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Abstract: In hot rolling mill products, periodic surface defects are

encountered due to the inherent eccentricity present in the rolls. These

defects can be considered as periodic disturbance to the system. To

remove these defects, a controller design based on Repetitive Control

method is investigated. By first approximating hot rolling mills from

experimental data as first-order time delayed systems, the necessary

controller conditions and properties that needs to be satisfied for peri-

odic disturbance rejection are obtained for the particular type of sys-

tems with Internal Model Controller. Then with respect to these condi-

tions, a methodology to obtain filters which hold a key part in Repetitive

Control, is proposed and tested for its effectiveness and robustness in

achieving successful control under disturbance and plant/model mis-

match.

Key Words: Hot rolling mills, system identification, time-delayed

systems, ARMAX, periodic disturbance control, eccentricity, Internal

Model Control, Repetitive Control.
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Part I

Theory & Objectives

1 A Concise Review of Hot Rolling Mills

and Statement of Problem

Hot rolling mills hold an important part of steel production and their

production quality directly effects the reliability of further processes

of the product. In spite of their wide usage in industry, hot rolling

mills are exposed to many disturbances that reduce the effectiveness

of the production method. Some of the sources of the disturbances like

eccentricity in the rollers, are present inherently in hot rolling mills and

their attenuation is achieved by introducing new systems to the milling

stands. Hence, the enhancement of the product quality for hot rolling

mills is a continuous demand.

Hot rolling mills are machines where hot rolling process is realized

and rolling is a metal forming procedure which takes a stock of metal to

reduce its thickness to a desired value. According to the temperature

of the rolled metal, the rolling process is classified into two classes,

namely, hot and cold. If the metal temperature is above the met-

als’ re-crystallization temperature, then the process is classified as hot

rolling. Conversely, if it is below the re-crystallization temperature, it

corresponds to the cold rolling. The resulting products of a rolling are

usually long metal sheets and beams with predefined cross-section.

A typical hot rolling mill consists of a,

− Heating furnace, for preparing the raw material to process
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− Roughing mill, for obtaining a rough mid-product

− Finishing mill, for achieving desired quality

− Run-out-table, for cooling and transporting the end product

The roughing mill and the finishing mill consist of several cascaded

tandem rolling stands. Each stand usually has two working rolls, two

backup rolls, a hydraulic ram and a mill housing. The working rolls

contact and thin the material; the backup rolls support the working

rolls against the rolling force. The hydraulic ram is for controlling the

rolling gap and the mill housing is to enclose the system.

The prominent factors that effects the thickness quality of the end-

product can be listed as follows:

− Non-uniform temperature distribution,

− Quality and chemical composition of material

− Eccentricity of the rolls

− Speed of rolling

The inherent eccentricity of the rolls causes likewise periodic mo-

tions of mechanical cams, resulting in periodic thickness variations on

the surface.

Due to impracticability of measuring the thickness of the formed

sheet at the instant where the rolling process is happening, the sensor

that has been placed away from the rolls causes a latency in the obser-

vation of system output. Therefore, a hot rolling mill in a whole can

be considered to be a time-delayed system.
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Additionally, due to the existence of hydraulic rams for arranging

the roll gap, control of hot rolling mills are considered to be a type

of systems with cascaded controllers: One controller must be designed

for controlling the product thickness; this controller will evaluate the

position of the rolls according to the calculated error in order to obtain

desired thickness and surface properties. And another controller for the

hydraulic ram, to successfully achieve the position commands given by

first controller. The first mentioned controller can be considered to be

the outer controller and the second can be considered to be the inner

controller of the hot rolling mills.

This thesis is dedicated to an analysis of the outer controller for

attenuating disturbance caused by eccentricity in a time-delayed hot

rolling mill.

Also, since strong non-linearities are present in hydraulic rams,

successful position control of hydraulic rams requires more advance

strategies than linear control.

All the above stated facts makes the whole control design of hot

rolling mill more complex and the solutions to it to be varied. There-

fore, next section is dedicated to a survey of various techniques and

solutions related to modeling and controlling of hot rolling mills pro-

posed by academic community.
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2 Survey of Literature

An analytic approach to derive the mathematical model of hot rolling

mills was demonstrated in [2], [3] and [4] . The model of the mill was

obtained by combining three mathematical models formed for three

main dynamic structures and processes observed in the mills: mill

stand, hydraulic system and rolling process. The mathematical model

was later validated with measurements of the real mill and was stated

to be quite accurate with real data. Such a derived model does not

posses an explicit time-delay term because the information of thickness

is obtained via calculation rather than measuring. However, formation

of a mathematical model using analytical approach requires a careful

study of parametric values and environmental conditions.

An alternative approach to obtain mathematical model is using

measured input-output signals. For instance, in [5], a Finite Impulse

Response (FIR) model of a rolling mill with three input and one output

was obtained from the data generated by a stair-case experiment; the

linear system approximation was done according to observations im-

plying that the overall system behavior at operating points was linear.

However, the system model obtained by this method is a discrete-time

model. The benefits of having a continuous model over discrete model

in identification was stated briefly in [6].

As mentioned earlier, hot rolling mills can be considered as time-

delayed systems due to the latency in measuring system response.

Hence, methods for approximating time-delay systems can be applied

to form a data-driven model of the hot rolling mills[7]. A discrete-time

model estimation, especially emphasizing on the estimation of input

time-delay was discussed in [8]. In [9], continuous model identification
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was done by separately estimating parameters and time-delay. A filter-

based approach for continuous system identification was used in [6]; a

linear filter was applied to the input and output of the system, allow-

ing, with further mathematical manipulation, the time delay term to

be explicitly represented in parameter vector. An important advantage

of the filter-based method is that it allows simultaneous identification

of parameters and delay.

From the control point of view for hot rolling mills, different con-

trol methods were proposed to reject different types of disturbances. A

controller design motivated by the idea of achieving desired thickness

properties in the presence of temperature variations was discussed in

[10]; a linear state-space representation of the rolling mill at its oper-

ating point was controlled with optimal control techniques. Methods

of control for rejecting periodic surface variations caused by roll ec-

centricity was investigated in [11] and [12]. Both articles focus on the

application of repetitive control method. A comprehensive explanation

of repetitive control for rejecting periodic disturbance can be found in

[13]. In [11], addition to repetitive controller, a µ-synthesis analysis

was carried out to increase the overall robustness of the control sys-

tem. In [12], application of multiple repetitive controller was studied

in order to increase the variety of periodic disturbances that can be

rejected.

For an introductory and comprehensive review of theory of systems

and control the reader is referred to [14], [15] and [16].
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3 System Identification

A system can be defined as any physical or ideal concept that takes

an input, alters it and in return gives it back as an output. In some

literature, the word process is used to refer to the word system, since

both of the words refer to a change from one state to another.

Systems are classified with respect to their common properties.

These classifications can be made according to their physical realiza-

tion as well as to their mathematical description. Mathematically de-

scribing a system gives handful of methods to identify and analyze

them. Also, thanks to mathematics, systems that look completely

unrelated due to, for instance, being from different fields, can be rep-

resented by the same form of equations.

Systems can be described using different mathematical concepts

such as differential equations, artificial neural networks, logic and etc.

A wide range of physical and abstract phenomenon, for instance, en-

gineering, biology and economy can be represented as a system. Here,

in this thesis, systems that are expressed by linear time-invariant dif-

ferential equations are going to be covered.

A system is called linear if it holds the superposition property:

Let S{} denote a system that takes x(t) as its input argument and

gives y(t) as its output i.e. y(t) = S{x(t)}. Then the superposition is

defined as to hold the equation

αy1(t) + βy2(t) = S{αx1(t) + βx2(t)} (1)
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where α and β are scalars, and

y1(t) = S{x1(t)}
y2(t) = S{x2(t)}

A new system can be formed by combining systems or an existing

system can be explained as a combination of subsystems. The property

of superposition brings a significant convenience to understand the

resultant system when linear systems are combined. When dealing

with complex systems like control systems, examining the system as a

combination of subsystem brings a systematic approach to understand

and improve the overall system.

A system is called time-invariant if its response characteristic does

not change in time as expressed mathematically as,

S{x(t)} = y(t) → S{x(t− t0)} = y(t− t0) (2)

When a system holds the features denoted by Equation (1) and (2),

the system is called a linear time- invariant system.

