
   

Czech Technical University in Prague 

Faculty of Mechanical Engineering  

 

Department of Automotive, Combustion Engine and Railway Engineering 
Study program: Master of Automotive Engineering 

Field of study: Advanced Powertrains  

 

 

 

 

 

 

 

 

 

  

 

Optimisation of ADAS - AD 

Validation Process  

Author: Danielle FOTSO 

Industrial supervisor: Mr. Freddy TIOGUIM 

Academic supervisor: Ing. Václav JIROVSKÝ, Ph.D 

Year: 2019  

 

 

DIPLOMA THESIS 

 

 



   

  

 



 

 I 

DISCLAIMER  

I, Danielle FOTSO declare that this thesis is my own work; it contains no material, 

which has been accepted or submitted for the award of any other degree or diploma. I 

also declare that all the software used to solve this thesis are legal.  

This thesis contains no material previously published or written by any other person 

except where due reference is made in the text of the thesis. 

 

 
 

In Paris, 16th August 2019 

 

Danielle FOTSO 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 II 

ACKNOWLEDGMENTS 

This document is the fruit of the combined efforts of several persons who contributed either 

directly or indirectly to its elaboration. It is therefore with sincere and heartfelt gratitude that I 

thank: 

My enterprise supervisor Freddy TIOGUIM (Technical ADAS service referent of PSA): it is 

truly a great pleasure for me to openly express my gratitude for his availability, his patience, 

his understanding, his guidance and high quality suggestions throughout this work. 

My academic supervisor Ing. Václav JIROVSKÝ, Ph.D, who despite the distance has follow 

my work and give me orientation. 

Ing. Yvana TCHANGOM, PSA employee, who helps me to develop my skills in the ADAS 

validation sector that was new for me. I thank her for the good follow-up of my activities and 

advices. 

I will end, by thanking all the CVAD employees, for the very friendly working environment 

and their support and my beloved family in Cameroon, for the efforts they made to assist me. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 III 

ABSTRACT 

Ensuring or guaranteeing the safety of autonomous systems remains one of the major challenges 

for car manufacturers, especially as the technologies embedded in these systems become more 

and more complex. As a result, test methods to validate them and thus guarantee their safety 

must be the most efficient and effective. It is in this order of thought that I was entrusted with 

the subject relating to the "optimisation of the ADAS - AD validation process". My work was 

on the automatic generation of test scenarios for the validation of ADAS functions, as well as 

the improvement of the tool for post-processing test results. A stochastic approach using the 

Markov Chain Monte Carlo algorithm has been used for scenario generation, based on a defined 

set of parameters that could influence the components according to a specific function and their 

probabilities of occurrence.  

 

 

Keywords: Autonomous System Safety, ADAS Validation, Scenarios, Markov Chain Monte 

Carlo. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 IV 

TABLE OF CONTENTS  

DISCLAIMER ........................................................................................................................... I 

ACKNOWLEDGMENTS ...................................................................................................... II 

ABSTRACT ........................................................................................................................... III 

TABLE OF CONTENTS ....................................................................................................... IV 

LIST OF FIGURES ............................................................................................................. VII 

LIST OF TABLES .............................................................................................................. VIII 

GLOSSARY ............................................................................................................................ IX 

DEFINITIONS OF SOME TERMS [1]: ............................................................................... X 

GENERAL INTRODUCTION ............................................................................................. 11 

CHAPTER 1: CONTEXT AND PROBLEM STATEMENT ............................................ 12 

I PRESENTATION OF PSA ....................................................................................... 12 

I.1 Different brands ..................................................................................................... 12 

I.1.1 Peugeot ........................................................................................................... 12 

I.1.2 Citroen ............................................................................................................ 13 

I.1.3 DS Automobile ............................................................................................... 13 

I.1.4 Opel ................................................................................................................ 13 

I.1.5 Vauxhall .......................................................................................................... 14 

I.1.6 Free2Move ...................................................................................................... 14 

I.2 Presentation of my service ..................................................................................... 15 

I.3 Roadmap of PSA for autonomous driving ............................................................. 15 

II CHALLENGES OF PSA CONCERNING AUTONOMOUS VEHICLE AND ITS 

SAFETY .............................................................................................................................. 16 

II.1 Standards regulating the autonomous vehicle and its safety.................................. 16 

II.1.1 Norm ISO 26262 ............................................................................................ 16 

II.1.2 PAS SOTIF (Safety of the Intended Functionality) ....................................... 18 

II.2 Challenges related to the validation of the safety of autonomous driving ............. 19 

II.2.1 How does the ADAS validation is done actually at PSA ............................... 19 

II.3 Problem formulation .............................................................................................. 23 



 

 V 

II.4 Contribution and outline ........................................................................................ 23 

CHAPTER 2: STATE OF ART OF AUTONOMOUS DRIVING .................................... 25 

I DRIVER ASSISTANCE AND AUTONOMOUS DRIVING ................................. 25 

I.1 What is an autonomous vehicle? ............................................................................ 25 

I.1.1 Environment perception layer ........................................................................ 26 

I.2 Levels of driving automation ................................................................................. 27 

II TESTING OF AUTONOMOUS DRIVING SYSTEMS ......................................... 29 

II.1 Scenario for the test ............................................................................................... 30 

II.1.1 Definitions ...................................................................................................... 30 

II.1.2 Source of test scenarios .................................................................................. 31 

II.2 Different testing levels ........................................................................................... 32 

III MARKOV CHAINS MONTE CARLO STOCHASTIC SIMULATION ............. 34 

III.1 Markov chains .................................................................................................... 34 

III.1.1 Stationary distribution ................................................................................. 34 

III.1.2 Convergence properties............................................................................... 35 

III.2 MCMC algorithms ............................................................................................. 35 

III.2.1 Metropolis Hastings algorithm ................................................................... 35 

III.2.2 Gibbs sampler ............................................................................................. 36 

CHAPTER 3: METHODOLOGY OF THE WORK .......................................................... 37 

I APPROACH FOR TEST CASES GENERATION ................................................ 37 

I.1 Definitions of parameters that influence an ADAS function ................................. 38 

I.1.1 ODD taxonomy ............................................................................................... 38 

I.1.2 Equivalence class classification ...................................................................... 39 

I.1.3 Ego vehicle manoeuver behaviours ................................................................ 41 

I.2 Dependence between parameters ........................................................................... 41 

I.2.1 Likelihood of occurrence ................................................................................ 42 

I.3 MCMC method choice and application ................................................................. 43 

I.3.1 Scenario mathematic form .............................................................................. 43 



 

 VI 

I.3.2 Choice of the MCMC method and application ............................................... 44 

I.4 Convergence diagnostic ......................................................................................... 46 

II IMPROVEMENT OF THE POST PROCESSING VALIDATION TOOL 

NODESAT ........................................................................................................................... 47 

CHAPTER 4: PRESENTATION OF THE RESULTS AND DISCUSSION ................... 53 

I CREATION OF INPUT DATA ................................................................................ 53 

II SCENARIOS GENERATIONS ................................................................................ 57 

III TEST CASES GENERATION ................................................................................. 62 

IV DISCUSSION ............................................................................................................. 64 

IV.1 Limitation of the approach ................................................................................. 64 

IV.2 How our results will be used practically for the tests? ....................................... 64 

IV.3 How confident we are about the coverage of all possible requirements that the 

ADAS function must satisfy? ........................................................................................... 66 

GENERAL CONCLUSION AND PERSPECTIVES ......................................................... 67 

I Contribution ............................................................................................................... 67 

II Assignment .................................................................................................................. 67 

III Perspectives ................................................................................................................. 68 

REFERENCES ....................................................................................................................... 69 

APPENDICES ........................................................................................................................ 71 

I Appendix 1: ASIL levels [1] ....................................................................................... 71 

II Appendix 2: Parameters classification ..................................................................... 72 

III Appendix 3: Algorithm of method 2 ......................................................................... 73 

 

 

 

 

 

 



 

 VI

I 

LIST OF FIGURES  

Figure 1: CVAD organisation chart ........................................................................................ 15 

Figure 2: Roadmap of PSA for vehicle automation ................................................................ 16 

Figure 3: Different ASIL level ................................................................................................ 17 

Figure 4: Classification of type of scenario that a vehicle could face..................................... 18 

Figure 5: Example of requirement for the camera .................................................................. 19 

Figure 6: Validation process of the CVAD entity ................................................................... 20 

Figure 7: description file of PSA ............................................................................................ 21 

Figure 8: Carmaker interface................................................................................................... 22 

Figure 9: Validation process at CVAD ................................................................................... 22 

Figure 10: Global architecture of an autonomous vehicle ...................................................... 25 

Figure 11: some ADAS sensors .............................................................................................. 26 

Figure 12: Level of automation from the SAE J3016 standard .............................................. 28 

Figure 13: Procedure for test concept ..................................................................................... 29 

Figure 14: Overview of the development process proposed in the ISO 26262 standard. Process 

steps highlighted in red may use scenarios to generate the work products. ............................. 30 

Figure 15: Illustration of a scenario representation (a) and a scene (b) .................................. 31 

Figure 16: Generic V-Model ................................................................................................... 32 

Figure 17: Post for a HIL validation at PSA ........................................................................... 33 

Figure 18: Methodology principle........................................................................................... 37 

Figure 19: ODD classification framework with top-Level categories and immediate 

subcategories ............................................................................................................................ 38 

Figure 20: (a) Rural road; (b) Barrier and temporary cones ................................................... 39 

Figure 21: (a) Limited visibility Heavy rain; (b) Sun glare. ................................................... 40 

Figure 22: (a) Heavy traffic; (b) Speed limit .......................................................................... 40 

Figure 23: (a) animal on the road; (b) signage ........................................................................ 40 

Figure 24: Ego vehicle overtaking and changing lane ............................................................ 41 

Figure 25: Dependence between luminosity and moment of the day ..................................... 42 

Figure 26: Example of probabilities of occurrence for the function LKA .............................. 43 

Figure 27: Interface GUI of the PSA post-processing tool ..................................................... 47 

Figure 28: Process for the post processing .............................................................................. 48 

Figure 29: The choice of signals to display in the report ........................................................ 50 

file:///C:/Users/u565180/Desktop/stage%20PSA/mémoire/Thesis%20document%20Danielle%20FOTSO.docx%23_Toc17065253


 

 VI

II 

Figure 30: Chart of the signal CAN_FD3.11eh.CVM.SEC_DIST_VHL_L_LINE_EXT during 

the simulation time ................................................................................................................... 51 

Figure 31: Example of unreadable drawing graph in yEd software ........................................ 54 

Figure 32: File for the input parameters .................................................................................. 54 

Figure 33: Verification reminder ............................................................................................ 55 

Figure 34: Excel DataFrame ................................................................................................... 56 

Figure 35: Python DataFrame: example for the parameter Tarmack ...................................... 56 

Figure 36: Python code interface ............................................................................................ 57 

Figure 37: Case of sampling without dependence .................................................................. 58 

Figure 38: Case of sampling with dependence........................................................................ 59 

Figure 39: Example of output scenario of method 1 ............................................................... 60 

Figure 40: Example of output scenarios for method 2 ............................................................ 60 

Figure 41: Probability tab in the output Excel file .................................................................. 61 

Figure 42: Example of parameters drawn in carmaker ........................................................... 62 

Figure 43: Example of testrun ................................................................................................. 63 

Figure 44: Signals for the LDW function................................................................................ 65 

 

LIST OF TABLES 

Table 1: Minimum kilometres for the validation of an ADAS ............................................... 17 

Table 2: Comparison between the two methods ..................................................................... 61 

Table 3: Example of scenario .................................................................................................. 63 

 

 

 

 

 

 



 

 IX 

GLOSSARY 

ACC - Adaptive Cruise Control 

AEB - Automatic Emergency Braking 

ASIL - Automotive Safety Integrity Levels 

BSD - Blind Spot Detection 

CVAD - Components Design & Validation for Autonomous Driving 

CVM - Camera Video Multifunction 

DIL - Prototype-In-the-Loop 

ECU - Electronic Control Unit 

HIL - Hardware-In-the-Loop 

ISO - International Organization for Standardization 

LDW - Lane Departure Warning 

LKA - Lane Keeping Assist 

MCMC - Markov Chain Monte Carlo 

MIL - Model-In-the-Loop 

SIL - Software-In-the-Loop 

SLI - Speed Limit Information 

SOTIF - Safety of the Intended Functionality 

UML - Unified Modeling Language 

VIL - Vehicle-In-the-Loop 

 

 

 

 



 

 X 

DEFINITIONS OF SOME TERMS [1]:  

Requirement: is a condition or ability needed by a user to resolve a problem or an objective, 

which must be held by a system or component to satisfy a contract, standard, specification or 

other formally imposed document. 

