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Abstrakt

Editační vzdálenost lze vypočítat s obecně známým algoritmem využívajícím
dynamické programování v časeO(n2), kde n je délka vstupních řetězců. Algo-
ritmus Čtyř Rusů zlepšuje tuto složitost s pomocí vyhledávací tabulky o faktor
log2 n. V této práci je tento algoritmus podrobně prozkoumán a důležité im-
plementační detaily jsou prodiskutovány, přičemž zvláštní ohled je brán na
paralelizování algoritmu a zmenšení velikosti vyhledávací tabulky. Implemen-
tace v jazyce C++ je poskytnuta a její výkon je porovnán v několika exper-
imentech s populární knihovnou na výpočet editační vzdálenosti. Výsledky
naznačují, že algoritmus je v praxi použitelnou volbou, ale není optimální.

Klíčová slova editační vzdálenost, algoritmus Čtyř Rusů, implementace,
paralelizace
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Abstract

Edit distance can be computed with the well-known dynamic programming
algorithm in O(n2) time, where n is the length of the input strings. The Four-
Russians algorithm improves this complexity by a factor of log2 n by using
a lookup table. In this thesis, the algorithm is thoroughly examined and
important implementation details are discussed, with special consideration
given to parallelizing the algorithm and reducing the size of the lookup table.
An implementation in C++ is provided and its performance is compared with
a popular edit distance library in several experiments. The results indicate
that the algorithm is a viable option in practice, but not optimal.

Keywords edit distance, Four-Russians algorithm, implementation, paral-
lelization
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Introduction

Edit distance

The edit distance between two strings is the smallest number of edit opera-
tions needed to transform one string into the other. The three possible edit
operations are: insertion of any character into the first string, deletion of any
character from the first string and substitution of any character from the
second string for any character from the first string. For example, the edit
distance between the two words survey and surgery is 2 and the corresponding
edit operations are the substitution of g for v and the insertion of r before
the last character. In other words, edit distance is a quantification of the
dissimilarity of two strings. Such measure has applications in numerous prob-
lems in computer science, for example in bioinformatics, spell checking, speech
recognition, search engines, databases, and natural language processing, thus
finding ways to compute it in the fastest way possible is highly desirable.

Before we move on further, it has to be said that this definition for edit dis-
tance is sometimes called the Levenshtein distance, with edit distance referring
to a larger family of string distances. That being said, the name edit distance
is used in this thesis to stay consistent with the cited sources. Furthermore,
any other variations of edit distance, such as the weighted edit distance, where
edit operations have varying costs depending on the characters upon which
they are operating, or the Hamming distance, where only replacements are al-
lowed, or even the Damerau–Levenshtein distance, where transposition is also
possible (highly relevant for the problem of typing errors), are not discussed in
this thesis. Similarly, no attention is paid to actually retrieving the sequence
of edit operations leading to the resulting edit distance. While the focus of
the thesis is on computing edit distance, the described algorithm can easily
be converted to solve the problem of approximate string matching and with a
little more difficulty used for the purposes of local sequence alignment.
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Introduction

Four-Russians

The Four-Russians algorithm for computing edit distance is actually an ap-
plication of the Four-Russians technique on the dynamic programming algo-
rithm for computing edit distance (which will itself be introduced in the first
chapter). The Four-Russians technique can be used to speed up algorithms
operating on matrices with a limited amount of possible values in each cell by
storing computed submatrices in a lookup table. The name of this peculiarly
named technique refers to its inventors, as it was presented in 1970 by V. L.
Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzhev [1], who used it
to construct the transitive closure of a directed graph. Of course, what we are
more interested in is its application on the problem of edit distance, which was
done in 1980 by Masek and Paterson [2]. This lead to the aforementioned time
complexity of O((n2)/ log2 n). To date, this algorithm has the best worst-case
time complexity for computing edit distance, which is emphasized further by
a fact that was proven by Backurs and Indyk in 2015 [3]: the edit distance be-
tween two strings cannot be computed in strongly subquadratic time (unless
SETH (strong exponential time hypothesis) is false), in other words, the edit
distance between two strings of size n cannot be computed in O(n2−ϵ) time
for any ϵ > 0.

However, two conditions have to be met for this time complexity to hold.
The first one is that the costs of edit operations have to be a multiple of a
single positive real number, which we fulfill by focusing solely on unit cost
edit distance, and the second one is that the alphabet from which the strings
are has to be finite. This condition is avoided when a clever string encoding
described in 2016 by Kim et al. [4] is used, which also significantly reduces the
size of the lookup table. Actually, an improved version of their string encoding
is introduced in this thesis, which lowers the size of the lookup table even more.
Unfortunately, both the original and the improved string encoding make the
algorithm lose one logarithm factor of speedup. While that is undesirable, it
is needed to make the algorithm usable in practice for alphabets of size > 4.
To offset this issue, Kim et al. presented a few ideas about how to parallelize
the algorithm, which we will also discuss later.

One of the major parts of this thesis is the actual implementation of the
Four-Russians algorithm. This implementation was mainly used to evaluate
the practicality of the algorithm. When the algorithm was first conceived it
was purely theoretical, as computers at the time did not actually have enough
memory to contain the required lookup table. The situation is different nowa-
days, nonetheless, the question this thesis is trying to answer still stands: is
the Four-Russians algorithm in practice a competitive option for computing
edit distance?
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Structure of the thesis

Structure of the thesis
The thesis is split into four chapters. In Chapter 1 several algorithms for com-
puting edit distance are summarized and the relationship between computing
edit distance and approximate string matching is mentioned. Chapter 2 ex-
plains the main idea that makes the Four-Russians algorithm viable in practice
and improves the viability further by resolving the dependence of the size of
the lookup table on the size of the input strings’ alphabet. On top of that,
the possibilities for parallelization are presented. The obtained speedup is ob-
served in Chapter 3, together with a description of how to use modulo arith-
metic to cut down on the size of the lookup table. In addition to that, some
consideration is given to the recommended values for the parameters required
by the algorithm. Chapter 4 concludes the thesis by empirically evaluating
the Four-Russians algorithm. Viability is ascertained by comparing it to the
dynamic programming algorithm and possible optimality by comparing it to
a state-of-the-art algorithm.
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Chapter 1
Overview of Options

1.1 Basic definitions
Let arrays, vectors, and matrices be indexed from zero and strings indexed
from one. If S is a string, let S[i . . . j] be equal to the characters (i, i+1, . . . , j),
or to the empty string if j > i. Let U and V be strings of sizes m and n over
some alphabet Σ.

1.2 Wagner and Fischer, 1974
The dynamic programming algorithm for computing edit distance was pre-
sented by Wagner and Fischer in 1974 [5]. Let D be a matrix of size (m+1)×
(n + 1), where D[i, j] represents the edit distance from U [1 . . . i] to V [1 . . . j].
The pseudocode is presented in Algorithm 1. Function Comparison(a, b)
returns 0 if a and b are equal and 1 otherwise. Example of a filled out D can
be seen in Figure 1.1.

