FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Visualization of 3-dimensional solar surface data
Student: Vojtéch Tomas

Supervisor: Ing. Radek Richtr, Ph.D.

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of summer semester 2018/19

Instructions

The thesis goal is to propose a method of suitable visualization of the solar surface and to realize it using
the chosen technology. Visualization should be physically correct and user-friendly. The visualization must
also offer appropriate ways of interaction.

1) Perform a search for existing ways to display similar 3D vector data.

2) Design a way of visualizing 3D vector solar surface data.

a. Focus on physical accuracy, clarity, performance, and portability.

b. The user must be able to: choose how to approximate values between specified values and change the
view, scale, make a 3D data slice or export data to the 3D monitor.

3) Analyze the technological possibilities of displaying solar surface data.

4) Create the data visualizing prototype according to the proposed method.

5) Test the created prototype appropriately.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague January 24, 2018

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Visualization of 3-dimensional solar surface
data

Vojtéch Tomas

Department of Software Engineering
Supervisor: Ing. Radek Richtr, Ph.D.

May 9, 2019

Acknowledgements

I want to express my thanks to my supervisor Ing. Radek Richter, Ph.D. for
his guidance and advice throughout the entire two years it took to complete
this thesis. Additional thank you belongs to doc. Mgr. Michal Svanda, Ph.D.
for his valuable insight. I would also like to thank my family for supporting
me throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 9, 2019

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Vojtéch Tomas. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Tomas, Vojtéch. Visualization of 3-dimensional solar surface data. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

Prace se zabyva moznostmi vizualizace vicerozmérnych dat. Cilem préace
je vybrat a implementovat vhodné vizualiza¢ni metody. V praci jsou déle
rozebrany vypocetni metody numerické integrace, interpolace a konstrukce
geometrie, které se poji s vizualizacnimi metodami. Vybrané metody a al-
goritmy jsou implementovany ve formé prototypu, jehoz design se zaméruje
na fyzikalni pfesnost zobrazeni, srozumitelnost, moznosti aproximace hodnot,
vykon, ale i portabilitu. Prototyp je implementovan pomoci webovych tech-
nologii (JavaScript a WebGL), vypocetni ¢ast je implementovana v jazyce
Python. Prototyp umoznuje zobrazeni na LCD sténé v prosttedi SAGE2 a na
3D monitoru. Soucasti prototypu je implementace Python balicku umozniu-
jici rychlou integraci a interpolaci. Implementovany prototyp byl uzivatelsky
otestovan. Testovani obsahuje také porovnani rychlosti implementovanych
matematickych metod s implementaci totoznych metod v balicku SciPy.

Klicéova slova vektorové pole, vicerozmérna data, vizualizace dat, interpo-
la¢ni metody, srozumitelnost vizualizace

vii

Abstract

The thesis deals with the possibilities of multidimensional data visualization.
The aim is to select and implement a suitable vector field visualization meth-
ods. The thesis includes an analysis of numerical integration methods, in-
terpolation methods, and geometry construction algorithms. Based on the
analysis, the thesis presents the design of a prototype visualization applica-
tion. The design focuses on physical accuracy and clarity of the visualization,
value approximation, performance, and also portability. The prototype is im-
plemented using web technologies (JavaScript and WebGL) and works also
in SAGE2 environment; the computation components of the application are
implemented in Python. The thesis includes the evaluation of the user tests
as well as a performance comparison of the implemented mathematical meth-
ods with the corresponding methods implemented in SciPy module.

Keywords vector field, multidimensional data, data visualization, interpo-
lation methods, clarity of visualization

viii

Contents

Introduction 1
1 Multidimensional Data 3
1.1 Vector Fields, 3
1.2 Sampling and Interpolation 4
1.3 Partial Derivatives Approximation 8
1.4 Numerical Methods for ODEs 9
2 Visualization Methods 13
2.1 Visualization Pipeline 13
2.2 Vector Glyphs 14
2.3 Streamlines and Streaklines 17
2.4 Scalar Visualization, 20
2.5 Color. e 20
3 Techonology 25
3.1 Target Platforms 25
3.2 Awailable Software, 26
3.3 Alternative Resources 27
4 Analysis 29
4.1 Importing 29
4.2 Filtering and Enriching 31
4.3 Mapping 34
4.4 Rendering 40
4.5 SUMMATY « . v v v v e vt e e e e e e e e e 42
4.6 Functional and Non-functional Requirements 42
4.7 Use Cases o v v v i it e e 43
4.8 Domain model 45

ix

5 Design

5.1 Computation Backend
5.2 Server Application
5.3 Web Application
5.4 Pipeline Editor
5.5 Renderer.
5.6 SAGE Application

6 Implementation

6.1 Computation Backend and Pipeline Editor

6.2 Web and Server Application
6.3 Renderer.
6.4 Proprietary Formats
6.5 Dependencies

7 Testing

7.1 User Testing.

7.2 Performance of the Numeric Module
Conclusion
Bibliography
A Future Development
B Images
C Acronyms

D Contents of Enclosed DVD

49
50
o8
o8
60
61
69

71
71
72
73
73
74

75
75
76

81

83

87

89

95

97

11
12
13
14
15

21
22

23

24
25
26
27

41
42
43
44

51
52
53
54
55
56
o7
58
59

List of Figures

Structured grids 5
Unstructured grids o oo 5
Regular structured grid with cubecells.)
Iustration of trilinear interpolation 6
Mlustration of cubic interpolation 7
Illustration of the visualization pipeline 14
Example of glyph visualization in 2D — line glyphs and modified

2D cone glyphs 15
Comparison of visualization using regularly and randomly distributed
glyphs oL 17
Example of streamline visualization 18
Glyph visualization with color-coded size and direction 21
Slice of the HSV color space mapped onto a circle 21
Example colormapso o 22
Mustration of the filtering and enrichment process 33
Requirements modelo oo 42
Usecasemodel 44
Domain model 48
Components and interfaces 49
Design of the editor module 52
Design of the numeric module 53
Ilustration of pipeline representation as a graph 54
Ilustration of the supported grid type 55
Database model of the server application 59
Mockup of the main application screen 59
Design of client components web application and pipeline editor . 60
Mockup of the UI of a single node from the pipeline editor. 61

xi

510
511

61
62
63

B1

B2
B3
B4
B5
B6
B7
B8

B9

B10

Weight distribution and streamline tube construction algorithm . .
Design structure of renderer component

Screenshot of the pipeline editor
Screenshot of the application main screen
Screenshot of the renderer

Medium dataset, top side view, visualized with streamlines and

layers e
Medium dataset, side view, visualized with streamlines and layers .
Medium dataset, top view, visualized with streamlines and layers .
Medium dataset, top view, visualized with glyphs
Medium dataset, side view, rendering with a depth map
Medium dataset, bottom view, rendering with a depth map
Quarter dataset, top view, visualized with streamlines and layers .
Quarter dataset, top detail view, visualized with streamlines and

layerso
Whole dataset, top detail view, visualized with streamlines and

layerso
Whole dataset, bottom detail view, visualized with streamlines and

layerso

xii

64
67

72
72
73

41
42
43
44
45

46

51

71
72
73
74

List of Tables

A table of considered interpolation methods 30
Considered visualization methods 35
Mapping method features to data attributes 36
Evaluation of colormap designs 39
Presumed usability score of methods for visualizing individual at-

tributes. L 39
Assessment of implementation options 41
Operations, corresponding nodes and in/out types 51
Interpolation times (in seconds) in a randomly sampled dataset . . 78
Interpolation times (in seconds) in a uniformly sampled dataset . . 79
Integration times (in seconds) in a randomly sampled dataset . . . 80
Integration times (in seconds) in a uniformly sampled dataset . . . 80

xiii

Introduction

As a result of recent technological development, people are surrounded by
an ever-growing amount of data. Some of the data is created during scien-
tific simulations and experiments. The amount of infromation often exceeds
a comprehensible quantity; however, the most profound understanding is still
acquired by seeing and observing. This led to the development of scientific
visualization as an independent scientific discipline.

In this thesis, the visualized model is the outer envelope of Sun — it
is a plasma model positioned near the solar surface. The visualized data
represents a vector field of speed values; the dataset is a product of numerical
simulations and real observation analysis.

The goal of the visualization is to provide insight and allow the user to
create a mental image of the flow inside the field. Instead of large tables,
the graphical representation is capable of providing clear information and
revealing the hidden structures and processes.

There are several visualization tools available for scientific or information
visualization. Regardless of the primary focus of the tool, the program has
to respect a universal balance between physical accuracy, usability and the
amount of displayed data. The common practice is to prioritaze one or two
of these attributes over the others. The main shortcoming of a tool providing
highly accurate visualization can be an incomprehensible graphical presenta-
tion and a lack of user interface. The aesthetic side of the visualization cannot
be omitted since it undoubtedly contributes to the overall impression.

Visualization is more than just a pure data representation. There are
additional factors influencing the quality of the output visualization. The key
to producing a satisfiable result is to find the right balance. A motivation
for this thesis is the lack of adjustability of the existing programs. The User
interface (UI) is often too complicated, and it is not manageable to scale
the application onto different devices. The goal is to develop a prototype
correcting these shortcomings.

INTRODUCTION

Goals

The goal is to develop a prototype allowing to visualize a vector field. The
design of the prototype is based on a previous analysis of frequently used
visualization techniques and related mathematical methods. The implemented
prototype provides a way to interpolate between dataset points and use more
than one visualization method. The used technology allows for portability
between the leading OS platforms.

Visualized Properties The vectors of the vector field have, among other
properties, the magnitude and direction. An additional feature is the
topological continuity of the vector field. The prototype has to provide
a way to observe these properties.

Visualization Methods The analysis covers several visualization tech-
niques. The visualization techniques often require the use of additional
mathematical methods. The goal is to implement suitable visualization
and numerical methods efficiently.

Selecting Area of Interest The visualization tool has to provide a way
to choose a specific region in the complete dataset. The expected sup-
ported areas of interest are 3D and 2D slices of space.

Used Technology The application has to be portable and scalable for
different environments. Besides the standard desktop, the app has to sup-
port the Scalable Amplified Group Environment (SAGE2), enabling the
projection on big grids of screens. Additionally, the application has to
support the rendering of the content on the 3D monitor.

CHAPTER].

Multidimensional Data

This chapter introduces the concept of a vector field and data representation.
The goal of this chapter is to provide an overview of specific topics, for fur-
ther detailed information, please see referenced materials. The first section
describes vector fields, followed by a part presenting means of interpolation.
The third section introduces methods for estimating partial derivations, and
section four closes this chapter with an overview of numerical methods for
ordinary differential equations.

1.1 Vector Fields

An excellent example of a vector field can be a flowing fluid. The fluid flows
at varying speed and in different directions. According to [1], the vector field
can be modeled as a continuous function V associating a vector V(z,y, z) with
each point (z,y, z) in a certian region. Precisely, a vector field can be defined
as

4 (:L‘a Y, Z) =V (1‘, Y, Z) i+ Vy (l’, Y, Z)J + V. (l’, Y, Z) k? (11)

i, j, k are unit vectors parallel with each axis. It is possible to obtain a vector
for any point in space from the function V. Further information about the
vector field can be obtained from operators such as divergence and rotation.
In this thesis all further calculations are performed in the cartesian coordinate
system unless stated otherwise. For clarity, all spatial points will be further
marked as p = (z,y, z) and function values of a vector field function as v =

V(p).

Divergence The divergence of a vector field V is a scalar field assigning
each point a quantity of vector field’s source. The value of the vector field’s
divergence describes the flow of the vector field.

oV, oV, av.

divV = O 87y+8z

(1.2)

3

1. MULTIDIMENSIONAL DATA

Areas with positive divergence are called sources; negative areas are called
sinks. Following the example with fluid flow, positive divergence would mean
more fluid enters a given area than leaves; it spreads outwards. Negative
divergence shows that fluid keeps accumulating in a specific area; more leaves
than enters. Zero divergence means no fluid spreads or gets sucked, for further
information see [1, 2.

Curl Curl (also called vorticity or rotation) represents the size and direction
of rotation in each point of the vector field. The curl of a vector field is also
a vector field. The operator curl is defined as

ov, oV, aV, OV. oV, avm>

According to [2], vector rot V (a) determines the axis of the vector field’s
rotation in the area around point a. Size of rot V (a) is equal double the
rotation speed (in angular rate).

1.2 Sampling and Interpolation

Various scientific experiments often produce a dataset which does not contain
complete information about the vector field, such as a symbolical representa-
tion of the analytical function. More commonly, those datasets contain values
sampled in certain spatial points. In those cases, it is required to interpolate
the values between sampled points and reconstruct a particular part of the
original vector field function. There are three interpolation methods presented
in this section — nearest neighbor, linear (trilinear), and cubic (tricubic) in-
terpolation.

Original sample points are usually organized into a structured or unstruc-
tured grid consisting of cells and nodes or vertices. Figures 11, 12 and 13
illustrate possible arrangements in two and three dimensions. This thesis fo-
cuses on interpolation inside regularly and uniformly structured grids. All
equations in this section assume that the data is sampled along a regularly
structured grid (all of the sample points are equally distant).

4

1.2. Sampling and Interpolation

pOO plO

(b) Uniform grid with

(a) Regular grid with square cells rectangular cells

Figure 11: Structured grids

(a) Regular grid with triangular

cells (b) Irregular grid

Figure 12: Unstructured grids

Nearest Neighbor Interpolation A nearest-neighbor method is the fastest
interpolation method and also the least accurate from those presented here.
As the title suggests, it uses the value of the nearest neighbor as the approx-
imation. In three dimensions, when the points are distributed on a regular
grid, the interpolation requires determining the coordinates of a local data cell
consisting of 8 vertices and then finding the nearest one.

pOll I:)lll

p101

pOlO p110

Figure 13: Regular structured grid with cube cells

1. MULTIDIMENSIONAL DATA

Po1o V4

I1—x1

|'D‘

X4

Figure 14: Illustration of trilinear interpolation

Linear interpolation A value of a function can be interpolated as a sum of
values of the closest points weighted by the relative distances inside the local
cell. Hence, the linear interpolation in one dimension can be written as

vy =vo (1l —2)+ vz, (1.4)

where V (p;) = v, and p, lays inside an interval of known points py and
p1- In three dimensions, it is possible to perform trilinear interpolation inside
a local cell of 8 nearest points. Trilinear interpolation can also be understood
as one linear interpolation between two bilinear interpolations; in other words,
it is seven linear interpolations. Following expression is the general equation
of trilinear interpolation in a matrix form

V (z,y,2) = QC, (1.5)

where C is a matrix obtained from known vectors (vertices of the local cell)
and Q is a single-line matrix of coefficients calculated from distances inside
the local cell [3].

1 0 0 0 0 0 0 0\ {vooo

-1 0 0 0 1 0 0 0]]voo

-1 0 1 0 0 0 0 O0]]vow

C— -1 1 0 0 0 0 0 0 V11
1 0 -1 0 -1 0 1 0f]wvie (16)

-1 -1 1 0 0 0 0 Vi01

-1 0 0 -1 1 0 0 V110

—1 1 1 -1 1 -1 -1 1 V111

Q=(1 Ty oa MYy YA T2 lBlyzzz)

1.2. Sampling and Interpolation

Cubic Interpolation Cubic interpolation approximates values using cubic
polynomials. There are two possible strategies for cubic interpolation; first
uses values and tangents in two surrounding points and the second utilizes
the value of four surrounding points. The first method is closely related to
Hermite cubics. If the tangents remain unknown, it is desirable to estimate
them from four surrounding points, which leads to the second approach to
cubic interpolation, closely related to Catmull-Rom splines. The Hermite
spline is defined as

2 -2 1 1 Vo
-3 3 -2 -1 Vi
0 O 1 0 to
1 0 0 0 t1

Quy=(# # t 1) (1.7)

Continuity of curves constructed by combining multiple Hermite splines is guar-
anteed by the identity of tangents in the endpoints, see [4]. If the tangents
are unknown, it is possible to approximate them using finite differences. The
interpolation then uses four values instead of two values and two tangents.
The figure 15 illustrates the tricubic interpolation. The following paragraph
demonstrates the relation between Hermite and Catmull-Rom splines, showing
how the tangents are approximated.

ok

Po

b,

Figure 15: Illustration of cubic interpolation

It is possible to modify the formula (1.7) and substitute the tangents and
values in the right-hand side vector with values of four surrounding points
V_1,Vp, Vi, Va. Assuming the distance between each point is one, the tangents
can be represented such as

(1.8)

1. MULTIDIMENSIONAL DATA

It is possible to express coefficients of the polynomial @ () in (1.7) as a system
of equations and substitute the tangents with the expressions from (1.8).

1 3 3 1
a=—5V_1+5Vg— 5V1+ 35Va
5 1
b= V_1—5V0 + 2vy — 5V2 (1 9)
1 1 :
c=—53v_1+353v1
d= Vo

The system of equations (1.9) can be converted back into matrix form. The
result of the transformation is the following expression also known as Catmull-
Rom spline.

(1.10)

Boundary Effects There are two approaches toward interpolating between
first two or last two elements of a list. According to [5], one option is to repeat
the first and last value of the list, therefore p_; = pg and p; = p2. The other
approach is to approximate missing values using a line fitting first two and
last two points, thus p_1 = 2py — p1 and p2 = 2p1 — Po.

Interpolation in 3D Interpolation in three dimensions utilizes values in
points outside of the local cell (those values correspond with values v_; a v3)
Consequently, there are 21 interpolations needed in total. This method is not
suitable for repeated interpolation; a better solution is proposed in [6], utilizing
pre-calculated coefficients for the local cube to speed up repeated interpola-
tion.

1.3 Partial Derivatives Approximation

As seen in the previous sections, sometimes it is necessary to obtain a deriva-
tive of a function. Obtaining a derivative of a symbolical function is a rel-
atively straightforward process. Unfortunately, sometimes there is no sym-
bolical description of the function available, and it is necessary to work with
sampled function values instead.