Requirement specification: a document that specifies, ideally completely, accurately and 

verifiable, the requirements, designs, behaviours and other characteristics of a component or 

system, and often the procedures for determining whether these stipulations have been met. 

Validation: is the process of evaluating a system, when its development is completed, to ensure 

that it is conform to its specification. In other words, it aims to answer the following question: 

“Does the system do well what it is supposed to do (as specified by the requirements)?” 

Verification: is the process of determining whether the elements produced during a given phase 

of system development, fulfil the established requirements during the previous phase. In other 

words, it aims to answer the next question "Was the system built correctly (as we had 

specified)?" 

 

 

 



 

 11 

GENERAL INTRODUCTION 

ADAS (Advanced Driver Assistance System) are vehicle control systems that help to improve 

driving comfort and safety by assisting the driver in recognizing and reacting to potentially 

dangerous traffic situations.  The development of these systems is evolving at high speed and 

they integrate more and more vehicles.  

In an automotive context oriented towards a full automation of vehicles, combined with 

standards such as Euro NCAP and ISO 26262 that submit vehicles to security crash tests and 

require minimum risk of failures and high level of road testing to reliably validate their safety, 

the problem of ADAS-AD validation is becoming a very important issue. For these reasons, car 

manufacturers as PSA need efficient methods and tools to ensure that the ADAS functions built 

into their vehicles operate at the required level of safety and reliability. 

The objective of this thesis is to present a method for the optimisation of ADAS – AD validation 

process based on a stochastic approach using MCMC (Markov Chain Monte Carlo) algorithm, 

precisely the Gibbs sampler to generate scenarios for an ADAS function validation.  

To achieve this, this document will be structured as follows: 

First, we will present PSA's issues regarding the validation of ADAS systems; this will 

encompass the description of the current validation process developed within my internship 

entity and the problems they encounter. Then, we will make a state of the art of autonomous 

vehicles and test methods. We will continue by developing the methodology of our work based 

on Markov chains for the automatic generation of test cases for the validation of a given ADAS 

function. We will finish by presenting the different results obtained and the limits related to our 

resolution approach. 

This research work will end up with some perspectives regarding a potential improvement of 

this approach, using mutation algorithms to widen the field of scenarios that we can obtain. And 

a possible approach that may improve the requirements coverage, by integrating within the 

MCMC algorithm another mathematic algorithm of decision, which will verify a minimum 

level of coverage by a scenario before choosing to generate it.  

 

 

 



 

 12 

Chapter 1: 
 

CONTEXT AND PROBLEM STATEMENT 

 

 

I PRESENTATION OF PSA 

Group PSA (formerly known as PSA Peugeot Citroën from 1991 to 2016) is a French 

multinational manufacturer of automobiles and motorcycles sold under the Peugeot, Citroën, 

DS, Opel, Vauxhall and Free2Move brands. 

Europe's number-two automobile manufacturer, it has a revenue of 74 billion of Euro and 3.9 

million of vehicles sold worldwide in 2018. It is present in 160 countries and has 211,000 

employees worldwide.  

 

I.1 Different brands 

I.1.1 Peugeot 

 

  

 

 

 

 

 

 

 

Peugeot is the only brand to deploy a complete mobility offer with private and commercial 

vehicles, scooters, bicycles and a wide range of services. 

Present in 160 countries with 10,000 points of contact, Peugeot combines high standards and 

emotion. In 2010, the year of its 200 years, with 2.14 million of vehicles sold, Peugeot has 

confirmed its position as the first French car brand in the world. With the success of the 3008, 

5008 and RCZ, the brand's upmarket strategy is successful and continues in 2011 with 508. Its 

environmental efficiency is embodied with the e-HDi technology, Peugeot i0n, while in 2011, 

the launch of the world's first diesel hybrid, 3008 HYbrid4. 

 



 

 13 

I.1.2 Citroen 

 

 

Dynamic and creative, the brand celebrates its centenary this year 2019. 

Present in more than 90 countries with more than 10,000 sales and after-sales services, the 

brand sold nearly 1.1 million vehicles in 2017. In addition to design and comfort, "Optimistic", 

"Human" and "Smart" summarize its services that want to be innovative and connected through 

new technologies embedded in its vehicles, inspired by and for its customers. 

 

I.1.3 DS Automobile 

 

 

DS is a French brand born in Paris with the ambition of embodying French luxury in its cars. 

In 2017, the brand lunch the new SUV DS 7 CROSSBACK. 

Its strategy is based on three pillars: exceptional cars, a multi-channel distribution networks and 

a unique and personalized customer experience with the “Only You, the DS experience” 

program. 

 

I.1.4 Opel 

 

 

Opel is one of the largest European car manufacturers and was founded by Adam Opel in 

Rüsselsheim, Germany, in 1862. The company started building automobiles in 1899. Together 

with its British sister brand Vauxhall, the company is represented in more than 60 countries 

around the globe selling over one million vehicles in 2018. 

 

 

 

 

 



 

 14 

I.1.5 Vauxhall 

 

 

Founded in 1857, Vauxhall began building cars in 1903. In 1925, it was bought by General 

Motors and in 2017 by the PSA Group. Most of his models, such as the Rock Adams, are 

derived from Opel cars, modified and adapted exclusively for the British market and roads. The 

brand holds the 2nd place on the British market for many years.  

 

I.1.6 Free2Move 

 

 

Created in 2016, Free2Move embodies PSA's ambition to become the preferred global mobility 

provider. It aims to offer customers, the most complete set of mobility solutions and especially 

the most practical, closer to their needs. This application offers car sharing, bike, scooter in 

more than 15 European cities from Germany to Sweden via Denmark, Italy, Portugal, France 

... etc. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 15 

I.2 Presentation of my service  

My end of course internship took place within the CVAD (Components Design & Validation 

for Autonomous Driving) entity linked to the Quality and Engineering Department by the 

flowchart presented in the figure 1 below.  

 

Figure 1: CVAD organisation chart [Source: PSA document] 

I.3 Roadmap of PSA for autonomous driving 

PSA has chosen to limit its vehicle automation to level 4 as shown in the following Figure 2.  

Levels 5 is set aside for the moment because it seems to be not profitable. Only the integration 

of sensors for full autonomous vehicle make it very costly, and then limiting its purchasing 

capacity. 

Quality and Engineering Department (DQI)

The goal is to develop and implement new technologies and
design to keep the group on the market and adapt products
to customer expectations

Direction of electrical and electronic systems (DSEE)

The goal of this direction is to design, develop and validate the
electrical and electronic components of the vehicle

Modules and Electronic Components for 
Autonomous Driving (MCAD)

Its role is to define the technical policy of design and
development of the EE components for the autonomous
vehicle (Radar, Camera ...) and to identify the innovative
technologies on the international market

Components Design & Validation for Autonomous 
Driving (CDVA)

Define the software architecture of the white box ADAS
Supervision ECU. Develop the benches and tools to qualify the
features & their fiability

Components Validation for Autonomous Driving
Systems (CVAD)

We are responsible for defining the technical policy and 
validate components designed by MCAD



 

 16 

 

Figure 2: Roadmap of PSA for vehicle automation [Source: PSA document] 

 

Actually, the PSA vehicles integrating the ADAS systems on the market are in level 2 and 1. 

We can mention: DS 7 CROSSBACK, DS 3 CROSSBACK and PEUGEOT 508 and 508 SW. 

Vehicles of level 3 are the projects on which they are working actually. 

 

 

II CHALLENGES OF PSA CONCERNING AUTONOMOUS VEHICLE 

AND ITS SAFETY 

The safety of road vehicles during their operation phase is of paramount concern for the road 

vehicles industry. Standards have been established to frame and define requirements in order to 

achieve this safety objective. We have the ISO 26262 standard, which deals with the functional 

safety of the autonomous vehicle and ISO 21448 or SOTIF that complements it. 

II.1 Standards regulating the autonomous vehicle and its safety 

II.1.1 Norm ISO 26262 

ISO 26262 is a risk-based safety standard that derives from IEC 61508. It applied to electric or 

electronic vehicle systems and deals with internal hardware and software failures of the entire 

development process [2]. 



 

 17 

This standard uses Automotive Safety Integrity Levels (ASIL) to offer a measure of the risk 

associated with a subsystem. These levels go from A to D (cf. figure 3), A being the lowest 

level of integrity and D the highest, that is, the most demanding with the most requirements. 

The parameters of risk, severity, probability of exposure, and controllability determine the 

ASIL (cf. appendix 1). 

The risk can then be defined as a function of a frequency of occurrence of hazardous events, 

the ability to avoid specific harm or damage through timely reactions of the persons involved 

(controllability) and the potential severity of the resulting harm or damage”; [3] 

 

Figure 3: Different ASIL level 

Depending on the level of ASIL, minimum-testing kilometers to reliably validate an ADAS 

system with a confidence of 70% on the conformity, has been defined by the ISO 26262 

standard. The table 1 presents these kilometer values. 

