
doc. Ing. Jan Janoušek, Ph.D.
vedoucí katedry

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
děkan

V Praze dne 15. ledna 2018

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
 Název: Vektorový grafický editor s podporou geometrických pravidel ve Pharo/Bloc

 Student: Vojtěch Balík

 Vedoucí: Ing. Robert Pergl, Ph.D.

 Studijní program: Informatika

 Studijní obor: Teoretická informatika

 Katedra: Katedra teoretické informatiky

 Platnost zadání: Do konce letního semestru 2018/19

Pokyny pro vypracování

1) Seznamte se s vývojovým prostředím Pharo, jazykem Smalltalk a low-level UI frameworkem Bloc.
2) Proveďte konceptuální analýzu vektorového grafického editoru, který bude podporovat zadávání
geometrických pravidel a vztahů mezi objekty, inspirujte se v existujících souvisejících řešeních.
3) Implementujte jednoduchý vektorový editor ve Pharo s použitím Bloc podporující základní geometrické
útvary.
4) Navrhněte textový jazyk, ve kterém se budou zadávat pravidla pro jednotlivé elementy i diagram
celkově.
5) Navrhněte a implementujte řešení pro vyhodnocování a splňování pravidel (solver), komentujte jeho
časovou složitost vzhledem k typickému použití. Použijte buď existující vhodnou knihovnu (s případnými
úpravami), případně vytvořte algoritmus vlastní.
6) Řešení otestujte a demonstrujte na příkladech pokrývajících možnosti jazyka.
7) Komentujte dosažené výsledky a jejich omezení.

Seznam odborné literatury

Dodá vedoucí práce.

Bachelor’s thesis

A Vector Graphics Editor Supporting
Geometric Rules in Pharo/Bloc

Vojtěch Baĺık

Department of Theoretical Computer Science
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 16, 2019

Acknowledgements

I would like to thank my supervisor, doc. Ing. Robert Pergl Ph.D., for the
time and energy spent on advising me during the work on this thesis and his
positivism throughout. I would also like to thank my parents for the unending
patience in their support for me. None of this would be possible without you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 16, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Vojtěch Baĺık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Baĺık, Vojtěch. A Vector Graphics Editor Supporting Geometric Rules in
Pharo/Bloc. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2019.

Abstrakt

Při tvorbě strukturovaných kreseb jako jsou diagramy, jsou mezi objekty často
zamýšlené geometrické vztahy, nebo-li omezuj́ıćı podmı́nky, které by měly pla-
tit.

V této práci nejdř́ıve shrnuji existuj́ıćı metody řešeńı omezuj́ıćıch podmı́nek
v interaktivńıch grafických aplikaćıch. Posléze implementuji prototyp vekto-
rového editoru ve Pharo Smalltalk, s podporou základńıch tvar̊u a lineárńıch
omezuj́ıćıch podmı́nek, k čemuž využ́ıvám algoritmus Cassowary. Dále navr-
huji textový jazyk, pomoćı kterého se do editoru omezuj́ıćı podmı́nky zadávaj́ı.

Kĺıčová slova Pharo, Smalltalk, omezuj́ıćı podmı́nky, interaktivńı grafická
aplikace, diagram, Cassowary, textový jazyk

vii

Abstract

When creating structured drawings, such as diagrams, it is often desired for
certain geometrical relationships, or constraints, to hold among the shapes.

In this thesis, I first review existing approaches to solving constraints in
interactive graphical applications. Then I implement a prototype vector editor
in Pharo Smalltalk, supporting basic shapes and linear constraints, for which
I use the Cassowary solver. I also design a textual language, using which
constraints are entered into the editor.

Keywords Pharo, Smalltalk, constraints, interactive graphical application,
diagram, Cassowary, textual language

ix

Contents

Introduction 1
Motivation . 1
Goals . 1
Outline . 2

1 Review 3
1.1 Constraint hierarchies . 3
1.2 Solvers . 5

1.2.1 Local Propagation . 5
1.2.2 Iterative Numeric Solvers 6
1.2.3 Direct numeric solvers 7

1.2.3.1 Simplex algorithm 7
1.2.3.2 Cassowary . 7
1.2.3.3 QOCA . 9

1.3 Technologies . 9
1.3.1 Pharo . 9
1.3.2 Bloc . 10
1.3.3 SmaCC . 10

2 Analysis 11
2.1 Choosing constraint solver . 11
2.2 Modelling shapes . 12

2.2.1 Box . 12
2.2.2 Line . 13
2.2.3 Other . 13
2.2.4 Constraints using bounding boxes 14

2.3 Limitations of linear constraints and Cassowary 14
2.3.1 Expressiveness . 14
2.3.2 Constraint conflicts . 15

xi

2.4 Textual language . 16

3 Implementation 17
3.1 Overview . 17
3.2 Main classes . 17
3.3 Types . 18
3.4 Actors . 19

3.4.1 Overview . 19
3.4.2 Data bindings . 19
3.4.3 Expansions . 20
3.4.4 Defining a new actor . 20
3.4.5 Generating constraints 21

3.5 Language grammar and syntax 22
3.6 Stay constraints . 23
3.7 GUI . 24

3.7.1 Handles and editing shapes 24

4 Validation 27
4.1 Testing . 27
4.2 Example of creating a binary tree 27

5 Discussion 33
5.1 Limitations and Future Work 33

5.1.1 Visualizations . 33
5.1.2 Textual language limitations 34
5.1.3 Constraints . 34

5.2 GUI editor . 34

Conclusion 35

Bibliography 37

A Acronyms 41

B Contents of enclosed CD 43

C DSL Grammar 45

xii

List of Figures

2.1 UML diagram [1] . 11

3.1 Handles of a selected line . 25

4.1 Inspector on a drawing with code to add shapes 28
4.2 Final result of binary tree example 31

xiii

Introduction

Motivation

When creating structured drawings using vector editors (e. g. UML diagrams),
the user often intends for graphical objects to be in a certain geometrical
relation with one another. Examples of there relations might be:

• object A to the left of object B,

• A does not overlap B,

• group of objects aligned to a line,

• and so on.

These are referred to as constraints in the literature.
Usually, however, there are only limited ways to convey this desire to the

editor, and so users have to maintain these relations by themselves manually
after a change. This makes it tedious to create visually pleasing diagrams. To
ease the process, a system, in which it is possible to declare constraints among
objects and which are automatically maintained, is desired.

In this thesis, I explore some of the many approaches developed in the
past. After that I describe my prototype implementation of such system in
Pharo Smalltalk using the Bloc UI framework, which I call Aod.

Goals

1. Familiarize yourself with the Pharo live programming environment, the
Smalltalk language and Bloc, a low-level UI framework.

2. Analyze vector graphic editor system supporting constraints among its
objects. Take inspiration in existing solutions.

1

Introduction

3. Implement a simple vector editor in Pharo using Bloc framework sup-
porting basic geometric shapes.

4. Design a textual language for entering constraints on visual elements
into the system.

5. Design and implement a solution to maitain constraints, and comment
on it’s complexity in typical usage. Either use a suitable existing library,
or develop a new algorithm.

6. Test the implementation and provide examples demonstrating its capa-
bilities.

7. Assess the results and discuss their limitations.

Outline

Beginning with the introduction, I briefly summarized the motivation behind
this thesis and its goals.

In the Review chapter, I look at the different techniques developed for
solving constraints in interactive graphical applications.

Then, in the Analysis chapter, I assess the kinds of constraints that are
needed for the subject of this thesis, select a suitable solving technique and
discuss how I will use it and its limitations in further detail.

Following that is the Design and Implementation chapter.
In the Validation chapter, I demonstrate the capabilities of the final prod-

uct on examples.
The Discussion chapter examines the limitations of the prototype imple-

mentation and how they can be improved, as well as potential future applica-
tions of this thesis’ results.

Finally, in the Conclusion chapter, I assess the achieved results.