An important property of linear time-invariant systems is that if the

impulse response of the system is known, the response of the system for

any type of input signal can be evaluated. This property is represented

by the integral

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ = x(t) ∗ h(t) (3)

This integral is called the Convolution Integral and what it basically
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does is that, it expresses the input signal x(t) in terms of a infinite

sum of impulses and applies the superposition principle to calculate

the overall response by adding each of the individual impulse responses

denoted by h(t).

3.1 Signal Representation

In the field of signal and systems analysis, there exist two fundamental

concepts to describe signals [14]:

• Signals expressed as a Sum of Impulses.

• Signals expressed as a Sum of Complex Exponentials.

As shown before, when a signal is expressed in terms of impulses,

the convolution integral relates the input to output.

On the other hand, expressing signals as a combination of com-

plex exponentials gives rise to powerful analysis tools like Fourier and

Laplace transforms.

A complex exponential is defined simply as an exponential function

having an imaginary term at its power such as,

x(t) = e(cr+cij)t
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3.2 Fourier and Laplace Transform

Fourier Transform corresponds to a decomposition of signal in terms

of a linear combination of complex exponentials [17]. However, it is

possible to obtain the transformation directly by the use of Convolution

Integral:

Let the input signal given to a system be x(t) = ejwt. Then the

output y(t) can be found by the use of Convolution Integral :

y(t) =

∫ ∞
−∞

x(t− τ)h(τ)dτ

=

∫ ∞
−∞

ejw(t−τ)h(τ)dτ

=

(∫ ∞
−∞

e−jwτh(τ)dτ

)
ejwt

=

(∫ ∞
−∞

e−jwτh(τ)dτ

)
x(t)

The integral,

H(jw) =

∫ ∞
−∞

e−jwth(t)dt (4)

corresponds to the Fourier Transform definition of the impulse response

and it is denoted by H(jw).

The integral in (4) represents the expression of a signal in terms

of complex exponential x(t) = ejwt; the result of this integral for a

specific frequency ws shows how much of the component ejwst has an

influence in the signal.

The inverse of Fourier transformation is given by,

h(t) =
1

2π

∫ ∞
−∞

H(jw)ejwtdt (5)
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and the convolution in time domain corresponds to multiplication in

frequency-domain as,

y(t) = h(t) ∗ x(t) ↔ Y (jw) = H(jw)X(jw) (6)

In some cases, for instance, when a signal that does not converge

to a certain value is tried to be expressed in terms of defined complex

exponential used in Fourier Transform, the integral in (4) can not

be carried out. To overcome this problem the complex exponential

function definition in Fourier Transform is extended to have a variable

not only with an imaginary part but also with a real part such as,

e(σ+jw)t

Addition of the variable σ, allows the integral to converge at least for

some values of σ. This new extended complex variable is called the

Laplace variable and is denoted by s.

Simply exposing this extension to Fourier Transform results in what

it is called the Laplace Transform:

H(s) =

∫ ∞
−∞

e−sth(t)dt (7)

3.3 System Representation

Linear time-invariant systems with single input and single output (SISO)

can be expressed by linear ordinary differential equation in the form

of,

10



dny
dtn + a1

dn−1y
dtn−1 + ...+ an−2

dy
dt + an−1y(t) =

= b0
dmx
dtm + b1

dm−1x
dtm−1 + ...+ bn−2

dx
dt + bn−1x(t)

(8)

A linear ordinary differential equation is basically an equation ex-

pressing the relationship between two signals in terms of their selves

and their change.

The solution to a linear differential equation can be evaluated by

examining the equation in its Laplace Transform. The use of Laplace

Transform allows one to convert a problem of differential equation to

a problem of algebraic equation. However, the solution obtained by

solving the algebraic equation must be converted back using inverse

Laplace transform in order to be valid for time-domain.

It is important to note that every linear system corresponds to a

linear differential equation but not every linear differential equation

corresponds to a linear system. If the differential equation has non-

zero initial conditions, this prevents the superposition principle to be

valid.

When the initial conditions are assumed to be zero, the Laplace

Transform of Equation (8) is obtained as,

Y (s) =
b0s

m + b1s
m−1 + ...+ bm−2s+ bm−1

sn + a1sn−1 + ...+ an−2s+ an−1
X(s) (9)

Y (s) = G(s)X(s) (10)

where G(s) is called the transfer function of the system. Notice that

from Equation (6) and (10), it can be deduced that a transfer function

of a system also corresponds to its impulse response.

If the system has an inherent time-delay [18], an exponential term

is introduced to Equation (9) as
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Y (s) =
b0s

m + b1s
m−1 + ...+ bm−2s+ bm−1

sn + a1sn−1 + ...+ an−2s+ an−1
e−τsX(s) (11)

where τ is the time-delay between input and output. This exponential

term comes from the Laplace Transform of shifted signals.

3.4 ARMAX Model of a System

ARMAX Model is a discrete time approximation of continuous models.

The abbreviation ARMAX stands for Auto-Regressive Moving Average

with Extra Input and the general form of an ARMAX model is given

by the difference equation,

y[k] = b1u[k − 1] + b2[k − 2] + bnbu[k − nb]− a1y[k − 1]−
−a2y[k − 2]− ...anay[k − na] + e[k]+

+c1e[k − 1] + ...+ cnce[k − nc]
(12)

where y[k],u[k] and e[k] corresponds to discrete output, input and

white noise signals, respectively. The number of terms for each sig-

nal is decided according to desired accuracy of the system; inclusion

of more term will increase the continuous model order of the system

that is been identified. The unknown coefficients are obtained by using

least square method [19],[20], [21].
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4 Stability Analysis

4.1 Stability as a System Property

Stability of a system is a property that expresses the behavior of a sys-

tem under given inputs and it forms the primary goal for a controller

to achieve. A system is called stable if the output remains bounded

when it is subjected to a bounded input. For linear systems as repre-

sented by Equation (11), stability is a property of the system; in other

words, the property of stability is independent from the type of input

and initial conditions. However, for nonlinear systems, this fact is not

true and stability of the system can depend on the type of input and

initial conditions.

The reason why stability has different characteristics in linear and

nonlinear systems can be explained by the concept of singular points

of a system.[22]. When a system is expressed in its state-space rep-

resentation, singular points are the states in the state-space where no

change of its states occur; when a system starts at a singular point it

will stay at rest. A system can basically behave in three manners when

initiated around a singular point: it can either converge to the singular

point, or diverge from the singular point or have a limit cycle around

the singular point. In the classical stability terms they correspond to

stable, unstable and marginally stable behavior, respectively. Linear

systems have only one singular points due to having only one solution

for the set of linear equations and the stability characteristics around

this singular point is certain. Nevertheless, nonlinear systems can have

multiple singular points and each can be particularly stable or unsta-

ble. Since in this thesis, linearity of systems are assumed, stability is
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accepted as a system property and the following section are devoted

to the analysis of it.

4.2 Stability of Linear Systems

As mentioned previously, linear systems can be represented by transfer

functions which are just ratios of polynomials. The values of s that

make the transfer function equal to zero are called the zeros of the

system and similarly, the values that make the transfer function ap-

proach to infinity are called poles. The polynomial at the denominator

is also called the characteristic equation of the system and the signs

of its roots decide whether the system is stable or unstable. Note that

the roots of the characteristic equation correspond to the poles of the

system. If the roots of the characteristic equation all have minus sign

then the system is stable. If at least one of the roots has positive sign,

it is unstable.

This fact can be made clear via first understanding the Laplace

Transform of a real exponential function and then representing a trans-

fer function in terms of partial fractions.

Laplace transform of a time-domain real exponential function x(t) =

e−αt can be found by using directly the definition of Laplace Transfor-
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mation:

X(s) =

∫ ∞
0

e−αte−stdt

X(s) =

∫ ∞
0

e−(α+s)tdt

X(s) =
1

s+ α
e−(α+s)t |∞0

X(s) =
1

s+ α

As it can be seen, the Laplace Transform of a real exponential

function is a simple fractional function. Notice that when α is positive

the exponential function converges to zero and when α is negative it

goes to infinity as time passes.

A transfer function can be expressed in terms of a combination

of fractional functions similar to that of the Laplace transform of the

time-domain exponential function. This is done via applying partial

fraction decomposition.

