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Abstract

The work deals with various solutions of the compressible transonic flows
and their applications on academic and practical cases. The main motivation
is to remind the classical methods, modify or modernize them with fast com-
putational techniques and show their benefits even in todays modern era of
commercial software tools. In order to solve the combination of elliptic and
hyperbolic equations describing the near sonic flow, the hodograph transfor-
mation based methods are introduced and rheograph solution to the near sonic
flow is presented as well as the numerical methods which can solve directly
Euler partial differential equations describing general compressible flow. Af-
ter the validation of individual approaches, classical methods are combined
with modern computational abilities to create an academic case of supercrit-
ical nozzle, which prove the functionality for the internal aerodynamics. The
practical benefits of the analytical solution knowledge are presented on the
ERCOFTAC case of transonic blade cascade SE 1050 with specific design
and flow pattern with supersonic re-compression issue. The rheograph trans-
formation is used for specific flow analysis and solutions to this problem are
proposed.

Anotace

Prace se zabyva riznymi zptsoby feseni transonického proudéni stladitelnych
tekutin a jejich aplikaci na akademické i praktické udlohy. Hlavni moti-
vaci je pfipomenuti clasickych metod, jejich modifikace vyuZitim modernich
vypocetnich postupt a techniky a cilem je ukdzat jejich benfity i v densni dobé
rychlych numerickych simulaci. Pro potfebu feSeni kombinace eliptickych
a hyperbolickych rovnic popisujicich proudéni blizké rychlosti zvuku se
vyuzivaji metody zaloZené na hodografické transformaci. Je zde popsdna
rheografickd metoda feSeni a rovnéZ numerické metody fesici pfimo Eulerovy
rovnice proudéni stlalitelné tekutiny. Po validaci jednotlivych pfistupu, je
navrZzeno rozsifeni rheografické metody pouZzitim modernich vypocetnich
metod a je timto zplisobem vytvorena akademicka tloha superkritické trysky,
kterd mimo jiné dokazuje moZnost pouZiti této metody i pro potieby interni
aerodynamiky. Praktické vyhody znalosti a vyuZiti analytickych metod jsou
prezentovany na uloze transonické lopatkové miize SE 1050 z databize ER-
COFTAC. Tato miiZ je zndma svym specifickym charakterem a pfitomnosti
supersonické rekomprese. Rheograficka transformace je pouZita na podrob-
nou analyzu specifického proudového pole a na jejim zakladu jsou navrZeny
opatfeni pro eliminaci tohoto nezddouciho chovani.
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1 Introduction

Among various aerospace vehicle speeds and machinery operating states, the
transonic regime has always posed remarkably difficult challenges to system-
atic design and experimental techniques. The unknown physical limits and
by this time unexpected behavior at reaching and exceeding sonic velocities
were hard to understand and describe for the first observers. Until only the-
oretical methods to understand transonic flow phenomena developed in past
time shed light into transonic testing techniques by solving the underlying
physical relations in various stages of their simplifications. At the same time,
first numerical simulations of these physical relations were developed so that
prior to experimental investigations a quantitative results were obtained. Ac-
celerated computational technology and numerical codes development then
enabled the expansion and introduced this field to the wider community of
engineers.

The work makes use of classical concepts for transonic and supersonic
flows which have been used for developing design methods in the past cen-
tury [1], [2]. These methods [3], [4] might be aging today, but can still be
capable and compared to presently operational computational methods, they
offer valuable extra benefit of understanding the transonic flow phenomena
and gas dynamic basic principles often unknown to current engineers. Vari-
ous applications for different cases in aerospace field were developed, but the
extensions of the classical methods can be applied as well on internal aero-
dynamics [5], [6]. To make these methods still relevant, they can now arise
and advance from modern computational and programing abilities. These still
theoretically and mathematically valid concepts and cases may be perfectly
suitable for validation and application of new approaches, however, the seek
for direct practical usage example of any method require application on a in-
dustry relevant case. The solution of transonic internal aerodynamics already
implies the possible practical application for the turbomachinery blades and
cascades [7]. Concerning this, the main idea is to show that all the classic the-
ory, even though up to date renovated, widely used CFD solutions as well as
experiments can be used in cooperation and occasionally provide new, more
advanced view on flow field analysis and also potentially help with a clever
shape design.