2

Chapter 1
Review

Constraints have been used in many graphical applications. In this chap-
ter I will first focus on algorithms, or constraint solvers, used in interactive
applications. Then I briefly describe technologies I use in my implementation.

Common in vector editors are operations like aligning or equally distribut-
ing objects [2], and specialized layouting algorithms in diagramming editors
like [3]. However, the assigned relations are not maintained when user directly
manipulates objects of the drawing.

Editors with such capabilities exist. At their core, there is an algorithm
that enables these capabilities – a constraint solver – which takes in specified
constraints and outputs values for constrained variables that satisfy them.
Based on those variables the editor then displays visual objects on the screen.

The underlying solver implies many of the editors characteristics, most
importantly

• expressiveness, i. e. what kinds of constraints are possible,

• complexity, which is crucial for interactive editing. [4]

In the following sections, I discuss existing approaches to constraint solving
in interactive graphical applications.

1.1 Constraint hierarchies

Traditionally, constraints describe relations that must be maintained. How-
ever, it is often useful to be able to express preferences too and interactive
graphical applications are no exception. Constraint hierarchies [5] provide a
formal framework for this and many solutions adopt it.

Constraint hierarchies enable preferences alongside requirements in con-
straint systems. Preferred (soft) constraints can be broken, therefore con-
flicting constraints are possible. There can be an arbitrary number of levels

3

1. Review

of preferential constraints, where stronger constraints completely dominate
weaker ones.

Loosely, a solution to a constraint hierarchy is a valuation for the con-
strained variables, that satisfies, that

1. all required constraints are satisfied, and

2. there is no better solution for non-required constraints.

A comparator then defines which solutions are better. The definition allows
for many different definitions of a comparator, however it requires that the
hierarchy is respected – if there is a solution that satisfies all constraints up
until some level (going from stronger to weaker ones), then that solution is
better than solutions that do not.

Comparators differ in two general dimensions;

• local vs. global – whether solutions are compared constraint by con-
straint or by some global measure, and

• predicate vs. metric – whether the comparator only distinguishes bi-
nary satisfied or unsatisfied constraints, or whether it also considers
how nearly the constraints are satisfied

The ability to express preferences helps with an issue common to all
constraint solvers – under-constrained systems of constraints. An under-
constrained system is a set of constraints, for which there is no single correct
solution – it is ambiguous, which values should be assigned to constrained
variables. Consider this one constraint over two variables:

X + Y = 0

Such system has more than one solution and it is unclear which of the solutions
should the solver pick. This is a problem, because as a consequence, unex-
pected results might be displayed to the user. Constraint-hierarchies-enabled
systems add stay constraints to each constrained on-screen entity, which, as
the name suggests, make variables ‘stay at one place’. [4]

A stay constraint is a low priority constraint of the form

X = α

where α is the value that the constraint solver will assign to X unless a con-
straint with higher priority forces it otherwise. This disambiguates solutions
and ensures that objects do not move unexpectedly.

If there is a stay constraint on Y too however, and their values do not
satisfy the equation, one of the stay constraints has to be broken. It is up to
the comparator to decide which solution to pick.

4

1.2. Solvers

1.2 Solvers

1.2.1 Local Propagation

Local propagation, thoroughly discussed in [4], is one of the simplest ap-
proaches to constraint solving developed. Each constraint is implemented as
one or multiple procedures, that are called in order to maintain the constraint.
The job of a local propagation algorithm is to figure out which procedures to
call for each constraint and in which order to call them. Maintaining the con-
straints is then only calling the chosen procedures in that order. This makes
local propagation solvers very fast.

In its simplest form, only one-way constraints are allowed. One-way im-
plies only one procedure per constraint. For example; a constraint x = y + z
will only be maintained by setting x in reaction to y and z, i. e. x ← y + z,
but not y ← x− z.

With one-way constraints, the preparation phase is equivalent to topolog-
ically sorting a directed graph. In this constraint graph, vertices represent
constrained variables and directed edges represent one-way constraints.

However, this approach cannot handle cycles in the constraint graph, and
it is indeed a problem common to all local propagation solvers, as they can
only consider one constraint at a time and in isolation. Such cycles arise when
multiple constraints interact with the same variables. For example;

x+ y = 100
x = y

To avoid this cycle, these constraints would have to be rewritten to

x = 100/2
y = 100/2

This however sacrifices some of the declarative nature of constraints, as
the user needs to be wary of creating cycles. Additionally, they cannot always
be avoided.

Additionally, there are other limitations to the basic approach.

• Only functional constraints. This means inequality constraints are not
possible.

• Only required (hard) constraints, expressing preferential (soft) constraints
is not possible.

• Only single-output procedures, i. e. a constraint’s procedure can set the
value of only one variable.

5

1. Review

There are solvers attempting to solve all of these problems.
DeltaBlue [6] supports multi-way constraints (i. e. multiple procedures per

constraint) and soft constraints by implementing constraint hierarchies using
a locally-predicate-better comparator.

Indigo [7] supports inequalities by propagating intervals instead of values,
which are tightened as constraints are applied.

SkyBlue [8] and Ultraviolet [9], are capable of solving some cycles in their
constraint graphs. They achieve this by finding subgraphs with cycles and
collapsing them into a single constraint. These constraints are then satisfied
using a specific solving technique, a sub-solver – for example Gaussian elimina-
tion for simultaneous linear equations. Because these subgraphs might relate
multiple variables, the main solver has to be able to handle multiple-output
procedures for constraints.

To summarize, the advantages of local propagation are

• speed, and

• constraints not limited to numeric domains.

The biggest disadvantage is that it cannot handle cycles without delegating
to subsolvers.

1.2.2 Iterative Numeric Solvers

Usually, the constraint satisfaction is transformed into a mathematical opti-
mization problem by expressing the constraints in terms of an error, which
the optimization algorithm then minimizes as its objective.

Iterative approaches, like the Newton’s method, take an initial guess and
try to improve on that to find a solution. These are very general solvers –
they allow solving simultaneous non-linear constraints. However, they are
relatively inefficient. Another problem is that due to their iterative nature,
only local optimums are found (in reasonable times) and the solutions found
by the solvers depend on the initial guess. This means that even a small
change may lead to an unexpected result.

Iterative numeric solvers are also difficult to implement correctly, due to
problems like numerical instability. [4]

The role that these solvers play in the systems using them also differ.
Sketchpad [10] uses it as a general fallback in the cases its fast local propa-
gation algorithm fails. Juno [11] allows few simple constraints on points and
lines. Using these points and lines, user then specifies the final drawing using
procedural code, that is executed after constraints have been satisfied.

There have also been attempts to embed constraint hierarchies into solvers
using this approach. [12] [13]

6

1.2. Solvers

1.2.3 Direct numeric solvers

Unlike iterative numeric solvers, direct numeric solvers attempt to find an
exact solution instead of approximating. This avoids the difficulties with iter-
ative numeric solvers. However, the trade-off is that less expressive constraints
are available. A common restriction is only allowing linear equalities, which
can be solved using Gaussian elimination. Simplex algorithm based solutions
also allow linear inequalities. [4]

1.2.3.1 Simplex algorithm

Simplex algorithm solves the problem of linear optimization – the task of
minimizing a linear objective function, subject to a set of linear constraints.
The algorithm uses pivoting and is split in two phases. Phase I finds an initial
feasible solution – a valuation of constrained variables such that all constraints
are satisfied, phase II finds an optimal solution – a feasible solution where the
objective function has minimum possible value.

The simplex algorithm, in and on itself, does not allow inequalities. How-
ever, each variable in its tableau is guaranteed, from the way the algorithm
operates, to be non-negative. Each constraint x ≤ α, where x is an arbitrary
linear expression and α is a constant, can be rewritten as x+ y = α, where y
is a non-negative variable. y is referred to as a slack variable.

While the worst case time complexity of the simplex algorithm is expo-
nential, it is polynomial in the average case.

