
i

ii

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF

INFORMATION TECHNOLOGY DEPARTMENT OF SOFTWARE

ENGINEERING

Bachelor’s thesis

Synchronized Database Storage

 Sanan Pashayev Bachelor

Supervisor: Ing. Tomáš Hradský

08th July 2019

iii

Acknowledgements

I want to thank my supervisor Ing. Tomáš Hradský for his invaluable assistance during writing this thesis.

Above all, I would like to thank my family for supporting and motivating me during all the time.

iv

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information

in accordance with the Guideline for adhering to ethical principles when elaborating an academic final

thesis. I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.

121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the Act, I hereby grant

a nonexclusive authorization (license) to utilize this thesis, including any and all computer programs

incorporated therein or attached thereto and all corresponding documentation (hereinafter collectively

referred to as the “Work”), to any and all persons that wish to utilize the Work. Such persons are entitled

to use the Work in any way (including for-profit purposes) that does not detract from its value. This

authorization is not limited in terms of time, location and quantity. However, all persons that makes use of

the above license shall be obliged to grant a license at least in the same scope as defined above with

respect to each and every work that is created (wholly or in part) based on the Work, by modifying the

Work, by combining the Work with another work, by including the Work in a collection of works or by

adapting the Work (including translation), and at the same time make available the source code of such

work at least in a way and scope that are comparable to the way and scope in which the source code of the

Work is made available.

on 8th July 2019

v

Czech Technical University in Prague

Faculty of Information Technology

C 2019 Sanan Pashayev. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted

at Czech Technical University in Prague, Faculty of Information Technology. The thesis is

protected by the Copyright Act and its usage without author’s permission is prohibited (with

exceptions defined by the Copyright Act).

 Citation of this thesis

Sanan Pashayev. Synchronized Database Storage. Czech Technical University in Prague, Bachelor’s

thesis. Faculty of Information Technology, 2019.

vi

 Abstract

Data synchronization ensure that a data set exists in different directory servers to ensure

redundancy as well as faster processing. Such servers need to have data that is consistent and

available at all times. Data consistency and availability can be assured by data synchronization

and data replication. Data replication involves creation of more than one redundant database

copies to improve on data accessibility as well as make the system fault tolerant.

This thesis is intended to present a study a working tool for database synchronization without

forgetting to look at conflict introduced by this duplication of information and their resolution.

An algorithm that works to ensure synchronization using a client-side tool is used to present a

working model. This study is based on experiments on real data to show how the synchronization

techniques can solve the data inconsistencies and guarantee the integrity of the data.

Keywords

Database Synchronization, offline data, conflict resolution, SQLite, PostgreSql, data integrity,

synchronization techniques.

Abstrakt

Synchronizace dat umožňuje existence stejných dat na různých serverech. Tím je zajištěna

redundance a rychlejšího zpracování. Tyto servery musí mít konzistentní a neustále dostupné

údaje. Konzistenci a dostupnost dat lze zajistit synchronizací dat a replikací dat. Replikace dat

zahrnuje vytvoření více než jedné redundantní kopie databáze ke zlepšení dostupnosti dat a také

k tomu, aby byl systém odolný vůči chybám.

Cílem této práce je představit studii, která by fungovala jako nástroj pro synchronizaci databází,

s ohledem na konflikty, který tato duplikace informací může zapříčinit. Je použit algoritmus

který zajišťuje synchronizaci pomocí nástroje na straně klienta. Tato studie je založena na

experimentech na reálných datech, které ukazují, jak mohou synchronizační techniky řešit

nesrovnalosti dat a zaručita jejich integritu.

Klíčová slova

Databázová synchronizace, offline data, řešení konfliktů, SQLite, PostgreSql, integrita dat,

synchronizační techniky.

vii

Table of Contents

1. Introduction .. 10

1.1 Problem Statement ... 10

1.2 Objectives.. 11

2. Related Work .. 11

2.1 Data synchronization using cloud storage (2012) ... 11

2.1.1 System Architecture ... 11

2.1.2 Implementation .. 12

2.1.3 Discussion and Conclusion ... 16

2.2 Using data synchronization process as a way of solving problems related with software in

absence of Network (2012) ... 16

2.2.1 System Architecture ... 16

2.2.2 Implementation of the proposed solution for ESMS offline mode of operation 17

2.3 Data synchronization in Driving Simulator-based Experiments for cognitive load estimation .. 18

2.3.1 System architecture ... 18

2.4 A distributed Architecture in Distributed Database Systems for Transaction Processing (2010)

 19

3. Data Synchronization Concept, approaches and Methodologies ... 21

3.1 Source and Destination have dissimilar structures... 22

3.1.1 Use of Manually Created Scripts .. 22

3.1.2 Data Compare Method ... 22

3.1.3 Automatically Generated SQL script synchronization .. 23

3.2 Effective database synchronization strategies, their challenges and ways to resolve such Issues

 24

viii

3.2.1 Data consistency ... 24

3.2.2 Partition Availability ... 27

3.2.3 Performance ... 28

4. METHODOLOGY APPROACH ADOPTED .. 31

4.1 Synchronization Technique ... 31

4.2 Resolving data conflict between client and server ... 33

4.3 Data Representation of changes ... 34

4.4 Technical Specifications .. 35

4.4.1 Platform .. 35

4.5 Log based data synchronization technique .. 35

4.5.1 Use of a middleware .. 36

4.6 Unit Tests .. 37

4.7 Other Tests .. 37

5. CONCLUSION ... 37

Table of Figures

Figure 1: Cloud Data synchronization .. 12

Figure 2: Mobile application UI.. 13

Figure 3: Mobile UI .. 14

Figure 4: Desktop UI .. 15

Figure 5: Desktop UI II ... 15

Figure 6: ESMS system .. 16

Figure 7: Database sync Algorithm .. 17

Figure 8: Synchronization concept ... 18

Figure 9: Distributed database transaction .. 20

Figure 10:Master-Slave database concept.. 24

Figure 11: Master database crash ... 25

Figure 12:Network Jitters inhibiting communication] .. 26

Figure 13: Hybrid master - slave database structure .. 27

Figure 14:master-slave database .. 29

ix

Figure 15: Two slave database structure in use .. 30

Figure 16:Architecture diagram of database synchronization ... 31

Figure 17: change_history table with Change column ... 32

Figure 18:Sample data representation of change_history table .. 34

10

1. Introduction
The world of technology has experienced great advancements which have major impacts on our lives. This

is well manifested through our day-to-day activities which involve interactions with the internet. Our

modern society is characterized by production and consumption of huge gigabytes of information every

single day. One type of information includes news which can be accessed through various media such as

