separation of the devices can be seen from the plot in Figure 8.2).

On the other hand, the lowest precision and recall was achieved on the Android-based
systems. This can be attributed to the fact that in case of Android systems, there are mul-
tiple different vendors that provide more or less modified variants of the system. Therefore,
behavior of the Android-based devices is more heterogenous which decreases the accuracy of
their identification.

Overall, we can conclude that after approximately one day of traffic (i.e., for T > 288), the
operating systems can be identified with reliable results and can be considered for practical
deployments.

98

100 200 300

0.6

0.8

1

V
a
lu

e

Android – precision

100 200 300

0.6

0.8

1

Android – recall

100 200 300

0.6

0.8

1

V
a
lu

e

Apple – precision

100 200 300

0.6

0.8

1

Apple – recall

100 200 300

0.6

0.8

1

Time windows used (T)

V
a
lu

e

Windows – precision

100 200 300

0.6

0.8

1

Time windows used (T)

Windows – recall

Fig. 8.3: Precision and recall of OS family classification for different operating system families
depending on the number of time windows used. The trend shows that with increasing number
of time windows, performance of the classification increases as well. The representation is
able to capture long-term patterns in the devices’ behavior that are specific for different
types of operating systems.

8.3 Chapter summary

In this chapter, we proposed a representation which is able to process messages represented
by discrete features. Specifically, we focused on representation of persistent patterns in the
behavior of modeled entities. The representation is derived from the Bag-of-Words (BoW)
model and adapted to emphasize messages that appear repeatedly in the communication,
but not necessarily with regular or periodical pattern.

99

We demonstrated usage of this representation on the task of identification of operating
system families running on network devices. The results show that by using the BoW-based
representation of persistent behavior, the high-level identification of operating systems is
possible using only very limited information about their activity — hostnames of contacted
servers. Such information can be obtained from almost all types of traffic logs with minimal
impact on users’ privacy. This makes this method very sufficient for various scenarios in
which insight into a network needs to be obtained.

100

9

Conclusions

The applications of machine learning algorithms for analysis of network traffic data, either for
security or network management purposes, became common in recent years. Main reasons
why we can see such trend include both the rising amounts of data that are infeasible to
handle by humans and more successes of artificial intelligence in other domains. With wider
adoption of the algorithms that help to process the data, different representations of the
analyzed traffic were developed as well. In this thesis, we reviewed various representations
used in prior works to automatically detect malware activity or to identify applications
communication over the network.

While the reviewed representations were mostly proposed for specific tasks and algo-
rithms, some common patterns can be observed. Based on these observations, we introduced
the general notions of messages and message sets that represent the basic units of commu-
nication. Using this terminology, we proposed a formal model of communication which is
independent of any specific representation or algorithm. This model was based on probabilis-
tic view and provided an unifying view on the representations and a basis from which the
representations can be derived.

Using this formal model, we described different approaches for representing the network
traffic as samples form probability distributions. While the histogram-based approaches offer
a scalable way how to capture the behavior of network entities, the approaches based on kernel
embedding of distributions provide improved accuracy and possibility to jointly model higher
number of features.

The representations were evaluated in different scenarios that cover varied use-cases in
network security and management. The key motivation was to propose representations that
can be used by computer algorithms which significantly ease the analysis of data by human
analysts. Therefore, in each representation we put emphasis on the ability to easily compare
the represented objects by appropriate similarity functions. As we stated in the introduction,
the ability to find similar or dissimilar objects in a dataset is a key precondition for various
tasks in data analysis — the anomaly detection, clustering or classification of objects. There-
fore, we demonstrated in the experiments various scenarios that all leverage the pair-wise
similarities or dissimilarities of the representations to achieve the desired goals. This was
mostly demonstrated on the k-nearest neighbors (k-NN) paradigm that exactly relies on the
properties of similarity function. In the security domain, data are often very complex and
the local similarities have to be leveraged which is exactly done by the k-NN classifier.

Similarly, in tasks of unsupervised analysis data like clustering, the pair-wise similarities
play critical role, too. If the representations do not provide reliable way how to assess the
similarity of two objects or such similarity function does not reflect the intuition which entities
should be grouped together and which not, all the algorithmic machinery for processing the
representations would be useless.

Overall, the proposed representations proved to be general frameworks that can be
adapted to different use-cases. We showed that they can be easily suited to model network

traffic at different layers of the TCP/IP stack and used in both supervised and unsuper-
vised machine learning applications. This represents an important contribution to the field
of artificial intelligence application in network traffic analysis.

The approach established in this thesis can be used in future works to further improve
and extend the ways how to represent behavior in computer networks and learn new repre-
sentations. Moreover, the results achieved in the domain of kernel embedding of distributions
go beyond the scope of network security as they can be applied in other domains as well,
including general learning with probability distributions or multi-instance learning (MIL)
problems.

