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Abstrakt

Bitcoin je digitálńı měna, která se snaž́ı řešit problémy stávaj́ıćıho finančńıho
systému. Ačkoliv p̊uvodńı návrh Bitcoinu byl jednoduchý, složitost této kryp-
toměny neustále roste.

Tato práce se zabývá základńımi myšlenkami kryptoměny a implementuje
software nazývaný miner, který umožňuje decentralizaci. Práce je součást́ı
projektu Fitcoin, jehož ćılem je vyvinout kryptoměnu oproštěnou od nad-
bytečných funkćı, která je přenositelná mezi unixovými operačńımi systémy a
r̊uzným hardwarem.

Software jsem implementoval v programovaćım jazyce C s použit́ım LibreSSL
knihovny kryptografických funkćı. Kryptoměnu Fitcoin se začleněným mine-
rem jsem otestoval na r̊uzných operačńıch systémech a r̊uzném hardwaru, také
jsem prověřil funkčnost vybraných část́ı pomoćı unit test̊u.

Kĺıčová slova kryptoměna, bitcoin, těžař, blockchain, decentralizace, con-
sensus, dvojité utráceńı, proof of work, hash, nonce
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Abstract

Bitcoin is a digital currency, that tries to solve the failures of the current
financial system. Although the original proposal for Bitcoin was simple, this
cryptocurrency increasingly grows on complexity.

This thesis deals with fundamental ideas of a cryptocurrency and imple-
ments a software called miner, which facilitates the decentralization. The
thesis is part of the project Fitcoin, which aims to develop a barebones cryp-
tocurrency stripped out of all unnecessary features, which would be portable
across different Unix operating systems and a variety of hardware.

I implemented the software in the C programming language with the help
of LibreSSL library of cryptographic functions. I tested the cryptocurrency
Fitcoin with the incorporated miner on different operating systems and a
variety of hardware. I also verified the correct function of selected parts of the
miner with the help of unit tests.

Keywords cryptocurrency, bitcoin, miner, blockchain, decentralization, con-
sensus, double spending, proof of work, hash, nonce

viii



Contents

1 Introduction 1
1.1 Fitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Cryptography 5
2.1 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Collision Resistancy . . . . . . . . . . . . . . . . . . . . 6
2.1.3 SHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hash Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . 10
2.5 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Byzantine Generals Problem . . . . . . . . . . . . . . . . . . . . 13
2.7 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Cryptocurrency 17
3.1 Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Double Spending . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Timestamp Server . . . . . . . . . . . . . . . . . . . . . 21
3.4 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Cryptocurrency Blockchain . . . . . . . . . . . . . . . . 23
3.4.1.1 Merkle Root . . . . . . . . . . . . . . . . . . . 24

3.4.2 Nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



3.4.3 Timestamp and Difficulty . . . . . . . . . . . . . . . . . 25
3.5 General Agreement . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Possibility of Consensus . . . . . . . . . . . . . . . . . . 26
3.5.2 Simplified Consensus . . . . . . . . . . . . . . . . . . . . 27

3.6 Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.1 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.2.1 Searching for Nonce . . . . . . . . . . . . . . . 29
3.6.3 Fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.4 Dishonest Mining . . . . . . . . . . . . . . . . . . . . . . 32

3.6.4.1 Probability . . . . . . . . . . . . . . . . . . . . 33

4 Fitcoin 35
4.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Peer to Peer . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Fitcoin Client . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Fitcoin Miner . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Input/Output structure . . . . . . . . . . . . . . . . . . 38
4.2.3 Transaction structure . . . . . . . . . . . . . . . . . . . 39

5 Implementation 41
5.1 Ftcd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Merkle Root . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Testing and Start Up 45
6.1 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Running the program . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Conclusion 51

