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Abstrakt

Tato bakalarska prace se zabyva moznostmi vyuziti evolu¢nich algoritmu
pro generovani grafickych rozhrani na zakladé uzivatelovych preferenci. Tato
graficka rozhrani mohou byt popsana gramatikou, coz je sada pravidel, ktera

umoziuje popsat vSechna jejich mozna nastaveni.

Dalsim cilem je vyuziti zjisténych znalosti k vytvofeni prototypu, ktery bude

generovat grafové vizualizace nad danymi datasety.

Na vytvofeném prototypu byly provedeny méfeni poctu iteraci na vytvoreni
pozadované vizualizace. JelikoZ jsou interaktivni evoluc¢ni algoritmy zavislé
na nahodé a na uzivatelovych preferencich, nelze jasné fici, ze by pocet
dosazenych iteraci mél vyssi vypovidajici hodnotu. Tudiz méfeni slouzi spise

jako proof of concept.

Klicova slova Interaktivni evolu¢ni vypocetni technika, Interaktivni tvorba

rozhrani, Interaktivni genetické programovani






Abstract

This bachelor thesis investigates the utilization of evolutionary algorithms for
generating graphical interfaces, from a user’s preferences. These graphical
interfaces can be described by grammar. Grammar is a set of rules that describes
all of the feasible settings of the graphical interfaces.

Additionally, a prototype was created from the information obtained in the ini-
tial investigation. The prototype was designed to generate graph visualizations
for given datasets. The prototype measures the number of iterations that were
used to produce the desired visualization.

The number of iterations does not have any higher meaning as the interactive
evolutionary algorithms are dependent on randomness and the user’s prefer-
ences. Although, the measurements act as a proof-of-concept, indicating that
the prototype is functioning as intended.

Keywords Interactive evolutionary computation, Interactive interfaces gen-

eration, Interactive Genetic Programming
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Introduction

Evolutionary process, which is one of the pillars of evolutionary biology, has
proven, over almost five billions of years, to be an efficient approach to get
complex and successful individuals in various environments with enormous
diversity of individuals and with just a small changes of heritable characteristic

over successive generations [4].

Many methods in machine learning and artificial intelligence are actually
inspired by processes seen in nature [6] and as it is evolutionary algorithms are
one of them. More specifically, evolutionary algorithms emulate mechanisms of
evolutionary process such as gene mutation and allelic combination (genotype).
Traditionally evolutionary algorithms are usually used for finding a suitable
solution (not necessarily the best solution) for difficult optimization problems,
which are not possible to be solved in polynomial time, but quality of the
solutions is easily numerically expressible so searching over space of feasible
solutions is completely automated. In addition, these problems that satisfy the
requirement are based on mathematical evaluation of their solutions, which
means the evaluation is based on an objective approach. However, quality of
solutions of some problems are hard to be described mathematically e.q. music
and art, because quality of their representative solutions is based on subjective
preferences of an observer. Not only a human-based evaluation is needed for
the problems described above, but it is also way more efficient, and, besides,
it can be used in combination with traditional mathematically described

evaluation for very complex tasks to help directing the space search.
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INTRODUCTION

The aims of this thesis is to explore the field of existing methods of interactive
evolutionary computation used on graphical interfaces and use given know-
ledge to create a prototype for generating visualizations. For this purpose
a high-level grammar of graph visualizations Vega-Lite [26] is chosen. The im-
plemented prototype should help data scientist to display visualization much
more easily if they do not have knowledge about defining visualization or they

want to you Vega-Lite, for creating, saving and sharing their visualizations.
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CHAPTER 1

State of the art

Unlike traditional evolutionary computation (EC), which is widely studied and
is used in various applications, interactive evolutionary computation (IEC) do
not typically get the same attention, because of its non-mathematical based
evaluation and its application is mostly used for art, music and design, which
are not very practical uses if people can do it better by themselves. For example,
well-known is a project Picbreeder [16] from 2006, which is collaborative art
application that allows pictures be bred like animals and shared these pictures
with community, so everyone can continue with breeding their own pictures.
Another interesting application of IEC for art creation is Eletric Sheep [5], that
creates beautiful psychedelic visualizations that could be used as a screensaver.
The evaluation is based on community rankings of newly created visualizations
in a single iteration. Electric Sheep project runs since 1999 [21] and in its
archive of created visualization [7], an obvious progress can be seen after almost
250 iterations. Both examples uses Interactive Genetic Programming to map

mathematical representations of images as tree-like structures.

As it was said before, IEC is also used for music. For example, GenJam [10]
project, that is developed since 1993 and that can play jazz alongside a jazz

musician.

Another use case of IEC, that is not described in the paper above is a generation
of GUI from a paper Interactive Genetic Algorithms for User Interface Design
[18].
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1. STATE OF THE ART

Of course, there are other use cases of IEC, for example industrial design,
face image generation or database retrieval and they are well summarized in
Hideyuki Tagaki’s paper Interactive Evolutionary Computation: Fusion of
the Capabilities of EC Optimization and Human Evaluation [23].

IEC are not so different from traditional EC. Additionaly, the structure of the
visualizations has a format of a a tree, so traditional genetic programming (GP),
that was introduced in 1990 by John R. Koza in an article Genetic Programming;:
A Paradigm for Genetically Breeding Populations of Computer Programs to
Solve Problems [12] is apparently a good example of an inspiration, because
GP is used exactly for evolving tree-like structures. Throughout the years new
ways of tree-like structure evolution were discovered. For example relatively
new Grammatical Evolution (GE) [15] by Michael O’Neill and Connor Ryan
from 2001, that is based on Koza-style GP, but allows user to define grammar.
The grammar provides control over the creation of feasible solutions in such
way, that every rule of the tree structure can not be expanded into arbitrary rule
from a set of available rules, but has to follow given grammar. Traditionally
Koza-style GP is still able to use, but it has to be bended to support this
functionality.

User fatigue is a big problem for all IEC systems and using only an interactive
evolutionary algorithm (IEA) might not be efficient enought in seaching desired
solutions in a state space. In term of user fatique, IEA has to search as much
efficiently as possible. A normal IEC process lasts 10-20 iterations, before
user gets bored [23]. It is necessary to implement mechanisms to prevent
evolutionary algorithm search in evidently wrong regions. This could be
accomplished with additional information provided by user [19].
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CHAPTER 2

Evolutionary Computation (EC)

In computer science, evolutionary computation is an umbrella term for algorithms,
that are inspired by biological evolution with similar mechanisms seen in nature
and used on computer for automated global optimization. A goal of evolution-
ary computation is to produce highly optimized solutions from initial set by
repeteadly applying similar mechanisms from the biological evolution in an at-
tempt, that each iteration of applying these mechanisms over big set of solution,
produces similar solutions to continuesly get better optimized solutions. Evolu-
tionary computation has numerous applications in problem solving, designing,

planning, machine learning an more [3].