Table 1: Minimum kilometres for the validation of an ADAS [Source: PSA document] 

ASIL 

Probability of 

safety goal 

violation/hour 

Minimum kilometers 

without safety-related 

incident  

(Confidence level 70 %) 

A <10-7/h 4,8.108 km 

B <10-8/h 4,8.109 km 

C <10-8/h 4,8.109 km 

D <10-9/h 4,8.1010 km 

 

However, this standard does not deal with systematic faults related to the bad interpretation of 

the external environment systems, or the combination of this with internal faults (hardware and 

software). This is illustrated in the chapter Scope part 1 of the standard: 

Scope ISO 26262 part 1: “This document addresses possible hazards caused by malfunctioning 

behaviour of safety-related E/E systems, including interaction of these systems. It does not 

address hazards related to electric shock, fire, smoke, heat, radiation, toxicity, flammability, 

ASIL A ASIL B ASIL C ASIL D



 

 18 

reactivity, corrosion, release of energy and similar hazards, unless directly caused by 

malfunctioning behaviour of safety-related E/E systems.” [4] 

 

II.1.2 PAS SOTIF (Safety of the Intended Functionality) 

SOTIF is Safety of the Intended Functionality. It is the shorthand for the new ISO/PAS 21448 

standard. This standard focuses on the safety of driving scenarios that take into account the 

vehicle environment and the potential imperfections of sensors and algorithms. 

Example of a SOTIF situation:  

At the sight of a drawing on the roadway, the vehicle triggers the emergency braking. However, 

the situation was not dangerous but the ADAS system reacted due to a false detection, which is 

not a hardware or software failure of the system. 

The PAS SOTIF is based on the idea that a system will be faced with a wide variety of life 

situations in its operational life, and that the behaviour it has in each of those situations must be 

free from an unreasonable level of risk (risk judged unacceptable in a certain context according 

to valid societal moral concepts) [5]. The scenarios faced by the system during its operational 

life are classified as follow: 

- Known / unknown: the situation have already be identified or not. 

- Hazardous / Safe: the vehicle will behave safely or we do not know yet its behaviour.  

 

Figure 4: Classification of type of scenario that a vehicle could face [5] 



 

 19 

The purpose of the SOTIF activities is to reduce the known hazardous scenarios by improving 

the system (Area 2), and to show through verification and validation that the residual risk due 

to potentially hazardous unknown scenarios is sufficiently low (Area 3). 

 

II.2 Challenges related to the validation of the safety of autonomous driving 

Validation is a process that consists in submitting a system to a set of tests (on road test or 

simulation test) during its development, in order to determine if it meets the requirements set 

out in its environment of use. To reliably validate autonomous driving function the norm ISO 

26262 demands a very large amount of testing kilometres approximately 108 km [6].  

II.2.1 How does the ADAS validation is done actually at PSA 

Since my internship took place in the CVAD entity, I will describe in this section, its validation 

process. 

As defined above, the validation of autonomous systems is intended to reassure that they satisfy 

the different requirements related to their design and use.  As a result, the validations done at 

PSA have for entry requirements in textual form or in model form. The figure 5 presents an 

example of requirement for the camera. 

 

Figure 5: Example of requirement for the camera [Source: PSA document] 

 The figure 6 below presents the different steps for the validation process at CVAD.  



 

 20 

 

Figure 6: Validation process of the CVAD entity 

- Requirements analysis: it consists on checking the testability, the applicability of the 

different requirements, depending on the capacity of the validation means available and 

the clarity of understanding the requirements by the validation officer. This is done in a 

document called PIV (Integration Validation Plan) at PSA. For example, a requirement 

to test the vehicle in snowy weather will be considered untestable on HIL bench. 

 

- Mutualisation of requirements: this step consists on grouping together requirements 

that can be test in the same scenario. This to reduce the number of scenarios and then 

the time for the validation. 

 

- Description file: an Excel file of description of the test or test plan is written, it contains 

for each of the requirements; 

  a description of the scenarios under which these requirements will be validated; 

 the expectation of the test; 

 the signal results expected (mathematical expression to check in order to give 

the test status); 

Requirements analysis

<writing of the PIV: Testability, clarification, modification>

Mutualisation of requirements

<functional and dysfunctional>

Description file (*.xls)

<test scenarios, test oracle>

Testrun and test execution

<testrun on Carmaker (*.erg), and execution on HIL 
benches>

Results evaluation and test report (*.html) 

<Comparison with the requirements, Statut of test, report>



 

 21 

 the moments of the various manoeuvres of the ego vehicle;  

 

Figure 7: description file of PSA [Source: PSA document] 

- Testrun and test execution: for each textual scenario, a testrun is created in the 

simulation environment. In the case of PSA, the simulation environment tool used is 

CarMaker from IPG for HIL bench validations. 

To create a new scenario in CarMaker, we first have to select the ego car and its different 

characteristics (tires, load…). After, we create the environment (the road, the different 

accessories on the road, the sceneries) and we add the traffic (other vehicles, roadway 

users…). We finish by adding the different manoeuvres of the ego vehicle and run the 

simulation test. The output of CarMaker simulation is an .erg file.  

 



 

 22 

 

Figure 8: Carmaker interface 

- Result evaluation and report: Finally, the post processing of the results is done under 

a Matlab tool, called NODESAT Post-Processing, developed by PSA. This tool makes 

a comparison between the expectations (which are generally mathematical formula, as 

we can see in the columns signal on Figure 7) defined in the description file and the 

results obtained after the CarMaker simulation. A "TRUE" or "FALSE" status is 

assigned to the test if it validate or not the requirements. 

 

  Figure 9: Validation process at CVAD  



 

 23 

This validation process has certain limits such as validation times. For a given requirement, 

there is need for at least one scenario and we estimate at about half a day the completion time 

of a single scenario. This means, for several requirements (e.g 50) of one ADAS function, the 

manual creation of scenario will be estimated to months of work. 

 

II.3 Problem formulation 

The challenge of assuring safety for the autonomous vehicle has given rise to the following 

questions:  

- How to efficiently validate the autonomous vehicle functions? How to reduce costs and 

validation time? 

- How to reduce the risks due to potentially dangerous scenarios that are unknown, 

disregarded or otherwise be forgotten by the human creating the scenario? How to 

validate the SOTIF? 

- How will we be confidant on the requirements coverage by the generated scenarios? 

 

II.4 Contribution and outline 

This thesis provides a solution to each of the issues raised above.  

First, to improve the validation process and reduce the time taken, we propose to automatically 

generate virtual driving scenarios, which is actually done manually at PSA.  

Regarding the reduction of risks due to unknown potentially dangerous scenarios, we will list 

all the parameters likely to influence the ADAS functions and we will generate automatically 

the scenarios under the base of these parameters.  

The degree of confidence of the requirements coverage will be ensured by generating all the 

possible combinatory of all the parameters. That will be done using the Markov Chain Monte 

Carlo algorithms, more precisely the Gibbs sampling. 

However, if this number of parameters is high, as is generally the case, the combinatory will be 

very large and there will be the risk of a combinatorial explosion. Therefore, another 

contribution of our work will be to avoid this combinatorial explosion. 



 

 24 

In addition to the major problem presented above, another objective of my work will be to 

improve the post-processing tool NODESAT Post-Processing which is responsible of defining 

a status on the tests that are made within my work department. 

Our development will thereby focus on the following main axes:  

 Chapter 2 summarizes the state of the art on autonomous vehicles, the different level of 

automation, and the different test methods that are done to validate the vehicle. Also a 

summary of Monte Carlo by Markov chain methods is presented: what is a Markov 

chain, what are its characteristics. 

 Chapter 3 develops the methodology of our work: the choice of parameters influencing 

the ADAS, the classification of these parameters, the probabilities attribution, the 

sampling principle used, as well as the method used to rule on the achievement of the 

convergence to avoid the combinatorial explosion. 

 Chapter 4 presents the different results obtained. In addition, a discussion on this results 

is done as well as a presentation of the limits of the work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25 

Chapter 2: 
 

STATE OF ART OF AUTONOMOUS DRIVING 

 

I DRIVER ASSISTANCE AND AUTONOMOUS DRIVING 

I.1 What is an autonomous vehicle? 

An Autonomous Vehicle is a vehicle capable of driving without human involvement in real 

traffic conditions.  

In autonomous driving, the goal giving by a human is to reach a destination while respecting 

the road safety rules. To do so, the autonomous vehicle needs to perceive its environment, 

analyse the information, plan what should be done and take actions by converting the plan into 

a set of control inputs [7].  

The figure 10 below represents how an autonomous vehicle works.  

 

Figure 10: Global architecture of an autonomous vehicle [Source: PSA document] 



 

 26 

 The sensors (cameras, lidars, radars…) and the navigation systems, provide information about 

the environment and the vehicle itself to the perception layer. The goal of this perception layer  

is to extract relevant information that comes from:  

- The vehicle itself: like position, speed, wheel angle variation, time to collision, etc.... 

- The road: road signs, road marking, number of lanes, obstacles on the road, etc…. 

Then, all this information is sent to the planning modules that decide the trajectory and the 

general behaviour of the vehicle. The decisions are converted in control inputs for the car 

making sure the planned trajectory is followed as accurately and as smoothly as possible [8]. 

I.1.1 Environment perception layer 

The perception layer is a function that provides the vehicle with crucial information on the 

driving environment, including free drivable areas, surrounding obstacles, velocities even 

predictions of their future states [9]. 

An autonomous vehicle acquires knowledge of its surrounding in two stages. The first stage 

consists of scanning the road ahead to detect possible changes in driving conditions (traffic 

lights and signs, pedestrian crossing, and barriers, among others). The second stage relates to 

the perception of other vehicles [8]. 

This section presents some sensors that make up the perception systems of autonomous 

vehicles. 

 

Figure 11: some ADAS sensors [Source : PSA document] 



 

 27 

 Radar: is an acronym for RAdio Detection And Ranging, its works in wavelengths in 

order of millimetres. For autonomous vehicles, radar systems work at frequencies of 

24/77/79 GHz [8]. It principle consists of measuring the distance between the emitter 

and the object, by calculating the time of flight of the emitted signal and the received 

echo. In addition, it can measure velocity or angle of that object. Radars cover 

applications at the front of the vehicle such as ACC (Adaptive Cruise Control). 

 

 Camera: is today a key sensor for embedded vision applications. At the front, rear or 

on the sides, it allows the detection and recognition of objects on the road to meet the 

needs of automation systems such as lighting, speed limitation and automatic 

emergency braking. 

Sometimes, for more precision on what sensors perceive, there is data fusion between the 

different data of sensors, before the decision is taken.  

 

I.2 Levels of driving automation 

Automation levels were established as a classification system for self-driving cars in January 

2014, this is done by the Society of Automotive Engineers (SAE) [10]. These levels are defined 

based on four criteria [7]: 

- First, who is performing the driving action - human or machine (“hands on”/”hands 

off”). 

- Next, who is monitoring the driving environment - human or machine ( “eyes on”/”eyes 

off”).  

- Then, who is reacting when the system falls out of its operating domain - human or 

machine (“mind on”/”mind off”). 

- At last, can the vehicle be autonomous everywhere, or is it restrained to some use cases?  

The figure 12 presents the different levels of automation for a vehicle. 



 

 28 

 

Figure 12: Level of automation from the SAE J3016 standard [11] 

We distinguish [7]:  

- Level 0 is a classical car. Human drivers do everything. 

- Level 1 ("hands on"): here, the control of the vehicle is shared between the machine and 

the driver.  

- Level 2 ("hands off"): the longitudinal and the lateral control tasks are performed by the 

vehicle. However, in this level, like in the previous one, the driver has to constantly 

monitor the road and take back the control of the vehicle if anything happens.  