9.1 Thesis achievements

Here we summarize the main accomplishments achieved in this thesis. The list also contains
references to respective chapters in which the main part of each contribution is discussed:

• First, after reviewing various representations of network traffic in prior art works, a formal
model of the communication was proposed. The model is based on probabilistic approach,
viewing each sample of communication as sample from a probability distribution. (Chap-
ter 2 and Chapter 3)

• Next, histogram-based approaches for representing the traffic behavior were evaluated in
different scenarios and an effective algorithm for k-NN similarity search on large corpus
of histogram data was proposed and evaluated. This demonstrated that the sparse joint
histograms are representations suitable for large scale analysis of network data. (Chapter 5
and Chapter 6)

• Furthermore, representations based on kernel embedding of probability distributions were
explored. A new representation which allows theoretically well justified comparison of
represented objects based on approximated Maximum Mean Discrepancy (MMD) was
designed, because MMD was originally proposed as a two-sample test (test of equality
of two distributions) which has also properties of a metric on the space of probability
distributions.
The experiments with algorithms that directly utilize this information about similarity
or dissimilarity of objects proved that the proposed representation can be successfully
deployed in both supervised and unsupervised analysis of data. Moreover, the results
achieved in this area can be extended outside the scope of network security to other
domains where the objects of interest are samples from probability distributions, for
example, support measure machines (SMM).
The proposed method represents each sample from a probability distribution in a form
of real vector such that Euclidean distances between vectors approximate the original
MMD. Thanks to this property, a large variety of algorithms can be immediately applied
on the representations regardless of whether they were originally designed for analysis of
probability distributions or not. (Chapter 7)

• Finally, a modified Bag-of-Words (BoW) model was proposed to represent persistent be-
havior of modeled entities using discrete features. Usability of this representation was
demonstrated on a task of identifying operating system families by observing contacted
servers. The results proved that by leveraging the long-term information about the behav-
ior, operating system families can be identified using only very basic information about
their behavior. (Chapter 8)

102

9.2 Author’s publications

The sections summarizes the publications of the author of this thesis:

Articles in journals with impact factor

1. Jan Kohout, Tomáš Pevný. Network Traffic Fingerprinting Based on Approximated
Kernel Two-Sample Test. In: IEEE Transactions on Information Forensics and Security.
2017, 13(3), pages 788–801. Impact factor 6.21 (80%)

2. Jan Kohout, Tomáš Komárek, Přemysl Čech, Jan Bodnár, Jakub Lokoč. Learning
communication patterns for malware discovery in HTTPs data. In: Expert Systems with
Applications. 2018, 101, pages 129–142. Impact factor 4.92 (20%)

3. Ján Jusko, Martin Rehák, Jan Stiborek, Jan Kohout, Tomáš Pevný. Using Behavioral
Similarity for Botnet Command-and-Control Discovery. In: IEEE Intelligent Systems.
2016, 31(5), pages 16–22. Impact factor 2.59 (15%)

Patents

1. Jan Kohout, Ján Jusko, Martin Rehák, Tomáš Pevný. Detection of malicious network
connections. US Patent 9,531,742, 2016. (Issued)

2. Jan Kohout, Tomáš Pevný. Framework for joint learning of network traffic representa-
tions and traffic classifiers. US Patent 10,079,768, 2018. (Issued)

3. Jan Mrkos, Martin Grill, Jan Kohout. Tracking users over network hosts based on user
behavior. US Patent 10,129,271, 2018. (Issued)

4. Martin Kopp, Martin Grill, Jan Kohout. Identifying self-signed certificates using http
access logs for malware detection. US Patent 10,375,097, 2019. (Issued)

5. Jan Kohout, Tomáš Pevný. Statistical fingerprinting of network traffic. US Patent
Application 15/409,746, 2019. (Allowed by USPTO, issue pending)

In ISI proceedings

1. Jan Kohout, Tomáš Pevný. Unsupervised detection of malware in persistent web traf-
fic. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1757–1761, IEEE, 2015. (50%)

2. Jan Kohout, Tomáš Pevný. Automatic discovery of web servers hosting similar applica-
tions. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1310–1315, IEEE, 2015. (50%)

3. Přemysl Čech, Jan Kohout, Jakub Lokoč, Tomáš Komárek, Jakub Maroušek, Tomáš
Pevný. Feature extraction and malware detection on large HTTPS data using MapRe-
duce. In: International Conference on Similarity Search and Applications, pages 311–324,
Springer, 2016. (16.67%)

4. Martin Kopp, Martin Grill, Jan Kohout. Community-based anomaly detection. In: 2018
IEEE International Workshop on Information Forensics and Security (WIFS), IEEE,
2018. (20%)

103

In other proceedings

1. Jakub Lokoč, Jan Kohout, Přemysl Čech, Tomáš Skopal, Tomáš Pevný. k-NN Classifi-
cation of Malware in HTTPS Traffic Using the Metric Space Approach. In: Pacific-Asia
Workshop on Intelligence and Security Informatics, pages 131–145, Springer, 2016. (20%)

9.3 Other author’s publications

Publications of the author not directly related to the topic of this thesis:

In ISI proceedings

1. Jan Kohout, Roman Neruda. Two-phase genetic algorithm for social network graphs
clustering. In: 2013 27th International Conference on Advanced Information Networking
and Applications Workshops, pages 197–202, IEEE, 2013. (50%)

In other proceedings

1. Jan Kohout, Roman Neruda. Exploration and exploitation operators for genetic graph
clustering algorithm. In: International Symposium on Methodologies for Intelligent Sys-
tems, pages 87–92, Springer, 2012. (50%)

104

References

1. C. C. Aggarwal. Outlier Analysis. Springer New York, 2013.
2. M. Ahmed, A. Naser Mahmood, and J. Hu. A survey of network anomaly detection techniques.