There are two main possible approaches — the first is to interpolate the
function itself from function values and then find its derivative or to estimate
the derivative directly from known function values. The second approach was
already mentioned and used in section 1.2 Cubic Interpolation and is also
known as finite difference approximations of derivatives.

8

1.4. Numerical Methods for ODEs

Finite Difference The idea behind this method is to substitute the deriva-
tive with an approximation. The formula for a finite difference can be derived
from Taylor’s theorem. Suppose there is a uniform distance h between known

points xg, z1, 2, . .., thus 2,11 = z; + h and suppose a function f is (n + 1)
times differentiable at a point . According to Taylor’s theorem
/ (n)
f@HJﬂ:f@ﬁ+ffph+.”+f7f@h”+RMiﬂx+hy (1.11)

It is possible to modify (1.11) and express the first derivative. It is also possible
to express the error of this approximation as O (h) . Suppose O (h) is small
enough, the first derivative can be approximated by

f@:f“+2_“”+ow. (1.12)

This expression is also called the forward difference. Similarly, there is an
expression for a backward and central difference.

Py tOIEh) gy JEER =Sk

Likewise, finite differences can approximate partial derivatives of a multivari-
able function [7].

8i~f(...,:c+h,...)—f(...,x—h,...) (1.14)
oxr 2h '

Approximating Derivative from an Interpolated Function The other
approach is first to interpolate the function from sample points and then differ-
entiate the interpolating function. When choosing the interpolation method,
it is essential to take into account the way how the sample data was obtained.
For example, it is possible to estimate the derivative value by modifying the
formula (1.7) for tricubic interpolation.

6 -6 3 3\[°
Vv
Qy=(t 1)|-6 6 —4 —2 tl (1.15)
0 0 1 0 0
ty

1.4 Numerical Methods for ODEs

One of the visualization techniques uses particle tracing to visualize the flow
of a vector field. The tracing requires evaluating an integral which can be re-
duced to an initial value problem for an ordinary differential equation. Since it
is required to solve such equations for sampled vector fields, it is necessary to

9

1. MULTIDIMENSIONAL DATA

solve these equations numerically. There are three methods discussed in this
section, which can be applied to the differential equations and thus solve the
integral, allowing to trace particles inside a vector field. All discussed meth-
ods are members of the Runge-Kutta family of Ordinary differential equation
(ODE) solvers!® [8, 9].

Euler Method Euler method divides time into uniform intervals h called
time steps. Suppose there is a particle at an initial position y(in a vector
field V' at a time tg. In each run, the method moves in the direction of the
tangent vector multiplied by the time step.

Ynt1 =Yn +hV (Yn) (1'16)

The error made in one step also known as the local truncation error for the
Euler method is O (h?) and can be calculated from the remainder term in
Taylor’s theorem in Lagrange form.

Heun’s Method Heun’s method? is based on the Euler method. It uses the
result of the Euler method as an intermediate value y and then combines
it with the value obtained at the next integration point. The final value
is calculated as

Yt =y, +hV (yn)

Yarr =ya+ 5h (Vya) +V (vith)) - (1.17)

Thanks to the correction step, the estimate of the local truncation error
is O (h3).

Runge-Kutta Method As was mentioned earlier, all methods listed here
are members of the Runge-Kutta (RK) family. To be precise, the techniques
presented here are all explicit methods. Although each explicit RK method
is conceptually the same, each of them differs by order of accuracy. The general
concept of RK methods takes into account the integration time, allowing for
integration in a time-dependent® vector field V (t,p). When working with
a time-independent vector field, which acts the same way at all times, it
is possible to use the same integration methods and ignore the time parameter,

!There is another family of methods for solving ODEs called linear multistep methods,
but they are not utilized in this thesis.

Zalso known as improved or modified Euler’s method

3A time-dependent vector field function V' takes one more time-related parameter t.

10

1.4. Numerical Methods for ODEs

therefore, V (t,p) = V (p). The general framework for explicit RK methods

is given by

Yntl =¥n + h Z b]V (tn + tha Zj)

J=1

o (1.18)

zi=yi+h Zai7jv(tn+cjh,2j), 1=1,...,s.

J=1

The coeficients are usually displayed in a table called Butcher tableau:

c1
e | a1
€3 | a31 a3z (1.19)
Cs | Gs1 As2 *++ Qss—1
bl b2 te bs—l bs

It is possible to prove that the estimate of the local truncation error of the
method of order m is O (h™*1) [9]. Probably the most popular is the standard
fourth-order procedure with following intermediate steps:

Z) = Yn
71 =Yn+ %hV (tn,2z1)

29 = yn+ 10V (tn 4 %h,m)

(1.20)

75 =yn+ hV (ta+ 3h2s),

therefore,

Yo+l =Yn +

SRV (b, 21) + 2V (tn + 3h,25)

(1.21)
+2V (tn + 3h,23) + V (tn + h,24)).

The Butcher tableau for the fourt-order RK method is:

(1.22)

NN O

= O O Nl
Wi O NI

Wl =

1
6

Using any of the presented methods, it is neccesary to choose the coeficient
h. Smaller coefficient leads to smaller error, but it is necessary to take more

11

1. MULTIDIMENSIONAL DATA

steps to cover the same amount of space, which makes the integration more
computationally expensive. Adaptive RK methods offer a solution to this
problem. The concept is to estimate the local truncation error by using two
methods, one with order m and the other with order m — 1. These two
methods have common integration steps. Consequently, the computational
cost of using two methods is near negligible. Coeflicients b of the lower-order
methods are here marked as b* and can be found under the coefficients b of
the higher-order method in Butchers tableau.

C1
C2 | a1

C3 | as1 as2

(1.23)
Cs | As1 As2 -+ Qss—1
bl b2 to bs—l bs
bi by e by b
The local truncation error can be estimated as
S
enit = Yns1 = Yia1 =h Y (b = B)) V (ta +cihyzy). (1.24)
j=1

This allows keeping the error under a defined threshold. When the error
is too small, A can be increased to save time, and when it is too high, the
integration step can be repeated with smaller h. [10] The method used in this
thesis is one of the adaptive RK methods called Dormand-Prince method [11],
which produces fourth- and fifth-order accurate solutions.

12

CHAPTER 2

Visualization Methods

The second chapter introduces the concept of visualization pipeline, followed
by sections presenting selected visualization methods. This chapter draws
mostly from sources [12, 13, 14].

2.1 Visualization Pipeline

The visualization pipeline is a model, dividing the process of visualization
into several independent parts. The separation allows for modularity on both
conceptual and design levels and has been adopted by most of the existing
visualization apps. [12] The idea is to divide the whole visualization process
into four following parts — data importing, enriching, mapping and rendering.
The pipeline is illustrated in figure 21.

Data Importing Importing data usually means correctly loading the par-
ticular dataset. This operation often depends on the implementation of the
original dataset format and ideally is equivalent to reading the dataset file from
some storage (e.g., database, disk). In case the import involves resampling or
modifying the dataset, it is essential to take into account that all modifications
performed this early in the visualization process have a significant impact on
the quality of the output visualization.

Filtering and Enriching The imported dataset often contain excessive
amount of information, from which only a small fraction is what the user
wants to visualize. Another approach is to perform some transformation,
allowing to visualize structures hidden inside the dataset. These two actions
are performed in the second phase of the visualization pipeline and are called
data filtering and enriching. As a result of filtering, the output of this step
should be a relevant subset of the complete dataset. Enriched dataset will
be easier to use in later steps of the visualization pipeline. It is crucial to

13

2. VISUALIZATION METHODS

Enriched Visual]
Final Image

Import Filtering Mapping Rendering
and Enrichment

Figure 21: Illustration of the visualization pipeline

take into account the size of the dataset since it influences the memory and
processing performance in later steps of the pipeline. Larger sets also require
more filtering; otherwise, the visualization results in convoluted images.

Mapping The third step involves mapping enriched dataset onto visual el-
ements, such as three-dimensional geometry. Various visual elements have
different degrees of freedom or features, which can encode one or more at-
tributes of the enriched dataset. The selected mapping should have several
desirable properties. Mapping should be invertible, meaning it should be pos-
sible for the user to assign the state of the visual element (e.g., specific color)
to the original attribute value. This property implies that each attribute value
should have a unique encoding. Moreover, the mapping should not be invert-
ible just from the mathematical point of view; it should be easy for the user to
interpret the visualization, which can be achieved by selecting the appropriate
combination of visual features. Mapping should also respect the organization
of attribute values. Some attributes are by their nature not comparable. Such
attributes are called nominal attributes; contrary to comparable attributes,
which are called ordinal attributes.

Rendering Mapping process creates a virtual scene consisting of various
visual elements. In the last step of the visualization pipeline, the last param-
eters are added, such as viewport dimensions, lights, camera positions. The
output of the last step is the actual visualization image. It is common to
allow users to modify specific parameters of the scene and then recompute the
output image, allowing for simple modifications, e.g., camera movement.

2.2 Vector Glyphs

The idea behind vector glyphs is to represent vectors in isolated points using
specific visual elements. Each type of glyphs has multiple degrees of freedom
(e.g., color, size, rotation), which can be ultimately used for visualizing one of
the vector attributes (e.g., direction, temperature, speed). According to the
number of degrees of freedom, glyphs can be classified into several classes, the
simplest being line glyphs, followed by more complex arrow glyphs and cone

glyphs.

14

2.2. Vector Glyphs

~\N//=~==<N\VllISN==~N\17111N- NP2 NI L B IR NP SN W A B A A
e N I e T T T T T e T W T T A T 2 TN N W W B W NN N W L A B AN
e N I A N N N I N N S S T T I O W e N 120 W W B NN W T W B I B B W N
~N 1/ z77z=~SN I ASSNAVAVV LN S RS W2t VLI T NE N N W W W B AR B B NN
~~\ /s mrm~SN\NN~==SNNSN\N\NLV /2 2701\~ ‘\\/,,,-;\\\~~\\\\ '\ 7 /) \ ~
R N B A R e O P N P N B J \ ~
~N\ | /=~ NSNS——=~SSSSN1U /0NN = D B Y I N -
N~S\/—— N \\N——emSsS==N1\\N=/, \\\\/»»\\\\>,,~\\>~ AR
NSNS\ /== \\\\N—— s N N~y \\\\/~>\\\\\—V-s;,,>\\>,/
N\ \N | /=N \\\\N~~~=-©cv0Vvvvvizsr/, \\\‘/Vs\\\\\\~~\- / S e
N\ | /=== \N\N~—=~~<~=-Cv v Vv 12172 \\‘/','>_\; /7
SNV /=N \\\SN—=~~=--©Cv1rv 71172 R R i A WA NN /17
SN\ 1/ /=~ N\\\\NSNSN\\\~=-0c=cvrvrvv1v \\\‘//,;\\\\\\\\ /47
SANN P/ Z7=NANNNNN NV Ly s s ey NN IV N SN N A /4
VANSASNV L ZSANNANN Ty s s sy N WA T NN N A /
P ANS~SS\V/Z=\//NNT VL1 vy s v v s o0 1‘*\\/~\/’\\7"

L T N N N N N L I W N N A A A e [l b AN v e S T T YNy Ty

vt s 0 2=\ VL s v s sl e=NYNYY

11 207772~ N\N\V\N NNV L7700 v v N VP = N N W U W B 4 AN
V22 ==SNANANNSNN Ly s s s - Ll /- —=SN V0 iasssy -
L A O I A T T T N R R NP2 DN AD DD —
L Y N N N W I T N N O N 0 T B B T O Lyl /z-=SV U rasassstyy ~
L T N T N N N O W N N 2 I B BN WK N NN 2 N W B W W N W U N N AN A A N
VAN L2 e SNANSSSNANS LV NN NS \‘/,,x\\\\x\\\\V/YVV\\
VNVt s st s =~=—==N\NNN VNN NN NS DA e N N N Y B2 A U N U N

Figure 22: Example of glyph visualization in 2D — line glyphs and modified
2D cone glyphs

Line Glyphs The first and also the simplest class of glyphs are line glyphs
with the following degrees of freedom.

e length e color and transparency
« rotation? e thickness

The length of the glyph usually represents the length of the vector. Alterna-
tively, the glyphs are all scaled to be about the same size, and vector length
is coded primarily by the glyph color. In both cases, it is suitable to scale the
glyphs to prevent clutter but also to prevent the glyphs from being too small.
Additional highlighting of the critical regions can be achieved by choosing
a suitable mapping, such as exponential or logarithmical. The essential draw-
back of the line glyphs is the impossibility to derive the exact vector direction
from it.

Cone and Arrow Glyphs Line and arrow glyphs share multiple degrees of
freedom, but arrow and cone glyphs finally add the possibility to differentiate
glyphs with the exact opposite directions.

e length e thickess
o direction e cone base dimensions
e color and transparency

4Not to be confused with direction, since the rotation of a line glyph is by its nature
unsigned; thus, it is not possible to unambiguously distinguish the exact direction of the
vector represented by the glyph.

15

2. VISUALIZATION METHODS

Although the cone base dimensions can be counted as individual degrees of
freedom, it is not recommended to use them for encoding additional attributes
since the cone® already conveys the direction of the corresponding vector and
any further manipulations could obliterate the conveyed information. The
essential advantage of arrow glyphs compared to line glyphs is their ability
to encode the vector direction. One of the drawbacks is the fact that arrow
glyphs require more space and thus create clutter more easily.

Vector Glyph Visualization Problems There are several problems con-
nected with the usage of glyphs; some of them were already mentioned earlier.
Following list contains a discussion regarding two of the most common prob-
lems - glyph density and spatial distribution. These two characteristics are
somewhat similar, but each of them is problematic in a slightly different sit-
uation.

Density The glyph density is closely related to sampling. The higher
the sampling, the smaller area is reserved for each glyph. Hence, higher
sampling leads to a denser cluttered image. The second approach is to
preserve the higher density and scale each glyph down to reduce clutter.
The issue with images produced by the second approach is that smaller
glyphs are difficult to interpret.

A new problem with occlusion arises in three dimensions, when near glyphs
obscure further ones. In other words, it is not possible to see inside the
dataset. This problem can be solved with further subsampling or by us-
ing transparency. Using transparency should, in theory, highlight denser
regions.

Distribution A distribution problem emerges in situations when glyphs
are located in a regular grid. With scalar values, the human eye has
no problem performing visual interpolation between regularly distributed
points. The situation is different when it is required to interpolate be-
tween vectors. When the surrounding vectors point in different directions,
it is challenging if not impossible for human vision to estimate how the
interpolated vector should look like, especially if all of the surrounding
vectors also vary in size.

Random distribution offers a solution to this problem. There is a chance
that both of the problems mentioned above will be eliminated and the
output image will be perceived as more natural.

Sor cone head in case of the arrow glyph

16

2.3. Streamlines and Streaklines

IN“ISN== VAV V1 71NN\ /7] 7=~ HW%?/ 7 / //
NG R R AN M B N = M,'}" ,,p./’ \\\\\‘W// Wz=
ZINSNS=/Z 0 U770 UNSNNNNTL L1177 ’WQQESJh’//u /67
R NN S A l\\"/;_///ﬂ/(//// \\\\\\\ul// «/////M“
- _———— === \ - =
A ONNASS NN SN SAINI 1\ é‘//'\\\\\“’/f\%‘;;ﬂ\\
RN \{/////H\\‘ ZNEIN
LIEAVNSSSAV T Z L INNYZ =SS0 ’\(l\\\l\w\\\\\\\\l\ % ‘\\\ ///’\\\\}\\\ N
VANSSASSSAVANNSNAN [Ze =Ny g \\\\\\\j N \‘\§\\\\\\!/’ ‘:\}‘I“H\‘\\:f//’:\\
NSSSSSSAN===\ | =NV 1N =0 NN \:\\\\\\\\ \\\ Il /=‘\\\\\‘f|"*""‘.‘"/”;“
N b e e W B B BN \\/‘ ”’/"Q\’”';,‘
NSN~~SNSN~—= s/t S =NISNNL T s~y o= /’//,'/u\\:-r/’
SNSSSSsSsSs—c o~V N0 000N - X s i \\
~eN AN —eNl oSNV Ns~ss=-0s =T %\‘i«“\\“‘
—_=SN\ASSsecemaeSN==\ |/ 2SN\ ==y §
SNe e sessSNANSNN VS ———r 1 117200 =
NS sAVANAVAN =~/ VNN 2y \\\\
NSSssssaNANNNV /= ANV s N
VYV VNS SSSSANAN LT ZZ 7V NSNNN\) A
L T T W N N N N N O T B B N N NN ‘:I"
FIANSAANLV NV I ANNS~c s o/ 70—~ M)
NN I A A I S NN R 1
PIANSSAAANN LV L ANNS s = HN \
[R N T O N N O N B N R NN \I‘\\\\\ {\\\\ \ \\\\:<$\
VAN A ULV N NN VNN NN NSNS \\\\ \\\\l‘l\ \\\\\ \ S\\\
NN R R W RUSTIANCNSNNANN NN *\

Figure 23: Comparison of visualization using regularly and randomly
distributed glyphs

2.3 Streamlines and Streaklines

An entire family of visualization methods is based around tracing particles
inside a vector field and constructing curves along traced paths. Streamline
is a curve visualizing flow inside a stationary field; streaklines visualize a flow
over time in non-stationary fields.