- Level 3 ("eyes off"), the driver can safely turn their attention away from the driving 

tasks. The vehicle will handle situations that call for an immediate response, like 

emergency braking. The driver must still be prepared to take the control within some 

limited time, specified by the manufacturer, when called upon by the vehicle to do so. 

Presently, there is no only one Audi A8 Level 3 Car in market. 

- Level 4 ("mind off"), as level 3, but no driver attention is required for safety, e.g. the 

driver may safely go to sleep or leave the driver's seat. Self-driving is supported only in 

limited spatial areas or under special circumstances, as traffic jams.  

- Level 5, no human intervention is required at all.  

 

 

 

 

 



 

 29 

II TESTING OF AUTONOMOUS DRIVING SYSTEMS 

Testing is the process of planning, preparing and executing or exercising a system or system 

component to verify that it satisfies specified requirements, to detect errors, and to create 

confidence in the system behaviour. 

A test concept comprises the reception and analysis of the requirements, the test case 

generation, the test execution, and the test evaluation as shown in Figure 13. 

 

Figure 13: Procedure for test concept [12] 

The analysis of the requirements and the scenarios generation should be performed during the 

design phase, so that the testrun to be carried out are already defined for the verification and 

validation [12]. The test case generation consists on creating scenario under the execution test 

should be done. The execution is done in different levels following the V cycle and the 

evaluation consists on comparing the result signals of the execution test to entry requirements 

and to give a status (if the test is good or not). 

The requirements to assess a test as safety are [12]: 

 Representative: the test must encompass the minimum degree of reality required and 

had to cover the defined requirement; 

 Reproducible: for example if we detect an error from some tests, we have to be able to 

redo the same scenario of those tests if there is the need; 

 Economical: it must be ensured that the test execution is prepared and carried out at the 

lowest cost possible; 

Requirements 

Scenarios and 

testrun generation 

 

Test execution 

 

Test evaluation 

 



 

 30 

 In good time: the earlier in the development process a product can be tested, the fewer 

the development steps that need to be repeated in the case of an error. 

 

II.1 Scenario for the test 

The ISO 26262 standard from 2018 represents the state of the art for developing vehicle 

guidance systems with regard to functional safety. An overview of the development process 

proposed in the ISO 26262 standard is shown in Figure14 .The process steps that may use 

scenarios to generate the demanded work products are highlighted in red [13].  

 

Figure 14: Overview of the development process proposed in the ISO 26262 standard. Process steps highlighted in red may 

use scenarios to generate the work products [12].  

 

II.1.1 Definitions 

According to S. Ulbrich and al [14]:  

A scene describes a snapshot of the environment including the scenery and dynamic elements, 

as well as all actors and observers self-representations, and the relationships among those 

entities [14].  

Example of scene illustration on Figure 15. 

A scenario describes the temporal development between several scenes in a sequence of scenes. 

Every scenario starts with an initial scene. Actions & events as well as goals & values may be 



 

 31 

specified to characterize this temporal development in a scenario. Other than a scene, a 

scenario spans a certain amount of time [14]. 

Scenes in a scenario are linked by actions and events. 

 

Figure 15: Illustration of a scenario representation (a) and a scene (b) [14] 

Scenarios have to fulfil the following requirements to be used during the testing phase of the 

ISO 26262 standard [13]: 

 Scenarios shall be modelled via concrete state values to ensure their reproducibility and 

to enable test methods to execute the scenario. 

 Scenarios shall not include any inconsistencies. 

 Scenarios shall be represented in an efficient machine readable way to ensure an 

automated test execution. 

 

II.1.2 Source of test scenarios 

Test scenarios can be extracted from [15]: 

 Requirement specification: are the best source, they list the different types of scenarios 

to be expected and test cases are derived from them. 

 Problem understanding for creating parameterizable scenarios: the autonomous 

driving engineers could use their expertise to create a potential scenario that the system 

should support. 

 Gathered data: like Accident databases. As it contains particularly dangerous and 

difficult scenarios, the data from these accident databases is relevant for test cases. 

 



 

 32 

II.2 Different testing levels 

The test levels are defined according to the different step of the V-cycle as defined in the system 

engineering process. 

 

Figure 16: Generic V-Model [source: PSA document] 

The left side of the V works its way from requirements through design to implementation. The 

right side of the V iteratively verifies and validates larger and larger parts of the system as it 

moves up from small components to a system-level evaluation [16]. 

The different methods of testing from the first step to the last are: 

 MIL (Model-In-The-Loop): is the first level of testing. Based on the specification 

requirements, the designers who are in this stage of development create different 

models. Those models can be for example, Matlab Simulink models or UML models. 

MIL testing involves checking on these models in a simulation, making different 

corrections necessary and choosing some models from among all, that will be called the 

specifying models and which can move down the chain for the next test steps. 

 

 DIL (Driver-In-The-Loop or Prototype-In-The-Loop): consist on integrating the 

models resulting from the MIL in a prototype car. In the case of PSA, they have some 

prototype vehicles called labcar that they use for those tests. The goal of this phase of 

test is to ensure that the different models connected together comply with the functional 

requirements.  

 



 

 33 

 SIL (Software-In-the-Loop): The developers, who are at this stage of testing, receive 

both specifying models from the upper level and textual requirements. From the 

previous models, a C code is generated and from the requirements, they write manually 

the code. The goal of the SIL test is to ensure that the codes created here are still conform 

to the requirements. These tests are done under virtual environment and are usually 

simulated in accelerated time compared to reality. 

 

 HIL (Hardware-In-the-Loop): at this level, the software validated in SIL is integrated 

in the hardware (sensor, calculator ...). This hardware is thus integrated on the bench 

with CAN buses, and the tests are carried out. This level of testing is done in real time. 

For a validation using a camera for example, a scenario is played in the simulation 

environment and is displayed on a screen.  The camera, which is connected to the ECU 

with different CAN, films the screen, and send the different signals via the CAN buses 

to the PC for the analysis.  

 

Figure 17: Post for a HIL validation at PSA 

 

 HIL sub-system: the goal of this step is to assure the good communication between all 

the different components, sensors and calculators, which have been tested separately. 

These different elements are connected so that they must be on a real vehicle and 

validation tests of good functioning are done together. 

 

 VIL (Vehicle-In-the-Loop) or real test-driving: consists of integrating all hardware 

sensors and calculators recovered from HIL validation and integrated on a real vehicle. 



 

 34 

Then this vehicle will be put in real driving situation for the tests. This test method 

presents a huge risk, especially for the driver of the vehicle in a case of accident. 

Apart from  the VIL test that is done in a real world and HIL and DIL that incorporate some 

level of physical hardware to provide real data inputs for some parts of the system, the other 

tests level are done totally in a virtual simulation environment. This means that the complete 

driving scenario for the test is modelling with a software; the driver, sensor, traffic, realistic 

vehicle dynamic are all include in the environment. In contrast with real test-driving, virtual 

environment simulation is safe. 

 

III MARKOV CHAINS MONTE CARLO STOCHASTIC SIMULATION 

The MCMC methods are sampling algorithms that construct a Markov chain according to a 

probability distribution π, which is the stationary distribution of the created chain. 

III.1 Markov chains 

A Markov chain is a sequence of random variables 𝑋1… 𝑋2 in a denumerable set Ω; such that, 

the conditional distribution of  𝑋𝑛+1 in the future depends only of the present state 𝑋𝑛. For 

discrete-time Markov chain, we have:  

             𝑃(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1,𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) = 𝑃(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛)           [17]   

The matrix 𝑃 =  (𝑝𝑖𝑗), with: 𝑝𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) is the transition matrix of the chain. 

It says to be stochastic if it satisfies the following two conditions: 

𝑝𝑖𝑗 > 0     and       ∑ 𝑝𝑖𝑗𝑗 = 1 

III.1.1 Stationary distribution 

If we denote by 𝜋𝑛(𝑥) = 𝑃(𝑋𝑛 = 𝑥) the probability that the chain is in the state x at time n, 

if the following limit exists and is unique, 

lim
𝑛→+∞

𝜋𝑛(𝑥) =  π(x)    For any state x, 

 That is, the chain at each state x follows the same distribution π. Thus, π is the stationary 

distribution of the chain. 

This means that when iterating this distribution with the Markov chain, it remains constant. 



 

 35 

Under certain conditions during the construction of the chain, it will have to converge towards 

its stationary distribution that is unique [18]. 

III.1.2 Convergence properties 

If in a finite space Ω, an irreducible and aperiodic Markov chain is iterated from any initial 

distribution 𝜋0, then the sequence of 𝜋𝑛 of 𝑋𝑛 will converge to the stationary distribution π of 

the chain. 

 Irreducible: A Markov chain is irreducible if it is possible to go from a state i to a state j 

with a non-zero probability in a finite number of steps n: 𝑝𝑖𝑗
𝑛 > 0. 

 Aperiodic: A Markov chain is aperiodic if there is no value k≥0 such that the transition 

matrix P satisfies 𝑃𝑘 = 𝐼 where I is the identity matrix. 

 

III.2 MCMC algorithms 

There are different kinds of MCMC algorithms. Among them, the most commonly used are the 

Metropolis Hastings algorithm and the Gibbs sampler. It is those two methods that we going to 

present in the following section. 

III.2.1 Metropolis Hastings algorithm 

This algorithm is based on the principle of acceptance-rejection. π is the distribution we are 

trying to simulate and that we know. For that, we will define a distribution of proposition q (x, 

x ') according to which we will sample. The algorithm is defined as follows [18]: 

 Algorithm1: Metropolis Hastings algorithm 

1. Select 𝑋0 

2. For t = 1,2…, n 

Generate 𝑍𝑡 with the probability 𝑞(𝑋|𝑋𝑡−1) 

3. Calculate the acceptance ratio: 

𝛼(𝑋𝑡−1, 𝑍𝑡) = min {1,
 𝜋 (𝑍𝑡)𝑞(𝑍𝑡|𝑋𝑡−1)

𝜋 (𝑋𝑡−1)𝑞(𝑋𝑡−1|𝑍𝑡)
} 

4. Accept: 

𝑋𝑡 = {
𝑍𝑡 

 
                     

𝑖𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
 

𝑋𝑡−1                    𝑖𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑
 

5. Next iteration, and go back to step 2. 



 

 36 

III.2.2 Gibbs sampler 

Assume we want to simulate a random vector 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑁) with distribution 𝜋(𝑋). 

Further, suppose all full conditional distributions 𝑃(𝑋𝑖|𝑋[−𝑖]), where 𝑋[−𝑖] = {𝑋𝑗 ∶ 𝑗 ≠ 𝑖}, are 

available in the sense that a sample can be drawn from these distributions. The Gibbs sampler 

updates components 𝑋𝑖 of 𝑋 with a sample from the distribution 𝑃(𝑋𝑖|𝑋[−𝑖]) conditioned on the 

current states of the other components [18]. 