TV, newspaper, website or even social media. All this information is stored in databases where it can be

accessed by various people upon request. Therefore, this leads to the creation of databases which can be

considered to be readily available around us. The effects related to these databases are extensive and we

experience them in almost all of our daily activities. For instance, weather applications, online movie

streaming, social gaming, and cloud storage are some of the activities which involve the application of

databases. In addition, the use of databases has become a crucial element and necessity for organizations

in order to promote the sharing of information in a seamless manner. This helps in improving the quality

and availability of data. Data availability is achieved through the use of distributed databases technique

which refers to a collection of databases that are shared over the network. Data sets are made available and

consistent in more than one database. In order to ensure this process is implemented successfully, both

data replication and synchronization processes are performed. Data replication refers to the process of

creating more than one redundant copy of a database to ensure accessibility improvement as well as fault

tolerance. On the other hand, data synchronization refers to the process of establishing consistency of data

across all databases even after subsequent updates.

Database synchronization has led to huge advancements of database systems by promoting parallel data

processing. This has led to major improvements which have enabled real-time accessibility of data to many

people across the world. Users are able to use multiple devices that are always in sync, and real-time

experience is guaranteed. Database synchronization is achieved through the use of a specialized tool that

keeps track of database versions as they are created and utilized. When a change is detected in one database,

all the other nodes are notified and they update accordingly. The database synchronization process can be

implemented manually by making use of the Microsoft Sync Framework. Alternatively, this can be

achieved through the use of already existing inbuilt tools which come with systems such as Microsoft SQL

Server.

This paper aims at developing a comprehensive analysis of database synchronization and all the necessary

requirements that should be met. There is a short review of tools which have been already developed in

order to support database synchronization. This exploration will help in establishing an existing gap that

will form the research problem of this thesis. This paper aims to address and develop a suitable and viable

solution. This is further followed by comprehensive documentation of the proposed software solution.

There will be a detailed discussion on how that prototype has been developed as well as how it works in

order to address the research problem. In addition, there will be documentation of the testing process and

discussion of the benefits associated with that product.

1.1 Problem Statement

An environment which is associated with computational processes is characterized by use of client-server

systems. In some instances, an offline application needs to interact with a server. This interaction involves

sending and receiving of information that aims at ensuring all devices and the server information is

synchronized. Additionally, a client software that is installed on a local database needs to be in sync with

its server counterpart. Which mechanism can be adopted in order to ensure that data and structural changes

have been handled correctly and all endpoints have updated data? This forms one of the major parts of the

11

problem statement that will be addressed in this paper. This thesis aims at developing a solution that will

assist in full implementation and realization of database synchronization. The developed solution will be

fully documented and test processes will be carried out in order to establish whether the problem statement

is addressed.

1.2 Objectives

The main objective of this paper is to develop a database synchronization tool that will help in performing

a two-way data synchronization between the server and local databases where client systems reside. This

is achieved by ensuring that all devices within the client-server environment have updated data at all times.

This paper will show how the database synchronization is developed and implemented in order to form a

working model. Experiments using real data will be performed with an aim of showing how the tool works

towards eliminating data inconsistencies and guarantee maintenance of data integrity at all times.

2. Related Work
There is a lot of work which has been done on this research topic with an aim of establishing a tool that

could aid in database synchronization. A review of these tools is very crucial in this study because it will

help in gathering knowledge that will assist in creating a suitable and effective data synchronization tool.

Furthermore, reviewing these tools helps in identifying gaps which should be addressed by the proposed

solution. Below are some of the existing database synchronization tools which were reviewed when

preparing this paper.

2.1 Data synchronization using cloud storage (2012)

In accordance with (Anand 2012), they denoted that cloud computing devices comprised of back-end cloud

servers and front-end cloud devices. This allows users to have an access to large volume of storage within

the cloud architecture. In this paper, users can upload files from their devices such as mobile phones or

desktops and send them to the cloud. This process is followed by synchronization of all files in all devices

of the user that are connected to the internet. As a result, the user’s files can be viewed from anywhere

using any device. This service was created in order to provide a capability to the users that could allow

them to upload and back-up their data from mobile devices to the SkyDrive. This could be done wirelessly

without involving use of a Zune software.

2.1.1 System Architecture

In order to understand about how this solution was implemented, below is an overview of its system

architecture.

12

Figure 1: Cloud Data synchronization

This architecture comprises of user interface, user devices and a user. User refers to the person who

will be interacting with the user interface while the user device refers to the platform which will be

used by the user in order to access data. The user interface is used in accessing data and carrying data

modification. In this cloud solution, the user is able to create a file a picture which could even be taken

directly from directly from a webcam or camera. All windows platform has this interface implemented

in them and whenever a file is uploaded or modified, synchronization takes place in all other devices.

These files are transmitted into a cloud database where they can be accessed anywhere and from any

device. For instance, in this solution, Sky drive is used as the cloud storage. Before accessing this

service, a user is supposed to get an authentication via the user interface after which he or she can be

able to carry out data editing and modification.

2.1.2 Implementation

The implementation process is broken down into the following processes as discussed below:

 Mobile Application

 Authentication

This is the initial process where a user is supposed to login into the Sky Drive platform

using his or her login credentials. This process checks whether the user is valid and if

not, the authentication fails. The figure below shows the login interface.

13

Figure 2: Mobile application UI

 Uploading photos from the camera

This process is made possible through provision of an interface which enables a user to

be able to upload a photo directly from the camera app in a Windows phone as well as

Webcam from Windows desktop. The photos are uploaded to the SkyDrive and this

helps in reducing the memory space of the user and grants access from any device and

anywhere.

 Creation of Notes and uploading them

There is an interface which enables the user to create some notes which can be uploaded

to the SkyDrive. This interface also offers the capability of executing some changes.

One can also be able to edit some existing documents such as DOC and PPT. Below is

a figure showing this interface.

