
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 15, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Data augmentation for reinforcement learning

 Student: Martin Nykodem

 Supervisor: MSc. Juan Pablo Maldonado Lopez, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2019/20

Instructions

Reinforcement Learning is a promising approach for addressing complicated Artificial Intelligence
problems. However, it is way too general and it requires enormous amounts of data, which makes it
infeasible for many practical applications where access to the environment or a simulator is costly. One
possibility to overcome this limitation is to learn an approximation of the environment and then train a
policy in that approximate model.

1) Provide a general survey of data efficient methods for reinforcement learning.
2) Apply the framework of World Models from the recent paper of Ha and Schmidhuber 2018, where
separate model, vision and control modules are used.
3) Consider possible optimizations and improvements of this framework, particularly on the model and
control modules.
4) Analyze the performance of the achieved results in a particular OpenAI Gym environment.

References

Will be provided by the supervisor.

Acknowledgements

First, I would like to thank my thesis advisor MSc. Juan Pablo Maldon-
ado Lopez, Ph.D., for his expert advice and patient guidance through thesis
writing.

Also, I am very grateful to Ing. Elǐska Šestáková for providing valuable advice
and corrections on the thesis stylistics.

Finally, I must express my very profound gratitude to my family and friends
for supporting me throughout my years of study. This accomplishment would
not have been possible without them. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as school work under the
provisions of Article 60(1) of the Act.

In Prague on May 13, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Martin Nykodem. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nykodem, Martin. Data Augmentation for Reinforcement Learning. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

V této práci je implementován nedávno představený framework pro posilované
učeńı výzkumńık̊u Ha a Schmidhubera nazvaný World Models. Ti přicháźı
s originálńı myšlenkou naučit se svět z mnoha aspekt̊u a ne jen ze zkušenost́ı.
Aby toho dosáhli, rozdělili jejich algoritmus do tř́ı hlavńıch část́ı – zrak, pamět’
a ř́ızeńı. Tento zp̊usob vńımáńı světa je bĺıže tomu, jak to dělaj́ı lidé, či
zv́ı̌rata.

Implementace tohoto př́ıstupu přináš́ı r̊uzné výzvy, jelikož se nedá př́ımo
převést na nové prostřed́ı.

Výsledky jsou srovnatelné s metodami nevyuž́ıvaj́ıćı model, ale pro jejich
dosažeńı bylo potřeba mnohem méně intarakćı s prostřed́ım. Tato technika
má tedy dopad na dlouho trvaj́ıćı problém zvětšováńı dat, který je zásadńı
pro nasazeńı systémů posilovaného učeńı do reálného světa.

V teoretické části práce jsou poskytnuty informace potřebné k pochopeńı fun-
gováńı jednotlivých část́ı World Models, úvod do posilovaného učeńı a daľśı
př́ıstupy pro zvětšováńı dat pro posilované učeńı.

Kĺıčová slova strojové učeńı, posilované učeńı, model-based, World Mo-
dels

vii

Abstract

A recently introduced framework for reinforcement learning, called World
models by Ha and Schmidhuber, has been implemented for this thesis. They
came with a novel idea to learn the world from many channels, not only ex-
perience. To simulate this approach, they split the algorithm into three main
components – vision, memory, and control. This appears to be closer to what
animals and humans do.

The implementation of this approach has its challenges and does not translate
directly into a new environment.

The results are comparable with model-free methods, but with much fewer
queries to the environment. This technique has implication for the long-
standing problem of data augmentation, which is crucial to the deployment of
real-life reinforcement learning systems.

The theoretical part of the thesis provides a general background for under-
standing the components of the World Models along with a brief introduction
to reinforcement learning and the underlying ideas behind other data augmen-
tation techniques for reinforcement learning.

Keywords machine learning, reinforcement learning, model-based, World
Models

ix

Contents

Introduction 1

1 State-of-the-art 3
1.1 Machine Learning . 3
1.2 Reinforcement Learning . 4

1.2.1 Terminology . 5
1.2.2 Types of Reinforcement Learning Techniques 6

1.3 Artifical Neural Networks . 7
1.3.1 Activation Function . 8
1.3.2 Loss Function . 11
1.3.3 Gradient Descent . 12

1.4 Convolutional Neural Networks 13
1.5 Recurrent Neural Networks . 14
1.6 Autoencoders . 16

1.6.1 Variational Autoencoder 16
1.7 Mixture Density Network . 17
1.8 Evolution Strategies . 18
1.9 Data Augmentation Algorithms in Reinforcement Learning . . 18

1.9.1 PILCO . 18
1.9.2 MBVE . 19
1.9.3 World Models . 20

2 Implementation 21
2.1 Used Tools . 21
2.2 Environment . 22

2.2.1 Reward . 23
2.2.2 Observation . 23
2.2.3 Actions . 24

2.3 Summary of the Training Procedure 25

xi

2.4 Vision Module . 26
2.4.1 Architecture . 26
2.4.2 Training Process . 27

2.5 Memory Module . 28
2.5.1 Architecture . 29
2.5.2 Training Process . 29

2.6 Controller . 31
2.6.1 Architecture . 31
2.6.2 Decision Approaches . 31
2.6.3 Training . 31

2.7 All Models Together . 34

Results 35
Performance of Various Decision Approaches 35
Performance in the Original Environment 36

Conclusion 37

Bibliography 39

A Acronyms 43

B Contents of enclosed CD 45

xii

List of Figures

1.1 Visualization of interaction between environment and agent 4
1.2 Feed-forward network . 8
1.3 Neuron’s output value computation 9
1.4 Comparison of activation functions’ graphs 10
1.5 Comparison of recurrent and feed-forward neural network 15
1.6 Autoencoder architecture . 17
1.7 Probabilistic function approximator 19

2.1 Illustration of various resize methods 24
2.2 Frames comparison . 25
2.3 Validation and training loss during the VAE training 27
2.4 VAE reconstruction progress for specific frames 28
2.5 Memory module training loss . 30
2.6 Visualization of MDN-LSTM dreaming 30
2.7 Decision approaches progress through the generations 33
2.8 Flow diagram of World Models modules 34

xiii

List of Tables

2.1 Architecture of VAE . 26
2.2 Modules parameter count . 34

2.3 Decision approaches performance comparison 35
2.4 Methods performance comparison on the Skiing environment . . . 36

xv

List of Listings

1 Environment wrapper and main functions 22
2 Weights tuning process using evolution strategy 32

xvii

Introduction

In recent years, reinforcement learning has made some substantial achieve-
ments, and it becomes a fast developing dynamic field of machine learning,
where new methods are being developed consistently. However, a lot of them
often suffer from being data inefficient. This limits the applicability of these
methods to complex domains such as robotics. Several approaches for data
efficient reinforcement learning have been proposed like PILCO, MBVE or
World Models (see [1, 2, 3]). The connecting idea is to replicate the envi-
ronment of the agent (by creating a model or learning the distribution of the
states given actions and previous states).

The model-based data augmentation framework called World Models from the
recent paper of Ha and Schmidhuber 2018 comes with a novel idea to learn
the world from many channels, not only from experience. The inspiration for
the framework was the predictive model of our brains. Humans develop an
abstract model of the world based on what they perceive with their senses and
use the inner predictions of the model for decision making. These predictions
are not just about the future in general, but also about the future sensory
data. Although this idea was always present, this is the first time it was
successfully applied to solve reinforcement learning problems.

It was achieved by creating a world model consisting of a vision and memory
module, which learns an abstract representation of spatial and temporal as-
pects of the environment in an unsupervised manner. The controller provided
with features extracted from the world model has fewer parameters, as most
of the complexity is left to the world model. A small controller allows to use
a special training algorithm for dealing with sparse rewards – currently one of
the biggest problems in reinforcement learning.

1

Introduction

For the implementation, Ha and Schmidhuber utilized the power of deep neural
networks specifically in the form of variational autoencoder for compressing
the observation, LSTM (long short-term memory) networks with predictions
based on the probabilistic distribution for learning the dynamics of the model
and evolution strategies for finding the correct parameters of the controller’s
network.

Our goal is to apply the mentioned framework to the OpenAI gym Atari em-
ulated environment called Skiing-V0, analyze the performance of the achieved
result, and consider possible approaches to improve the framework, especially
on the controller part. Our implementation is written in Python with the
support of machine learning frameworks TensorFlow and PyTorch.

This text is intended for readers who want to have a better understanding of
the basics of reinforcement learning and grasp the concepts, which are used
in the implementation of the World Models paper.