2.1 Evolutionary Algorithm (EA)

Evolutionary algorithms are a subgroup of algorithms from evolutionary
computation using the same mechanisms to breed higher optimized solutions.
These mechanism are:

initialization

« selection
» mutation
« recombination (crossover)
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2. EvoruTtioNaRY CompuUTATION (EC)

They are called evolutionary operators [17] and ways how they are applied on
an individual from a population, differ from one algorithm to another, but all
of them simulates the same principle from the biological evolution. The order
how these operators are applied is shown in figure 2.1. Even same called EAs
can use a bit different evolutionary operators. What defines EAs more than

evolutionary operator is a representation of an individual [2].

Usually, scientists distinquist two basic structures representing the individual,
tree-like structures and string structures. These structures can not be mixed
in population. That means, the evolutionary algorithm can not use tree-
like structure and string structure at the same time, in the same population,
because there is no way how to combine the solutions, which is a pillar of
evolutionary computation, but a tree-like structure can be encoded into a string
[9]. Additionaly, these structures use different representation of a single gene
in its genetic code. It can be integer, binary or real number representation of

a gene for string structured chromosomes [12].

2.2 Types of Evolutionary Algorithms

Different types of evolutionary algorithms use similar mechanisms, they differ

in a representation of the genotype and implementation details.

Genetic Algorithm (GA) is the most popular type of EA and usually easiest to
implement. GA uses the string representation of the genotype of the individual.
GA is usually used for problem solving. By applying evolutionary algorithms
described above, the solution of the given problem is being sought. However,
definitions of the GA do not always match. In more cases, GA is EA that uses
only string genotypes for representing the individual, but in some literature,
GA is defined as the generic evolutionary algorithm, so GA an EA are defined

as an exactly same algorithm [2].

Genetic Programming (GP) is the type of EA, that uses tree-like structures
as the representation of the genotype of the individuals. GP is typically used
to find a computer program, that efficiently imitates a computational problem.
It is also used to find a mathematical function that describe behaviour of given
data.
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2.2. Types of Evolutionary Algorithms

Figure 2.1: Evolutionary Algorithm

Gene expression programming (GEP) is used for the same cases as GP, but
it uses the string representation of the genotype by introducing genotype-

phenotype system of encoding.

Evolutionary Programming (EP) is also similar to GP, but uses only a fixed
structure of trees with numerical variables. EP evolves these numerical

variables instead of the tree-like structure.

Grammatical Evolution (GE) is also related to idea of GP, but uses string
representation of genotype instead of tree-like structure. It allows to evolve

solutions accordinly to grammar, that is provided by user.
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2. EvoruTtioNaRY CompuUTATION (EC)

Differential Evolution (DE) uses the string representation of the genotype, but

genes are in the form of real numbers or a vector.

2.3 Individual’s Representation

In biological evolutions, a genotype and a phenotype are very-similar sounding

words. These two terms are related, but they still mean different things.

The genotype is a genetic code, a set of genes, that is inherited from ancestors

on an organism. For the organism, its DNA or RNA is its genotype.

The phenotype is a physical expression of these genes, this genotype, and an

environmental influence of the organism.

The genotype can not be determined by simple observation, but the phenotype
can be. For example, an eye color is the inherited trait from parents. The eye
color is written in DNA by the same sequence of genes, but its actual appereance
is the phenotype. Furthermore, two people can have same eye color, they share
the same phenotype, even though they are not relatives and they do not share

the same genotype, same genes [29].

Evolutionary algorithm are also distinguished by their ability how acurately
they simulate coding and processes from biological evolution. The basic ones,
like genetic algorithm or genetic programming, simulate only simple encoding
of genes in genotype and simple translation of the genotype into phenotype.
The more complex EAs simulate much complex encoding and translation. These
more complex algorithms typically come up with more terms from biological
evolution. For example codons, alleles and so on, that desribe substructures
in the individual’s genotype. Evolutionary operators of these more complex
EAs are able to handle these more sophisticated structures, thus descriptions
of their functionality are also more complex. Grammatical Evolution is one of

these more complex EAs [15].

2.3.1 String

A string representation of the individual is a sequence of genes. These

genes can be represented with boolean, integer or real number value. The
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2.4. Evolutionary Operators

main characteristics of string representation is that two parents can be easily
combined into an offstring by a simple cut in the. Mutation is just a change
of a value in the gene. Representative example of EA with the string
representation of the genotype is Genetic Algorithm (GA) [2]. EAs with the
string representation are usually much more easy too implement than EAs
with tree-like structure, but it is not a rule. As it was said before, Grammatical
Evolution is a complex EA, even though it uses the string representation of the
genotype. Typically, EAs with this representation of the individual are used for

problem solving.

2.3.2 Tree

Tree representation of the individual is a connected graph that contains no
cycles [13]. This representation is often used in EAs, that are used to find and

optimize mathematical equations or programs.

2.4 Evolutionary Operators

Each EA has a bit different evolutionary operators and how they are applied
on the genotype of the individual from the population. A functionality of the
evolutionary operators, mostly depends on representation of the genotype. The
functionality also depends on representation of a single gene. Regardles of
different applications, the evolutionary operators still simulate the same thing

from the biological evolution.

2.4.1 Initialization

The first step that each EA does is an initialization of a population of individuals.
How well this step is done, can significantly increase convergence of the
evolutionary algorithm to satisty its goal.

2.4.2 Selection

Each iteration in EA, all individuals are measured by fitness function, that gives
every individual a score called fitness. Fitness of an individual says how good

is the individual, how well it is optimized for a given problem and what is its
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2. EvoruTtioNaRY CompuUTATION (EC)

quality. The best solutions with highest scoe are selected for breeding. This
is only one possible way of selection. There are actually more ways how to
select these solutions to prevent EA to stuck in a local optimum. Selecting only
top n individuals for breeding can correspond in production of very similar
individuals with the same score and without bonuses from breeding of these
solution. EA that stuck in the local optimum is not able to find better quality
solutions in a state space throughout iteration.

Again, there are much more algorithms for selection of individuals for breeding,
but the most used ones are tournament selection and fitness proportiate
selection.