14

Figure 3: Mobile UI

 Desktop Application

 Photo hub

This is a desktop interface which is provided to the user by devices such as tablet, pc

and laptop. This provides a view of all photos which have been uploaded into the

SkyDrive and there is provision of a feature which will enable one to upload photos

stored in the device or taken via webcam. Below is an overview of this interface:

15

Figure 4: Desktop UI

 Document hub-

This interface is capable of displaying all documents which have various extensions

such as .ppt, .pptx, .doc. dcox, .txt among others. The user is able to edit or create data

new files which can then be uploaded into the SkyDrive as shown in the diagram below:

Figure 5: Desktop UI II

16

2.1.3 Discussion and Conclusion

By the use of credentials, user authentication process is carried out and if the process is unsuccessful,

the user is denied an access to the SkyDrive account. If the authentication process is successful, the

user is able to login and can be able to carry out data changes or modifications. Any changes on the

data stored in the cloud is synced automatically and the user is guaranteed an access of updated data

regardless of the device he or she is using when accessing the data.

2.2 Using data synchronization process as a way of solving problems related with software in

absence of Network (2012)

According to authors (Betim Cico, Agni Dika and Isak Shabani) in their study [4], presented an

algorithm that was applicable in carrying out data synchronization on Web Services (WS). This was

essential in allowing software applications to work well on both online and offline configurations in

an environment characterized by absence of network. This algorithm was implemented in University

of Prishtina (UP) when developing Electronic Student Management System (ESMS). This was opted

in order to address shortcomings that were as a result of uncertain power supply which kept on affecting

network connection. Additionally, other reasons which affected internet connection and could not be

solved by its professional staff, made this move more favorable to the university. Hence using this

algorithm, it is possible to work offline and then data synchronization is done once connected to the

network.

2.2.1 System Architecture

The main idea behind the development of this ESMS system was to create a solution that could support

offline mode of operation. This system consisted of a central database and other 17 local databases

which were used to store data for all faculties of this institution. The first step involved supplying all

faculties of University of Philippines (UP) with Web servers and databases as shown below.

Figure 6: ESMS system

This was followed by installation of applications in all databases and web servers. This process ensured

that all faculties had the systems at their disposal. However, the main challenge on how data could be

synchronized between one side to another. In order to solve this problem, a special software system

was developed with an aim of aiding in data synchronization between the central server and the other

17

local databases which resided in UP faculties. The following technologies were used in development

of ESMS

 Server Operating system- Microsoft Windows Server 2008

 Client Operating system- Windows, mobile (Android) and Linux

 Development platform- .NET Framework 3.5

 Database- MS SQL Server 2008

 Web Server- MS IIS 7

 Browser- Mozilla Firefox, Opera, Safari, Internet Explorer

 Programming languages- C#, Ajax, Html, CSS, JavaScript, ASP.NET

 Development tools- Microsoft Visual Studio .Net 2008

 Accessing Data- ADO.NET

 Communication with another app- XML, Web Service

Algorithm for database synchronization

As a result of challenges which have been experienced by UP in ensuring data synchronization between

all databases, the following algorithm was devised in order to address these challenges. This algorithm

would help in ensuring that offline mode of operation was achieved and data across all databases was

synchronized. On the basis of web services as shown in the diagram below.

Figure 7: Database sync Algorithm

2.2.2 Implementation of the proposed solution for ESMS offline mode of operation

In order to achieve offline mode of operation, the proposed algorithm was implemented in an ESMS

system. This enabled synchronization of data which between the faculties which were working offline

together with the primary system. This was the main database and it could help in ensuring that all data

was up to date with work that was done in various different units. WSs techniques were mostly used in

the synchronization process. Different kinds of units were linked through a connection that was achieved

18

after creating a Proxy client. The main role of the proxy clients was to initiate WS methods that could be

used to transfer data which had been stored offline as well as receive data from the real database.

2.3 Data synchronization in Driving Simulator-based Experiments for cognitive load estimation

In this study [5] as written by Andrew L. Kun and Zeljko Medenica, they present an analysis of effects

which result from inattention and distraction on cognitive load. This has become a crucial factor due

to the increased number of electronic devices that are finding their way towards the vehicle industry.

Some equipment has been used in collection of different variables which are sensitive to changes which

are associated with cognitive load. In order to obtain credible results as well as reliable conclusions,

there need to be dependable ways of performing data synchronization from the various data sources.

This paper presented a low-cost solution which helped in synchronizing three types of devices involved

in driving research. This include physiological monitor, eye tracker and driving simulator (Medenica

& Kun 2012).

.

2.3.1 System architecture

In order to understand how data synchronization was achieved, below is a look on both the hardware

and software that was used.

Figure 8: Synchronization concept

The first element is a PC which is the source of all synchronization messages which are initiated by

the experimenter and sent to other equipment simultaneously. In this case, the PC ran on Microsoft

Windows XP but other operating systems can be used as long as they can support both Serial (RS-232)

19

and TCP/IP communication. The following paths of communication were established between

different equipment and the source PC. This is well discussed below:

2.3.1.1 Hardware side

 Driving simulator and TCP/IP communication path was established. The communication used

by the local network could support high speeds up to 100mb/s. This approach could be

extended up to other driving simulators which were PC-based. However, depending on the

desired capability, serial or TCP/IP communication could be opted in this process.

 There was a serial communication path between the eye tracker software was being ran in a

PC.

 The physiological monitor had a modified serial communication. This was essential in

enabling sampling of multiple physiological signals in a simultaneous manner.

2.3.1.2 Software Side

There were different methods of communication which were used by all pieces of equipment which

were used in this system. Hence, it was established that all synchronization messages could only be

sent by the sources PC. This was crucial in giving attaching a timestamp to all synchronization

messages depending on the time they were received. This led to the design of a customized application

implemented in C++ that could help in realization of data synchronization. This application was

responsible for sending the following messages.

 “SYNC” messages which were specified to the TCP/IP port of the driving simulator. The

scripting system of the simulator could periodically screen all incoming messages and if the

word “SYNC” was detected, the database of the driving simulator could acknowledge receipt

of that message.