I chose this topic since reinforcement learning has been showing a lot of success
recently, and it also seems to be the closest to the way we learn. In this thesis,
I intend to explore one of the latest approaches.

The rest of this thesis is organized as follows. Chapter 1 provides a brief
introduction to the types of machine learning techniques with a particular
focus on reinforcement learning. Next, we explain the necessary theoretical
background needed for understanding the implementation. At the end of the
chapter, the underlying ideas behind various data augmentation techniques
are outlined. At the beginning of Chapter 2, the tools used during the imple-
mentation are mentioned. Afterward, we describe the architecture, training
process, optimization and improvements of the individual parts for the World
Models framework application on the Skiing environment. The results of the
training are presented in Chapter 3. Finally, the contributions of this thesis
are summarized in Chapter 4, where possible improvements for future work
are also suggested.

2

Chapter 1
State-of-the-art

In this chapter, we provide a brief introduction to machine learning followed
by reinforcement learning basics, terminology and types. Afterward, we de-
scribe the concepts needed to understand the implementation such as neural
networks types, and its specifics or evolution strategies. In the end, we reveal
some ideas behind various data augmentation techniques for reinforcement
learning.

1.1 Machine Learning

Machine learning (ML) is a part of computer science, where a computer can
perform tasks without the need for specific instructions. To gain this ability
the computer needs at first to learn a mathematical model from the training
data. [4]

The machine learning techniques can be divided into three main categories by
way of training the model:

Supervised learning is primarily used for classification and regression. The
model is provided with data and its labels (desired solution) as training
examples.

Unsupervised learning is mainly utilized for clustering, data visualization,
and dimensionality reduction. The model is learning without a teacher,
so the algorithms are left to find the structure of data. The data are
self-organized to clusters with similar properties.

Reinforcement learning is very different from the previous two and will
be discussed in detail in Section 1.2 since it is the basis of the thesis
implementation.

3

1. State-of-the-art

1.2 Reinforcement Learning

When we ask ourselves what is the way we learn, we probably think of learning
from interaction with our surroundings. As from our birth, we had to learn
a lot of things, and there was no teacher to tell us how to do it. Nor we had
capabilities to understand it. The repeated actions in the environment gave us
enough information about the environment functioning and causality. With
this knowledge, we could choose the right actions to achieve our desired goal.
Even in our adult life, the interaction with the environment still plays a major
part in our learning as we have to constantly modify our behavior by choosing
new actions based on changes in our surrounding.

The reinforcement learning (RL) framework is inspired by the idea of learning
from the interactions with the environment. In this case, the model is called
an agent and can observe an environment, select and perform actions and get
in return rewards or penalties [5]. This process is visualized in Figure 1.1. Its
goal is to maximize the reward received from the environment. Therefore, it
learns to map the right action to the received states. This is not an easy task
as in some cases the reward is delayed.

RL is mainly used for teaching computer or robots to perform well in a vari-
ety of simulation or even the real world. Its capabilities were recently demon-
strated when an algorithm AlphaGo from Google’s Deep Mind defeated world-
class players in the board game Go, or algorithm AlphaStar from the same
team defeated professionals in an online cooperative game StarCraft II. [6,
7]

Environment

Agent

action
reward state

Figure 1.1: Visualization of interaction between environment and agent.

4

1.2. Reinforcement Learning

1.2.1 Terminology

In this section, we set a definition for some basic RL terms.

State and Observation of the environment the state St is a complete
description of the state of the world at time step t. An observation
is a partial description of a state, which may omit some information.
Although frequently the notation S is put instead of O when actually is
speaking about observation. In the thesis, we will use this approach as
it should be clear from the context which case is meant.

Typically the observation is represented by a real-valued matrix, e.g.,
RGB matrix of pixel values, current data loaded in the RAM, values
from robot’s sensors. [8]

Observation space defines the structure of the observation.

Action space determines the range of possible actions available to the agent.
In discrete action space, action can be represented by only a finite num-
ber of values. In continuous, actions are real-valued vectors.

This distinction has consequences for choosing the learning method.
Some families of algorithms can only be applied in one case and would
have to be substantially reworked for the other. [8]

Done is a flag received by the agent from the environment when it is no
longer possible to take actions, e.g., the player died in the game, the
time limit is up, or agent completed the goal.

Reward is in RL a part of the feedback from the environment. When an
agent interacts with the environment, he can observe the changes in the
state and reward. This helps him to choose the right action because the
goal for the agent is to maximize cumulative reward (sum of all rewards)
received during the series of steps in the environment.

The reward at time step t is defined as:

Rt = r(St, At),

where At is action performed by an agent at time step t and r is the
reward defining function.

5

1. State-of-the-art

Policy is a rule used by an agent to decide what actions to take.

Policies can be separated into two categories:

Deterministic is usually denoted by µ:

At = µ(St).

Stochastic is usually denoted by π:

At = π(·|St).

In deep RL policies depend on a set of parameters (e.g., the weights and
biases of a neural network) which are adjusted by some optimization
algorithm. To highlight the connection is a θ parameter commonly added
as a subscript on the policy symbol.

Because the policy is essentially the agent’s decision mechanism, it is
not uncommon to substitute the word “policy” for “agent”. [8]

1.2.2 Types of Reinforcement Learning Techniques

In this section, we show the different approaches of training agent in RL and
compare their benefits and trade-offs. There is not a clear way to group the
RL methods. One of the main branching points could be if the model uses
the model of the environment (a function which predicts state transitions and
rewards).

Methods which do not use the model are called model-free, and they tend to
be easier to implement and tune. Popular methods for model-free learning are
Q-learning [9], A2C/A3C [10]. On the other hand, methods using the model
predictive function are called model-based.

The main advantage of having the model is the possibility to include the
prediction for the next states to the received observation; therefore, having
a better ability to plan for the future. This looks like an obvious way to go.
However, in most cases, the model of the environment is not available to us.
Learning the model is usually harder to implement and creates a new problem.
The learned model is not perfect and the agent uses its imperfection to hack
its reward function and perform well in it, but in the actual environment
performs poorly. [8]

6

1.3. Artifical Neural Networks

1.3 Artifical Neural Networks

One of the reasons why machine learning became so powerful and capable
of learning various complex tasks such as natural language processing, com-
puter vision, playing games is an invention of artificial neural networks (NN).
The model of NN is inspired by a biological brain. It consists of many inter-
connected units called artificial neurons or simply neurons. The connections
between them are weighted, and single neuron can have multiple value inputs
from other neurons, but only one value output. [5]

Typically, the neurons are aggregated into layers, which perform a specific
transformation on their inputs. The layers are separated into three types:

Input layer has the number of neurons equal to the size of the input to the
network. The neurons in this layer are usually used only for loading the
data and does not make any modification to it.

Hidden layer contains neurons, which by adjusting weights can compute
complex functions.

Output layer produces the result of the neural network.

In Figure 1.2, we illustrate an architecture of the feed-forward neural network
with two hidden layers. In the feed-forward NN, the information flows from
the input layer to the output. In other words, the network does not contain
any loops.

Although the Universal approximation theorem [1] states that feed-forward
neural network with one hidden layer containing a finite number of neurons
can approximate any continuous functions on compact subsets of Rn. [11] It
is certainly not a practical way to do. For learning complex functions, neural
networks with more hidden layers (called “deep networks”) are used, since
their hierarchical structure makes them well adapted to learn the hierarchies
of knowledge. We provide an example of such network in Section 1.4.

Theorem 1 (Universal approximation theorem) Let ϕ : R → R be a
nonconstant, bounded, and continuous function. Let Im denote compact subset
of Rm. The space of real-valued continuous functions on Im is denoted by
C(Im).

Then, given any ε > 0 and any function f ∈ C(Im), there exist an integer N ,
real constants vi, bi ∈ R and real vectors wi ∈ Rm for i = 1, . . . , N , such that
we may define:

F (x) = ∑N
i=1 viϕ

(
wT

i x+ bi

)
as an approximate realization of the function f that is,

|F (x)− f(x)| < ε for all x ∈ Im.

