
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 7, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Maximum Edge Coloring in Special Graph Classes

 Student: Vojtěch Hruša

 Supervisor: RNDr. Ondřej Suchý, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2019/20

Instructions

Get familiar with the Maximum Edge q-Coloring Problem, eventually its variants, and with the basic notions
of Parameterized Complexity.
Analyze some of the known algorithms for the problems, in particular the algorithm for Maximum Edge 2-
Coloring.
Develop a polynomial time or parameterized algorithm for the problem for q>=3 on trees or for interval
graphs without large cliques or find major obstacles in developing such algorithms.
Select one of the above mentioned algorithms and implement in a suitable language.
Test the resulting program on a suitable data, evaluate its performance, and compare it to existing
implementations of algorithms for the problem if they exist.

References

Prachi Goyal, Vikram Kamat, Neeldhara Misra: On the Parameterized Complexity of the Maximum Edge 2-Coloring
Problem. MFCS 2013: 492-503

Wangsen Feng, Liang Zhang, Hanpin Wang: Approximation algorithm for maximum edge coloring. Theor. Comput. Sci.
410(11): 1022-1029 (2009)

Bachelor’s thesis

Maximum Edge Coloring in Special Graph
Classes

Vojtěch Hruša

Department of Theoretical Computer Science

Supervisor: RNDr. Ondřej Suchý, Ph.D.

May 15, 2019

Acknowledgements

I would like to thank my supervisor RNDr. Ondřej Suchý, Ph.D. for a lot of
advice which made this thesis accomplishable and also for his patience while
passing his profound knowledge. Furthermore, I would like to thank my family
for the invaluable support on this road which is long and hard, and many fall
by the side. I also thank my friends for lightening the sword of Damocles
hanging directly above my head.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as school work under the
provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2019 Vojtěch Hruša. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hruša, Vojtěch. Maximum Edge Coloring in Special Graph Classes. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

Tato práce se zabývá problémem maximálńıho hranového q-barveńı. Pod-
statou problému je obarveńı hran grafu za použit́ı co nejvyšš́ıho počtu ba-
rev tak, aby byly hrany vedoućı z jednoho vrcholu obarveny maximálně q
r̊uznými barvami. Nejdř́ıve zkoumáme již známe algoritmy zab́ıvaj́ıćı se t́ımto
problémem a některé z nich detailně poṕı̌seme. Poté představ́ıme nově vymyšlené
algoritmy – jednoduchý algoritmus pro stromy s lineárńı složitost́ı a algorit-
mus pro intervalové grafy s časovou složitost́ı O(n · (q + 1)p · kpq+1 · (q + p)p),
kde n je počet vrchol̊u grafu, p je velikost největš́ıho úplného podgrafu a k
je počet barev v optimálńım obarveńı. Součást́ı práce je také implementace
algoritmu pro intervalové grafy.

Kĺıčová slova Maximálńı hranové barveńı, Teorie graf̊u, Speciálńı tř́ıdy
graf̊u, Intervalové grafy, Parametrizované algoritmy

vii

Abstract

In this thesis, maximum edge q-coloring problem is studied. The goal of the
problem is to color the edges of a graph with as many colors as possible with
one constraint. For each vertex v, the edges incident to v can be colored with
at most q distinct colors. We first analyze known algorithms for the problem
and present some of them in detail. We then show a new algorithm for trees
working in linear time and a new algorithm for interval graphs working in
O(n · (q + 1)p · kpq+1 · (q + p)p) time, where n is the number of vertices, p is
the size of a maximum clique and k is the number of colors used in an optimal
solution. Finally, an implementation of the algorithm for interval graphs is
also part of the thesis.

Keywords Maximum edge coloring, Graph theory, Special graph classes,
Interval graphs, Parameterized algorithms

ix

Contents

Introduction 1

1 Preliminaries 3
1.1 Maximum Edge q-Coloring . 3
1.2 Interval Graphs . 4

2 Known Results 7
2.1 Approximation Algorithms . 8
2.2 Parameterized Algorithms . 14

3 New Algorithms 19
3.1 Trees . 19
3.2 Interval Graphs . 21
3.3 Further Improvements . 27

4 Implementation 31
4.1 Approach . 31
4.2 Testing . 33

Conclusion 37

Bibliography 39

A Contents of enclosed CD 41

xi

List of Figures

1.1 Interval Representation. 4
1.2 Graph Corresponding to Figure 1.1. 4

3.1 Interval representation with marked point m. 22
3.2 Graph corresponding to Figure 3.1. 22
3.3 Subgraph H(m). 22
3.4 Subgraph H ′(m). 23

4.1 Development of the execution time depending on the number of
vertices. The blue points represent inputs with parameters q = 2
and p = 4. The orange points represent inputs with parameters
q = 3 and p = 3. 34

4.2 Development of the execution time depending on the clique size.
The input graph is a single clique of a given size. 34

xiii

Introduction

In this bachelor thesis, an interesting edge coloring problem is studied. Unlike
in common coloring problems, the maximum number of used colors is pursued,
with the following condition. Each vertex may be adjacent to at most q colors,
where q is constant and q ≥ 2. An exact definition of the problem is provided
in the next chapter.

Motivation

The motivation for such a problem stems from wireless mesh networks. There
are nodes which communicate with other nodes using radio waves. When all
nodes communicate on the same channel, interference occurs which slows down
the overall speed of the network. However, with each node having multiple
network interface cards, more channels can be used.

The q-Constraint represents the number of network interface cards a node
has available. The more cards a node has, the more frequencies it can use.
An edge between two nodes means that these two nodes have to be able to
communicate with each other, i.e., they need to share a frequency. The colors
of the edges represent channels used in communication.

Goals of the thesis

This bachelor thesis aims to get familiar with the Maximum Edge q-Coloring
problem and eventually its variants. Analyze some of the known algorithms,
in particular, the algorithm for Maximum Edge 2-Coloring. The main goal is
to develop a polynomial time or parameterized algorithm for the problem for
q ≥ 3 on trees or interval graphs without large cliques or find major obstacles
in developing such algorithms. Then select one algorithm and implement it in
a suitable language and test the resulting program on suitable data.

1

Introduction

Organization

The thesis is split into 4 chapters. In the first one, we present some basic def-
initions and observations about the problem. In the following chapter, known
results are summarized, and some of them described in more detail. Partic-
ularly, we show an approximation algorithm and a parameterized algorithm
for the problem. In the next chapter, the contributions of this thesis are pre-
sented. In particular, a simple algorithm for trees and then an algorithm for
interval graphs. In the final chapter, we describe the implementation of the
algorithm for interval graphs and present its results.

2

Chapter 1
Preliminaries

In this chapter some basic definitions are presented. We begin with the formal
description of the maximum edge q-coloring, followed by the definition of
interval graphs.

1.1 Maximum Edge q-Coloring

We first define edge coloring and some terms related to it and then the actual
problem.

Definition 1 (Edge coloring). Let G = (V,E) be a graph and let k be a
positive integer. Edge coloring using k colors is a surjective mapping c : E →
{1, . . . , k}. Let e ∈ E be some edge in G. Defining the value of c(e) is called
coloring an edge e or assigning a color to e.