A streamline P in a vector field V' can be modeled as a parametrical curve
P :[0,e] - R? when 0 < e € R. With ¢ € [0, ¢], streamlines can be defined

with the expression
dP()

dt
The formula (2.1) describes the streamline as a parametrical curve tangent to
V (z,y, z) vectors of the vector field in each point (x,y,z). That can also be
expressed as an ordinary differential equation

x V (z,y,2z)=0. (2.1)

dP (t)

T V(z,y,2) (2.2)

with initial condition P (0) = so. By integrating (2.2) over ¢, it is possible to
obtain streamline S = {P (t),t € [0, ¢]}, where

t
P =PO)+ [V(P(s)ds (2.3)

0
with P (0) = so. [12] Parameter ¢ represents integration time and should
not be confused with the time parameter of time-dependent vector fields. It
is possible to solve the equation (2.2) numerically using any of the methods

introduced in section 1.4 Numerical Methods for ODEs.

17

2. VISUALIZATION METHODS

\\f
y

/

ATS) // »
250

) %T »/“%@mgmww\

Figure 24: Example of streamline visualization

There are several technical parameters which need to be considered; two
of them are discussed below — an appropriate selection of seeding points and
a method of geometry construction. Figure 24 is attached as a demonstration
of streamline visualization. There are four versions of the same vector field
visualization utilizing a different combination of color coding and sampling
points.

Geometry Construction Integrating the streamline generates a list of
points positioned along the curve. The number of points forming a streamline
is inversely proportional to the step size and directly proportional to the upper
bound of the time parameter. Therefore, the density of the geometry can be
influenced by changing the step size or by adjusting the error tolerance limits
to influence the choice of the step size in case a method with adaptive step

18

2.3. Streamlines and Streaklines

size is used. On the other hand, taking longer steps will likely result in more
significant deviations of the computed streamline from the expected path.

Drawing densely sampled curves is computationally more expensive. The
solution to this problem is to separate the geometry construction from the
integration process. Based on the output of the initial integration, it is possible
to construct the geometry by iterating over the output points and adding a new
line between two consecutive points when the distance between them exceeds
a chosen minimum value. In case any two consecutive points are too close,
the point further in the list is skipped, and the process is repeated with the
following point.

Geometry Seeding There is a range of techniques for choosing appropriate
seeding points. According to [15] there are three main criteria for choosing
relevant seeding points — coverage, uniformity, and continuity.

Coverage Each point in space should be within a certain distance of
the closest streamline. This requirement assures that all interesting re-
gions and unique phenomenons are covered. Further, it is required that
streamlines cover the entire vector field. Coverage is simply achieved by
generating new streamlines, which is not acceptable in convergent regions,
where the streamlines join together generating clutter.

Uniformity Streamlines should be uniformly distributed over the entire
area. That is especially difficult to achieve in three-dimensional space since
the seeding points would be view-dependent. This issue has been further
discussed in [16].

Continuity Longer streamlines are preferred both from the aesthetic and
user-friendly points of view. It is easier to interpret longer streamlines;
they give an impression of a continuous flow. The drawback is that longer
streamlines tend to come together in convergent regions and thus fail the
previous uniformity criterion. Hence, it is needed to balance the continuity
with the coverage and uniformity.

Probably the most straightforward approach is to choose regularly or ran-
domly distributed seeding points. Both of those methods are valid; the only
drawback is that they both fail the uniformity criterion. Also, note the fact
that close streamlines tend to be parallel and do not contribute any new infor-
mation into the image. There has been additional research regarding strate-
gies for choosing appropriate seeding points [15, 17]. These strategies opt for
choosing seeding points based on the result of detection of areas called critical
points.® Such strategies are often called flow-guided streamline seeding.

SExplanation of what critical points are can be found in [18].

19

2. VISUALIZATION METHODS

2.4 Scalar Visualization

Even though this thesis is mostly focused around visualizing vector fields, it
is often convenient to visualize a scalar field derived from the original vector
field. The scalar field could describe a quantity such as absolute speed value
or temperature. The area of scalar visualization is a vast topic, and this
section discusses only three selected techniques — scalar glyphs, isosurfaces,
and planes. For further information, see [14].

Scalar Glyphs Scalar glyphs are similar to vector glyphs, although their
features (degrees of freedom) should be adequate for representing not only
the values but also the meaning of the explained variable. The fundamental
features of scalar glyphs are size and color. It is possible to map different
attributes to different features and look for any dependencies.

Isosurfaces Isosurfaces use a surface as a feature for modeling and con-
necting areas in space where the quantity or attribute is equal to a fixed
value. A well-known algorithm for constructing isosurfaces is Marching
cubes.

Planes Another way to visualize scalar values in space is to construct
a plain and color-code the values on its surface. The construction of suit-
able colormaps is discussed in the following section.

2.5 Color

Color remains one of the features (degrees of freedom) of each of the visual-
ization methods presented above. There are certain principles associated with
designing an appropriate colormap, which can be further applied to other de-
grees of freedom behaving similarly to color. Colormap M can be generalized
as a function associating each value v € V' to a color ¢ € Colors.

M :V — Colors (2.4)

It is a common practice to limit the range of values V' to [Umin, Umaz] and
design the color mapping based on this limited range. This approach is not
always suitable; using globally determined limits could render some of the
areas as uniformly shaded regions when in reality the values inside the areas
could vary by an amount too small to be distinguishable when compared to the
global range of the colormap. This phenomenon is particularly problematic in
combination with zooming. In this case, it is more appropriate to determine
the local limits and adapt the color mapping to the displayed area.

When working with vector visualization techniques, color usually repre-
sents one of the vector attributes”, most often it is the size of the vector. In

"velocity, temperature or any other scalar value

20

2.5. Color

N NN N

BN~V 21N
B /-~ \s~s

B ==

1
N
N

A N

!
\
1

210) A

4
4\
v~
\ -
\ =
v~
19
[\ /I
/-

227 72— T\ N\ AN

Y) SRR
par s 22N [(N

s ~==ZBNAKE |
S PYARCEYY, -
=Nl \ e
poSEEL Y

P

NN

RN o

=~ =~ VRN N N N N\ S
~ 0\ v N N = NN, N
‘\\\“\\\"\\\\“,

DRI\ ~ ~~~~
N\ ~ ==

SN\ O\~

Figure 25: Glyph visualization with color-coded size and direction

combination with introduced methods, e.g., vector glyphs in two dimensions,
it is possible to encode the vector orientation using the HSV (hue, saturation,
value) color model (HSV). In three dimensions, it would be necessary to use
a color model which could be projected onto a sphere. An example of this
method is figure 25 displaying one vector with different techniques. In the
second image, the size of the vectors is coded by color. In the last image, the
background corresponds to the vector rotation which can be easily verified by
comparing the glyph orientation to the matching position on the color wheel
in the figure 26.

Figure 26: Slice of the HSV color space mapped onto a circle

Principles of Designing a Colormap According to [12], “a color-mapping
visualization is effective if, by looking at the generated colors, we can easily and
accurately make statements about the original dataset that was color mapped”.
There are five fundamental principles which should be respected in order to
achieve an optimal color mapping;:

1. It has to be possible to derive the original dataset value at all points.
Consequently, the mapping function must be injective; in other words,
each color must represent only one value. The colors must be visually
distinct from one another.

21

2.

VISUALIZATION METHODS

i

(a) Rainbow map

(c) Two-hue map

!

(e) Heat map

B

(b) Grayscale map

(d) Four-hue map

(f) Diverging map

Figure 27: Example colormaps

2. The mapping must allow comparing® values at different points. This
principle does not enable determining the amount of difference; it only
allows identifying which value is larger or smaller.

3. It must be possible to determine what is the difference between two
given points. Contrary to the previous point, the order of the original
values is not relevant.

4. The mapping should enable locating areas with any given value. Once
again, this requires the mapping to be injective. Assigning a correspond-
ing color to the given value may require a color legend.

5. It should be possible to approximate the rate of change? between two
given points.

The colormap design must reflect the visualization purpose and the char-
acter of the dataset. One of the examples could be a visualization of a dataset
containing gradually changing values. In case the user expects linear changes
in the image, the used color mapping should indicate that.

Colormap designs Certain colormaps, e.g., the rainbow colormap, are of-
ten overused. As a more suitable alternative, [19] introduces diverging col-
ormaps, presents their advantages and proposes an algorithm allowing their
construction. Possible colormap designs are:

Rainbow Colormap The rainbow map is a widely adopted colormap
despite several significant setbacks. Besides the varying luminance of the
colors, the user has to know the order of tones used in the rainbow map.

8based on the color

9The mathematical analogy of this is the gradient expressing the amount and direction
of a change. For this thesis, it is sufficient to estimate the rate of change purely based on
the visualization.

22

2.5. Color

Grayscale Colormap A grayscale map is cleaner than the rainbow map.
On the negative side, comparing two grayscale values is not easy; the
colormap does not provide enough visually unique values.

Two-hue and Four-hue Colormaps A two- or four-hue map should
cover the disadvantages of grayscale maps by introducing a hue into the
system. Hue allows easier ordering of the values. However, the colormap
still offers the same dynamic range. The four-hue map could solve this
problem by introducing a pair of entirely distinctive colors; however, the
result could end up closer to the rainbow map, lacking clarity.

Heat Colormaps A heat map is a specific type of color map designed to
symbolize the temperature of the visualized object. It uses luminance to
highlight high values; other values are mostly suppressed.

Diverging Colormaps A diverging map is suitable for data with diverg-
ing values. The map is similar to the two-hue maps with an added third
color for the neutral spectrum (usually the values around zero). This
construction allows highlighting the extreme values at both ends of the
spectrum, suppressing the mean values.

23

CHAPTER 3

Techonology

This chapter presents the available visualization technology. The initial sec-
tion discusses platforms which have to be supported by the developed appli-
cation. The second part introduces the available visualization software. The
final section contains additional notes on the available software and presents
some of the alternative solutions.

3.1 Target Platforms

According to the assignment, it is required that the application will be scalable
to support visualization on two unconventional platforms — SAGE2 and 3D
monitor. Here is a description of the platforms for later analysis.

SAGE The SAGE environment was designed to enable teamwork in front of
large shared screens. The task would usually require displaying an immense
amount of information in a high resolution. The SAGE2 environment is an
implementation based on web technologies; applications for this environment
are likewise developed using web technologies and JavaScript programming
language [20].

3D monitor In order to support 3D televisions and monitors, the system
must be capable of producing an image and a depth map of the scene. Alterna-
tively, a rendering of the scene from two different points is expected. Some of
the monitors allow viewing the space “behind” the displayed object - in those
cases, a combination of images from different angles and a depth map is re-
quired. Due to missing documentation for some of the devices, determining
the best parameters for the visualized scene requires some experimentation.

25

3. TECHONOLOGY

3.2 Available Software

It is possible to divide the available software into two categories. The first
group represents applications enabling visualization; however, it is not the
main functionality of the software. The second group contains software fo-
cused solely on visualization. Well-known representatives of the first group
are Matlab or Mathematica; the second group is represented by Paraview,
MayaVi or Vislt. For brevity, the first group will be referred to as compu-
tational software, the second group as visualization software. Using existing
software enables

o utilizing implemented algorithms,
e incorporating extensions into working visualization pipeline, and

e building a visualization on top of working renderer and frontend.

Computational Software Computational systems, such as Mathematica,
are based around their proprietary programming language, which allows for
effective manipulation and additional transformations of the original dataset.
Depending on the available features of the computational software, it is pos-
sible to use already built-in visualization tools. These functionalities usually
require preprocessing the original dataset into a custom format; however, the
transformation can be performed using other built-in methods. Matlab sup-
ports visualizations using all methods mentioned in chapter 2, both in two
and three dimensions. Mathematica has the same capabilities, except for vi-
sualizing streamlines in three dimensions. Although, it is possible to add that
functionality using other built-in methods [21]. The systems support creating
a custom user interface for managing the visualization.

Visualization Software Programs Paraview, MayaVi, and Vislt are open-
source projects based on open-source software called The Visualization Toolkit
(VTK) [22, 23, 24]. This software is a state-of-the-art tool for 3D visualization
rendering and implements a vast range of algorithms and visualization meth-
ods. The VTK project is written in C++ and offers an interface to various
other languages such as Python. The core of the VTK is a pipeline working
on similar principles as those introduced in section 2.1 [25]. There are several
approaches to creating a visualization with visualization software (VTK):

Standalone Application It is possible to use VIK for developing a stan-
dalone application. VTK offers an API in several programming languages.
A new application could implement custom UI or build extensions on top
of the fixed VTK visualization pipeline.

Plugins and Extensions The alternative is to implement a plugin into
an existing application, allowing to read a custom file format or implement

26

3.3. Alternative Resources

custom dataset enrichment; the application would handle the rest of the
visualization pipeline, including Ul manipulations. The general approach
is to extend the available applications by adding new functionalities.

The design of VTK is heavily object-oriented.!® It supports many file for-
mats!!, although it is common to write a custom reader to support non-
standard file formats. Custom readers are also suitable for parsing standard
formats that support custom data organization, e.g., FITS file format.

3.3 Alternative Resources

This section presents resources for designing an independent application. A dif-
ferent approach is to design an entirely new visualization application without
utilizing any existing visualization frameworks. One of the downsides of using
an existing framework or computational system is that it requires the knowl-
edge of the system. VTK is known for its steep learning curve, and most
of the computational systems are proprietary, which precludes any develop-
ment of a standalone application. Implementing an application without using
a visualization framework

e provides control over the entire visualization pipeline,
« enables using technologies already familiar to developers, and
e removes any design limits otherwise posed by the underlying framework.

The following list presents a variety of alternative technologies, modules, and
frameworks suitable for developing standalone applications.

SciPy and NumPy SciPy provides numerical routines for numerical in-
tegration, and NumPy is the fundamental package for scientific computing
with Python, among other things it contains tools for manipulating mul-
tidimensional arrays and integrating C/C++ and Fortran code [27, 28].

OpenGL and WebGL OpenGL is widely adopted API designed for high-
performance graphics software applications. It serves as a layer between
the application and the graphics hardware exposing its features and en-
abling parallel computations. WebGL is a multi-platform web standard for
low-level APIs for 3D graphics, based on OpenGL ES. WebGL 2.0 context
allows rendering using an API which conforms closely to the OpenGL ES
3.0 [29].

10The structure is perhaps slightly overdesigned.
"For more information regarding file formats, see [26].

27

3. TECHONOLOGY

three.js three.js is a framework based on WebGL that implements some
of the visual primitives. Managing the geometry of the scene, it speeds up
the development process by providing an abstract layer above the WebGL
API. [30]

p5.js pb.js is a JavaScript library enabling sketching with code. The li-
brary draws inspiration from Processing!?, and it is based on similar prin-
ciples [31]. All images in chapter 2 were created with p5.js.

12For more information see processing.org.

28

CHAPTER 4

Analysis

The visualization application is a combination of mathematical and visualiza-
tion methods implemented using suitable technology. This chapter presents
an analysis and evaluation of these methods based on specific criteria defined
by the assignment. Since some of the criteria are linked, or relate to more than
one of the aspects of the visualization process, the discussion needs to be orga-
nized to provide a more natural understanding. The organization is based on
the visualization pipeline. The criteria used throughout the analysis include
physical accuracy and adjustability of used methods, clarity of the output
visualization, performance, and portability.

4.1 Importing

The first step in the visualization pipeline is the data import. The import
involves transforming the raw data into an internal representation. During this
step, no data or meta information should be lost. The internal representation
should be designed to provide adequate performance for the most frequently
performed actions. Consequently, it is necessary to determine what the most
frequently performed actions are. The following visualization methods are
considered:

Glyphs The glyphs are constructed based on the values in isolated points.
The internal representation must allow obtaining the value in any arbitrary
point inside of the dataset.

Streamlines Streamlines are constructed with numerical integration start-
ing in the seeding points. During each step of the integration, it is nec-
essary to retrieve the value in the current and other surrounding points,
based on the chosen numerical method.

The fundamental and the most frequently performed operation is the inter-
polation. The first chapter presented three possible interpolation methods.

29

4. ANALYSIS

method intermediate values'® local values accuracy
Nearest-neighbor 0 8 low
Trilinear 6 8 medium
Tricubic 20 64 high

Table 41: A table of considered interpolation methods

Each of the methods provides results with different accuracy. The trade-off
of higher accuracy is a higher computational complexity. The actual interpo-
lation consists of two stages.

1. In the first stage, the values inside of the local cell are obtained. In case
a streamlined parallel version of the interpolation method!? is used, the
local coefficients are precalculated.

2. In the second step, the calculation is performed based on the local coor-
dinates.

The choice of the interpolation method depends on whether the repeated
interpolation is performed inside single or multiple cells.

Single Cell In case the repeated interpolation takes place inside a single
data cell, the first step of the interpolation — the lookup of the local values
— can be performed only once and the second step is repeated for every
individual set of local coordinates. Furthermore, the interpolation can be
sped up by performing the calculation in a matrix form', which can be
efficiently calculated using dedicated hardware. In this case, it is viable
to employ more sophisticated and physically more accurate interpolation
methods such as tricubic interpolation.

Multiple Cells When the repeated interpolation takes place among dif-
ferent local cells, the lookup of the values precedes each calculation. Since
a parallel version of the calculation would require recalculating the local
coefficients for every local cell, speeding up the actual calculation using
dedicated hardware is no longer beneficial. In this case, it is advisable
to use methods which work with a smaller number of local values. The
nearest-neighbor method does not require any precalculated values, and

13GSee sections 1.2 Linear interpolation and 1.2 Interpolation in 3D.

“The number of intermediate values is always one less than the total number of one-
dimensional interpolations. In case a parallel version of the computation is performed,
instead of calculating the intermediate values, two matrix multiplications are performed.

'5The parallel computation of a trilinear interpolation is based on the equations (1.5) and
(1.6) from the section 1.2 Linear interpolation. The matrix C is calculated only once, and
the matrix Q is recalculated for every set of local coordinates. Matrices used for tricubic
interpolation are different, but the principle remains the same.

30

4.2. Filtering and Enriching

the trilinear method requires calculating six intermediate values. The tri-
linear method appears to be the best option, balancing both performance
and accuracy.