7

1. State-of-the-art

Input

Hidden OutputHidden

Figure 1.2: Feed-forward network

1.3.1 Activation Function

The neuron without an activation function works as a linear separator. In the
real world, most functions are not linearly separable. Which is why there was
added an activation function. This enables the non-linear transformation of
the output, therefore, having the ability to encode complex patterns of the
data. [12]

Its input is a sum of the weighted sum of neuron’s input and bias, which
behaves like a constant, that shifts the activation function to the left or right.
Mathematically defined as:

f(∑xiwi + b),

where xi and wi is the i-th input and weight of the neuron, b is the neuron’s
bias, and f is an activation function. We must denote that some works use
different notation, which describes the computation of the whole layer output
and is written as matrices operation:

g(Wx+B),

where W , x, B represents the weight, input and bias matrix and g is an
activation applied to each value of the resulting vector.

The process of calculating the neuron’s output value is visualized in Figure
1.3

8

1.3. Artifical Neural Networks

𝑥1

𝑥2

𝑥𝑛

𝑖=1

𝑛

𝑥𝑖 𝑤𝑖 + 𝑏 𝑦

𝑏

Input
Weights

Activation function

Bias

𝑤1

𝑤2

𝑤𝑛

Logit

Output

Figure 1.3: Neuron’s output value computation

There are many activation functions, each with its benefit. Here we show the
commonly used ones. Comparison of their function graphs is shown in Figure
1.4

Sigmoid function is defined as:

f(x) = 1
1+e−x .

From the function’s graph in Figure 1.4a it is visible that it maps the values
between 0 and 1 and that on the curve between X values -2 to 2, Y values are
very steep. This means any small changes in the values of X in that region
will cause values of Y to change significantly. So the sigmoid function tends
to bring the Y values to either end of the curve.

Due to this property, it can make a clear distinction on the output and making
it suitable for classification tasks.

Tanh function is defined as:

f(x) = 2
1+e−2x .

This function has similar characteristics to sigmoid that we discussed above
(in fact, it is a scaled sigmoid function). It maps the outputs between −1 and
1 and its derivative is steeper, which causes gradient (described in Section
1.3.3) to be stronger. [13]

9

1. State-of-the-art

ReLu function is defined as:

f(x) = max(0, x).

This means it gives an output x if x is positive and 0 otherwise. ReLu is less
computationally expensive than tanh and sigmoid because it involves simpler
mathematical operations. However, the property of having all negative values
become zero may cause the neural network to stop training.

Softmax is a special type of an activation function, which uses logits (raw
scores output by the last layer of a neural network before activation takes
place) to compute neurons output. It is defined as:

f(xi) = exi∑n

j=1 exj ,

where xj are the logits of the layer. The sum of the layer output adds to one.
For this property it is commonly used for probabilistic classification.

(a) Sigmoid (b) Tanh

(c) ReLu

Figure 1.4: Comparison of activation functions’ graphs

10

1.3. Artifical Neural Networks

1.3.2 Loss Function

The loss function is the mathematical formula, which helps to determine how
far the model is from the ground truth.

The counted error is then used to update the weights between neurons using
the chain-rule of backpropagation. This will not be fully described as it is not
needed for understanding the thesis. Information about the algorithm can be
found in [14].

Specific loss functions are used for different tasks. Here we show the frequently
used ones:

Cross entropy

To understand the cross-entropy we at first need to know what an entropy
is.

Claude Shannon, the founder of the entropy concept, defined it in his paper
“A Mathematical Theory of Communication” as the smallest possible average
size of lossless encoding of the messages sent from the source to the destina-
tion. It is based on combining the knowledge of the probability distribution of
messages types (for this example encoded in bits) and knowing the minimum
size for their encoding.

In general, for encoding N different messages (values) expressed in bits we
need at most log2N bits, but also we do not need more than that. If we know
the probability P of the message, which is always in range between 0 and 1
we can express the same as − log2 P .

So the the minimum average encoding size – entropy H(P) is defined as:

H(P) = −∑i P (i) log2 P (i),

where P (i) is the probability of i-th message. [15]

Cross entropy is used to measure how close is the true probability distribution
to the predicted probability distribution. This quality is making it suitable
for multi-class classification tasks.

Its mathematical formula is:

H(P,Q) = −∑i P (i) log2Q(i),

where P is the known distribution and Q is the estimated one.

11

1. State-of-the-art

Kullback-Leibler divergence

This is not commonly used as a loss function. However, it is a part of a
loss function for the variational autoencoders, which will be mentioned in
Section 1.6. The Kullback-Leibler (KL) divergence tells us how well
the probability distribution Q approximates the probability distribution P by
calculating the cross-entropy minus the entropy by a simple formula:

DKL(P ||Q) = H(P,Q)−H(P).

Mean squared error (MSE)

It is commonly used for regression problems where the goal is to predict n
values. In principle MSE punishes large mistakes much more than small mis-
takes. [16] With that said, it is defined as:

MSE = 1
n

n∑
t=1

e2
t ,

where n is the number of outputs, and e is the difference between the original
and the predicted value.

1.3.3 Gradient Descent

To optimize the weights and biases in the neural network, we commonly choose
an algorithm called gradient descent.

A gradient is a direction on which a function grows. Using calculus, we know
that the slope of a function at value is the derivative of the function with
respect to that value.

It is usually written as:

∇f(Θ),

where ∇ is denoting the gradient of the function f at values Θ.

Our goal is to minimize the function f parameterized by the network param-
eters θ. This is achieved by iteratively moving in the direction of the negative
of the gradient.

The simplest update rule is:

θ ← θ − α∇f(θ),

where α is the step size and is determining the size of the update.

This rule, however, fails in many practical problems (for instance, in neural
networks with many parameters) so in practice, different heuristics for the
step size and the update schedule are used.

12

1.4. Convolutional Neural Networks

[17, 18] There are multiple ways to calculate gradient unusually based on the
type of the problem. However, two of them is usually used for most of the
application:

Mini-batch gradient descent performs an update for every mini-batch of
size n, which can lead to more stable convergence.

Adam (Adaptive moment estimation) based on the information about a
certain amount of previous updates it increases updates for dimension
facing in the same direction. Also, the algorithm is adapting the learning
rate to the parameters.

When the neural network consists of many hidden layers a problem with gra-
dient might arise:

Exploding gradient is a situation where some weights are assigned wrongly
too high importance.

Vanishing gradient is a situation, where the weights of the model are too
small to learn efficiently or eventually disappear.

1.4 Convolutional Neural Networks

Convolution neural nets (CNNs) are deep artificial NN that play a key role in
the computer vision. More specifically they address problems with image clas-
sification, optical character recognition and object recognition within scenes.

The CNN was also inspired by functions of our brains – especially the visual
cortex. Individual neurons respond to stimuli only in a restricted region of the
visual field known as the Receptive Field. A collection of such fields overlap to
cover the entire visual area. Moreover, some neurons react only to images with
horizontal lines and some only to lines with different orientation. [19]

An essential feature of the CNN is the ability to reduce the images into a form
which is easier to process, without losing features which are critical for getting
the right prediction. So how do they do it?

CNN typically consist of an input layer, multiple convolutional layers, pooling
layers, fully connected layers, and the output layer.

Input Layer

When used for computer vision on the input is an image, which can be rep-
resented as a matrix with a dimension of image width, height and number of
picture’s channels, e.g., three channels in case of RGB and data representing
the value of channel value at a given pixel.

13

1. State-of-the-art

Convolutional Layer

The objective of the Convolution Operation is to extract the high-level fea-
tures such as edges, from the input image. It is done by using a stack of
Kernel/Filters, which shifts through the image and use the matrix multipli-
cation operation between the kernel and the portion of the image the kernel
is currently at. The result or sum of matrix multiplication over the channels
is an input for the next layer. The size of the shift in each dimension is given
by the stride parameter. Another important feature for the CNN is padding.
With value “valid” it means no padding. Value “same” results in padding
the input such that the output has the same length as the original input.
[20]

Pooling layer

The goal of the pooling layer is to subsample or shrink the input image in
order to reduce memory usage, the number of computational operations and
number of parameters which also party helps against overfitting.

As is convolutional layers, each neuron in the pooling layer is connected to
the limited number of neurons in the previous layer. The only difference is it
has no weights connecting them. Instead, it only aggregates data using either
the maximum or average of the selected kernel.

Fully connected layer

The fully connected layer is a usually selected approach to learn non-linear
combinations of the high-level features represented by the output of the con-
volutional layer.

1.5 Recurrent Neural Networks

In Section 1.3, we mentioned the feed-forward networks where the data flows
straight from the input layer to the output layer. The RNN works in a similar
way except it also has connection backward. The difference between them
is demonstrated in Figure 1.5. These loops are allowing them to persist in-
formation from previous runs. When RNN makes a decision, it takes into
consideration current input and a hidden state where the sequential informa-
tion from previous inputs is preserved. Therefore, RNNs are well-suited to
make predictions based on time series data.