Moreover, by saying that a vertex v sees a color c, we mean that some edge
incident to e is colored with c.

Definition 2 (Edge q-coloring). Let G = (V,E) be a connected undirected
graph, let q be an integer such that q ≥ 2 and let c be an edge coloring of G
using k colors. If c satisfies following constraint:

• the number of distinct colors used to color the edges incident to v is at
most q for every vertex v ∈ V ,

then it is called edge q-coloring.

With this introduction, we are ready to define the main problem which is
studied in this thesis.

3

1. Preliminaries

i1

i2

i3

i4

i5

i6

i7

i8

i9
i10

i11

i12

Figure 1.1: Interval Representation.

i1 i2

i3

i4

i5

i6

i7

i8 i9

i10

i11

i12

Figure 1.2: Graph Corresponding to Figure 1.1.

Definition 3 (Maximum edge q-coloring). Given a graph G = (V,E) and an
integer q ≥ 2, what is the maximum k such that there is an edge q-coloring c
of G using k colors.

1.2 Interval Graphs

Prior to a definition of the interval graphs, we define the interval representation
of a graph.

Definition 4 (Interval Representation). Let I = {(l1, r1), . . . , (lk, rk)} be a
set of k intervals of real numbers. Let G = (V,E) be a graph where V =
{v1, . . . , vk} and E = {{vi, vj} | i 6= j ∧ (li, ri) ∩ (lj , rj) 6= ∅}. Then I is the
Interval Representation of G.

With the definition of the Interval Representation we can easily define the
Interval Graph.

Definition 5 (Interval Graph). A graph is called an Interval Graph if it has
an interval representation.

Observation 1. Any interval representation I can be modified to another
representation I ′ such that each point is an endpoint of at most one interval
and both I and I ′ represent the same graph.

4

1.2. Interval Graphs

Proof. Let i and j be two intervals of an interval representation I, both start-
ing at the point p. Let q > p be the endpoint in I nearest to p. Change
the starting point of i to p+q

2 . No new intersection of intervals is created and
also no intersection disappears after this modification. Additionally, intervals
i and j now have different starting points. We can use analogous procedure
for two intervals ending at the same point or one interval ending and another
starting at the same point. Repeat this procedure for every pair of intervals
with the same endpoints until no two intervals share an endpoint.

Observation 2. Any interval representation I can be modified to another
representation I ′ such that each endpoint of I ′ is an integer and both I and I ′
represent the same graph.

Proof. Let I be an interval representation of a graph G. Renumber the lowest
endpoint (or endpoints) of I to the nearest integer and denote this integer by i.
Subsequently, renumber each following endpoint (or endpoints with the same
value) to the lowest unused integer greater than i. After this renumbering, all
endpoints are integers and represent the same graph as I.

Lemma 1. Any interval representation I = {(l1, r1), . . . , (lk, rk)} can be mod-
ified to another representation I ′ such that the endpoints of the intervals of I ′
are {1, 2, . . . , 2k}

Proof. Let I be an interval representation. According to Observation 1 and
Observation 2 we can get an equivalent representation I ′ with integer end-
points and with at most one interval starting or ending at one point. We now
simply remap the integer endpoints (from lowest to highest) to (1, 2, . . . , 2k),
which is the desired result.

5

Chapter 2
Known Results

The Maximum Edge Coloring problem was first introduced by Feng et al. [1].
They showed a simple linear time algorithms for complete graphs and trees
for the case of q = 2 which result in bn

2 c + 1 colors for complete graphs
and in |Vin| + 1 for trees, where Vin is a set of internal vertices of a tree.
An approximation algorithm working in O(|V ||E|log|V |) time is then shown.
This algorithm is a 2-approximation for the case of q = 2 and (1 + 4q−2

3q2−5q+2)-
approximation for the case of q > 2. Additionally, for graphs with perfect
matching in case of q = 2 there is known 5

3 -approximation algorithm presented
by Adamaszek et al. [2]

The problem was later proved to be NP-hard and also APX-hard for any
integer q ≥ 2 [2]. The problem was also studied from the perspective of
parameterized algorithms by Goyal et al. [3]. They present an algorithm with
running time O(kk ·nO(1)), where k is the number of colors used in the optimal
coloring.

Larjomaa et al. [4] later introduced another version of the problem. It is called
min-max edge q-coloring problem. This version further develops the idea of
the original motivation. In addition to our definition of the problem, it seeks
the result minimizing the maximum size of a color group (i.e. a set of edges
colored with the same color). They then show that this new problem is also
NP-hard and present, among other things, a polynomial time algorithm for
trees, exact formula for complete graphs, and an approximation algorithm for
planar graphs.

Also, note that the interval representations and the interval graphs are not
a new concept. Corneil et al. [5] for example present a simple linear time
recognition algorithm of the interval graphs.

We now present a definition of a Character Subgraph which is often used when

7

2. Known Results

the Maximum Edge Coloring problem is studied, or some related results are
being proved.

Definition 6 (Character Subgraph). Consider some maximum edge coloring
solution of a graph G = (V,E) with colors 1, 2, . . . ,m. Split E into m subsets
E1, E2, . . . , Em, where Ei is the set of edges colored with color i. A character
subgraph of G is a subgraph induced by e1, e2, . . . , em, where ei is chosen
from Ei.

2.1 Approximation Algorithms

Together with the problem definition, Feng et al. [1] presented basic approxi-
mation algorithms for the problem based on a greedy strategy. In this section,
we briefly introduce these algorithms for the case of q = 2 and the case of q > 3.
The difference between the two is only in the first step of the algorithm and
in the approximation factor. To start with, we show the algorithm, then the
analysis of the approximation factor and finally the time complexity analysis.

Algorithm description

Let (G, q) be an instance of the Maximum Edge q-Coloring problem. The
first step is to find a subgraph M , which is either a maximum matching of G
in the case of q = 2 or a maximum subgraph with the highest degree at most
q − 1 in the case of q > 3. Now we assign a new color to each edge in M .
After that, each vertex sees at most q−1 colors. Thus the q-Constraint is not
breached. In the next step, delete already colored edges and find all connected
components. Assign a new color to each component and color all edges of a
component with the assigned color. Since each vertex saw at most q−1 colors
and we added one more color to the remaining edges, each vertex now sees at
most q colors and therefore we created a valid Edge q-Coloring.

Approximation factor analysis

Theorem 1. The algorithm described above achieves an approximation factor
of 2 for any connected graph in case of q = 2.

Proof. Denote the optimal solution size of a graph G by OPT(G) and the so-
lution size given by the algorithm by ALG(G). Let H be a character subgraph
of G. Following Feng et al. [1] we show that the algorithm is 2-approximation
in two steps. In the first step a matching M ′ in G based on H is found of size
≥ bm

2 c, where m is the number of colors used in the optimal solution. In the
second step we show that OPT(G)

ALG(G) ≤ 2 as a consequence of the first step.