   Algorithm2: Gibbs sampler 

1. Select 𝑋0 = (𝑋0
1, 𝑋0

2, … , 𝑋0
𝑁)  

2. For t = 1,2,…,N  

Generate          𝑋𝑡
1    𝑃(𝑋1|𝑋𝑡−1

2 , 𝑋𝑡−1
3 , … , 𝑋𝑡−1

𝑁 ) 

𝑋𝑡
2    𝑃(𝑋2|𝑋𝑡

1, 𝑋𝑡−1
3 , … , 𝑋𝑡−1

𝑁 ) 

     

 

𝑋𝑡
1    𝑃(𝑋1|𝑋𝑡

1, 𝑋𝑡
2, … , 𝑋𝑡

𝑁−1) 

3. Repeat step 2 until reaching equilibrium. 

 

The stationary distribution in this case is the joint probability 𝜋(𝑋) given by: 

𝜋(𝑋) = 𝑃(𝑋1, 𝑋2, … , 𝑋𝑁).            [19] 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

. 

. 



 

 37 

Chapter 3: 
 

METHODOLOGY OF THE WORK 

 

 

I APPROACH FOR TEST CASES GENERATION 

This part describes an approach that use the statistical method of MCMC algorithms presented 

above to generate automatically the combinatorial of test scenarios for the validation of an 

ADAS function. The ADAS operation (correct or incorrect decision) depends on the 

environment it observes and on the behaviour of the ego vehicle, this approach will consist in: 

 Identify exhaustively these parameters that likely to influence the ADAS function; 

 Classify these parameters in equivalence class to avoid incompatible parameters in the 

same scenario (day and night together for example) and assign likelihood of occurrence 

to each class; 

 Generate by a Monte Carlo method a set of test cases corresponding to all the possible 

cases, the criterion of stopping the generation being defined by reaching the chain  

convergence; 

 Remove redundant or duplicate scenarios. 

 

Figure 18: Methodology principle 

 

Parameters 

Equivalence class 

Probabilities of 

occurrence 

Input Excel file

 

Gibbs 

sample

r 

Scenario 1 

Scenario 2 
Scenario 3 

Scenario n 

Scenarios 

… 



 

 38 

I.1 Definitions of parameters that influence an ADAS function 

The parameters that influence the ADAS function are defined based on the ODD (Operational 

Design Domain) taxonomy and Ego vehicle behaviours presented in the technical report of the 

National Highway Traffic Safety Administration (NHTSA) in September 2018 [20]. 

 

I.1.1 ODD taxonomy 

An ODD describes the specific operating domains in which an ADAS feature is designed to 

function with respect to roadway types, speed range, lighting conditions (day and/or night), 

weather conditions, and other operations constraints. ODD will likely vary for each ADAS 

feature.  

To identify the different attribute that define the ODD taxonomy the NHTSA used a lot of 

information as press releases, NHTSA pre-crash scenario analysis, technical journals, videos 

and conference proceedings. 

The ODD taxonomy includes the following top-level categories: Physical Infrastructure, 

Operational Constraints, Objects, Connectivity, Environmental Conditions, and Zones. 

The figure 19 presents the hierarchical ODD taxonomy. 

 

Figure 19: ODD classification framework with top-Level categories and immediate subcategories [20] 

The different sublevels in each top level or category will be called Parameters. 



 

 39 

I.1.2 Equivalence class classification 

An equivalence class consists of a group of elements, which has the same impact on the system. 

For each parameter of the ODD taxonomy, we are going to classified it in different groups of 

equivalence class. The reason why we do this classification in equivalence class is to avoid in 

the same scenario incompatible elements, we separate them at this stage so that we cannot 

choose them together when we will do the generation.  

We will only present some classification examples of the main categories. A table resuming the 

different categories, their parameters and their equivalence class is presented in appendix 2. 

I.1.2.1 Physical infrastructure 

 Roadway types: we divided it into highway, rural, urban, countryside, suburban. 

 Roadway characteristics: number of lane, slot, straight, curve… 

 Roadway surfaces: Asphalt, concrete, gravel, grass… 

 Roadway configuration: roundabout, gyratory, straightaways, Y-intersection… 

 Roadway edges: concrete barriers, cones… 

The figure 20 illustrates an example of physical infrastructure. 

 

Figure 20: (a) Rural road; (b) Barrier and temporary cones1 

I.1.2.2 Environmental conditions 

The environment can affect visibility, sensor fidelity, vehicle manoeuvrability and 

communication systems, figure 21 presents some examples. It is divided in: 

 Weather: rain, snow, cloudy, fog, clear… 

 Road masking: standing water, flooded roadways, ice roads, snow on road… 

 Illumination: high luminosity, low luminosity, medium luminosity… 

 Moment of the day: night, day, dawn, dusk… 

                                                 
1 https://www.google.fr/pictures 

(a) (b) 



 

 40 

 

Figure 21: (a) Limited visibility Heavy rain; (b) Sun glare1  

I.1.2.3 Operational constraints 

These include elements such as dynamic changes in speed limits, traffic characteristics. For 

example, an autonomous vehicle entering a school zone is subjected to lower speed limits and 

must respond appropriately to ensure the safety of its passengers and other road users.  

 Traffic conditions: minimal traffic, normal traffic and heavy traffic 

 Speed limitation 

 Sign plate: motorway entrance and exit, home zone, Stop… 

 Traffic light 

Figure 22 presents some examples. 

 

Figure 22: (a) Heavy traffic; (b) Speed limit1  

I.1.2.4 Objects 

We classified objects in: 

 Roadway users: pedestrians, cyclists, vehicles (trucks, buses, cars, motorcycles…) 

 Non-roadway user: animals, perturbation target, signage, debris… 

 

Figure 23: (a) animal on the road; (b) signage1 

(a) (b) 

(a) (b) 

(a) (b) 



 

 41 

These objects could have a dynamic like for example: 

 The vehicles can decelerate, change line, parking, entering roadway… 

 Pedestrian or cyclist can crossing road, walking or riding on sidewalk… 

 

I.1.3 Ego vehicle manoeuver behaviours 

The ego vehicle is the vehicle having ADAS function integrated that we want to test. It can 

have many operational manoeuvres that influence the ADAS function.  

We can list: lane switching, accelerating/decelerating, overtaking, parking… 

 

Figure 24: Ego vehicle overtaking and changing lane [20] 

 

I.2 Dependence between parameters 

Some equivalence classes depend on others. For example, illumination depends on the moment 

of the day; road topology depends on the type of road.  

For each equivalence class, we going to search if it depends or not on another class. In the case 

of dependence, we will put them together. We can see an example of dependence in the figure 

32 of the input Excel file presented in the next chapter. 

We need to know all the dependences before the attribution of probability of occurrence to 

equivalence class, because in the case an element depends on another, its probability of 

occurrence will be the conditional probability of occurrence knowing the value of what it 

depends.   

The figure 25 illustrates and example of dependence. 



 

 42 

 

Figure 25: Dependence between luminosity and moment of the day 

 

I.2.1 Likelihood of occurrence 

For each equivalence class we must assign a probability of occurrence.  

The criteria for assigning those probabilities is based on the ADAS function that we want to 

test. For example, the parameter presence of a pedestrian on the road is more likely to influence 

the AEB function than the LKA (Lane Keeping Assist) function, thus the probability in the case 

of AEB will be greater than in the case of LKA. These probabilities must be as close as possible 

of reality. As a result, people who have to assign them must have good experience in the 

automotive sector: good knowledge on automotive environment and ADAS. 

In figure 26, we present an example of probabilities of occurrence of some parameters related 

to the LKA function (given by the ADAS responsible). The Day have a greater probability than 

the night for this function because during the day the sensors have a better visibility to detect 

line and then achieved the function. The other probabilities are conditional probabilities because 

there is a dependence. In the Day, we have in majority High luminosity than in the Night. For 

example in this figure, the probability of occurrence of High luminosity knowing that is the 

Day is equal to 0.87, while its probability knowing that is the Night is equal to 0.044.  



 

 43 

 

Figure 26: Example of probabilities of occurrence for the function LKA 

We can notice that for each parameter the sum of the probabilities of its equivalence class has 

to be equal to one, in order to be coherent with mathematics. 

These probabilities will be used in Markov algorithms for the automatic generation of scenarios 

for the test.  

 

I.3 MCMC method choice and application 

I.3.1 Scenario mathematic form 

The goal of using MCMC algorithms is to generate scenarios, in the space parameter likely to 

influence the ADAS function. Thus, a generated scenario will consist of a set of influent 

parameters. 

We will define the space Ω = {Xs} 𝑠 ∈ 𝑆 = {1,2, … , 𝑁} composed of the different influent 

parameters for a given ADAS function (N being the maximum number of parameters). 

Thus, in mathematical form a scenario can be written as a vector  𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑁) ; 

𝑋𝑖,   {𝑖=1…𝑁} being an influent parameter taking its values in the set of equivalence classes related 

to him. 

For example, if  𝑿𝒊 = 𝑾𝒆𝒂𝒕𝒉𝒆𝒓 , its possible value will be in the set {Snow, Rain, Cloudy, 

Fog, Dry}. 

 



 

 44 

I.3.2 Choice of the MCMC method and application 

As we assume scenario as a vector 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑁), it could be consider as multivariate 

random variable. According to [17], the Gibbs sampler algorithm is more appropriate to these 

cases of variables than Metropolis Hastings algorithm. Also, as we can have all the full 

conditional probabilities (probabilities between equivalence class); given by the PSA ADAS 

Expert, the Gibbs sampler algorithm could be implement [5].  

The algorithm used in our work is based on algorithm 2 of chapter 2. We will just a little revised 

it for a better use in our case of study.  

The algorithm 2 is a periodic Gibbs sampler; this means that, at each iteration all parameters of 

a scenario vector is being sampled. Thus, taken a very long time if we have many parameters. 

To reduce time taken we propose two approaches:  

 Method 1: At each iteration, sampling only the parameters of a given category that will be 

choose randomly. 

 Method 2: At each iteration, sampling only one parameter randomly choose in a randomly 

chosen category. 

Only the algorithm of the first proposal is presented here, for the second, confer to appendix 3. 

If we note by C the set of top-level category (cf. section I.1.1 of this chapter) we have: 

C = {Physical Infrastructure, Operational Constraints, Objects, Environmental 

Conditions, Ego vehicle behaviour}; 

We note M its number of elements. 

A category Ci is composed of parameters: 𝐶𝑖  =  {𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝 }  “p” being the number of 

parameters in category Ci; 𝑋𝑖𝑝 is a parameter that is also a set as described in section I.3.1 of 

this chapter. 