Journal of Network and Computer Applications, 2016.
3. B. Anderson and D. McGrew. Os fingerprinting: New techniques and a study of information

gain and obfuscation. In 2017 IEEE Conference on Communications and Network Security
(CNS), pages 1–9. IEEE, 2017.

4. N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical
society, 1950.

5. F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

6. F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In
Proceedings of the 22Nd International Conference on Machine Learning, 2005.

7. M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and M. Karir. A survey of botnet technology and
defenses. In 2009 Cybersecurity Applications & Technology Conference for Homeland Security,
2009.

8. F. Baker. Requirements for IP Version 4 Routers. RFC 1812, 1995.
9. M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring and

manipulating networks, 2009.
10. L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov

chains. The annals of mathematical statistics, 1966.
11. R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. In

Software pioneers, pages 245–262. Springer, 2002.
12. L. Bernaille, R. Teixeira, and K. Salamatian. Early application identification. In Proceedings

of the 2006 ACM CoNEXT Conference, 2006.
13. J. C. Bezdek and L. I. Kuncheva. Nearest prototype classifier designs: An experimental study.

International journal of Intelligent systems, 2001.
14. L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel. Disclosure: Detecting botnet

command and control servers through large-scale netflow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference, 2012.

15. A. Bjerhammer. Application of calculus of matrices to method of least squares with special
reference to geodetic calculations. Transactions of the Royal Institute of Technology, Stockholm,
Sweden, 1951.

16. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of statistical mechanics: theory and experiment, 2008.

17. J. Brabec and L. Machlica. Decision-forest voting scheme for classification of rare classes in
network intrusion detection. In 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2018.

18. R. T. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122, 1989.
19. S. Brin. Near neighbor search in large metric spaces. In VLDB’95, Proceedings of 21th Inter-

national Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland.,
pages 574–584, 1995.

20. A. H. Cannon and L. J. Cowen. Approximation algorithms for the class cover problem. Annals
of Mathematics and Artificial Intelligence, 2004.

21. S.-H. Cha. Comprehensive survey on distance/similarity measures between probability density
functions. International Journal of Mathematical Models and Methods in Applied Sciences,
2007.

22. Ch.-Ch. Chang and Ch.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

23. Edgar Chávez and Gonzalo Navarro. A compact space decomposition for effective metric
indexing. Pattern Recogn. Lett., 26(9):1363–1376, July 2005.

24. Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqúın. Searching in
metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

25. A. Christmann and I. Steinwart. Universal kernels on non-standard input spaces. In Proceedings
of the 23th International Conference on Neural Information Processing Systems, 2010.

26. O. Chum. Low dimensional explicit feature maps. In 2015 IEEE International Conference on
Computer Vision (ICCV), 2015.

27. O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-idf
weighting. In BMVC, 2008.

28. Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

29. Cisco. Cisco AnyConnect Secure Mobility Client. https://www.cisco.com/c/en/us/support/
security/anyconnect-secure-mobility-client/tsd-products-support-series-home.

html, 2019.
30. Cisco. Cisco Tetration. https://www.cisco.com/c/en/us/products/

data-center-analytics/tetration-analytics/index.html, 2019.
31. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier

series. Mathematics of computation, 1965.
32. M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Detecting http tunnels with statistical mech-

anisms. Proceedings of the 42nd IEEE International Conference on Communications (ICC),
2007.

33. M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic classification through simple statistical
fingerprinting. SIGCOMM Comput. Commun. Rev., 2007.

34. A. Dainotti, F. Gargiulo, L. I. Kuncheva, A. Pescapè, and C. Sansone. Identification of traffic
flows hiding behind tcp port 80. In 2010 IEEE International Conference on Communications.
IEEE, 2010.

35. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

36. S. E. Deering and B. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 8200,
2017.

37. L. Devroye, L. Györfi, and G. Lugosi. Consistency of the k-Nearest Neighbor Rule, chapter 11,
pages 169–185. Springer New York, 1996.

38. I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras. Inside Dropbox:
Understanding personal cloud storage services. In Proceedings of the 2012 ACM Conference
on Internet Measurement Conference, 2012.

39. P. Drineas and M. W. Mahoney. On the Nyström Method for Approximating a Gram Matrix
for Improved Kernel-Based Learning. Journal of Machine Learning Research, 6:2153–2175,
2005.