8

2.1. Approximation Algorithms

Step (1): Since each edge in H is by definition colored with a unique color
in G, the highest degree in H can be at most 2. A higher degree of vertex v
in H would mean that v sees more than 2 colors and thus violates the q-
Constraint because q = 2. This means that H is composed only of paths and
cycles. Denote the set of odd paths in H by OP , the set of even paths by EP ,
the set of odd cycles by OC, and the set of even cycles by EC. Denote the
length of a path or a cycle g by l(g). The size of a maximum matching MH

in H is:

|MH | =
∑

i∈OP

l(i) + 1
2 +

∑
i∈EP

l(i)
2 +

∑
i∈OC

l(i)− 1
2 +

∑
i∈EC

l(i)
2 .

It can be seen that, if there are no odd cycles, then |MH | ≥ bm
2 c.

Denote a maximum matching only on the odd cycles by MC . If there is exactly
one odd cycle of length l, the size of its maximum matching MC is l−1

2 which
is equal to b l

2c and for the rest of the graph we can assume that there is no
odd cycle. So since |MC | ≥ b l

2c and the maximum matching of the rest of the
graph is |Mrest| ≥ bm−l

2 c, together we get |MH | ≥ bm
2 c.

Now we describe the case for more than one odd cycle. We construct a new
graph G/H by the following rule. Shrink every connected component of H
into one vertex. For every edge of G incident to some vertex in a connected
component of H, add a new edge incident to the vertex created by shrinking
the connected component. Ignore any loops or multiple edges between the
same vertices. Since G is connected, G/H is also connected.

Consider two vertices v and u both created by shrinking cycle components
and an edge e between them. If we use some color from v, we break the q-
Constraint in u and vice versa. Therefore each vertex created by shrinking a
cycle component is adjacent to either an original vertex or to a vertex created
by shrinking a path component. These original vertices and vertices created
by shrinking a path component will be called compatible vertices. Each com-
patible vertex can be adjacent to at most 2 vertices created by shrinking a
cycle component because each of these edges has to be colored with some color
used in the cycle and therefore it would break the q-Constraint.

Consider a vertex created by shrinking a cycle component s connected to some
compatible vertex u. Suppose that no other shrank component is adjacent
to u. Denote the vertex in the original cycle connected to u with an edge e by
v. Denote the length of the original cycle by l. Find a matching in the original
cycle such that v is the only unmatched vertex. Add e to the matching. Size
of this matching is now l−1

2 + 1 = l+1
2 , which is ≥ b l

2c

Suppose now that s is connected to a compatible vertex u which is connected

9

2. Known Results

to another vertex s′ created by shrinking a cycle component. Analogously
denote the vertex in the original cycle s and the connecting edge by v and
e, respectively. Denote the lengths of the original cycles by l and l′. Find
a matching in the original cycle s such that v is the only unmatched vertex.
Size of this matching is l−1

2 . Add a maximum matching in the original cycle
s′ (size of this matching is l′−1

2) and e (size = 1) to the matching. The total
size of this matching is l−1

2 + l′−1
2 + 1 = l+l′

2 .

The above procedure can be used for all odd cycles. Therefore we can create
a matching |MC | ≥ b l

2c where l is the size of all odd cycles together. The rest
of H is now without odd cycles, and thus a maximum matching on it must be
of size at least m−l

2 . When we join these two matchings we get the matching
M ′ of size:

|M ′| ≥ bm2 c (1)

Step (2): We will now subsequently describe inequalities that lead to the result
OPT(G)
ALG(G) ≤ 2.

For convenience denote
m = OPT(G) (2)

If there are no edges left after deleting the edges of |M | then OPT(G) =
ALG(G). So we can suppose that there is at least one component in the resid-
ual graph. Because the algorithm outputs the size of the maximum matching
(which is |M |) plus the number of connected components in the residual graph
after deleting edges of |M |, we can say:

ALG(G) ≥ |M |+ 1 (3)

Both M and M ′ are matchings on G. The matching M is a maximum match-
ing. Therefore the size of M ′ is at most the size of M .

|M | ≥ |M ′| (4)

Putting the inequalities together and rearranging the expression we get:

OPT(G)
ALG(G)

(2)= m

ALG(G)
(3)
≤ m

|M |+ 1
(1)
≤ m

|M ′|+ 1
(4)
≤ m

bm
2 c+ 1 ≤

m
m
2

= 2,

10

2.1. Approximation Algorithms

Therefore:
OPT(G)
ALG(G) ≤ 2

Theorem 2. The algorithm described above achieves an approximation factor
of (1 + 4q−2

3q2−5q+2) for any connected graph in case of q > 2.

Proof. Denote the optimal solution size of a graph G by OPT(G) and the
solution size given by the algorithm by ALG(G). Denote a character subgraph
of G by H and the maximum subgraph of G with degrees at most q by Hq.
The following inequalities can be shown to be true.

First, the algorithm assigns a unique color to each edge of M . Then it assigns
additional colors to the remaining edges. Therefore surely:

ALG(G) ≥ |E(M)| (5)

The highest degree of H is bounded by q. If there were some vertex in H with
degree higher than q, this vertex would be incident to edges colored with more
than q colors and thus violating the q-Constraint. We can therefore say that
|E(Hq)| ≥ |E(H)|. Also there is exactly one edge in H for every color used in
an optimal coloring, thus OPT(G) = |E(H)|. In conclusion:

OPT(G) ≤ |E(Hq)| (6)

Suppose there are s vertices v1, v2, . . . , vs of degree q in Hq. Let t be the size of
a maximum matching MD on a subgraph D of Hq induced by {v1, v2, . . . , vs}.
Take out these t edges, which will turn 2t vertices of degree q to vertices of
degree q − 1. Now take out one edge incident to each of the remaining s− 2t
vertices of degree q. From Hq we created a graph with degrees at most q−1 by
removing t and then s− 2t edges, in total s− t edges. Since M is a maximum
subgraph with degrees at most q − 1, we can say that:

|E(M)| ≥ |E(Hq)| − (s− t) (7)

Putting the inequalities together and rearranging the expressions we get:

OPT(G)
ALG(G)

(5)
≤ OPT(G)
|E(M)|

(6)
≤ |E(Hq)|
|E(M)|

(7
≤ |E(Hq)|
|E(Hq)| − (s− t)

= 1 + s− t
|E(Hq)| − (s− t) = 1 + 1

|E(Hq)|
s−t − 1

11

2. Known Results

In short:

OPT(G)
ALG(G) ≤ 1 + 1

|E(Hq)|
s−t − 1

Now we will find out the bound of the expression |E(Hq)|
s−t . When considering

the s− 2t unmatched vertices in MD, they can be neighbors of some matched
vertices in MD or neighbors of some vertices in Hq but not in D. Each two
vertices incident to each of t edges in MD can provide at most q − 1 edges to
connect to the unmatched vertices, in total t(q − 1). The remaining s − 2t
vertices can provide q edges each, (s − 2t)q in total. If t(q − 1) < (s − 2t)q,
there must be some of the s−2t unmatched vertices adjacent to some vertices
in Hq but not in D. When we solve the inequality for t, we get t ≤ sq

3q−1 . We
will split the problem into cases of t ≥ sq

3q−1 and t ≤ sq
3q−1 .

Case t ≥ sq
3q−1 : In this case, the lower bound can be easily found in the

following steps.