‘s\\ee| is rotate o

selection
point

Fittest individual

haslargestsharelof Weakest individual

the roulette wheel -
$ == has smallest share of
the roulette wheel
Figure 2.2: Fitness proportiate selection. [24]

Tournament Selection iteratively creates a pool(tournament) of n random
individuals from population and from this tournament top m individuals with
highest fitness are selection for breeding [2].

Fitness proportionate selection could be imagined like a roulette wheel in
a casino that is shown in figure 2.2. A proportion of each individual on the
wheel is assigned by its fitness. Usually, fitness of each individual is normalized
to 1 or divided by total sum of all fitness values. Then, algorithm starts to
randomly rotate with the wheel that leads to selecting the individual and
lowering its proportion on the wheel [2].
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2.4. Evolutionary Operators

2.4.3 Mutation

In biology, mutation is a biological process, that changes random genes in
the genotype of the individual, in an attempt to find new characteristics, that
can be very useful in a life of a new born creature. Exploration of these new
characteristics can still create weaker creatures, that are not able to spread their
genes in following generation and natural selection can deal with them, but
characteristics discovered by mutation have not been discovered in creature’s
parents yet [2]. Not-yet discovered features can help the creature to survive in

the changing environment and this is the reason, why it is so important.

In evolutionary algorithms, mutation works exactly the same way. It can also
create worse-optimized individuals, but its biggest benefit is that it find new

ways and helps EA to not stuck in local optimum [2].

Mutation of the string genotype is a random change to different value of
a random gene in the individual’s genotype. It is shown in figure 2.3, where
4 genes out of 7 of the individual’s genotype are changed. There are two blue
big squares, that are mutated into red small squares and there are also two
red small squares, that are mutated into big blue squares. This created a new

individual, that might be better optimized than the previous one [2].

Mutation of the tree-like genotype is a random expansion of a random node
in the tree to a different node or a different subtree. It is shown in figure 2.4,
where is the arrow pointing at the red node. This whole subtree of the red node
with its two sons is replaced by a different subtree [12].
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2. EvoruTtioNaRY CompuUTATION (EC)

v vy Vv

Figure 2.3: Mutation of the string genotype.

MUTATION POINT

Figure 2.4: Mutation of the tree-like genotype.
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2.4. Evolutionary Operators

2.4.4 Recombination

Also known as crossover, recombination is a method that uses genotype of one
or two parents to produce genotypes of one or two individuals. Two basic
types of recombination are asexual and sexual recombination and they are
distinguished by number of included parents in the newly created genotype and
procedure that makes these descendants. Traditionally, asexual recombination
is not possible for same length string genotypes, but it is possible for variable
length string genotypes and for tree-like ones. Asexual recombination is not
possible for same length string genotypes, because of their representation.
A new individual with different genotypes can not be created from the same
length sequence of values, because it is always identical to its parent. Tree-like
genotypes can always change at least their leaves of subtrees. Variable length

sequences can shrink .

Recombination of the string genotype concatenates two subsequencies from
genotypes of two parents to create an offspring as it is shown in figure 2.5. As it
was said above, asexual recombination is possible only for genotypes with the
variable length and not for genotypes with the same length, bacause it leads to
creation of the same genotype of individual as individual’s parent [2].

Recombination of the tree-like genotype, also called crossover, is a mechanism,
which randomly chooses two nodes in trees of one or two parents. These nodes
then represent two subtrees that are exchanged to create one or two individuals
as it is shown in figure 2.6. The number of created individuals depends on an
implementation of the recombination algorithm [12].
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2. EvoruTtioNaRY CompuUTATION (EC)

eavent2 ([

OFFSPRING 2 D:l:_

Figure 2.5: Recombination of the string genotype.

PARENT 1 PARENT 2

SUBTREE 1 SUBTREE 2

s N

OFFSPRING 1 OFFSPRING 2

Figure 2.6: Recombination of the tree-like genotype.
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CHAPTER 3

Interactive Evolutionary
Computation (IEC)

In evolutionary computation, algorithms search a space of parameters and use
gradient information of the space to optimize parameters to get solutions of
higher quality. Since gradient information of user’s feelings, knowledge and
preference cannot be used to determine a quality of the solution, it is needed
to evalute solutions in different approach that is different from conventional

optimization methods [23].

In other words, algorithms of the traditional evolutionary computation optim-
ize solutions of problems, whose performace (fitness) is numerically described

and an algorithm is able to compute this performace.

However, some problems do not have the performance evalution of their
solutions numerically described, because the description is too difficult or even
impossible to specify. These problems typically require a human evaluation,
that is also difficult to implement and sometimes, the solution of the given
problem requires subjective preferences of an observer. Algorithms that require
the human evalution as a replacement of the fitness function are algorithms
of Interactive Evolutionary Computation (IEC). Usually, algorithms of IEC
retrieve graphics or music, such outputs must be subjectively evaluated [23].
In terminology of EC, algorithms work with genotypes and at the same time
with phenotypes. Genotypes are evolved by evolutionary operators, but they

are not presented to the user. User gets their phenotypes and expresses his
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3. INTERACTIVE EvoLuTiONARY CoMPUTATION (IEC)

interests and preferences on these phenotypes in the same way as it is shown

in figure 3.1.

EVOLUTIONARY
COMPUTATION

PHENOTYPES USER
GENOTYPES O
o
[FE maal ] P
Br@T s X E X . E ‘
_ OPERATIONS
oI AL

HNxE =

FEEDBACK

Figure 3.1: General IEC system — genotypes are decoded into phenotypes, that are
retrieved to the user and user provides his feedback on them.

Algorithms of the subgroup evolutionary algorithms can be used with human-
based evalution. They are called the same, but with the word ‘interactive’ in the
beginning of the original name of the algorithm, to show that the evaluation
is human-based. For example, Interactive Genetic Algorithm and Interactive
Genetic Programming [23].

3.1 Differences of IEC to EC

The main difference is the human evalution of the fitness of individuals, but
there is more to deal with. People are different to computers and unlike to
computers, they are not capable of making hundreds or even more calculations
and computations each seconds. Their are also biased because of their

preferences and this means that each person can evaluate one individual
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3.2. User fatique

differently. The user’s preferences can be desired in other applications
[23].

3.2 User fatique

User fatique is an issue, that all IEC systems have to deal with. If user has to
evaluate a lot of individuals from population, he usually gets easily exhausted
in a few steps of the evolution. Also, he gets exhausted, if he has to do many
steps in the evolution to get desired result. A normal IEC process lasts 10-20

iterations, before user gets exhausted [23].