Let the transfer function be expressible by the ratio of two polyno-

mials N(s) and D(s) such as,

G(s) =
N(s)

D(s)

and assume that the denominator D(s) has distinct roots p1, p2, p3, ...pn

that allow it to be expressed as

D(s) = (s+ p1)(s+ p2)(s+ p3)...(s+ pn)

then the transfer function G(s) can be expressed as a combination of
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simpler transfer functions as,

G(s) =
N(s)

D(s)
=

A

(s+ p1)
+

B

(s+ p2)
+

C

(s+ p3)
+ ...+

D

(s+ pn)
(13)

where A, B, C and D are polynomials that satisfies the equality.

Using the information obtained from the Laplace transform of the

exponential function, one can conclude that if any of the partial frac-

tion terms have a pi with a negative value, it will cause a divergence

towards infinity and will result into an unstable behavior in total re-

sponse even though other terms converge to zero.

If the transfer function of a system has a pole with a positive real

part or in other words, has a pole that is located in the right hand-

side of the s-plane, then the system is unstable. Similarly, if all of the

poles are located in the left hand-side of the s-plane then the system

is stable.

Hence, when analyzing the stability of a linear system, evaluation

of the pole’s locations are sufficient to make a decision on the system

stability.

4.3 Argument Principle

A complex function F (s), like a system transfer function, will have

values that form a set corresponding to a closed-contour in the plane

of the dependent variable F (s), when the independent complex variable

s tracks a closed-contour in its own s-plane.

Cauchy’s argument principle relates the number of encirclement

around origin in the F (s) plane, to the number of zeros and poles of

the complex function F (s) that are present inside the contour that has
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been tracked in s-plane [23].

When a complex function F (s) is mapped to F (s) plane via track-

ing in a clockwise direction a continuous closed contour in the s-plane

which does not pass through any zeros or poles, the principle’s conclu-

sions can be listed as follows :

• If the contour in the s-plane encloses a pole of F (s), there is one

encirclement of the origin of the F (s) plane in the counterclock-

wise direction.

• If the contour in the s-plane encloses a zero, there is one encir-

clement of the origin of the F (s) plane in the clockwise direction.

• If the contour in the s-plane encloses same number of zero and

poles or does not enclose any zero and pole at all, there is no

encirclement around the origin of the F (s) plane.

The above conclusion can be expressed in an equation simply as,

N = Z − P (14)

where N is the number of clockwise direction around the origin and Z

and P are the number of zeros and poles the contour encloses, respec-

tively.
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4.4 Polar Ploting

Polar plot of a system is a graphical representation of its frequency

response. Instead of reviewing the magnitude and phase change sepa-

rately as done in Bode plot, polar plot shows the information of both

magnitude and phase characteristics in one complex-plane [15].

Polar plot of a system is obtained by simply inserting s values

that varies from 0i to +∞i to the systems’ transfer function and then

plotting the resulting complex numbers in the complex plane. When

a polar plot is formed by swiping the complex variable s from −∞i to

+∞i, a graph what it is called the Nyquist plot is formed.

When the polar plot is plotted from minus infinity to infinity, it

forms a loop. This is due to the fact that the frequency response for

negative frequencies is just the mirror image of the frequency response

of the positive frequencies with respect to real-axis. By plotting the

graph from minus infinity and infinity, these two symmetrical responses

will be plotted together and form a loop. This loop holds an important

part of the stability analysis when using Nyquist stability criteria.

4.5 Nyquist Stability Criterion

The Nyquist stability criterion encompasses the argument principle

to investigate the stability of a system by checking the availability

of poles in the right hand-side of the s-plane. The main idea of the

criteria is to check the number of encirclements around the origin when

the contour that has been tracked comprises all the right hand-side.

This contour is called the Nyquist contour and can be imagined as a

semi circle with a infinite radius that covers all the right hand-side of
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the s-plane. Choosing the contour in this manner guarantees to enclose

all the positive zeros and poles that the system has and results in a

Nyquist plot.

One important convenience that the Nyquisit stability criteria brings

is that the stability of a closed-loop system can be investigated directly

from its open-loop transfer function.

Suppose a system has a negative feedback structure with a open-

loop transfer function expressed as,

Gopen = C(s)G(s)

Then the closed-loop transfer function will have the form of,

Gclosed =
C(s)G(s)

1 + C(s)G(s)
=

Gopen

1 +Gopen
(15)

To guarantee that the closed-loop is stable, the closed-loop trans-

fer function must have no poles on the right-hand side which means

in other words, that the transfer function at the denominator 1 +

C(s)G(s), must not have any zeros at the right hand-side.

When a transfer function F(s) is summed with a positive number

as in the denominator of the closed-loop transfer function, this results

just in a shift towards the positive-side on the real-axis in the F(s)

plane. So when investigating the number of encirclements around the

origin of a transfer function in the form of n + F (s), the information

can be obtained by checking the number of encirclements around the

point −n+ 0i of the transfer function F (s) in their own corresponding

planes.

Hence the argument principle can be modified to what it is called
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as the Nyquist stability criteria, to analyze the stability of the closed-

loop system directly by examining the open-loop transfer function

C(s)G(s):

Let Z ′ and P ′ denote the number of zeros and poles of the transfer

function 1 + C(s)G(s) and N ′ to denote the number of encirclements

around −1 + 0i in the Nyquist plotting of C(s)G(s), then argument

principle relates them, as shown before, as

N ′ = Z ′ − P ′

Using this modified argument principle, the Nyquist stability cri-

teria can be stated as follows:

To achieve closed-loop system stability the relation N ′ = −P ′ must

be satisfied, since in a stable closed-loop system Z ′ = 0 [24].
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5 Internal Model Control

Internal Model Control method or for short IMC can be reviewed as a

different interpretation of the classical control method. This interpre-

tation emphasizes on how the real system response deviates from the

expected response.

The idea of internal model control made its official first mark in

1976 in the work of B.A. Francis and M. Wohnam [25] and later on

developed to cover many control problems by succeeding engineers.

In classical feedback control, the response of the controlled system

and the reference value is continuously compared to generate an er-

ror. Then according to the error, the controller decides and takes an

action to minimize this error. However, when the error is calculated

by directly subtracting the system response from the reference signal

for a given instant, a loss of information occurs. This lost information

corresponds to the knowledge of source which causes the difference be-

tween the reference value and real system response. The source of error

could be due to change of reference value, a improper choice of con-

troller, pure response characteristics of the system, internal or external

disturbances and etc.

To clarify the cause of error and to design a controller with respect

to it, the classical feedback control is rearranged to have a form that

is now named as internal model control. In this control strategy, the

error is calculated in two steps. In the first step, the real response of

the system and expected system response are compared. Both of the

responses are obtained for the same type of reference. If the real system

and its model is well consistent, the first comparison reveals mainly

the presence of external disturbance. However, it does not have to
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Figure 1: Block Diagram of Internal Model Control [1]

necessarily correspond to an external disturbance only; the difference

can also occur due to input disturbance or inconsistent plant model.

Then in the second step, the result of the first step is compared with

the reference signal. The result of the second comparison corresponds

to the error which is interpreted by the controller to generate a control

action aiming to minimize the error.

As it is explained, the principle control idea of internal model con-

trol is almost the same with the classical feedback control. The only

main difference is that due to the error generation of IMC reveals

the external disturbance more clearly, the controller can be designed

to deal with disturbances effectively. As it will be explained later, if

the type of disturbance is known, the controller can be improved by

adding a component that cancels the disturbance. Straightforwardly,

if the controller has the structure of the disturbance in itself, it can use

this structure to cancel the disturbance by sending the negated form

to the it.