Algorithm 1 Wagner-Fischer
1: for i← 0 to n do ◃ Initialize first row
2: D[0, i] ← i
3: for j ← 1 to m do ◃ Initialize first column
4: D[j, 0] ← j
5: for i← 1 to n do ◃ Compute the matrix
6: for j ← 1 to m do
7: tmp1 ← D[i− 1, j] + 1
8: tmp2 ← D[i, j − 1] + 1
9: tmp3← D[i− 1, j − 1] + Comparison(U [i], V [j])

10: D[i, j] ← min(tmp1, tmp2, tmp3)
11: return D[m, n]

5



1. Overview of Options

Figure 1.1: Matrix used for computing edit distance
lnput strings are U = ABBBAC and V = BBCABC. The highlighted cells trace the
sequence of edit operations. Going down represents deletion, going right insertion,
and going bottom right represents substitution (where same character substitution is
a zero cost operation).

The paraphrase of the proof of the correctness of the algorithm is omitted
for brevity. Let us at least intuitively state, that when we are looking for the
shortest edit sequence, it makes sense for each character to be associated with
maximally one edit operation, and as such the resulting edit sequence can be
ordered from left to right. Then let us imagine that we are trying to compute
the cell D[m, n]. We have three options and we choose the one which gives
the best result:

• the character U [m] is deleted from the end, we get D[m− 1, n] + 1

• the character V [n] is inserted at the end, we get D[m, n− 1] + 1

• character V [n] is substituted for U [m], D[m−1, n−1] + (U [m] ̸= V [n])

On the other hand, it is easy to see that the algorithm has time and
memory complexity ofO(mn). It’s similarly easy to see that it can be modified
so that only the last two rows/columns (or even only the last one) are kept in
memory. This reduces the memory complexity to O(min(m, n)).

This algorithm will be referred to from now on as the naive algorithm.

1.3 Masek and Paterson, 1980
As this algorithm by Masek and Paterson [2] is the focal point of this thesis,
it is analyzed in more detail, including time complexity and such, in the next
chapter. However, a brief overview is also presented here for completeness.

The main idea is that the matrix from the naive algorithm is split into
many small overlapping blocks, as can be seen in Figure 1.2. The first row,
the first column, and the accompanying string substrings are the input val-
ues of a block and all the remaining values are the output values, which are

6



1.4. Ukkonen, 1985

Figure 1.2: Matrix split into overlapping blocks

determined solely by the input values. In the first step of the method (called
the preprocessing step) all possible combinations for the input values are gen-
erated and for each one the corresponding output values are computed and
stored in a lookup table (from now on LUT) (to be accurate, we only save the
last column and the last row of a block).

In the second step (called the computation step) we proceed similarly as
in the naive algorithm. We initialize a matrix of blocks and set the first row
and the first column to trivially known values. Afterward, we iterate over
each block, but instead of computing the values we use the input values to
look up the output values in the LUT. Because the blocks overlap, we can use
these values as the input values for the subsequent blocks. If the blocks do
not fit perfectly in the matrix, we can use the naive algorithm to compute the
remaining rows and/or columns.

1.4 Ukkonen, 1985
In 1985, Ukkonen presented two algorithms for computing edit distance in
O(s min(m, n)) time and O(min(s, m, n)) space, where s is the edit distance
between n and m [6]. We are going to describe the first one and omit the
second one, as although it is faster in practice, it as also quite nontrivial.

First, let’s imagine that we only care what the precise value of the edit
distance is if it is smaller than k, for some parameter k and that m = n. In
the naive algorithm, the final cell D[m, n] will be on the same diagonal as the
starting cell, that is D[0, 0]. While computing edit distance we can only move
between diagonals with insertion or deletion, both of which have to increase
the resulting edit distance by one. As we have to end up on the same diagonal
we started, the resulting sequence of edit operations will be located only on a

7



1. Overview of Options

Figure 1.3: Band of diagonals computed by the Ukkonen’s algorithm
Example for m = n = 6, k = 3. Dotted diagonals will be skipped. Numbers represent
the indices of the diagonals.

certain band of diagonals in the middle of the matrix, limited by the value k,
and we can skip the computation of the rest of the diagonals, that is, we act
as if their values are equal to ∞. More precisely, if we index diagonals such
that their index is equal to the value of j − i of all their cells, where i and j
are of course the indices of the cells, we only have to compute diagonals from
⌊−k/2⌋ to ⌊k/2⌋. This observation is illustrated in Figure 1.3. Furthermore,
we can deduce whether the value in D[m, n] is the correct result by simply
checking if it is smaller than k.

As there are only 2⌊k/2⌋+1 of these diagonals and each one hasO(min(m, n))
entries, we get a time complexity of O(k min(m, n)) and as we only have
to keep in memory two rows of diagonals, we get a space complexity of
O(min(k, m, n)). Now, the math gets a little more convoluted if m ≠ n. If
m > n, we compute diagonals from n−m−h to h, where h = ⌊(k−|n−m|)/2⌉,
and if m ≤ n, we compute diagonals from −h to n −m + h, where h is the
same as before. That being said, the complexities remain the same.

Now, we just call this algorithm with values of k as following: k0 = |n −
m| + 1, k1 = 2k0, . . . , kr = 2rk0, until we get a correct result. The time
complexity of this solution is O((

∑r
0 ki) min(m, n)), that is O(kr min(m, n)),

and since s > kr/2, it is also O(s min(m, n)).

1.5 Approximate string matching
The goal of approximate string matching (also colloquially known as fuzzy
string searching) is, given a pattern of size m and a text of size n, to find all
positions in the text where the pattern matches with a limited amount of errors
k. The problem of approximate string matching is very closely linked with
the problem of computing edit distance. This means that some algorithms for

8



1.5. Approximate string matching

approximate string matching can be very easily converted to computing edit
distance and vice versa. For example, in the naive algorithm we only need to
initialize the first row to zeroes, as the pattern can start anywhere in the text,
and then all the ending positions of all the matches are going to be equal to
the column indices of the cells in the last row that have smaller values than k
– the allowed number of errors. The beginning positions can be recovered by
reconstructing the sequences of edit operations.

Another algorithm that can be easily repurposed is the bit-vector algo-
rithm introduced by Myers in 1998 [7], which is considered one of, if not the
fastest algorithm in practice. For these reasons, it will be used in the last
chapter of this thesis for evaluating the usefulness of the Four-Russians algo-
rithm. It works by converting a part of a column of the matrix of the naive
algorithm into several vectors of bits and then using clever combinations of
bitwise operations to calculate the following part of the next column. As such
it computes up to w elements at a time, where w is the size of a computer
word, which means the time complexity is O(mn/w). Furthermore, the search
space is reduced by a similar technique as in the last algorithm by Ukkonen
(and this technique was coincidentally also invented by Ukkonen), and the
time complexity is then O(kn/w).

9





Chapter 2
Four-Russians Fully Reviewed

2.1 Parts of a block
Let each block be of size (tm + 1) × (tn + 1) for some parameters tm and
tn, where tm and tn are positive integers. Let K be the top left corner of a
block, A the rest of the first column (|A| = tm), B the rest of the first row
(|B| = tn), A′ the last column without the first element (|A′| = tm), B′ the
last row without the first element (|B′| = tn), X the substring of U (|X| = tm)
and Y the substring of V (|Y | = tn). An example can be seen in the first two
images in Figure 2.1.