1.1 Motivation

As the described problematics reaches the limits of simple mathematical
methods, the more attention should be paid to the level of knowledge amongst



the researchers. The new modern generation of engineers and even scientists
may be skilled in use of modern computational software and hardware tools,
but the complexity and abilities of nowadays technology requires less and less
of user involvement. No doubt that there are many benefits of such techno-
logical progress, but the side effect of the overall knowledge no more being
necessary to be present among the research and development society is also
apparent due to this evolution. Especially in such complicated and sensitive
field of study as the transonic flow regime.

The main philosophical message of the thesis is to remind the basic prin-
ciples of high speed compressible fluid flow analysis and techniques and show
that it is still beneficial to have at least a basic theoretical knowledge among
engineering community. To show that the modern numerical computational
methods do not have to mean the old practice to be forgotten but may be used
in cooperation with theoretical methods and lead to better understanding of
the transonic flow basics and smarter, creative engineering.

1.2 Topics and Scheme

Previous thoughts already point out the main theme of the following chapters,
however, for the informational impact, some applicable conclusions are im-
portant too. Besides the general reminder of those mostly forgotten methods,
the following tasks and topics in consecutive sections are solved in this thesis.

The first task is to briefly introduce the compressible gas dynamics prob-
lematics, its basics and general principles as well as possible solutions to
subsonic, supersonic and transonic problems and flow fields.

As the foundation of the theoretical analytical methods for high speed de-
sign methods may be aging, the known and well described Guderley’s cusp
and its lifting variations [3] problem can serve as a perfect test case for com-
parison of the hodograph-based methods, classical gas dynamics principles
and modern computational techniques.

After understanding the principles and managing all the methods for tran-
sonic flow analysis and design, the next task is to preview the idea of com-
bination of the flow field numerical computation and theoretical methods.
In other words, to outline the revitalization of the rheograph transformation
method [5] and elliptic continuation using modern computational tools on
a mathematically valid theoretical example for internal supercritical nozzle
throat flow.

To demonstrate the ability, functionality and possible benefits of such
method on a relevant practical case, it is applied on a real geometry and real
flow field of the blade cascade SE 1050 [7]. This cascade is well know for



it’s specific flow pattern and the goal here is to show how the results obtained
from numerical simulations can be used as the initial condition for the rheo-
graph transonic flow analysis ans propose possible shape modification.

1.3 Thesis Goals

In general, the main point to prove is that the hodograph based methods with a
fresh touch of computational techniques can provide a working, powerful and
even today relevant analysis and design tool for both academic and practical
cases. The thesis goals to verify this hypothesis are therefore formulated as:

e To validate described solutions to the compressible and transonic flows and
their functionality and accuracy on a case of sonic cusped airfoils.

e To reduce the need for manual analytical solution and complex mathemat-
ics and extend the rheograph transformation method using computational
techniques for solution of linearized flow equations and method of charac-
teristics.

e To describe the application for internal aerodynamics and apply the solu-
tion on a novel academic example of a supercritical nozzle.

o To test the abilities of such approach on a practical case of the blade cas-
cade SE 1050. To analyze the specific flow field pattern using the rheograph
transformation and propose possible design solutions.

o To discuss the functionality of developed method for wide usage in relevant
academic and practical applications.

2 The Theory and Solutions of the Compressible
Fluid Flows

The effect of compressibility brings the high speed aerodynamics to the new
level of understanding due to reaching the natural physical limits. The barrier
of sound distinguishes the flow in two differently behaving and differently
described regimes. The only way of analytical solutions to the transonic flow
fields leads to transformations into linearized nonphysical planes. Modern
computational era arrives then with new possibilities and numerical methods
and computational fluid dynamics to solve directly the general equations.

Before solving the concrete applications, it is appropriate to introduce
the known theory and describe general state of knowledge. Therefore, the
overview of compressible flow basic principles [8], [9] and introduction to
later used flow solutions is described in this chapter.