The data provided with the assignment is a regularly sampled dataset. The
sampling is not uniform in each axis, the step in - and y-direction is 1 and in
the z-direction it is —0.1. The number of values in the dataset is 600-600-206.
The speed values are indicated in millions of meters per second; the positions
in millions of meters. Unless it is required to visualize a small segment of the
dataset, the interpolation will mostly take place among many different local
cells. Thus, the most suitable method would be the trilinear interpolation.!®

Additional Grid Types Support This thesis primarily focuses on regu-
larly and uniformly sampled data. Additionally, it might also be possible to
extend the support to other types of grids. The unstructured grids require
a completely different approach; the methods manipulating such data were
not introduced and reach beyond the scope of this thesis. With the intro-
duced methods, the support can be easily extended to rectilinear grids or any
other three-dimensional grids where all of the axes are perpendicular to each
other.

4.2 Filtering and Enriching

The internal representation of the dataset supports a specific class of grids
and a fast and accurate interpolation. The second stage of the visualization
pipeline involves transforming the imported dataset. The dataset transfor-
mation leads to filtering out all of the insignificant parts and highlighting
important areas. Additionally, the data structure is adjusted to guarantee
ease of use in the following stages of the visualization pipeline.

4.2.1 Filtering

First, it is needed to filter out all the insignificant areas and recognize what
should be left in the dataset. The critical factors are once again the perfor-
mance and physical accuracy of the output dataset. There are two approaches:

Automatic Detection The first option is an automatic recognition of
the critical parts based on dataset analysis. Segmenting the important
areas based on curl or divergence is possible. This procedure could be for
example followed by filtering out the areas with lower velocities. A similar
effect can be achieved by adopting techniques of flow-guided visualization.

1811 case the repeated interpolation inside a single cell is required, the trilinear interpola-
tion will perform the same as if it was interpolating many times among different cells; thus
the performance should be sufficient.

31

4. ANALYSIS

These techniques mentioned in section 2.3 Geometry Seeding try to identify
critical points in the vector fields with more sophisticated methods.

Manual Selection The second, more straightforward approach is to let
the user decide which parts should be filtered out. It is possible to highlight
the significant parts based on the property represented by the vector field
itself, e.g., highlight the areas where the temperature or speed reaches the
highest values. This effect can be understood as visual filtering enabled by
correct mapping of the values onto the visual elements in the third step of
the visualization pipeline. It is also possible to introduce the concept of
thresholding, which is not strictly applicable only to the manual approach.
Thresholding allows to filter out values below or above a particular value.

Relying on an automated process to recognize significant events or areas
is quite common, especially if the amount of the data exceeds a comprehen-
sible quantity. The first method relies on automated detection of the critical
points in the dataset. The second approach utilizes presumably weaker tools
such as thresholding and relies mainly on the third step of the visualization
pipeline — the mapping step — to highlight only the significant areas.

Since the first approach utilizes more complex filtering algorithms, it could
bring more satisfying results, although the methods used for flow-guided vi-
sualization are once again beyond the scope of this thesis. For simplicity, the
second approach is chosen here. Based on the previous decision, the available
tools for dataset filtering are:

o thresholding
o manual selection of a subset of the dataset
o wisual filtering in the mapping stage of the pipeline

4.2.2 Enriching

As a part of the enrichment process, a new dataset is generated by trans-
forming the filtered data. The structure of the enriched set should satisfy the
following conditions:

o ease of use in the following pipeline stages
e balancing memory and performance efficiency
e physical accuracy

Ease of use The first condition can be satisfied by determining the data
requirements of the individual visualization methods. In the ideal state, the
enriched dataset would include only the data required by the used visualization
method.

32

4.2. Filtering and Enriching

Enriching

Data for Glyphs, Planes, and Isosurfaces)

Filtering

Internal Representation Subset
of the Dataset

4)(Data for Streamlines)

Figure 41: Illustration of the filtering and enrichment process

Glyphs Glyphs, both vector and scalar, require values and positions of
the visualized points.

Streamlines Each streamline requires a list of corresponding positions,
values and timestamps.

Planes and Isosurfaces Planes and isosurfaces require values and posi-
tions.

Balancing Efficiency and Physical Accuracy It is necessary to decide
how the data is going to be obtained and stored. There are two solutions to
this problem.

1. The first approach separates the calculation from the stored data. In
terms of representation, the data can be stored in the form of arrays of
floating point numbers. The data is obtained from a source, e.g., the
interpolator.

2. The second approach dynamically retrieves the specific value every time
it is requested.

The dynamic representations for individual data types are the following:

Positions The randomly sampled points can be stored in the form of
a pseudo-random generator with a fixed seed. Regular sampling can be
described in terms of the boundaries and actual sampling values, enbling
easy reconstruction.

Values The values can be stored as the interpolator itself, dynamically
performing the interpolation every time any value is requested.

Times Storing the times with a dynamic representation means the stream-
line integration would have to be performed every time a timestamps value
is requested.

33

4. ANALYSIS

If appropriately implemented, a dynamic representation of values and points
could be the solution enabling visualizations with a massive number of visual
elements. The trade-off of memory efficiency, in this case, is the computa-
tional performance. An additional question is whether a memory efficient
representation is needed after all. As illustrated in the figure 41, the structure
of data for streamline visualization is different from the data structure used
for glyphs, planes, and isosurfaces, therefore it will be treated as a separate
case.

Data for Glyphs, Planes, and Isosurfaces It is likely that a visual-
ization containing a higher number of glyphs or huge isosurfaces will lack
clarity.!'” The other fact is that data in the form of arrays of floating
point numbers are simpler to manipulate and thus prefered in the follow-
ing stages of the visualization pipeline. The physical accuracy of both
approaches is the same. Consequently, the data prepared for glyph and
isosurface visualization are best represented as arrays of the actual values
and points.

Data for Streamlines Transforming the dataset for streamline visual-
ization involves evaluating the integral (2.3) from section 2.3 Streamlines
and Streaklines with initial values corresponding to chosen seeding points.
The seeding points are obtained during the filtering step. As was pre-
sented in the section 1.4 Numerical Methods for ODEs, there are several
integration methods with a varying degree of accuracy. Methods with
higher accuracy take more intermediate steps and are more computation-
ally expensive. Using lower order methods, the same level of accuracy can
be achieved by taking smaller integration steps, which will consequently
lead to higher computational cost. Since physical accuracy is the priority,
it is suitable to use a method of higher order to ensure the right balance
between performance and accuracy.

Integration produces a list of positions and times modeling a parametric
curve. The values of the vector field along the curve can be additionally
obtained from the interpolator. The use of the introduced dynamic rep-
resentation would require integrating the streamline every time a position
of the curve is requested. Since the integration is a very computationally
intensive task, it is more efficient to integrate the curve once and store the
values in the form of floating point arrays.

4.3 Mapping

In the third stage, the data is mapped onto a geometry of selected visualization
methods. The choice of the visualization methods and their attributes should
be based on the following criteria:

" Thus, the filtering of the dataset was probably not sufficient.

34

4.3. Mapping

method features pros cons

length
direction
Line Glyphs color simple implementation do not convey direction
transparency
thickness

length
direction
color . .
Cone Glyphs convey direction take up more space
transparency
thickness

cone base dimensions

length
direction
color tak

Arrow Glyphs convey direction ake up more space,
transparency complicated geometry
thickness

arrow dimensions

length
trajectory .
. good representation of the .
Streamlines color fow complicated geometry
transparency
thickness
color ble t |
Plane Surfaces simple geometry able to convey only one
transparency attribute
position
able to visualize data on the visualization could lack
Isosurfaces color .
non-planar geometry clarity
transparency

Table 42: Considered visualization methods

« the ability of the method to convey a required attribute of the dataset
e clarity of the visualization

The table 42 documents the features of the individual methods. The attributes
of the dataset to be represented by the methods are:

 direction of the vectors
e magnitude of the vectors
« a topological continuity of the vector field

The table 43 presents possible mapping between the data attributes and
features of the methods. The following step is to determine which methods
represent individual attributes the best.

35

4. ANALYSIS
methods direction magnitude topological continuity
length
Line Glyphs rotation &
color) .
groups can create an effect of continuous flow
transparency

Cone and Arrow Glyphs direction thickenss

Streamlines trajectory transparency

color . .
geometry of the streamline natively

A represents the flow of the vector field
thickess

color

Plane Surfaces - _

transparency

position

Isosurfaces - color -

transparency

Table 43: Mapping method features to data attributes

4.3.1 Direction

This section discusses possible representations of the direction attribute. The
goal is to determine the most suitable visualization methods. The table 45
sums up the results of the following analysis.

36

Glyphs Glyphs produce the most straightforward visualization of direc-
tion at specific points. When it is difficult to visually interpolate between
neighboring glyphs, the situation can be solved with the following meth-
ods:

o random distribution
e subsampling the regular grid

Subsampling the regular grid reduces the space allocated for each glyph.
If the vector field is not very turbulent, it might be possible to find the
sweet spot of sampling without making the glyphs too small. Unlike line
glyphs, arrow or cone glyphs can convey signed direction. The drawback
is that they both take up more space, and arrow glyphs have a more
complex geometry. Since line glyphs take up less space, the allocated area
for individual glyphs can also be reduced. Line glyphs are more suitable
for situations in which a denser sampling is required.

Streamlines Streamlines use their trajectory to represent the direction.
The streamline visualization can be adjusted by modifying the seeding
points and changing the length of the curves. As was introduced in section
2.3 Geometry Seeding, there are three possible seedings:

4.3. Mapping

e regular seeding
o random seeding
e more sophisticated seeding produced by flow-guided methods

The criteria presented in section 2.3 Geometry Seeding are not satisfied
when a regular seeding is used. The problem is that longer streamlines
cover only the areas connected to the seeding points and the regular seed-
ing does not take into account the future trajectory of the streamlines.
Also, the length of the streamlines contributes to the problem. Longer
streamlines tend to come together in convergent areas and continue with
the same trajectory. Shorter streamlines do not cover much space; how-
ever, they might produce a more uniformly distributed visualization.

Random sampling might perform better than the regular sampling. The
methods of flow-guided visualization offer a more general solution to this
problem. A significant drawback is that implementing these methods
would require more in-depth analysis.

Plane Surfaces and Isosurfaces A method allowing direction encod-
ing with color was presented in section 2.5 Color; however, the presented
method is rarely used. Isosurfaces work better with scalar visualization;
they are not suitable for presenting a vector quantity, such as direction.

4.3.2 Magnitude

The goal is to find the most suitable features for visualizing the vector mag-
nitude. Magnitude is also the attribute which will be preferably used for the
visual filtering, as was discussed in section 4.2.1 Filtering. The areas are going
to be highlighted based on the magnitude of the contained vectors. The table
45 contains a score for every method based on the following analysis.

Glyphs The magnitude is often visualized with the thickness or overall
size of the glyph. Alternatively, all of the glyphs are set to be the same size,
and color mapping is used.'® The resizing enables visual filtering. On the
other hand, using color mapping without resizing produces clearer images.
Combining both approaches is possible. An additional problem appears
when the the area of interest contains high contrast values. Because of
the wvisual filtering effect, the values at one of the ends of the spectrum
are going to become unreadable. This problem can be solved by inverting
the size rule, highlighting the regions with the values at the opposite end
of the spectrum. Color coding should also be invertible. The analysis of
suitable colormaps is in a separate section.

8 Transparency can be used as a separate feature, although, it can be understood
as a component of the color.

37

4. ANALYSIS

Streamlines Streamlines’ color can be used to convey the vector magni-
tude. Alternative feature with the ability to encode the magnitude is thick-
ness; however, introducing the streamlines’ thickness as an additional fea-
ture would cause clutter since streamlines already take up a lot of space.

Plane Surfaces and Isosurfaces Plane surfaces usually use color to en-
code the vector magnitude and thanks to the simplicity of the geometry,
the visualization usually works quite well. The only downside is that the
visualization is limited to the area of the plane.!” Isosurfaces can represent
the magnitude with their geometry — the surface leads through positions
with the same magnitude. However, constructing these surfaces requires
algorithms which were not introduced in this thesis. For simplicity, only
the color mapping will be used.

Designing a Colormap A set of principles for designing a colormap were
introduced in the section 2.5 Principles of Designing a Colormap. Also, the
following effects need to be considered:

e Warmer colors attract more attention than cooler tones.

e The perceived luminance of two colors can differ despite them having the
same luminance value in the HSV color model. Because of this effect,
users can be more attracted to some of the colors over the others.

e There are several well-known colormaps, e.g., rainbow map, or heat map,
which are more suitable for certain types of context.

Figure 27 in section 2.5 Color illustrates six well-known colormaps. The most
common actions involve highlighting the distribution of the velocities and
locating the areas containing extreme values.

The table 44 contains the evaluation of the presented colormaps based on
the criteria introduced in 2.5 Principles of Designing a Colormap. According
to every criterion, the methods are ordered from worst to best. Based on the
results of the evaluation, it is preferable to implement maps such as diverging
or heat colormap. Since the final scores of all hue-based maps were quite close,
it is desirable to develop a tool allowing manual construction of any hue-based
colormap.

4.3.3 Topological Continuity

Topological continuity of the vector field is a property related to perceiving the
vector field as a whole. The visualization reveals the hidden structure of the

19The high score in the table 45 of plane surfaces does not reflect the fact that the
visualization is limited only to a single plane.

38

4.3. Mapping

colormap reading values ordering difference locating areas rate of change > 1
Rainbow 4 1 2 2 2 11
Grayscale 1 2 1 1 1 6
Two-hue 1 3 2 2 1 9
Heat 2 3 2 3 2 12
Diverging 3 4 3 3 1 14
Table 44: Evaluation of colormap designs
method direction score magnitude score topological continuity score . 1
Line Glyphs 1 2 2 5
Cone Glyphs 2 2 1 5
Arrow Glyphs 1 2 1 4
Streamlines 2 1 3 6
Plane Surfaces 2 3 0 3
Isosurfaces 2 1 0 1

Table 45: Presumed usability score of methods for visualizing individual at-

tributes.

flow inside of the dataset, and the visualization methods have to capture this
structure. According to the table 43, only glyphs and streamlines have degrees
of freedom with the ability to visualize it. The table 45 assesses the ability
of the methods to convey the topological continuity based on the following

analysis.

Glyphs The flow structures can emerge from a visualization containing

a higher number of glyphs.

This effect relates to the discussion about

direction. Visualization with more glyphs generally tends to contain sec-
tions where all elements point in the same direction. However, as was
presented, denser grids also reduce the space allocated for each glyph. If
the visualization of topological continuity is the primary goal, it is once
again advisable to use line glyphs which need less space.

Streamlines Streamlines by definition follow the flow of the vector field.
There are two drawbacks, the one regarding coverage was already discussed
in section 4.3.1 Direction. The other one is computational complexity.
Nevertheless, the streamlines are the most powerful tool for visualizing
the topological continuity.

39

4. ANALYSIS

4.3.4 Summary

The table 45 contains the final usability score for each method. The score can
be interpreted as an indicator of how universal each method is. Most of the
results stay in the range 4-6. The similarity of the final scores denotes that
each of the attributes is best conveyed by a different method. It is desirable
to implement the methods which scored the highest amount of points for
individual attributes. Based on this criterion, the selected methods are cone
and line glyphs, plane surfaces, and streamlines.

4.4 Rendering

The goal is to develop a rendering part of the application, which will run in the
SAGE2 environment and will support depth rendering. The renderer should
produce images with sufficient clarity. Additionally, the renderer should sup-
port the following actions:

e viewport manipulation, including scaling, rotation, changing the view-
port size

e minor adjustments of the geometry, e.g., changing the thickness of visual
elements, adjusting the length of streamlines

¢ saving rendered images

e generating a depth map for a 3D monitor

The underlying technology and the overall application architecture dictate
the structure of the renderer. As was introduced in section 3 Techonology,
there are three distinct approaches to implementing the application — using
an existing framework (VTK), computational software (Mathematica), and
creating a custom application without any visualization framework (SciPy
+ WebGL). The table 46 assesses®® all three approaches according to the
following criteria:

Documentation The score reflects the quality, completeness, and clarity
of the documentation. Bonus points are awarded for step-by-step exam-
ples.

Learnability The score indicates how straightforward achieving tasks
is and reflects the steepness of the learning curve.

Licensing Reflects whether the software uses open source license (prefer-
able).

Community Points are awarded based on the extent of the existing
community. The community is evaluated based on available examples and
support on the internet.

20The selection of the assesment criteria is inspired by [32].

40

4.4. Rendering

criterion VTK Mathematica SciPy + WebGL

Documentation
Learnability
Licensing
Community
Accessibility
Portability
Extendability
Supported formats

2
1
0
1
0
1
2
1
Development complexity 3
1

O N = =N
N = O DN DN

Familiarity

2T

—_
—_

12

._.
W

Table 46: Assessment of implementation options

Accessibility To what extent is the software freely available, are there
binary distributions available or is the source code available?

Portability Can the application be run on Linux, Windows, macOS and
is it possible to develop an application for SAGE2 environment?

Extendability How easily can the existing software be extended with ad-
ditional parts? Is it possible to implement additional visualization meth-
ods?

Supported formats How vast is the range of formats natively supported
by the software? How easy is it to develop a plugin enabling import of

additional formats?

Development complexity What is the overall complexity of developing
the application using the chosen software?

Familiarity Reflects how familiar the author of this thesis is with the
selected technology.

The final results are close, most of the differences balance out and the

decisive factor might but just the last criterion — the familiarity. However,
without the last factor, the combined score still points to the third option
— developing the application without an underlying visualization framework.
The only major downside of this approach is the development complexity.