HiRise2 [14], QOCA [15] and Cassowary [16] are all constraint solvers more
or less based on the simplex algorithm. [4]

1.2.3.2 Cassowary

Cassowary [16] modifies the simplex algorithm to overcome difficulties which
make it unsuitable to use in interactive graphical applications.

First, less crucial issue, is the fact that the simplex algorithm imposes im-
plicit non-negative constraint on all it’s variables. Here, Cassowary adopts a
solution developed for constraint logic programming languages of using two
separate tableaux, one for the simplex variables (e. g. slack and error vari-
ables), on which the algorithm operates and the other one for unrestricted
variables (i. e. created by user) expressed using the variables in the simplex
tableau.

Second issue is how to define the objective function to accommodate con-
straint hierarchies. Cassowary’s objective function is the sum of errors on
each non-required constraint. To accommodate constraint hierarchies, e. g.
to make errors of stronger constraints have more weight then those of weaker
ones, each error (e. g. a value representing how much the current solution de-
viates from a given non-required constraint) has an associated weight. These
weights directly corresponds to the strengths associated with constraints and

7

1. Review

make sure that weaker constraints never out-weight those of stronger con-
straints, symbolic weights are used (represented as tuples of lexicographically
ordered values). This is regarded as the weighted-sum-better comparator. In
the previously mentioned taxonomy of constraint hierarchy comparators, it is
global and metric.

As an example, suppose the following problem, with two levels of non-
required constraints: minimize

[1, 0]× |x− 50|+ [0, 1]× |x− 30|

subject to

strong x = 50
weak x = 30.

[1, 0] × |x − 50| will always compare larger than [0, 1] × |x − 30|, with the
exception of when |x− 50| = 0. Hence, in Cassowary, the optimal solution to
this problem is x← ±50.

However, using absolute values in the objective function means the sim-
plex cannot be directly applied. Cassowary solves this by introducing error
variables into each non-required constraint. This is similar to slack variables
commonly used in the plain simplex algorithm.

Final issue is efficiency. Similar problems are solved repeatedly, for ex-
ample when moving an object using a mouse, the constraints stay the same,
except the position of the object being moved. Some form of incrementality
is needed, so that parts of previous solutions are reused to speed up solving.

First optimization is that Cassowary allows adding and removing con-
straints while maintaining basic feasible form (i. e. the result of phase I of
simplex algorithm).

Another, more essential optimization, is the special handling of edit and
stay constraints to edit variables’ values. Edit constraints are similar to stay
constraints – both are of the form x = α, but edit constraints are stronger.
To edit a variable, Cassowary first adds an edit constraint for that variable.
Then, it takes suggestions for the new value of this variable and modifies the
edit constraint’s α and error variables so that it reflects the new value and
overall optimal solution is maintained. In the case where feasibility of the
solution is broken, dual of the simplex algorithm is used to regain it while
maintaining optimality. After each suggestion, Cassowary modifies the stay
constraint of that variable to reflect the new value, so that when the edit
constraint is removed, the variable does not jump to its old value.

While Cassowary shares the same asymptotic complexity as the simplex
algorithm, it manages to cut down a lot of work by being able to work in-
crementally. While slower than local propagation solvers, numerous practical
applications mentioned above have proven it to be sufficiently fast for inter-
active manipulation.

8

1.3. Technologies

Cassowary has been used in several different applications:

• GUI layout 1

• SCWM [17], a window manager

• CSVG [18], an extension to SVG enabling constraints.

It also has been implemented in several languages, including Smalltalk, Java,
C++, etc. 2

There have been attempts to extend Cassowary with disjunctive con-
straints. The basic idea is to add and remove constraints on-the-fly, so that
constraints comprised of disjunctions (e. g. non-overlapping) are satisfied. [19]
[20]

1.2.3.3 QOCA

QOCA [15] is a constraint solving library with several algorithms, one of which
is the QCLinIneqSolver, briefly described here in comparison to Cassowary.

The main difference between QOCA’s simplex based linear inequality solver
and Cassowary is that in QOCA, strengths are placed on variables, and not on
constraints as in Cassowary. The strengths on variables act as stay constraints.
It uses a least-squares-better comparator, i. e. it tries to minimize the sum of
each variable’s stay constraint’s error squared. The effect is that when there
are conflicting priorities, the error among the stay constraints is balanced,
whereas Cassowary picks some to break and some to satisfy completely. [4]

1.3 Technologies

Very briefly, I go through the technologies and frameworks used to implement
the prototype application.

1.3.1 Pharo

“Pharo is a pure object-oriented programming language and a powerful envi-
ronment, focused on simplicity and immediate feedback (think IDE and OS
rolled into one)” [21].

It’s most prominent distinction from other more static languages, is that
classes, which describe objects and their methods, are objects like any other.

Pharo is essentially Smalltalk, with some extensions. It is a very minimal
language. Objects have methods and instance variables to keep state. Objects
then communicate by sending each other messages. Everything in Smalltalk
is a message send, from basic arithmetic operations and control structures

1http://ijzerenhein.github.io/autolayout.js/
2http://overconstrained.io/

9

http://ijzerenhein.github.io/autolayout.js/
http://overconstrained.io/

1. Review

to high level operations on collections of objects. This is made possible with
blocks, special objects which wrap code to be executed later, similar to lambdas
and closures in other languages.

Pharo does not have types. Compatibility is determined only by whether
the receiver of a message responds to it (implements a method with that
name).

1.3.2 Bloc

Bloc [22] is a “Low-level UI infrastructure & framework for Pharo”. It is a new
framework under active development, but has been becoming more stable and
feature complete during my work on this thesis. There are also plans for it to
replace Morphic as the main UI environment for Pharo in the future.

Bloc’s basic building block is a BlElement object, using which visual pre-
sentations are created. Each element uses a BlLayout to position it’s children,
e. g. grid layout. To support interaction, elements send notifications about
various events on them, e. g. mouse click, position change, etc. Basic shapes,
like rectangles, ellipses, polygons and curves, are supported.

Brick [23] is a widget library built on top of Bloc. It is also under ac-
tive development, but already provides useful widgets like buttons, and, most
importantly, a text editor.

1.3.3 SmaCC

SmaCC (Smalltalk Compiler-Compiler) [24] is a tool, that generates LR
parsers. A user describes tokens (lexical analysis), that the language is to
recognize, grammar (syntactic analysis) of the language and actions to per-
form when a grammar rule is parsed. Actions are regular Pharo code that
can access tokens (terminals) parsed by the corresponding grammar rule and
results of actions of its sub-rules (non-terminals).

SmaCC can also generate abstract syntax trees (ASTs). Using a special
syntax for actions, SmaCC generates classes and methods for nodes of the
AST. Basic visitor mechanism is also generated to work with the AST. A
disadvantage of this approach is that for most changes to the parser’s source
code, the AST classes has to be re-generated. This makes making changes
directly to AST classes inconvenient. SmaCC allows specifying additional
instance variables for nodes of the AST and their class hierarchy in the parser’s
source code, but not extra behavior. Extending AST nodes’ behavior is best
done via custom visitors.

10

Chapter 2
Analysis

2.1 Choosing constraint solver

The choice of the underlying constraint solving technique will strongly affect
the capabilities of the final solution [4].

As the main intended use-case of Aod is creating diagrams, the goal is
to allow constraints between predefined shapes (e. g. UML class diagram
components), rather than to allow defining shapes themselves via constraints.

Looking at figure 2.1 and the shapes in it, constraints used in such diagram
might include:

• position, e. g. A to the left of B,

• size, e. g. A is as big as B,

Figure 2.1: UML diagram [1]

11

2. Analysis

• alignment, e. g. a group of shapes placed along a line,

• distribution, e. g. equal spacing between shapes.

Such constraints can be expressed using linear equalities and inequealities
(at least considering rectangles, more on this later).