 Symbol “s” message which was transmitted to the eye tracker via the RS-232 port. A separate

thread was chosen in order to ensure that the synchronization message was received as soon as

possible. So, the blocking read call thread was chosen to perform this task. This meant that the

application had to switch to a listening mode in order to detect this kind of a message. Once the

“s” message is received, the local time is read and an update is carried on the log file.

 The PC had a serial port which could be toggled from low to high voltage at interval of about

0.5 seconds. This was crucial because the physiological sample monitor used the voltage levels

in order to monitor changes associated with the samples recived.

2.4 A distributed Architecture in Distributed Database Systems for Transaction Processing

(2010)

This is a paper [6] by Dr. Ajay Agarwal and Arun Kumar which gave a detailed description of proposed

concurrency algorithms that could be used in distributed database systems. In order to achieve

concurrency control of a distributed system, the available algorithms come in three basic classes. These

are optimistic (or certification), timestamp and locking algorithms. This paper presented ways by which

concurrency control is achieved in a distributed database system by using a Distributed Transaction

Processing Model approach. This involved a breakdown of the problem of concurrency control into two

main sub-problems namely; write-write and read-write synchronization. In this paper, there was a

description of synchronization technique that solves each sub-problem and later these techniques are

20

combined into solving an entire problem. Such problems are referred to as concurrency control methods

(Özsu, & Valduriez 2011).

 In order to understand how a concurrency control algorithm is implemented in this kind of a database

model, it is important to understand how the DDBMS works and how the algorithm fits into that kind of

structure. DDBMS refers to a collection of sites which are all connected by use of network. It comprises

of main components which are transactions, Transaction Managers (TMs), Data Managers (DMs) and

Data. Communication of events flows from one component to another as shown below:

Transaction-Transaction Managers (TM)-Data Managers (DM)- Data

However, it is worth noting that there is no communication which take place between TMs with other

TMs as well as DMs with other DMs. Below is a figure showing a DDBMS transaction processing

model.

Figure 9: Distributed database transaction

A single TM is responsible for managing a specific transaction which takes place in a DDBMS. Hence,

all transaction issues related to a database are submitted to a TM. TM is also tasked with taking charge

of monitoring any distributed computation method that could be needed in execution of a transaction.

Interactions between users and the DBMS are also supervised by the TM while the actual database is

managed by the DMs.

In order to ensure there is data concurrency between all database in the DDBMS, two-phase locking

technique is widely used. It achieves database synchronization by ensuring that read and write

operations are detected explicitly in order to ensure that concurrent operations do not collide or cause

conflict. This is achieved through creation of “lock” which must be obtained before carrying any kind

21

of operation. For instance, before a data item “x” could be read, a transaction is supposed to obtain a

“read-lock” on x. This helps in maintaining a synchronized state of all data residing in a DDBMS.

3. Data Synchronization Concept, approaches and Methodologies
Information have become very important to today’s making it a necessary during key decision making.

The ability to keep it safe and in perfect condition becomes a priority to ensure that it can be retrieved and

that it remains relevant to support decision making when required. Data is normally stored in databases as

raw data as collected. The DBMS arranges the data in appropriate record formats which enables easy

retrieval, indexing and referral as needed (Ślęzak 2009). It is keen to note that events happens leading to

data distortion, DBMS damage as well as loss information. While such information is lost, organizational

activities might be crippled or done without a good basing due to lack to inability to access that critical

information. Therefore, it becomes critical to have backup strategies which will ensure that information

being collected is spread among several storage destinations just to counter this issue of unpredictable

inaccessibility of information.

Now we have established how important information is, sharing it have become more vital to firms since

it results to improvement of data availability as well as quality. However, during this sharing it is crucial

to have all parties using the information to have information that is similar hence the need to have

consistency among the sources where the information is stored.

Data synchronization is there for this purpose to ensure that a data set exists in different directory servers

(What is Database synchronization? 2019). Such servers need to have data that is consistent and available

at all times. Data consistency and availability can be assured by data synchronization and data replication.

Data replication involves creation of more than one redundant database copies to improve on data

accessibility as well as make the system fault tolerant. Data synchronization in the other hand involves

data consistency establishment among several databases with means to ensure that the subsequent updates

are done continuously to maintain consistency in all databases. Data synchronization can be challenging

but is desirable to organizations. The following are cases where data synchronization might be necessary:

 During data migration

 Information systems regular synchronizations

 Data importation between information systems

 Data set movements in between different environments or stages

 Non-database source data importation

There are several techniques for carrying out data synchronization and companies should choose ways that

works for them (Introduction — Data Synchronization: Patterns, Tools, & Techniques 2019) . Depending

on the data structures complexity, the process could be termed as either simple or complicated. In most of

the time data synchronization is composed of complex related tasks that takes long time to perform them.

Some scenarios requires data specialist to redo the whole process of synchronization. Data synchronization

process can be difficult and expensive as there are no other standards put in place to optimize it besides

22

replication. Its maintenance and implementation can be time consuming. Synchronization can be done on

systems based on the structure of source and destination databases as shown below:

 Systems where Source and Destination are made of similar structures

 Systems where Source and Destination have dissimilar structures.

In the event where the systems source and destination have similar structures data is compared between

various stages and an appropriate data importing is done for consistency (Bacon 1998).

3.1 Source and Destination have dissimilar structures

Synchronization becomes more complicated and synchronization becomes a recurring task. The best

scenario is importing data between two software that are maintained by different companies. The process

requires running imports on an automatic scheduled basis.

There are four ways of solving data synchronization regardless of the structures similarity level:

 Manually created scripts synchronization

 The data comparison method synchronization which is appropriate where source and target are of

similar structure.

 Automatically generated scripts synchronization

3.1.1 Use of Manually Created Scripts

Scripts are manually written to conduct synchronization

Merits

 Open source and free tools can be used

 It is very fast for tables that are indexed

 It is possible to save the script into a stored procedure which makes it possible to run it as an SQL

job

 Can at sometimes used as an automatic import

Disadvantages

 Creation of such scripts is tedious since three commands are required for each table i.e. INSERT,

UPDATE and DELETE

 Only data that is available as SQL queries can be synchronized this way which eliminates use in

data organized as XML and CSV

 Hard to maintain especially when the database structure changes as it calls for modification of three

scripts per table.