In Section 1.3.1, we showed how the feed-forward neural network’s output of
the layer is computed by applying a weight matrix to its inputs. The RNNs
apply weights to the current as well as to the information from previous input
stored in the hidden state.

14

1.5. Recurrent Neural Networks

Recurrent neural network Feed-forward neural network

Figure 1.5: Difference between the recurrent neural network and the feed-
forward neural network.

The computations of RRN’s output vector yt at time step t is defined as:

yt = f(Wyht + by),

where f is an activation function, Wy is the weight matrix, by is bias and ht

is the hidden state at time step t, which is computed as:

ht = g(Whxt + Uht−1 + bh),

where the to the input xt modified by a weight matrix Wh is added layer’s
bias bh and the hidden state of the previous time step ht−1 multiplied by its
own hidden-state-to-hidden-state matrix U . The result is again transformed
by an activation function g. The weight matrices are filters that determine
how much importance to accord to both the present input and the former
hidden state. [21]

In fact, the RNN loops can be unrolled to a sequence of neural networks which
are then trained one after another with backpropagation. As a consequence,
RNN with large hidden states behaves like a neural network with many hidden
layers. These, as we know from Section 1.3.3, often struggle with vanishing or
exploding gradient.

The exploding gradient was solved by gradient clipping where the predefined
threshold for the gradients keeps them from getting too large, but their direc-
tion stays the same.

15

1. State-of-the-art

Long Short-Term Memory Network (LSTM)

The solution to vanishing gradients was solved by modification of recurrent
net with adding so-called “long short-term memory units” by Hochreiter and
Schmidhuber1. [22]

The long short-term memory units also enable RNNs to remember their in-
puts over a long time. This is because LSTMs contain their information in
a memory that is much like the memory of a computer since the LSTM can
read, write and delete information from its memory. [23]

1.6 Autoencoders

An autoencoder is a special type of a network, which is capable of learning
a way to compress input data into smaller representation without any su-
pervision. Except for dimensionality reduction, it is also used for denoising
the data, detecting features and generating new data similar to training data
sets.

The way they do it is by taking an input (e.g., image or some vector) and run
it through the first part of a network called an encoder. In the encoder, the
data is compressed by several stacked convolutional or fully connected layers
and outputted to the bottleneck layer, which size is a smaller dimension than
the input. From the bottleneck vector (usually called z) the second part of the
network called decoder takes the data and reconstructs them to the original
form. The architecture is illustrated in Figure 1.6. The loss function for the
vanilla autoencoder is usually just MSE between the original input and the
reconstructed data.

The compression done by the autoencoders is data specific, as the weights of
the network are tuned for data of particular characteristics, and will not work
well on unseen datasets.

1.6.1 Variational Autoencoder

Variational autoencoder (VAE) is a special category of autoencoders intro-
duced in 2014 by Kingma and Welling [24]. Its only difference from the vanilla
autoencoders is that instead of mapping the input to the fixed vector z it pro-
duces a mean coding µ and standard deviation σ and the z is then sampled
randomly from the Gaussian distribution with mean µ and standard deviation
σ.

1If the name Schmidhuber sound familiar, it is because it was already mentioned as an
author of the World Models paper.

16

1.7. Mixture Density Network

x x’
Compressed input

data in the vector

Z

Encoder

network

Bottleneck

Decoder

network

Input Reconstructed Input
Ideally: X ≈ X’

Figure 1.6: Autoencoder model architecture

The loss function pushes the codings to gradually migrate within the cod-
ing space (also called latent space) to occupy roughly (hyper)spherical region
and consists of two parts: one is simply a reconstruction loss as in vanilla au-
toencoder, which forces autoencoder to correctly reproduce input data, except
the expectation operator, because VAE reconstructs data from a distribution.
The second is based on the KL divergence, that punishes the network for
having the learned distribution too far from the normal distribution. As a
consequence, it is possible after the training to take a random coding from
the Gaussian distribution and decode it to generate new data similar to the
trained one.

1.7 Mixture Density Network

Mixture density network (MDN) models are generally used to estimate the real
distribution of some data, typically by assuming that each data entry has some
probability of being associated with a certain Gaussian distribution.

So for each input is produced a set of mean, standard deviation parameters,
and a set of probabilities that the output point would fall into those Gaussian
distributions.

This sort of model can be useful if combined with neural networks, where the
outputs of the neural network are the parameters of the mixture model, rather
than a direct prediction of the data label. Also is commonly applied in cases
where the target variable cannot be easily approximated by a single standard
probability distribution. [25]

17

1. State-of-the-art

1.8 Evolution Strategies

In this section, we provide an introduction to the black-box NN weights opti-
mization strategy based on a blog post [26]. In reinforcement learning, where
NN is used for a decision making, it is not always easy to estimate the suit-
able gradient of reward signals given to the agent in the future to an action
performed by the agent right now. For this kind of problems, it might be bet-
ter to use black-box optimization algorithms such as evolution strategy (ES)
instead of a possibly meaningless gradient.

The ES strategy can be defined as an algorithm, which at first randomly
creates a population of candidates and then evaluates their performance by
an objective function. Based on the candidates’ evaluation the algorithm
produces the next population, which should be able to perform better than
the previous one. This process goes iteratively until the ending condition is
met, e.g., performance is good enough or stopped progressing.

1.9 Data Augmentation Algorithms in
Reinforcement Learning

As in many other ML fields, reinforcement learning suffers from being data
inefficient and requires many trials or highly powerful computational resources
to solve a relatively simple task. Hence it is still unusable or highly impractical
to train ML tasks on real robots as the hardware tends to wear out after thou-
sands of trials. To address this sort of problems the researchers are developing
data augmentation methods.

In this chapter, we present underlying ideas behind different approaches. As it
can be done by extracting knowledge from a few trials (PILCO); using learned
dynamics of the model in model-free RL to reduce the sample complexity of
learning (MBVE), or a way to learn the dynamics of the model so well it can
be used as a training environment instead of running in a computationally
expensive real environment (World Models).

1.9.1 PILCO

For model-based RL technique is hard to create a working model of the envi-
ronment from a few observation as they tend to create its model bias (assum-
ing that the learned model accurately resembles the real environment). The
PILCO [2] (probabilistic inference for learning control) is getting around this
problem by incorporating the model uncertainty into the model planning and
control as indicated in Figure 1.7.

18

1.9. Data Augmentation Algorithms in Reinforcement Learning
PILCO: A Model-Based and Data-Efficient Approach to Policy Search

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i,
u

i)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i,
u

i)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

0

2

(x
i
, u

i
)

f(
x

i,
u

i)

Figure 1. Small data set of observed transitions (left), multiple plausible deterministic function approximators (center),
probabilistic function approximator (right). The probabilistic approximator models uncertainty about the latent function.

A common approach in designing adaptive controllers,
which takes uncertainty of the model parameters
into account, is to add an extra term in the cost
function of a minimum-variance controller (Fabri &
Kadirkamanathan, 1998). Here, the uncertainty of the
model parameters is penalized to improve the model-
parameter estimation. Abbeel et al. (2006) proposed
further other successful heuristics to deal with inaccu-
rate models. Based on good-guess parametric dynam-
ics models, locally optimal controllers, and temporal
bias terms to account for model discrepancies, very im-
pressive results were obtained. Schneider (1997) and
Bagnell & Schneider (2001) proposed to account for
model bias by explicitly modeling and averaging over
model uncertainty. Pilco builds upon the success-
ful approach by Schneider (1997), where model un-
certainty is treated as temporally uncorrelated noise.
However, pilco neither requires sampling methods for
planning, nor is it restricted to a finite number of plau-
sible models.

Algorithms with GP dynamics models in RL were
presented by Rasmussen & Kuss (2004), Ko et al.
(2007), and Deisenroth et al. (2009). Shortcomings
of these approaches are that the dynamics models are
either learned by motor babbling, which is data ineffi-
cient, or value function models have to be maintained,
which does not scale well to high dimensions. The
approaches by Engel et al. (2003) and Wilson et al.
(2010) are based GP value function models and, thus,
suffer from the same problems. As an indirect pol-
icy search method, pilco does not require an explicit
value function model.

An extension of pilco to deal with planning and con-
trol under consideration of task-space constraints in a
robotic manipulation task is presented in (Deisenroth
et al., 2011).