We then have the following algorithm: 

 

 

 

 



 

 45 

   Algorithm3: Gibbs sampler method 1 

1. At initial step, select 𝑋0 = (𝐶1
0, 𝐶2

0, … , 𝐶𝑀
0 ) , where 𝐶𝑗

0  =  {𝑋𝑗1
0 , 𝑋𝑗2

0 , … , 𝑋𝑗𝑝
0  }  and a 

probability vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑀) applied on  the categories 

2. For t = 1,2,…,N  

a. Randomly choose 𝐶𝑗 ,  j ∈ {1, 2, …,M} with the probability 𝛼𝑗 

b. Generate          𝑋𝑗1
𝑡     𝑃(𝑋𝑗1|𝑋𝑗2

𝑡−1, 𝑋𝑗3
𝑡−1, … , 𝑋𝑗𝑝

𝑡−1) 

𝑋𝑗2
𝑡     𝑃(𝑋𝑗2|𝑋𝑗1

𝑡 , 𝑋𝑗3
𝑡−1, … , 𝑋𝑗𝑝

𝑡−1) 

     

 

𝑋𝑗𝑝
𝑡     𝑃(𝑋𝑗𝑝|𝑋𝑗1

𝑡 , 𝑋𝑗2
𝑡 , … , 𝑋𝑗𝑝−1

𝑡 ) 

3. Repeat step 2 until reaching equilibrium. 

 

We can notice that in this algorithm at the initial step we had to select an initial scenario vector 

and attribute a probability vector to the categories. We will explain how practically we will do 

that:  

 Defining the initial scenario vector  𝑿𝟎 = (𝑪𝟏
𝟎, 𝑪𝟐

𝟎, … , 𝑪𝑴
𝟎 ): the initial vector do not really 

influence the generated sequence, since with any starting point as the sequence becoming 

long, it will converge to a stationary distribution. It is only the first generated scenarios that 

are strongly correlated to the initial vector.  

In the case of our work, since we want to resolve the SOTIF problematic, by generating 

scenario that are disregarded or otherwise be forgotten by the human who generate the 

scenario, we will choose as parameters for the initial vector, those having a minimal 

probability of occurrence. 

 Probability vector of categories 𝜶 = (𝜶𝟏, 𝜶𝟐, … , 𝜶𝑴): it will be calculated under the base 

of parameters present in each category divided by the total number of parameters. Thus, 

the sum of the probability of this vector will be equal to 1.  

∑ 𝜶𝒊

𝑴

𝒊=𝟏

= 𝟏 

 The randomly choice of a category is done here concretely using the mathematic uniform 

law with discrete values. 

. 

. 

. 



 

 46 

 At each iteration, each parameter of the chosen category is sampler using the conditional 

distribution of this parameter knowing the values of all other parameters of this category. 

 

I.4 Convergence diagnostic 

After presenting the sampling algorithm that allows us to generate our scenarios, we might ask 

ourselves how many times will we have to go through the iterative loop before stopping, how 

long should we run the MCMC chain? Hence the notion of convergence that defines the 

stopping point. 

To detect convergence, we going to use an approach of German & Rubin (1992) [20] that 

consists of generating multiple sequences and compare their variances. The different steps of 

this approach are:  

 Generate independently 𝑚 ≥ 2 sequences, each of length 2n with different starting 

points.  

In the case of our study, we going to generate m = 4 sequences with length 2n = 1000 scenarios 

and different starting points that we choose as: 

 A scenario with parameters the least probable 

 A scenario with the most probable parameters  

 A scenario with a mix of most and least probable parameters 

 A scenario with parameters chosen randomly  

 To diminish the effect of the starting points, we going to discard the first n scenarios 

and focus our attention to the second n scenarios of each sequence. For those important 

scenarios we going to calculate the variance between chain B and the mean within 

chain variance W, given by the following equations:  

𝐵 =  
1

𝑚−1
∑ (�̅�𝑗 − �̅�)2𝑚

𝑗=1      and     𝑊 =  
1

𝑚
∑

1

𝑛−1

𝑚
𝑗=1 ∑ (𝜋𝑖,𝑗 − �̅�𝑗)2𝑛

𝑖=1           [21] 

 

With:                    �̅�𝑗 =
1

𝑛
∑ 𝜋𝑖,𝑗

𝑛
𝑖=1      and     �̅�  =

1

𝑚
∑ �̅�𝑗

𝑚
𝑗=1  

 

 Then we going to calculate the estimate variance of the target distribution π, given by 

the following equation: 

                    𝜎2 =
𝑛−1

𝑛
𝑊 +

1

𝑛
𝐵                                                                        [21] 



 

 47 

𝜎2 overestimate the variance when chains are not reached convergence. 

The convergence is reached when the potential scale reduction factor √𝑅 = √𝜎2

𝑊⁄    tends to 

1 when n  ∞. 

Concretely we going to increase the length of the sequence and redo those calculations until we 

obtain the convergence.  

 

 

II IMPROVEMENT OF THE POST PROCESSING VALIDATION TOOL 

NODESAT 

For the post processing of its test results, in order to know if they are conform to the 

requirements, PSA has designed and developed on Matlab a tool called NODESAT Post-

Processing. As described in the chapter 1, this tool takes in entry the description file that 

contains the different scenarios and the expected results for each of them; he takes also as input 

the .erg files, which are the result files obtained after the execution on the simulation 

environment Carmaker. The goal is to compare both results in a defined time. 

The figure 27 presents the graphical interface of the tool.  

 

  

 

 

 

 

         

 

The next figure presents the detailed process of the post processing of results. 

Figure 27: Interface GUI of the PSA post-processing tool 



 

 48 

 

Figure 28: Process for the post processing 

At the beginning of my internship at PSA, this tool briefly described above, was presenting 

some defects. So, one of my objectives was its improvement. To achieve that, I proceed as 

follow: 

 Collect all the defects of the tools: I organized a meeting with the tool users (ADAS 

validation officers), during which I asked them some questions about problems that they 

encounter with the tool, in order for me to well understand each of it. I resumed all the 

defects in a document called QIA (Inter-Active Questioning) at PSA. This latter will 

help me for a traceability and a better organization of my work. The major defects that 

I collected are resumed as follow: 

o Suppression of the summary Excel generation file and directly integrate in the 

description file, the status of each expectation; 

o Enable the possibility for the user to choose which signal charts he would like 

to display in his html report. 

• Input files

In Matlab

- Comparison between the value of 
signals expected with those really 

obtained from the simulation

- Creation of charts of signals

• Post processing tool

• Output files

Description 

Excel file (*.xls) 

 

- Scenarios 

- Expectations 

(signal values 

expected) 

Carmaker 

results (*.erg) 

 

- Value of signals 

along the time of 

simulation 

Summary Excel 

file (*.xls) 

 

- Status of each 

expectation 

- Values of 

signal obtained 

in simulation 

Report (*.html) 

 

- Status of each 

expectation 

- Signal charts 

 



 

 49 

o Integrate an acceptable error margin in the comparison between the values of the 

signals expected and those obtained with the simulation, for the assignment of 

test status. 

 

- Proposing solutions for the correction and improvement of the tool: to better 

apprehend the different problems, I first tried to understand the entry files of the defect 

tool.  

o The description file: I wrote by myself a description test file for the ADAS 

function SLI (panel detection) of the camera and Gateway (communication 

function between the trams) of the radar. This helped me to carry out the 

limitation of the document, and to propose solution for its improvement. 

o Carmaker result: I simulated on the HIL bench, the scenarios defined in the 

above description file and I got the different result files. This helped me to 

perceive and understand the signals composing the .erg file. 

o I launched the post processing of my results on the Nodesat tool, in order for me 

to see how the summary file and the html report are presented. 

I then proposed solutions:  

o I made up a new template for the description file. Compared to the latest one, 

here there is the possibility for each testrun that we want to simulate, to choose 

the relevant signals that we will like to display in the html report. The figure 29 

presents the tab of the Excel file where this maneuver has to be done. For each 

testrun of column A, he choose the signals that he want in the next columns.  

 



 

 50 

 

Figure 29: The choice of signals to display in the report 

Macro VBA has been implemented to facilitate the use of this document.  

In addition, I added the possibility for the user to define the error margin he can permit for the 

expectation checking. In the following figure, we can see the influence of the error margin that 

the user filled, and the status obtained after the post processing of test results with the tool I 

improved by Matlab coding using mathematic algorithm.  

When the error margin is 25% the test is True, while when the error permitted is 5% the test is 

False. 

 

 

Concretely, in the code what I do, is to first find the corresponding time value using the 

simulation result; for this example with the verification time equation, I found:  



 

 51 

tDistance2 = [42.85 – 49.60]; Car.Distance is the distance driven by the ego car. 

 

Then, in this corresponding time, I calculate the percent of index that did not verify the signal 

expectation and I compared this result with the error margin imposed by the user. If the percent 

that I calculated is less than what defined by the user then the test is True, otherwise the test is 

False. When the user leave the cell of margin error empty, I considered in the status checking 

that no margin error is permitted. 

 

Figure 30: Chart of the signal CAN_FD3.11eh.CVM.SEC_DIST_VHL_L_LINE_EXT during the simulation time 

At the output of the tool, I generate also a .log file where I resumed all the error of warning 

obtained during the post-processing. 

To clarify this margin error explanation, I will give some examples of cases where the error can 

be allowed and where it cannot. 

- A case of a scenario where the ego car should detect a motorcycle that is driven before 

him. The detection signal need to be equal to 1 (an example of value) to state that it well 

detect the motorcycle. In the detection time, it is not permitted that the detection signal 

takes another value (example a value stating that it is detecting a pedestrian while it 

should detect a motorcycle), so no margin error is permitted in this case.  

 

- A case where an error margin could be permitted is for example at a beginning of a 

scenario of detection; the time taken by the camera for its initialization before starting 

the detection. We could state an error margin that will correspond to that time where the 



 

 52 

detection signal will be not equal to its expected value, because the camera will not yet 

initialized. 

Therefore, the user will not define the error margin with hazard. 

I will conclude this section by saying that the global objective was achieved. I made up the tool 

using the same GUI interface like the previous one, and it will now be the new post processing 

tool for the ADAS validation in the CVAD entity of PSA. Moreover, the description template 

that I presented will be the new model for writing their test plan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 53 

Chapter 4: 
 

PRESENTATION OF THE RESULTS AND DISCUSSION 

 

I CREATION OF INPUT DATA  

As presented in the methodology, the first step of our work consists on choosing the parameters 

that influence the ADAS function, then classify them into equivalence class and assign to them 

probabilities of occurrence.  

The choice of parameters and their classification have been done using the ODD taxonomy 

presented in the methodology and by reading the requirement documents for some function to 

know which parameters influence their behaviour. After, I thought about how I will present 

these parameters, so that it will be easy for the user to complete the necessary probabilities and 

for me to easily manipulate them in the programming tool. 

My first idea was to present them in graphs, drawing each category in form of graph where 

there will be a link between an equivalence class and its dependence. I started drawing the 

categories using the software yEd Graph Editor, but I found many difficulties: 

- When a category have many equivalence class, it is difficult to draw and to read the 

graph; 

- If there is another category that the user will want to add, there will be a need for him 

to know how to use the tool in order for him to draw the graph; 

- The connection between the yEd tool with my programming tool python, took me a lot 

of time to implement.  



 

 54 

 

Figure 31: Example of unreadable drawing graph in yEd software 

Therefore, we decided to change the form for the presentation of the parameters. 

We built up an Excel file where we write all these parameters in a “user-friendly” form, so 

that the user could easily complete the different probabilities needed in the Gibbs algorithm for 

the automatic generation. 

The Excel file is presented as follow: 

 

 

 

 

 

 

 

 

 

 

Figure 32: File for the input parameters 

 



 

 55 

The first column is the category names. It is followed by the names of the parameters in each 

of those categories. The user fills the third column; he had to write the X symbol into the cell 

when the corresponding parameter influence the ADAS function on which he is working. In the 

case this parameter does not influence his function, he leaves the cell empty. The next columns 

are the different equivalence class for each parameter. It is divided into three parts: the name of 

the equivalence class, its dependence (if there is nothing we put the symbol -) and then the 

probabilities that have to be completed by the user.  