A typical internal model control system has a block diagram as

shown in Figure 1 [26]. Here Q(s), G(s) and G̃(s) denote the trans-
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fer functions of the controller, plant and its model, respectively. The

closed-loop transfer function is obtained as in the following manner:

Y (s) = D(s) +G(s).U(s) (16)

U(s) = Q(s)ε(s) (17)

ε(s) = Yd(s)−
(
Y (s)− G̃(s)U(s)

)
(18)

U(s) = Q(s)Yd(s)−Q(s)Y (s) +Q(s)G̃(s)U(s) (19)

Substituting Equation (19) to (16) results in:

Y (s) = D(s) +G(s)
Q(s)Yd(s)−Q(s)Y (s)

1−
(
Q(s)G̃(s)

)
Y (s)

(
1−Q(s)G̃s

)
= G(s)Q(s)Yd(s)+

(
1−Q(s)G̃(s)

)
D(s)−G(s)Q(s)Y (s)

Y (s)
(

1−Q(s)G̃(s) +G(s)Q(s)
)

= D(s)
(

1−Q(s)G̃(s)
)

+G(s)Q(s)Yd(s)

Y (s)
(

1 +Q(s)
(
G(s)− G̃(s)

))
= G(s)Q(s)Yd(s)+

(
1−Q(s)G̃(s)

)
D(s)

Y (s) =
GQ

1 +Q
(
G− G̃

)Yd(s) +
1− G̃Q

1 +Q
(
G− G̃

)D(s) (20)

If the plant and its model are assumed to be completely consistent

with each other such that G(s) = G̃(s), further simplification of the
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close-loop transfer function shown in Equation (20) can be made:

Y (s) = GQYd(s) + (1− G̃Q)D(s) (21)

5.1 Conversion between Classical Feedback Con-

trol and Internal Model Control

It is possible to convert a classical feedback control into a representa-

tion of internal model control and vice versa. The relationship between

IMC version and classical version of a controller can be found by equat-

ing the transfer functions of both closed-loop systems [1].

Figure 2: Block Diagram of Classical Feedback Control [1]

The closed-loop transfer function for a typical classical feedback

control system as depicted in Figure 2 is given by,

Y (s) =
C(s)G(s)

1 + C(s)G(s)
Yd(s) +

1

1 + C(s)G(s)
D(s) (22)

Since Equation (20) and (22) represents the same physical system, the
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transfer functions between output and inputs must be equal:

C(s)G(s)

1 + C(s)G(s)
=

G(s)Q(s)

1 +Q(s)
(
G(s)− G̃(s)

) (23)

1

1 + C(s)G(s)
=

1− G̃(s)Q(s)

1 +Q(s)
(
G(s)− G̃(s)

) (24)

By picking any of Equation (23) and (24), the expression of C(s) in

terms of Q(s) can be obtained with further mathematical manipula-

tion:

C(s) +Q(s)C(s)
(
G(s)− G̃(s)

)
= Q(s) + C(s)G(s)Q(s)

C(s)−Q(s)C(s)G̃(s) = Q(s)

C(s)
(

1−Q(s)G̃(s)
)

= Q(s)

C(s) =
Q(s)

1−Q(s)G̃(s)
(25)

Using Equation (25), an important concept of disturbance rejection

can be shown. Let the physical control system hold the simplification

covered by Equation (21) and let the classical representation of the

controller contain the model of the disturbance such that,

C(s) = A(s)D(s) (26)

where A(s) represents the rest of the controller such that A(s) 6= 0.
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Substituting this classical controller model into Equation (25) yields,

A(s)D(s)
(

1−Q(s)G̃(s)
)

= Q(s) (27)

Now if the IMC Controller is stable in way that

lim
s→0

sQ(s) = 0

in steady state, Equation (27) becomes equal to zero. Since A(s) is

non-zero, this means that (1 − Q(s)G̃(s))D(s) must be zero. Notice

that this term corresponds to the transfer function between output

and disturbance in Equation (21). When this term converges to zero,

it guarantees asymptotic disturbance rejection.

The conclusion of the above explanation is that in order to be able

to attenuate disturbance completely, the classical controller C(s) must

contain the model of the disturbance.

Having the mathematical description of Internal Model Control

method at disposal allows one to design the controller more effectively

if disturbance is wanted to be attenuated.

5.2 Repetitive Control

If the disturbance that is desired to be rejected is a periodic signal,

a sub-field of IMC method, called Repetitive Control technique can

be used to design the controller. The Repetitive Control method can

be derived directly from the Internal Model Control, however, due to

its success in rejecting this particular disturbances by making small

modification to the IMC and interpreting it from a different point of

view, this method is considered to be a standalone control technique

26



[27], [28].

In this thesis, the conditions needed to be satisfied to reject periodic

disturbance, are going to be derived from the Internal Model Control.

This derivation process will also reveal the fundamental idea underlying

Repetitive Control.

As mentioned earlier, from Equation (21), conditions needed to be

satisfied by the controller can be derived for disturbance rejection:(
1− G̃Q

)
D(s) = 0

D(s)− G̃QD(s) = 0

If the term G̃Q can be made equal to one, the disturbance will

cancel itself, resulting in the rejection of disturbance. The key idea

here is now to find such a controller Q(s) to achieve this fact.

The first statement that can be made is that if the controller posses

the inverse of model G̃ such that

Q(s) =
1

G̃
R(s) (28)

where R(s) denotes the rest of the controllers transfer function, the

effect of the plant can be removed. What it is ended up with, after

this controller model is inserted for Q(s), is,

G̃Q(s) = R(s)

Hence, the controller Q(s) should posses the inverse of the model.

The second statement concerns the controllers rest part R(s). This
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part of the controller must be designed such that the equality,

D(s)R(s) = D(s)

must be valid. This means nothing but R(s) should have the proper-

ties,

|R(s)| = 1 (29)

arg (R(s)) = 2kπ, k = 0,±1,±2, ... (30)

Any periodic disturbance can be thought of as a finite signal being

repetitively added to itself after a time delay equal to the time length

of the original signal. This can be mathematical expressed in the

following manner: Let P (s) denote a finite signal corresponding to

one period of the periodic signal and Tp to be the time length of the

signal p(t) or, in other words, the period of the periodic signal. Then,

the periodic signal can be expressed as,

Y (s) =
1

1− e−Tps
P (s) (31)

Using Equation (31) any periodic disturbance can be modeled and

implemented into a controller. Since the controller contains a distur-

bance model generated by repetitive addition, it is called Repetitive

Controller.

However, for the sake of simplicity, from now on, the periodic dis-

turbance is going to be assumed and modeled as it is a sinusoidal signal
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such as,

d(t) = Adsin(wdt) (32)

The consequence of having a sinusoidal disturbance is that Equa-

tion (29) and (30) can be simplified to,

|R(jwd)| = 1 (33)

arg (R(jwd)) = 2kπ, k = 0,±1,±2, ... (34)

Equation (28), (29) and (30) are the requirements to form the con-

troller Q(s) to reject disturbance from the system response. Addi-

tionally, it is also desired to have the controller to achieve reference

tracking , for instance, for a unit step reference signal. For this pur-

pose, the limit which refers to the final value theorem applied to the

step response,

lim
s→0

sG(s)Q(s)
1

s
= lim

s→0
R(s) = 1 (35)

must be satisfied.

To satisfy Equation (33), (34) and (35), a transfer function of the

form

R(s) = F (s)e−θs (36)

can be used. Here, F (s) represents a stable filter having a unit step

gain equal to one and e−θs represents a user-definable time delay to

allow the controller to satisfy Equation (34).
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Finally, by combining all of the discussed properties needed to be

satisfied by the controller for a proper control, the IMC controller has

a form of,

Q(s) =
1

G̃
F (s)e−θs (37)

and holds the following conditions:

|F (jwd)| = 1

arg (F (jwd))− wdθ = 2kπ, k = 0,±1,±2, ...
(38)

5.3 Robustness

Robustness of a controller is an important property that must be taken

into account when the controller is desired to be implemented on a

real system. Robustness of a controller is the measure of the quality

of how far a controller will carry out a successful control when there

are differences present in the nominal parameter values or unexpected

system conditions like disturbance. The more robust the controller

is, the more it will be immune to environmental changes and design

errors.

There exist many techniques to measure and improve the robust-

ness of a controller such as gain/phase margin analysis and H∞ opti-

mization [29].

Gain/phase margin analysis is a simple method to make comments

on robustness when two controller are compared. However, it does

not give direct implications to the information of the point at which

the controller starts to fail. For this purposes, more advanced analysis
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techniques must be used.

Gain margin is a property of the system which indicates how much

of a gain increase leads to system instability. It can have either a posi-

tive or a negative value. A positive gain margin implies that a certain

amount of gain increase will make the system to lose its stability; a

negative gain margin implies that a certain amount of gain reduction

will cause instability.

Phase margin is the property which tells about how much of a phase

shift in the overall system can cause unstable behavior.

In terms of gain/phase margins, robustness of the controller in-

creases as the value of the margins increase. Gain/phase margin is

obtained by first deriving the frequency response of the open-loop con-

trol system either in Nyquist plot or in polar plot or in Bode plot.