Throughout this paper, we consider dynamic systems

xt = f(xt−1,ut−1) (1)

with continuous-valued states x ∈ RD and controls
u ∈ RF and unknown transition dynamics f . The

objective is to find a deterministic policy/controller π :
x 7→ π(x) = u that minimizes the expected return

Jπ(θ) =
∑T

t=0
Ext [c(xt)] , x0 ∼ N (µ0,Σ0) , (2)

of following π for T steps, where c(xt) is the cost (neg-
ative reward) of being in state x at time t. We assume
that π is a function parametrized by θ and that c en-
codes some information about a target state xtarget.

2. Model-based Indirect Policy Search

In the following, we detail the key components of the
pilco policy-search framework: the dynamics model,
analytic approximate policy evaluation, and gradient-
based policy improvement.

2.1. Dynamics Model Learning

Pilco’s probabilistic dynamics model is implemented
as a GP, where we use tuples (xt−1,ut−1) ∈ RD+F

as training inputs and differences ∆t = xt − xt−1 +
ε ∈ RD, ε ∼ N (0,Σε), Σε = diag([σε1 , . . . , σεD]), as
training targets. The GP yields one-step predictions

p(xt|xt−1,ut−1) = N
(
xt |µt,Σt

)
, (3)

µt = xt−1 + Ef [∆t] , (4)

Σt = varf [∆t] . (5)

Throughout this paper, we consider a prior mean func-
tion m ≡ 0 and the squared exponential (SE) kernel
k with automatic relevance determination. The SE
covariance function is defined as

k(x̃, x̃′) = α2 exp
(
− 1

2 (x̃− x̃′)>Λ−1(x̃− x̃′)
)

(6)

with x̃ := [x>u>]>. Here, we define α2 as the variance
of the latent function f and Λ := diag([`21, . . . , `

2
D]),

which depends on the characteristic length-scales `i.
Given n training inputs X̃ = [x̃1, . . . , x̃n] and corre-
sponding training targets y = [∆1, . . . ,∆n]>, the pos-
terior GP hyper-parameters (length-scales `i, signal
variance α2, noise variances Σε) are learned by evi-
dence maximization (Rasmussen & Williams, 2006).

Figure 1.7: Small data set of observed transitions (left), multiple plausible
deterministic function approximators (center), probabilistic function approx-
imator (right). The probabilistic approximator models uncertainty about the
latent function. Source: [2]

From data collected from the environment, the PILCO uses a Gaussian pro-
cess (GP) to learn the dynamics of the model. After it is trained the GP
sample many possible trajectories to train a controller, this approach is highly
suitable for robotics tasks where the robot cannot be trained in a simulated
environment. However not for all of them as it only works well on low dimen-
sional data and GP computational complexity makes it difficult to model on
high dimensional observation.

One of the great examples of PILCO’s practical model-based policy search
method is learning to swing a pendulum on a cart pole to the inverted position.
To learn this task, it took the algorithm only 17.5 seconds, which is currently
the best-achieved result.

1.9.2 MBVE

In the paper MBVE [3], (model-based value expansion) published in 2018, UC
Berkeley team present a design which takes the information from the dynamic
of the model uses it to reduce a sample complexity for calculating the value
function in a model-free algorithm. Its logic stands behind the fact that model-
free algorithm has the capacity of rich value function approximator to learn
complex tasks, but needs a lot of iteration to do so. Moreover, model-based
algorithms, with knowledge of the environment, can quickly arrive to near-
optimal policy. Although for the complex tasks, the inaccuracy of the learned
model fails to provide accurate predictions for the controller to learn a good
policy.

This hybrid algorithm takes dynamic of the model to simulate the short-
term horizon and Q-learning for estimating the long-term gains behind the
simulated horizon. This provides higher-quality target values for training the
Q-function. By splitting the estimates into distinct intervals and using the
decoupled interface, no special algorithm modification needs to be done. The
splitting horizon is determined by the level of trust in believing the model can
make accurate estimates.

19

1. State-of-the-art

1.9.3 World Models

This paper published by Ha and Schmidhuber in May 2018 [1] explores the
usage of generative neural networks to understand the environment and then
by using features extracted from the learned model (or as they call it world
model) as inputs to the controller. This allows to use fairly simple policy to
solve the required task. In the second part of the paper is even demonstrated
the ability to train the agent entirely inside of the dream environment, which
is generated by the world model, and then transfers this policy back into the
actual environment.

To tackle this task divide-and-conquer tactic was used and World Models
framework is split it into three parts: visual model, memory model, and con-
trol.

The visual model takes as input a frame from the game and uses a VAE to
produce a more abstract, and compressed representation of the frame as its
latent vector z. In the next step, such encoded sequences concatenated with
actions from a random game policy generated rollouts are fed into memory
model (implemented by MDN-RNN), which learns how the environment tends
to behave and is able to make predictions on the next state of the world
– essentially learning a model of the world. Lastly evolution strategies are
used for the controller, which only decides next action a at timestep t as
at = Wc ∗ [zt, ht] + bc, where Wc is the weight matrix; bc the bias vector and
[zt, ht] is the concatenated VAE’s latent vector and the MDN-RNN’s hidden
state at timestep t. Using a controller that is relatively simple and keeping
the complexity to the world model allows using interesting techniques to train
the controller.

The experiments were done on two environments called Car Racing and Viz-
Doom. The advantage of having a model for predicting was demonstrated on
the Car Racing experiment. The ability to train in the dreamed environment
was shown in the VizDoom experiment.

20

Chapter 2
Implementation

In this chapter, we are going to explain what was our approach to implement
the World Models framework from the paper of Ha and Schmidhuber. [1]

At first, we describe the tools used during the implementation. Afterward, we
present the used environment and our applied modification and improvements
to it. In the following sections, we discuss in detail the individual modules,
their architecture, and training process. For the controller, we introduce var-
ious approaches to decision making. In the last section, we display the com-
plexity of individual modules and illustrate how they interact together.

2.1 Used Tools

In this section, we describe the tools and frameworks used for the implemen-
tation.

Python is an interpreted, high-level, programming language developed under
open source license with the support of thousands third-party modules.
It is also the most popular programming language used for Machine
Learning. [27, 28]

Jupyter Notebook is an open-source web application that allows to create
and share documents that contain live code, equations, visualizations,
and narrative text. [29]

Collaboratory is a free to use Jupyter notebook environment provided by
Google allowing to utilize the computational power of Tesla K80 GPU,
two CPUs at 2.2GHz and 12 GB of RAM. The computing is unfortu-
nately limited to a maximum of 12 hours of continuous run-time. If the
computation needs to be prolonged, its state must be saved and restored
again. [30]

21

2. Implementation

Tensorflow is an open source library developed by Google Brain team, which
is suited for machine learning tasks. It also comes with a great tool
for visualizing the learning progress and many other applications called
TensorBoard. [31].

PyTorch is an optimized open source deep learning library for Python. [32]

Pycma is a Python implementation of an evolution strategy called CMA-ES
and a few related optimization tools. [33]

OpenCV is a library of Python bindings designed to solve computer vision
problems. [34]

Gym is a Python package developed by the Open AI, which provides vari-
ous environments for developing and comparing reinforcement learning
algorithms. [35]

2.2 Environment

We chose one of the environments of Atari emulated games provided by the
Open AI gym called Skiing-V0.

For better interaction and repairing some of its flaws (described below), we
created a wrapper class, where we added or re-written a few functions. The
example of the wrapper class along with main environment functions and
description of their behavior is shown in Listing 1.

from gym.envs.atari import AtariEnv

class SkiingWrapper(AtariEnv):
def __init__(self, interpolation=cv2.INTER_CUBIC, env_reward=False):

super(SkiingWrapper, self).__init__(game='skiing', obs_type='image')

def reset(self):
... Resets to a new game and returns an observation

def step(self, action):
... Returns observation, reward, done flag and diagnostic information

...

Listing 1: Environment wrapper and main functions

22

2.2. Environment

2.2.1 Reward

Unfortunately, the reward function is not described in the documentation
and from our findings, the reward is assigned at the end of the run. For the
controller’s training optimization, we created our self-defined reward function,
which is detecting states of going through the poles or crashing by looking for
specific changes in the frames using OpenCV.