The subgraph Hq, among other vertices, contains s vertices of degree q. Thus:

|E(Hq)| ≥ sq

2 (8)

The case we are currently discussing now is:

t ≥ sq

3q − 1 . (9)

Putting these together:

|E(Hq)|
s− t

(8)
≥

sq
2

s− t
(9)
≥

sq
2

s− sq
3q−1

Rearranging the expression:

sq
2

s− sq
3q−1

= q

2− 2q
3q−1

= q(3q − 1)
6q − 2− 2q = 3q2 − q

4q − 2

In conclusion, for the case of t ≥ sq
3q−1 :

12

2.1. Approximation Algorithms

|E(Hq)|
s− t

≥ 3q2 − q
4q − 2

Case t ≤ sq
3q−1 : In this case, we will show a larger lower bound of |E(Hq)|.

We know that this time t is so small that there have to be some of the s− 2t
unmatched vertices adjacent to some vertices in Hq but not in D. Therefore
we get:

|E(Hq)| ≥ sq

2 + (s− 2t)q − t(q − 1)
2 (10)

Using this inequality and rearranging the expression we get:

|E(Hq)|
s− t

(10)
≥

sq+(s−2t)q−t(q−1)
2

s− t
=
sq − 3tq

2 + t
2

s− t

Consider this expression a function of t.

f(t) =
sq − 3tq

2 + t
2

s− t

Now we calculate the derivative of the function to find its minimum value.

f(t)′ = s− sq
2(s− t)2 < 0

This means that f(t) is a decreasing function and therefore reaches its mini-
mum is at the point t = sq

3q−1 , because t ≤ sq
3q−1 . Therefore we get:

|E(Hq)|
s− t

≥ f(t) ≥ f(sq

3q − 1),

then we compute the value of f at this point:

f(sq

3q − 1) = 3q2 − q
4q − 2 ,

and therefore, for the case of t ≤ sq
3q−1 :

13

2. Known Results

|E(Hq)|
s− t

≥ 3q2 − q
4q − 2

In conclusion, we achieved the following boundary for both cases t ≥ sq
3q−1 and

t ≤ sq
3q−1 :

|E(Hq)|
s− t

≥ 3q2 − q
4q − 2 .

To the original inequality

OPT(G)
ALG(G) ≤ 1 + 1

|E(Hq)|
s−t − 1

,

we now substitute the result:

1 + 1
|E(Hq)|

s−t − 1
≤ 1 + 1

3q2−q
4q−2 − 1

= 1 + 4q − 2
3q2 − 5q + 2 .

Time complexity analysis

A maximum matching of a graph or a maximum subgraph with the highest
degree at most q − 1 can be found in O(|V ||E|log|V |) time [6]. Assigning a
new color to each edge and then deleting them can be done in O(|E|) time.
Finding all connected components in the residual graph and assigning a color
to the remaining edges can also be done in O(|E|) time. In conclusion, the
time complexity of the algorithm is O(|V ||E|log|V |).

In the case of complete graphs Kn where n ≥ 4 this algorithm achieves coloring
with bn

2 c+ 1 colors. Feng et al. [1] also show that this is the optimal solution
for complete graphs with at least 4 vertices.

2.2 Parameterized Algorithms

Goyal et al. [3] studied the parameterized complexity of the maximum edge
coloring problem for the case of q = 2 and also NP-hardness of the problem on
graphs without cycles of length 4. In this section, we present their algorithm
for the case of q = 2 parameterized by k, where k is the solution size.

14

2.2. Parameterized Algorithms

Preliminaries

To begin with, we summarize the terms and definitions used throughout the
article.

Let G = (V,E) be a graph and let c be an edge coloring of G using k colors.

• For a subset F ⊆ E, denote the set of colors assigned to the edges in F
by c(F).

• If every vertex of the graph sees at most q colors, then the coloring c is
called q-valid.

• Denote the largest integer for which a 2-valid coloring of G exists by
σ(G)

• Denote the set of edges incident to a vertex v by Fv.

• Denote the set of colors that a vertex v sees (i.e. c(Fv)) by c′(v). The
function c′ is called a palette assignment.

• If there is a 2-valid coloring of G using k colors, then G is called a
Yes-instance, otherwise it is called a No-instance.

• Denote the set of integers {1, 2, . . . , k} by [k].

Algorithm description

Let (G = (V,E), k) be an instance of the problem. The goal of the algorithm is
to find a 2-valid edge coloring using k colors. Let M be a maximum matching
on G and let S be the vertex cover consisting of all the endpoints in M . If the
size of M is at least k − 1, then G can be easily colored by k colors: Assign a
unique color to each edge in M , then assign a new color to all of the remaining
edges. From now on, suppose that |M | < k.

The first step of the algorithm is to guess a palette assignment t to the vertices
in S, run some basic checks for validity of t, and potentially reject it. At first
we check that

⋃
v∈S t(v) = [k]. Since S is a vertex cover, all edges of G are

incident to some vertex in S. If some of the k colors is missing from
⋃

v∈S t(v),
it is not used at all and this coloring uses less than k colors. The next condition
is t(u) ∩ t(v) 6= ∅, for u, v ∈ S and {u, v} ∈ E, because in such case, it is not
possible to assign any color to the edge {u, v}. If any of the previous checks
fail, we reject this guess.

Let G be a Yes-instance and let c be a 2-valid edge coloring of G using k
colors. Denote the set of colors used by c on S by Xc ⊆ [k]. In the second
step, we are going to guess again. This time, we try all possible subsets Xc.

15

2. Known Results

Let X ⊆ [k] be such a subset. Label all the colors in X as unused. For u, v ∈ S
and {u, v} ∈ E denote the intersection t(u) ∩ t(v) by puv. It can be seen that
puv has either one or two colors. If puv has one color i, we check whether i is in
X or not. If i /∈ X, the guess X is rejected. If i ∈ X, then i is labeled as used
and it is assigned to the edge {u, v}. Now assume that puv has two colors.
First, we check their presence in X again. If none of them is in X, then this
guess is rejected. If one of them is in X, we label this color as used and assign
it to {u, v}. If both of them are in X, we have to try both of them. That
means that we branch on the two possibilities given by puv. After processing
the whole graph, all colors in X must be labeled as used. In such a case, we
continue. Otherwise, we reject the guess.

In the final step, we need to assign the remaining unused colors (that is [k]\X)
to the edges which have one endpoint in S and the second one in G \ S. We
start by defining the feasibility list l(u) of a vertex u ∈ G \S, which is a set of
pairs of colors. A pair of colors {i, j} belongs to l(u), if it is possible to color
all of the edges incident to u with colors i and j according to t.

If the list l(u) is empty for some vertex u, then it is not possible to color the
edges incident to u without breaking the palette assignment t. If l(u) contains
exactly one pair of colors, the edges incident to u can be colored with these
colors.

Each list contains 10 pairs at most, or else all of the pairs have a color in
common. Proof can be found in Proposition 4 in the original article [3].

If the pairs have a color in common, this color can be used in all cases because
there are at least two edges incident to u and we can assign this color to any
of them. Therefore, we can remove this color from [k] \X. Otherwise, if a list
l(u) is bounded by the constant, we check the pairs in l(u). If none of them
contains a color from [k] \X, we color the edges incident to l(u) arbitrarily. If
one of the pairs contains a color from [k] \X, we color the edges incident to u
according to that pair. Otherwise, we branch on all pairs in l(u) that contain
a color from [k] \ X and again color the edges according to that pair. The
depth of such branching is bounded by |[k] \X| and the width is bounded by
the constant 10.