In contrast to these are constraints concerning angles, orthogonality, dis-
tance, etc. While these can still be useful, even if not for geometrically con-
structing shapes, they cannot be expressed using simple linear constraints,
and thus powerful general solvers are needed.

Considering the many challenges that come with the iterative numeric
solver approach (to briefly reiterate – numerical instability, difficulty of im-
plementation, inaccuracy, slow for interactive manipulation, . . .) I find that
its benefits do not out-weight the cost and is not worth the effort for Aod’s
use-case.

Local propagation also allows general constraints, even outside numeric
domains. However, their inability to handle cycles is a big issue, as according
to [4], cycles seem unavoidable in complex layout problems.

On the other hand, linear constraint solvers do not impose such limitations.
If the conjunction of constraints fed into the solver has a solution – no matter
how they were specified – it will find a solution.

If shapes are limited to rectangles, into which other shapes like polygons
or ellipses are inscribed, the system falls into similar domain as GUI layout,
where linear constraint solvers, have been used with success.

I decided to base my implementation on Cassowary. It has been success-
fully used in GUI layout and in a constraint window management system,
both mainly dealing with positioning of rectangular views. It’s Smalltalk im-
plementation has also been ported to Pharo.

2.2 Modelling shapes

Cassowary works with single variables. In this section, I will discuss how
shapes will be represented using these variables.

2.2.1 Box

As mentioned above, the main representation of shapes will their bounding
rectangle (bounding box or just box from now on). Looking at it from the
other end, the constraints will describe relationships on boxes, into which
shapes (rectangle, ellipse, polygon, . . .) will be inscribed.

A box is represented by four variables; left, top, width, height, or position
and extent.

It is possible to use a different representation for a box – a point rep-
resenting the top-left corner and another one representing the bottom-right
corner.

12

2.2. Modelling shapes

As far as linear constraints go, these representations are equivalent. One
can can get the ’right’ variable from the position-extent representation by
adding horizontal position and width, and subtract ’left’ from ’right’ to get
the width going the opposite way.

However, there are some practical differences. Stay constraints and edit
constraints can only be specified on individual variables.

Changing position of a box with the two-point representation, requires
changing both points at the same time. Fortunately, it is possible to edit
multiple variables at once and suggest values to both points so that visually,
position of the box would change and size would remain the same.

However, there is no way to “insert” a computation like this with stay
constraints. With the two-corner representation, there is no way to specify a
stay constraint on width or height of a box. One could add a constraint to
maintain, for example, width like so

Box.bottom right.x− Box.top left.x = α

where α is the desired width, and set its strength to that of stay constraints.
However, α would not be automatically adjusted after the width has been
changed via editing, and so when the editing cycle would end, and the stronger
edit constraints removed, the box’s width would return to α, disregarding the
edit. This would render interactive visual editing of that box impossible. To
change the width one would have to first remove the old width constraint and
then add a new one with the desired α.

I use the position-extent representation. I also insert additional constraints
– invariants – to ensure width or height cannot go negative.

2.2.2 Line

One shape where modelling it with a box would be too awkward is a line.
Those are modelled them using two points – start and end. No invariants are
needed for lines.

2.2.3 Other

Other models are of course possible, but it might be difficult to express useful
constraints using them.

For example, a polygon could be modelled by a point for each of it’s ver-
tices, instead of being inscribed into a box. However, with linear constraints,
there are limited capabilities to express which shape should these points form.
To express more complex shapes (like a pentagon), the relative positions of
these points would need to be “hard-coded” via constraints (i. e. to change
the shape, these constraints would need to change). If the model were to be
compatible with boxes, the left-, top-, right-, bottom-most point would need

13

2. Analysis

to stay the same, as constraints cannot be expressed on the minimum or the
maximum of a set of variables.

With these limitations, there is not much advantage over inscribing into a
box.

2.2.4 Constraints using bounding boxes

Looking back to the diagram in figure 2.1 and the potential constraints, here
I will show how some of those constraints can be defined with what I have
established so far.

Relative positioning of shapes in terms of a horizontal or vertical direction.
E. g. keeping box A above box B is achieved using the following constraint:

A.top +A.height ≤ B.top

.
The position of a box (or any point) can be aligned to an arbitrary line by

relating it’s horizontal and vertical positions, e. g. to align to a diagonal:

A.top = A.left

.
More often, it is desired to align multiple shapes to same horizontal or

vertical lines. This can be done by equating their left or top anchors, and the
boxes can then be moved with this alignment maintained.

A slightly more complex constraint is distributing variables evenly. Con-
sider four boxes, A,B,C,D, and two constants, α and β. To place, for exam-
ple, their left variables evenly, starting from α and ending at β, the following
constraints would be used:

A.left = α

B.left = A.left + β − α
3

C.left = B.left + β − α
3

D.left = β

2.3 Limitations of linear constraints and
Cassowary

2.3.1 Expressiveness

Using Cassowary means that only linear equalities and inequalities are avail-
able, so for example a general distance constraint is not possible, as it is

14

2.3. Limitations of linear constraints and Cassowary

quadratic. It is however possible to define distances between along some line,
therefore alignment constraints with spacing are feasible. Relating sizes of
objects is also possible, as long as these relations are linear.

Important to note is also the fact that only conjunctions of constraints are
possible (though this is not limited to Cassowary). This means that, as is,
expressing non-overlap constraints is not possible. More generally, the area in
which a point can be constrained to lie is a convex polygon.

To backtrack a little, while local propagation solvers cannot handle dis-
junctions either, non-overlapping between two shapes could be implemented
by a single constraint, as the procedures enforcing constraints can contain ar-
bitrary code. However, having a group of more than two shapes not overlap,
which would likely be the desired use of non-overlapping, would necessarily
lead to cycles in the constraint graph and hence end up not solvable by local
propagation either.

2.3.2 Constraint conflicts

Conflicting constraints are a set of constraints, where there is no solution
that satisfies all of them. If constraints of required strengths are in conflict,
Cassowary fails. If they are of mixed strengths, Cassowary chooses to satisfy
to stronger ones. If they are of the same non-required strength, Cassowary
chooses basing on it’s internal state, which, from the outside, is effectively at
random. (There are ways to influence this, but results are not guaranteed.)

Consider two boxes A and B, with stay constraints of the same strength
on each of their variables. Furthermore, there is a required constraint that A
is left of B:

A.left + A.width ≤ B.left

What happens in the solver when B is moved left far enough so that the
shapes collide? The value of one of the other two variables needs to change
so that the constraint is satisfied. B.left is being edited and so is strongly
constrained to the suggested value. A.left and A.width are kept in place only
by weak constraints. To satisfy the constraint, Cassowary will either move
A to the left, or shrink its width. (With QOCA, the change would be split
between the two variables.) To make Cassowary choose one over another, one
solution would need to be better than the other, i. e. one of the variables could
have a stronger stay constraint.

Nevertheless, there cannot practically be an individual strength level for
each constraint, mainly for performance reasons. (Each additional level means
one more additional comparison to compare symbolic weights.) When creating
a drawing, such conflicts happen often, and the more variables are intercon-
nected, the more possibilities of constraints, which the solver can break in the
face of a single edit, there are. A possible remedy is for the user to add a
required constraint, to “lock” some property of the drawing they are satisfied

15

2. Analysis

with at an absolute value. In the example from previous paragraph, this could
be: A.width = 50.

2.4 Textual language

The textual language has to be able to talk about shapes’ models and the
variables from which they’re composed.

Since Cassowary will be the solver used, the basis of the language will be
the following six operations that form linear constraints.

+,−, ∗, /,=,≤

The basic data types will be constrainable variables and numeric constants.
To be able to use variables, there must be a way to access models of shapes
and access the variables of which those models are composed.

With this, it is possible to express any linear constraint. However, the
language should also provide more data types, like points, and descriptive ways
to specify common constraints on those types, like the previously mentioned
distribution, to ease the process of specifying constraints.