The rewards are:

+100 is given for going through the slopes

−5 is given when the skier crashes

0 else

2.2.2 Observation

The observation of the environment returned from the OpenAI gym was not
optimal for the training, so some preprocessing actions were done before re-
turning:

Cropping – the observation returned by the environment was too large, so
it was cropped from unnecessary information.

Resizing – the observation after cropping was still too large, so we resized
it using OpenCV. We found that the resize method INTER_CUBIC works
best for the variational autoencoder even though it ends up a bit blurry
it contains more useful information for the VAE, than for example sharp
edge observation resized by INTER_NEAREST method.

Figure 2.1 shows a comparison of the tested resizing methods.

Recolorization of the skier body – the skier original color on the RGB
scale was too close to the white background, so the VAE decided not to
tackle this problem, but it was more focused on getting the trees and
poles right. This trick led the training much quicker to the satisfactory
results.

Normalization – improves the convergence speed and accuracy of the NN.
In our case we scaled the image data in range of [0; 255] to [0; 1].

In the end, we lowered our the observation space from (250, 160, 3) to (128,
128, 3).

In Figure 2.2 we show the comparison between the original observation and
the preprocessed one.

23

2. Implementation

(a) INTER NEAREST (b) INTER AREA

(c) INTER CUBIC (d) INTER LINEAR

Figure 2.1: Illustration of various resize methods

2.2.3 Actions

The actions for the Skiing-V0 environment are from discrete action space of
size three defined by a single integer, where:

• 1 – turning left

• 2 – turning right

• 0 – continuing in the current direction

Each action is repeatedly performed for a duration of k frames, where k is
uniformly sampled from {2, 3, 4}.

24

2.3. Summary of the Training Procedure

(a) Original frame

(b) Preprocessed frame (c) Reconstructed frame

Figure 2.2: Frames comparison

2.3 Summary of the Training Procedure

The training was done in a series of steps as follows:

1. Save 16 rollouts of the environment with a random-policy agent.

2. On the frames train the vision module implemented by a VAE.

3. Save the action a from random-policy agent rollout along with the en-
coded frames in the latent vector z from trained VAE from 40 rollouts.

4. Train the memory module implemented by MDN-LSTM to be able to
predict the next state.

5. Use the evolution strategies to find suitable weights and biases, with the
provided values of the hidden states from MDN-LSTM and vector z, for
the controller NN.

25

2. Implementation

2.4 Vision Module

The vision module was implemented by variational autoencoder as Ha and
Schimdhuber did in the original paper. The main reason for using VAE is
it compresses high-dimensional space into smaller representation. In our case
latent vector z ∈ R256. The probabilistic design of VAE makes the model more
resistant to the unrealistic vectors produced by the memory model. During
the implementation, we tried using vectors of a smaller size, but they stopped
improving at the point where the reconstructions were not satisfactory.

In the experiments of World Models paper they used latent z ∈ R32 for Car
Racing and z ∈ R64 for VizDoom. This was probably on account of the
observation size of the environments were smaller and in case of Car Rac-
ing the observation was relatively simple and did not vary too much in the
rollouts.

2.4.1 Architecture

For the encoder, we used four convolutional and for decoder five deconvolu-
tional layers with strides of size (2,2) and valid padding. The implementation
of this network was done in pure Tensorflow. Detailed VAE architecture with
the number of trainable parameters is shown in Table 2.1.

Layer type Filters # Kernel shape Output shape Param #
placeholder - - (128, 128, 3) 0
conv2d 32 (4, 4) (63, 63, 32) 1568
conv2d 64 (4, 4) (30, 30, 64) 32832
conv2d 128 (4, 4) (14, 14, 128) 131200
conv2d 256 (4, 4) (6, 6, 256) 524544
dense - - (256) 2359552
dense - - (256) 2359552
dense - - (1, 1, 1024) 263168
conv2d transpose 128 (5, 5) (5, 5, 128) 3276928
conv2d transpose 64 (5, 5) (13, 13, 64) 204864
conv2d transpose 32 (5, 5) (29, 29, 32) 51232
conv2d transpose 16 (6, 6) (62, 62, 16) 18448
conv2d transpose 3 (6, 6) (128, 128, 3) 1731

Table 2.1: Architecture of VAE

26

2.4. Vision Module

2.4.2 Training Process

Generating Data

For training the agent, we generated 16 runs of random policy rollouts and 8
roll-outs for validation. In the World Models, they used 10,000 rollouts, but
that seems unnecessarily too large. See in Figure 2.3, where is demonstrated
loss value during the training on the training data and validation data.

Figure 2.3: Validation and training loss during the VAE training

Training Procedure

For loading the data, we used data iterator, which loaded frames from the
saved random policy rollouts and returned the batch of size 64. For optimizing
the weights by minimizing the VAE loss, the Adam optimizer with a learning
rate of 10−4 achieved the best results.

Evaluation of Training

The computing was performed on GPU hardware accelerator, but the time
of training for VAE was not possible to capture precisely in the Google Col-
laboratory as a time of closing the session and computing resources are not
granted and stable. But it should take less than a day to retrain the VAE
from scratch.

27

2. Implementation

Figure 2.4: VAE reconstruction progress for specific frames (in the columns).
In the rows are sampled reconstruction during the training from the first
reconstruction to the last.

Figure 2.4 shows the reconstructions progress during the training to the from
the first iteration to the final.

2.5 Memory Module

For the memory module, we used an LSTM network with a mixture of Gaus-
sians as an output, which predicts the probability distribution for the en-
coded vector of the next frame zt+1. More specifically the LSTM is predicting
P (zt+1 | at, ht, zt), where at is the action taken at time t and ht is the hidden
state of the LSTM at time t and zt is the latent vector at time t.

The reason for using the probability distribution is that we will never learn the
full model of the environment and for unknown states, it is better to model
multiple possible scenarios with corresponding probability rather than single
prediction.

28

2.5. Memory Module

2.5.1 Architecture

For the implementation, we modified the memory module of Djian implemen-
tation Sonic Retro Contest done in PyTorch [36].

The MDN-LSTM contains 1024 hidden units and outputs 5 Gaussians mix-
tures. This is larger than 512 hidden units used in the original implementation,
but it could not predict well with the hidden state of that size. On the other
hand, we had to shorten the sequence length from 1000 to 100 as the training
process would take too long. This might reflect on the performance since in
the original paper the sequence length was the same as one play and they did
not have to reset the hidden state during the rollout.

2.5.2 Training Process

Generating Data

For the training, we generated another 40 random policy rollouts, where we
saved action a, encoded observation in latent vector z. Which is again fairly
low against 10,000 rollouts used in the original, but enough to sufficiently
learn the model dynamics. We can see in Figure 2.6 that some causality is
learned.

Training Procedure

On the input, the memory module was given a vector made by a sequence of
100 contacted action and latent z. The target vector was the same sequence
of latent vectors shifted to the left, so it starts with the second frame, and to
the end was duplicated the last frame.

For the optimizer, we used Adam with a learning rate of 10−4.

Evaluation of the Training

The MDN-LSTM took it about a day till the performance stopped improving.
In Figure 2.5 is plotted the decrease of the loss value saved during the training
and the reaching of some local minima.

In Figure 2.6, the trained memory module “dreaming” for nine frames is visu-
alized. The hidden state is updated after each prediction. The input for the
prediction zt is in this case previous predicted vector zt−1 and action “down”.
There is visible, how the memory module is predicting the future in the be-
lievable matter for the first few frames, but later it starts to dream an utterly
different environment.

29

2. Implementation

Figure 2.5: Memory module training loss

Figure 2.6: Visualization of MDN-LSTM dreaming. The first frame is in the
left corner. The following are in the direction down, continuing on the next
right column in the same manner.

30

2.6. Controller

2.6 Controller

The controller is choosing which actions to take for maximization of the cu-
mulative reward. In this section, we show some possible optimization for the
controller’s decision mechanism.

2.6.1 Architecture

Because most of the complexity was left on the memory and vision module, the
controller can be implemented as a simple neural network where a single linear
layer is used. It maps the concatenation of the current latent representation
of the frame zt and the hidden state and cell of the LSTM ht to an action at

at each time step t:

at = Wc [zt ht] + bc,

where the Wc and bc are weights and biases of the controller network.

2.6.2 Decision Approaches

The controller must output an action, which is a single integer and values can
be only 0, 1, 2. To accomplish this, we tried three different approaches:

Softmax

In this approach, the neural network outputs three values, which are then
converted using softmax operation to a vector that represents the probabil-
ity distributions of potential action. The action is then chosen based on its
probability.