The values in each element of A, B and K range from 0 to max(m, n)
and the elements in X and Y can contain any characters from Σ. This leads
us to a number of combinations equal to (max(m, n))tm+tn+1|Σ|tm+tn , which
is already much more than for example the number of cells that the naive
algorithm has to compute. To make the algorithm more practical we have to
limit the number of possible values in A, B and K. Masek and Peterson have
proven [2] that each cell in the matrix D can differ from each neighboring cell
by at most 1.

Figure 2.1: Detailed description of a block

11



2. Four-Russians Fully Reviewed

Figure 2.2: Cases for the proof of differences between the elements of the
matrix

We can rewrite that as the following equation

D[i, j − 1]− 1 ≤ D[i, j] ≤ D[i, j − 1] + 1.

The upper bound, D[i, j] ≤ D[i, j − 1] + 1, immediately follows from the
recurrence equation in the naive algorithm, that is D[i, j] = min(D[i, j−1]+
1, . . . ). For the lower bound, D[i , j− 1]− 1 ≤ D[i, j], Figure 2.2 shows three
possible cases of sequences of edit operations leading to the computation of
D[i, j]. In the leftmost case D[i , j] = D[i , j − 1] + 1 and the lower bound
holds. Middle case cannot happen, as the substitution shown in the rightmost
case will always be cheaper than the one insertion and the one deletion in
the middle case. The rightmost case showcases a sequence of one substitution
followed by k − 1 deletions (if k = 1, there is only the substitution). D[i , j]
is then equal to either D[i − k, j − 1] + (k − 1) + 1 if the substitution is a
mismatch, or D[i − k, j − 1] + (k − 1) if the substitution is a match, that
is D[i, j] + 1 ≥ D[i − k, j − 1] + (k − 1) + 1. However, we can always
compute D[i, j − 1] by making k deletions from D[i − k, j − 1], that is
D[i, j − 1] ≤ D[i − k, j − 1] + k. By combining these equations we get
D[i, j] + 1 ≥ D[i, j − 1], which means the lower bound holds.

This enables us to encode each element of vectors A and B (and A′ and
B′) as the difference between itself and its predecessor. This is demonstrated
in the third image in Figure 2.1. Furthermore, we can ignore K, as we are
working with steps instead of values. As whatever value it is, it will not change
the steps itself. For example, both the vectors (2, 1, 1, 2) and (8, 7, 7, 8) can
be expressed as a step vector (−1, 0, 1). A disadvantage is that obtaining
the result from the computed matrix is slightly more complicated than just
returning the last value from A′ or B′ in the bottom right corner. Nonetheless,
we can just add up all the steps in vectors A in the first column of the matrix
of blocks (which we already know is equal to m) and all the steps in vectors
B′ in the last row. Or vice versa for the first row with B and last column with
A′.

12



2.2. Pseudocode

2.2 Pseudocode

The pseudocode for the preprocessing step is shown in Algorithm 2. Let Dt

be an integer matrix of size (tm + 1)× (tn + 1) used for computing A′ and B′.
Function STORE(…) saves A′ and B′ in the LUT so that they can be looked
up later by supplying A, B, X and Y . Function COMPARISON is the same
one as the one in the pseudocode for the naive algorithm.

Algorithm 2 The preprocessing step
for all A, B, X and Y do

Dt[0, 0] ← 0
for i← 1 to tm do ◃ Decode A

Dt[i, 0] ← Dt[i− 1, 0] + A[i− 1]
for j ← 1 to tn do ◃ Decode B

Dt[0, j] ← Dt[0, j − 1] + B[j − 1]
for i← 1 to tm do ◃ Compute the block

for j ← 1 to tn do
tmp1 ← Dt[i− 1, j] + 1
tmp2 ← Dt[i, j − 1] + 1
tmp3← Dt[i− 1, j − 1] + Comparison(X[i], Y [j])
Dt[i, j] ← min(tmp1, tmp2, tmp3)

for i← 1 to tm do ◃ Encode A′

A′[i− 1] ← Dt[i, 0]−Dt[i− 1, 0]
for j ← 1 to tn do ◃ Encode B′

B′[i− 1] ← Dt[0, j]−Dt[0, j − 1]
Store(A, B, X, Y , A′, B′)

In the preprocessing step we go through O((3|Σ|)tm+tn) combinations of
input values. Computing one block takes O(tmtn) time and the result takes
up O(tm + tn) space. The time complexity is then O((3|Σ|)tm+tntmtn) and
the LUT occupies O((3|Σ|)tm+tn(tm + tn)) memory.

The pseudocode for the computation step is revealed in Algorithm 3. Let’s
assume that m is divisible by tm and n is divisible by tn. Let S be a matrix
of size ((m/tm) + 1) × ((n/tn) + 1)), where each element is an integer vector
of size tm (in other words A), and T a matrix of the same size, where each
element is an integer vector of size tn (in other words B). Function LOOKUP
returns A′ and B′ from the LUT as if the inputs were A, B, X and Y .

Each element of S occupies O(tm) space, and similarly each element of T
occupies O(tn) space. We spend O(1) time on each element (on the condition
that each vector fits into a computer word), which leads us to time complexity
of O(mn/(tmtn)) and memory complexity of O(mn(tm + tn)/(tmtn)).

13
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Algorithm 3 The computation step
for i← 1 to m/tm do ◃ Initialize S

S[i, 0] ← (1, 1, . . . , 1)
for j ← 1 to n/tn do ◃ Initialize T

T [0, j] ← (1, 1, . . . , 1)
for i← 1 to m/tm do ◃ Fill S and T with values from the LUT

for j ← 1 to n/tn do
(S[i, j], T [i, j]) ← Lookup(S[i− 1, j], T [i, j − 1],

U [i× tm . . . (i + 1)× tm], V [j × tn . . . (j + 1)× tn])
result ← n ◃ Add up the first row
for j ← 1 to n/tn do ◃ Add up the last column

for k ← 0 to tn − 1 do
result ← result + T [m/tm, j][k]

return result

Finally, if we assume tm = tn = (log3|Σ| n)/2, the total time complexity
becomes

O((3|Σ|)2(log3|Σ| n)/2(log2
3|Σ| n)/4) +O

(
mn

(log2
3|Σ| n)/4

)
=

= O(n(log2
3|Σ| n)/4) +O

(
mn

(log2
3|Σ| n)/4

)
=

= O(n log2 n) +O
(

mn

log2 n

)
= O

(
mn

log2 n

)
,

that is an asymptotic improvement over the naive algorithm. Similarly, the
memory complexity will be O(n log n) +O(mn/ log n) = O(mn/ log n).

2.3 Alphabet independent string encodings
In practice there arises a significant problem with the Four-Russians algorithm,
which is that even modestly large Σ explode the size of the LUT. For example,
if each element in the LUT occupies one byte, then for tm = 3, tn = 4 and
|Σ| = 4 the size of the LUT is roughly 34 MB, but with |Σ| = 26 and the
same tm and tn the size grows to almost 16 TB.

This section focuses on several encodings for X and Y that make the
number of their combinations, and as a consequence the size of the LUT, in-
dependent of |Σ|. The general idea is that we only care whether two characters
are the same or not (of course, this would not be the case if we required edit
operations with varied costs for different characters).
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2.3.1 First idea

First encoding, put forward by Kim et al. [4], is as follows: encode the first
character of X as 1. Then iterate through the rest of X and Y , and if the
given character has already been encoded before, encode it as the same value,
and if not, encode it as the biggest yet encoded value plus one. For example,
X = bac and Y = adab are encoded as Xenc = 123 and Yenc = 2421.