Furthermore, the DSL should also provide a programmable API, so that
other ways of specifying constraints, other than textual, are possible in the
future (e. g. via snap-dragging).

16

Chapter 3
Implementation

3.1 Overview

The implementation is split into four packages:

• Aod, the main package with most of the logic,

• Aod-Compiler, that contains code related to parsing the textual lan-
guage,

• Aod-UI, that contains classes concerning GUI,

• and Aod-Tests. 3

3.2 Main classes

At the heart of Aod is the Drawing class 4. A drawing holds shapes that
the user sees, and a Program – a description of the relationships between the
drawing’s shapes that should hold, a collection of constraints. Its main job is
to maintain the consistency among shapes and the program. Invariants that
must hold within a drawing are:

• shapes’ IDs and names must be unique,

• program must be valid (more on that below)
3Additionally, there is also the Cassowary package in the project. It is the Pharo port of

the original Smalltalk implementation, which can be found at https://github.com/Ducasse/
Cassowary, with some minor fixes I added.

4Pharo does not have namespaces, so classes from different projects are prefixed to avoid
name collisions and distinguish them from the rest of the system. For example Bl for Bloc’s
classes and Aod for Aod’s classes. When I talk about Aod’s classes, I will omit the prefix.

17

https://github.com/Ducasse/Cassowary
https://github.com/Ducasse/Cassowary

3. Implementation

Drawing also uses a ConstraintSolver to maintain the program’s constraints.
A Shape represents visual objects, such as rectangles, ellipses, lines. A

shape also knows about its various properties, such as ID, name, color. Most
importantly, it also has a Vessel, which determines its spatial properties (i. e.
position and size).

A Vessel is the constrainable model (e. g. box or a line) of a shape I
described in the section 2.2. 5

A Program is a collection of constraints. It’s validity in and on itself cor-
responds to the validity of its individual constraints. In relation to a drawing,
shapes referenced in the programs constraints must exist in the drawing. The
drawing’s constraint solver also must be able to maintain the program’s con-
straints, i. e. they must be linear and satiable (no conflicting constraints).

ConstraintSolver object’s responsibility in a Drawing is to take con-
straints from both vessels (stay constraints and invariants) and the program,
and maintain them. It is the single authority on the values of anchors in
vessels, i. e. all changes to shapes’ spatial properties in a drawing must be
performed through its constraint solver.

A Constraint is the intermediate representation. The textual language
described later is the front-end and Cassowary-specific constraints (and its
simplex tableau) are the back-end. It holds the description of the relationship
to maintain, described using actors, and a strength. Currently, three levels
of strengths (in addition to the required strength) are supported, mapping
directly to Cassowary: weak, medium and strong.

3.3 Types

Types represent objects of the language. To represent them, I use Pharo
classes, and therefore, apart from a few exceptions, instances of those classes
represent their data.

The only method common for all types is a method to check type com-
patibility, which is mapped directly to the class hierarchy of the types. This
enables simple subtyping in the language. A type (i. e. a class) is compatible
with another type if it is the same type or it is a subtype (i. e. a subclass) of
said type.

The most basic type is Anchor, from which other types are composed.
Those types are:

• Point,

• Span,
5“Model” and “variable” are quite broad as names for classes, and so in the implemen-

tation I use the names “vessel” and “anchor”, respectively. Vessel “carries” a shape around
and its movement can be limited with anchors.

18

3.4. Actors

• and Vessel, of which there are currently

– BoxVessel,
– and LineVessel.

A Span represents horizontal or vertical line segments. For example, the
left and width anchor together form a horizontal span of said box. They are
useful in many cases, for example to talk about spacings between boxes, or to
specify actors on horizontal and vertical properties in a generic way.

For batch declaration of constraints, there is a List type. In addition to
these, Constraint and Actor can act as types too.

3.4 Actors

3.4.1 Overview

Actors can be thought of as macros. They define an operation that takes one
or more arguments and returns a result. Generally, the operation is expressed
as a composition of other actors. They are represented as classes. Instances
of actors represent nodes of a tree, where the children of a node represent
arguments for the actor. This tree is then used to describe the relation of
Constraint objects.

There are four main categories of actors:

• transformers, used for destructuring objects in the language, e. g. taking
the x-coordinate of a point or the top anchor of a box,

• operators, which take two or more objects and return a new one, e. g.
addition or multiplication,

• relators, which form the relation of a constraint, e. g. equality, object A
is left of B,

• and constructors, to create new points, spans and lists.

However, note, that this is just a naming convention used to sort-out the many
actors that are in the system. Same rules apply to all actors.

3.4.2 Data bindings

A special case of actors are data bindings, which bridge the gap between
regular actors and the data they operate on. They take 0 arguments and are
always at the bottom (leaves) of the actor tree.

For the Drawing to be able to properly maintain consistency between it’s
shapes and program, the data bindings in the constraints of a program need
to bind shapes, not just their vessels or their components. For example, a

19

3. Implementation

shape cannot be removed if there are currently constraints in the program
referencing it.

3.4.3 Expansions

The operation of an actor is defined by specifying an actor tree that represents
the same operation. I call the transformation of an actor into this tree an
expansion.

Of course, expansions have to stop somewhere, some actors must actually
perform some operation. Atomic actors are actors that cannot be further
expanded. They are the basic anchor operations; +,−, ∗, /,≤,=, data bind-
ings, and transformers, that directly destructure vessels, e. g. Box.position
is atomic, but Box.left is not (or rather needn’t be), as it is equivalent to
Box.position.x.

3.4.4 Defining a new actor

An actor declares the number of arguments it takes, it’s argument types and
it’s return type in #argumentTypes, #argumentCount and #returnType class
methods respectively. The essential part of an actor is the #expandOn: class
method. Finally, #identifier declares the string that will be used to refer-
ence this actor from text.

The expansion, is defined as a stack operation. This means that the actor
tree, into which an actor expands, is described in post-fix form.

Generally, an #expandOn: method

• first pops its arguments off the stack,

• and then pushes the arguments and other actors on the stack.

. There are three ways to push to the generator stack:

• #push:, which expects an actor and sends it the #expandOn: message,

• #raw: places the argument provided on top of the stack as is,

• and #length:, which is used specifically when constructing the variably
long lists.

As an example, 1 shows definition of these methods for an actor represent-
ing point-wise addition. It will get the X part of a point and sum it with the
X part of the other point. Then it will do the same for the Y part. Finally,
it will construct a new point.

20

3.4. Actors

AodPointAddOperator class>>#argumentCount
ˆ 2

AodPointAddOperator class>>#argumentTypes
ˆ { AodType point . AodType point }

AodPointAddOperator class>>#returnType
ˆ AodType point

AodPointAddOperator class>>#expandOn: aGenerator
| left right |
"first, pop arguments of stack"
right := aGenerator pop.
left := aGenerator pop.

"second, push to stack accordingly"
aGenerator

raw: left;
push: AodPointXTransformer;

raw: right;
push: AodPointXTransformer;

push: AodAnchorAddOperator;
raw: left;

push: AodPointYTransformer;
raw: right;

push: AodPointYTransformer;
push: AodAnchorAddOperator;

push: AodPointConstructor

AodPointAddOperator class>>#identifier
ˆ #pointAdd

Listing 1: Expansion method for point-wise addition

3.4.5 Generating constraints

When a constraint is added to a solver, it needs to be transformed, or gener-
ated, into Cassowary’s own format. This is done by pushing the nodes of the
constraint’s actor tree onto the generator’s stack accordingly (the same way
as in #expandOn: methods). After all actors have been expanded and atomic
actors performed, the stack will contain one or more items, each of which is a
constraint in Cassowary’s own format, ready to be added.

As I mentioned, the result of an expansion can be more than one back-end

21

3. Implementation

specific constraint. This is because some relators, e. g. point-wise equality,
must be expressed using multiple atomic constraints.