Now we are in the following situation. Some colors from [k] \ X are not yet
assigned to any edge, and additionally, only vertices incident to uncolored
edges are those with lists containing pairs with a shared color. Now we want
to know whether every remaining color from [k] \ X can be matched to a
remaining vertex whose list contains that color. Note that [k] \ X is a set
and each feasibility list is a subset of it. Therefore we are left with a simple
problem. The remaining colors can be realized if and only if a system of

16

2.2. Parameterized Algorithms

distinct representatives exists in [k] \X.

Theorem 3. The presented algorithm works correctly in O(20k · k4k · nO(1))
time.

Proof. First, we analyze guessing (i.e., trying all possibilities for) the palette
assignment. Since the size of a maximum matching is bounded |M | < k, the
number of vertices we assign a palette to is bounded by 2k. Additionally,
because we choose from k colors, there are

(k
2
)

possibilities for choosing a
palette for each of the vertices, hence O(

(k
2
)2k) possibilities in total. Next we

are guessing subsets X ⊆ [k], there are exactly 2k possibilities. Next we discuss
branching in the algorithm. In the first case, we branch in two ways and that
case can occur at most |X| times, that is 2|X| in total. In the second case, we
branch in up to 10 ways and this case can occur at most |[k] \X| times, that
is 10|[k]\X| in total. Therefore, branching is bounded by 10k. Overall running
time is thus bounded by O(20k · k4k ·nO(1)). The correctness of the algorithm
emerges from the description.

Note that Goyal et al. [3] present the time complexity as O((20k)k ·nO(1)). It
is, however, unclear how to achieve it from their proof.

17

Chapter 3
New Algorithms

In this chapter two algorithms are presented. To begin with, a simple algo-
rithm for trees and then the main algorithm for interval graphs is presented.

3.1 Trees

Consider an instance (T, q) of the Maximum Edge q-Coloring problem,
where T is a tree. The maximum possible number of colors that can be used
on a tree can be expressed with a formula derived from this algorithm.

The algorithm works as follows (for general pseudocode description see Algo-
rithm 1). In the first step, one edge incident to a leaf is assigned a color. Then
the vertex adjacent to the leaf is picked and its remaining edges are colored
with as many colors as possible. All vertices incident to the newly colored
edges are added to a queue. Then all of the remaining internal vertices are
successively processed in the same manner. This means that when processing
an internal vertex v, exactly one of its neighbors was processed before. Thus
exactly one of the edges incident to v is already colored. This leaves deg(v)−1
edges yet to be colored. If this number is less than q, each of the edges can
be assigned a new color (that is deg(v)− 1 new colors). If the number of not
yet colored edges is greater, then new colors can be used as long as v sees
at most q different colors (that is q − 1 new colors). This is decided by the
condition on line 8 and can be written as: min(deg(v)−1, q−1) and simplified
to: min(deg(v), q) − 1. Then sum it for all internal vertices and add one to
account for the color assigned to the edge incident to the leaf picked in the
first step. Which results in

1 +
∑

v∈Vin

(min(deg(v), q)− 1) .

19

3. New Algorithms

1 pick any leaf v from T
2 assign a new color to the edge incident to v
3 create an empty queue Q
4 add the vertex adjacent to v to Q
5 while Q is not empty do
6 pop vertex from Q and denote it by v
7 if v is not a leaf then
8 for the following part, completely ignore already colored edge
9 if deg(v) ≤ q − 1 then

10 assign a new color to each edge incident to v
11 else
12 pick q − 2 edges incident to v and assign a new color to

each of them
13 assign one new color to all of the remaining edges

14 output color of each edge
Algorithm 1: Algorithm for Trees

This formula represents how many different colors does Algorithm 1 assign to
the edges of G.

Theorem 4. For any given tree Algorithm 1 works in linear time and outputs
the maximum possible number of colors that can be used.

Proof. When an edge is colored, the vertex incident to it is added to a queue.
When later taken from the queue and processed, all incident edges are colored
and so it cannot be added to the queue again. Therefore each vertex is visited
at most once.

Denote the maximum possible number of colors that can be used to color
some tree T by c. For every internal vertex v, the following statements stand:
The edges incident to v must be colored with at least one color and at most
with q colors. If there are less then q edges incident to v, then it is possible
to use at most deg(v) colors. This means that every internal vertex can see
[1, 2, 3, . . . ,min(deg(v), q)] colors. Suppose that every vertex sees as many
colors as possible, which is min(deg(v), q). Considering every internal vertex,
this is the total number of colors that all vertices see is

∑
v∈Vin min(deg(v), q).

Hence c cannot be greater than this number:

c ≤
∑

v∈Vin

min(deg(v), q)

Delete all of the leaves from T . Denote this graph by T ′. T ′ is also a tree

20

3.2. Interval Graphs

because by deleting leaves tree cannot be split into more components and no
new cycle can be created. Also T ′ is composed only of internal vertices and
edges between internal vertices of the original tree T . It is known that in every
tree |E| = |V |−1 holds true. This means that there are |Vin|−1 edges between
internal vertices in the original tree T . For every edge between internal vertices
two colors were added in the sum but one edge can be assigned only one color.
After subtracting this from the sum it shows that the maximum number of
colors that can be used is (

∑
v∈Vin min(deg(v), q))− (|Vin| − 1) and thus:

c ≤
(∑

v∈Vin

min(deg(v), q)
)
− (|Vin| − 1)

This can be rearranged:

c ≤
(∑

v∈Vin

min(deg(v), q)
)
− (|Vin| − 1)

=
(∑

v∈Vin

min(deg(v), q)
)
− |Vin|+ 1

= 1 +
∑

v∈Vin

(min(deg(v), q)− 1)

In conclusion:
c ≤ 1 +

∑
v∈Vin

(min(deg(v), q)− 1)

So the maximum possible number of colors used on any tree is at most 1 +∑
v∈Vin min(deg(v), q)−1, which is the exact number of colors that Algorithm 1

uses as shown in the previous section.

3.2 Interval Graphs

In this section, dynamic programming approach is used. Let (G, q) be an
instance of the Maximum Edge q-Coloring problem where G = (V,E) is a
connected interval graph with at least two vertices and with cliques of size at
most p. Let I = {(l1, r1), . . . , (l|V |, r|V |)} be the interval representation of G
such that the endpoints of I are {1, 2, . . . , 2|V |}. Such a representation exists
according to Lemma 1.

Note that according to Definition 4, all intervals are open. From now on, when
we talk about set of intervals intersecting at some point m, we will include
intervals with m as an endpoint.

For m ∈ {1, 2, . . . , 2|V |} denote the subgraph of G induced by intervals inter-
secting with (1,m+ 1

2) by H(m). Additionally, for m ∈ {1, 2, . . . , 2|V |} denote
the subgraph of H(m) induced by intervals intersecting at point m by H ′(m).

21

3. New Algorithms

We will now show how does H(m) and H ′(m) look. Consider the graph
represented by the interval representation shown in Figure 3.1 and a point m
marked there.

i1

i2

i3

i4

i5

i6

i7

i8

m

Figure 3.1: Interval representation with marked point m.