To prevent the user to get easily exhausted, the IEC system should provide user
a small amount of individuals to get evaluated. These individuals should has
a high quality, to prevent a high number of evolution steps, that also leads to
exhaustion of the user. The small amount of individuals, but with high quality,
can be provided by some heuristic approach. Also, to quicken the evolution
that convergates to a desired individual in fewer steps, can be also ensured by
generating high quality individuals. These heuristic information are usually

provided by user.
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CHAPTER 4

Grammar evolution of graph

interfaces

Usually, spoken languages like Czech have their own grammar. To say a correct
sentence in the language means to follow the grammar of that language. It does
not mean, that the sentence must have a meaning. It can be a nonsense either.
The important is, that the sentence is syntactically corrent. In other words, it
means that the sentence is created by applying rules from the grammar of the

language. Every programming language is also described by its grammar.

Mathematical abstraction of a grammar is known as formal grammar.

4.1 Formal grammar

4.1.1 Definition

A formal grammar is a set of rules for constructing valid sentences from a lan-
guage. The formal grammar G is a quadruple (N, T, P, S) [11] where:

« N is a nonempty set of nonterminal symbols.
« T is a nonempty set of terminal symbols.
« P is a set of production rules.

« S is a starting symbol.
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4. GRAMMAR EVOLUTION OF GRAPH INTERFACES

4.1.2 Vocabulary

nonterminal

a symbol that can be replaced/expanded by a sequence of symbols

terminal
a symbol that cannot be replaced/expanded by anything else.

production rule
a grammar rule that describes an expansion for a symbol. The sequence
is replaces by a symbol or sequence of symbols.

derivation

a sequence of applied rules that produces finished string of terminals.

starting symbol
a grammar has at least one starting nonterminal symbol, from which all
strings derive.

empty symbol
a symbol that can be replaced by nothing.

Example of the formal grammar:

G=(N,T,P,S)

N ={A, B}

T ={zy}

P ={A— Buxl|y,
B — z|y,

S ={4}

This grammar can produce strings xx, yx and y. A derivation tree of the string
Xy is shown in figure 4.1.

4.1.3 Chomsky hiearchy

In addition, grammars are distinguished into four categories by the form of
their production rules, and by the class of languages they generate. They span
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4.1. Formal grammar

Figure 4.1: A derivation tree of a string.

from Type 0 to Type 3. The most general grammars are Type 0 grammars and
the most restrictive are Type 3 grammars [11]. Chomsky hiearchy and the

constaints on the production rules are described in table 4.1, where:
« a is a terminal symbol.
« A, B are non terminals.

« «, 3 are strings that contain sequences of terminals and nonterminals.

They can be replaced by empty symbol.

7y is a string that contains a sequence of terminals and nonterminals. It

cannot be replaced by empty symbol.

4.1.4 Backus—Naur Form

Backus—Naur Form or Backus Normal Form (BNF) is a notation technique for
expression context-free grammars. It consists of a set of terminal symbols,
a set of nonterminal symbols, a set of start symbols, and a set of production
rules it this form:
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4. GRAMMAR EVOLUTION OF GRAPH INTERFACES

Table 4.1: Chomsky hiearchy

Grammar ‘ Language ‘ Production rules ‘
Type 0 Recursively enumerable | a A5 —
Type 1 Context-sensitive aAp — avp
Type 2 Context-free A—=p
Type 3 Regular A—AorA— aB
<Left-Hand-Side> ::= <Right-Hand-Side>
The symbol : := denoted translation symbol from left-hand side to symbol on

right-hand side. All the nonterminals are surrounded by inequality brackets
<> A vertical bar | indicates a choise. BNF does not support the empty
string € [14].

For example, in BNF, the previously shown grammar:

<A> <B>x | y

X |y

<B>

4.2 Evolutionary algorithms for evolving gram-

mars

The concept of the evolution is based on the representation of derivation
trees.

4.2.1 Genetic Programming

Genetic programming is a simple way for evolving derivation trees. It uses
mechanisms that are applied on tree-like genotypes, because it directly works
with tree-like structure [12].

4.2.2 Grammatical Evolution

Grammatical evolution (GE) is more sophisticated way, that goes even deeper
in an attempt to mimic the natural evolutionary process. Genetic Program-

ming uses genotypes, which has the same structure like deviation trees, but GE
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4.2. Evolutionary algorithms for evolving grammars

encodes a genotype into binary string of variable-length. This string is tran-
scripted integers, which are blocks of 8 binary values. These integers are called
codons. Codons are mapped onto grammar rules that with assigned terminals
makeup the derivation tree [15]. For better understanding, check the figure
4.2.

Grammatical Evolution Biological System
| By Sg L O0000OOCK o
+ TRANSCRIPTION ¢
| Integer String l /\/\/\/\/ RNA
+ TRANSLATION *

Rules Amino
Acids

% +

Program Phenotypic Effect

Figure 4.2: Comparison between the GE system and a biological genetic system
[15].

A grammar for Grammatical Evolution is provided in Backus-Naur Form (BNF).
It is not a requirement, to specify the entire language by BNF. Perhaps, it is more
useful to specify just a subset of the language geared towards the given problem
[15].

The genotype (binary string) is mapped by reading codons (8 bits) to an integer.
This integer is then used for selecting an appropriate production rule by using
this following mapping function:
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4. GRAMMAR EVOLUTION OF GRAPH INTERFACES

rule = (codonintegervalue)
MOD

(numbero frules forthecurrentnonterminal).

The traversal of the genotype is done by reading codons, and if production rule
is selected, another codon has to be read. It is possible that during mapping
process, the individual runs out of codons. In that case, EA wraps the individual
and reuses the codons. Authors claim that this technique of gene-overlapping

phenomen has been observed in many organizms [15].

The GA adopted to the variable-length genotype is used in this case. With
GA there comes advantages of GA, which are evolutionary operators and
initialization, that are relatively simply to realize for GA, because of the string-
based genotype. More evolutionary operators can be applied on the populating,
because of recognition of codons in the genotype. They are evolutionary

operators, based on mutation and crossover of the codons[15].

4.3 Grammar of graph interfaces

For the purpose of applying evolution process on a grammar, Vega [25]
framework, as a tool for creating visualizations, was chosen, because it supports
specification of a visualization by JSON syntax, that is described by Vega-Lite
grammar [26].

4.3.1 Vega-Lite

Vega-Lite is a high-level visualization grammar of interactive graphics, a declar-
ative language for creating, saving and sharing visualizations. It is build on top
of Vega visualization grammar to provides a concise JSON syntax for rapidly

generating visualization to support data analysis [26].