The sum of the probabilities following a line should be equal to 1 in order to be coherent with 

mathematics, as explained above. I built up a macro VBA to remind it to the user when he fills 

the file. 

 

Figure 33: Verification reminder 

For the connection between this Excel form and my programming tool, I added a tab in the 

Excel file. In this tab, I copy automatically using a macro VBA, the information from this first 

tab in the second one, but in the form easy to use and manipulate in the programming tool. This 

easy form is the DataFrame form used in python and other programming tool.  

Then, is from this second tab, that the programming tool takes information to generate 

scenarios. 



 

 56 

 

Figure 34: Excel DataFrame 

In the next figure, we can see how python converts this Excel DataFrame tab exactly as the 

same manner. Therefore, it is easy to link each parameter to its dependence and probability. 

 

Figure 35: Python DataFrame: example for the parameter Tarmack 



 

 57 

The fact of having imposed to the user to select with a symbol X his relevant parameters, help 

us in the code to delete lines of the unselected cells, in order to work only on the important 

parameters. 

We made available to the user a document that explain the Excel file, what are the different 

columns and how to complete it.  

 

II SCENARIOS GENERATIONS 

To program the two algorithms described in the precedent chapter, we used Python 

programming tool. The code takes as input the Excel file presented above and generates as 

output an Excel file, whose parameters in a given line constitute a scenario.  

In the figure below, we present the Graphical User Interface for our code. We name it the 

MCMC Test Tool. The user will upload its input Excel file, and choose the directory where 

the result will be registered. Then the generation process can be launched/started. 

 

Figure 36: Python code interface 

We will describe concretely how the algorithm is implemented in python, how we step from a 

scenario to another one. 

Suppose we have an initial scenario, chosen as described in the methodology chapter. 



 

 58 

For the next 5000 scenarios, at each iteration we will randomly choose a category with a 

function that we implemented called choice_Category. Then, each parameter of this chosen 

category will be sampled. 

 

For each parameter,we will look if there is dependence or not. 

 

If there is no dependence as is the case for this selected parameter in the next figure, the 

algorithm will directly sample from the probability distribution of this parameter. 

 

Figure 37: Case of sampling without dependence 

No dependence 

A random selection of the 

new parameter’s value is 

done using this probability 

distribution. 



 

 59 

While if there is dependence, the figure 38 below explains the different steps. 

 

Figure 38: Case of sampling with dependence 

Dependence on the 

parameter Road type. 

What is the value of Road type in the previous sampler? (To understand why 

that, confer to the definition of Markov Chain section III.1 chapter 2) 

Previous sampler elements: 

The value of Road 

type is Suburban. 

The field of possibility of the new parameter is reduced 

according to its dependence 

A random selection of the 

new parameter’s value is 

done using this probability 

distribution. 



 

 60 

Here in figure 39, an example of scenarios obtained in the output Excel file with method 1. 

 

 

Figure 39: Example of output scenario of method 1 

In the case of the five scenarios (five lines) present in this picture, only the category 2 was 

randomly chosen at each iteration of the algorithm. It is the reason why only its parameters 

change and those of other categories remain unchanged. The others categories have been chosen 

in other scenarios, but I could not present the entire file in one picture. 

Unlike method 1, in method 2, only one parameter change from one scenario to another. In the 

figure 40, we can see the parameter vehicle dynamic of category 5, which change at the next 

generation. 

 

 

Figure 40: Example of output scenarios for method 2 



 

 61 

The difference between the two methods is presented in the following table: 

Table 2: Comparison between the two methods 

Algorithm Method 1 Method 2 

Number of samples 2500 2500 

Percent of duplicates 2,40% 41% 

Running time 2min10s 21s 

 

Method 1 generates less duplicates but take more time, while the second generates more 

duplicates and take less time. 

For the convergence diagnostic, we generated four sequences with different initial points as 

described in the methodology. We started with a length of 100 scenarios and increase the length 

until the potential factor converge to one. 

If we go back to the different formulas to calculate in order to diagnostic the convergence, we 

will see that there is a need of the joint probability. This value is directly obtained in the output 

Excel file in the tab called ‘Probability’ of the scenarios generation for each sequence.  

 

Figure 41: Probability tab in the output Excel file 



 

 62 

We then used those different joint probabilities to make our calculations, and we obtained the 

following results: 

 

 

 

 

 

 

For 5000 generated scenarios, we assumed that the convergence has been reached as the factor  

√𝑹 tends to 1. 

For the suppression of duplicates, we used a command of Excel, which delete all the duplicates 

in a selected range. 

 

III   TEST CASES GENERATION 

In order to test my scenario results on HIL bench, I worked with another student in 

apprenticeship at PSA to transform my textual scenarios in testruns, which are scenarios in the 

simulation environment (Carmaker for PSA).  

The requirement to do that job was a very good knowledge of Carmaker and of its internal 

functioning. Having a large number of scenarios, we design another tool to generate 

automatically the testruns, by taking in entry our scenarios.  

Concretely, we drawn separately each parameter of a scenario in Carmaker (example in figure 

42). Moreover, the tool works in grouping together the drawn parameters of a given scenario, 

in order to constitute its testrun.  

 

Figure 42: Example of parameters drawn in carmaker 

n √𝑹 
100 1,38536227 
200 1,23865952 
300 1,19784319 
400 1,12967112 
1000 1,05060458 
5000 1,00914174 

 
 

0

0,5

1

1,5

0 2000 4000 6000
√
𝑹

Number of samples

Convergence evolution



 

 63 

For example, the testrun resulting of the scenario of table 3 below is presented in figure 43.  

Table 3: Example of scenario 

Night High luminosity Snow No masking 
Urban 3 lanes road Absence of 

Motorway Exit 
Presence of Motorway 

Entrance 
Guard rail Initial lane ego 

vehicle = 1 
Initial lane other 

vehicle =1 
60 km/h <=Speed other 

vehicle < 100km/h 
60 km/h <=Speed ego 

vehicle < 100km/h Straight road Windshield wiper 
ON Dark coating 

Slot Present Markings partially 
deleted Tunnel present Skid Present  

Work on road Present Bridge present   

 

The parameters in red colour are non-possible to be generate automatically with the generation 

code. They can only be changed manually in the carmaker interface, so for a given testrun, we 

generate automatically all other elements and we complete the other elements manually. 

   

Figure 43: Example of testrun 

 

 

 

 

 

 

 

 



 

 64 

IV DISCUSSION 

IV.1 Limitation of the approach 

The approach presented in the methodology for the scenarios generation, allows to generate 

scenarios with only one equivalence class for a given parameter. This means that, for a given 

influent parameter, we cannot have more than one of its equivalence class in the generated 

scenario; this is because the goal of the classification in equivalence class was to avoid 

impossible scenarios, like Day and Night in the same scenario. Thus for the parameter “moment 

of the day” for example, we considered “Day” as one equivalence class (this includes all hours 

where the sky is clear) and “Night” for another one (this includes all the hours of the day where 

the sky is dark). 

However, this classification in equivalence class presents a limitation that we will call “unitary 

scenario”. To clarify this statement, we are going to take an example.  

Let us take the parameter « obstacles » which is divided in equivalence class: “Pedestrians”, 

“Cyclists”, “Animals”, “Vehicles (cars, motorcycles, trucks, buses)” and “Other obstacles”.  

Then, with our approach of generation, we are not able to  have in the same scenario together a 

pedestrian, a cyclist, an animal… However, in the reality, the autonomous vehicle can face 

situations with all those parameters.  

Thus, our approach helps to avoid impossible scenarios, and generates only some possible case 

of test cases that can happen during a road driving. 

  

IV.2 How our results will be used practically for the tests? 

The goal of our work was to generate scenarios for the validation of a given ADAS function, 

such as SLI, LKA and AEB in HIL test level.  

This means that by playing our scenarios, in the simulation environment with the different 

sensors and calculators connected, we could test all the requirements related to the different 

modules of that function (perception, decision, communication …).  

Let us take for example the function LDW (Lane Departure Warning) of the camera, which 

consists in alerting the driver if the vehicle crosses a line of his lane without any driver’s 

intention. The camera contributes to this function by finding out the marking of the lane, the 



 

 65 

position of the host vehicle inside his lane and finally by sending an alert signal on CAN 

network. This signal will be used to warn the driver. 

 

Figure 44: Signals for the LDW function [Source: PSA document] 

If we take the following requirements for HIL validation of this function (Source: PSA 

document): 

1. detection 

 

2. fail safe mode 

 

The requirement 1 for the markings detection can be tested by simulating the camera in our 

generated scenarios (for example scenarios with road marking). However, the second one for 

fail safe mode need that the signal YAW_SPEED should be command manually by the 

validation officer to achieve the given instruction and thus test this requirement.  



 

 66 

So only by playing our scenario, we cannot test and validate all the requirements for a given 

function, thus we cannot say our scenario can validate a function, but only some module of that 

function, as precisely the module “perception”. This is because the perception module does 

not need another information or signals exterior to the scenario information to test the 

requirement. 

This conclusion is only for the HIL test.  

 

IV.3 How confident we are about the coverage of all possible requirements that the 

ADAS function must satisfy? 

As discussed in the precedent section, only the module ‘perception’ of different functions could 

be test and validated on the HIL bench with our generated scenarios. Thus, to ensure ourselves 

for good coverage of the perception requirements by our generated scenarios, we first generated 

scenarios for the global perception of the camera and radar and not for a particular function as 

we done at the beginning.  

To achieve that, I read the component design or the requirement documents related to the 

perception of the camera and radar of PSA. Then, I understood the different parameters that 

influence the perception layer in order to select them in my entry Excel file. To assign the 

probabilities, I discussed with the ADAS validation responsible, who told me the different 

probabilities of occurrence of those parameters. Then, with all these information, I generated 

automatically 5000 scenarios that we simulated on HIL bench, and then the results of this 

simulation had to be used in a software called “Stimulus” to evaluate the coverage level of the 

requirements by the generated scenarios.  

This latter work could not be done in the available time, this because it needed the availability 

and group work with another PSA employees who have better knowledge on the Stimulus tool. 

These persons were not available on time unfortunately, but I hope by the end of my internship 

even I could not presented it in my document because it will be already submitted, that I could 

obtained these coverage results when those persons will be available. 

 

 

 



 

 67 

GENERAL CONCLUSION AND PERSPECTIVES 

I Contribution 

The purpose of this thesis was the “Optimisation of ADAS-AD validation process”, as an 

endeavor to reduce the validation time and to propose an efficient method for reliably validate 

ADAS functions. To achieve that, we designed a tool that we called MCMC Test Tool, which 

takes in entry an Excel file that we already predefined so that the user will only choose his most 

relevant parameters and define their probabilities. Then, he will upload the Excel file in the tool 

and launch; our developed tool will automatically generated in less of 5min 5000 scenarios for 

his use.  