The interval representation in Figure 3.1 can be visualized as the following
graph.

i1 i2

i3

i4

i5

i6

i7

i8

Figure 3.2: Graph corresponding to Figure 3.1.

The subgraph H(m) is induced by all intervals at point m and to the left from
m. That is {i1, i2, i3, i4, i5}, in this case.

i1 i2

i3

i4

i5

Figure 3.3: Subgraph H(m).

22

3.2. Interval Graphs

The subgraph H ′(m) is induced by all intervals intersecting with point m.
That is {i3, i4, i5}, in this case.

i3

i4

i5

Figure 3.4: Subgraph H ′(m).

By color combination we denote the following set of information.

(1) How many colors does each vertex of H ′(m) see.

(2) Which colors does each vertex of H ′(m) see.

(3) What colors were used in the coloring ofH(m) to achieve this combination.

Formally, color combination cc is a vector

cc = (s1, . . . , sr, c1,1, . . . , c1,s1 , . . . , cr,1, . . . , cr,sr , u1, . . . , uk),

for some H ′(m) with r vertices, where si denotes the number of colors that
ith vertex sees, {ci,1, . . . , ci,si} are the colors that ith vertex sees and ui marks
whether color i was used or not. Additionally, a color combination cc is called
valid, if there is a valid q-Coloring of H(m) with colors as described in cc and
with color assignment to H ′(m) as described in cc.

Observation 3. There is an edge between each two vertices in H ′(m). There
are at most p vertices in H ′(m).

Proof. Let H ′(m) be a subgraph of G, which is a interval graph with cliques
of size at most p. Since H ′(m) is induced by the intervals intersecting at one
point m, H ′(m) is a clique and therefore there is an edge between each two
vertices in H ′(m) and its size is at most p.

23

3. New Algorithms

Algorithm description

The algorithm works in steps, specifically each step means shifting to the
next point in {1, 2, . . . , 2|V |}. Let D be an array used to proceed with the
algorithm. Precisely, for each color combination cc, we use D[m] to store the
information whether cc is valid or not at the point m. For brief pseudocode
description see Algorithm 2.

General idea behind the algorithm is that if we shift from a point m− 1 to m
and a new interval starts at point m, we actually add a new vertex v and some
new edges, say {v, v1}, . . . , {v, vr}, to H(m) and H ′(m). Each newly added
edge must be colored and we will now describe how are we going to color them.
To each newly added edge {v, vi}, we can try assigning either a new, not yet
used color, or a color that was already used to color some edge incident to vi.
Let {ci,1, . . . , ci,si} be the colors incident to {v, vi}. We subsequently try to
assign each color of {ci,1, . . . , ci,si} and each yet unused color to e. This means
that we try to assign at most k colors to each edge. Since there are at most
p − 1 newly added edges, we get the number of color combinations that we
will try at most: kp−1. We try each of these combinations and then check the
q-Constraint. If the q-Constraint is satisfied on both v and vertices adjacent
to v, we mark this color combination as valid in D[m].

Initialization of the algorithm. Let e be the edge connecting the vertices
v and u represented by the intervals starting at point 1 and 2. For every
color c ∈ {1, 2, . . . , k}, assign c to e. We created a color combination with
only color c used, with vertices v and u both seeing only color c, formally
(1,1,c,c,0,. . . ,1,. . . ,0). Such a color combination is obviously valid. Mark
these color combinations as valid in D[2].

Interval starts. Consider a step of our algorithm from point m − 1 to m.
Assume that in the array D[m − 1] we have stored information whether the
color combinations at point m−1 are valid or not. Suppose that a new interval
i starts at point m. We want to examine the graph H(m). Based on D[m−1],
we find all the valid color combinations at this point as described above and
fill D[m] with this information.

Interval ends. If no new interval starts at the point m and we have not
yet processed the whole graph, some interval must end in m. Denote the
corresponding vertex by v. Note that all the edges incident to v are already
in H(m) and thus there will be no new edges incident to it while we process
the rest of the graph. This means that we can discard information about v
because it will not have any more impact. If this is the case, we fill D[m] in
the following way. Copy D[m − 1] into D[m] but ignore all the information
about v. In other words, if two color combinations in D[m− 1] differ only in
colors incident to v or in the number of colors incident to v, in D[m] we now

24

3.2. Interval Graphs

1 let e be the edge between vertices corresponding to the first two
intervals

2 for each color c in {1, 2, . . . , k} do
3 create a color combination by assigning c to e and mark it as valid

in D[2]
4 set i := 3
5 while i is inside the interval representation do
6 if an interval ends at i then
7 fill D[i] with the same information as D[i− 1] but ignore all

the information about the vertex represented by the interval
ending at point i

8 else
9 denote the vertex starting at i by v

10 based on the valid color combinations in D[i− 1], try all color
combinations at point i

11 check each of them for the q-Constraint and according to its
validity fill D[i]

12 let l be the last starting point in G
13 count the number of colors used in each valid combination in D[l]
14 output the highest number

Algorithm 2: Algorithm for Interval Graphs

consider these two color combinations the same.

Algorithm finished. Denote the last starting point by l. After we process the
whole graph, we are ready to find out the result. To find the result, we check
all the valid color combinations in D[l] and count the number of colors used
by it. Output the highest number.

Now an analysis follows of the needed size of D. Note that in D we store
information about color combinations, thus we will first analyze the number
of distinct values a color combination can obtain. Let k be the number of
colors used. By Observation 3, there can be at most p vertices in H ′(m)
at each point m. Therefore we will need to keep information about at most
p vertices. For every vertex, we are interested in how many colors does it
already see. Each vertex can see 0–q colors, that is (q + 1)p possibilities.
Another needed information is what colors does each vertex see, so we can use
the colors a vertex already sees when coloring a newly added edge. There is
p vertices each seeing some of k colors, at most q of them. In total this gives
us kpq possibilities. The final needed information is what colors were already
used in the given color combination. This is 2k combinations.

25

3. New Algorithms

Denote the number of vertices in G by n. All of the previous information will
be needed for every step of the algorithm, that is for every starting point and
every ending point of each interval, which is 2n. When all counted together,
we can see that the size of D has to be

2n · (q + 1)p · kpq · 2k.

Theorem 5. For a given interval graph G = (V,E) and an integer q, Algo-
rithm 2 outputs the size of a maximum edge q-Coloring of G and it works in
O(n · (q + 1)p · kpq+p · 2k) time.

Proof. We will describe the proof in three steps. First, we show that all color
combinations marked valid truly correspond to a valid edge q-Coloring. Then
we show that we mark all the valid color combinations, i.e., there is no valid
color combination not marked by the algorithm. And finally, we will show the
time complexity.

In the beginning, H ′(m) correspond to the actual graph until some interval
ends. Since we check the q-Constraint every time we assign any colors to the
edges, color combinations are certainly valid. After some interval ends, we
discard the information about the vertex represented by it and H ′(m) now
corresponds only to a subgraph of the actual graph. But we know that the
color combinations still correspond to a valid edge q-coloring of H(m). When
we now add a new vertex to H ′(m) and assign colors to the new edges, the q-
Constraint can only be broken by having too many colors assigned to a vertex
in the current H ′(m), because once an interval ends, there will not be any
more edges incident to the vertex represented by it in the rest of the graph.
Therefore all color combinations marked as valid by the algorithm correspond
to some valid edge q-coloring in H(m).