A Vega-Lite specification describes a visualization as mappings from data
to properties of graphical marks and this specification is defined in a JSON
format[26]. The specification is parsed by Vega-Lite’s JavaScript runtime
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4.3. Grammar of graph interfaces

compiler to automatically generate this specification into a lower-level, more
detailed Vega [25] specification that uses its compiler to render visualization
components, such as axes, marks, legends and scale of the defined vizualization
as a static image or as a web-based view. Thanks to carefully defined rules,
Vega-Lite also automatically determines properties of these components to keep

specifications succinct and expressive, but still provide user control.

As Vega-Lite is designed for analysis, it supports data transformations such
as aggregation, sorting, binning and visualization tranformations stacking and
faceting. It also supports composion of visualizations to create layered and

multi-view displays with an additional support of interactive selection.

However, for the purpose of this thesis, further descriptions of multi-view com-
posions, also complex transformations and selection of data is not needed. In-
teractive interfaces of the visualizations are also not needed to be defined, even
thought. This thesis primarily focus on application evolutionary mechanism on

the mappings of data values to mark properties.

In the following reading, there are described only parts of all features, proper-
ties and functions of Vega-Lite, that are minimally required for the understand-
ing of the Vega-Lite, its syntax, structure and which parts of Vega-Lite are used
for this thesis.

4.3.1.1 Common Properties of Specifications

All specifications in Vega-Lite can contain properties as name for later refer-
ence, description for comments, title of the vizualization, data as a data source,
that can be loaded inline or from an external source and transform array of
data transformation of the given data for calculating new fields and for filter-
ing of given data. The prototype in this thesis does not actively work with any

of these properties.

4.3.1.2 Top-level Specifications

All specification can contain these following top-level specifications. The
prototype also does not actively work with these properties. The properties
are $schema, which is a source of Vega-Lite specification, background as CSS
color property, padding from the edge of the visualization canvas to the data
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4. GRAMMAR EVOLUTION OF GRAPH INTERFACES

rectangle, autosize, that sets how the visualization size should be determined
and config, which is Vega-Lite configuration object.

4.3.1.3 Single View Specification

// Properties for top-level specification

"$schema": "https://vega.github.io/schema/vega-lite/v3.json",
"background": ...,

"padding": ...,

"autosize": ...,

"config": ...,

// Properties for any specifications
"title": ...,

"name": ...,

"description": ...,

"data": ...,

"transform": ...,

// Properties for any single view specifications
"width": ...,
"height": ...,
"mark": ...,
"encoding": {
"x"r {
"field": ...,
YEYRERYE caap
}l
y'soL.
"color": ...,

Listing 41: A structure of a single view specification in Vega-Lite [27]

A single view specification describes a mark type of the visualization and
encoding mapping between data features and properties of the mark. Once
the mark type and the encoding is provided, Vega-Lite produces axes, legends
and scales of the visualization that follows carefully defined rules. With these
rules, Vega-Lite is also able to determine properties of these components and

also give a negative feedback, if the specification is not valid and Vega-Lite has
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4.3. Grammar of graph interfaces

to change the specification [27]. The summarization of available properties for

a single view specification are described in the table 4.2. An structural example

of a single view specification is show in listing 41.

Table 4.2: Description of properties for single view specification[27]

Property Description
Required. A string describing the mark type (one of
"bar”, “circle”, “square”, “tick”, "line”, “area”, "point”,
mark » 2 » » » » L
rule”, “geoshape”, and “text”) or a mark definition
object.
. A key-value mapping between encoding channels and
encoding definition of fields.
width The width of a visualization.
height The height of a visualization.
. An object defining the view background’s fill and
view
stroke. Not needed.
selection A ke‘y-'value mapping between selection names and
definitions.
An object defining properties of geographic projection,
projection which will be applied to shape path for ”geoshape

marks and to latitude and “longitude” channels for
other marks.
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4. GRAMMAR EVOLUTION OF GRAPH INTERFACES

4.3.1.4 Encoding

To encode a particular field from the dataset to the mark property, this
mapping’s definition must be provided by user and described in an encoding
object. The mapping of the field to the channel (like x, y or color) must contain
field property and type property, which is data type of the field. In addition
to top-level transform object, the Vega-Lite also supports inline tranforms of
fields in a channel’s definition.

From all the encoding channels shown in listing 42, the prototype allows to
map and evolve fields to x, y channels and all Mark Properties channels (e.g.,
color, fillOpacity, strokeOpacity, size and shape). The other channels are not
needed for purpose of this thesis, because they do not affect appearence of
generated visualizations (Text, Tooltip, Hyperlink, Order, Level of Detail and
Facet channels) or they would require much more provided information from
the user before start of the evolutionary process. For example Geographic
Position Channels require an image of a map and transformation of positions

in data to project the rows in data on the map.

Table 4.3: Supported field properties[8]

Property Description

field Required. A string defining the field from the dataset.

Required A data type of the encoded field (e.g., quant-

itative, temporal, ordinal and nominal).

A flag for binning of a quantitative field. It can be

bin true, false or BinParams object. For the purpose of
the prototype, only true and false are considered.
Time unit for a temporal field. Because of not support-

timeUnit ing temporal fields, this property is absolutely ignored

in the prototype.

Aggreation function for the field. Available values are:

mean, sum, median, min, max and count.

A title for a field. It is not very interesting for showing

functionality of the prototype. Because of that, the

title default field title from dataset is used instead or the
title corresponds with aggregate function over the
values of the field.

type

aggregate
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4.3. Grammar of graph interfaces

// Specification of a Single View

{

"data": ... ,

"mark": ... ,

"encoding": { // Encoding
// Position Channels
X" oL,
"x2": ...,
y2" L.,
// Geographic Position Channels
"longtitude": ...,
"latitude": ...,
// Mark Properties Channels
"color": ...,
"opacity": ...,
"fillOpacity": ...,
"strokeOpacity": ...,
"strokewWidth": ...,
"size": ...,
"shape": ...,
// Text and Tooltip Channels
"text": ...,
"tooltip": ...,
// Hyperlink Channel
"href": ...,
// Key Channel
"key": ...,
// Order Channel
"order": ...,
// Level of Detail Channel
"detail": ...,
// Facet Channels
"facet": ...,
"row": ...,
"column":

i

}

Listing 42: Structure of the encoding property for a single view specification [28]
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CHAPTER 5

Implementation of prototype

5.1 Goals

The prototype should allow the user to generate visualization in Vega-Lite for
a given data . The generated visualizations should be based on preferences of
the user and selections and actions what the user did. The prototype should
respect that the user may does not know anything about Vega-Lite grammar
and its JSON syntax.