The algorithm provided by the authors assumes that we have prepared
beforehand an array Z of size |Σ|, which is indexable by the characters of Σ
and has all values initialized to zero. Z is used for keeping track of the encoded
values. For each character we first check Z, and if the value is not zero, we
encode the character as whatever value is there, and if the value is zero, we
encode it as the biggest yet encoded value (which we also keep in a temporary
variable) plus one and store the value in Z. Afterward, we again iterate
through X and Y and set the values in Z for the corresponding characters
to zero, so that Z can be reused again. This approach has time complexity
of O(tm + tn). The first element has one possible value, the second one two,
the third one three and so on, which means the number of combinations is
(tm + tn)!.

We can prepare such array even when |Σ| = ∞, as we can convert the
input strings into strings over an alphabet of size |Σ| = O(m + n). We
accomplish this by creating a new string S equal to the concatenation of U
and V . Afterward, we sort it, remove duplicates and then for each character
in U and V use binary search to locate their index in S, which is their value
in the new alphabet. This takes us O((m + n) log(m + n)) time, which is then
dominated by the running time of the computation step (O(mn/(log2 n)).

2.3.2 Second idea

Second encoding was proposed by Bille and Farach-Colton [8]. The charac-
ters are encoded according to their position in a sorted array containing all
characters appearing in both substrings. Characters present either in only
X or in only Y are encoded as zero. For the same example, X = bac and
Y = adab are encoded as Xenc = 210 and Yenc = 1012. The algorithm given
by the authors starts by iterating Y and using binary search to locate all the
characters that are also present in X. The rest is similar to the algorithm
in the last paragraph, that is the characters present in both strings are com-
bined into a string S, sorted and have their duplicates removed. Then the
encoded values of characters X and Y are equal to their position in S, and
if they are missing in S, they are encoded as zero. We can achieve this in
O((tm + tn) log(tm + tn)) time. Each element has tm + tn + 1 possible values,
and as such there are (tm + tn + 1)tm+tn combinations.
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2.3.3 Third idea

The encoding used in the implementation is a combination of both of these
encodings. X is encoded according to the first encoding, afterwhich we iterate
through Y and simply encode each character as the corresponding value in
Z, which is either an already determined encoded value if the character is
also present in X, or zero if not. Again, the same example, X = bac and
Y = adab are encoded as Xenc = 123 and Yenc = 2021. This approach has time
complexity of O(tm +tn) and number of combinations equal to (tm)!(tm +1)tn .
It is quite easy to see that this number is smaller or equal to the number of
combinations generated by the first encoding (recall that tm and tn are positive
integers):

(tm)!(tm + 1)tn ≤ (tm + tn)!
(tm)!(tm + 1)tn ≤ (tm)!(tm + tn)!/(tm)!

(tm + 1)tn ≤ (tm + tn)!/(tm)!
(tm + 1)× (tm + 1)× · · · × (tm + 1) ≤ (tm + 1)× (tm + 2)× · · · × (tm + tn)

and similarly is also smaller than the number of combinations generated by
the second encoding:

(tm)!(tm + 1)tn < (tm + 1)tm+tn < (tm + tn + 1)tm+tn .

Another advantage is that encoding each Y is quite fast, and that each X
has to be encoded only once for each row (this is also the case for the first
encoding, however in this encoding reusing the alphabet is less cumbersome).

Of course, using this encoding slightly changes the aforementioned time
and memory complexities. The LUT requires O(3tm+tntm!(tm + 1)tn(tm +
tn)) memory and computing it takes O(3tm+tntm!(tm + 1)tntmtn) time. Also
spending O(tm +tn) time on encoding vectors X and Y in each iteration of the
computation step worsens the run time of computation step to O(mn(tm +
tn)/(tm × tn)). After assigning tm = tn = log n we get O(mn/ log n) . This
can be averted by using another LUT, unfortunately this brings back the
dependancy on |Σ| to the size of the LUT and as such it is still an impractical
solution for larger Σ.

2.4 Parallelization
This section in this chapter summarizes the possibilities for parallelization
in the algorithm, as presented by Kim et al. [4]. It is easy to see that all
the iterations in the for loop in the preprocessing step are independent of
each other. For this reason, we can compute the LUT in O(tmtn) time with
3tm+tntm!(tm + 1)tn threads.
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2.5. Reducing search space

Figure 2.3: Parallel computation of the matrix in theory
Blocks with blue background are already computed. Black arrows represent threads
working on new blocks.

The computation step is slightly trickier, as each block in matrices S and
T is dependent upon the block in S that is right to the left of it and also
upon the one in T right above it. However, this means that we can at least
compute concurrently all the blocks on a diagonal, as is demonstrated in
Figure 2.3. As each matrix has m/tm + n/tn − 1 diagonals, we can compute
them in O((tm + tn)(m/tm + n/tn)) time (which is equal to O(m + n) with
tm = tn = log n) using min(m/tm, n/tn) threads. This is however dominated
by converting U and V to strings over an alphabet of sizeO(m+n), which takes
us O((m + n) log(m + n)) time, nonetheless this task can also be parallelized
to run in O(m + n) time.

2.5 Reducing search space
The idea used by the Ukkonen’s algorithm [6] described in the previous chap-
ter, which is that computing only a certain band of diagonals in the middle of
the matrix is all that is required for the computation of edit distance, could
also be used in the Four-Russians algorithm. Nonetheless, there are two issues
pertaining to it.

The first one is that we would also have to save in the index to the LUT
the information that tells us whether either A or B is outside the band of
diagonals, thus increasing the number of combinations by a factor of 3 (not
4, since we skip the blocks where A and B are both outside the band of
diagonals).

The second issue is that the matrices S and T would not be fully filled
out and as such we would not be able to compute the edit distance by adding
up all the steps in the last row to m (or by adding up all the steps in the
last column to n). The solution is that we allocate a third matrix Q of size
((m/tm) + 1) × ((n/tn) + 1), where each element is equal to the value in the
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bottom right corner of a block, and we update this matrix together with S
and T as we iterate through them. We do this by taking the value of the
bottom right corner of the block above, which has already had to have been
computed, and add to it all the steps of A′, which takes us O(tm) time, or
O(1) time if we use yet another LUT. Then the resulting edit distance is equal
to the bottom right corner of Q.

If m or n is not divisible by tm or tn, we pad U and V with pm and pn

sentinel values until they are. These sentinel values can belong to Σ. Matrices
Q, S and T are then of sizes (((m + pm)/tm) + 1)× (((n + pn)/tn) + 1). As the
cell representing the edit distance between U [1 . . . m] and V [1 . . . n] has to be
somewhere in the last block, we just stop the computation right before it and
use the naive algorithm to compute it.

18



Chapter 3
Implementation Insights

3.1 Hardware and software used for testing
This chapter describes in detail an implementation of the algorithm introduced
in the previous chapter. C++ is the programming language of choice, as it
is well suited for performance intensive tasks and also possesses the support
of the OpenMP technology, opening the door for easier parallelization of the
algorithm.