Assume that there is some valid color combination not marked as valid in
D[m] by our algorithm. We will now show that if this is the case then in
D[m−1] is also some valid color combination not marked as valid. If D[m−1]
was filled correctly, our algorithm would try all possible color combination in
D[m] based on it. It would then mark every combination valid unless the
q-Constraint was violated. This means that if there is an error in D[m], there
is also an error in D[i] for every i < m. But on the other hand, we also know
that D[2] is filled correctly in the initialization of our algorithm. Therefore
the assumption that some valid color combination is not marked as valid by
our algorithm is false.

26

3.3. Further Improvements

We showed before that the size of D must be 2n · (q + 1)p · kpq · 2k. In each
step of the algorithm each of up to (q + 1)p · kpq · 2k color combinations must
be examined. If the color combination is valid and an interval starts at the
current point, the algorithm tries up to kp new combinations, as shown above.
In total we get 2n · (q+ 1)p ·kpq · 2k ·kp, which is O(n · (q+ 1)p ·kpq+p · 2k).

3.3 Further Improvements

After further analysis, it can be seen that significant savings in both memory
and time complexity can be achieved.

The first observation is rather obvious memory saving. When the algorithm
is at a point m and is filling D[m], the only information needed from D is in
D[m− 1]. Therefore it is sufficient to hold only two instances, D[m− 1] and
D[m].

The second observation deals with the necessity of remembering the colors
used in each color combination. When two edge colorings differ only in the
labels of colors, i.e., sets of edges sharing one color are the same for both edge
colorings, then the number of colors used is the same for both colorings. This
leads us to the following simplification. In the first step of the algorithm,
assign color 1 to the first edge and when trying to use a new color, use the
lowest not yet used color instead of trying all unused colors.

With this observation in mind, we can modify the original algorithm. To begin
with, modified color combination cc now looks like this:

cc = (s1, . . . , sr, c1,1, . . . , c1,s1 , . . . , cr,1, . . . , cr,sr , lowestUnusedColor),

for some H ′(m) with n vertices. In contrast with the original definition, we
dropped k indicators of used colors u1, . . . , uk and added lowestUnusedColor
representing the lowest color which was not used, i.e., colors used to color
H(m) according to the given color combination are

1, 2, . . . , lowestUnusedColor − 1.

The rest of the notation remains the same. For the general overview of the
improved algorithm, see Algorithm 3.

Initialization of the algorithm. Let e be the edge connecting the vertices v
and u representing the intervals starting at point 1 and 2, respectively. Assign
color 1 to e, i.e., we created the color combination (1, 1, 1, 1, 2). Mark this
combination as valid in D[2]. Note that it is the only one combination valid
in D[2].

Interval starts. Consider a step of the algorithm from point m − 1 to m and
suppose that an interval representing a vertex v starts there. For each edge

27

3. New Algorithms

1 let e be the edge between vertices corresponding to the first two
intervals

2 assign color 1 to e
3 mark this color combination as valid with lowestUnusedColor = 1

in D[2]
4 set i := 3
5 while i is inside the interval representation do
6 if an interval ends at i then
7 fill D[i] with the same information as D[i− 1] but ignore all

the information about the vertex represented by the interval
ending at point i

8 else
9 denote the vertex starting at i by v

10 based on the valid color combinations in D[i− 1], try all color
combinations at point i

11 when using a new color for some color combination, use
lowestUnusedColor and increment it by one for that
combination

12 check each of them for the q-Constraint and according to its
validity fill D[i]

13 let l be the last starting point in G
14 find h, the highest lowestUnusedColor among all valid combinations

in D[l]
15 output h− 1

Algorithm 3: Improved Algorithm for Interval Graphs

{v, vi} in H ′(m), we again start by trying all colors incident to vi. But then,
instead of trying all not yet used colors, we try only the new colors that v
already sees and the lowestUnusedColor, which we subsequently increase by
one for the current color combination.

Interval ends. This case is the same as in the original algorithm.

Algorithm finished. Denote the last starting point by l. To find the result,
we find h which is the highest lowestUnusedColor among all the valid color
combinations in D[l]. Output h− 1.

Theorem 6. For a given interval graph G = (V,E) and an integer q, Algo-
rithm 3 outputs the size of a maximum edge q-Coloring of G and it works in
O(n · (q + 1)p · kpq+1 · (q + p)p) time.

28

3.3. Further Improvements

Proof. In contrast with Algorithm 2, we only cut out equivalent colorings.
Therefore, the correctness of the algorithm follows from Theorem 5. Since we
dropped k indicators from D (that is 2k) and replaced it by the number of the
lowest unused color (that is k), the size of D in this case is 2n · (q+1)p ·kpq ·k.
In each step of the algorithm, each of up to (q+ 1)p ·kpq ·k color combinations
must be examined. If the color combination is valid and an interval starts at
the current point, the algorithm tries up to (q+p)p new combinations. In total,
we get 2n · (q+1)p ·kpq ·k · (q+p)p, which is O(n · (q+1)p ·kpq+1 · (q+p)p).

29

Chapter 4
Implementation

In this chapter, we describe the implementation that is part of this thesis.
It is an implementation of the algorithm for interval graphs as described in
Algorithm 3 and the corresponding section. The implementation can be found
in maxedge.cpp file on the enclosed CD. We describe input, output and gen-
eral usage of the program. Additionally, we present the results of testing.
The program is implemented in C++ language and uses some features of the
C++11 standard.

4.1 Approach

In the implementation, we introduce a structure called combination, in which
we store the information according to the color combination introduced in the
previous chapter. Instead of implementing an array to remember whether each
combination is valid or not, we use a set of combinations. If a combination is
valid, then it is in the set combinationSet. Otherwise, it is not. A detailed
description of the implementation follows.

Detailed description

Some arrays in the implementation are bounded by constants. They can be
changed without any impact on the program. These constants are:

MAXP = 10 //maximum size of a clique
MAXINPUT = 500 //maximum number of vertices

31

4. Implementation

The structure combination is declared with the following variables:

int lowestUnusedColor;
int currentVertices;
set<int> colors[MAXP];
int currentVerticesIdentifiers[MAXP];

Recall that a color combination can be written as the following vector:

cc = (s1, . . . , sr, c1,1, . . . , c1,s1 , . . . , cr,1, . . . , cr,sr , lowestUnusedColor)

In our structure, lowestUnusedColor represents lowestUnusedColor. The
array colors contains sets of colors for each vertex, i.e., colors[i] contains
{ci,1, . . . , ci,si}. Furthermore, currentVertices corresponds to the number
r in the vector representation of a color combination. Finally, the array
currentVerticesIdentifiers indicates which vertices correspond to each
index in colors, which is needed to discard the information about the correct
vertex when an interval ends.

In addition to the previous, the implementation also includes an equality op-
erator and a hash function for the structure. This is required for using a set
to store instances of the structure.