3.5 Language grammar and syntax

The textual definition of a program and constraints is closely related to the
internal Program and Constraint objects. So much in fact, that the textual
version of the constraints can be reconstructed from their Constraint object
counterparts.

This was intentional, so that in the future, if constraints are added using
other means (e. g. the previously mentioned snap-dragging), they can be
displayed to the user in text and treated the same way as other constraints of
the program.

The starting points of each constraint are the shapes, whose anchors are
being constrained. To access these from the program, shape references are
used. A ‘#’ character followed by an integer represents an ID reference, e. g.
#33. It’s return value is the shape’s vessel. Another way to access shapes of
a drawing from the program is to reference its name. A ‘@’ is used to denote
a name reference – e. g. @circle2.

From the shapes’ vessels, actors are used to build up constraints. Consider
the following constraint:

isLeftOf(#1, #2) : required;

An identifier isLeftOf with arguments inside brackets after it represents
an actor invocation. Any actor in the system can be invoked from the text
this way. However, for convenience, there are other ways.

#1.left + #1.width <= #2.left;

This example shows, that anchor operators can also be invoked using their
respective symbols in infix notation. Single argument actors (usually trans-
formers) can be expressed by appending ‘.’ to its argument followed by the
actor’s identifier.

Note that in the second constraint, strength is left unspecified. In that
case, the constraint will have a required strength.

There is also special syntax to construct points and spans. For points,

{#1.left, #1.top}

is equivalent to

#1.position

For spans,

22

3.6. Stay constraints

#1.left -> #1.right

is equivalent to

#1.horizontal

They can also be constructed by using the general actor invocation syntax,
i. e. point(#1.left, #1.top) and span(#1.left, #1.width).6 There is
also syntax for constructing lists: [#1, #2, #3]. List’s constructor actor
cannot be called directly from the text, as it needs special treatment to handle
its variable number of arguments.

All operators in the language are left-associative, except for <=, >= and =,
which can only appear once in a constraint. Their precedence is as follows in
ascending order:

=, <=, >=
->
+, -
*, /
.

I use SmaCC to implement, or rather generate, parser for the textual
language. Not many other options exist in Pharo. A notable one is PetitParser
[25], a framework for building parsers, however it is more low-level and not as
complete solution as SmaCC.

3.6 Stay constraints

There are implicit stay constraints for every vessel in the drawing. Without
that, shapes would be placed more or less unpredictably and editing with
Cassowary would be impossible (there would be nothing holding the shape in
the position it was moved to).

This can be manually overridden from the program for individual shapes
(or rather vessels) and their components, like so

stay(@circle1.position) : medium;

The overridden stay constraint does not get removed – if the new one is
stronger, it overpowers the old one and the effect is the same. This is to
easily ensure that a stay constraint is present on all anchors (i. e. Cassowary
variables) at all times.

All stay constraints use have the weak strength, except for box’s extent,
where I opted to use stronger stay constraints (by one level, i. e. medium) by

6A span is internally represented by a start anchor and a length anchor, but it is usually
more convenient constructing it with a start and an end anchor, so the -> operator does just
that.

23

3. Implementation

default. During my experimentation with the system, it always seemed more
intuitive for the size of a box to stay the same.

3.7 GUI

The GUI has three main parts:

• the canvas, where shapes are displayed,

• the program editor, where constraints are entered,

• and property list, where properties of the selected shape are shown.

The Bloc low-level UI framework is used for all Aod’s visual elements.
GUI elements communicate changes to the model, i. e. the Drawing ob-

ject, using commands, e. g. SetProgramCommand. The Drawing object sends
announcements about the changes in its state and GUI components listen to
these announcements and change what they display accordingly.

To position elements representing Aod’s shapes accordingly, I use a custom
layout strategy, that simply positions and resizes the elements according to the
information in the vessels of their respective Aod shapes (to which each such
element holds a reference). Bloc’s layout strategies work with bounds (i. e.
encompassing rectangle, bounding box) of an element, hence incompatible
vessels like the LineVessel need first be converted.

3.7.1 Handles and editing shapes

Editing a shape must mimic the procedure used in Cassowary to edit variables.
First, a shape to be edited must be declared, so that edit constraints can be
added to Cassowary. Then, suggestions can be made via handles. Finally, the
editing must be explicitly ended, so that the no longer needed edit constraints
are removed from Cassowary.

A Handle object facilitates editing of a vessel in some way, e. g. a handle
to edit the size of a box. When a shape is edited, all of it’s vessel’s anchors are
edited at the same time, disregarding which part of it is going to change. The
job of a handle is to translate a point input, usually coming from mouse pointer
position, into suggestions to the individual anchors, so that the desired effect
is achieved. If some anchors are not meant to change, their current values
must be suggested back for them.

Editing also the anchors of the vessels, that are not meant to change, has
the side effect of giving them temporarily, for the duration of the edit, stronger
pseudo stay constraint. This is useful as the shape being edited will stay the
same in favor of other shapes when constraints conflict.

Currently, there are only handles for points – position and extent for boxes,
and start and end for lines. Visually, they are represented as small circles on

24

3.7. GUI

Figure 3.1: Handles of a selected line

the currently selected shape and the whole editing process is performed by
clicking on and dragging the visual handles. Figure 3.1 shows a selected line
with it’s two handles.

25

Chapter 4
Validation

4.1 Testing

All tests can be found in the Aod-Tests package. I used the Smalltalk’s classic
SUnit unit-testing framework [26] and focused on the fundamental parts of the
implementation, namely constistency of a Drawing and correct translation of
constraints.

There are also examples of usage of UI components in the Aod-UI package,
some of which also perform tests.

4.2 Example of creating a binary tree

In this section, I will demonstrate working with the application by walking
through the creation of a binary tree diagram. Code equivalent to this example
can be found in the AodElementExample class. Figure 4.2 shows the screenshot
of the final result.

Start with opening an empty drawing in the GUI

AodElement openOn: AodDrawing new

First, shapes need to be added. The tree will have three levels, so seven
nodes. Aod does not yet have a way to add shapes from the GUI, so they
have to be added manually. Open inspector on the drawing object being
edited by clicking on the “drawing” button and type the following code into
it’s evaluation window, highlight the code and evaluate it. Figure 4.1 shows
screenshot of the inspector with the code highlighted.

7 timesRepeat: [self applyCommand: (AodAddShapeCommand new
shape: AodRectangle new)]

This creates seven randomly colored rectangles with IDs 1–7 (assuming a
fresh instance of a Drawing), all with the same position and size. Shapes can

27

4. Validation

Figure 4.1: Inspector on a drawing with code to add shapes

be (re)named and referenced from program by name. Let’s do that for the
root node. Again, in the drawing inspector’s, enter and evaluate the following.

self applyCommand: (AodRenameShapeCommand new
"select the shape to rename by ID"
reference: #1 asAodReference;
name: 'root')

With shapes in place, we can go back to the editor window and start
adding constraints. First, align shapes in each level to have the same vertical
position.

// middle level
equal_anchors(

map(
[#2, #3],
top));

// bottom level
equal_anchors(

map(
[#4, #5, #6, #7],
top));

28

4.2. Example of creating a binary tree

Next, it define the order of shapes in a level.

sequenced(
map(

[#2, #3],
horizontal));

sequenced(
map(

[#4, #5, #6, #7],
horizontal));

Levels should also be ordered. Since the top anchors are aligned in levels,
this can be somewhat achieved by specifying the order on individual shapes
in the levels.

sequenced(
map(

[#1, #2, #4],
vertical));

There is one deficiency. If the height of node #3, is changed to collide with
shapes of the level below, their positions will not get adjusted. To fix this,
one more constraint is needed.

isAfter(#3.vertical, #4.vertical);

A nice property of a tree to have, is that the center of a parent and the
centers of it’s children nodes are aligned. 7

#1.h.middle = (#2.left -> #3.right).middle;
#2.h.middle = (#4.left -> #5.right).middle;
#3.h.middle = (#6.left -> #7.right).middle;

Another beautification might be that the spacing between the nodes in the
lowest level is equal in all cases.

equal_anchors(
map(

spacings(
map(

[#4, #5, #6, #7],
horizontal)),

length));
7h and v are shortcuts to horizontal and vertical respectively

29

4. Validation

At this point, the user can notice that it is quite impossible to predict how
exactly will shapes move in response to editing one of them. As I mentioned
in 2.3.2, this happens many variables are interconnected. To help with this,
set the spacing to a constant value. Since they are all constrained to be equal,
only one needs to be constrained.

spacing(#4.h, #5.h).length = 40;

Finally, add lines that will connect the nodes, by again, opening the draw-
ing inspector and applying commands. Here, it is also shown, how shapes can
have their properties set before they are added.