The compiler used for compiling the implementation and the benchmark-
ing code was gcc version 8.2.1 with -O3 and march=native optimization flags.
The processor used for running the code was Intel Xeon E5-2620 v2 with 6
physical cores, 12 logical cores, locked to a base frequency of 2.1 GHz. The
cache sizes are as follows: L1I 12×32 KiB, L1D 12×32 KiB, L2 12×256 KiB
and L3 2× 15 MiB.

The inputs to the benchmarks were obtained by taking substrings from
random positions of one of two files:

• Complete DNA sequence of Escherichia Coli. The file was processed by
deleting the leading header line and removing all line breaks. This leaves
us with 5 277 676 characters, but only 4 unique ones, with each letter
representing a single nucleotide: A (adenine), C (cytosine), G (guanine)
or T (thymine).

• War and Peace by Leo Tolstoy (translated to English). The introduction
to the book was deleted, line breaks were removed and all the letters were
converted to lowercase. The processed file contains 3 188 925 characters
comprised of letters from the English alphabet, numbers, diacritics and,
separators.

Each benchmark was repeated multiple times (depending on the bench-
mark) and the median value was chosen. The correctness of the implemen-
tation was tested by generating a considerable number of pairs of random
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strings of different sizes from various alphabets, computing the edit distance
between them, and verifying it matches up with a result from a battle-tested
C++ library for computing edit distance – Edlib [9]. These tests were then
repeated for several combinations of parameters tm, tn and various numbers
of threads.

3.2 Main differences between theory and practice

Let’s first summarize the main differences between the theory and the actual
implementation.

To begin with, the parameters tm and tn are not equal to the log of m
and n, but rather they are set to some constant value. This enables us to use
the same LUT for all pairs of input strings and also improves the run time of
the algorithm (since the O notation does not take into account such things as
cache misses). The specific values of tm and tn are discussed in Section 3.4.

The LUT itself is just an array, and to be able to use A, B, X and Y as
an index, we have to encode all of them into a single integer. This is discussed
more in the following Section 3.3, but we also use this fact to generate all the
combinations in the preprocessing step. Instead of using some sophisticated
algorithm, the index variable is simply incremented and A, B, X and Y are
decoded from it in each iteration. Preliminary benchmarks showed this to
be the slightly slower solution, nonetheless, it was chosen for the simple fact
that it is trivial to parallelize, as we will see in Section 3.5. As a side note,
declaring arrays for these vectors before the loop itself and reusing them in
each iteration instead of reinitializing them proved to be quite beneficial for
performance.

As for the computation step itself, we employ the same optimization as in
the Wagner-Fischer algorithm. That is, instead of initializing matrices S and
T of size ((m/tm) + 1) × ((n/tn) + 1), we only need vectors S and T of size
(m/tm) and (n/tm), respectively. We could theoretically get by with only one
of these, however, both of them are needed if neither m is divisible by tm nor n
is divisible by tn, to reconstruct both the last row and the last column. They
are also helpful when parallelizing the algorithm, as we will see in Section 3.5.
The computation is also done in a column-major order instead of a row-major
order. Benchmarks indicated it to be faster by about 1% and as a bonus it is
consistent with [10]. The only difficulty this brings is that now Y is the first
string to be encoded and X the second one, while in the previous chapter it
was the other way around, which also means the number of their combinations
has changed to (tn)!(tn + 1)tm .

The idea of computing only a band of diagonals in the middle was not
implemented, as it was felt that such a heuristic would obscure the difference
in performance between different algorithms.
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Lastly, instead of converting U and V to an alphabet of size O(m + n) we
use a shortcut and just declare an array of size 256 that is able to be indexed
by all the values of the char type. Of course, the unfortunate consequence is
that |Σ| is limited to 256.

3.3 Packing values into bits
Let’s consider the problem of packing an array of n elements into a single
integer. Trivially, if an element has a particular number of possible values
(V ), the number of bits (b) needed to encode this element is b = ⌈log2 V ⌉. To
get b for the whole array, we just need to add up b of all the elements.

Ofcourse, if V of any element is not a power of two the array will not be
packed optimally, as some values of the integer are going to be skipped. Let’s
define V of the first element as V1, V of the second element as V2 and so on,
and likewise for b. Then we can get the memory efficiency, that is the ratio
describing how efficiently the array is packed, like this:

used values
all values = V1 × V2 × · · · × Vn

2b1 × 2b2 × · · · × 2bn

When all V are not a power of two, memory efficiency deteriorates quite
quickly. For example, with V = 3 and n = 2, it is equal to 56%, with the
same V and n = 4 it’s 32%, and with n = 6 it’s only 18%. For this reason,
we are going to discuss another way of packing such arrays, as shown by
Mikkelsen [10], and flesh it out to achieve 100% memory efficiency.

The main idea is to pack the values in a different base than base two. We
just have to use the arithmetic operations applicable for any base, instead of
the bitwise operations applicable because of a certain internal representation.
Left shift by x × b bits is replaced with multiplication by V x, right shift by
x × b bits is replaced with division by V x and bitwise AND of the last x × b
bits is replaced with modulo V x. For example, let’s say that we have an array
(1, 2, 0, 2) and V = 3. To encode the array in base three, we start with zero,
then we iterate the array and at each iteration we multiply what we have so
far by three and add the value to it. For the example array it looks like this:

• 0× 3 + 1 = 1

• 1× 3 + 2 = 5

• 5× 3 + 0 = 15

• 15× 3 + 2 = 47

and the result is 47, that is 1× 27 + 2× 9 + 0× 3 + 2× 1.
To decode the array, we access the last element with modulo three, and

afterward remove it with division by three. Again, for the example array it
looks like this:
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• 47%3 = 2 and 47/3 = 15

• 15%3 = 0 and 15/3 = 5

• 5%3 = 2 and 5/3 = 1

• 1%3 = 1

and we get the same array, (1, 2, 0, 2) (the fact that it’s backward can be
circumvented in the same way as when we are encoding in base two). The
advantage of doing all this is that when the base is equal to V the values are
packed tightly and there aren’t any intermediary unused values. The number
of bits needed is then ⌈log2 V n⌉. Differences for V = 3 and various n can be
seen in Table 3.1.

V = 3, n = 1 2 3 4 5 6 7 8
b for base2 2 4 6 8 10 12 14 16
b for base3 2 4 5 7 8 10 12 13

Table 3.1: Saved bits with the base3 encoding

We can make use of this when we are encoding A (V = 3), B (V = 3)
and X (V = tn + 1). However, Y has different V for each of its elements.
Nonetheless, it turns out that this approach still works wonders. We just have
to use Vi instead of V when encoding/decoding. For example, if we have array
(2, 1, 2, 0) with V1 = 5, V2 = 2, V3 = 3 and V4 = 4, the encoded result is
2× (2× 3× 4) + 1× (3× 4) + 2× (4) + 0 = 64. This means that we can encode
all four vectors with this approach, but not only can we encode each vector
as a number and then put them next to each other, we can encode all of them
as a single number, thus eliminating any memory inefficiency (last range of
unused values can be skipped, as the size of the LUT itself does not have to
be a power of two). How much memory is saved when allocating the LUT is
demonstrated in Table 3.2.