3.1.2 Data Compare Method

In this method a tool can be used to compare data in both the target and the source. During the comparison

process SQL scripts are generated and are used to make sure that the differences between the target and

source database are resolved. There a number of programs that are used for data comparison to enable

synchronization. They use the same approach where a user is allowed to select both target and source

database. In the beginning data is read and then comparison is executed. Additional settings for

synchronizing are available in this tools and are necessary for synchronization. They are:

SYNC KEY

23

The primary key or Unique key constraint is used as the SYNKC KEY. A column combination can be

chosen where the primary key does not exist. It used for row pairing between the source and the target

rows.

TABLE PAIRING

Tables are by default paired by name. However, this can be changed which allows one to pair on their own

needs. For example in some software an SQL query can be used as the source or destination.

SYNCHRONIZATION PROCESS

Once the source and the target are identified the tools proceeds to compare them. Both the source and

target data are downloaded and comparison starts based on criteria specified. Values from tables and

columns that are equally named are compared by default. Column and table names mapping is supported

by all tools. The process optimizes data download. For large volume of data, the checksums are

downloaded only. The optimization process is crucial but time requirements for operations performance

increases with increase in data volume. During migration an SQL script is generated. This script can run

or saved. The script executed can be used to provide an import

Advantages

 Advanced SQL knowledge is not required as it can be done through a GUI

 Visual check ability of differences between databases before synchronization

Disadvantages

 The software used are of commercial use

 Performance decreases with increase in data volume

 Only differences are contained in the generated SQL script. This prohibits from being used for

automatic synchronization for future data.

3.1.3 Automatically Generated SQL script synchronization

The method is to that of data comparison only that there is no data comparison involved and the SQL script

generated does not contain data differences, but logic of synchronization. The script generated can be saved

into a stored procedure which can be run periodically. This method is very helpful for carrying out database

automatic imports. This makes the method’s performance better than that of compare method.

Advantages

 SQL advanced knowledge is not required.

 GUI setting up is pretty quickly

 SQL script generated can be saved into a stored procedure

 Ability to use the SQL script as an automatic import.

Disadvantages

 The tools are commercialized

 Inability to manually check the differences as the whole process is executed in a single step

24

3.2 Effective database synchronization strategies, their challenges and ways to resolve such

Issues

Whenever coming up with a strategy to use for data synchronization it is important to consider and focus

on basic concepts and principles involved in databases (Strategies for Effective Database Synchronization

2019):

 Data consistency

 Partition Availability

 Performance

3.2.1 Data consistency

The traditional relational database can only achieve high consistency levels between the master and slave

database by use of shared storage (Scott 2013). This can only be done through Write-Ahead-Logging a

technology where whenever an update occurs it updates the operations write logs or also commits the

transaction. The method to achieve the consistency between the slave and the master databases is

discussed:

When a transaction is committed, a two log writing operation is initiated: The first operation writes the log

to the ephemeral disk while the other synchronizes the log to the slave database where it ensures the data

is saved on the disk.

The master database returns an acknowledgement once the two operations are successful. At this point the

commitment of the transaction is deemed successful.

Figure 10:Master-Slave database concept

From the figure above, generated logs by transactions exists in both the slave and master database. A stable

synchronization is achieved whenever the committing operation of a transaction is returned to the

application.

25

In the event of a crash by the master database at a particular time, the slave is able to give services since it

is consistent with the master database (Loshin [no date]). Transaction data loss is not experienced since

strong consistency between the slave and master database is achieved. From this point the issue of data

availability is considered next now that strong data synchronization have been obtained. The main purpose

of the slave database is to be on standby and take over requests that are master database bound when it

fails. The slave database gets promoted to the master database status and provide services. The challenge

that occurs in this process is what will take charge of the master-slave switch. This have been done

previously through a manual switch but the process is too inefficient.

An automated mechanism has been put in place to avoid the manual nightmare and is done through HA

(High Availability). It is a testing tool suited to eliminate errors. Its deployment requires introduction of a

third server which is connected to both master and slave databases. Whenever the server detects connection

failures bound for the master database it switches the provider to the slave database.

Figure 11: Master database crash

This setup is deemed to provide a perfection solution. However, like any other setup problems may arise

making it difficult to operate. Consider the following scenarios:

The database becomes a single point when the master database fails and the slave database takes over. This

situation will continue until the moment the master database restarts and comes back for service. Now if

26

the slave database happens to crash , the system becomes unavailable. This can be solved by having more

slave databases and replicas to the system.

Another issues occurs where a network issue arises compromising the connection between the master and

the slave database. In this scenario the master database continues to provide services but synchronization

stops taking place. In case the master database stops working the system becomes unavailable. Network

problem can also occur between the HA and the slave database or the master database as well. Consider

the following:

Figure 12:Network Jitters inhibiting communication]

Two potential problems are likely to arise from the above:

The HA fails to find connection to the master and deems it crashed. By default it promotes the slave

database to handle requests meant to be done by the master database. The master database however

remains on and functioning normally and continues to provide external services. The slave database also

continues to provide the same services. As a result dual writing takes place.

The HA fails to find connection to the master and deems it as a network problem. As a result the HA deems

the master database operational and refrains from taking any action. However, the master database crashes

in the process and the HA again fails to perform any action due to impaired network. In this scenario dual

writes are avoided but system availability dented.

The HA itself might crash and stop being operational at the same time. This hampers the master-slave

database switching process. Adding an additional HA layer for the original HA is a possible solution but

27

comes at a cost of efficiency reduction. This results to consistency issues brought about by a distributed

environment. Protocols such as Raft and Paxos have been built to deal with such scenarios.

3.2.2 Partition Availability

So above we have looked at how a distributed environment can bring consistency issues as well as effect

on overall performance with introduction of more channels. The affected aspect is that of availability which

is solved through the introduction of Raft and Paxos protocols. They use system of strong consistency

made up of a master and slave databases, HA monitoring and a switching technique between the slave and

master databases.

The diagram below illustrates this example

Figure 13: Hybrid master - slave database structure

 The system is a bit complicated. The one-master and one slave mechanism is adopted ensuring

strong data synchronization. The following changes are also adopted:

HA clients deployment on both slave and master database.

 HA hosts number increment. The system is composed of three HA hosts with one acting as the HA

master while others acts as HA participants.