2.1 Compressible Fluid Flow and Gas Dynamics

Compressible fluid flow implies variation of density in the flow field resulted
principally from pressure changes between two points in the flow. The rate
of change in density with respect to pressure is then closely connected with
the velocity propagation of small pressure disturbances, or in other words the
speed of sound. The barrier of sound M = 1 distinguishes the flow regimes
into subsonic regime for M < 1 and supersonic regime for M > 1. For
velocities close to the speed of sound, both types of fluid can occur together
and form a transonic flow field. If subsonic flow is accelerated enough, it
can reach sonic speed and continue supersonic to form expansion or shock
waves. Transonic regime is extremely sensitive to any changes mainly in ar-
eas closest to the sonic conditions, where only minor changes in geometry
mean dramatic changes in the flow field. And while the basics of subsonic
and supersonic theory can be described by linear theory, much more diffi-
cult situation as a transonic regime always leads to nonlinear description with
various theoretical difficulties.

2.2 Near Sonic Flow and Hodograph Based Methods

The proper full mathematical solution of transonic flow phenomena resulting
in the co-existence of elliptic and hyperbolic basic differential equations have
to bring together classical hydraulic methods with the wave propagation so-
lutions. To understand the basics of such theory, the flow can be restricted, so
that the velocity magnitude is close to speed of sound and analytically exact
solutions can be obtained [4].

Velocity potential ¢ and stream function 1) are defined with ¢ = |¢ | and
¢ the flow angle.

Or = @wy = u = qcost) 2.1
P

by = Lipy = u = gsind 2.2)
P

To avoid the nonlinearity of the system, the transformation of the solution to
the hodograph plane can be applied replacing the physical coordinates with
the flow angle ¥ and Prandtl-Meyer turning angle v.

q
y:/ \/|M271|@ (2.3)
a* q

These new variables lead to define a hodograph plane wherein the basic sys-
tem becomes linear Beltrami system:

by =K W)thy (v >0,M >1) 2.4



b, = —K () g (v <0, M < 1) (23)

with

K:K(M(y)):p—; M2 1] (2.6)
¥ and v are also functions of a computational working plane obtained from the
basic v, ¥ hodograph by conformal (subsonic) or characteristic (supersonic)
mapping. For subsonic including sonic conditions conformal mapping defines
working plane (. E is the mapping function.

Co=v+id 2.7
¢ =s+it=E () (2.8)
The basic system in ¢ becomes
b5 = —K (v(s,1)) ¢ 2.9)
dr =K (v (s,1)) ¥s (2.10)

v (s,t) is then the real and ¥ (s,t) imaginary part of E~! ({). These equa-
tions, Eq. (2.9) and Eq. (2.10) form the linear Beltrami system and elimina-
tion of ¥ and ¢ leads to linear Poisson equations:

K, K
Gas T Su = S2 0+ ;qbt (2.11)

KK
Yit + Yy = K¢s+ Kwt (2.12)

New characteristic variables occur for supersonic region with a suitable map-
ping function H.
E=H(W+v) (2.13)

w=H (W —v) (2.14)

The system is then valid in &, p plane

be = K (v (&, 1)) Y (2.15)
bp=—K (& n) v, (2.16)
or d,(/)
— =+K 2.17
(dgb){,uconst ( )



That is the basic relation to integrate the flow equations for method of char-
acteristics for supersonic flow.

By eliminating ¢ and v a system for physical plane coordinates can be
obtained. The transonic similarity laws containing a similarity parameter o
for reduction of variables for place and state z, y, g, ¥ are:

s=42.3 0 (k= 1)/2 a1 — L3 (2.18)
a

t=c"10 (2.19)

z=¢/a" (2.20)

y=o" 3. 33 271 (5 — 1)] =Tt v/a* (2.21)

s is positive for supersonic, negative for subsonic and equal to zero for sonic
conditions. The basic system (2.4) and (2.5) then yields to corresponding Bel-
trami system for reduced physical plane parameters s and ¢.