To be more precise, memory inefficiency will not be quite zero, as there
will still be a lot of unused values in the integer used for indexing. That is
because the number of combinations of Y is not tn!, but O(tn!). What is
meant by that, is that for example the sequence 0, 1, 1, 3 can never happen,
as the algorithm would make the third element 2 and not 3, but it is still a
valid value, since 0× (2× 3× 4) + 1× (3× 4) + 1× (4) + 3 = 19. However, an
encoding that would encode Y in such a way that these combinations would be
skipped and at the same time would not be horribly slow was not discovered,
and as such not implemented.

To be even more precise, the elements itself are not perfectly allocated in
the LUT. Each vector A′ (or B′) takes one whole byte if tm ≤ 5 (or tn ≤ 5),
or even two bytes if tm > 5 (or tn > 5), even though they don’t need all
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t_m/t_n standard modulo
1/1 54 B 36 B
2/2 13.65 kB 2.92 kB
3/3 3.67 MB 559.87 kB
4/4 14.80 GB 196.83 MB
5/5 30.33 TB 110.20 GB

Table 3.2: Size of the LUT with the standard and the modulo encoding
One element in the LUT occupies two bytes.

that space. This issue can be alleviated by encoding A′ and B′ into one
integer. This reduces the memory consumption for some values of tm and
tn and increases it for others. As it did not make much of difference, this
was not implemented in the final version of the implementation. Preliminary
benchmarks showed that it causes a negligible slowdown in the computation
step if bitwise operations are used to separate them and a very significant
slowdown if modulo arithmetic is used to separate them.

This brings us to the question of speed, as multiplication, division, and
modulo are without a doubt slower instructions than bitwise operations. How-
ever, we only need to encode A and B when we are storing them in the LUT
and decode them only when we are adding up all the values in the last row
of the matrix (and also at the beginning of the preprocessing step). This
means that the hottest part of the algorithm, the loop in the computation
step, is not affected by it. On the other side, X and Y are also decoded in
the preprocessing step, but Y is encoded at the start of each column in the
computation step and X even during each iteration. Nonetheless, preliminary
benchmarks did not indicate any significant performance loss, as any possible
effect was perhaps offset by the smaller and improved layout of the values in
the LUT. Even for the preprocessing step, individual iterations were about
10% slower, but the overall running time was still faster, as the number of
iterations decreased significantly.

Now, for the order of bits of A, B, X and Y in the index. The answer
to this question depends on whether the computation is done in row-major
or column-major order. That is because with row-major order X stays the
same during the computation of the whole row. Same goes for column-major
order and Y . Now, the reason why this is beneficial is that the accesses to
the LUT are kept in roughly the same area, leading to fewer cache misses.
As column-major order was used in the implementation, Y occupies the most
significant bits in the index. As for the rest, preliminary benchmarks proved
that best performance comes from X next, then A and lastly B (though this is
dependant on the values of tm and tn), that is the ordering should be YXAB,
with Y occupying the most significant bits and B the least.
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3.4 Choosing tm and tn

Choosing the optimal values for tm and tn is a nontrivial issue, but a crucial
one for a good performance of the algorithm. On one hand, bigger values
directly decrease the number of iterations in the computation step, on the
other hand, they also increase the size of the LUT and incurring a recurring
amount of cache misses slows down the algorithm quite a bit. Furthermore,
bigger values of tn lead to larger Y , which, as was discussed in the previous
paragraph, leads to better cache locality. However, as the number of values
in each element of X is directly tied to tn, it being small works wonders for
reducing the size of the LUT.

Extensive benchmarking showed several pairs of tm and tn being compet-
itive, nonetheless the results are reliant on several factors:

• The size of the CPU cache – larger cache allows the efficient use of larger
tables, which means larger tm or tn, which leads to better speedup.
However, even we if focus only on the tested machine, there are more
things to consider, such as

• The size of the input strings – even though tm and tn are constant,
increasing the size of the input strings leads to increased speedup. One
possible explanation is that longer columns allow Y to stay the same
for longer periods of time, leading to better cache locality. However, the
rate of speedup is different for each individually sized LUT and therefore
for different values of tm and tn.

• The number of threads used – this factor will be discussed in the follow-
ing section.

• The content of the input strings – the LUT is divided into parts based
upon whether letters in Y repeat itself or not. Of course, even though
letters from the English alphabet are not distributed uniformly, repeated
characters occur much less in War and Peace than in the genome of
Escherichia coli. This leads to certain parts of the LUT (or even only
a certain part) being heavily overutilized, while the others are heavily
underutilized. Which is actually useful, as this leads to better cache
locality and bigger values of tm and tn can be chosen and so on. This
is illustrated in Figure 3.1. We can see that in the case of the bacteria,
no part of the table is accessed more than 10% of the time, while in the
literary work the part where every element of Y is unique is accessed
more than 80% of the time!

All of this means that there is not a single optimal pair of values for tm

and tn, even when only the one CPU on the testing machine is taken into
account. As a result, the values chosen for parameters tm and tn in this thesis
differ from benchmark to benchmark.

24



Figure 3.1: LUT access patterns
The parameter tn is equal to 4. This means that there are 4! = 24 combinations of Y
and the corresponding LUT was divided into 24 parts depending on the value of Y .
Y = 0 means all elements in Y are the same, Y = 23 means all elements are unique.
Several values of Y , more specifically 2, 3, 7, 8, 9, 10, 11, 15 and 19, are wasted –
they represent combinations which can never happen, as is described in the end of
Section 3.3.
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In the implementation, tm and tn are configurable, however, they have
to be provided at compile time, that is, as template arguments. The reason
for that is that setting these values at compile time enables the compiler to
perform more optimizations. Examples include unrolling loops where the pa-
rameters are used as loop indices or replacing expensive operations, such as
modulo or division, with simpler ones. Preliminary benchmarks have shown
that providing these parameters at runtime slows down the preprocessing step
by about 50-200% and the computation step by about 5-30%. Another pos-
sible benefit of templates is that the various types can be chosen such that
they are the smallest possible types that can contain all the needed values for
each pair of tm and tn. However, making the table index uint32_t and the
integers representing A and B uint8_t is enough to represent all reasonable
values of tm and tn, so this feature is not as useful. What is definitely not
useful is the fact that implementation for templated functions has to be in the
header, and as such it is compiled every time a translation unit including this
header is compiled.

3.5 Parallelization
As the parallelization in the implementation is done with the help of the
OpenMP API, we will start with a short introduction of it. OpenMP’s aim
is to enable shared memory parallel programming without the programmer
actually having to program the interactions between the threads. It is a set
of compiler pragmas (also called directives) (and also some subroutines) that
when placed in the correct spots in the source code (for example, before a
for loop) instruct the compiler to parallelize the code by itself. Without a
compiler flag, the directives are ignored, and as such the same source code
can be used for both the sequential and the parallel version.

Now, recall that the only input to each iteration of the preprocessing step
is the loop index from which A, B, X, and Y are decoded. This means that
the calculations in each iteration are totally independent of each other (except
for the fact that the results are saved in the same LUT) and the preprocessing
step can be parallelized with a single OpenMP pragma, such as this one:
. . .

#pragma omp paral le l for private (Y, X, A, B)
for ( size_t YXAB = 0 ; YXAB < LUT_size ; ++YXAB) {
. . .