40. R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D. M. J. Tax, and S. Verzakov.
PR-Tools, a matlab toolbox for pattern recognition, 2015. http://prtools.org.

41. M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel hunter: Detecting application-layer
tunnels with statistical fingerprinting. Computer Networks, 2009.

42. M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel hunter: Detecting application-layer
tunnels with statistical fingerprinting. Computer Networks, 2009.

43. A. Este, F. Gargiulo, F. Gringoli, L. Salgarelli, and C. Sansone. Pattern recognition approaches
for classifying ip flows. In Joint IAPR International Workshops on Statistical Techniques in
Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages
885–895. Springer, 2008.

44. T. Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861–874, 2006.

106

45. G. Fedynyshyn, M. Ch. Chuah, and G. Tan. Detection and classification of different botnet
c&c channels. In Proceedings of the 8th International Conference on Autonomic and Trusted
Computing, 2011.

46. M. Feily, A. Shahrestani, and S. Ramadass. A survey of botnet and botnet detection. In
Proceedings of the 2009 Third International Conference on Emerging Security Information,
Systems and Technologies, 2009.

47. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol – HTTP/1.1, 1999. [Online].

48. P.-E. Forssén. Image analysis using soft histograms. In Proceedings of the SSAB Symposium
on Image Analysis: Norrköping, 2001.

49. V. Franc, M. Sofka, and K. Bartos. Learning detector of malicious network traffic from
weak labels. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, 2015.

50. E. P. Freire, A. Ziviani, and R. M. Salles. On metrics to distinguish skype flows from http
traffic. In 2007 Latin American Network Operations and Management Symposium, pages 57–66.
IEEE, 2007.

51. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer series
in statistics Springer, Berlin, 2001.

52. K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional depen-
dence. In NIPS, 2008.

53. S. Garćıa, V. Uhĺır, and M. Rehak. Identifying and modeling botnet c&c behaviors. In Pro-
ceedings of the 1st International Workshop on Agents and CyberSecurity, 2014.

54. S. Garćıa, A. Zunino, and M. Campo. Survey on network-based botnet detection methods.
Security and Communication Networks, 2014.

55. Gartner. Market Guide for User and Entity Behavior Analytics. https://www.gartner.com/

doc/3134524/market-guide-user-entity-behavior, 2015.
56. C. F. Gauss. Theoria interpolationis methodo nova tractata werke. Göttingen: Königliche

Gesellschaft der Wissenschaften, 1886.
57. M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of

Machine Learning Research, 2:299–312, 2002.
58. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via

hashing. In Proceedings of the 25th International Conference on Very Large Data Bases, VLDB
’99, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

59. F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki. Exploiting tem-
poral persistence to detect covert botnet channels. In Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection, 2009.

60. G. Gonzalez-Granadillo, S. Gonzalez-Zarzosa, and M. Faiella. Towards an enhanced security
data analytic platform. In Proceedings of the 15th International Joint Conference on e-Business
and Telecommunications (ICETE 2018) - Volume 2: SECRYPT, 2018.

61. A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample
test. Journal of Machine Learning Research, 2012.

62. A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu, and B. K.
Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. In Advances in neural
information processing systems, pages 1205–1213, 2012.

63. M. Grill. Combining network anomaly detectors. PhD thesis, Czech Technical University in
Prague, 2016.

64. M. Grill, T. Pevný, and M. Rehak. Reducing false positives of network anomaly detection by
local adaptive multivariate smoothing. Journal of Computer and System Sciences, 2017.

65. M. Grill and M. Rehák. Malware detection using http user-agent discrepancy identification.
In 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pages
221–226. IEEE, 2014.

66. G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of network traffic for
protocol- and structure-independent botnet detection. In Proceedings of the 17th Conference
on Security Symposium, 2008.

67. J. A. Gubner. Probability and random processes for electrical and computer engineers. Cam-
bridge University Press, 2006.

68. J. A. Hartigan. Clustering algorithms. Wiley New York, 1975.

107

69. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer New
York Inc., 2001.

70. D. M. Hawkins. Identification of outliers. Springer, 1980.
71. D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: attacking popular

privacy enhancing technologies with the multinomial näıve-bayes classifier. In Proceedings of
the 2009 ACM workshop on Cloud computing security. ACM, 2009.

72. E. Hjelmvik and W. John. Statistical protocol identification with SPID: Preliminary results.
In Swedish National Computer Networking Workshop, 2009.

73. R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras. Flow
monitoring explained: From packet capture to data analysis with netflow and ipfix. IEEE
Communications Surveys & Tutorials, 16(4):2037–2064, 2014.

74. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 1985.
75. M. Husák, M. Cermák, T. Jirśık, and P. ˇ Celeda. Network-based https client identification

using ssl/tls fingerprinting. In 2015 10th International Conference on Availability, Reliability
and Security, pages 389–396. IEEE, 2015.