Argmax

For the deterministic argmax approach, the neural network also outputs three
values and as the name suggests – the controller chooses an action, which
corresponds to an index with the highest value.

Single value output (SVO)

In this situation, is at first an interval [−1; 1] split into three same length parts
– each representing one action. The neural network outputs only single value,
which is scaled using tanh activation function to [−1; 1] and the action with
the corresponding interval is then chosen.

2.6.3 Training

The small number of parameters of the controller model allows us to use the
evolution strategy for its training. In this case, it is highly convenient as in this

31

2. Implementation

environment the rewards are fairly sparse. For optimization of the parameters,
we used Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) from
python package pycma since it works well for up to 10,000 parameters.

Weights Optimization Procedure

The evolution strategy from pycma package proposes some initial solutions
(controller’s weights and biases) of the population size, which are evaluated by
the fitness function. In our case, the fitness function returns the controller’s
average cumulative reward from rollouts. The evaluated fitness list is then
used for proposing a better solution.

This process is illustrateted in Lising 2.

while not es.stop():

solutions = es.ask()

fitness_list = list(es.popsize)

for i in range(es.popsize):
fitness_list[i] = play(solutions[i])

Based on the returned fitness
prepares a new population.
es.tell(fitness_list)

Listing 2: Weights tuning process using evolution strategy

Computation Time Optimization

For the training the controller, we had to make some optimization and con-
cessions to fasten the process as the Collaboratory resources are highly incon-
venient for this type of task2.

One of the slowing issues we had to address was that first solutions proposed
by CMA-ES took incredibly long to finish as the action left or right slowing
the speed of the skier, and in some cases, it predicted only one direction, so the
skier almost stopped moving. This was solved by shortening the length of one
play for solution evaluation to the final number of 500 steps. However after a
while, we saw the controller was good at not crashing, but it did not collect
any rewards for going through the slalom. The reason for that was that going
through the poles was so infrequent, our original reward +10 was dissolved

2Training the controller for Car Racing experiment took about three days on 64-core
CPU instance with 220GB RAM. Collaboratory provides 2-core CPU and 12GB RAM.

32

2.6. Controller

in the punishments for crashes. Consequently, instead of going down, the
controller found that slowing an agent to minimal speed will cause minimum
crashes, therefore, higher cumulative reward. Due to this fact, we increased
the slalom reward to be more recognizable in the final result.

The second concession, which might contribute to unstable results of the best
solution, was a reduction of plays per solution to only 3. In the World Mod-
els, the solution evaluation was averaging of 16 plays. Also, we reduced the
population size from 64 to 30.

Training Progress

We trained the controller for 28 generations on the three techniques mentioned
earlier and also on their variation, where the hidden state is not used for the
prediction. This process took about four days of intermittent training to
compute. Even though the computations were run in parallel as for each
approach was created a single session.

The decision approaches performance during the generations is plotted in Fig-
ure 2.7.

Figure 2.7: Visualization of decision approaches progress through the gener-
ations. The thick line represents average generation score and the shadow
illustrates the minimal and maximal achieved score.

33

2. Implementation

2.7 All Models Together

The flow diagram of the modules interacting with the environment is illus-
trated in Figure 2.8.

VAE

(V)

MDN-LSTM (M)

Environment

Controller

(C)

world model

observation

action

action

zz

h

Figure 2.8: Flow diagram of World Models modules. The raw observation is
first processed by V at each time step t to produce zt. The input into C is this
latent vector zt concatenated with M’s hidden state ht. C will then output
an action at for direction control. M will then take the current zt and action
at as an input to update its own hidden state to produce ht+1 to be used at
time step t+ 1.

Number of individual modules’ trainable parameters is shown in Table 2.2.

Model Parameter Count
VAE 9,254,477
MDN-RNN 12,596,992
Controller 6915

Table 2.2: Modules parameter count

34

Results

In this chapter, we analyze and compare the performance of various approaches
for controller’s decision architecture. In the first section, we show results in the
environment with modified reward and shortened rollout time. In the second
section, we compare the best performing decision approach on the original
environment with other known results.

Performance of Various Decision Approaches

For testing the performance, we evaluated each decision approach on the
weights proposed as the best by pycma module. For the proof on the ad-
vantage of having the predictions made by the memory module we also tested
their variants, where the controller does not have access to the MDN-LSTM’s
hidden state h. In Table 2.3 is reported their average performance over 20
tries.

Decision approach Score (z and h) Score (only z)
softmax 276.2 94.00
argmax 399.25 5.75
SVO 356.75 −280.50
random policy score: −99.75

Table 2.3: Decision approaches performance evaluation in the environment
with modified rewards. The best performance is highlighted in bold.

From the results, we can see that in cases where the model has access to
the full world model a deterministic approach is a better choice, however, for
cases where the hidden state is not accessible should be applied probabilistic
approach. This might be on the fact the world model already learned the
right predictions, and the probabilistic action choosing is counterproductive.

35

Results

On the other hand, it is convenient for unsure predictions from the controller
with access only to latent vector z.

Performance in the Original Environment

For the performance comparison of the World Models framework we use
some results of some other published RL methods applied to the Skiing
environment. The results are demonstrated in Table 2.4.

Method Average Score Frames Count
A3C LSTM −14, 863.8 200M
A3C FF, 1 day −13, 700.0 200M
DQN −13, 062.3 200M
DDQN −9, 021.8 200M
GA −5, 541.0 6B
Vision model only, z input −15, 209.0 224,000
Full World Model, z and h −11, 623.5 224,000
Random policy −17, 098.1
Human −4, 336.9

Table 2.4: Methods performance comparison on the Skiing environment. A3C
scores taken from [37]. DQN, DDQN, human and random policy scores are
from [38]. GA scores (currently the best known published result) are taken
from [39]. Our results (in bold) are average of 20 plays. For Vision model
only we used sofmax decision method. For full world model we used argmax
decision method.

The World Models framework outperformed some of the known methods but
is far behind the current best performance. We assume the achieved score
might be a bit better if we did not have to make some optimization due to
computation resources we had.

However, the main essence of the framework – data augmentation proved to
be working well. As for achieving this result, the World Models algorithm
needed only about 224,000 generated frames which are equal to the number of
interactions with the environment whereas A3C’s and DQN’s methods were
trained on 200M frames and GA on 6B frames.

36

Conclusion

The goal of the thesis was to provide a general survey of data efficient meth-
ods for reinforcement learning and apply the model-based data augmentation
framework called World Models of the recent influential paper by Ha and
Schmidhuber to a different OpenAI gym environment. Apart from that, do a
performance analysis of the achieved result and consider possible approaches
to improve it, especially on the controller part.

Here is described how the mentioned goals were fulfilled, and future work
extensions and improvements are considered.

At first, we provided a brief theoretical background needed for understanding
the implementation and survey of data efficient methods for reinforcement
learning.

In the practical part of the thesis, we went through the implementation of
the aforementioned framework on the gym Skiing environment. We also gave
experimental advice on optimization of the World Models by testing differ-
ent methods for preprocessing the frames and presenting different decision
mechanisms for the controller module. In the performance analysis, we found
our results are competitive with recent work but on a significantly smaller
computational budget (over 10x improvement).

Although the results of this approach are promising, there is still ample room
for improvements both on theoretical and practical aspects of the problem.
Some of such improvements include closer investigation on the influence of hy-
perparameters and compression ration on the performance or testing different
optimization algorithms on the controller.

37

Conclusion

In an extension of the World Models paper, an idea for using an iterative
training for creating an artificial curiosity and intrinsic motivation was pro-
posed. By flipping the sign of memory module’s loss function in the actual
environment, the agent will be encouraged to explore parts of the world that
it is not familiar with.

The above-mentioned extension and improvements might be further explored
in the future Master’s thesis.

38

Bibliography

1. HA; SCHMIDHUBER. Recurrent World Models Facilitate Policy Evolu-
tion. In: Advances in Neural Information Processing Systems 31. Curran
Associates, Inc., 2018, pp. 2450–2462.

2. DEISENROTH; RASMUSSEN. PILCO: A Model-based and Data-
efficient Approach to Policy Search. In: Bellevue, Washington, USA: Om-
nipress, 2011.

3. FEINBERG; WAN; STOICA; JORDAN; GONZALEZ; LEVINE. Model-
Based Value Estimation for Efficient Model-Free Reinforcement Learn-
ing. CoRR. 2018.