The open-loop control system transfer function of IMC can be easily

obtained using the relationship between IMC and Classical Feedback

Control. It is known that the open-loop transfer function of Classical

Feedback Control is,

Gopenloop(s) = C(s)G(s)

Substituting the derived equation for relation between classical con-

troller C(s) and IMC controller Q(s), and assuming G(s) = G̃(s), the

open-loop transfer function for IMC is obtained as,

IMCopenloop(s) =
F (s)e−sθ

1− F (s)e−sθ
(39)

Once the open-loop transfer function is obtained, the gain and

phase margin can be obtained by using MATLABs built-in function
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margin or with a self-written code.

When a system is known to be stable, polar plotting can be used

to evaluate the gain and phase margins of the system. By finding the

intersection points between the curve and the negative real axis, and

then choosing the furthest one from the origin, the necessary informa-

tion can be obtained for the calculation of gain margin. Additionally,

the necessary information for phase margin can be found by finding the

intersection points between the curve and the unit circle. The point

which is the closest to the negative real axis is used to calculate the

phase margin.

A system can have multiple values of gain and phase margins with

different signs and values. This fact causes the system stability to be

upper and lower bounded in terms of gains and phase shifts which leads

to a concept called as conditional stability. An internal model control

system as introduced in this thesis can have multiple gains/phase mar-

gins and in the analysis of robustness of this type of systems, the lowest

positive gain margin value among all evaluated gain margins will be

the gain margin to be taken into account. In this thesis, robustness

analysis with respect phase margin will not be emphasized much due

to imprecision of numerically calculating the margin itself.

5.4 Application of Repetitive Control to Time-

Delay Systems

As discussed earlier, a system with time-delay τ has an exponential

term in its transfer function. This fact causes a need for a small mod-

ification to the form of IMC controller in Equation (37), conditions

introduced for filter in Equation (38) and open-loop transfer function
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in Equation (39).

If a system S(s) has a transfer function expressed in

S(s) = G(s)e−sτ

where here G(s) corresponds to the part of S(s) without time-delay

and e−sτ is the time-delay component of S(s), then Equation(37), (38)

and (39) are modified to explicitly cover time-delay systems as,

Q(s) =
1

G(s)
F (s)e−(θ+τ)s (40)

|F (jwd)| = 1

arg (F (jwd))− wd(θ + τ) = 2kπ, k = 0,±1,±2, ...
(41)

IMCopenloop(s) =
F (s)e−s(θ+τ)

1− F (s)e−s(θ+τ)
(42)

The stability condition of the repetitive control system can be eval-

uated by directly checking the poles of its closed loop transfer function.

Using Equations (15) and (42) the closed-loop transfer function can be

found as,

IMCclosedloop(s) =
F (s)e−s(θ+τ)

1 + F (s)e−s(θ+τ) − F (s)e−s(θ+τ)
(43)

= F (s)e−s(θ+τ) (44)

Equation (44) implies that as long as a stable filter is used and the
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assumptions are valid, the repetitive control will be stable.

6 Objectives

The topic this thesis covers was also investigated in the past in [30].

Hence, this thesis aims to bring improvement and convenience to the

application of repetitive controller to hot rolling mills that was once

investigated.

The objective of this thesis, by being strict to the theoretical knowl-

edge mentioned above, is to extend the scope of study of previous works

and to achieve,

1. Development of an algorithm to obtain time-delay system models

of hot rolling mills from experimental data

2. A model of filter that increases the robustness of repetitive con-

troller in internal model control system

3. Development of an algorithm that tunes the filter for the given

conditions like disturbance and time-delay present in the system.
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Part II

Applications

7 System Evaluation using Data

First-order systems with time-delay provide simple yet effective ap-

proximations of systems with high-order. Since they have only three

parameters to be evaluated, the optimization of approximating higher

order systems or system identification from measured data is fairly less

complicated and fast. However, important informations like pole/zero

locations, high frequency characteristics of the real system are lost.

In accordance with Equation (11), a first-order system with time-

delay has a transfer function in a form of,

G(s) =
K

Ts+ 1
e−τs (45)

For the given measurement of the hot rolling mills input and out-

put as shown in Figure 3 the introduced algorithm in this thesis for

estimating a first order system with time-delay follows the steps as

listed:

1. Preparation of the Measured Data for Identification via Normal-

ization

2. Estimation of Overall Time-Delay using Cross Correlation

3. Shifting Output Data from left to right to find the best fitting

ARMAX Model

35



4. Conversion of ARMAX Model to Continuous-time model

5. Calculation of Time-Delay by adding the Corresponding Shift in

Step 3 to Overall Delay calculated in Step 1.

Figure 3: Measured Input-Output Data of Hot Rolling Mill

7.1 Step 1 - Normalization of Data

The input u(t) and output y(t) signals are normalized by subtracting

each signals mean value from the signals itselves:

ynormalized(t) = y(t)−mean (y(t))

unormalized(t) = u(t)−mean (u(t))
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The normalized input and output signals can be seen in Figure 4.

Figure 4: Normalized Input-Output Data of Hot Rolling Mill

7.2 Step 2 - Estimation of Overall Delay

Cross-correlation is a mathematical tool for examining the linear de-

pendency between two signals. By swiping one signal over the other,

the effect of shifting between signals on linear dependency can be found

as shown in the Figure 5. Cross-correlation coefficient is the normaliza-

tion of cross-correlation and it is a scale for linear dependency. When

the cross-correlation coefficient is 1 or -1 it means that for the given

shift between signals, there is a perfect positive or a negative linear

dependency between signals, respectively. If the coefficient is zero, it

means that there is no linear dependency.
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Using cross-correlation between input and output for estimating the

time-delay of single-input-single-output systems is an effective method.

Since first-order system model is used for the estimation, it is expected

to have a high linear dependency between input and output. The cor-

responding time-shift for maximum cross-correlation coefficient corre-

sponds to the overall delay of the system [31].

The overall time-delay consists the information of time-delay τ and

the time constant T of the system. Therefore, further operations must

be carried out to evaluate these two parameters from the overall time-

delay.

Figure 5: Cross Correlation between Normalized Input-Output

From Figure 5, the overall delay is found as 4.6250 seconds.
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7.3 Step 3 - Estimation of Time Constant T and

Unit-step Gain K

By taking the overall time-delay as a reference for how much of a shift

of time is needed to cancel the effect of time-delay τ , a first order model

is fitted to the new shifted data using Auto-Regressive Moving-Average

Extra-Input (ARMAX) system model. Since it is not known exactly

how much of a time-delay is present in the system, a series of ARMAX

model estimation is carried out for various values of time-delay in a

close range to overall time-delay. Each generated ARMAX model is

compared with the real measurements and the one with least error is

picked to be the best approximation of the real system.

The result of such an ARMAX model estimation for a given relative

time shift with respect to overall time delay can be seen in Figure 6.

Relative time-shift is defined as the amount of increment or decrement

to the overall time-delay. The minus sign in relative time shift repre-

sents a decrement of overall time-delay. The summation of overall time

delay and relative time shift gives the time-delay τ used for estimating

parameters K and T .

As it can be seen, when the system has a relative time-shift of -0.1

seconds, the ARMAX Model with least error is achieved.
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‘

Figure 6: System Parameter Value and Estimation Error for given
Relative Time-shift
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7.4 Step 4 - Conversion of ARMAX Model to

Continuous-time Model

Since ARMAX Model is a discrete-time model, it needs to be converted

to continuous time model to have a representation of Equation (12).

This conversion is made by using the built-in function in MATLAB

[32]:

continuous model = d2c(discrete model)

As default, the function d2c uses zero-order hold method to convert

discrete-time model to continuous-time model. The obtained continu-

ous model via this function is,

G(s) =
3.534

s+ 7.561

7.5 Step 5 - Calculation of Time-Delay τ

The overall delay and the relative time-shift was found as 4.6250s and -

0.1s, respectively. The time-delay of the system is calculated by adding

these two values:

τ = 4.6250 + (−0.1) = 4.5250s

The resultant system model for the given measured data after fol-

lowing the described algorithm is found as,
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G(s) =
3.534

s+ 7.561
e−4.5250s (46)

Figure 7 shows the time response of the obtained model with the real

measured output for the measured input data.

Figure 7: Time Response of Real System and Model subjected to Mea-
sured Input Signal
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8 Disturbance Model

After evaluation of the system model, the disturbance signal can be

obtained by subtracting the model output from real output as,

d(t) = y(t)− ỹ(t)

In Figure 9, the real disturbance acting on the system is depicted

by the blue line. To capture the characteristic repetition observed in

the real disturbance, fast Fourier transform is applied to decompose

the signal into its harmonic components. Figure 8 shows the frequency

spectrum of the disturbance.