76. M. Jacomy, S. Heymann, T. Venturini, and M. Bastian. Forceatlas2, a continuous graph layout
algorithm for handy network visualization. Medialab center of research, 2011.

77. J. T. Johnson. User behavioral analytics tools can thwart se-
curity attacks. http://searchsecurity.techtarget.com/feature/

User-behavioral-analytics-tools-can-thwart-security-attacks, 2015.
78. K. S. Jones. A statistical interpretation of term specificity and its application in retrieval.

Journal of documentation, 1972.
79. J. Jusko. Graph-based Detection of Malicious Network Communities. PhD thesis, Czech Tech-

nical University in Prague, 2017.
80. J. Jusko, M. Rehák, and T. Pevný. A memory efficient privacy preserving representation of con-

nection graphs. In Proceedings of the 1st International Workshop on Agents and CyberSecurity,
2014.

81. J. Jusko, M. Rehak, J. Stiborek, J. Kohout, and T. Pevny. Using behavioral similarity for
botnet command-and-control discovery. IEEE Intelligent Systems, 2016.

82. Ch.-H. Kao, J.-H. Dai, R. Ko, Y.-T. Kuang, Ch.-P. Lai, and Ch.-H. Mao. MITC Viz: Visual An-
alytics for Man-in-the-Cloud Threats Awareness. In 2016 International Computer Symposium
(ICS), pages 306–311. IEEE, 2016.

83. T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel traffic classification in
the dark. SIGCOMM Comput. Commun. Rev., 2005.

84. T. Kohonen. Self-organized formation of topologically correct feature maps. Biological cyber-
netics, 1982.

85. M. Kopp, M. Grill, and J. Kohout. Community-based anomaly detection. In 2018 IEEE
International Workshop on Information Forensics and Security (WIFS). IEEE, 2018.

86. M. Liberatore and B. N. Levine. Inferring the Source of Encrypted HTTP Connections. In
Proc. ACM conference on Computer and Communications Security (CCS), 2006.

87. S. Lloyd. Least squares quantization in PCM. IEEE transactions on information theory, 1982.
88. H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and Ch. Watkins. Text classification

using string kernels. Journal of Machine Learning Research, 2:419–444, 2002.
89. D. Lopez-Paz. From Dependence to Causation. PhD thesis, University of Cambridge, 2016.
90. Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest neighbor

joins using mapreduce. Proc. VLDB Endow., 5(10):1016–1027, June 2012.
91. A. Manukyan and E. Ceyhan. Classification of Imbalanced Data with a Geometric Digraph

Family. Journal of Machine Learning Research, 2016.
92. R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection using social force

model. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 935–942.
IEEE, 2009.

93. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

94. H. D. K. Moonesinghe and P.-N. Tan. OutRank: a graph-based outlier detection framework
using random walk. International Journal on Artificial Intelligence Tools, 2008.

95. E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the American
Mathematical Society, 1920.

108

96. K. Muandet, K. Fukumizu, F. Dinuzzo, and B. Schölkopf. Learning from Distributions via
Support Measure Machines. In Proceedings of the 25th International Conference on Neural
Information Processing Systems, 2012.

97. K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al. Kernel mean embedding of
distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2):1–
141, 2017.

98. J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir, and O. Pele. Analyzing
https encrypted traffic to identify user’s operating system, browser and application. In 2017
14th IEEE Annual Consumer Communications & Networking Conference (CCNC), pages 1–6.
IEEE, 2017.

99. P.J. Nahin. The Science of Radio. AIP Press, 1996.
100. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, 2001.
101. T. T. T. Nguyen and G. J. Armitage. A survey of techniques for internet traffic classification

using machine learning. IEEE Communications Surveys and Tutorials, 2008.
102. David Novak, Michal Batko, and Pavel Zezula. Metric index: An efficient and scalable solution

for precise and approximate similarity search. Inf. Syst., 36(4):721–733, 2011.
103. David Novak, Martin Kyselak, and Pavel Zezula. On locality-sensitive indexing in generic

metric spaces. In Proceedings of the Third International Conference on SImilarity Search and
APplications, SISAP ’10, pages 59–66, New York, NY, USA, 2010. ACM.

104. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

105. R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge
philosophical society, 1955.

106. Tomáš Pevny and Andrew D Ker. Towards dependable steganalysis. In IS&T/SPIE Electronic
Imaging, 2015.

107. J. Postel. User Datagram Protocol. RFC 768, 1980.
108. J. Postel. Internet Protocol. RFC 791, 1981.
109. J. Postel. Transmission Control Protocol. RFC 793, 1981.
110. G. Powell. Beginning database design. John Wiley & Sons, 2006.
111. C. E. Priebe, D. J. Marchette, J. G DeVinney, and D. A Socolinsky. Classification using class

cover catch digraphs. Journal of classification, 2003.
112. J. G. Proakis and D. G. Manolakis. Digital Signal Processing (3rd Ed.): Principles, Algorithms,

and Applications. Prentice-Hall, Inc., 1996.
113. A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proceedings of

the 20th International Conference on Neural Information Processing Systems, 2007.
114. W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the Amer-

ican Statistical Association, 1971.
115. P. M. Roth, M. Hirzer, M. Köstinger, C. Beleznai, and H. Bischof. Mahalanobis distance

learning for person re-identification. In Person re-identification, pages 247–267. Springer, 2014.
116. M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service Mapping for QoS: A

Statistical Signature-based Approach to IP Traffic Classification. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, 2004.