X, = £|s'?y, (2.22)

X, = £|s'/3v; (2.23)

Figure 2.1: Conformal and characteristic mapping [4]

The idea of whole process is symbolized in the Figure 2.1. The spe-
cific structure of supercritical flow containing singularities and mathemati-
cally problematic patterns requires specific treatment. Sonic lines and iso-
tachs saddle points regularly appearing in the transonic flow fields represent
very weakly singular behavior and due to this, the flow surface may fold into
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multivalued hodograph. This effect is why the special rheograph plane needs
to be used in order to obtain single-valued characteristics grid. The idea also
led to the analogy between the plane electric conductor and the coefficient K

[4].

2.3 Numerical Methods for Compressible Fluid Flows

Modern computational abilities allow to solve directly the partial differen-
tial equations numerically using computational fluid dynamics methods [10].
These methods in general transform differentials to differentiations using fi-
nite computational grids.

To demonstrate the functionality of a numerical flow simulation, an exam-
ple of oblique shock [11] is used here to compare different schemes available
for compressible fluid flow, from simple Lax-Friedrichs and MacCormac [12]
to advanced AUSM scheme [13]. AUSM is advanced high order scheme used
in ANSYS Fluent CFD code as well as many others suitable for compressible
flows and will be used in the later flow simulation cases below. Due to an
exact analytical solution, this example is perfect for testing the accuracy of
the methods as well.

Results in form of pressure contours for the AUSM scheme are shown
in the Figure 2.2. The wave angles and pressure values in formed regions
correspond to the analytically calculated values.

7e+5
6e+5
5e+5
4e+5
3e+5
2e+5
Te+5

Figure 2.2: Contours of pressure [Pa] - AUSM

The pressure distribution on the wall for each code is shown in the Figure
2.3. The solid line represents the analytical solution.
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Figure 2.3: Wall pressure distribution [Pa]

The previous results lead to a conclusion that the Lax-Friedrich scheme
shows its natural characteristic of a strong dissipation, even with very low arti-
ficial viscosity coefficients. On the other hand the MacCormac Lax-Wendroff
scheme acts much more accurately in this way but thanks to strong oscil-
lations near the shocks the influence of the artificial viscosity term had to be
raised what causes that the pressure change along the wave is still not as steep
as the AUSM scheme results show. That proves the AUSM as a reasonable
choice for upcoming CFD simulations.

3 Lifting Guderley’s Cusp as a Validation Case

This section is dedicated to remembering of some analytically defined meth-
ods and airfoil geometries as a test cases and to comparison of analytical
flow description with numerical results [14], making use of a commercially
available computational fluid dynamics code and with classical gas dynamics
analysis.

The main point of the use of Guderley’s case is to arrive at a high degree
of understanding typical transonic challenges and remind on this example that
accelerated optimization strategies may be carried out with a reduced set of
input parameters, before costly experiments may focus directly on optimum
design cases.

3.1 Exact Solution

Finding analytical solutions to above hodograph relations described in Chap-
ter 2.2 allows to derive the formulae defining the shape, flow conditions and
pressure coefficient for cusped airfoils in a uniform sonic flow M, = 1
[3], [15]. The solution of such airfoil is described in the Figure 3.1 and the
schematic view on a cusp with all defined parameters is in the Figure 3.2.
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S~E (M-1)%

10

Figure 3.1: Cusp solution in the real and the rheograph plane [3]

Such solution results in the cusp shape described with two parameters -
thickness and camber parameter. Thickness to chord ratio is 7 and camber
to chord ratio w. The solution is exact for 7 — 0 and practically valid for
slender airfoils with 7 < 0.5. The case with camber to chord ratio w = 0 is
the symmetrical one also known as “Guderley’s cusp”. Limit of validity for
cambered airfoils is given by ratio w/7 < 0.5.

Figure 3.2: The cusp solution and parameters [15]

The theory [3] gives the camber/thickness parameter P (%) , the angle of
attack «, geometry vertex data and finally the pressure coefficient c,. Know-
ing these, a complete analytical solution of this problem of sharp cusped air-
foil in a sonic free stream is known.