Figure 8: Fast Fourier Transform of Disturbance
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According to Figure 8 harmonic components with lowest frequen-

cies form the structure of the disturbance signal. However, the infor-

mation of the prominently observed oscillation is obtained in the next

most effective harmonic components pointed in the figure.

Using just this pointed component, a sinusoidal signal simplification

of the disturbance can be formed as,

d(t) = 0.00156sin(2π 0.8666 t) (47)

The obtained simple disturbance model is also plotted in Figure

9 and it can be seen that the information of the dominant oscillation

frequency is captured.

Figure 9: Measured and Modeled Disturbance
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9 Filter Design for IMC Controller

The purpose of this section is to introduce a method to derive a filter

having the features needed for attenuating a periodic disturbance in a

repetitive control system.

In a simplified repetitive control system, the relationship between

output and the inputs can be expressed by,

Y (s) = GQYd(s) + (1− G̃Q)D(s) (48)

Here G and G̃ denotes the actual plant and its model, respectively;

for the sake of simplicity, the plant and plant model is assumed to

be identical. The controller Q must be designed in such a way that

disturbance signal D(s) must be rejected as much as possible whilst

the system tracks the reference signal Yd(s).

As it is concluded by Equation (48), the controller can satisfy the

above design criteria when it has the form of,

Q(s) =
1

G
F (s)e−θs (49)

The filter F (s) is used to assure proper unit step response and a fre-

quency response such that it causes the term (G̃Q) to have a gain of

unity at the frequency of disturbance which means that the first-order

filters are not-suitable for the solution and at least a filter with or-

der of two must be used. The user-definable time-delay component

is introduced to guarantee a phase-shift equal to the multiples of 360

degrees.

When the controller Q(s) has the form of Equation (49) with appro-
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priate parametric values, the disturbance D(s) automatically cancels

itself.

Hence, from the above discussion and for good robustness, the filter

should have a form of magnitude vs frequency response as depicted in

Figure 10.

Figure 10: Desired Frequency Response Behavior of a Filter

9.1 Second Order Filter Design

Second order filters are the first possible options to be taken into ac-

count to meet the requirements stated above. The simplest second

order filter has a transfer function in a form of,

F (s) =
Kw2

n

s2 + 2ξwns+ w2
n

(50)

Three parameters, namely, the unit step gain K , the natural frequency

wn and the damping ratio ξ, can be used to create wide range of second
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order filters.

Frequency response of the second filter can be obtained by replacing

s with jw in Equation (50):

F (jw) =
Kw2

n

(jw)2 + 2ξwn(jw) + w2
n

=
Kw2

n

(w2
n − w2) + 2ξwnwj

(51)

The first criteria which corresponds to achieving proper unit-step

response requires K to be equal to one.

The second criteria requires a magnitude gain equal to one at the

frequency of disturbance such that,

|G(jwd)| =
w2
n√

(w2
n − w2

d)
2

+ (2ξwnwd)
2

= 1 (52)

With further mathematical manipulation on Equation (52), a rela-

tionship between disturbance frequency wd, natural frequency wn and

damping ratio ξ for a suitable second order filter can be obtained as,

w2
d

2− 4ξ2
= w2

n (53)

Since frequency is a real property with a positive value, this requires

the term 2−4ξ2 to be greater than zero. By simplifying this inequality,

a condition for damping ratio ξ can be obtained:

0 < 2− 4ξ2

2ξ2 < 1

ξ2 < 0.5
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ξ < 0.7071

The condition for ξ states that the second order filter to be used will

have an oscillatory behavior causing oscillation in the overall control

as well.

9.1.1 Second Order Filter Examples

A second order filter for a disturbance frequency equal to 5.3407 rad/s

was proposed in [30] as

F (s) =
7.11552

s2 + 2 0.6 7.1155s+ 7.11552
=

50.63

s2 + 8.539s+ 50.63
(54)

such that its properties are consistent according to Equation (53). It

can be seen that the damping ratio ξ is 0.6 and the natural frequency

wn is 7.1155 rad/s. Figure 11, 12 and 13 shows the Bode diagram,

step response and graphical review of the proposed filters margin, re-

spectively. The margins in Figure 13 were calculated using the built-in

MATLAB function. As it can be seen, the MATLAB functions’ phase-

frequency plot has discontinuities causing unreliable comments about

margins especially on phase margin.

48



Figure 11: Frequency Response of Second-order Filter with ξ = 0.6,
wn = 7.1155

Figure 12: Unit Step Response of Second-order Filter with ξ = 0.6,
wn = 7.1155
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Figure 13: Gain and Phase Margin of Open-Loop Transfer Function
with Second-order Filter with ξ = 0.6, wn = 7.1155

Similar to the second order filter proposed in Equation (54), a wide

range of filters for the same purpose can be generated by varying one

of the parameters ξ and wn:

9.1.2 Filter 1

Pre-selected Parameters

ξ , damping ratio = 0.3

K , unit step gain = 1

wn ,frequency of disturbance = 5.3407 rad/s

Calculated Parameters

wn , natural frequency = 4.1704 rad/s
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Obtained Filter Transfer Function

F (s) =
17.39

s2 + 2.502s+ 17.39

Related Graphs for Filter 1

Figure 14, 15 and 16 shows the Bode diagram, step response of

Filter 1 and polar plotting of the open-loop transfer function having

Filter 1, respectively.

Figure 14: Frequency Response of Filter 1
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Figure 15: Unit Step Response of Filter 1

Figure 16: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 1
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9.1.3 Filter 2

Pre-selected Parameters

ξ , damping ratio = 0.1

K , unit step gain = 1

wn ,frequency of disturbance = 5.3407 rad/s

Calculated Parameters

wn , natural frequency = 3.8148 rad/s

Obtained Filter Transfer Function

F (s) =
14.55

s2 + 0.763s+ 14.55
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Related Graphs for Filter 2

Figure 17, 18 and 19 shows the Bode diagram, step response of

Filter 2 and polar plotting of the open-loop transfer function contain-

ing Filter 2, respectively. As expected, the decrease in damping ratio

results in an increase of oscillation with respect to Filter 1.

Figure 17: Frequency Response of Filter 2
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Figure 18: Unit Step Response of Filter 2

Figure 19: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 2
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9.1.4 Filter 3

Pre-selected Parameters

ξ , damping ratio = 0.05

K , unit step gain = 1

wn ,frequency of disturbance = 5.3407 rad/s

Calculated Parameters

wn , natural frequency = 3.7859 rad/s

Obtained Filter Transfer Function

F (s) =
14.33

s2 + 0.3786s+ 14.33

Related Graphs for Filter 3

Figure 20, 21 and 22 shows the Bode diagram, step response of

Filter 3 and polar plotting of the open-loop transfer function contain-

ing Filter 3, respectively. As expected, the decrease in damping ratio

results in an increase of oscillation with respect to Filter 1 and 2.
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Figure 20: Frequency Response of Filter 3

Figure 21: Unit Step Response of Filter 3
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Figure 22: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 2
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9.1.5 Filter 4

Pre-selected Parameters

ξ , damping ratio = 0.01

K , unit step gain = 1

wn ,frequency of disturbance = 5.3407 rad/s

Calculated Parameters

wn , natural frequency = 3.7768 rad/s

Obtained Filter Transfer Function

F (s) =
14.26

s2 + 0.07554s+ 14.26
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Related Graphs for Filter 4

Figure 23, 24 and 25 shows the Bode diagram, step response of Fil-

ter 4 and polar plotting of the open-loop transfer function containing

Filter 4, respectively. As expected, the decrease in damping ratio re-

sults in an increase of oscillation with respect to Filter 1, 2 and 3. As it

can be seen from the step response of FIlter 4, the level of oscillations

and the amount of time to reach stability gives rise to really question

about robustness of the controller. This expectation is supported by

the decrease in gain margin as damping ratio decreases, as well.

Figure 23: Frequency Response of Filter 4
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Figure 24: Unit Step Response of Filter 4

Figure 25: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 4
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9.2 Gain Margin Variation with respect to Damp-

ing Ratio ξ when Second Order Filter is Used

The graphs in Figure 26, 27 and 28 show the influence of damping ratio

on the gain margin for different disturbance frequencies and time-delay

values. As a conclusion, in all cases increasing the damping ratio will

increase the gain margin.