Bibliography 53

A Acronyms 55

B Contents of enclosed USB drive 57

x



List of Figures

2.1 Digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Hash function security properties . . . . . . . . . . . . . . . . . . . 7
2.3 Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Proof of Membership . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Lieutenant is a traitor . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Commander is a traitor . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Series of transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Electronic Coin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Type of networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Double Spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Time Stamp Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Reclaiming Disk Space . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Cryptocurrency Blockchain . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Double Spend Attempt . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Branch selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Double Spending in 51% Attack . . . . . . . . . . . . . . . . . . . 32
3.12 Probability of a succesful double spend attack . . . . . . . . . . . . 33

4.1 Fitcoin Communication . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Fitcoin Miner Communication . . . . . . . . . . . . . . . . . . . . 37
4.3 Block structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Input/Output data structure . . . . . . . . . . . . . . . . . . . . . 39
4.5 Transaction structure . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Genesis Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Structure of the Fitcoin directory . . . . . . . . . . . . . . . . . . . 49

xi





Chapter 1
Introduction

The progress of humankind moves at an incredible speed. Self-driving cars
appear, machines are capable of face recognition, but it is extremely difficult
to transfer money on weekends. It is only a matter of time until the current
financial system will be replaced by something superior. In the aftermath of
the 2008 financial crisis a new digital currency, Bitcoin, came into existence.

Bitcoin is a cryptocurrency, i.e., decentralized digital currency secured by
cryptography with no central issuing or regulating authority. It tries to re-
solve the defects of the current financial system by taking the power from
banks. Blockchain is the underlying technology and is widely considered to
be the most promising innovation of this generation. The market capitaliza-
tion of Bitcoin skyrocketed to 334 billion dollars on December 17, 2017, which
indicates that it is not just for hobbyists.

1.1 Fitcoin

Fitcoin is a barebones portable cryptocurrency supervised by Mgr. Jan Starý,
Ph.D. and developed by students from Czech Technical University (CTU)
within the scope of theses:

• Správa blockchainu pro FITCOIN (Andrea Zábojńıková)

• Peněženka pro FITcoin (Jǐŕı Havrusevič)

• A miner for FITCOIN (Filip Volf)

Similar cryptocurrency with the same name was developed in the past
at CTU in Prague within the scope of theses FITCOIN: transakce by Jan
Tománek and blockchain pro FITCOIN by Mikuláš Dvořák. Project Fitcoin
described in this thesis does not share anything with the previous one other
than the name.
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1. Introduction

1.2 Goals

The first goal is to analyze the inner workings of a cryptocurrency with the
focus mainly on the concepts relating to the miner. The second one is to
implement the miner for the newly emerging cryptocurrency Fitcoin.

The goal is not to develop the cryptocurrency Fitcoin, nor describe its
implementation, however, it is described briefly due to the close connection to
the miner.

1.3 Structure

I start with introducing the fundamental cryptography used in cryptocurren-
cies, such as secure hash functions, public-key cryptography, digital signatures,
Merkle trees, Byzantine generals problem and proof of work.

In the Cryptocurrency chapter, I focus on how is the cryptography utilized
to implement a decentralized digital currency. I first explain the transactions,
then I talk about decentralization and the problems it brings. Finally, I de-
scribe the role of the miner in solving these problems.

In the next chapter, I briefly introduce the Fitcoin, focusing mainly on its
ecosystem and blockchain structure. In the following chapter, I demonstrate
the implementation of the miner in pseudocodes. The last chapter is devoted
to testing.

2



1.4. Background

1.4 Background

In 1998 a computer engineer Wei Dai proposed a distributed electronic cash
system B-money, which is impossible to regulate [1]. The proposal describes
the core concepts later implemented in Bitcoin, however, Dai questions the
influence: “...the creator of Bitcoin, who goes by the name Satoshi Nakamoto,
did not even read my article before reinventing the idea himself. He learned
about it afterward and credited me in his paper.” [2].

Decentralized money got more attention in October 2008, when an un-
known person or group of people using name Satoshi Nakamoto1 published a
paper Bitcoin: A Peer-to-Peer Electronic Cash System [3] describing a decen-
tralized digital currency, that solves the double spending problem.