117. P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 1987.

118. W. Rudin. Fourier Analysis on Groups. Dover Books on Mathematics. Dover Publications,
2017.

119. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.
ACM, 1975.

120. D. Schatzmann, W. Mühlbauer, T. Spyropoulos, and X. Dimitropoulos. Digging into HTTPS:
Flow-based Classification of Webmail Traffic. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, 2010.

121. B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond (adaptive computation and machine learning). The MIT Press
Cambridge, 2001.

122. M. Shashanka, M.-Y. Shen, and J. Wang. User and entity behavior analytics for enterprise
security. In 2016 IEEE International Conference on Big Data (Big Data), pages 1867–1874.
IEEE, 2016.

109

123. H. Shimazaki and S. Shinomoto. A method for selecting the bin size of a time histogram.
Neural computation, 19(6):1503–1527, 2007.

124. E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances
in neural information processing systems, 2006.

125. L. Song. Learning via Hilbert space embedding of distributions. PhD thesis, University of
Sydney, 2008.

126. K. Sricharan and A. O. Hero III. Efficient anomaly detection using bipartite k-NN graphs.
In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, 2011.

127. B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. G. Lanckriet. Hilbert
space embeddings and metrics on probability measures. Journal of Machine Learning Research,
2010.

128. J. Stiborek, T. Pevný, and M. Rehák. Probabilistic analysis of dynamic malware traces. Com-
puters & Security, 2018.

129. M. Subhransu and C. B. Alexander. Max-margin additive classifiers for detection. 2009 IEEE
12th International Conference on Computer Vision, pages 40–47, 2009.

130. H. Sun, X. Sun, H. Wang, Y. Li, and X. Li. Automatic target detection in high-resolution
remote sensing images using spatial sparse coding bag-of-words model. IEEE Geoscience and
Remote Sensing Letters, 9(1):109–113, 2011.

131. D. J. Sutherland and J. Schneider. On the Error of Random Fourier Features. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 862–871. AUAI
Press, 2015.

132. Cisco Systems. Cisco Annual Security Reports. https://www.cisco.com/c/en/us/products/

security/security-reports.html, 2019.
133. A. S. Tanenbaum and D. J. Wetherall. Computer Networks. Prentice Hall Press, 5th edition,

2010.
134. F. Tegeler, X. Fu, G. Vigna, and Ch. Kruegel. Botfinder: Finding bots in network traffic

without deep packet inspection. In Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, 2012.

135. Ch.-F. Tsai. Bag-of-words representation in image annotation: A review. ISRN Artificial
Intelligence, 2012.

136. V. Valeros, P. Somol, M. Rehak, and M. Grill. Cognitive Threat Analyt-
ics: Turn Your Proxy Into Security Device. https://blogs.cisco.com/security/

cognitive-threat-analytics-turn-your-proxy-into-security-device, 2016.
137. L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning

Research, 9:2579–2605, 2008.
138. A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE

Transactions Pattern Anal. Mach. Intell., 2012.
139. A. Vedaldi and A. Zisserman. Sparse kernel approximations for efficient classification and

detection. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.
140. P. Velan, M. Čermák, P. Čeleda, and M. Drašar. A survey of methods for encrypted traffic

classification and analysis. International Journal of Network Management, 2015.
141. N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and A. Spognardi. No NAT’d User

Left Behind: Fingerprinting Users behind NAT from NetFlow Records Alone. In Distributed
Computing Systems (ICDCS), 2014 IEEE 34th International Conference on, 2014.

142. M. P. Wand. Data-based choice of histogram bin width. The American Statistician, 51(1):59–
64, 1997.

143. K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research, 2009.

144. Ch. K. I. Williams and M. Seeger. Using the Nyström Method to Speed Up Kernel Machines.
In Proceedings of the 13th International Conference on Neural Information Processing Systems,
2000.

145. C.V. Wright, F. Monrose, and G. M. Masson. On inferring application protocol behaviors in
encrypted network traffic. Journal of Machine Learning Research, 2006.

146. R. Xu and D. C. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural
Networks, 2005.

110

147. W. Zaremba, A. Gretton, and M. Blaschko. B-tests: Low Variance Kernel Two-sample Tests.
In Advances in Neural Information Processing Systems 26, 2013.

148. Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity Search: The
Metric Space Approach. Springer, 2005.

149. E. Zhang and M. Mayo. Improving bag-of-words model with spatial information. In 2010
25th International Conference of Image and Vision Computing New Zealand, pages 1–8. IEEE,
2010.