3.2 Numerical Solution

For flow simulations, the inviscid — Euler model with ideal gas implemented
in a commercial CFD software ANSYS Fluent [16] was used. The numer-
ical flux scheme was the AUSM scheme with second order upwind. The
only outer boundary condition was set as the non-reflective pressure far field
boundary condition. Contours of Mach number to visualize the simulated
flow field are shown in the Figure 3.3. The flow is obviously smooth along
the whole length as the theory suggests.
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Figure 3.3: Contours of Mach number: 7 = 0.05 and parameter w/7 = 0.02

Figure 3.4 shows the comparison with the analytical data via the pressure
coefficient ¢, distribution, dashed line represents the theory and solid line is
a results from the numerical simulation.
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Figure 3.4: Pressure coefficient distribution

From correct flow behavior already obvious from contour figure, it is ex-
pectable that the pressure coefficient distribution along the airfoil surface will
also correspond at least tendentiously with the theoretical lines and data in
the Figure 3.4 confirm that. In areas where the pressure coefficient values lay
between 0.3 and -0.8 are numerical results almost identical with dashed the-
oretical. As the values rise from these bounds, noticeable deviations appear.
This may be given by the fact that the flow velocities start to differ from a
near sonic flow.

3.3 Clasical Gas Dynamics Analysis

The situation of this case in terms of shock waves formation was analyzed us-
ing classical gas dynamics relation and the shock polars for this configuration
were calculated [17].
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Shock polars for the airfoil with the solid vertical line representing the
trailing edge angle are depicted in the Figure 3.5. Both polars intersect twice
and considering that the stable solution is the natural one, the result is the
lower point of intersection. The flow turning angle in absolute value on the
upper side of the profile is approximately 10.8° and on the lower side 4.3°.
To compare these numbers with the CFD results, the values from the nearest
cell of the shock are approximately 10.9° for the upper side and 4.0° for the
lower side. That is very satisfying result considering finite character of the
computational mesh on one side and ideal gas dynamics theory on the other.

07
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Figure 3.5: Shock polars for Case I

3.4 Off-Design Conditions

Using the sonic free stream condition, it has been already proved that it is
possible to correctly simulate the analytical solutions, but the whole problem
was limited by an ideal state of exact flow velocity. To get closer to the real
world, even when this case is meant to be an academic example, it is always a
benefit to think about some off-design conditions [18]. Especially here, when
talking about very special and sensitive flow speed value, it can be very easily
imagined that the velocity will oscillate around value of Mach number M = 1
and the problem can turn into a supersonic or on the other hand subsonic free
stream case.

Figure 3.6: Supersonic (left) and subsonic (right) flow field [3]
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These two off-design cases are symbolized in the Figure 3.6. On the left
is the airfoil in mildly supersonic free stream what causes a creation of de-
tached bow wave in front of the cusp. Detailed shape, strength and location of
detached shock depending on the free stream Mach number is more explained
in [3] and [15]. On the right side is the opposite case in slightly subsonic free
stream.

Graphical result of the numerical simulation for this setup is shown then
in the Figure 3.7 with displayed Mach number isolines.

1.40e+00
1.376+00
1.34e+00
1.31e+00

1.28e+00
1.256+00
1.22e+00
1.19e+00

1.16e+00 4
1.13e+00

1.10e+00 O
1.07e+00

1.04e+00 X

1.01e+00
9.79e-01

9.49e-01
9.19e-01
8.89e-01
8.59e-01
8.29e-01
8.00e-01
Figure 3.7: Mach number isolines M., = 1.05

The solution for opposite problem, the subsonic flow field, is displayed
again using Mach number isolines in the Figure 3.8.
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Figure 3.8: Mach number isolines M., = 0.95

These two off-design setups extend the problematic of developed near
sonic flow theory past sharp profile and describe the sensitivity of the tran-
sonic problems as a whole. It is clear how important is precise analysis when

16



solving problems around sonic values and how a very small change in flow
properties can change the whole behavior. And it has been confirmed here,
that the numerical simulations followed the right trend as expected form the-
oretical analysis and proved as fast and reliable tool for design or verification.
Vice-versa, analytical tools also prove their relevancy, as the predicted behav-
ior is correct with high precision compared to all the simulations results.