 Two way communication establishment between the HA clients and HA host. The HA host detects

if the database location of the HA client can provide services. A communication channel is leased

between the HA host master and HA client.

This structure solves the following problems in the following ways:

The structure solves the HA software availability issue: This is done by increasing the HA hosts

from one to three hosts. The hosts does an election to elect their master automatically either the

Raft or Paxos protocol. The three HA hosts deployment and the Raft/Paxos protocol ensures high

availability of HA service thus ensuring the HA software’s availability.

The next problem is that of the HA’s ability to identify whether in access to the master

database is caused by network failure or database crashing. The goal is to ensure that there is

always a master database in charge at any circumstances providing external services. The problems

28

is sorted through a lease mechanism where HA clients are deployed. The master database status is

not held permanently and is held for a limited range if time. The master database status is renewed

every say 10 seconds where a new lease is initiated by the HA client. As long as a continuing lease

status is maintained from the HA master after every 10 seconds, the current master database is not

downgraded to slave database. This way the following scenarios are taken care of:

First Scenario: The master database results into a crash, but the master database’s location

server runs normally and the HA client runs normally.

 Here the HA client runs normally while the master database crashes. The HA client in turn sends

a request in a bid to give the lease of the master database to the HA master. When this is done the

HA master proceeds to promote the slave database to be the master database. The initial master

database proceeds as the slave database after a rebooting process.

Second Scenario: The master database’s host location crashes.

In this scenario both the HA client and the master database crashes at the same time. This results

to communication to be cut from the HA master to the HA client. At this instance the HA master

is unable to promote the slave database to be the master database as it is unable to know the cause

of the issue. The HA master waits for the expiration of the lease time. If it fails to receive a lease

renewal request before term expiration period, it automatically proceeds to promote the slave

database to become the master database. The initial master database in turn becomes the slave

database after a reboot.

Third Scenario: The master database remains normal but the network connection between

the master database and the HA master fails.

The HA master in this scenario is unable to differentiate between the second scenario and this

scenario and therefore proceeds to process it with same logic as the second scenario. Once the lease

term expires and fails to receive any renewal request it promotes the slave database to master

database. But before this occurs the HA client of the previous master database needs to do some

functions. Since the HA client of the initial master database fails to receive a response on requests

concerned with lease renewal request from the HA master due to network issue and the lease term

has expired, it automatically downgrades the master database to slave database. By doing this the

dual master databases issue is eliminated now dual writes occurs.

At this point it can be concluded that continuous availability of the database system together with

a robust consistency of the master is very much possible. The renovation of the existing database

is also feasible but with actual implementations the process is highly sophisticated. The

implementation of this master-slave system within the database. Through the HA client the

database system is able to downgrade between the slave and the master databases.

3.2.3 Performance

Consider the illustration below.

29

Figure 14:master-slave database

The basic master-slave system is created to ensure consistency through data synchronization. Once

a commit transaction request is initiated, it has to be synchronized with the transaction logs of the

slave database. This ensures a robust data synchronization where the logs are saved in the disk in

the process. The synchronization process is nearly instant since the network interaction between

the slave and the master databases is perfected.

The main question that remains is on the performance of the system due to addition of all these

structures. The latency time between the slave and master database together with the slave database

disk performance comes into play during performance evaluation.

Deployment of multiple slave databases is one of the ways to improve performance. In this way as

long as a single slave database has completed log synchronization and a response have been

returned to the master database and the logs stored to the disk, the commit return operation is

considered successful. This deployment of multiple slave databases becomes helpful in elimination

of network errors.

The figure below shows a way through which performance is optimized.

30

Figure 15: Two slave database structure in use

From the diagram above a third database is introduced hence three data copies are generated. A

transaction is committed once log synchronization is completed on one of the two slave databases

which reduces the impact of network issues usually experienced in one slave database. The extra

copy can be used to solve the security issues related to data once the master database crashes. A

single point of failure is avoided in the event the master database crashes where the two data copies

are in a position to provide services.

Another problem is introduced in the event the master database where there is an issue on

determining which slave database takes over as the master database. The following criteria can be

used:

Log first: The HA master elects the slave database that has the recent logs as of the master database

Priority based on host: If both the slave databases has the recent logs a priority based selection is

used using their IP addresses where the one with the lower IP address is selected.

Once a new master database is elected log synchronization is done with the remaining slave

database. The new master database proceeds to provide service to applications.

31

4. METHODOLOGY APPROACH ADOPTED

4.1 Synchronization Technique

This section describes the algorithm that is used to synchronize changes. Figure 16 below shows the high-

level architecture diagram of the database synchronization process.

The client-side database is synchronized with the server database using a client-side application hosted on

the web server. This communicates about any connection establishment and data transfer with the server-

side database in PostgreSQL. The detailed approach used is further described in this section.

Figure 16:Architecture diagram of database synchronization

This section describes the algorithm that is used to synchronize changes. There are five approaches

available to synchronize the data. Table 1 [2] below compares the various methods and lists their

advantages and disadvantages.

 Bandwidth

efficiency

Storage

efficiency

Track server

changes

Track local changes Computational

complexity

Timestamp

synchronization

GOOD GOOD GOOD AVERAGE GOOD

32

Status flag

synchronization

GOOD GOOD POOR GOOD GOOD

Wholesale

synchronization

POOR GOOD N.A. N.A. GOOD

Mathematical

synchronization

AVERAGE GOOD N.A. N.A. POOR

Log

synchronization

GOOD Poor GOOD GOOD GOOD

Table 1. Advantages and disadvantages of different synchronization models

The synchronization algorithm keeps the local database and remote server synchronized. The

synchronization is initialized by the client. When a request is made the algorithm executes the following

steps:

1. Uploading changes to Server.

2. Solving Conflicts on server.

3. Downloading and applying changes on local database that is returned from server.

At first, a temporary table called change_history table is maintained where all the changes that are collected

are converted to xml file and made ready for uploading these changes. These xml tags are present in

Change column of change_history table as shown in figure 17 below.

Figure 17: change_history table with Change column

All changes in change_history table is a part of synchronization process and nothing is restricted in these

changes. Next, the change_history table is cleared when the xml is uploaded as there is no need for this

anymore.