In addition, we improved the post-processing tool of PSA, we made up a new template of the 

Excel description file easier than the previous for the use, and with more possibilities. The 

validation officer can select for each testrun that he want to simulate, the signals to display in 

his report for the better analysis of his results. Also, he can define a margin that will be used in 

the tool for determining the test status. 

II Assignment 

The first task was to use MCMC method for the generation of scenarios. To achieve that, we 

first defined what a scenario is, and analyzed the parameters that compose it. Then, we defined 

a list of those parameters likely to influence an ADAS function; with the use of the ODD 

taxonomy and of our proper knowledge acquire from the reading and studying of the 

requirements document for the Camera and Radar of PSA. To avoid impossible scenarios, we 

classified the parameters in equivalence class based on our knowledge of the parameters and 

our research. We continued by choosing the MCMC method, precisely the Gibbs sampler that 

we used; this choice has been made because there was the possibility to have the full 

probabilities of occurrence of the different parameters given by a person having a deep 

knowledge of ADAS’s operation. We found a way in which the user could easily defined the 

information needed, and we chose the Excel file, which is the easiest one. We implemented the 

algorithm in the tool and we found a method to connect the information in the Excel file with 

our code. We can say that the goal was globally achieved, because we succeeded to obtain 

results with two different algorithms that we proposed. 

The second task was, if possible to test our results on HIL benches. For that, I worked with 

another apprentice at PSA to implement a tool in python, which will take our generated 



 

 68 

scenarios in entry and will create a Carmaker testrun for each of them in an automatic manner. 

I could not do this second task by myself, because my principal task and the next that I will 

present, took me a lot of time and concentration, so I could not have enough time to deeply my 

knowledge on the simulation tool Carmaker. We succeeded on creating testruns corresponding 

to the number of scenarios and we launched it on HIL bench to get the .erg file. The next step, 

as we have a large number of .erg files, was to launch it in a software called stimulus in order 

to obtain the coverage and the status of each test. Unfortunately, this latter work could not be 

done on time. 

The last task was the improvement of the post-processing tool NODESAT. We can say that this 

goal was globally achieved. We succeeded to implement the tool on Matlab, which answer to 

all their problematics; and we added a new template of the description file easy to fill and to 

read. We did the unitary verification test of the different block of code, and we did the global 

verification by launching input files and getting the expected results. 

III Perspectives 

One of the limitation of our approach in generating scenarios is the ‘unitary scenario’ that we 

explained in the section IV.1 of the last chapter. While we were working, we started looking 

for methods for its improvement, but we could not develop more our research on it. This method 

is the mutation of the resulting scenarios. Based on some mathematics’ algorithms, we can 

made a crossing of scenarios in order to obtain a more compact and realistic scenario. A lot of 

documentation on mutation algorithms are available; the major work will be to find how to use 

them to achieve the goal. 

Another limitation of our work is that, to study the coverage there is a long way. First, finish 

our scenarios generation, then convert them into testrun, launch them on HIL benches to finally 

test the coverage on the stimulus software, which require another information to be done. 

Finally, we not got our results (on stimulus as explained above). I started thinking about it: is it 

not possible to directly integrate in the MCMC algorithm another algorithm that will ensure the 

coverage of a given requirement, before choosing which scenario could be generated? We have 

for example the MC/DC (Modified Condition/ Decision Coverage) method developed in [1]. 

 

 

 



 

 69 

REFERENCES 

[1]  S. Kangoye, «Development of a verification and validation approach of automotive 

embedded software, based on the automatic generation of test cases,» PhD thesis, Anger 

University, 2017. 

[2]  C. Barbara, D. Joseph and D. Rami, «Functional Safety Draft International Standard for 

Road Vehicles: Background, Status, and Overview,» General Motors Research and 

Development, 2010. 

[3]  T. João, «Automating ISO 26262 Hardware Evaluation Methodologies,» Thesis 

University of PORTO, 2014. 

[4]  I. 26262-1:2018, “Road vehicles -- Functional safety -- Part 1: Vocabulary,” December 

2018. [Online]. Available: https://www.iso.org/standard/68383.html. 

[5]  N. Becker, «The Safety of the Intended Functionality : Failures are not the only system 

safety problem,» Study day, SIA ISO 26262, p. 93, 2018.  

[6]  S. Prialé, N. Rebernik, A. Eichberger et E. Stadlober, Virtual Stochastic Testing of 

Advanced Driver Assistance Systems, Springer, 2015.  

[7]  B. Guillaume, «Autonomous Vehicle Overview,» MOOC, IFP School, 2018. 

[8]  R. Francisca and N. Pedro, A Systematic Review of Perception System and Simulators 

for Autonomous Vehicles Research, 2019.  

[9]  P. Scott, A. Hans and al, «Perception, Planning, Control, and Coordination for 

Autonomous Vehicles,» Machines, 2017.  

[10]  C. Vineet, «Society of Automotive Engineers (SAE) Automation Levels for cars,» [En 

ligne]. Available: https://www.automotivelectronics.com/sae-levels-cars/. [Accès le 17 

06 2019]. 

[11]  D. Åsljung, On Safety Validation of Automated Driving Systems using Extreme Value 

Theory, Sweden, 2017.  

[12]  I. H. Walther, «Dissertation: How Stochastic can Help to Introduce Automated Driving,» 

2016. 



 

 70 

[13]  M. Till, B. Gerrit and M. Markus, Scenarios for Development, Test and Validation of 

Automated Vehicles, Germany: Institute of Control Engineering, 2018.  

[14]  U. Simon, M. Till and al, «Defining and Substantiating the Terms Scene, Situation, and 

Scenario for Automated Driving,» IEEE, 2015. 

[15]  M. Pascal, «An Efficient Method for Testing Autonomous Driving Software against 

Nondeterministic Influences,» Technischen Universität München, 2017. 

[16]  K. Philip and W. Michael, «Challenges in Autonomous Vehicle Testing and Validation,» 

SAE World Congress, 2016. 

[17]  S. Dr. Volker, «Markov Chains and Monte–Carlo Simulation,» Ulm University Institute 

of Stochastics, 2010. 

[18]  V. Sandrine and C. Thierry, «Modélisation et Simulation Stochastique,» Télécom 

Bretagne, 2014. 

[19]  D. Bernard, «Simulation et modélisation,» Master course University of Rennes France. 

[20]  E. Thorn, K. Shawn and C. Michelle, «A Framework for Automated Driving System 

Testable Cases and Scenarios,» NHTSA, Washington, DC, 2018. 

[21]  G. Andrew and B. Rubin, «Inference from Iterative Simulation Using Multiple 

Sequences,» Department of Statistics, University of California, 1992. 

  

  

 

 

 

 

 

  

 

 



 

 71 

APPENDICES 

 

I Appendix 1: ASIL levels [1] 

The following matrix defines the level of ASIL to be applied according to the three factors E, 

C and S: 

 

 

QM: Quality Management 

 



 

 72 

II Appendix 2: Parameters classification 

Categories Parameters Equivalence class 

Physical 
infrastructure 

Type of road Urban, Suburban, Motorway, Countryside 

Number of lanes 1, 2, 3, 4 lanes road 

Bend radius 
Straight road, R: >= 500 m, R: >= 250 m, R: >= 125 

m 

Turn direction Right, Left turn 

Topology 
Yintersection, Crossroads, Roundabouts, Gyrator, 

Toll 

Motorway exit Absence, presence 

Motorway entrance Absence, presence 

Roadway surface Asphalt, concrete 

Slot Absence, presence 

Drop Flat, ascending, descending 

Markings pertubation Normal, partially deleted, work road marking 

Tunnel Absence, presence 

Tire skid marks Absence, presence 

Work on road Absence, presence 

Bridge Absence, presence 

Bumps Cone, Beam, wave, Roadside, Mesh 

Tarmack 
Guard rail, Guard Rail (double), Jersey Barrier 

(wall), Jersey Barrier Elements, Wall, Wall (type 2) 

Environmental 
conditions 

Day / Night Day, Night 

Luminosity 
High: [1000 lux; 7000 lux] , medium: [10 lux ; 1000 

lux] , low: <10 Lux 

Weather Dry, Cloudy, Rainy, Fog, Snow 

Road maskings Water slabs, Snow slabs, No masking 

Operational 
constraints 

Traffic density Minimal, Normal, Heavy traffic 

Traffic sign & Light Traffic light, Traffic sign, Stop 

Ego vehicle 
conditions 

Initial lane ego vehicle 1, 2, 3, 4 

Speed ego vehicle 
S >= 100km/h,  60 km/h <=S < 100km/h,                       

0 <=S < 60km/h 

Ego vehicle dynamic 
High acceleration, Hard braking, Soft braking, 

Sway, Overtaking, Driving Backwards 

Time to collision TTC = 1s, TTC= 2s, TTC= 3s, TTC= 4s,TTC near limits 

Windshield wiper ON, OFF 

Wheel angle - 

Wheel angle variation - 

Outbreak longitudinal 
distance 

Far, Medium, Low 

Outbreak Time Far, Medium, Low 

Roadway users 

Initial lane traffic vehicle 1, 2, 3, 4 

Speed traffic vehicle 
S >= 100km/h,  60 km/h <=S < 100km/h,                       

0 <=S < 60km/h 

Traffic vehicle dynamic 
High acceleration, Hard braking, Soft braking, 

Sway, Overtaking, Driving Backwards 



 

 73 

Shift  [0.5; 1m[,  [1; 1m50[,  [1m50;2m[ 

Shift direction Shift on the Right, Shift on the Left 

Obstacles 
Pedestrians, Cyclists, Animals, Vehicle, Other 

obstacles 

Obstacles manoeuver 
 static, Walking or riding , running or riding , 

Encroach the way of the ego vehicle 

Obstacles relative 
position 

 Frontal, Side 

Parked vehicle 
No vehicle is parked, Vehicle parked on the right 

side, Vehicle parked on the left side, Vehicle 
parked on both side of the road    

Pert. Target Car on trailer, Trompe œil, No pert. Target 

 

 

III Appendix 3: Algorithm of method 2 

   Algorithm4: Gibbs sampler method 2 

1. At initial step, select 𝑋0 = (𝐶1
0, 𝐶2

0, … , 𝐶𝑀
0 ) , where 𝐶𝑗

0  =  {𝑋𝑗1
0 , 𝑋𝑗2

0 , … , 𝑋𝑗𝑝
0  }  and a 

probability vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑀) applied on  the categories 

2. For t = 1,2,…,N  

a. Randomly choose 𝐶𝑗 ,  j ∈ {1, 2, …,M} with the probability 𝛼𝑗 

b. Randomly choose 𝑋𝑗𝑝 , p ∈ {1, 2, …,N} with an equiprobable probability 

c. Generate          𝑋𝑗𝑝
𝑡     𝑃(𝑋𝑗1|𝑋𝑗2

𝑡−1, 𝑋𝑗3
𝑡−1, … , 𝑋𝑗𝑝−1

𝑡−1 ) 

d. Leave the other parameters unchanged 

3. Repeat step 2 until reaching equilibrium. 

 

 

CD content: 

- Input Excel file for the ‘Perception test’ 

- Output results of the ‘Perception test’ 

- MCMC Test Tool software 

- Electronic Version of Diploma Thesis 

 

 