1 to: 6 do: [:index |
self applyCommand: (AodAddShapeCommand new

shape: (AodLine new
propertyAt: #color put: Color black;
propertyAt: #name put: 'line', index asString))]

Then add constraints, to connect their ends to shapes. 8

connect_points(
@line1,
point(

@root.h.middle,
@root.v.end),

point(
#2.h.middle,
#2.v.start));

connect_points(
@line2,
point(

@root.h.middle,
@root.v.end),

point(
#3.h.middle,
#3.v.start));

...

Figure 4.2 shows the screenshot of the final result.

8I experienced problems when displaying “{” and “}” characters with Brick’s editor,
which are the special syntax for creating points. To get around this, I refer to the point
constructor actor directly.

30

4.2. Example of creating a binary tree

Figure 4.2: Final result of binary tree example

31

Chapter 5
Discussion

5.1 Limitations and Future Work

The effect constraints have on the drawing and its shapes can be confusing.
In the end, every constraint is composed of Cassowary variables, and as long
as the constraints are satisfiable, Cassowary will assign some values to those
variables. It is however difficult to tell, especially when there are many con-
straints, if a change in a program had the desired effect.

Therefore, the main priority for Aod in the future is to attempt to alleviate
this difficulty and make working with constraints easier.

5.1.1 Visualizations

A large topic to explore is how to visualize constraints, or perhaps even edit
and create them visually.

While displaying arbitrary linear constraints meaningfully would be diffi-
cult, if they are expressed using the language’s higher level constructs, these
visualizations can be much more specific. For example, span as an arrow
between its two anchors.

As I described in section 2.3.2, it is important to add required constraints
on properties the user is satisfied with. Currently, however, there are no tools
to help with this. User has to manually enter the required constraints and
change the values by hand if needed.

Though editing required constraints is not possible with directly Cas-
sowary, [20] shows that it is possible to simulate that by adding and removing
constraints on-the-fly and maintain interactive speeds (if not overused). This
combined with constraint visualizations could provide a way to visually edit
(or rather change, to avoid confusion with edit constraints used to change the
values of variables) constraints and their parameters.

33

5. Discussion

5.1.2 Textual language limitations

Representing types as Pharo classes is convenient, however it is also limit-
ing. For example, parametric types (e. g. a list of boxes) cannot be easily
implemented. (Each instantiation would need its own class to represent the
type.)

Some form of generics can also be useful. For example, it is errorneous
to create a span with one anchor representing a horizontal dimension and the
other a vertical one. However, it cannot be ensured in the current implementa-
tion without duplicating code concerning spans for the vertical and horizontal
case.

Allowing overloading of actors’ identifiers is another useful potential ad-
dition. Sometimes an identifier makes sense for multiple different actors, like
start and end for line and span. Overloading would also allow operators to
be easily reused, e. g.

#1.size = #2.size

instead of

pointEq(#1.size, #2.size).

5.1.3 Constraints

In terms of constraint expressiveness, combining Cassowary with local prop-
agation à la SkyBlue or UltraViolet is a possibility. One example of where
that might be useful are lines that connect shapes, e. g. a constraint that
connects the closest points of two ellipses. This is not possible with plain lin-
ear constraints, but is no problem for local propagation’s arbitrary methods.
Such constraints do not usually create cycles in the constraints, as shapes’
properties do not need to depend on the properties of lines connecting them.
This could also increase performance. Solving via local propagation is very
fast and the number of variables and constraints in Cassowary’s tableau would
be reduced.

5.2 GUI editor

An idea I would like to explore in the future, is making Aod into a tool, where
the user designs the layout of their GUI in the same way as they would use
Aod now, and then generate a custom Bloc layout strategy (BlLayout) that
maintains specified constraints the same way.

34

Conclusion

The goal of this thesis was to analyze and implement a basic vector editor
with support for constraints in Pharo using the Bloc UI framework, where
constraints were to be entered via a textual language.

I started by reviewing existing approaches to solving constraints in inter-
active graphical applications.

The prototype editor, which I call Aod, is based on the Cassowary lin-
ear constraint solver. It supports basic shapes, whose spatial properties are
modelled using constrainable variables. These models and their variables can
then be accessed and constrained from the textual language. Currently imple-
mented models are box, into which rectangles and ellipses are inscribed, and
line.

Apart from variables and basic operations on them (i. e. +,−, ∗, /,≤,=),
constraints can also be specified on types composed of variables, like points
and spans (e. g. the horizontal or vertical dimensions of a box). For batch
declarations of constraints, a list type is also supported. Custom operations
for the language can be easily defined, albeit only outside the textual language,
by composing existing operations in the system.

Fundamental parts of the implementation were tested and I demonstrated
the usage of the editor on a binary tree example.

Finally, in the chapter 5, I described Aod’s limitations and presented pos-
sible ways of alleviating them. I also described a possible alternative use-case
for Aod – GUI layout editor.

The code of the prototype implementation can be found at and installed
from the faculty’s gitlab instance. 9

9https://gitlab.fit.cvut.cz/balikvo1/aod

35

Bibliography

[1] Merson, P. UML diagram. [Online], 2011, [accessed 2019-05-15].
Available from: https://commons.wikimedia.org/w/index.php?title=
File:Uml_diagram2.png&oldid=321701704

[2] The Inkscape Team. Inkscape. [Online], 2004, [accessed 2019-05-16].
Available from: https://inkscape.org/

[3] yWorks. yEd. [Online], [accessed 2019-05-16]. Available from: https:
//www.yworks.com/products/yed

[4] Badros, G. J. Extending Interactive Graphical Applications with
Constraints. Dissertation thesis, University of Washington, 2000.
Available from: http://www.badros.com/greg/papers/gjbadros-
dissertation.pdf

[5] Borning, A.; Duisberg, R.; et al. Constraint Hierarchies. SIGPLAN Not.,
volume 22, no. 12, Dec. 1987: pp. 48–60, ISSN 0362-1340, doi:10.1145/
38807.38812.

[6] Freeman-Benson, B. N.; Maloney, J. The DeltaBlue algorithm: An incre-
mental constraint hierarchy solver. In Computers and Communications,
1989. Conference Proceedings., Eighth Annual International Phoenix
Conference on, IEEE, 1989, pp. 538–542.

[7] Borning, A.; Anderson, R.; et al. Indigo: A Local Propagation Algo-
rithm for Inequality Constraints. In Proceedings of the 9th Annual ACM
Symposium on User Interface Software and Technology, UIST ’96, New
York, NY, USA: ACM, 1996, ISBN 0-89791-798-7, pp. 129–136, doi:
10.1145/237091.237110.

[8] Sannella, M. Skyblue: a multi-way local propagation constraint solver
for user interface construction. In Proceedings of the 7th annual ACM

37

https://commons.wikimedia.org/w/index.php?title=File:Uml_diagram2.png&oldid=321701704
https://commons.wikimedia.org/w/index.php?title=File:Uml_diagram2.png&oldid=321701704
https://inkscape.org/
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed
http://www.badros.com/greg/papers/gjbadros-dissertation.pdf
http://www.badros.com/greg/papers/gjbadros-dissertation.pdf

Bibliography

symposium on User interface software and technology, ACM, 1994, pp.
137–146.