4 Supercritical Symmetric Nozzle

Classical transonic hodograph-based design methods can be employed and
revitalized as fast modern numerical tools and can be used to serve as tools to
substitute analytical models for solution of differential Laplace/Poisson equa-
tions and the method of characteristics. The concept of elliptic continuation
is applied to solve transonic boundary value problems avoiding the inherently
nonlinear nature of the basic equations and obtaining transonic flow examples
using the method of characteristics in an inverse mode.

This contribution makes use of particular solutions to the gasdynamic
equations focusing on the transonic regime [19], as rtheograph representation
of the well known Laval throat accelerated flow allows for some extensions
resulting in a new type of nozzle flow.

4.1 Rheograph Formulation of Laval Nozzle Flow

A general rheograph solution to the potential flow was already described in
previous chapter. For flows with only small deviations from sonic velocity
only a simplified perturbation potential equation may be used instead of the
full potential equation [6]:

k
m(l_l)l|¢w|l¢zx_¢yy_ % =0 (41)

with the three switch parameters k, [, m which can then convert the equation
accordingly. Later hodograph transformation [6] converts Equation (4.1) into
a set of coupled Beltrami equations for velocity variables U, V' and physical
coordinates X, Y, valid in a parametric “rheograph” plane (s, ¢). The use of
this technique can be shown on the example of transonic area near the nozzle
throat. For two-dimensional planar flow in the Laval nozzle flow for subsonic
domain (k =0,l =1, m = —1) and elimination of V or U and X or Y yields

Uss + Utt = O (42)
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Vss +Vie =0 4.3)

1[U, U,
X + Xt — 3 [USXS + Utxt} =0 4.4)
1[U, Ul
Yoo + Y + 3 [UYS + UYt] =0 4.5)

Laplace (Poisson) equations (Eqs. (4.2) - (4.5)) are now formulated for sub-
sonic region and are ready to be solved numerically using finite difference
methods for further purposes. It is good to mention that this particular set of
equations can be very helpful for code and results validation because they
also give a simple analytical solution in form of

U = 2st (4.6)
V=t-4 4.7

X = (14 57) 4.8)

Y — _22/3 (t2/3 _ 52/3> (4.9

This solution is valid for subsonic domain, that means for s < 0, according
to rheograph transformation, the s = 0 represents the sonic line.

4.2 Elliptic Continuation and Method of Characteristics

The solution of the whole problem now consists of two parts (see the Figure
4.1). At first, solving the elliptical domain in order to obtain the flow field
up to the sonic line including the sonic line data, by an elliptic continuation
of the boundary value problem beyond the sonic line location (s = 0). Next
is the extension into the hyperbolic supersonic domain, using the previously
obtained sonic line data as initial conditions.

t t
1 1
elliptic hyperbolic elliptic extended elliptic
s S
1 0 1 1 0 1

Figure 4.1: Rheograph s, ¢t plane: Mapping of real transonic and partly ficti-
tious flow
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In direct CFD simulation of transonic flow in physical space, the location
of the sonic line, dividing the subsonic from the supersonic part of the flow,
is usually unknown, while a hodograph formulation a priori prescribes the
location of the sonic line.

In an effort to understand the physical meaning of elliptic continuation
as an auxiliary step to solve transonic flow problems, the solution within the
continuation domain can be interpreted as a ,,Fictitious Gas* subsonic flow,
later to be corrected by a ,,Real” supersonic flow calculation. Once the pa-
rameters along the sonic line are established, it can easily continue with the
method of characteristics for the supersonic flow solution.