The private clause is needed for the vectors, as they are in reality used as
local variables, just declared before the loop for performance reasons. Thanks
to the efficient memory encoding each (most) loop index is a valid encoded
combination of A, B, X and Y and each iteration takes around the same
time. For this reason, the default static schedule is a reasonable choice. As
can be seen in Table 3.3, performance scales with additional threads quite
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threads speedup
2 1.98
3 2.85
4 3.79
5 4.54
6 5.43
7 6.34
8 7.25
9 8.15

10 9.06
11 9.96
12 10.84

Table 3.3: Scalability of the preprocessing step
Parameters are tm = 3, tn = 4.

Figure 3.2: Parallel computation of the matrix in practice
Blocks with blue background are already computed. Black arrows represent threads
working on new blocks. Red outlines show the borders of chunks.

well. However, it should be noted that for different values of tm and tn the
LUT can be very small and the overhead of creating the threads itself (and
also possibly the problem of false sharing) can dominate the running time.

Let’s move on to the computation step. As we have seen in the previ-
ous chapter, all the blocks on each diagonal of S and T can be computed
concurrently. Nonetheless, similarly to the naive algorithm, as discussed by
Bednárek et al. [11], computing one block takes a very small amount of time
and the communication overhead offsets any possible performance gains. This
means that we need to parallelize at a coarser level and so S and T are split
into chunks of a certain size. Afterward, instead of computing diagonals of
individual blocks, diagonals of chunks are computed. Figure 3.2 illustrates the
problem.
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3. Implementation Insights

Preliminary benchmarks indicated that chunks of size 64× 64 are a good
unit of work to base the algorithm around. However, this means that the input
strings have to be quite large before parallelization can be utilized. For exam-
ple, when |S| = |T | = 210 there are only nine diagonals of chunks, with only
three of these being of size four and the rest being even smaller. Nonetheless,
setting the size of chunks to smaller values did not seem to improve the run
time much, probably due to the overhead of organizing the threads. Setting
it to larger values proved fruitful for larger |S| and |T |, however, since making
an equation that works well in most cases proved to be quite difficult, chunks
were set to size 64× 64 for simplicity’s sake.

Even if the size of the input strings is kept high, there are few more im-
portant factors, which are apparent in Table 3.4. As we can see, the speedup
is very good for tm = tn = 1, which is unfortunately not that helpful, as
with these parameters the algorithm is very slow. As the size of the LUT
grows the gains begin to diminish. Some of this could be caused by higher
values of tm and tn having a smaller amount of blocks and thus a smaller
amount of chunks. Nonetheless, it seems that bigger impact was caused by
the threads sharing the space of the L3 cache or similarly by the small size of
chunks leading to often changing values of Y and thus worse cache locality.
This is demonstrated by the fact that the more cache-friendly War and Peace
improved the speedup for larger tm and tn quite a bit.

Finally, the other half of the computation step, that is the computation
of the edit distance from S and T after the main loop has finished, took up
<1% of the run time in preliminary benchmarks, and as such parallelizing it
was deemed unnecessary.

3.5.1 SIMD
Another speedup could be theoretically gained by using SIMD (Single Instruc-
tion Multiple Data) parallelism. That is using specialized vectors registers (of
sizes 64, 128, 256 or 512 bits) which can contain multiple values at once and
using specialized vector instruction sets (such as SSE or AVX) that can operate
on all these values at the same time.

Bednárek et al. [11] have shown that the naive algorithm can be parallelized
this way and the same approach can theoretically be used for Four-Russians.
While we cannot simply compute multiple rows (or columns) at once due
to their dependency on each other, we can compute them if they are slightly
“skewed”, as is sketched in Figure 3.3. This makes the implementation slightly
more complicated since a few blocks at the start and at the end have to
be computed in scalar fashion. However, the big problem is that vectorized
instructions are not well suited for looking up values in different places in a
LUT (if the LUT is larger than the size of the vector register, which it almost
definitely is in our case) and as such this approach was not pursued in the
implementation.
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3.5. Parallelization

threads 1/1 2/3 3/4 4/4
1 21568 3596 2470 4567
2 2.08 1.78 1.02 1.25
3 3.02 2.55 1.27 1.18
4 3.99 3.33 1.64 2.02
5 4.81 4.04 1.96 1.95
6 5.76 4.84 2.28 2.49
7 6.7 5.59 2.65 2.87
8 7.65 6.37 3.0 3.11
9 8.58 7.13 3.38 3.35
10 9.52 7.77 3.7 3.6
11 10.44 8.45 4.09 3.89
12 11.37 8.98 4.42 4.51

threads 1/1 2/3 3/4 4/4
1 21558 3598 2178 2214
2 2.08 1.81 1.48 1.4
3 3.02 2.59 2.01 1.88
4 3.99 3.43 2.62 2.38
5 4.82 4.12 3.1 2.8
6 5.77 4.91 3.67 3.26
7 6.72 5.71 4.25 3.86
8 7.66 6.49 4.85 4.25
9 8.62 7.26 5.44 4.96
10 9.54 7.96 5.92 5.33
11 10.46 8.67 6.53 5.98
12 11.38 9.38 7.08 6.48

Table 3.4: Scalability of the computation step
The first table is Escherichia coli, the second one is War and Peace. The size of the
input strings is equal to 65 536. Values in the headers of columns are the values of
parameters tm and tn. Values in the first row represent the run time in milliseconds
for the sequential version, while the other rows represent the speedup gained with
parallelization.

Figure 3.3: Utilizing SIMD instructions by “skewing” rows
Blocks with blue background are already computed. Black crosses show which blocks
are computed with a single vector operation.
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Chapter 4
Experimental Evaluation

In this final chapter, we are going to evaluate the Four-Russians algorithm
(from now on referred to as FR) by comparing it to two popular algorithms
for computing edit distance. The hardware and software configuration used
was described in Section 3.1 in the previous chapter. The main competitor
is Edlib, a C/C++/Python library by Šošić and Šikić [9] focused on comput-
ing edit distance and also various problems concerning sequence alignment in
bioinformatics. The library implements the Myers’s bit-vector algorithm [7]
(from now on referred to as MVB) repurposed for computing edit distance.
As mentioned in the last section of the first chapter, this algorithm computes
up to w elements at time (where w is the size of the computer word, which is
64 on the testing machine) by representing columns of the dynamic program-
ming matrix as vectors of bits and then using clever combinations of bitwise
operations to swiftly compute them.

The time complexity is O(kn/w) where k is some parameter, and if the
resulting edit distance is bigger than k, the algorithm instead reports an invalid
result. The solution chosen for this in Edlib is the same one as in the Ukkonen’s
algorithm, which is that k is set to a certain value (64) and it is doubled every
time the algorithm fails to find a solution until it finally finds one. In these
benchmarks, k was always set to m. Due to the nature of the input strings
this actually improved the performance.