41

4. ANALYSIS

Functional Requirements |

Non-functional Requirements
+F1 - Dataset Visualization

+F2 - Support for Different Visualization Methods + N1 - Portability between OS/SAGE2 Enviroment
+F3 - Allow Visualization of Individual Components + N2 - English Documentation

+ F4 - 3D Data Slice Visualization + N3 - Good Rendering and Computing Performance
[[~] + F5 - Support for Viewport Manipulations

() Functional requirements (b) Non-functional requirements

Figure 42: Requirements model

4.5 Summary

The dataset is loaded into an internal representation. The internal repre-
sentation has to allow a fast interpolation using the trilinear method. The
supported type of grid is primarily the regular grid; nevertheless, the support
can be extended to other types of grids, where the use of trilinear interpolation
is possible. Chosen filtering techniques include thresholding, manual selection
of a subset of the dataset and mainly wvisual filtering in the mapping stage
of the pipeline. The enriching process involves transforming the dataset into
a format suitable for the selected visualization method.?! Each method re-
quires different data inputs. The physical accuracy and performance of glyph
and surface methods are given by the used interpolation method. The stream-
line method requires integration, which is performed by higher order numeric
integration methods. The subtypes of individual visualization methods chosen
for implementation are cone and line glyphs, plane surfaces, and streamlines.
It is recommended that the application enables creating various hue-based
colormaps. The preferred design of the renderer uses only WebGL as the un-
derlying library, and the computational part of the application utilizes SciPy
modules for performing calculations.

4.6 Functional and Non-functional Requirements

Functional requirements target the visualization capabilities of the applica-
tion. The requirements ordered from the most general to the more detailed
include dataset visualization, support for different visualization methods, en-
abling visualization of individual components, enabling visualization of a 3D
slice, and support for viewport manipulations.

Dataset Visualization The application will provide tools for visualizing
a dataset. The dataset will have a specific format, and the application will
be capable of producing a rendering of the dataset visualization.

21Based on the chosen libraries, the used integration method is the Dormand—Prince
method from 1.4 Runge-Kutta Method.

42

4.7. Use Cases

Support for Different Visualization Methods The app will support
multiple visualization methods. The supported methods are glyph, stream-
line and layer methods.

Allow Visualization of Individual Components The application will
enable visualizing individual vector components.

3D Data Slice Visualization The application will support methods for
selecting a subset of the complete dataset and enable visualization of a 3D
subset of the complete dataset.

Support for Viewport Manipulations The application renderer will
be capable of handling viewport manipulations, such as zooming and
changing point of view.

The non-functional requirements target the requests which do not influence
the functionality of the application; however, their satisfaction is necessary for
a correct functioning of the application.

Portability between OS/SAGE2 Environment The application will
be portable between different OS’ and SAGE2 environment. The porta-
bility can be guaranteed by using web technologies for the rendering part
of the application. The supported OS’ are Windows, Linux, and macOS.

English Documentation English user documentation will be provided
for the application.

Good rendering and Computing performance The application will
be designed and implemented in a way that the performance of the appli-
cation will not cause any usability problems.

4.7 Use Cases

Use cases further illustrate the functional requirements. Figure 43 lists the
analyzed use cases.

UC1 — Data Visualization The goal is to create a visualization of a new
dataset. The user utilizes an editor for setting up the pipeline and a renderer
for viewing the visualization.

The main script Visualizing the dataset

1. The user wants to visualize a new vector field dataset.

2. The user uploads the dataset into the application.

3. The application checks the format of the dataset. This script contin-
ues if the format of the uploaded file is valid.

43

4. ANALYSIS

Application

UC1 - Data Visualization

i «include»

UC3 - Processing
Dataset

i «include»
v

UC4 - Setting
Visualization Pipeline

«include»

\ «include»

UC2 - Manipulating
3D View

UCS5 - Selecting
Area of Interest

Figure 43: Use case model

4. Include (Processing Dataset)

5. The user opens the output file in the renderer.

6. Include (Manipulating 3D View)

Alternative Route Failed upload

1. This script starts in the third point of the original script.
2. If the format of the uploaded file is not valid, the application updates

the status of the dataset to invalid.

3. The application leaves the file on the server.

UC2 — Manipulating 3D View The renderer allows viewing and manip-
ulating the output models. The rendered properties of the wvisualization can

be changed in a menu.

1. With opened renderer, the user is viewing the 3D models of a particular

visualization. The goal is to manipulate the visualization.

2. The user navigates to the target action in the menu and changes the

current value.

3. The application instantly shows the effects of the performed action.

UC3 — Processing Dataset Processing the dataset involves assembling
the description of the wisualization pipeline and executing the pipeline. The
output of the visualization pipeline is a file containing the calculated geometry.

1. With an opened editor, the user wants to process a dataset.

2. Include (Setting Visualization Pipeline)

3. The user launches the execution of the visualization pipeline.

44

4.8. Domain model

4.

o.

User awaits the output, the application processes selected dataset ac-
cording to the description of the pipeline.

The user can directly display the output wvisualization in renderer or
download the output stored in a file.

UC4 — Setting Visualization Pipeline The purpose of the visualization
pipeline is to define the order of performed operations, e.g., selecting areas of
interest, using visualization methods. The description can be assembled in the
editor.

1.

@

With an opened editor, the user wants to set up the description of the
visualization pipeline.

The user selects a dataset.

Include (Selecting Area of Interest)

The user selects a visualization method appropriate for the selected area
of interest. Following combinations are suitable:

a) A 2D slice is suitable for constructing layer model.
b) A 3D slices is suitable for constructing glyph and streamline models.

Optionally, the user can set up additional attributes for the 3D models.
Optionally, the user can assign a custom colormap to the selected 3D
models.

In the last step, the user adds or selects an existing output scene.

The use case is finalized by saving the description of the visualization
pipeline in the application.

UC5 — Selecting Area of Interest Selecting the area of interest enables
visualizing only a subset of the dataset. This ability is particularly useful
when dealing with big datasets.

1.

With an opened editor, the user wants to select the area of interest.

2. The user needs to decide whether the area of interest is a 2D or 3D slice

of space. All methods can operate inside any area of interest. However,
the layer method produces only a model of a single layer for a given
area. The glyph and streamline methods are more suitable for 3D data
slices

If needed, the user specifies the sampling of the area of interest.

The editor displays a representation of the selected area of interest.

4.8 Domain model

This section presents the classes in the domain model. The domain model
illustrates objects from the real world and relations between them related to
the topic of visualization. The relations are further illustrated in figure 44.

45

4.

ANALYSIS

46

Vector Field Dataset The class represents a package of data. The data
was obtained as a result of measurements or simulations. The dataset
consists of positions and values. The vector field values attribute represents
the values of the contained vectors. Data positions are the spatial positions
of individual vectors. The dataset has the following states:

Checking The application is performing the validation.

Valid The dataset can be used by the application.

Invalid The format is corrupted, and the application cannot use the
dataset.

Visualization Pipeline The class represents a set of methods applied
to a datatset. Kach pipeline contains a description of the visualization
pipeline used for the processed dataset. The processing is stored in a note-
book file, and during the processing, various visualization methods are
used. The processing has the following states:

Created The processing was created, might be empty.

Running The processing is running; the methods are performed ac-
cording to the included description.

Finished The processing is completed, 3D models for used methods
are available.

Interpolation Method The class represents an interpolation method
used in a visualization method. The methods differ by order of accuracy.

Integration Method The class represents an integration method used
for streamline construction. The methods differ by order of accuracy. The
integration is performed for a time range specified by attributes start and
end time.

Area of Interest The class represents an area of operation for connected
visualization methods. Preferred areas of interest lie inside the vector field
dataset positions; however, it is possible to construct other areas. The area
is a rectangular space with a cuboid shape. It is defined by the position of
one of its corners and the dimensions of its edges.

Visualization Method The class represents visualization methods used
in the processing. Each visualization method uses an interpolation method
to approximate the data between known values. The visualization method
works in a selected area of interest.

Streamline Method The class represents a use of the streamline
method. The method constructs streamlines starting based on the
sampling of the area of interest. The trajectory of each streamline
is obtained from an integration method.

4.8. Domain model

Glyph Method The class represents the use of the glyph visualiza-
tion method. The method selects the values based on the sampling of
the area of interest and maps the values onto a glyph geometry.

Layer Method The class represents the use of visualization on a plane
surface. The surface is a slice of the area of interest and is defined by
the slice axis and slice coordinate. The method performs interpolation
in a given area and maps the values onto a plane geometry.

3D Model The class represents a model created by a particular visual-
ization method. Besides geometry, each model stores filtered values and
positions which are mapped onto the geometry. Color mode refers to the
type of used encoding; the color can encode the absolute value of stored
values or selected individual components.

Streamline Model The class represents a set of 3D streamline ob-
jects. As a product of the streamline method, every streamline model
contains integration times (timestamps). Every timestamp corresponds
to a single point and wvalue; in other words, the number of timestamps
is equal to the number of points or values. The class has an attribute
specifying the thickness of the streamlines and a segment geometry —
a mesh corresponding to a segment between two points.

Glyph Model The class represents a set of 3D glyph objects. Each
glyph has a the same initial size and utilizes a basic glyph geometry.
The geometry of individual glyphs is transformed according to the
represented value.

Layer Model The model represents a single layer object. Addition-
ally, the layer only contains a specification of the layer geometry.

Colormap The class represents a single colormap, specifying the range
of colors used for value encoding. The sampling attribute represents the
number of used colors. Every colormap utilizes two colors at a minimum.
The attribute color order gives the order of colors.

Color The class represents a single color and stores the color values.

Scene The 3D models are assembled into scenes. The models contained
in a scene determine the scene dimensions. The contents are scaled to fit
the scaled dimensions. The data mapped onto 3D models as a set contain
minimal and maximal values, which are extracted and marked as scene
limit values.

Visualization The class represents an entity performing the visual ren-
dering of the scene. The visualization has a viewport size and renders the
scene based on the point of view.

47

4. ANALYSIS

Area of Interest

Vector Field Dataset

- vector field values
- data positions

processedBy
v

0.*

Visualization Pipeline]

|
|

- position - description
- dimensions
\ / ! 0.*
performs
v
v 1 '
p N operatesin - - N
Integration Method Visualization Method | %" ' | Interpolation Method]
l uses p
- accuracy A g - accuracy
- start time
-end time
- | 1
uses 0.*
[Streamline Method [Glyph Method | Layer Method
l - seeding points sampling l - seeding points sampling - slice axis
- slice coordinate
1 1 J
1
produces produces produces
v v v
1 1 !
| Streamline Model | Glyph Model Layer Model
- thickness - size - layer geometry
- segment geometry - glyph geometry)
- integration times
r N r v
Scene 3D Model
1 consistsOf b 1.*
- dimensions - values
- limit values - positions
- scaled dimensions - color mode
1.% 1.%
coloredWith
v
1 1
Visualization Colormap Color |
1.% 2.
- point of view - sampling . - color values ’
- viewport size - color order consistsOf p

48

Figure 44: Domain model

CHAPTER 5

Design

The design of the application mostly follows the relationships established in
the domain model. The app is designed as a server-client project. This de-
sign allows separating the intensive computations from the renderer and other
additional components. The layout and relationships between individual com-
ponents are illustrated in the figure 51. Additionally, the solution for SAGE2
environment is illustrated in the same figure. The design of the SAGE ap-
plication introduces one additional component, which is closely similar to the
web application component.

Client gl
Web Application 3|

:'{] """""

'

: - —

(? Canvasinterface \“Q Pipelinelnterface SAGE2 App gl
3D Renderer gl Pipeline gl SAGE Application gl
Editor

T
'
'
—
= F Canvasinterface
Managementinterface Pt

3D Renderer €|

rocessinglnterface

91;

Server T T g'
Server gl Computation gl
Application Backend

(b) SAGE2 app

Computationinterface

(a) Web app

Figure 51: Components and interfaces

49

5. DESIGN

5.1 Computation Backend

The computation backend component implements the first two stages of the
visualization pipeline — loading and enriching. The overall structure of the
computation backend is illustrated in the figures 52 and 53. The structure of
the computation component isolates the underlying mathematical operations
(numeric module) from pipeline management (editor module).

5.1.1 Editor module

The structure of the editor component is based on the layout of the visualiza-
tion pipeline. The pipeline consists of atomic procedures, e.g., loading dataset,
performing an integration. Furthermore, the pipeline can be designed to follow
a fixed order of operations or support dynamic ordering of procedures.?

Fixed pipeline Fixed pipelines process all datasets with the same order
of operations. Since the order of the procedures is known in advance, the
design of such pipeline can be quite straightforward.

Dynamic pipeline The other option is to implement a dynamic pipeline.
This design allows determining the order of procedures at runtime; thus,
the user can choose the procedures and their order according to his or her
needs. However, this design is more intricate.

For customisability reasons, the design of a dynamic pipeline is used. The
pipeline is best represented as a directed acyclic graph, as is illustrated in
figure 54. The nodes in the graph represent atomic operations, and edges
represent the flow of input and output data between individual operations.
The sources in the graph correspond to procedures requiring no input, such
as loading dataset, or specifying the area of interest. The sinks represent the
only process with no data output — the rendering procedure. The table 51
lists the supported procedures, corresponding data structure representations,
and the required inputs and outputs. Some of the procedures can take a mix
of different types as an input. Round brackets indicate the input is optional.
When all inputs are optional, at least one is required, regardless of its kind.

Pipeline processing The pipeline processing is demonstrated in the algo-
rithm 1. First, the algorithm checks the pipeline description and constructs
the graph. In the second step, a topological sort is performed to check for
cycles and determine the order of node executions. In the last stage, the algo-
rithm iterates over the sorted nodes. For each node, the inputs of the previous
nodes are linked to the current node and the execution routine is called.

22Terms operations and procedures refer to the same subject.

20

Computation Backend

5.1.

sod£) no/ur pue sepou Surpuodsor10d ‘suorperod() TG 9[qR],

(104e) ‘(sourqureanss) ‘(sydA[3)
(1o4e]) ‘(sourquuearys) ‘(sydA[3)
(104e]) ‘(sourqurearys) ‘(sydA[3)
SOUI[UIBDI)S

syd4[s

ToAwe]

SOUI[UIBDI)S

sydArs

syurod

ouerd

squtod

josejep

SOUI[IIRAI)S)
QUITUIRII)S)
)

‘(syd413)
(sqd4rs)
ourures)s) ‘(sydAys)
ouIueaI)s) ¢(syd4]s)

SoUI[UIeaI)S

syd4[s
oued ‘jeseiep
sqyutod ‘josejep
sqyutod ‘josejep
squtod ‘jesejep

opoNArdesI(T
9PONIO[0))
OPONPIR[SURI],
9PONPO[ROS
OPONAIIOUIOSN)OUIUIBIILS
9PONAIIOWON) YA
OpONIoA®RT
OPONPUI[UIRI)S
OpPONSYdATD)
OPONSULIDYL
opoNPuR[d
OPONSIUIOJ
oapoNIeseIRe(]

mdjno Surrepusa

deurio[oo a1} surjsnlpe
suoryisod 10 senfea Furjesuery
suorjisod 10 senyea Surpeos
AI10W003 QUI[UIeaI)S SUIAJIpO
Aryow008 YdA[3 Surdjrpow
oure[d /1oAe] SUI}ONIISTOD
SOUI[UIROIYS SUIOTLIISTOD
sydA[S Surnonijsuoo
SUIPIOYSaIY)

9OI[S (Jg SUIID9[OS

9OI[S (J€ SuI}oo7as

19seIep SUIPEO]

od4A7 ndino

sodAy ndur

(epou) aInjonijs eyep

soanpoadoxd

51

5.

DESIGN

«module»
editor
«module» «module» «module»
nodes pipeline model_loader
+ load_graph(str): str + dataset(str): Dataset
Y + topological_sort(str): list + notebook(str): Notebook
+ compute(...) : None
«abstract»
Node
+ title: str
+ parsing: dict
+ data: dict
+ __call__(...): dict
+ deserialize(str): Node

T

92

«class»

PointsNode

«class»

FilteringNode

«class»

DataNode

+ coord_start: list(double, double, double)
+ coord_end: list(double, double, double)

+ sampling: list(double, double, double)

«class»

PlaneNode

norm_axis: int

norm_value: double
coord_start: list(double, double)
coord_end: list(double, double)
sampling: list(double, double)

+ o+ o+ o+ o+

+ mode: FilterMode
+ threshold: double

+ code: uuid
+ method: ApproximationMethod

«enum»

FilterMode

+ LOWPASS: inte
+ HIGHPASS: int

]

¢

«class»

StreamlineNode

+ t_0:double

+ t_bound: double
+ rel_tol: double
+ abs_tol: double

+ method: ApproximationMethod

t

«class» «class» «class» |
GlyphGeometryNode LayerNode GlyphNode «enum»
ApproximationMethod
+ geometry_type: GlyphType
+ size: double + SCIPY:int
+ sampling: int + Cint
? I I
«enum» «class» «class» «class»
GlyphType StreamlineGeometryNode ColorNode DisplayNode
+ LINE:int + divisions: int + sampling: int + scene_max_dim: double
+ CONE:int + size: double + colors: list
+ sampling: int

«class»

ScaleNode

«class»

TranslateNode

+ mode: TransformMode
+ scale: list(double, double, double)

+ mode: TransformMode
+ translate: list(double, double, double)

t

t

«enum»

TransformMode

+ VALU!