150. D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and D. Garant. Botnet detection
based on traffic behavior analysis and flow intervals. Computers and Security, 2013.

151. J. Zhao and D. Meng. Fastmmd: Ensemble of circular discrepancy for efficient two-sample test.
Neural Computation, 27:1345–1372, 2015.

152. R. Zhao and K. Mao. Fuzzy bag-of-words model for document representation. IEEE Transac-
tions on Fuzzy Systems, 26(2):794–804, 2017.

111

Appendix

List of application names in the TCP flows dataset

Full list of application names:

’APSDaemon.exe’, ’AddressBookSourceSync’, ’AgentService.exe’, ’App Store’, ’AppleIEDAV.exe’,

’Arellia.Agent.Service.exe’, ’Box Sync’, ’CalendarAgent’, ’CcmExec.exe’, ’CiscoJabber.exe’,

’Cisco Jabber’, ’Cisco.WebEx.Start’, ’Dropbox109’, ’DropboxOriginal’, ’Dropbox.exe’, ’Evernote’,

’FireSvc.exe’, ’GoogleSoftwareUpdateAgent’, ’GoogleUpdate.exe’, ’Google Chrome’, ’Mail’,

’Meeting Center’, ’Microsoft Outlook’, ’OUTLOOK.EXE’, ’Python’, ’Safari’, ’SkyDrive.exe’,

’Skype’, ’SoftwareUpdateCheck’, ’Spotify’, ’SubmitDiagInfo’, ’VpxClient.exe’, ’WebProcess’,

’WmiPrvSe.exe’, ’apsd’, ’atmgr.exe’, ’chrome.exe’, ’cma’, ’com.apple.WebKit.Networking’,

’com.apple.WebKit.WebContent’, ’com.apple.iCloudHelper’, ’cscan.exe’, ’firefox-bin’, ’firefox.exe’,

’fpsaud’, ’gconsync’, ’googledrivesync.exe’, ’helpd’, ’iCloudServices.exe’, ’iTunes’,

’iTunes.exe’, ’iexplore.exe’, ’jamf’, ’java’, ’ksfetch’, ’lsass.exe’, ’mdmclient’, ’mutt’,

’netsession win.exe’, ’pcdrcui.exe’, ’sfc.exe’, ’softwareupdate’, ’softwareupdated’, ’splwow64.exe’,

’ssh’, ’storeagent’, ’taskhost.exe’, ’thunderbird.exe’, ’vmnat.exe’, ’vmware-vmrc.exe’

OutRank stability

In Chapter 5, we have argued that OutRank algorithm should be more robust with respect
to small clusters of outliers which we can expect to be present in real data. Figure below
shows average AUC of the OutRank and k-NN algorithms with representations based on
soft histograms for varying number of malware samples inserted into the background data
sets in the outlier detection experiment. The average is calculated over all three background
networks and random selections of malware. We can observe that the AUC of the k-NN
detector drops more rapidly than that of OutRank as the number of infected users increases.
This means that in our outlier detection settings the OutRank is indeed more robust against
multiple concurrent infections.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

Nr. of malware samples

A
ve

ra
ge

A
U

C

OutRank
k-NN

Average values of AUC for OutRank and k-NN outlier detection algorithms with fingerprints
based on soft histograms for varying number of malware samples inserted into the background
data sets. The average is calculated over all three background data sets and random selections
of malware.

112

Approximate similarity search pseudocode

Below we present listing of the pseudocode which illustrates implementation of the approxi-
mate similarity join in MapReduce environment described in Chapter 6:

Replication and approximate similarity search

1: map-setup. //get IDs of groups to which each pivot’s cell should be replicated
2: nearestGroups = ComputeNearestGroups().

3: map (k1, v1)
4: if k1.dataset == Q then //query object
5: groupID = GetGroupID(k1.cell)
6: emit(groupID, (k1, v1))
7: else //reference object
8: pivotID = GetPivotID(k1.pivot)
9: foreach groupID in nearestGroups[pivotID] do //replication of reference objects

10: emit(groupID, (k1, v1))
11: end
12: endif

13: reduce (k2, v2)
14: parse objects from Q into DQ and from S into list L of Voronoi cells {CS

i}
15: foreach q in DQ do
16: compute distance to pivots δ(q, pi) and sort Voronoi cells in L
17: kNN = ∅ //k-NN result
18: r = MAX VALUE //query radius
19: foreach CS

i in L do // for each Voronoi cell check its objects
20: if δ(q, pi) > CS

i .ri + r then continue //query-cell overlap check
21: foreach oS in CS

ido
22: if |δ(q, pi)− δ(oS, pi)| > r then continue // lower bound filter
23: distance = δ(q, oS)
24: if distance ≥ r then continue
25: update kNN by oS
26: r = δ(q, kNN [k]) //radius = distance from q to k-th object oS
27: end
28: end
29: output(q, kNN)
30: end

113

ComputeNearestGroups()