4. Definition – Machine Learning (ML). SearchentErpriseAI [online] [vis-
ited on 2019-04-14]. Available from: https : / / searchenterpriseai .
techtarget.com/definition/machine-learning-ML.

5. AURÉLIEN. Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow. 2nd New edition. Sebastopol, United States: O’Reilly Media,
2019.

6. The story of AlphaGo. Deep Mind [online] [visited on 2019-04-14]. Avail-
able from: https://deepmind.com/research/alphago/.

7. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. Deep
Mind [online] [visited on 2019-04-14]. Available from: https://deepmind.
com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii.

8. Key Concepts in RL. Open AI – Spinning Up [online] [visited on 2019-
04-14]. Available from: https : / / spinningup . openai . com / en / latest /
spinningup/rl intro.html.

9. MNIH; KAVUKCUOGLU; SILVER; GRAVES; ANTONOGLOU;
WIERSTRA; RIEDMILLER. Playing Atari with Deep Reinforcement
Learning. CoRR. 2013.

11. CYBENKO. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems. 1989, vol. 2, no. 4.

39

http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution.pdf
http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML
https://deepmind.com/research/alphago/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/BF02551274

Bibliography

12. Fundamentals of Deep Learning — Activation Functions and When to
Use Them? Analytics Vidhya [online] [visited on 2019-04-14]. Available
from: https://www.analyticsvidhya.com/blog/2017/10/fundamentals-
deep-learning-activation-functions-when-to-use-them/.

13. SHARMA. Understanding Activation Functions in Neural Networks [on-
line] [visited on 2019-04-14]. Available from: https://medium.com/the-
theory - of - everything/understanding - activation - functions - in - neural -
networks-9491262884e0.

14. NIELSEN, Michael. ”Neural Networks and Deep Learning. Determina-
tion Press, 2015.

15. SHIBUYA. Demystifying Entropy [online] [visited on 2019-04-14]. Avail-
able from: https : / / towardsdatascience . com / demystifying - entropy -
f2c3221e2550?gi=e13b75cb121b.

16. How to select the Right Evaluation Metric for Machine Learning Models:
Regression Metrics. Towards Data Science [online] [visited on 2019-04-
14]. Available from: https ://towardsdatascience . com/how- to - select -
the - right - evaluation - metric - for - machine - learning - models - part - 1 -
regrression-metrics-3606e25beae0.

17. Gradient Descent in a Nutshell. Towards Data Science [online] [visited on
2019-04-14]. Available from: https://towardsdatascience.com/gradient-
descent-in-a-nutshell-eaf8c18212f0.

18. Adam–latest trends in deep learning optimization. Towards Data
Science [online] [visited on 2019-04-14]. Available from: https : / /
towardsdatascience . com / adam - latest - trends - in - deep - learning -
optimization-6be9a291375c.

19. A Comprehensive Guide to Convolutional Neural Networks. Towards
Data Science [online] [visited on 2019-03-28]. Available from: https :
//towardsdatascience .com/a- comprehensive- guide- to- convolutional -
neural-networks-the-eli5-way-3bd2b1164a53.

20. Convolutional Layers Keras Documentation [online] [visited on 2019-04-
14]. Available from: https://keras.io/layers/convolutional/.

21. A Beginner’s Guide to LSTMs and Recurrent Neural Networks [online]
[visited on 2019-04-14]. Available from: https://skymind.ai/wiki/lstm.

22. HOCHREITER; SCHMIDHUBER. Long Short-Term Memory. Neural
Computation. 1997.

23. Recurrent Neural Networks and LSTM [online] [visited on 2019-04-14].
Available from: https : / / towardsdatascience . com / recurrent - neural -
networks-and-lstm-4b601dd822a5.

24. KINGMA; WELLING. Auto-Encoding Variational Bayes. 2013.
25. Mixture Density Networks. Otoro [online] [visited on 2019-03-28]. Avail-

able from: http : / / blog . otoro . net / 2015 / 06 / 14 / mixture - density -
networks/.

40

https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-activation-functions-when-to-use-them/
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://towardsdatascience.com/demystifying-entropy-f2c3221e2550?gi=e13b75cb121b
https://towardsdatascience.com/demystifying-entropy-f2c3221e2550?gi=e13b75cb121b
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://keras.io/layers/convolutional/
https://skymind.ai/wiki/lstm
 https://doi.org/10.1162/neco.1997.9.8.1735
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5
arXiv:1312.6114
http://blog.otoro.net/2015/06/14/mixture-density-networks/
http://blog.otoro.net/2015/06/14/mixture-density-networks/

Bibliography

26. A Visual Guide to Evolution Strategies. Otoro [online] [visited on 2019-
03-28]. Available from: http : / / blog . otoro . net / 2017 / 10 / 29 / visual -
evolution-strategies/.

27. Python info [online]. Python Software Foundation, 2019 [visited on 2019-
04-14]. Available from: https://www.python.org/about/.

28. Programming Languages Most Used and Recommended by Data Scien-
tists. Business Over Broadway [online] [visited on 2019-04-14]. Available
from: http ://businessoverbroadway.com/2019/01/13/programming-
languages-most-used-and-recommended-by-data-scientists/.

29. The Jupyter Notebook [online]. Project Jupyter, 2019 [visited on 2019-
04-14]. Available from: https://jupyter.org/.

30. Welcome to Colaboratory. In: [online]. 2017 [visited on 2019-04-14]. Avail-
able from: https://colab.research.google.com/notebooks/welcome.ipynb.

31. Introduction to Tensorflow. Tensorflow [online] [visited on 2019-04-02].
Available from: ttps://www.tensorflow.org/guide/low level intro.

32. Key features & capabilities. PyTorch [online] [visited on 2019-04-02].
Available from: https://pytorch.org/.

33. pycma. In: GitHub [online] [visited on 2019-04-27]. Available from: https:
//github.com/CMA-ES/pycma.

34. Introduction to OpenCV-Python Tutorials. OpenCV [online] [visited on
2019-04-02]. Available from: https : //docs . opencv .org/3 .4/d0/de3/
tutorial py intro.html.

35. Gym. OpenAI [online] [visited on 2019-04-02]. Available from: https :
//gym.openai.com/.

36. retro-contest-sonic. In: GitHub [online] [visited on 2019-04-27]. Available
from: https://github.com/dylandjian/retro-contest-sonic.

41

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
https://www.python.org/about/
http://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
http://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://jupyter.org/
https://colab.research.google.com/notebooks/welcome.ipynb
ttps://www.tensorflow.org/guide/low_level_intro
https://pytorch.org/
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://docs.opencv.org/3.4/d0/de3/tutorial_py_intro.html
https://docs.opencv.org/3.4/d0/de3/tutorial_py_intro.html
https://gym.openai.com/
https://gym.openai.com/
https://github.com/dylandjian/retro-contest-sonic

Appendix A
Acronyms

CNN Convolutional neural nets

CMA-ES Covariance-Matrix Adaptation Evolution Strategy

GP Gaussian process

CPU Central processing unit

GPU Graphical processing unit

ES Evolution strategy

LSTM Long Short Term Memory nework

KL Kullback-Leibler divergence

NN (Artificial) neural network

MDN Mixture density network

ML Machine learning

MSE Mean squared error

RAM Random-access memory

RGB Additive color model in which red, green and blue light are added
together to reproduce a broad array of colors

RL Reinforcement Learning

RNN Reccurent neural network

VAE Variational autoencoder

43

Appendix B
Contents of enclosed CD

readme.txt file with CD contents description
thesis.pdf thesis text in PDF format
thesis_src directory of LATEX source codes of the thesis
world_models ... directory with implementation

45

	Introduction
	State-of-the-art
	Machine Learning
	Reinforcement Learning
	Terminology
	Types of Reinforcement Learning Techniques

	Artifical Neural Networks
	Activation Function
	Loss Function
	Gradient Descent

	Convolutional Neural Networks
	Recurrent Neural Networks
	Autoencoders
	Variational Autoencoder

	Mixture Density Network
	Evolution Strategies
	Data Augmentation Algorithms in Reinforcement Learning
	PILCO
	MBVE
	World Models

	Implementation
	Used Tools
	Environment
	Reward
	Observation
	Actions

	Summary of the Training Procedure
	Vision Module
	Architecture
	Training Process

	Memory Module
	Architecture
	Training Process

	Controller
	Architecture
	Decision Approaches
	Training

	All Models Together

	Results
	Performance of Various Decision Approaches
	Performance in the Original Environment

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