The set of combinations combinationSet stores the valid combinations at one
point only, analogously like D[m] at a point m. When adding new combina-
tions to be used in the next step, we use another set nextCombinationSet.
After a step of the algorithm ends, contents of nextCombinationSet is moved
to combinationSet and used again in the next step. When the algorithm is
at a point m, the information in combinationSet is equivalent to the infor-
mation in D[m − 1] and similarly the nextCombinationSet corresponds to
D[m].

The program begins by reading the input and storing it in inputArray. De-
tails about the input are described in the following section. The first step is
computing the size of a maximum clique. After that, initialization follows, i.e.,
creating the first color combination at point 2. Then the algorithm proceeds
to process inputArray step by step in a loop. In each step, the algorithm
checks whether an interval at the current point starts or ends. It then exe-
cutes the procedure according to the algorithm description. Additionally, the
algorithm checks for the maximum lowestUnusedColor after each step where
an interval starts and stores it in maxColors. Therefore, maxColors contains
the size of a maximum edge q-coloring on H(m) at each point m, and thus it
contains the overall result when the algorithm reaches the end of the input.

32

4.2. Testing

Note that the directory with source codes also includes a simple makefile for
the main program. It can be used to remove the program with make clean
and freshly compiling it with make.

Input

The program reads from the standard input. Expected format is the following.
The first line contains one integer n (2 ≤ n ≤ MAXINPUT), where n is the
number of intervals in the input. The next line contains one integer q (1 ≤ q),
which is the number of colors each vertex may see at most, the q-Constraint.
It is followed by 2n lines representing interval endpoints. Each of the 2n lines
contains 2 integers t and i (t ∈ {0, 1}, i ≥ 0), where t represents whether an
interval starts (t = 0) or ends (t = 1) and i is an identifier. Each identifier
has to be present exactly twice, once for the start of an interval and once for
the end of the same interval.

4.2 Testing

For the testing purposes, we implement a program for generating graphs in
interval representation, formatted accordingly to the main program. Its im-
plementation can be found in graphgen.cpp file. The program reads from
the standard input and expects 4 lines. The first line contains a single integer
n (n ≥ 2), which is the number of vertices. The following line contains one
integer p (p ≥ 2), where p denotes the size of a maximum clique. The next
line contains an integer q (q ≥ 2), which is the q-Constraint. The last line
contains one integer s (1 ≤ s ≤ p), where s is the lower bound of the size of a
maximum clique.

The program works as follows. It first prints the needed information at the
beginning of the file, that is n and q. Then the printing of intervals begins.
First, it creates a clique of size s. Then the following procedure repeats until n
intervals were created and properly ended. If creating or ending an interval at
some point breaks some constraint (such as the size of a maximum clique), the
opposite action is chosen. Else, it is chosen randomly whether a new interval
starts or some interval ends.

Measurements

The execution times that are shown in Figure 4.1 and Figure 4.2 were measured
on a computer with 1.6 GHz Intel Core i5 processor and running MacOS
Mojave operating system and compiled by:

g++ -std=c++11 -Wall -pedantic maxedge.cpp -o maxedge.out

33

4. Implementation

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

tim
e

(s
)

number of vertices

Figure 4.1: Development of the execution time depending on the number of
vertices. The blue points represent inputs with parameters q = 2 and p = 4.
The orange points represent inputs with parameters q = 3 and p = 3.

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12

tim
e

(s
)

clique size

Figure 4.2: Development of the execution time depending on the clique size.
The input graph is a single clique of a given size.

34

4.2. Testing

We now describe the results of the measurements.

First, we tested graphs with a maximum clique of size p = 4 for the case
of q = 2 (and p = 3, q = 3, respectively), while increasing the number of
vertices. These results are shown in Figure 4.1. Note that the execution time
for a graph with a given number of vertices as shown in Figure 4.1 is an average
value for 10 distinct graphs with the same number of vertices generated by
the graph generator which can be found on the enclosed CD.

In the second measurement, we tested cliques of different sizes with q = 2. As
can be seen in Figure 4.2, the performance drops rapidly on this graph class.

35

Conclusion

In this thesis, we studied the Maximum Edge Coloring problem. We re-
searched already known algorithms and presented some of them in detail.
In particular, we presented an approximation algorithm and a parameterized
algorithm for the case of q = 2. We developed two new algorithms. The
first algorithm for trees is a greedy algorithm working in linear time. The
second algorithm for interval graphs is based on dynamic programming and,
for parameters q, the number of vertices n, the size of a maximum clique p,
and the solution size k, is running in O(n · (q+ 1)p · kpq+p · 2k) time. We then
further improved the algorithm to run in O(n · (q+ 1)p · kpq+1 · (q+ p)p) time.
Finally, we also implemented the algorithm for interval graphs to demonstrate
its functionality.

The algorithm alongside with the implementation is fully functional. However,
considering the performance of the algorithm, it is advisable to realize further
optimizations prior to its usage. We now propose some possible directions for
future improvements.

Since we are interested in the maximum result only, there is no need to store
the same color combinations varying only in the number of colors used. There-
fore, this information can be dropped, and instead of it, only the maximum
number can be stored. This might lead to an improvement from O(k) to
O(1). Additionally, at every step of the algorithm, the number of different
colors that the vertices in H ′(m) see is bounded by the number of vertices in
H ′(m) and the number of colors each vertex can see at most, in total that
is pq. This might lead to an improvement from O(kpq) to O((pq)pq). Note
that this would completely eliminate the parameter k from the overall time
complexity.

37

Bibliography

[1] W. Feng, L. Zhang, and H. Wang, “Approximation algorithm for maximum
edge coloring,” Theor. Comput. Sci., vol. 410, no. 11, pp. 1022–1029, 2009.

[2] A. Adamaszek and A. Popa, “Approximation and hardness results for the
maximum edge q-coloring problem,” in Algorithms and Computation - 21st
International Symposium, ISAAC 2010, Jeju Island, Korea, December 15-
17, 2010, Proceedings, Part II, vol. 6507 of Lecture Notes in Computer
Science, pp. 132–143, Springer, 2010.

[3] P. Goyal, V. Kamat, and N. Misra, “On the parameterized complexity
of the maximum edge 2-coloring problem,” in Mathematical Foundations
of Computer Science 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, vol. 8087 of
Lecture Notes in Computer Science, pp. 492–503, Springer, 2013.

[4] T. Larjomaa and A. Popa, “The min-max edge q-coloring problem,” J.
Graph Algorithms Appl., vol. 19, no. 1, pp. 507–528, 2015.

[5] D. G. Corneil, S. Olariu, and L. Stewart, “The LBFS structure and recog-
nition of interval graphs,” SIAM J. Discrete Math., vol. 23, no. 4, pp. 1905–
1953, 2009.

[6] H. N. Gabow, “An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems,” in Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pp. 448–456, ACM, 1983.

39

Appendix A
Contents of enclosed CD

readme.txt..contents description
src.......................................the directory of source codes

implementation implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

41

	Introduction
	Preliminaries
	Maximum Edge q-Coloring
	Interval Graphs

	Known Results
	Approximation Algorithms
	Parameterized Algorithms

	New Algorithms
	Trees
	Interval Graphs
	Further Improvements

	Implementation
	Approach
	Testing

	Conclusion
	Bibliography
	Contents of enclosed CD