The main challenge is solving conflict resolution which is handled with the help of mandatory flag. As a

final step to keep them synchronized, remote changes are applied as well. Since there are multiple clients

getting involved, the changes on server cannot be deleted because there could be still clients which are still

offline and need to be synchronized. In this case, the timestamp will be needed for clients to know which

changes occurred on server after the last synchronization. Therefore, it is essential for clients to store the

timestamp they had last synchronization at. For the next synchronization, it looks for only changes in

remote server with timestamps which are greater than the timestamp on the client file. At the server-side,

the timestamps are incremented by 1 after each synchronization.

33

4.2 Resolving data conflict between client and server

During data synchronization between client and server (the central database), the most critical part to be

addressed is providing a resolution to synchronizing conflicting changes. It is very crucial to handle data

conflict because it can lead to data loss, decreased data integrity and corrupt data. If two different changes

are made in two different datasets, then the changes can be applied directly without having the possibility

of data lost. But, if the changes are made in the same dataset, it is very likely to lose data. Consequently,

the changes will be applied which will overwrite one of the datasets.

To resolve this problem, consider the following possible scenario for data conflict.

1. Client retrieves the data from the server and then the connection with the server is closed.

2. The client then changes the specific row and column. Let us assume row x and column y to value

VAL1.

3. Meanwhile, the server also makes a change on row x and column y to value VAL2.

4. Now the connection is online, and the system attempts to synchronize the two datasets.

5. The system faces obvious data conflict during synchronization.

The question is, which one (VAL1 or VAL2) will be accepted in row X and column Y? Every database

synchronization tool has its own strategy to solve conflict resolution.

The main strategies are the followings:

1. Recent Data Wins. Take the data item according to last updated time

2. Client Wins. Take the data item of the client.

3. Server Wins. Take the data item of the server.

Our strategy in DBSync is different for data resolution from other frameworks. If a row is marked as

mandatory (locked) on server side - it will win. If it is marked as non-mandatory (unlocked) - client will

win. For example, each configuration value in the database will contain data value as well the mandatory

flag (mandatory/monitored) which handles the sync direction in case of data conflict.

Mandatory flag is part of the data and is changed in server:

If mandatory flag is locked (mandatory flag = 1)

it is synchronized from server to client (Server wins)

If mandatory flag is unlocked (mandatory flag = 0)

it is synchronized from client to server (Client wins).

The main challenge is resolving the data conflict which is handled with the help of mandatory flag. As a

final step to keep them synchronized, remote changes are applied as well. Since there are multiple clients

getting involved, the changes on server cannot be deleted because there could still be clients present, which

are offline and need to be synchronized. In that case, the last updated timestamp for clients will be read, to

know which changes occurred on server after the last synchronization. Therefore, it is essential for clients

to store the timestamp they had their last synchronization at. For the subsequent synchronization, the

system looks for only changes in remote server with timestamps which are greater than the timestamp on

34

the client file. As mentioned previously, the timestamps at the server-side are incremented by 1 after each

synchronization.

4.3 Data Representation of changes

change_history table has four columns which are the attributes for change:

1. Date – Indicates the exact time of change occurrence. The format is DATE TIME (yyyy-mmm-dd

hh:mm:ss.s)

2. Database – Indicates the name of database where change occurred

3. TblName – Indicates the name of table where change occurred

4. Change –XML Tag and providing all required information related to change

Figure 18:Sample data representation of change_history table

Figure 18 shows the sample data representation of the change_history table. Within this xml tag it is

possible to characterize every change. The columns that are related to the changes are defined inside

Column element with its attributes such as operation type, value type, name etc. Row related edits are

defined in Row element which has the same attributes as in Column. There are 2 types of table operations

- remove and clear.

Table related changes are defined within Table element. The following are the database operations and

corresponding xml tag which defines what change appeared after this operation:

Adding column. Column name and data type must be specified.

<Column name="" type="" operation="add"/>

Removing column. Column name and data type must be specified.

<Column name="" operation="remove" />

Clear table.

<Table operation="clear"/>

35

Remove Table.

<Table operation="remove"/>

Deleting row. Row index must be specified.

 <Row operation="remove" index=""/>

4.4 Technical Specifications

4.4.1 Platform

The research thesis is carried out in the during the internship at Avast Software.

1. Operating system: Windows Server 2016 GPU machine

2. Client database – SQLite version 3.28.0

3. Server database – PostgreSQL version 11

4. Client-side synchronization tool development - C++

4.5 Log based data synchronization technique

The log based synchronization technique has become a reliable way through which data synchronization

is conducted. Logs contains all records of database operations carried out by applications that accesses

particular databases. These logs are records of all transactions that occurs from applications accessing the

database. Once an operation is carried out on the database it is committed to mark the transaction complete

resulting to a database update. The study adopts this method to carry out research on data synchronization.

As it was discussed in figure above the client-side database is synchronized with the server database using

a client-side application hosted on the web server. This communicates about any connection establishment

and data transfer with the server-side database in PostgreSQL. The synchronization tool is developed in

C++.

In the implementation tool there exists three main classes that class CReport, DbsFormatConvertor and

CReportSync.

The class CReport defines all database operations and is responsible for structure creations, their deletion

as well as insertions, updating and same to deletion. Advanced SQL Statements are used in CReport

class methods. CReportSync class inherits CReport class. This class is called whenever an application

wants to make some changes on the database and store all that changes in “change_history” table. The

saved logs contain information on transactions carried out. The logs are written on the client side

database through the instructions defined above. CReportSync overrides the same base class methods

which are responsible for table operations . Whenever this methods are called AddChange method will

get called for saving logs. Once logs are successfully saved, related base class function will get called

and will return exit code.

36

Figure 19:report_sync.h

4.5.1 Use of a middleware

 Pugixml which is a light-weight C++ XML processing library. Pugixml enables very fast,

convenient and memory-efficient XML document processing. CreateDbsFromXml method is able

to create a database from the XML file. This method is used to create database on client side, define a table

structure and other initialization purposes. The data are parsed by means of Pugixml library and database

operations carried by CReport class whereas the CreateXmlFromDbs creates XML from a database.

CreateXmlFromChange is resposible for creating xml from changes that are logged during database

operations.