[9] Borning, A.; Freeman-Benson, B. Ultraviolet: A Constraint Satisfaction
Algorithm for Interactive Graphics. Constraints, volume 3, no. 1, Apr
1998: pp. 9–32, ISSN 1572-9354, doi:10.1023/A:1009704614502.

[10] Sutherland, I. E. Sketchpad: A man-machine graphical communication
system. Technical report UCAM-CL-TR-574, University of Cambridge,
Computer Laboratory, Sept. 2003.

[11] Nelson, G. Juno, a constraint-based graphics system. In ACM SIG-
GRAPH Computer Graphics, volume 19, ACM, 1985, pp. 235–243.

[12] Hosobe, H. A Modular Geometric Constraint Solver for User Interface
Applications. In Proceedings of the 14th Annual ACM Symposium on User
Interface Software and Technology, UIST ’01, New York, NY, USA: ACM,
2001, ISBN 1-58113-438-X, pp. 91–100, doi:10.1145/502348.502362.

[13] Hosobe, H. A Hierarchical Method for Solving Soft Nonlinear Constraints.
Procedia Computer Science, volume 62, 2015: pp. 378 – 384, ISSN 1877-
0509, proceedings of the 2015 International Conference on Soft Comput-
ing and Software Engineering (SCSE’15).

[14] Hosobe, H. A simplex-based scalable linear constraint solver for user inter-
face applications. In 2011 IEEE 23rd International Conference on Tools
with Artificial Intelligence, IEEE, 2011, pp. 793–798.

[15] Marriott, K.; Sen Chok, S. QOCA: A Constraint Solving Toolkit for In-
teractive Graphical Applications. Constraints, volume 7, no. 3, Jul 2002:
pp. 229–254, ISSN 1572-9354, doi:10.1023/A:1020513316058.

[16] Badros, G. J.; Borning, A.; et al. The Cassowary linear arithmetic con-
straint solving algorithm. ACM Transactions on Computer-Human In-
teraction (TOCHI), volume 8, no. 4, 2001: pp. 267–306.

[17] Badros, G. J.; Nichols, J.; et al. SCWM: An intelligent constraint-enabled
window manager. In Proceedings of the AAAI Spring Symposium on
Smart Graphics, 2000, pp. 76–83.

[18] Badros, G. J.; Tirtowidjojo, J. J.; et al. A constraint extension to scalable
vector graphics. In Proceedings of the 10th international conference on
World Wide Web, ACM, 2001, pp. 489–498.

[19] Marriott, K.; Moulder, P.; et al. Solving disjunctive constraints for inter-
active graphical applications. In International Conference on Principles
and Practice of Constraint Programming, Springer, 2001, pp. 361–376.

38

Bibliography

[20] Hurst, N.; Marriott, K.; et al. Dynamic approximation of complex graph-
ical constraints by linear constraints. In Proceedings of the 15th annual
ACM symposium on User interface software and technology, ACM, 2002,
pp. 191–200.

[21] Pharo community. Pharo. [Online], 2008, [accessed 2019-05-16]. Available
from: http://pharo.org/

[22] Cavarlé, G.; Syrel, A. Bloc. [Online], [accessed 2019-05-16]. Available
from: https://github.com/pharo-graphics/Bloc

[23] Cavarlé, G.; Syrel, A. Brick. [Online], [accessed 2019-05-16]. Available
from: https://github.com/pharo-graphics/Brick

[24] Brant, J. SmaCC. [Online], [accessed 2019-05-16]. Available from: http:
//www.refactoryworkers.com/SmaCC.html

[25] Moosetechnology.org. PetitParser. [Online], [accessed 2019-05-16]. Avail-
able from: https://github.com/moosetechnology/PetitParser

[26] Beck, K. SUnit. [Online], [accessed 2019-05-16]. Available from: http:
//sunit.sourceforge.net/

39

http://pharo.org/
https://github.com/pharo-graphics/Bloc
https://github.com/pharo-graphics/Brick
http://www.refactoryworkers.com/SmaCC.html
http://www.refactoryworkers.com/SmaCC.html
https://github.com/moosetechnology/PetitParser
http://sunit.sourceforge.net/
http://sunit.sourceforge.net/

Appendix A
Acronyms

GUI Graphical user interface

AST Abstract syntax tree

DSL Domain specific language

UML Unified modeling language

API Application programming interface

41

Appendix B
Contents of enclosed CD

readme.txt description of the contents of the CD
src...directory of source codes

thesis..................directory of LATEX source codes of the thesis
impl.................directory of source codes of the implementation

text...................................directory with text of the thesis
thesis.pdf...................................thesis in PDF format

43

Appendix C
DSL Grammar

What follows is the input source for SmaCC, from which it generates the
lexer, parser and AST. I omitted AST related code from the version presented
here for brevity. Full version can be viewed by opening SmaCC’s editor from
Pharo’s world menu and selecting AodProgramParser.

First, the tokens for the lexer. There are only few, as literal ones can be
expressed directly in the expansion rules.

<integer> : 0 | ([1-9] [0-9]*) ;
<whitespace> : \s+ ;
<identifier> : \w+ ;
<comment> : \/\/ [ˆ\r\n]* ;

Next, SmaCC allows to specify priority and associativity of operators di-
rectly, so that it does not have to be encoded in the grammar’s rules. Priorities
are specified in ascending order.

%nonassoc "=" "<=" ">=" ;
%left "->" ;
%left "+" "-" ;
%left "*" "/" ;
%left "." ;

Finally, the grammar’s expansion rules. Character sequences wrapped in
quotation marks is a token of the lexer. SmaCC also supports using operators
like *, + and ?, with their usual meanings, to define rules.

45

C. DSL Grammar

Program
: (Constraint ";" (Constraint ";") *) ?
;

Constraint
: Value ":" Strength
| Value
;

Strength
: Identifier
;

Value
: Reference
| ActorExpression
| DotExpression
| Integer
| LinearExpression
| Point
| List
| Span
| "(" Value ")"
;

Point
: "{" Value "," Value "}"
;

Span
: Value "->" Value
;

List
: "[" ArgumentList "]"
;

ActorExpression
: BasicActorReference "(" ArgumentList ")"
;

ArgumentList
: (Value ("," Value) *) ?
;

46

Identifier
: <identifier>
;

Integer
: IntegerLiteral
;

IntegerLiteral
: <integer>
;

Reference
: ActorReference
| ShapeReference
;

ActorReference
: BasicActorReference
;

BasicActorReference
: Identifier
;

ShapeReference
: "@" Identifier
| "#" IntegerLiteral
;

DotExpression
: Value "." BasicActorReference
;

LinearExpression
: Value "+" Value
| Value "-" Value
| Value "*" Value
| Value "/" Value
| Value "=" Value
| Value "<=" Value
| Value ">=" Value
;

47

	Introduction
	Motivation
	Goals
	Outline

	Review
	Constraint hierarchies
	Solvers
	Local Propagation
	Iterative Numeric Solvers
	Direct numeric solvers
	Simplex algorithm
	Cassowary
	QOCA

	Technologies
	Pharo
	Bloc
	SmaCC

	Analysis
	Choosing constraint solver
	Modelling shapes
	Box
	Line
	Other
	Constraints using bounding boxes

	Limitations of linear constraints and Cassowary
	Expressiveness
	Constraint conflicts

	Textual language

	Implementation
	Overview
	Main classes
	Types
	Actors
	Overview
	Data bindings
	Expansions
	Defining a new actor
	Generating constraints

	Language grammar and syntax
	Stay constraints
	GUI
	Handles and editing shapes

	Validation
	Testing
	Example of creating a binary tree

	Discussion
	Limitations and Future Work
	Visualizations
	Textual language limitations
	Constraints

	GUI editor

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	DSL Grammar