The prototype should has some graphical user interface (GUI) to make the
selection of user prefered visualizations easier for the user and make the
complete interaction with the prototype easier without any deep knowledge
of command line. The GUI is almost required for this task, because the display
of visualization and following selection would be much more complicated to

realize by user’s interaction with the command line.

Also, the prototype should respect that the user may does not know anything
about statistical datatypes and it should provide an automatical detection of

feature datatypes in the given dataset.

The prototype should use mechasims to prevent user fatique, such as heuristics

that restrain size of searched state space of feasible solutions.

Once the visualization is good enough for the user, the prototype should
provide a way of retrieving the specifications of visualizations in Vega-Lite

JSON syntax, so the user can actually use and share them.
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5. IMPLEMENTATION OF PROTOTYPE

5.2 Implemented EA

I have chosen Genetic Programming, respectively Interactive Genetic Program-
ming to evolve the visualization’s specification in this prototype, because of
its tree representation. Genetic Programming also uses trees to represent indi-
viduals from the population. It does not mean, that other types of evolutionary
algorithms cannot be used, but they would require an additional encoding of in-
dividuals’s genotype to its phenotype, which means to translate the genotype
to its visualization’s specification. Because of the relatively short grammar,
I have decided that Grammatical Evolution would be an unnecessary complic-
ation. Also, Grammatical Evolution works with translation of the genotype to
the phenotype, that would make heuristic approaches on the phenotype more
complicated, because of backwards translation from the phenotype back to the

genotype.

5.2.1 Encoding of grammar

To directly program all the rules, requires a lot of effort and the rules are then
hard to read from the final program. This is the reason, why the all the possible
specifications of visualizations and desribed by a grammar. The visualization
specifications are generated by derivation of production rules included in the
grammar. The program derivates these rules to generate the vizualization
specifications. Additionaly, the grammar is easier to read and in a case of need,

easier to control which specifications are produces by the program.

The JSON definition of the grammar contains properties described in table 5.1
with equivalents from the formal grammar. Used JSON constructs for definition
of production rules are described in table 5.2. An example of JSON definition of
the grammar and the actual grammar used in this prototype is shown in listing
51.
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5.2. Implemented EA

Table 5.1: Properties of the JSON definitios of the grammar with analogy for formal

grammars.
Property Description In formal grammars
Evolutionary Algorithms al-
ways starts to generate the
StartingSymbol Vega-Lite specification from A starting symbol.
the production rule defined in
StartingSymbol property.
Expressions A map of available production A n(?nempty set of pro-
rules in the grammar. duction rules.
A h i
. nonempty seF that contains A nonempty set of ter-
Terminals every element in the Expres- ~ .
. minal symbols.
sions map.
- A nonempt?f set that Cont.ains A nonempty set of
Nonterminals every key in the Expressions

mabp.

nonterminal symbols.

Table 5.2: Equivalent constructs for the definition of production rules used in the
JSON definition of the grammar used in the prototype.

Construct

Description

In formal grammars

Key : [ Options|[] ]

The key on the left side
is a name of the produc-
tion rule. The right hand
side contains an array of
Options([].

The production rule.

Options[ Elements[] ]

An array of element ar-
rays (feasible values or
keys).

A set strings that can
be derived from the
production rule.

Array of element arrays

A set of strings of

Elements]] (feasible values or keys). termmals and nonter-
minals.
A value or the produc- Terminal or nonter-
element . .
tion rule. minal symbol.
(] Empty element. Null symbol.
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5. IMPLEMENTATION OF PROTOTYPE

{
"Expressions": {
"start": [ ["mark", "encoding"] 1,
"encoding": [

["fill", "opacity", "shape", "size", "color", "stroke"]

]’

"mark": [
["bar"],
["rect"],
["line"],
["point"],
["area"],
["circle"],
["square"]

]’

"color": [ ["aggregate", "bin", "field", "type"]l 1,

"fill": [ ["aggregate", "bin", "field", "type"] 1,

"opacity": [ ["aggregate", "bin", "field", "type"] 1,

"shape": [ ["aggregate", "bin", "field", "type"]l 1,

"size": [ ["aggregate", "bin", "field", "type"] 1,

"stroke": [ ["aggregate", "bin", "field", "type"] 1,

"x": [ ["aggregate", "bin", "field", "type"]l 1,

"y": [ ["aggregate", "bin", "field", "type"]l 1,

"aggregate": [

["mean"],
["sum"],
["median"],
["min"],
["max"],
["count"],
["average"],
[]
]’
"bin": [
[true],
[]
]I
"field": [/* Names of fields in the dataset */],
"type": [
["quantitative"],
["nominal"]
1
}I
"StartingSymbol" : ["start"]
}

Listing 51: The grammar encoded into JSON syntax.
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5.2.2 Initialization

At first, the algorithm of Genetic Programming expands StartingSymbol from
the JSON definition of the grammar. In the case of the implemented prototype
and its grammar, it is start key. After this expansion, algorithms has only
one option, that is expansion of the option ["mark”, "encoding”]. Both of
these strings are production rules, because there exists production rules in the
Encodings map. The important part is, that they are not nonterminals, they
create an object accesible by the name of expanded element, then the algorithm
continues with the expansion of elements accesible by the key in Encodings
map. The expansion of a single branch of the tree ends, when the last expanded
element is not a terminal. It means, that the element is not one of the keys in
the Encodings map. In other words, it is not one of the production rules.

Once the generation is done, algorithms removes all the empty strings. Empty
strings are in the grammar, to represent, that the rule is only optional
and during this process is removed from the individual, which is the final
specification of the visualization.

5.2.3 Mutation

The individual’s tree is traversed by the algorithm of mutation in preorder way.
In each node of the tree, the algorithms randomly chooses, if the node’s siblings
should be replaced by a new subtree or not. If it is true, the new subtree
is derivated from the production rule accesible by the node’s name in Encodings
map. This leads, that not every node from the tree is actually traversed by the
algorithm. The nodes from the replaced subtree are no longer relevant for the
individual, because they are no longer a part of the tree. The probability, that

drives the mutation of nodes is set in GUI by the user.