+ POSITIONS: int

ES:int

Figure 52: Design of the editor module

5.1. Computation Backend

«module»
numeric
«module» wnoduler «module»
o interpolate math
0 c indices(...): int *
¢ n3_interpolate(...): double
¢ nd_interpolate(...): int
«module» > + interpolate(...): np.ndarray «Cython class»
kernels RKSolver
\
+ dataset_kernel(...): Data «module» c order:int
+ glyphs_kernel(...): di common ¢ n_stages: int
+ points_kernel(...)] ¢ status:int
+ stream_kernel(...): dict) c direction: int
//helper functions S .
c initialized: int
¢ t0: double
A ¢ t:double
«module» — ¢ t_bound: double
integrate c rtol: double
«module» c atol: double
f ¢ ern:double
[¢] i :
+ cstreaml}nes(...).tuple ¢ h_abs: double
+ sstreamlines(...): tuple K- double *
| + cdata(str): CData K °l‘J e N
+ sdata(str): SData ¢ cdata: CSData
c create(...): void
«abstract» ¢ initial_step(double *): void
Data c step(): void
¢ rk_step(double): void
«module» d_ming p
common + grid_min(): np.ndarray
+ grid_max(): np.ndarray
+ com_l(): int
+ flip(np.ndarray): np.ndarray + dim_I0:int «module»
+ ascending(np.ndarray): bool + interpolator(): object @ data
+ memmap(np.ndarray): np.memmap
+ byteorder(np.ndarray): np.ndarray y
+ open(str): object
+ create_routine(...): list
«class» «Cython class» «Cstruct»
SData CData CSData
+ interpolate(list): np.ndarray - ¢ CSData 4 ¢ dim_l:int
- grid_alloc: int c com_l:int
- comp_alloc:int c grid_l:int *
- np_grid: object ¢ grid: double **
- np_comp: object ¢ comp: double **
+ add_component3(list): None
+ add_grid(list): None

Figure 53: Design of the numeric module

93

5. DESIGN

parameters parameters

parameters

l procedure B]—»[procedure D
output B
procedure A output A
procedure C

parameters

parameters

!

output C

Figure 54: Illustration of pipeline representation as a graph

Input: pipeline description
Output: none, the display node saves the data to disk

class {

inputs — input node ids

outputs — output node ids

parameters — additional node paremeters
} Node

nodes < load__graph(description)
order < topological_sort(nodes)
outputs + ||

foreach o € order do

inputs < ()

foreach in € nodes|o].inputs do

‘ inputs < inputs U outputs[in]

end

outputs|o] < nodes|i].call(inputs)
end

Algorithm 1: Pipeline execution

o4

5.1. Computation Backend

Figure 55: Illustration of the supported grid type

5.1.2 Numeric module

The numeric module can be further divided into three parts — data rep-
resentation, interpolation, and integration. The goal is to enable real-time
calculations and quickly provide physically accurate results. Therefore, all
functionalities have to be optimized for both memory and performance effi-
ciency. One approach is to use an existing implementation of the required
algorithms. Based on the previous analysis, the decision is to utilize NumPy
and SciPy functions. The early testing included the following procedures:

1. interpolating with a grid interpolator RegularGridInterpolator

2. constructing streamlines (solving initial value problem with solve_ivp)
in a field represented by the grid interpolator

Early testing revealed that the SciPy interpolator is sufficient for interpolating
a vast number of points at once; however, the efficiency is inversely propor-
tional to the number of interpolated points. Unfortunately, a single value
is interpolated during every integration step multiple times. For performance
reasons, it is necessary to provide an alternative to SciPy implementation.
The alternative solution involves implementing custom interpolator, solver,
as well as a custom class for data representation.

Data Representation To simplify the interpolation, the format of the
new underlying data structure represents a cartesian space sampled by
parallel planes with a plane normal equal to one of the space axes. The
sampled points lay in the intersection of three planes. The data structure
is illustrated in figure 55. As the figure suggests, this definition allows for
non-uniform sampling along the axes but preserves some regularity of the
overall structure.

Interpolator The interpolator has to fully replace and speed up the func-
tionality of the original SciPy interpolator for three-dimensional data. The

95

5.

DESIGN

o6

Input: dataset, points
Output: interpolated values

class {
values — array with dataset values
points — array of sampling points along individual axis
sampling — the numbers of sampling points along each axis
} Dataset

Function guess_index(p, points sampling) is
min <— points|0]
max < points[sampling — 1]
step < (max — min)/sampling
index < (p — min)/step
return index
end

values < |]

foreach p € points do

local__cell <+ |]

foreach ¢ € 0..2 do

sampling < dataset.samplingli]

points < dataset.points|i]

index < guess_index(p, points, sampling)

if p >= points[index] N p <= points[index + 1] then
‘ local__cell[i] + index

else
‘ local__cell[i] < binary_ search(points[i], p[i])

end

end
values < cell_interpolate(dataset.values, local__cell, p)
end

return values
Algorithm 2: Interpolator

new interpolator follows the algorithm 2. The lookup is sped up by binary
search; thus a single interpolation can be achieved in O(log(Zsampiing) +
10g(Ysampling) +109(Zsampling))- Additionally, the interpolator is optimized
to look up the local cell in regularly sampled datasets in constant time.
The optimization is possible thanks to a procedure which tries to estimate

the position of the local cell.

5.1. Computation Backend

Input: dataset, points, to, tyound
Output: streamlines

solver + RK Solver
solver.init(dataset, to, thound)
streamlines < |]
foreach p € points do
positions < [p]
times < [to]
solver.init__step(p)
while not solver. finished do
solver.step()
positions < solver.position
times < solver.time
end
streamlines < [position, times]
end
return streamlines
Algorithm 3: Integration

Integration and Solver The algorithm 3 used for integration has a sim-
ilar structure to the original SciPy function solve_ivp. The design of the
original solver used for integration is satisfactory; however, the SciPy RK
solvers are implemented purely in Python and lack the performance of the
solvers implemented in compiled languages. One option is to use already
existing solver written in a compiled language. The other option is to port
the Python code into a compiled language. In both cases, the solver has
to be compatible with the new data structure and take advantage of the
new fast interpolation routine.

To improve the performance, probably not the simplest but an elegant
solution is to port the Python code into Cython, a Python extension enabling
memory management and declaration of types. The Cython code can be
directly translated into C. In the purest form, the Cython can eliminate the use
of Python interpreter, which dramatically improves the performance. Since
the code has to be optimized for performance, the final decision is to implement
critical parts of the code in Cython.

Enriched Dataset Format Since it is necessary to transfer the computed
data, the enriched dataset should have a well-defined format. The format
has to be flexible and easy to process since the third stage of the pipeline
will be performed in the browser by the renderer. The final choice is to use
JSON format. The arrays of floating point numbers can be stored as Base64

o7

5. DESIGN

encoded strings, which disables user inspection of the values but ensures that
no precision is lost by conversion.

5.2 Server Application

The server application serves as a bridge between the computation backend
and the client-side application. The responsibilities of the server application
involve managing dataset uploads, storing the datasets and pipeline descrip-
tions and managing the queue of computation requests. Since the computation
backend is written in Python, the server application is designed as a Django
application to enable a smooth connection between these two components.
The figure 56 presents the database model of the server application.

The internal Django infrastructure manages user requests. The server
application contains the database model and serves individual views of the
client-side application. Another Django extension handles the communication
between clients and computation backend — Django Channels, which enables
web socket communication. The user requests fall into one of the following
categories — management request or processing request.

Management Requests The management requests are always HTTP
requests and involve creating, updating, and deleting a database model,
or serving a view. The management requests are managed via the man-
agement interface.

Processing Requests There are only three distinct types of processing
requests - start or stop a computation and list possible request types.
The processing requests are served strictly via web sockets since the server
needs to send back the information about the progress of the computation.

Internally, the server keeps a queue of the computation requests and pro-
cesses them one by one. The server application is designed to be entirely sep-
arated from the computation backend and runs in a separate process, which
ensures that any possible problems caused by the computation backend do not
bring the server application down. The communication between the server app
and computation backend is performed via web sockets.

5.3 Web Application

The web application consists of views and controllers. The web application
is designed as a single-screen application; however, the single view is divided
into multiple subviews. The notable subviews are dataset and notebook views.
Each listed subview contains a set of control elements which are also treated
as separate views. This hierarchy allows assigning an independent controller
to each view, which simplifies the overall design.

o8

5.3.

Web Application

Profile

PFK username: TextField

bio: TextField
affiliation: CharField

Profile_PK(username)

Profile_User_FK(username)

Task

PK code: UUIDField
title: CharField
time_created: DateTimeField
data: FileField
status: IntegerField

FK owner: TextField
description: TextField

Dataset_PK(code)

Dataset_User_FK(owner)

User Dataset
username = username
<FK»
1 PK username: TextField 1 0.*
email: TextField
y owner = username

password: TextField s

User_PK(username)

1 1

user = username author = username
<Ko «FK»
0.* 0.*
Notebook

PFK notebook: UUIDField
data: TextField
time_created: DateTimeField «FK»
data: TextField

FK user: TextField
running: BooleanField

notebook = code

0.1 1

Task_PK(notebook)

Task_Notebook_FK(notebook)
Task_User_FK(user)

PK code: UUIDField

title: CharField

time_created: DateTimeField
time_modified: DateTimeField

data: TextField
output: FileField
nodefile: FileField

FK author: TextField

Notebook_PK(code)

Notebook_User_FK(author)

Figure 56: Database model of the server application

Docs | Username | Signout

Upload Dataset Dataset Notebook
title actions title actions
Enter Name |
Dataset A rename | copy code | download | delete Notebook A open | rename | download | view result | delete
Upload File
Dataset B rename | copy code | download | delete Notebook B open | rename | download | view result | delete
created 18 Mar 2019 Notebook C open | rename | download | view result | delete
status valid
description Dataset with 3 dimensions:
sampling:
Upload Notebook x:15
y:16
z17
Enter Name I
axis range of sampling:
] X:-25.0 - 25.0
Upload File y:-35.0-25.0
z:-450-25.0
m
Dataset C rename | copy code | download | delete

Figure 57: Mockup of the main application screen

The figure 57 contains a mockup of the single screen with labeled sub-
views. The second figure 58 displays the structure of the web application de-
sign. Since the application is supposed to function as a website, the views are
implemented as HTML elements and the controllers as scripts in JavaScript.

99

5. DESIGN

Web Application gl
«class» Ul Subclasses gl
History
+ addIndexHistory(): void Ul dlasses with static
+ addDocsHistory(object): void methods to s*etup. callbacks
+ addNotebookHistory(object): void for anMouse* actions «class>
Data Manager
/l\ classes:
UINotebook + requestFrequent(object): void
«class» UlDataset] + request(object): void
ul UISlldebar + upload(object): void
UIFile + files(object): void
. i —>| | UlDatasetCopy + readFile(object): void
+ indexPage(...): void UlFileDelete
+ notebookPage(...): void UIFileEdit
+ docsPage(...): void UlGeneral
UINotebookForm
UINotebookOpen
UlHeade
Pipeline Editor gl
«class» «class» «class»
Pipeline Interface > Editor classr Terminal
o . Node
+ serialize(): void + nodes: object + command(str, data): void
+ deserialize(str): void + transform: object + active: bool + close(): void
+ mouseState: object active: 500
+ data: object
+ mouseDown(object): void : ::;l?;:tr
Ul Editor Subclasses 8] + mouseUp(object): void : o «class»
+ mouseMove(object): void : itrr\acr:ri?\rer?t'ig:fgb'ect Connection
Ul classes with static methods + wheel(object): void + outConnectior;s‘ onject
to setup callbacks + keyPress(object): void) + outNode: bool
for onMouse* actions + resize(): void + mouseDown(object): void + inNode: object
for Editor elements + addNode(Node): void + move(object): void + id:int
classes: i ?:Ler:g‘()ﬂsg\‘;dve;;go'd + addInCon(Connection): void + mouseDown(object): void
UlEditor : + addOutCon(Connection): void
UlEditorMenu + serialize(: void + delete(): void + redraw(): void
Uiode i + deserializé(str)‘ void + isConnectedTo(Node): bool + delete(): void
3:$°””_e‘1tl'°“) + isCompatible(Node): bool
ermina
UlCommand 7 Q T + serialize(): void ‘—I

static deserialize(str): void

Figure 58: Design of client components web application and pipeline editor

5.4 Pipeline Editor

The pipeline editor consists of two views — the graph editor and a terminal.
It is isolated from the rest of the web application and serves a single purpose
— it allows assembling the description of the dynamic visualization pipeline.

Graph Editor The design of the editor is based on a metaphor of the
pipeline being a graph. Each procedure is represented as a single visual
node, and the editor allows manipulating and dynamically reconnecting
compatible nodes. Besides the input data from other procedures, each pro-
cedure requires additional parameters. These parameters are not treated
as data flowing from one node to another. This locality needs to be rep-
resented by the design of the user interface. The figure 59 illustrates the

60

5.5. Renderer

data output
title procedure XYZ to subsequent nodes

outputs

double param 0.5

data inputs select param value v

from previous nodes - local parameters
int param 2
color param

- input: type C
inputs type A, (typeB) mpe

input and output

data t
outputs type C i atatypes N

outputs

Figure 59: Mockup of the Ul of a single node from the pipeline editor

visual design of a single node from the pipeline editor. The nodes have to
follow the design structure of the computation backend which also includes
the rules about supported input and output types. Therefore, the visual
nodes also display required and optional data types.

The figure 58 illustrates the design structure of the pipeline editor. The
underlying controllers take care of manipulating nodes, adding connections
and updating values of the parameters. A significant responsibility of the
editor is serializing and deserializing the description of the pipeline. The
nodes are designed as JavaScript objects; however, it is necessary to store
only a selection of the object’s attributes.

The serialization produces an array of objects which can be stored in
a JSON format. The inverse operation involves reconstructing the visual
representation of the graph from the JSON format.

Terminal The terminal serves for communication with the server applica-
tion and the computation backend. The terminal sends the entered com-
mand to the server along with the serialized description of the pipeline
and displays the server response. The request is sent to the processing
interface of the server application.

5.5 Renderer

The renderer component is one of the more complex components. As its title
suggests, the component enables rendering of the visualization. The compo-
nent accepts the enriched dataset produced by the computation backend. The
entire renderer is encapsulated in a single class. The main class further con-
tains three member classes which are responsible for handling the user input,
managing user interface, and drawing on the screen. The first two tasks are
not very technically challenging.

61

5. DESIGN

Input Interface The interface class handles the user input. The class
keeps a record of user actions such as key press and mouse drag and makes
this data available for other classes. The user inputs connected to scene
manipulation are used during each frame update.

User Interface The user interface is encapsulated in a single class which
further distributes the control over individual parts among a group of other
classes.

Graphics The graphics class performs the most technically challenging
operations. The class is responsible for rendering the enriched dataset, and
the used algorithms have to balance memory and performance efficiency.
The lowest level graphics API available — WebGL — is used to enable
hardware acceleration of the rendering.

WebGL Principles The rasterization pipeline implemented by WebGL has
fixed and programmable parts. The basic use of WebGL for static models can
be explained in two steps. The first step involves storing data into buffers.
In the second step, programs called shaders take a set of data from one or
more buffers and process it. The renderer utilizes only two types of shaders
— vertex shader and fragment shader. The performance boost is gained by
running the shaders in parallel on dedicated hardware. Further reading about
WebGL and OpenGL can be found in [33].

5.5.1 Visualization methods

Based on the brief introduction of WebGL, there are two design problems
which need to be addressed in order to utilize the WebGL API.

e How to map the dataset onto a geometry stored in the buffers?
e How do the shaders handle the buffer data?

The renderer has to support three unique visualization methods — glyphs,
streamlines, and planes. Each method requires a slightly different approach.
The design has to reflect what the eriched dataset contains and what the
visualization method is from the perspective of the renderer.

Glyphs The dataset represents glyphs with points, corresponding values,
and some additional metadata about colormap and the geometry type.
The glyphs are a repeated instance of the same object (glyph) scaled and
colored according to the local value of the vector field. The most straight-
forward solution is to create a model of a single glyph, transform the
model for every position and value, and store the transformed geometry
along with the corresponding color data. The shader would take the trans-
formed geometry and only apply the predetermined color. This approach

62

5.5. Renderer

is very ineffective, more efficient approach is to use a technique called in-
stancing. This technique allows for rendering the same model multiple
times with slightly different parameters. The changing parameters have
to be stored in a separate buffer and WebGL needs to know how often it
should swap the current set of parameters with a new one. The spatial
geometry transformation is performed in the shaders along with the color
interpolation.

Streamlines The streamlines are represented in the dataset as a list of
points, values, and timestamps. A simple representation of a streamline
could be implemented using only lines. However, this visualization is not
sufficient; it is difficult to determine the actual position of a single line in 3D
space. Thus, the streamlines have to be visualized with 3D curves of non-
zero thickness. There are several ways how to implement 3D curves; the
design chosen here is inspired by a method called extrusion along a curve.

The curve is divided into several segments. The algorithm processes each
segment individually. The segment is bounded by a pair of points —
starting and ending point. A tube can be used as a geometry for the
segment. There is a weight assigned to each vertex of the geometry, which
indicates the position of the vertex relative to the ending point of the
segment. The distribution of weights is illustrated in the figure 510. The
algorithm is trying to bend the geometry along the segment of the curve.
First, the algorithm approximates the local tangent vector and the local
position of the curve. In the second step, the vertex is translated to make
the tangent vector perpendicular to the radius of the tube. Finally, the
vertex is translated according to the local position of the curve.

A simple version of the algorithm linearly approximates the curve; how-
ever, there are a few additional improvements possible. The geometry of
the segment can be further divided along the curve. The vertices between
both ends can be transformed with the same algorithm. If a more sophisti-
cated method for approximation of the local values is used, e.g., the cubic
interpolation, the additional sampling of the curve should produce a more
smooth reconstruction of the original streamline. The algorithm can be
further improved to allow adjusting the thickness of the curve.

Further, the endpoint timestamps can be used for adjusting the rendered
portion of the streamline. The vertices outside the visible range are filtered
out by determining the visibility of each vertex. The visibility information
is passed into the fragment shader, and the fragments lying outside of the
visible region are discarded.