Figure 26: Gain Margin vs Damping Ratio ξ for wd = 0.5 Hz
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Figure 27: Gain Margin vs Damping Ratio ξ for wd = 1.0 Hz

Figure 28: Gain Margin vs Damping Ratio ξ for wd = 1.5 Hz
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9.3 Third Order Filter Design

The methodology used to derive third order filters is based on the sim-

ple yet fundamental analysis tools provided by calculus. Even though

it is possible to follow a numerical approach to find values of parame-

ters, here an analytical approach is preferred to not to lose sight from

the main mathematical idea.

As it is seen in Figure 10, the desired behavior of a filter has all of

its local maximum values equal to zero decibel: first one occurring at

the beginning, at which the gain corresponds to the unit step gain of

the filter in decibels and the second one occurring at some frequency

right before a dramatic fall.

The key idea is to first find the frequency values at which local

maximums are achieved for a given form of transfer function. These

frequency values will be expressed in terms of algebraic equations be-

cause this allows one to pick the frequency value where the local maxi-

mum is wanted to be observed. Once these frequencies are known, the

last remaining unknown parameter is found by solving the algebraic

equation that is obtained by assigning the desired gain values at these

local maximums.

In this case, the filter to be designed must have a gain of 0 decibel

at its local maximums. Also, it is wanted to have the second local

maximum to be observed at the frequency of disturbance.

It is decided for the transfer function of the filter to have a form of,

F (s) =
K

T.s+ 1

w2
n

s2 + 2ξwns+ w2
n

(55)

which is, basically, a combination of first and second order filter. The
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below explanation will show that it is possible to find a combination

of such two different types of filters to give a fulfilling resultant as

depicted in Figure 29.

Figure 29: Resultant Filter F (s) After Combination of 1st and 2nd

Order Filter

For clarity, the first order filter part is going to be denoted by F1(s).

Similarly, the second order filter part by F2(s). Hence, Equation (55)

can be rewritten as,

F (s) = F1(s)F2(s) (56)

The function for the magnitude of the frequency response can be

obtained by replacing s by jw and then taking the absolute value:
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|F (jw)| = |F1(jw)| |F2(jw)| (57)

The extremums are found by taking the derivative of |F (jw)| with

respect to w and then solving for the roots:

d |F (jw)|
dw

=
d |F1(jw)|

dw
|F2(s)|+ |F1(s)|

d |F2(jw)|
dw

= 0 (58)

With the help of MATLAB, the frequencies satisfying Equation

(58) are found analytically using the command,

w ext = solve(dF==0,w)

MATLAB returns five total solutions. One solution corresponds

to w being equal to zero. Then the following two different solutions

are real valued solutions. The last two solutions contain imaginary

numbers; hence not realizable. So in total there exits three realizable

extremum values. This is consistent with what is shown in Figure 10;

it has three extremums.

The third real-valued solution corresponds to the second local max-

imum. Hence this is the solution that will be selected to be used in op-

timization. Note that, this frequency is expressed in terms of T,K,wn

and ξ.

Next, due to necessity, value assignment is made for some picked

parameters, namely for K and T . It is desired to have a unit step gain

equal to one. Therefore, K must be equal to one. Also, it is desired to

be able to tune the filter according to an user selected time constant

T . Hence a T value is also assigned.
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The resonant frequency wr is defined as the frequency at which

the peak gain value is observed. In this case, it coincides with the

frequency of second local maximum. It is desired that this resonant

frequency is equal to the frequency of disturbance. Since the frequency

of disturbance is evaluated from measurements, resonant frequency

becomes a known parameter.

Until this point the unknown parameters are ξ and wn. Also a

numerical value and a symbolic representation of wr are at disposal.

When the known parameters are substituted to the symbolic represen-

tation of resonant frequency, resonant frequency becomes a function

of ξ and wn. And since the numerical value of resonant frequency is

known, this function becomes an algebraic equation, allowing us to

express wn in terms of ξ.

To find the last unknown parameter ξ, an algebraic equation is

formed by equating Equation (57) to one at resonant frequency wr:

|F (jwr)| = 1 (59)

Since everything is now able to be expressed in terms of ξ, with the

help of MATLAB, value of ξ can be calculated:

ksi solv = solve(F1 gain*F2 gain ==1, ksi);

Once ξ is known, all the unknown parameters that are expressed

in terms of it can be evaluated; in this particular case, wn.

It must kept in mind that the solve command of MATLAB does

not necessarily have to return one singular value. When one of the

solutions is picked the consequence of that value must be examined
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through out the whole system; every calculated value must be consis-

tent with reality.

9.4 Effectiveness of Method

The effectiveness of introduced method is demonstrated by various

different filters obtained by MATLAB code working in the discussed

manner.

9.4.1 Filter 5

Pre-selected Parameters

T , user-selected time-constant = 0.25 s

wr , resonant frequency = frequency of disturbance = 5.3407 rad/s

K , unit step gain = 1

Calculated Parameters

wn , natural frequency = 6.6726 rad/s

ξ , damping coefficient = 0.2997

Obtained Filter Transfer Function

F (s) =
44.52

0.25s3 + 2s2 + 15.13s+ 44.52
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Related Graphs for Filter 5

Figure 30, 31 and 32 shows the Bode diagram, step response of

Filter 5 and polar plotting of the open-loop transfer function containing

Filter 5, respectively. When compared with Filter 1, both filters have

similar response time, but Filter 5 has more oscillation. However,

despite the fact there are more oscillations, due to having a upper-

bounded magnitude-frequency response as seen in Figure 30, Filter 5

has a greater gain margin.

Figure 30: Frequency Response of Filter 5
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Figure 31: Unit Step Response of Filter 5

Figure 32: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 5
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9.4.2 Filter 6

Pre-selected Parameters

T , user-selected time-constant = 0.5 s

wr , resonant frequency = frequency of disturbance = 5.3407 rad/s

K , unit step gain = 1

Calculated Parameters

wn , natural frequency = 5.7029 rad/s

ξ , damping coefficient = 0.1753

Obtained Filter Transfer Function

F (s) =
32.52

0.5s3 + 2s2 + 18.26s+ 32.52
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Related Graphs for Filter 6

Figure 33, 34 and 35 shows the Bode diagram, step response of

Filter 6 and polar plotting of the open-loop transfer function containing

Filter 6, respectively. The increase of time constant and decrease of

damping ratio, as expected, slowed down the response speed of the

filter and increased the oscillations compared to Filter 5. However, as

an improvement, the gain margin is increased.

Figure 33: Frequency Response of Filter 6
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Figure 34: Unit Step Response of Filter 6

Figure 35: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 6
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9.4.3 Filter 7

Pre-selected Parameters

T , user-selected time-constant = 2 s

wr , resonant frequency = frequency of disturbance = 5.3407 rad/s

K , unit step gain = 1

Calculated Parameters

wn , natural frequency = 5.3641 rad/s

ξ , damping coefficient = 0.0466

Obtained Filter Transfer Function

F (s) =
28.77

2s3 + 2s2 + 58.05s+ 28.77
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Related Graphs for Filter 7

Figure 36, 37 and 38 shows the Bode diagram, step response of

Filter 7 and polar plotting of the open-loop transfer function containing

Filter 7, respectively.

Figure 36: Frequency Response of Filter 7

75



Figure 37: Unit Step Response of Filter 7

Figure 38: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 7
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9.4.4 Filter 8

Pre-selected Parameters

T , user-selected time-constant = 4 s

wr , resonant frequency = frequency of disturbance = 5.3407 rad/s

K , unit step gain = 1

Calculated Parameters

wn , natural frequency = 5.3466 rad/s

ξ , damping coefficient = 0.0234

Obtained Filter Transfer Function

F (s) =
28.59

4s3 + 2s2 + 114.6s+ 28.59

77



Related Graphs for Filter 8

Figure 39, 40 and 41 shows the Bode diagram, step response of Fil-

ter 8 and polar plotting of the open-loop transfer function containing

Filter 8, respectively. Contrary to the trend seen in second order filter,

increment in time constant resulted in a slower and more oscillatory

filter but with a great gain margin. This indicates that, using a third

order filter with longer time constant will result in a more robust sys-

tem even if it is oscillatory and slow. As it can be seen from the step

response of the Filter 8, the response has oscillations but no overshoot.