To provide a baseline for both of the algorithms the naive algorithm was
also implemented. Each implementation was pursuing the same task – com-
puting edit distance, without saving the edit sequence or similar tasks. The
benchmarks for FR “cheat” a little bit, as they do not include the time re-
quired for the preprocessing step. However, as the preprocessing step has to
be run only once for each combination of tm and tn, it can be imagined that
each benchmark was instead run so many times that the overhead of the pre-
processing step was reduced to insignificance. The experiments are split into
three sections with regards to the sizes of input: when both m and n are small,
when only m is small and n is large, and when both m and n are large.
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4. Experimental Evaluation

Figure 4.1: Comparison of run times for small m and n
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4.1. Small m and n

4.1 Small m and n

The results for m = n ≥ 10 and m = n ≤ 50 can be seen in Figure 4.1. At first
glance, the jagged look of the curve representing FR looks quite interesting.
Initially, it might seem that this is due to the fact that accesses to the lookup
table take an uneven amount of time and that there is not enough of them
(due to the small input sizes) to average it out. However, the tests for each m
and n are run many times, the lookup table at least for parameters tm = 4 and
tn = 2 is small enough (236 kB) that after just being constructed it should
still occupy lower levels of cache and mainly the irregularities displayed are
actually quite regular. The real reason is that when m and n are not clearly
divided by tm and tn, the rest of the dynamic programming matrix has to be
computed with the naive algorithm. This can be demonstrated by the fact
that the speedup is largest for values of 12, 16, 24 and so on (or 10, 15, 20
and so on), that is when the input sizes were divisible by both tm and tn. In
contrast, the curve representing MVB is very linear, as is expected (except for
a curious blip at around 34).

On a different note, the results indicate that the constants disregarded
in the asymptotic analysis are higher for MVB. The slower startup could be
caused by some peculiarities of Edlib, but since the library was built foremost
for speed, that does not seem probable. It is more likely caused by the fact
that MVB does not achieve its real speedup until m is at least 64, as we will see
in the next section. In the case of Escherichia coli, by the time FR overtakes
the naive algorithm, MVB is already speeding up at a faster rate. However,
the roles are reversed for War and Peace, where FR achieves similar times,
but MVB gets much slower (we can compare the results from both cases as
the time taken by the naive algorithm is almost the same for both of them).
It is unclear why MVB slows down so much, but we will see in the last section
that it catches up later.

4.2 Small m and large n

This section concerns itself with the case, where m is very small relative to n,
as is usually the case in approximate string matching, which is what MVB was
designed for. Nonetheless, as can be witnessed in Figure 4.2, FR is actually
faster when m ≤ 32 for Escherichia coli, and when m ≤ 44 for War and Peace.
The reason for that is that MVB computes up to w = 64 elements at once, but
only in a single column. If m < w, it can only compute up to m elements at
once (and this effect did not seem to be alleviated by simply switching m and
n). This is demonstrated by the fact that for all values of m the run time for
MVB is almost equal. English text improved the run time of FR for reasons
described in the implementation chapter, however, this time the difference in
the content of the strings did not seem to change the run time of MVB much.
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4. Experimental Evaluation

Figure 4.2: Comparison of run times for small m and large n
n = 1048576.
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4.3. Large m and n

4.3 Large m and n

The results for m = n ≥ 26 and m = n ≤ 218 can be seen in Figure 4.3. Both
a single-threaded and a multi-threaded version of FR were benchmarked. The
multi-threaded variant is always set to max threads, which is 12 on the testing
machine, and the overhead of the threads actually makes it slower than the
single-threaded for lower m and n. On the other hand, when the sizes of the
input strings get large enough to make use of the parallelization the speedup
is dramatically improved.

Even though the situation is markedly better when the algorithm is work-
ing on the historical novel, it is is still outmatched by the more modern algo-
rithm. While FR has lower time complexity of O(mn/ log m log n), it is of no
use as in practice the logarithms have to be substituted by constants. It would
require blocks of size 8×8 to match the theoretical speedup of MVB (or more
precisely something similar to 1 × 64, since O(tm) time is spent on encoding
X at each iteration), and the LUT for these blocks would take around 3.7
exabytes of memory. Even if infinite memory were available, it would also be
needed for the extraordinary large input strings, as a probable cache miss in
each iteration of the algorithm would make the constant hidden by the big
O analysis very noticeable. When we put it all together, it is not surprising
that MVB is faster, as it computes up to 64 elements at a time using bitwise
operations, while FR computes only up to around 20 elements using a LUT.
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4. Experimental Evaluation

Figure 4.3: Comparison of run times for large m and n
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Conclusion

In this thesis the Four-Russians algorithm for computing edit distance was
analyzed, its implementation details were discussed and its performance was
evaluated.

One of the most interesting things about the algorithm is trying to optimize
the size of the lookup table and similar efforts were also a major part of this
thesis. A slight improvement upon the string encoding by Kim et al. [4] was
introduced, further reducing the number of combinations of the substrings of
size t (t = tm = tn) from O((2t)!) to O(t!(t + 1)t), while also taking less time
to be computed.

What’s more, it was tested that using modulo arithmetic for packing values
into bits, as mentioned by Mikkelsen [10], makes the layout of the lookup
table significantly more efficient and improves the overall performance of the
algorithm in most cases. It would be interesting to see how much more can
the size of the lookup table be reduced in practice, especially by utilizing the
work done by Brubach and Ghurye [12]. In addition to all this, a simple way
to practically parallelize the algorithm was also explained, which results in up
to 8× speedup with 12 cores.

Continuing with the topic of performance, the implementation of the Four-
Russians algorithm did quite well when the size of at least one of the input
strings was kept small (< 64) and was otherwise quickly outmatched by the
Myer’s bit-vector algorithm implemented by Edlib. However, the problem
with these small strings is that while the preparation of the lookup table does
not take a long time, it has to either be done beforehand and then kept around
for when it is needed, or the values of tm and tn have to be chosen carefully
so that the construction takes an insignificant amount of time.

This brings us to the second issue, which is how reliant the performance of
the algorithm is on these parameters, for with suboptimal values the algorithm
might be up to ten times slower, or possibly even more. However, we have seen
that the optimal values depend not only on internal factors, such as the layout
of the index to the lookup table or the encodings chosen for the individual
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Conclusion

parts of the index, but also on several outside factors: the size of the input
strings, the content of the input strings, the size of the processor cache and
the number of threads. All these factors together make it quite difficult to
configure the algorithm optimally.

To summarize, it seems that the Four-Russians algorithm is more inter-
esting from a theoretical than a practical standpoint, at least when it comes
to computing edit distance.
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Appendix A
List of Symbols

U and V input strings
m and n lengths of the respective input strings
Σ alphabet from which the input strings are from
D dynamic programming matrix used for computing edit dis-

tance, D[i, j] is equal to the edit distance between the sub-
strings U [1 . . . i] and V [1 . . . j]

k a parameter that represents a cut-off point under which edit
distance is not computed

w size of a computer word
tm and tn parameters for the size of one block
K the top left corner of a block
A the first column of a block without the first element
B the first row of a block without the first element
A′ the last column of a block without the first element
B′ the last row of a block without the first element
X the substring of U corresponding to a block
Y the substring of V corresponding to a block
S either a matrix or a vector where each element is A

T either a matrix or a vector where each element is B

LUT lookup table
FR Four-Russians (algorithm)
MBV Myers’s bit-vector (algorithm)
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Appendix B
Contents of the Enclosed CD

root/
bin/ ........................... executable files (after they are built)
BP_Rejmon_Martin_2019.pdf.........this thesis (in the PDF format)
CMakeLists.txt.........................configuration file for CMake
input/ ................................input files for the benchmarks
latex/....................................LATEX source for the thesis
README.txt .......................................build instructions
src/ .......................C++ source code for the implementation
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