The final design of the algorithm had to be additionally modified. The
cubic interpolation requires two points, two tangents, and the local factor
for interpolating the local point. The points are obtained during the inte-
gration of the streamline. The tangents are the vectors of the vector field

63

5. DESIGN

tan POl tan,

local

pos,

arti int
(starting point) (ending point)

pos

1

local segment

preparing segment geometry:

p,, pair with w, =1

(ending point) g\, =1 [N 1

compress
positions

along
axis

I
end h ! |) Py Pairwithw, =1 I
l
! 1
] |
1 : 1 |
e
Wiscal , :’ | ': N o
X 1 X p,, Pair withw, =0.5
1
|
] : |
I , I
I N I
7 T«
2 \ -
(starting point) 8 Wepe=0 ——> Py, Pair with w, =0

P, P2Ir with w, =0

general segment

local segment

for each segment:

pos, /:/\f\
1 1
S~
| |
1 1
map segment , :— N N -Il cubic bend
S I I >
| T L
I 1 1
| 1 |
1 1
‘ SR B

pOU = pWO = pZO
Wy %W, =W,

Figure 510: Weight distribution and streamline tube construction algorithm

64

5.5. Renderer

Input: posyerter — vertex position
Wipeal — local weight
tang, tany, tang, tang — 4 surrounding tangents
Posg, Pos1, posa, poss — 4 surrounding points
to, t1, to, t3 — timestamps of 4 surrounding points
thickness — radius of the streamline
tstart, teng — Visible range of timestamps
Output: the real-world position of the vertex mapped along the
curve

t < CUbiCscalar(t07 tla t27 t37 wlocal)
vistbility < tspart < EAT < tepg

tansiare <— 0.5 |(posa — posp)| - normalize(tan;)
taneng < 0.5 |(poss — posy)| - normalize(tans)

POSiocal < CU-bicvector(posh posa, tanstarta tanend; wlocal)
tanjocal < cubicgerivate (p0517 POS2, taNstart, taNend, wlocal)

p — posvertem * thiCkness
p < rotategan(p, taniocal)
D <= D + POSiocal

return p
Algorithm 4: Streamline construction algorithm

in the points obtained during integration. The problem arises in turbu-
lent vector fields. The higher order numeric integration methods produce
physically accurate results even in more turbulent vector fields; however,
the cubic interpolation is not capable of accurately estimating the curve
trajectory based on the interpolated tangents. Therefore, the design of the
final algorithm is adjusted to utilize four surrounding points and values in-
stead of two. The complete algorithm with the additional improvements
is presented in algorithm 4 and 5.

Layers The dataset stores the layer as a grid of points and corresponding
values. The layer consists of rectangular cells which can be again efficiently
rendered with instancing. However, a more straightforward and equally
efficient approach is to use a different method called elements rendering.
An additional buffer of indices has to accompany the buffer of positions and
values. A sequence of four numbers in the additional buffer corresponds
to the indices of the positions and values forming a single rectangular cell.

65

5.

DESIGN

Function cubicgeqiar(vo, v1, V2, U3, W) is
c1 < U1
co +— —0.5v9 + 0.5v9
c3 +— vg— 2.5v1 + 2v9 — 0.5v3
c4 < —0.5v9 4+ 1.5v1 — 1.5v9 4+ 0.5v3
return (((caw + c3)w + co)w + ¢1)
end

Function cubicyector (vo, v1, to, t1, w) is
Cc1 <
co +— 1o
c3 < —3vg + 3v; — 2ty — 1
c4 +— 2v9—2v1+tg+t1
return (((caw + c3)w + co)w + ¢1)
end

Function cubicgerivate(Vo, v1, to, t1, w) is
cl « iy
c2 < —6vg + 6vy — 4ty — 2t
c3 < 6y — 6vy + 3ty + 3ty
return ((c3w + c2)w + ¢1)
end
Algorithm 5: Streamline construction algorithm — functions

As the figure 511 illustrates, the methods are represented by individual classes.
Each of the methods contains additional primitives — colormaps, bounding
boxes, and labels.

66

Colormaps Colormaps are used for color coding the vector components.
There are four color coding modes — one for each of the components of
the vector and one for the magnitude of the complete vector. The current
colormap is always displayed on the screen along with labels describing
the limit values.

Bounding Boxes The purpose of bounding boxes is to mark the area
containing a single visualization method. The box enables more natural
orientation and provides a space for labels.

Labels The labels inform the user about the position of the geometry in
space.

5.5. Renderer

«class» «class» «class»
FlowApp ul Interface
+ interface: Interface \ g + elements: array + keys: object —
+ graphics: Graphics + components: array + mouseState: object
+ ui: Ul + scenes: array
+ selectedScene: int
+ load(str): void + activeCompontne: int
UlSubclasses gl
+ addScene(UIScene, object): void
? + displayScene(int): void Ul classes managing user
+ componentKey(int): void input and acting as controller
«class» + toggleComponent(int): void for Ul elements
: + toggleMenu(): void
Graphics + toggleHelp(): void classes:
+ scenes: array + delete(:void UlScene
. + resize(int, int): void UlBase
+ programs: object
UlComponent
+ init(): void J/ UlWidget
+ resize(int, int): void UlField
+ render(): void «class» T
+ renderColor(): void Scene
+ render Depth(): void
+ addScene(object): void + camera: Camera “5}355’
+ delete(): void + light: Light 0 Light
+ objects: object
J/ + time: object + position: array
+ gamma: double
Shaders E + colorMode: ColorMode
Classes representing WebGL + init(object, int, object): void «class>
shaders and programs + render(): void Camera
+ renderColor(): void
classes: + render Deth():void — + position: array <
Shader + delete(): void + up:array
Program + center: array
MethodProgram \|/ + normal: array
BoxProgram + scale: double
ColorbarProgram «abstracty + view: array
GlyphProgram Primitive + projection: array
LayerProgram + mode: CameraMode
StreamProgram + buffers: object
TextProgram + meta: object + setPosition(Position): void
+ glsl shaders 7 + sizes: object + moveFront(): void
+ program: Program + moveBack(): void
+ moveRight(): void
P + addBufferVAO(object): void + moveleft(): void
| + addBufferVBO(object): void + rotate(double, double): void
+ addBufferEBO(object): void
«class» «class» + addTexture(object): void
UnitBox Quad + render(Camera, Light): void «abstract»
+ init(object): void + init(object): void + delete(): void Method Primitive
* + + initBoundingBox(object): void
+ initColorbar(object): void
«class» «abstract> + ui: object
Box ColorPrimitive
R | 4 + renderBox(Camera, Light): void
+ init(object): void Pl + reverseColor(): void + renderColorbar(Camera, Light): void
+ addLabels(array): void + renderColor(Camera, Light): void
+ addLablefint, double, double): void + renderDepth(Camera, Light): void
+ renderlLables(Camera, Light): void + renderlables(Camera, Light): void
[I]
«class» «class» «class» «class»
Colorbar Glyphs Stream Layer
+ renderlLables(Camera, Light, object): void + init(object): void + init(object): void + init(object): void
+ animationSetup(): void

+ animate(): void
+ resetAnimate(): void

Figure 511: Design structure of renderer component

67

5. DESIGN

5.5.2 Significance value

Section 4.2.1 Filtering introduced a method called visual filtering. The method
uses scaling and color coding to highlight the visual elements representing sig-
nificant values. The importance is expressed with a new unit called signifi-
cance value.

When all of the values represented by the visual elements are either positive
or negative, the significance can be calculated as

value — valuemgy
o= . (5.1)
valuemar — ValU€min,

When the ends of the range fall into different sides of the number line, the
calculation can be kept the same or an alternative formula is available. The
alternative maps the significance of zero value to sigma 0.5. The formula for
the alternative calculation is the following expression.

value + mazx(valuemay, —valuemin)

5.2
2 maz(valuemaz, —valuemn,) (52

The alternative approach could be more suitable for displaying a single com-
ponent of vectors. The design of the application allows the user to use any
of these two modes. The significance value is used for scaling the geometry
of glyphs, and for setting the color of all models. The color is obtained by
mapping the significance value onto the colormap.

5.5.3 Rendering strategy

The most straightforward strategy is to draw on the screen every frame. The
disadvantage of this approach is that the renderer draws the frame even when
the image has not been changed. This behavior might slow other tasks running
on the computer and affect the usability of the renderer in combination with
other computationally demanding application.

The solution is to check every frame whether the update is necessary. The
update is ultimately needed in two situations — when the camera has been
moved, or a specific parameter of any of the displayed models has been
changed. The camera already keeps internally the state from the previous
frame in order to enable smooth camera transitions. Thus, checking if the
viewpoint or angle has changed is no problem. Checking if any value has
changed can be trivially enabled by introducing the changed flag to each ob-
ject.

68

5.6. SAGE Application

5.6 SAGE Application

The last component of the project is a layer allowing the renderer to run in
the SAGE2 environment. The component acts as a bridge between SAGE2
server and the renderer, utilizing the canvas interface. The application has
to manage three tasks — reading local files with enriched datasets, pass the
interface inputs from the server to the renderer, and synchronize the state of
individual SAGE2 clients.

The enriched datasets are stored locally on the SAGE2 server, and the
SAGE2 interface provides a method for loading local files. The user inputs
are picked up by the SAGE2 app and passed to the renderer through the canvas
interface. The state synchronization between clients should be possible with
the SAGE2 internal state variable. The internal SAGE2 mechanisms should
keep the state variable consistent in the entire grid of clients by distributing
the most recent value via the server. However, unexpected behavior was en-
countered during the testing of this feature. The clients do keep their local
state variable consistent during repeated restarts and the application loads
with the last saved state; however, the state is not synchronized between indi-
vidual clients. To solve this problem, an additional mechanism is introduced.
One of the clients is tagged as a master client. The state of the master client
is distributed via a broadcast every three seconds, and the other clients receive
the synchronized value and update the internal state.

69

CHAPTER 6

Implementation

The application is implemented according to the design from the previous
chapter. The sections of this chapter present the known bugs, and missing or
added features, as well as technical details which were omitted in the previous
chapter. A vision of future development is presented in the appendix A. All of
the missing features can be easily added during the next application update.
The user manual can be found in the final distribution of the application.

6.1 Computation Backend and Pipeline Editor

The backend has been implemented correctly according to the presented de-
sign with a few minor exceptions listed below. The figure 61 displays an
example screen of the pipeline editor with a running computation. The crit-
ical sections of the numeric module are implemented in Cython. The use of
Python interpreter in the solver, interpolator and integration routine code
was mostly eliminated. For further details, see the HI'ML files containing an
analysis of the compiled code. The analysis files are created during building
procedures of the numeric module and can be found in the same folders as the
files of the numeric module. The missing features include:

e The points node allows visualizing a regularly sampled 3D area. The
node is missing a control element enabling random sampling.

e The internal structure allows passing the output of the plane node into
streamline and glyph nodes; however, the pipeline editor does not allow
connecting the mentioned nodes.

o Filtering node was not implemented.

71

6. IMPLEMENTATION

P-01 DOCS ADMIN

layer and streams

Figure 61: Screenshot of the pipeline editor

DOCS ADMIN LOGOUT

upload dataset DATASETS NOTEBOOKS

upload notebook
layer and streams

new notebook
streams

canvas whole

quarter

N ™S DD

mini

Figure 62: Screenshot of the application main screen

6.2 Web and Server Application

The web and server applications were both implemented according to the
proposed design; additional adjustments could improve the usability and ac-
cessibility of the application. Figure 62 presents the current design of the
central screen.

72

6.3. Renderer

Figure 63: Screenshot of the renderer

6.3 Renderer

The renderer has been implemented to be usable both in the browser and in
the SAGE2 environment. The renderer has two additional features, which
were added to the initial design.

Animation The streamlines can be animated to simulate the flow. The
animation effect is achieved by updating the visible range of each stream-
line every frame. The animation feature has a dedicated UI control panel.

Gamma correction The application enables transforming the used col-
ormap with an implementation of a custom gamma correction. Addition-
ally, inverting the colormap is possible. The gamma correction is useful
for highlighting only the extreme values when the formula (5.1) for deter-
mining the significance is used. A dedicated UI widget allows the user to
perform the transformation of the colormap.

The figure 63 displays the screen of the renderer.?? The renderer is also capable
of producing images which allow viewing the scene on the 3D monitor, which
is done by rendering the scene and the depth map separately and merging the
outputs into a single image.

6.4 Proprietary Formats

The application introduces two proprietary formats - one for storing the
pipeline description and the second for storing the enriched dataset. As was

2 As of May 2019, additional images produced by the renderer can be found on
http://flow.vojtatom.cz. or in the appendix B.

73

6. IMPLEMENTATION

discussed in 5.1.2 Enriched Dataset Format and 5.4 Pipeline Editor, both for-
mats utilize the JSON format and store the content as serialized JSON. The
description of the pipeline (notebook) is marked with a suffix .docflow and
the enriched dataset as .imgflow. A detailed description of the proprietary
formats can be found on the attached medium.

6.5 Dependencies

One of the goals was to minimize the number of external dependencies of
critical parts of the application. The following list contains all dependencies
of the individual components. There is a minimal version of the installation
requiring fewer dependencies presented in the user guide.

e Python modules

— Django

Django Channels
Cython

NumPy

SciPy
Whitenoise

Gunicorn

— Astropy
e Nginx
e Redis

74

CHAPTER i

Testing

The prototype of the visualization application has been tested for performance
and for user accessibility and usability. This chapter is divided into two sec-
tions; the first section presents the results of the user testing; the second
section compares the performance of SciPy interpolation and integration im-
plementation and the custom Cython code. As a part of the development
process, several tests were taken to measure the performance of various meth-
ods. The tests and summary of the results were already mentioned in chapters
4 Analysis and 5 Design. The results of the final tests presented here closely
resemble the results of the tests taken during development.

7.1 User Testing

The users were challenged with a set of smaller tasks which involved regis-
tration, navigating the main screen and managing the uploaded data. These
trivial tasks served as a preparation for two additional tasks which tested the
core of the application — setting up the visualization pipeline and user ma-
nipulation of the output visualization. The scenarios of individual tests with
the answers and notes of the users are available on the enclosed medium. The
most frequently encountered issues were the following:

e The status of uploaded dataset is not understandable. A text labels
indicating the status of the uploaded dataset (checking, valid, invalid)
would improve the accessibility.

e A UI for managing running tasks would improve usability and simplify
administrative tasks.

e A link for downloading the latest computation result for each notebook
should be provided. Currently, the link is only available in the terminal
when the computation finishes.

75

7. TESTING

e Support for adding custom labels to the scene in renderer would improve
usability.

e Incorporating a grid indicating the exact position of the labels in the
visualization scene would improve usability and accessibility of the ren-
dered images. However, these tasks can be currently done during local
post-processing by the user.

e The renderer was designed to function in both the browser and in the
SAGE2 environment. One of the compromises made during the imple-
mentation included disabling mouse controls for the UL It is possible
to manipulate the scene with the cursor; nevertheless, the Ul is manip-
ulated strictly by keys. Adding the ability to manipulate the UI with
a cursor would improve usability.

o The pipeline editor is missing any help/guide labeling the keybord short-
cuts for adding and deleting nodes.

e The users forget to save the notebook, the save button is not very acce-
sible. Alternative design should be used to highlight the button.

The users who were familiar with the domain and those who were briefly in-
troduced to the topic without any previous knowledge were less confused by
the design of the pipeline editor. The design of the editor is not universally
understandable without the understanding of how the background of the ap-
plication works. Therefore, it is advisable to incorporate a description of the
background processes into the user guide.

7.2 Performance of the Numeric Module

This section presents the benchmark results of the used calculation meth-
ods. The two tested functionalities are interpolation and integration. Each of
the benchmarks compares the SciPy implementation with the custom Cython
code. The initial tests which were taken during the development process sug-
gested the SciPy interpolation method does not perform the best when a re-
peated interpolation of a single point is requested. The computer used for
benchmarking had the following specifications:

e Intel Core i7-7700, Quad-Core, 3.6GHz
« RAM HyperX 8GB DDR4 2133MHz
e MSI GeForce GTX 1060 6GT

7.2.1 Interpolation

Measuring the interpolation performance involved generating random vector
field with randomly sampled axes and interpolating a certain number of ran-

76

7.2. Performance of the Numeric Module

dom points inside the dataset. The interpolation of the same set of points was
repeated multiple times.

The table 71 contains the measured times, as well as the ratio between the
execution times of the SciPy and Cython/C implementations. The same pro-
cedure was repeated with a random field where the distance between individual
sampling points was uniform. The table 72 presents the results. The custom
Cython/C performs significantly better than the SciPy implementation espe-
cially when a lower number of points is interpolated. The interpolation in
a vector field with uniform distances is faster as expected since the Cython/C
interpolator is optimized to take advantage of the uniform sampling. There
is a slight difference between the values produced by the Cython/C and the
SciPy methods. A rounding error probably causes the difference; however,
the variation is negligible. The values of the random vector field fall into the
range [0, 100] and the results of both methods satisfy the NumPy allclose**
test with the default parameters.

7.2.2 Integration

Benchmarking the integration involves constructing a random vector field,
selecting a set of random points and performing the integration. The two
compared alternatives are the SciPy integrator (solve_ivp with default solver
RK}5, see documentation?® and custom Cython/C integrator (also using
a custom implementation of RK45). The methodology of the tests is similar
to the previous interpolation benchmarks. The tables 73 and 74 present the
times and ratios of the individual implementations. As expected, the SciPy
suffers from slow interpolation of a single point. Results of both methods are
no longer comparable by the NumPy allclose function since the rounding er-
ror of individual interpolations influences the future steps of the integration.
However; the differences between the outputs of two methods are still within
a reasonable range, and the difference is visually indistinguishable.

248ee the function numpy.allclose in NumPy documentation [27].
25See the solve_ivp in SciPy documentation [28].