The equations system for the planar nozzle geometry for fictitious part
with application of Eq. (4.6) transforms the equations for X and Y means
that they can now be solved separately:

Uss + U =0 (4.10)

Vs + Vit =0 4.11)
171 1

Xos + Xpr — = |:—XS+—X75:| =0 (4.12)
3 |s t
171 1

Yos + Y + 3 |:;YS + ;Y;g:| =0 (4.13)

This system of perturbed variables can be now solved on a simple rectangular
grid describing the whole domain (elliptic + extended elliptic) in the rheo-
graph s, t plane using finite difference methods with one of iteration schemes.
Boundary conditions can be prescribed as Dirichlet conditions, for the special
case of nozzle flow taken from the analytical solution. For this case, the Suc-
cessive over-relaxation iteration method has been chosen.

Figure 4.2: Fictitious gas results

|
L
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Now, noticing that the left half of the figures (s < 0) represents the valid
subsonic solution, the data along t-axis are the data of the sonic line. To con-
tinue into supersonic domain (s > 0), the method of characteristic can be
used but staying in described rheograph plane. With already known solution
of U and V from (Egs. (4.6) - (4.9)), the X and Y can be solved as a initial
value problem in the characteristic triangle

dY

— =|Uu~/3 4.14
an:const |U | ( )
dy L

W ecemss = 10T (4.15)

The sketch of the investigated domain is shown in the Figure 4.3.

Figure 4.3: Characteristic domain in the s, ¢ plane

The resulting domain visualized in the physical X, Y plane in the Fig-
ure 4.4 shows the local supersonic domain from the sonic line to the neutral
characteristics.

o02t+Y
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Figure 4.4: Characteristic domain in the X, Y coordinate system

4.3 Shock-free Supercritical Nozzle Shape Integration

The space downstream the limiting characteristic is now free to continue with-
out changing the upstream solution, but the £ characteristic itself is not suffi-

20



cient for continuing the characteristic pattern and some of the flow character-
istics need to be prescribed. For a simple accelerating (basic Laval) nozzle,
usually the parameters along the flow X axis are being used.

For this case of symmetrical accelerating-decelerating nozzle, the sym-
metrical character of the rheograph solution can be used to calculate the mir-
rored quadratic region BCFC’. The sketch of the transformation of the middle
region is shown in the figure (Fig. 4.5).

Figure 4.5: Rheograph to physical plane transformation of composing a flow
using symmetry properties of the solution

Now, the attention is paid to one flow-bounding streamline starting in
the upstream accelerated Laval nozzle model and ending in its mirror image
representing a decelerated outlet, both parts connected by fitting in the gap
pattern. With the well-known Laval contours to be parabolas, the connection
within the gap is still missing.

To obtain streamlines from the computed characteristic region, the values
need to be evaluated along a constant stream function. For the chosen near
sonic formulation, lines Y = const represent such stream function. Interpo-
lation of V' (X) along Y ¢ = const (see Fig. 4.6) defines the contour angle and
allow for streamline shape integration. The scaling parameters A, B in Egs.
(4.16) - (4.19) represent transonic similarity parameters and allow for obtain-
ing scaled flow fields u, v(z, y) from the parametric solution U, V, X, Y (&, 7)
in the rheograph.
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Figure 4.6: Shape integration

For the purpose of creating a new flow example, the upstream accelerated
Laval flow and a mirror solution as downstream decelerated exit flow were
used. The new symmetrical gap solution fits then exactly between the neutral
characteristics, bridging the Laval portions of the flow and forming a com-
plete accelerated and decelerated flow model, with chosen contour arc fitting

together without curvature irregularities at the contact characteristics.

Real geometric coordinates (z, y) and flow parameters (u, v) are obtained

by the following equations, representing the transonic similarity laws:

y = AB(-U/3042) (4 1)71/2 v
_ 1 = gU+k=(1-k)/3) (15U)H/3

u

Uref

ykL _ 1= AkBU+k) (k + 1)(1(1—k)/2) (1-1/3)V

Uref

r=AX

(4.16)
4.17)
(4.18)

(4.19)

The final shape of a symmetric shock free accelerating-decelerating
scaled nozzle is shown in the Figure 4.7.
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Figure 4.7: Symmetric accelerating-decelerating nozzle
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Velocity distribution along a nozzle wall shows two characteristic slope
discontinuities at the contact locations, which stem from the weakly singular
behavior in the nozzle throat, Fig. 4.8.
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Figure 4.8: Velocity distribution along nozzle contour [m/s]