5.2.4 Recombination

The recombination in Genetic Programming is defined as the crossover of
arbitrary subtrees from two parents. However, I have decided, that the
prototype exchanges only subtrees of field mappings. There are two reasons
for that. The first reasons is, that properties of each mapping is dependant on

data type of the field (e.g., binning of nominal values is not possible, also the
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most of the aggregate functions is not defined for nominal fields). The second
reason is my decision based on my experience with the previous versions of
the prototype. The previous versions of the prototype struggled to combine
individuals selected by the user. Previously, the algorithm randomly selected
the subtree of the individual and exchanged it with the second parent. For
example, the user selected two specification. One of them is containing binning
of some field and the second is containing the aggregation applied on another
field. The algorithm exchanged them, but the user’s preference is mapping of

x and y field, so the binning is not the point of his interests.

5.2.5 Selection

All the individuals selected by the user are used for later breeding. The
recombination happens only if two individuals were selected by the user. If
user selected only one individual, only the mutation is applied on the individual

in breeding process.

5.3 Heuristic approaches

To quicken the evolution and shrink the number of evolutionary steps, by re-

stricting the seached space, the prototype uses four heuristic approaches.

5.3.1 Datatypes

The datatype of the field is marked as nominal, if any of the field’s values
is not numerical. If all the values are numerical, but the number of unique
values is less then ten, the datatype of the field is also marked as nominal.
Howerever, the user can still choose the proper datatypes in the GUI of the
prototype. This approach removes the need of defining the type property in
the mappings.

5.3.2 Number of mapping in a graph

The user can select, how many field should be mapped in the visualization’s
specification. This is based on a principle, that user probably know, which

fields he wants to show in the visualization. This approach also removes all the
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specifications, that do not have an exact number of mappings to the selected

fields.

5.3.3 Forbidden transformation of nominal features

As it was said before, the defined grammar does not cover every rule from Vega-
Lite specification. On of them is, that nominal fields do not transformations,
that are supported for quantitative fields. To avoid assigning these tranforma-
tions to nominal fields with the definition of the grammar, the algorithm that
expands the rules would have to work with another type of production rules,
that are translated differently, but it would complicate the implementation, the
grammar and it is not needed for the prototype. Because of that, the prototype
checks field mappings and removes the aggregate and the bin property, if the

type property is nominal.

5.3.4 X and Y axes

The visualization’s specification should primarily map fields to x and y axes
instead of mapping them to mark properties. The algorithm prefers mapping
to x and y axes and then, if there is any field left, the algorithm maps the rest
of the fields to mark properties. This approach reduces the space search to

visualization’s specifications, that would not show only as a single mark.

5.4 Description of GUI

The GUI of the prototype consists from a left columns, where are most of the

controls, and main window, where are visualizations shown.

5.4.1 Left Column Window

In the left column, user can control probability of change, projected in a next
iteraction of the evolution. Then, there is a button to run the evolutionary
algorithm on selected visualization from the main window. The user can also
select one of predefined datasets and select columns from the datasets. Also,

the user can define, what datatypes are the selected columns. After running
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5. IMPLEMENTATION OF PROTOTYPE

the first iteration, these columns are locked and the evolutionary algorithm

can use only the selected columns for the generation visuzalizations.

5.4.2 Main Window

The main window of the prototype is used for showing visualizations that can
be selected by the user. The main window shows twelve visualizations in total.
The user selects them by Left Mouse Click, which makes a border around the

selected visualization turned green.
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CHAPTER 6

Experiments

To shown how the prototype works, [ have chosen tree experiments. All of them
defines visualizations, that the prototype should produce in the end. I also show
which visualization were chosen to be bred. All the measurements are strongly
dependant on my knowledge, preferences, decisions that I make and random-
ness of evolutionary approach, which is problematic for the measurements, that
are not objective, but strongly subjective and coincidence dependant. The meas-
urements primarily show the actual interactive evolutionary computation ap-
plied on a grammar instead of efficiency of evolutionary algorithms.

6.1 Experiment 1: Students performance in
Exams

The dataset contains information about students, their gender, race/ethnicity,
scores in math, reading and writing and other information. The dataset was
downloaded [22].

6.1.1 Goal

At first, I generated the visualization, that is shown in figure 6.1. I have chosen
this visualization, because I would not be able to show crossover on an easier
one. The goal of this experiment is to generate at least a similar visualization. It
means, that the axes should be mapped in the same way to the fields math score
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and reading score, but mark properties are arbitrary. The final visualization

must distinguish categories of nominal field gender.

1004 gender
female
g 80 C ) male
0
?
g
£ 60
@
e
S
O 404
o
o
s
S 20-
<
O I | | | 1

| I |
20 40 60 80 100
math score (binned)

Figure 6.1: The desired visualization for the experiment 1.

6.1.2 Evolution

As it is shown in figure 6.2, there are two individuals selected for breeding in
the first iteration, which is an initialization. Thwy are chosen, because the first
one contains binning of math score field and the second is selected, because
I prefer its mark encoding, which is fill instead of bar. Probability of change
is set to zero, because I want get in the next generation only siblings, that are

simple recombinations of the mappings of these two visualizations.

In the second interation, I get math score field mapped to y axis and gender
field to fill mark property. The only feature, that is missing in the visualization,
is the aggregation of reading field. This is fixed in the sixth iteration, after the
individual from the second iteration is repeteadly chosen into four iterations
with 15 % probability of change. As it is alone in the population, the only genetic

operator applied on these on the individual is the mutation.

In the sixth iteration, algorithm returned desired visualization. The axis are

swaped and it uses different mark property, but it shows the same relation
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6.1. Experiment 1: Students performance in Exams

between average reading score, gender and math score, that is also binned.

The final visualization specification is shown in listing 61.
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é s 60 r
ST 2 i’
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0 100 0 50 100
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E 1 [ ]
g 60-{
TH L -
6™ ITERATION g > .
(TERMINATION) L
30
-
20

0 50 100
Average of reading score

Figure 6.2: The diagram of chosen individuals during iterations for the experiment
1.
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6. EXPERIMENTS

{

/* Top-level Specifications and common properties were removed,
because they are not evolved by the prototype. */

"mark": "square",
"encoding": {
il {
"field": "gender",
"type": "nominal"
}’
x"r {
"field": "reading score",
"type": "quantitative",
"aggregate": "average"
"yt o
"type": "quantitative",
"bin": true,
"field": "math score"
}

}
}

Listing 61: The final visualization's specification from the experiment 1.
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6.1. Experiment 1: Students performance in Exams

6.1.3 Results

Table 6.1: Measurings of needed interations to reach sufficient visualization for
experiment 1.