7

TESTING

7.

joseyep pojdures AJWopuRlI ® Ul (SPU0ddS Ul) sowl) uorpejodiojuy] T/, 9[qR],

- - - - - - 19°¢ orjel
- - - - - - - - - - - - 9.0 8¢'0 sowny 000000T
- - - - - 00°¢ 89°C orjel
- - - - - - - - - - 08°0 120 L0°0 €0°0 soun 00000T
- - - - €LC GLC 99°¢ orjel
- - - - - - - - 69°0 §c'0 400 €00 10°0 100 > sowny 0000T
- - - 86°¢ 96°¢ vLe 1¢¢ orjel
- - - - - - 79°0 91’0 90°0 00 10°0 100> 100> 100> sown 0001
- - 8€'81 ¢9'91 68°L1 8L'€T €e°¢ oryel
- - - - 0¢'¢ aro (44l 10°0 ¢00 100> 100> T00> TO0> T00> sown 00T
- €916 GL'86 €9°L6 ST'16 LG°LS €71 oryel
- - L4691 6T°0 cL1 00 8’0 100> ¢00 100> T00> T00> T00> TO0> sown 0T
L¥°081 V9°GLT €¢°C8I 18°€8T 8G°GLT 60°8TT 68°G¢ onel
¢g94t1 L8°0 e€ral 60°0 941 10°0 ¢1o 100> €0 TOO0O> TO0O> T00> T00> T00> sewh T
AgwG UYL AJDS UOYAD AJDS UOYIAD) AJDS UOIAD) AJDS UOIL) AJWG UYL AJDS UOTIAD squtod jo #
000000T 00000T 0000T 000T 00T 0T 1
suorjrjodar

78

7.2. Performance of the Numeric Module

josejep pojdures AJULIOJIUN ® U (SPU029S Ul) sowl) uolyejodIoju] :g), o[qR],

- - - - - - 98°¢ orjel
- - - - - - - - - - - - 8L°0 0c’0 sewm 000000T
- - - - - GLe L16°¢ orjel
- - - - - - - - - - €L0 020 L0°0 ¢0’0 souwny 00000T
- - - - G6°¢ cL'e Ga'e orjer
- - - - - - - - 040 8T°0 2070 ¢0°0 10°0 100 > sewny 0000T
- - - ST°L 80°L 1.6 66°¢C oryer
- - - - - - 390 60°0 90°0 10°0 10°0 100> 100> 100> sewn 000T
- - 9L°9¢ 9T°6e S1°9¢ ST°0¢ 8LV oryer
- - - - L6°1 G0°0 020 10°0 ¢00 100> 100> 100> 100> 100> s°wn 00T
- VvGer y1Ieet 64°0€T arvel 6€°18 9671 oryer
- - 07’91 ¢10 8G'1 10°0 91'0 100> ¢00 100> 100> 100> 100> 100> sowh 01
GL798T LT°08T (Gt 06°88T 06°8ST 18°19 G9'1¢ onel
V66V 08°0 v0°ST 80°0 (45! 10°0 ¢1’'0 100> ¢o0 100> 100> T100> 100> 100> sewh 1
£gmwg uwomh) AJLS uomihk) AJLG uoyIhk) AJG uoyihk) AJ0G UKD AJWPS UOYAD AJDS UOYIL) squtod jo #

000000T

00000T

0000T

000T
suorjrjedar

00T

0T !

79

7. TESTING

repetitions
1 10 100
of points Cython SciPy Cython SciPy Cython SciPy
1 times < 0.01 0.04 < 0.01 0.22 0.01 5.71
ratio 299.99 418.54 677.80
10 times < 0.01 0.27 < 0.01 3.16 0.03 26.12
ratio 702.11 884.21 950.00
100 times < 0.01 2.18 0.03 23.73 0.22 223.60
ratio 864.92 927.76 1034.14
1000 times 0.03 24.55 0.27 247.22 - -
ratio 897.68 925.23 -
10000 times 0.28 244.01 - - - —
ratio 877.44 - —

Table 73: Integration times (in seconds) in a randomly sampled dataset

repetitions
1 10 100
of points Cython SciPy Cython SciPy Cython SciPy
1 times < 0.01 0.02 < 0.01 0.21 < 0.01 2.23
ratio 179.87 452.36 556.51
10 times < 0.01 0.26 < 0.01 1.58 0.02 26.66
ratio 977.40 1266.79 1648.98
100 times < 0.01 2.47 0.01 24.78 0.14 249.64
ratio 1324.99 1720.52 1795.53
1000 times 0.02 26.37 0.17 247.85 - -
ratio 1443.12 1474.39 -
10000 times 0.17 260.67 - - - -
ratio 1490.96 -

Table 74: Integration times (in seconds) in a uniformly sampled dataset

80

Conclusion

The thesis described and analyzed selected visualization techniques, as well
as related mathematical methods and presented a design of application effec-
tively implementing the visualization methods. The application was imple-
mented as a client-server project, creating a portable online tool for vector
field visualization.

The initial research presented several visualization methods which were
suitable for visualization of the selected vector field attributes. It was neces-
sary to analyze the underlying mathematical methods such as interpolation
and numerical integration to make the implementation of the visualization
methods possible. The analysis revealed that the performance of the used
mathematical methods is one of the critical parts for producing a satisfac-
tory visualization. Additionally, the concept of the visualization pipeline was
introduced.

Based on the visualization pipeline, the prototype of the application was
divided into four parts. Pipeline editor allows the user to program a custom
visualization pipeline; computation component provides a custom implemen-
tation of the essential mathematical methods and underlying structures; ren-
derer enables responsive and scalable rendering of the visualized scene; last
— the web and server application manage the connections between the other
application components. The modular design allows optimising selected code
and reusing the implemented algorithms. The complete application is a scal-
able tool for vector field visualization.

The final user testing shows that the application still requires additional
changes to provide an intuitive interface; however, the performance of the
new underlying framework proves that it is possible to implement a powerful
visualization tool without any significant dependencies. As the following list
illustrates, all of the goals set at the beginning of the thesis were reached.

81

CONCLUSION

82

Visualized Properties The application supports the visualization of in-
dividual points, as well as plains and streamlines. The combination of
these three visualization methods provides a way to display any of the
vector field properties listed in the introduction.

Visualization Methods As the results of the final testing illustrate, the
performance of the custom implementated methods exceed the perfor-
mance of implementation in some widely-used Python packages; thus, the
implementation can be considered as efficient.

Selecting Area of Interest The application provides a way to select 2D
and 3D slices of space for visualization. Moreover, the user can specify the
exact points he wishes to visualize.

Used Technology Since the computation part was moved onto the server,
the used technology allows using the application on any operating system
with a browser, where WebGL technology is supported. The app is ca-
pable of producing images for 3D monitor, and the renderer is scalable
as a SAGE2 application.

[10]

Bibliography

Davis, H. F.; Snider, A. D.; et al. Introduction to vector analysis. Boston:
Allyn and Bacon Boston, Mass, fourth edition, 1961, ISBN 0-205-07002-7.

Klaus, R.; Hrividk, D. Brevidr vyssi matematiky. Ostravskd univerzita
v Ostarvé, first edition, 2001, ISBN 80-7042-819-8.

Kang, H. R. Computational color technology. Spie Press Bellingham, 2006,
ISBN 978-0-819-46119-3.

Zéara, J.; Benes, B.; et al. Moderni pocitacovd grafika. Computer press,
2004, ISBN 80-251-0454-0.

Breeuwsma, P. Cubic interpolation - Paulinternet.nl. [online], 1995,
[cit. 2018-03-08]. Available from: http://www.paulinternet.nl/?page=
bicubic

Lekien, F.; Marsden, J. Tricubic interpolation in three dimensions. In-
ternational Journal for Numerical Methods in Engineering, volume 63,
no. 3, 2005: pp. 455471, ISSN 0029-5981.

Olver, P. J. Introduction to partial differential equations. Springer, 2014,
ISBN 978-3-319-02099-0.

Iserles, A. A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge: Cambridge University Press, 2008, ISBN 978-0-521-
73490-5.

Atkinson, K.; Han, W.; et al. Numerical solution of ordinary differential
equations. John Wiley & Sons, 2009, ISBN 978-0-470-04294-6.

Press, W. H.; Teukolsky, S. A. Adaptive Stepsize Runge-Kutta Integra-
tion. Computers in Physics, volume 6, no. 2, 1992: p. 188, ISSN 08941866,
doi:10.1063/1.4823060. Available from: http://scitation.aip.org/
content/aip/journal/cip/6/2/10.1063/1.4823060

83

http://www.paulinternet.nl/?page=bicubic
http://www.paulinternet.nl/?page=bicubic
http://scitation.aip.org/content/aip/journal/cip/6/2/10.1063/1.4823060
http://scitation.aip.org/content/aip/journal/cip/6/2/10.1063/1.4823060

BIBLIOGRAPHY

[11]

[14]

[15]

[19]

[20]

84

Dormand, J. R.; Prince, P. J. A family of embedded Runge-Kutta formu-
lae. Journal of computational and applied mathematics, volume 6, no. 1,
1980: pp. 19-26.

Telea, A. C. Data wvisualization: principles and practice. Boca Ra-
ton: CRC Press, Taylor & Francis Group, second edition, 2015, ISBN
9781466585263.

Komura, T. Vector Field Visualisation. 2008, [cit. 2018-04-29]. Avail-
able from: http://www.inf.ed.ac.uk/teaching/courses/vis/lecture_
notes/lecturel2_2008.pdf

Benes, B.; Felkel, P.; et al. Skripta Vizualizace. [online|, 1997, [cit. 2018-
04-30]. Available from: https://www.fi.muni.cz/~sochor/VIZ/

Verma, V.; Kao, D.; et al. A flow-guided streamline seeding strategy.
In Proceedings of the conference on Visualization’00, IEEE Computer
Society Press, 2000, pp. 163—-170.

Marchesin, S.; Chen, C.; et al. View-Dependent Streamlines for 3D Vec-
tor Fields. IEEE Transactions on Visualization and Computer Graph-
ics, volume 16, no. 6, Nov 2010: pp. 1578-1586, ISSN 1077-2626, doi:
10.1109/TVCG.2010.212.

Ye, X.; Kao, D.; et al. Strategy for seeding 3D streamlines. In Visualiza-
tion, 2005. VIS 05. IEEE, IEEE, 2005, pp. 471-478.

Globus, A.; Levit, C.; et al. A tool for visualizing the topology of three-
dimensional vector fields. In Proceeding Visualization 91, Oct 1991, pp.
33-40, doi:10.1109/VISUAL.1991.175773.

Moreland, K. Diverging color maps for scientific visualization. In Inter-
national Symposium on Visual Computing, Springer, 2009, pp. 92-103.

Marrinan, T.; Aurisano, J.; et al. SAGE2: A new approach for data inten-
sive collaboration using Scalable Resolution Shared Displays. In Collab-
orative Computing: Networking, Applications and Worksharing (Collab-
orateCom), 2014 International Conference on, IEEE, 2014, pp. 177-186.

Inc., W. R. Mathematica, Version 11.3. [online], champaign, IL, 2018.
Available from: https://reference.wolfram.com/language/guide/
VectorVisualization.html

Henderson, A.; Ahrens, J.; et al. The ParaView Guide. Kitware Clifton
Park, NY, 2004, kap. Introduction.

http://www.inf.ed.ac.uk/teaching/courses/vis/lecture_notes/lecture12_2008.pdf
http://www.inf.ed.ac.uk/teaching/courses/vis/lecture_notes/lecture12_2008.pdf
https://www.fi.muni.cz/~sochor/VIZ/
https://reference.wolfram.com/language/guide/VectorVisualization.html
https://reference.wolfram.com/language/guide/VectorVisualization.html

Bibliography

23]

[27]

28]

Childs, H.; Brugger, E.; et al. Vislt: An end-user tool for visualizing and
analyzing very large data. Technical report, Ernest Orlando Lawrence
Berkeley National Laboratory, 2012, [cit. 2018-05-10]. Available from:
http://www-vis.1lbl.gov/~hrchilds/paper.pdf

Ramachandran, P.; Varoquaux, G. Mayavi: 3D visualization of scientific
data. Computing in Science & Engineering, volume 13, no. 2, 2011: pp.
40-51.

Avila, L. S. (editor). The VTK User’s Guide. Clifton Park, NY: Kitware,
11th edition, 2010, ISBN 978-1-930934-23-8.

Schroder, W. J.; Martin, K. M.; et al. VITK User’s Guide-VTK File For-
mats, chapter 14. [online], 2000, [cit. 2018-05-15]. Available from: https:
//www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf

Oliphant, T. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006—
2019, [cit. 2019-04-09]. Available from: http://www.numpy.org/

Jones, E.; Oliphant, T.; et al. SciPy: Open source scientific tools for
Python. [online], 2001-2019, [cit. 2019-04-09]. Available from: http://
www.scipy.org/

Marrin, C. Webgl specification. [online], 2011, [cit. 2018-05-16]. Available
from: https://www.khronos.org/registry/webgl/specs/latest/2.0/

Cabello, R.; et al. Three.js. [online], [cit. 2018-05-05]. Available from:
https://threejs.org/docs/

McCarthy, L.; Reas, C.; et al. Getting Started with P5. js: Making Inter-
active Graphics in JavaScript and Processing. Maker Media, Inc., 2015.

Jackson, M.; Crouch, S.; et al. Software Evaluation: Criteria-based As-
sessment. Governance, 2011.

Wright Jr, R. S.; Haemel, N.; et al. OpenGL SuperBible: comprehensive
tutorial and reference. Addison-Wesley Professional, fifth edition, 2010,
ISBN 0-321-71261-7.

85

http://www-vis.lbl.gov/~hrchilds/paper.pdf
https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
http://www.numpy.org/
http://www.scipy.org/
http://www.scipy.org/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://threejs.org/docs/

APPENDIX A

Future Development

This appendix shortly presents the vision of the future development of the
visualization application designed and implemented in this thesis. The intro-
duction of this thesis mentioned a balance of three factors — usability, phys-
ical accuracy and the amount of displayed data. The developed application
had to overcome many obstacles arising from the absence of any underlying
framework and implement the required parts. As a result, three unique in-
dependent components were created — the pipeline editor, the computation
backend and the renderer. The computation backend uses SciPy and pro-
vides a faster alternative implementation of the same methods. The quicker
implementation might have some technical shortcomings; however, the goal
to balance the physical accuracy and response time was achieved. The same
goes for the renderer. The main problem is that the server-client design is not
suitable for users-scientists, who want to visualize a dataset and do not have
access to any free server.

Therefore, the decision is to take the unique components of the application
and fuse them to a single Python module, allowing for local computation and
rendering. This is going to require some redesigning; however, the majority
of the code will remain the same. The goal is to create a simple Python API
anyone could use in their scripts. This functionality is already supported by
Mayavi or VTK; however, the design of their API is based on the internal VTK
structure which has been previously discussed. The implemented prototype
avoided using any significant underlying frameworks to keep modularity, and
the future versions are going to stay true to this design decision. The renderer
can be embedded into the Python module as a single JavaScript file, and the
current design of the renderer allows viewing models locally on the computer
without access to the internet. Some additional mechanisms to simplify the
calculation and rendering will be considered; however, the development of the
visualization application (or module) will be indeed continued.

87

APPENDIX B

Images

The appendix contains example images produced by the renderer. The figures
display three scenes; each of them is a different subset of the solar dataset.
The visualized subsets are labeled as medium, quarter and whole, the name
corresponds to the size of the visualized area; thus, the images of the whole
subset are indeed a visualization of a 3D layer across the entire dataset. The
images B5 and B6 present a rendering of the scene with a depth map, which
is used for displaying the dataset on the 3D monitor.

Figure B1: Medium dataset, top side view, visualized with streamlines and
layers

89

B. IMAGES

Figure B2: Medium dataset, side view, visualized with streamlines and layers

Figure B3: Medium dataset, top view, visualized with streamlines and layers

90

Figure B4: Medium dataset, top view, visualized with glyphs

Figure B5: Medium dataset, side view, rendering with a depth map

Figure B6: Medium dataset, bottom view, rendering with a depth map

91

B. IMAGES

Figure B7: Quarter dataset, top view, visualized with streamlines and layers

ft

Figure B8: Quarter dataset, top detail view, visualized with streamlines and

layers

92

Figure B9: Whole dataset, top detail view, visualized with streamlines and
layers

Figure B10: Whole dataset, bottom detail view, visualized with streamlines
and layers

93

APPENDIX C

Acronyms

HSV HSV (hue, saturation, value) color model.
ODE Ordinary differential equation.

RK Runge-Kutta.

SAGE2 Scalable Amplified Group Environment.
UI User interface.

VTK The Visualization Toolkit.

95

APPENDIX D

Contents of Enclosed DVD

readme . TXL . vvvrr e description of DVD contents
| usermanual.pdf ...l application user manual
| tests ...l the directory containing test forms and scenarios
| _src
flow..oovvvvennn... the directory containing source code of web app
SALE . v the directory containing source code of SAGE2 app
thesis...... the directory containing IATEX source codes of the thesis
| text
tthesis.pdf thesis in PDF format
thesis.PS. i thesis in PS format

	Introduction
	Multidimensional Data
	Vector Fields
	Sampling and Interpolation
	Partial Derivatives Approximation
	Numerical Methods for ODEs

	Visualization Methods
	Visualization Pipeline
	Vector Glyphs
	Streamlines and Streaklines
	Scalar Visualization
	Color

	Techonology
	Target Platforms
	Available Software
	Alternative Resources

	Analysis
	Importing
	Filtering and Enriching
	Mapping
	Rendering
	Summary
	Functional and Non-functional Requirements
	Use Cases
	Domain model

	Design
	Computation Backend
	Server Application
	Web Application
	Pipeline Editor
	Renderer
	SAGE Application

	Implementation
	Computation Backend and Pipeline Editor
	Web and Server Application
	Renderer
	Proprietary Formats
	Dependencies

	Testing
	User Testing
	Performance of the Numeric Module

	Conclusion
	Bibliography
	Future Development
	Images
	Acronyms
	Contents of Enclosed DVD