4.4 Validity and Resume

The rheograph transformation method used together with modern computa-
tional and evaluation techniques may even nowadays still be a working tool
for creative aerodynamic design. The much simpler numerical solution of dif-
ferential equations as showed above now makes the approach simpler, more
user friendly and applicable even for engineers with lesser background in ad-
vanced mathematics. The outcome is a special novel nozzle solution of up to
sonic conditions accelerating nozzle that subsequently decelerates the flow to
subsonic regime without formation of the shock.

On the top of that, this particular case can now possibly serve as an aca-
demic validation or a test case for specialized compressible flow numerical
codes.

5 SE 1050 Blade Cascade Analysis

As a great example to demonstrate the abilities of the above described meth-
ods, a well-known turbine blade cascade SE 1050 from ERCOFTAC database
as an application challenge AC 6-12 [7] can be used.

The specific shaping of this blade cascade leads to the formation of re-
compression area in the supersonic section caused by rapid change in cur-
vature followed by the discontinuity and straightening of the surface in the
expansion section. The goal here, in general, is to show the possible way of
situation analysis and possible solution to change the current flow field.

5.1 Case Description

The chosen profile SE 1050 was designed for the last stage of a steam turbine
and it is a section of 1085 mm long rotor blade at the distance 320 mm from
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the root. It was designed primarily to operate in the transonic regime as the
initial design is designed for exit isoentropic Mach number 1.208.
Interferogram image of the flow field for this transonic regime is visu-
alized in the Figure 5.1. A visible area of compressed flow appears in the
expansion section and forms very noticeable hump in isolines. Various CFD
simulations and analysis were also carried out using different models and ap-
proaches, showing good correspondence to measured and visualized data.

‘ = [ A
Figure 5.1: SE1050 blade cascade interferogram [7]

The original purpose of the ERCOFTAC case is to provide obtained
unique data from experimental measurements [20] to help to validate CFD
codes used for numerical simulations. For purposes of this thesis, the main
concentration aims on the small disturbed section in the expansion region
caused by unsensitive blade shaping and intense changes in the blade surface
curvature.

In the next sections, the rheograph transformation method will be used to
analyze the situation and to outline possible solutions in order to get rid of
or minimize this issue. The actual flow field will be computed via CFD to
get all the necessary data to see if there is any possibility of minor geometry
modification that will improve the situation without drastically changing the
geometrical and flow parameters.

5.2 Numerical Simulation

For the simulation itself, the well tested ANSYS Fluent code was used.
Boundary conditions for pressure inlet and pressure outlet were calculated
to correspond with the operating conditions from the experimental test.
Graphical output of the simulation is shown in the Figure 5.2 in form of
Mach number isolines. The flow accelerates smoothly up to the sonic line, but
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right after here, the geometry causes the flow to slow down to be later again
accelerated until the interaction of the surface and shock leaving the trailing
edge of the neighboring blade. The wobble in flow velocity forms the kink
obvious from the contour lines and shows the rough flow behavior resulting
in the compression that occurred during the flow expansion.
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Figure 5.2: Mach number isolines

The same can be observed also in the pressure field. The insensitive shape
design causes very rapid flow expansion which is not followed by further
concave surface shape and leads to the formation of the compression region.

5.3 Flow Analysis and Design Modification

For detailed flow and shape analysis, a similar approach as in the previous
chapter solving Laval nozzle flows can be applied, only this time the simu-
lated flow field will be used as the initial condition for rheograph study. Flow
data from extracted sonic line can be transformed and provide a perfect initial
condition for building the characteristic region.

The possible continuation is described in [5] as a non-symmetrical nozzle
exit design by prescribing velocity distribution along the nozzle axis. This
approach once more demonstrates the difference between classical hodograph
and characteristic or rheography plane, where the structure may be controlled
to show a single-valued characteristic grid instead of multivalued “folded”
hodograph. The sketch 