Measuring |1 2 3 4 5 6 7 8 9 10| Avg
#of interations [ 6 18 25 8 33 17 52 2 43 26| 23
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6.2 Experiment 2: Heart Diseases

The dataset contains information about patients with heart diseases, their
gender, type of chest pain that the patient reported, a resting blood pressure,
and more vital signs. The dataset was also downloaded from Kaggle [20].

6.2.1 Goal

The goal for the second use case is to find such visualization of Heart Diseases
dataset, that shows different types of chest pain cp by age and with maximum

heart rate achieved thalach.

6.2.2 Evolution

The process of evolution is shown in figure 6.3. In the first iteration, only
one individual was chosen for breeding, because the other individual were
subjectively considered as not promising for breeding. From the second
iteration to fifth iteration, I was not satisfied with generated individuals and
this is the reason, why the same individual was used from the second iteration
until I was satisfied enough with two new individuals that I tried to breed. The
first parent was chosen, because I thought that a stacked bar graph could be
a good approach to reach the goal. The second parent was chosen, because
I wanted to save the same mapping of axes. In sixth iteration, I was not satisfied
with generated offsprings, so I tried to breed the same parents again in the
seventh iteration, which gave me one promising visualization, which I tried to
slightly mutate, so I lowered the probability of mutation rate. This gave me two
promising visualizations. However, the combination of them took five more
iteration to breed such an individual, that I thought is good enough. I needed
to add some aggregation to the vizualization, so I set the probability of change
relatively low with expections, that the mutation would change only a small
part of individual’s genotype. By that, I produces stacked bar chart, that shows,
which groups of people have problems with heart rate levels accompanied by

which chest pains. The final specification is shown in listing 62.

6.2.3 Results
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6.2. Experiment 2: Heart Diseases
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Figure 6.3: The diagram of chosen individuals during iterations for the experiment
2.

Table 6.2: Measurings of needed interations to reach sufficient visualization for
experiment 2.

Measuring [ 1 2 3 4 5 6 7 8 9 10/ Avg
# of interations | 21 17 19 6 2 5 11 13 16 10| 12
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6. EXPERIMENTS

{

/* Top-level Specifications and common properties were removed,
because they are not evolved by the prototype. */

"mark": "bar",
"encoding": {
"color": {
"field": "cp",
"type": "nominal"
}l
"x": {
"aggregate": "average",
"field": "thalach",
"type": "quantitative"
}I
"yt |
"field": "age",
"type": "quantitative",

"bin": true
}
}
}

Listing 62: The final visualization's specification from the experiment 2.

70



6.3. Experiment 3: Graduate Admission

6.3 Experiment 3: Graduate Admission

The dataset contains information are considered to be important for application
on master’s studies. The information includes TOEFL scores, GRE scores,
Change of Admit, university rankings and more. The dataset was also

downloaded from Kaggle [1].

6.3.1 Goal

Find a bar graph, that shows average change of admit for different university

rankings.

6.3.2 Evolution

Because of expected simplicity of the final graph, I bet on random intialization
every iteration to get two axes with University Ranking and Average of
Change of Admit. After several iterations, both axes were present in some
graphs, so I compounded them into one graph by crossover with 0 % probability
of change. The same approch is described in figure 6.3. The final specification
is shown in listing 63.

6.3.3 Results

Table 6.3: Measurings of needed interations to reach sufficient visualization for
experiment 2.

Measuring [1 2 3 4 5 6 7 8 9 10| Avg
#of interations [5 1 4 3 3 2 2 2 14 2| 38

6.4 Summary

Asit was predicted before, all the experiments took variant number of iterations
to reach the desired goal. I have noticed that EA usually reaches an almost same
looking visualization in just a few iterations, but struggles to produce from this
visualization the exactly same look visualization from the goal. This happens,

because the lowest changes in the tree genotype are typically in the lowest level
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Figure 6.4: The diagram of chosen individuals during iterations for the experiment
2.
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6.4. Summary

{

/* Top-level Specifications and common properties were removed,
because they are not evolved by the prototype. */

"mark": "rect",
"encoding": {
"x": {
"type": "nominal",
"field": "University Rating"
}I
"yt |
"field": "Chance of Admit",
"aggregate": "average",
"type": "quantitative"
}

}
}

Listing 63: The final visualization’s specification from the experiment 2.

of this tree and the mutation process, during the traversal of the tree, more-
likely changes a totally different leaf of the tree or it changes the whole subtree.

Table 6.4: Summary of needed iterations for all experiments

Experiment 1 | Experiment 2 | Experiment 3

6 10 5
18 21 1
25 17 4
8 19 3
33 6 3
17 2 2
52 5 2
2 11 2
43 13 14
26 16 2
26 16 2
Avg. Avg. Avg.
26 16 2
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Conclusion

In this bachelor thesis, the field of interactive evolutionary computation
and evolution of grammars was described. Also, two methods Genetic
Programming and Grammatical Evolution for generating graphical interfaces
were described.

Based on the information obtained during writing this thesis, genetic program-
ming was adapted to generate graphical visualizations in Vega framework using
the methods of interactive evolutionary computation and grammar evolution.
Also, custom mapping of the grammar to JSON syntax was described.

Several techniques for shrinking the size of the search space were implement
and described in this thesis. Their implementation lead prevent user fatique.

Three different experiments were done and the number of iteration were
measured to confirm functionality of the prototype. The reasons, why the

measurements do not have any higher meaning, were also investigated and

described.

This bachelor thesis, the prototype and the described heuristic approaches
can serve as a promising basis of an application from which a website could

arise.
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APPENDIX A

List of Acronyms

BNF  Backus—Naur Form
EA Evolutionary Algorithm

EC Evolutionary Computation
GA Genetic Algorithm

GE Grammatical Evolution
GP Genetic Programming

GUI  Graphical User Interface
IEA  Interactive Evolutionary Algorithm

IEC Interactive Evolutionary Computation
JSON JavaScript Object Notation
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APPENDIX B

Supplemental Material

The source code of the thesis and the implementation can be found on the
attached medium or online at GitHub.

Thesis https://github.com/Lznah/thesis

GraphEvolution https://github.com/Lznah/graphevolution
README.MA ..evvviiieeeeeinneenss the file with a brief contents description
BT Petr Hanzl 2019.pdf .........ccvvvvennn.. the thesis text in PDF format
GraphEvolution/ ........cociiiiiiiiiiiinnninnnn. repository for the prototype
tapp/ .......................................... source code of the prototype
release-builds/ .................. release builds for different platforms
thesis/ .iovvieviiiiiinnnn.. the directory of EIgX source codes of the thesis

Directory structure B.1: Contents of the attached medium
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