 Through the use of these three functions, the databases are able to coordinate to communicate and

therefore enhance synchronization of data between themselves.

Figure 20:synchronization enabling function

http://pugixml.org/

37

4.6 Unit Tests

We will use unit tests to verify that our implementation of DbSync works as planned and that the quality

of our code is high. These unit tests mainly serve to verify that the software modules, classes work

properly and to detect regression when there is some update on code. They test if the individual

components handle the different synchronization situations correctly, including conflicts.

4.7 Other Tests

Other tests especially, Bandwidth Consumption Tests can not applied on current stage since the server

part has not been implemented.

5. CONCLUSION

The thesis research on the study and a working tool for database synchronization with conflict resolution

is based on experiments on real data to show how the synchronization techniques can solve the data

inconsistencies and guarantee the integrity of the data. It offers and deep insight on the concepts of data

synchronization software development and its application to various kinds of client-side databases and

discusses its challenges and future directions in the field of database synchronization. Being familiar with

the concepts and advantages, as well as limitations of DB Synchronization was essential in leveraging its

potential in my research with the goal of developing strong knowledge-base and skill-set in database

programming.

The goal of this study was to study how data synchronization solves inconsistencies issues as well as

maintain the integrity of data at all times. The study adopted a log base synchronization technique where

the logs were used to in the process of ensuring that both the client and server databases were synchronized

through the transaction logs to ensure that both were consistent. The study looked at how conflict resolution

is administered offering solutions to challenges that arises with synchronization. Therefore, the study

satisfied those goals set at the beginning of the study.

Future study should include a fall back method which introduces the aspect of a slave database and High

Availability in this study that monitors the availability of both the server and the client database to ensure

that there is always a database in place to offer services to applications.

38

REFERENCES

1. BACON, JEAN, 1998, Concurrent systems. Harlow, England : Addison-Wesley.

2. CARUCCIO, LOREDANA, POLESE, GIUSEPPE and TORTORA, GENOVEFFA, 2016,

Synchronization of Queries and Views Upon Schema Evolutions. ACM Transactions on Database

Systems. 2016. Vol. 41, no. 2, p. 1-41. DOI 10.1145/2903726. Association for Computing

Machinery (ACM)

3. How Does One-Way vs. Two-Way Data Synchronization Work? - skysync, 2019. skysync

[online],--- (How Does One-Way vs. Two-Way Data Synchronization Work?

4. Introduction — Data Synchronization: Patterns, Tools, & Techniques, 2019. Datasyncbook.com

[online].

5. LOSHIN, DAVID, [no date], Master data management.

6. SCHLAGETER, GUNTER, 1978, Process synchronization in database systems. ACM

Transactions on Database Systems. 1978. Vol. 3, no. 3, p. 248-271. DOI 10.1145/320263.320279.

Association for Computing Machinery (ACM)

7. SCOTT, MICHAEL LEE, 2013, Shared-memory synchronization. San Rafael, Calif. : Morgan &

Claypool.

8. ŚLĘZAK, DOMINIK, 2009, Database theory and application. Berlin : Springer.

9. Strategies for Effective Database Synchronization, 2019. Alibaba Cloud Community [online].

10. WELLS, APRIL J, 2005, Grid database design. Boca Raton, FL : Auerbach Publications.

11. What is Database synchronization?, 2019. DBConvert [online].

12. ZIVKOVIC, MARKO and &RARR;, VIEW, 2019, What is SQL Data Sync. SQL Shack - articles

about database auditing, server performance, data recovery, and more [online]. 2019. [Accessed 6

July 2019]. Available from: https://www.sqlshack.com/what-is-sql-data-sync.

13. ANAND, S., GOPALANI, N., KIM, G., HUNT, N., & RAU, S. R. 2012. U.S. Patent No.

8,315,977. Washington, DC: U.S. Patent and Trademark Office.

14. MALHOTRA, N., and CHAUDHARY, A. 2014, Implementation of Database Synchronization

Technique between Client and Server. International Journal of Engineering Science and

Innovative Technology.

15. MEDENICA, Z., & KUN, A. L. 2012, Data synchronization for cognitive load estimation in driving

simulator-based experiments. In Adjunct Proceedings of the 4th International Conference on Automotive

User Interfaces and Interactive Vehicular Applications (AutomotiveUI’12) (pp. 92-94).
16. ÖZSU, M. T., and VALDURIEZ, P. 2011, Principles of distributed database systems.

17. Springer Science & Business Media.

https://www.sqlshack.com/what-is-sql-data-sync

39

Acronyms

XML – Extensible Markup Language

DDBMS – Database Management System

1

Contents of enclosed CD

	Acknowledgements
	Declaration
	Citation of this thesis

	Abstract
	1. Introduction
	1.1 Problem Statement
	1.2 Objectives

	2. Related Work
	2.1 Data synchronization using cloud storage (2012)
	2.1.1 System Architecture
	2.1.2 Implementation
	2.1.3 Discussion and Conclusion

	2.2 Using data synchronization process as a way of solving problems related with software in absence of Network (2012)
	2.2.1 System Architecture
	2.2.2 Implementation of the proposed solution for ESMS offline mode of operation

	2.3 Data synchronization in Driving Simulator-based Experiments for cognitive load estimation
	2.3.1 System architecture
	2.3.1.1 Hardware side
	2.3.1.2 Software Side

	2.4 A distributed Architecture in Distributed Database Systems for Transaction Processing (2010)

	3. Data Synchronization Concept, approaches and Methodologies
	3.1 Source and Destination have dissimilar structures
	3.1.1 Use of Manually Created Scripts
	3.1.2 Data Compare Method
	3.1.3 Automatically Generated SQL script synchronization

	3.2 Effective database synchronization strategies, their challenges and ways to resolve such Issues
	3.2.1 Data consistency
	3.2.2 Partition Availability
	3.2.3 Performance

	4. METHODOLOGY APPROACH ADOPTED
	4.1 Synchronization Technique
	4.2 Resolving data conflict between client and server
	4.3 Data Representation of changes
	4.4 Technical Specifications
	4.4.1 Platform

	4.5 Log based data synchronization technique
	4.5.1 Use of a middleware

	4.6 Unit Tests
	4.7 Other Tests

	5. CONCLUSION