1: nearestGroups = array of size equal to the number of pivots
2: foreach pi in P do
3: distpi = ∅ //empty set of distances to all other pivots
4: foreach pj in P do //for each pivot combination
5: groupID = GetGroupID(pj) //group id where pj belongs
6: dist = δ(pi, pj) //distance between pivots
7: add pair <groupId; dist> to distpi
8: end
9: sort distpi in ascending order by dist in pairs

10: nGs = ∅
11: pivCount = 0 //number of considered nearest pivots - for approximation
12: foreach <groupId; dist> in distpi do
13: if not nGs contains groupId then
14: add groupId to nGs
15: endif
16: pivCount++
17: if pivCount > tr then break. //replication threshold check
18: end
19: pivotID = GetPivotID(pi)
20: nearestGroups[pivotID] = nGs
21: end
22: return nearestGroups

FP-50 error measure

Formal definition of the FP-50 error measure from [106] used in Chapter 6:

error =
1

|N|
∑
x∈N

[f(x) > median{f(y)|y ∈ P}] ,

where N is a set of negative (benign) objects, P is a set of positive (malicious) objects and
f(x) is a classification score for an object x.

The ECM classifier assigns classification score as:

f(x) = wTx

The weights w are trained by solving the following optimization problem:

w∗ = argmin
w

∑
x∈N

exp{(x− µ)Tw},

where µ is a mean of objects from the positive class P.

Application of AMRep in Support Measure Machines

Support Measure Machines (SMM) [96] were proposed as an extension of Support Vec-
tor Machines (SVM) to spaces of probability distributions, where the classified objects are
not single points, but probability distributions. Similarly as kernel functions are utilized in
standard SVM, kernel functions on top of probability probability distributions are lever-
aged in SMM, as introduced in Chapter 7 (Section 7.2). Specifically, if the Gaussian kernel
exp(−γ‖µp−µQ‖2H) is used, it uses the distances ‖µP−µQ‖H that correspond to MMD(P,Q),
as discussed in Chapter 7. The Gaussian kernel on distributions can be therefore rewritten
as exp(−γMMD2(P,Q)).

However, a limiting factor for practical usage of SMM on larger problems is their com-
putational complexity. By considering the approximate computation of MMD2(P,Q) as in-
troduced in Section 7.4 of Chapter 7, the Gaussian kernel can be approximated as

114

exp(−γ‖µP − µQ‖2H) ≈ exp(−γ‖L−1 (ϕ(µP)− ϕ(µQ)) ‖2),

with the meaning of L and ϕ as introduced in Chapter 7. This way we obtain an approximate
version of SMM, which is in fact a conventional SVM with Gaussian kernel working on top
of AMRep representations of the distributions.

In order to compare accuracy and computational requirements of this approximate ver-
sion of SMM with the original SMM, we created a dataset which reflects parameters of
the ”Synthetic dataset” used in experiments of [96]. The only difference is that the authors
of [96] worked with distributions specified by their parameters, not with empirical samples
from that distributions. The reason why we did not use the parametric specifications of the
distributions is that our framework for MMD approximation is proposed for the situations
in which the parameters of the underlying distributions are not known and only the samples
are available. We believe that this reflects most practical situations when information about
the distributions is obtained by collecting the empirical samples from them.

Results of this comparison are presented below1. The experiment compared accuracies
and classification times depending on the number of samples (i.e., sample sets that contained
the empirical observations) and size of each sample (i.e., number of observations in one sample
set). We used LibSVM [22] implementation of the SVM classifier for the approximate version.
As we can see, the approximate version of SMM which uses AMRep is able to significantly
speed-up the classification with only a slightly decreased accuracy. Therefore, considering
the AMRep for approximate versions of kernel-based classifiers working on top of probability
distributions is a perspective line of future research.

Sample set size SMM orig. SVM+AMRep

5 90.8% (0.61s) 90.5% (0.05s)
15 96.4% (3.47s) 95.9% (0.10s)
30 96.8% (12.72s) 96.7% (0.21s)
45 98.0% (33.43s) 97.5% (0.29s)
60 98.5% (53.58s) 97.6% (0.39s)

Accuracies (%) and classification times (in seconds) depending on the number of observations
in one sample set. Training dataset always contained 1600 samples, testing dataset always
contained 400 samples (positive:negative ratio was 1:1).

Number of sample sets SMM orig. SVM+AMRep

1000 (200) 92.9% (1.29s) 93.0% (0.03s)
1200 (240) 93.3% (1.82s) 93.0% (0.03s)
1500 (300) 93.5% (2.48s) 93.8% (0.04s)
2000 (400) 94.2% (5.06s) 94.0% (0.07s)
4000 (800) crashed 94.3% (0.27s)
10000 (2000) crashed 94.4% (1.34s)

Accuracies (%) and classification times (in seconds) depending on the number of sample sets
(total and in the testing set, testing set size in parenthesis). Each sample set contained 10
observations.

1 Implementation of SMM was obtained from the page http://webdav.tuebingen.mpg.de/smm/

115