Figure 39: Frequency Response of Filter 8
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Figure 40: Unit Step Response of Filter 8

Figure 41: Gain and Phase Margin of Open-Loop Transfer Function
with Filter 8
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9.5 Gain and Phase Margin Variations with re-

spect to Time-Constant T when Third Order

Filter is Used

The graphs in Figure 42, 43 and 44 show the influence of time constant

on the gain margin for different disturbance frequencies and time-delay

values. As a conclusion, in all cases increasing the time constant will

increase the gain margin. Additionally, when the system has no time-

delay the gain margin increases more dramatically compared to others

when time constant is change in the same amount.

The graphs in Figure 45, 46 and 47 show the influence of time

constant on the phase margin for different disturbance frequencies and

time-delay values. As a conclusion, in all cases increasing the time

constant will decrease the phase margin and having a greater time-

delay will cause the phase margin to be more resistant to the variation

of time constant.
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Figure 42: Gain Margin vs Time Constant T for wd = 0.5 Hz

Figure 43: Gain Margin vs Time Constant T for wd = 1 Hz
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Figure 44: Gain Margin vs Time Constant T for wd = 1.5 Hz

Figure 45: Phase Margin vs Time Constant T for wd = 0.5 Hz
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Figure 46: Phase Margin vs Time Constant T for wd = 1 Hz

Figure 47: Phase Margin vs Time Constant T for wd = 1.5 Hz
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9.6 Conclusions on Third Order Filter Design

The introduced third-order filter, which is just a combination of first

and second order filters, forms the simplest arrangement required to

achieve the desired properties and frequency spectrum shown in Figure

10. The combined filters can provide the required frequency response

behavior even though when the compound filters used standalone fail

to achieve the same behavior.

In order to achieve the desired properties, ξ value of the second

order filter part must have a value smaller than 0.7. This refers to

that the second order filter must have an oscillatory behavior by which

it also means that the resultant filter will have an oscillatory behavior.

This explains why an oscillation is observed in the step response of the

filter.

To reduce the oscillations in the step response, the damping factor

should have a great value. The smaller the value of ξ the more the

oscillation will be. However, for this specific type of transfer function

form showed in Equation (55), increasing ξ results in a reduction of

time constant T . Having small values of time constant causes the filter

to react to any change faster.

A solution for having big ξ and T values at the same time, could

be to introduce a zero to the transfer function in Equation (55):

F (s) =
K

T2.s+ 1

w2
n

s2 + 2ξwns+ w2
n

T1s+ 1

1
(60)

The introduced new zero brings a new parameter value that can be op-

timized to achieve desired values of ξ and T simultaneously. However,

substitution of this new zero brings more computational difficulties in
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evaluation of the filter parameters. For instance, to find the extremum

points the equation,

d |F (jw)|
dw

=

(
d |F1(jw)|

dw
|F2(s)|+ |F1(s)|

d |F2(jw)|
dw

)
|F3(jw)|

+ |F1(jw)| |F2(jw)| d |F3(jw)|
dw

= 0

must be solved. Here, F3(s) denotes the introduced zero.

9.7 Important Remarks

Theoretically, the filter design methodology discussed above can be

applied to all forms of filter transfer functions having an order greater

than two. It must be kept in mind though, that for filters with great

order, the evaluation of the parameters may be possible only by nu-

merical calculations, not by symbolic manipulation.

However, the decision of the transfer function must be done with

respect to two aspects:

First of all, the number of poles that the filter has must be greater

than the number of poles that the plant to be controlled has.

Second, the number of zeros that can be introduced to the filter

can not exceed the result of the difference,

NZ = NP −R.O.P (61)

where NZ and NP denotes the number of zeros and poles that the filter

has, respectively. Additionally, R.O.P stands for the Relative Order

of Plant.
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These two conditions assures the controller to be causal, or in other

words, physically realizable.
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10 Numerical Simulations

Other than frequency analysis, to have an information about the whole

IMC systems time-domain performance, the system introduced in Fig-

ure 1 is implemented to a computer simulation program, in this case,

MATLAB/Simulink.

For evaluation of the effectiveness of the introduced control strat-

egy, a basic block model of an IMC system is created in MATLAB/Simulink

as shown in Figure 48.

Figure 48: Block Model of an IMC system in Matlab/Simulink

The block model representation of the system allows easy setting

of the system and good visualization. The controller block depicted in

Figure 48 comprises the IMC controller without the time-delay com-

ponent; the user-definable time delay component is introduced in the

controller time delay block. The filter models generated by the MAT-
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LAB script that tunes the filters for IMC and disturbance rejection,

can be directly implemented to the controller block. This fact allows

smoothness and fastness in the evaluation of the time-domain perfor-

mance of the system in simulation.

In this thesis, the system and model time-delays are assumed to be

equal to each other.

Using the block model in Figure 48, four different IMC controllers

are tested and their performances are compared for two cases to demon-

strate the robustness of an example system. The first case is when there

exists no mismatch between the plant and model; the second case is

when there exists mismatch:

10.1 Case 1: No Plant-Model Mismatch

Plant Transfer Function :

G(s) =
0.5

0.5s+ 1
e−4s

Model Transfer Function :

G̃(s) =
0.5

0.5s+ 1
e−4s

Figure 49 shows four internal model control systems with different

filters, having no plant/model mismatch, subjected to periodic distur-

bance and a reference value of 0.1. This case corresponds to the ideal

case were all assumptions are satisfied. Therefore, every internal model

control system tuned with respect to the criteria will work perfectly. In

this case, gain margin does not bring any advantage at all to consider

for system response. As it can be seen, the third order filter with four
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seconds of time constant is not preferable even if it has the biggest

gain margin among all the other filters.

Figure 49: IMC realized with four different filters with plant-model
mismatch
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10.2 Case 2: With Plant-Model Mismatch

Plant Transfer Function :

G(s) =
0.5

0.2s+ 1
e−4s

Model Transfer Function :

G̃(s) =
0.5

0.5s+ 1
e−4s

Figure 50 shows four internal model control systems with differ-

ent filters, having plant/model mismatch, subjected to periodic dis-

turbance and a reference value of 0.1. In this case the assumptions are

not completely valid and robustness becomes an important property

to be considered. As it can be seen, the IMC system with the third

order filter with four seconds of time constant is the only one that

accomplishes the control task. Despite it is still slow and oscillatory,

having a large gain margin lets the system to keep its stability and

control capability.
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Figure 50: IMC realized with four different filters with plant-model
mismatch
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11 Conclusions

Experimental identification of a hot rolling mill can be sufficiently

made by assuming a first order model with time-delay. The method

used in the thesis first evaluates the information of the time-delay and

then the parameters. The method shows the validity and simplicity of

using correlation and ARMAX modeling for identification. However,

compared to todays methods, the used method can be slow and very

much limited. With further mathematical manipulation all the param-

eters are evaluated for the system and the disturbance. For effective

identification, the data at disposal must contain various changes of

input and output; identification from steady-state responses are not

convenient.

In the presence of sinusoidal disturbance, internal model control

strategy gives a promising solution to achieve successful reference track-

ing and rejection of the disturbance even when the system to be con-

trolled has inherent time-delays. With a consistent model of the real

system being at disposal, the theory and simulations show that the

controller meets the expectancy in the means of control, even when

there is a slight difference between the real system and model.

However, the thesis also concludes with an important fact that

the level of this difference that the controller can tolerate, varies with

respect to the type of filter used in the internal model control. Even

though the second order filter seems to be the simplest filter that fulfills

all the criterias demanded by the internal model control, the applica-

bility of this type of filter becomes questionable when there exists a

mismatch between model and system.

To bring an enhancement to the applicability of the control method,
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third order filters which are developed by combining first and second

order filters are introduced. An algorithm that tunes the parameters

of third order filters according to the conditions and limitations set

for the purpose of optimization, generates filters that result in a more

robust control than second order filters can offer. However, using the

introduced third-order filters brings oscillation problems due to the

fact that the new filters have low damping-ratios.

Fortunately, the third order filter model in this thesis includes,

additional to second order filters, a parameter, specifically the time

constant, to be defined by the user. This feature lets the user to choose

the best setting of exchange between robustness and responsiveness of

the system making the introduced third order filters more applicable.

The thesis shows that more effective quantification of robustness

is needed to have a better design paradigm and comparison of filters.

Such techniques like H∞ optimization may provide more benefits for

the robustness of control system.
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