Satoshi Nakamoto states: “What is needed is an electronic payment system
based on cryptographic proof instead of trust” [3]. On 3 January 2009, the
bitcoin network was created when Nakamoto mined the first block of the
chain, known as the genesis block with embedded following text: “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks.” [?]. The note
not only points out to the instability of fractional-reserve banking but also
serves as a timestamp.

In 2014, Andreas M. Antonopoulos authored the book Mastering Bit-
coin [4], considered to be the best technical guide written about the tech-
nology. Blockchain technology is the underlying technology of Bitcoin and
together with the Internet, is being described as the advent for the era of
decentralization. The functionality of decentralized ledgers can be used not
only for currencies but to register and confirm any kind of data.

Blockchain is a combination of well-established concepts in an interest-
ing way. It solves the Byzantine generals problem faced by any distributed
system [5] in a narrow context of digital currency, by utilizing proof of work
algorithm, which was proposed in 1992 to combat junk mail.

From the cryptography perspective, it utilizes public-key cryptography
and hash functions described by Diffie and Hellman far back in 1976, digital
signatures described in 1979 by Michael Rabin and Merkle trees described by
Ralph Merkle in 1979.

1Some speculate Satoshi Nakamoto could be Wei Dai himself.
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Chapter 2
Cryptography

Cryptocurrencies rely on well established cryptographic algorithms such as
public key cryptography and digital signatures. In this chapter, I will intro-
duce cryptography concepts needed to build a decentralized digital currency.

The reason for the name cryptocurrency is due to the fact that it heavily
relies on cryptography to function. Although crypto means “concealed” or
“secret”, the contrary is true about cryptocurrencies, the main idea behind it
is that everyone knows everything.

2.1 Hash Functions

In this section, I will thoroughly explain the hash function, since it is the
fundamental primitive in modern cryptography and an essential part of the
cryptocurrency technology.

In [6] a hash function is defined as a function, that takes as input an
arbitrarily long document D and returns a short bit string h. The primary
properties that a hash function H should possess are as follows:

• Computation of H(D) should be fast and easy, e.g., linear time

• Inversion of H should be difficult, e.g., exponential time. More precisely,
given a hash value h, it should be difficult to find document D such that
H(D) = h.

A hash procedure must be deterministic, i.e., for a given input it must
always generate the same output. A good hash function should also map the
inputs evenly over the output range, meaning that every output value should
be generated with the same probability. [7]

2.1.1 Digest

The hash function maps data of arbitrary size to a fixed size bit string called
digest. You can think of a digest, as a fingerprint. A person produces the same
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2. Cryptography

fingerprint every time it is taken, but it is hard to find another individual with
the same fingerprint. The fingerprint does not unveil any other information,
for example you cannot know what eye color does the person have. [8]

Hash functions can be used to detect changes in data. Suppose Alice
sends a message to Bob, but it may be altered during the transfer. Alice
calculates the cryptographic hash of the message and sends it to Bob. Bob
then calculates the hash of the message he received. If the Bob’s hash is the
same as the one received from Alice, Bob knows for sure that the message has
not been altered or corrupted. [7]

The computed digest is sensitive to all input bits. Even if we make a minor
modification to the input, the fingerprint should look very different as shows
figure 2.1. [8]

Figure 2.1: Digest[8]

2.1.2 Collision Resistancy

This section is based on [9]. For the application in cryptocurrencies, it is
important that the hash function is cryptographically secure. Hash function H
is cryptographically secure, if it is preimage resistant, second preimage resistant
and collision resistant.

• Preimage resistant: A hash function H is preimage resistant, if it is hard
to find any m for a given h with h = H(m).

• Second preimage resistance: A hash function H is second preimage re-
sistant if it is hard to find for a given m1 any m2 with H(m1) = H(m2).

6



2.1. Hash Functions

• Collision resistant: A hash function H is collision resistant if it is hard
to find a pair of m1 and m2 with H(m1) = H(m2).

For a good cryptographically secure hash function there should be no way
to solve preimage resistance and second preimage resistance faster than a brute
force attack.

To break the preimage resistance, the attacker chooses m randomly until
h = H(m). If s is the length of the result in bits, then H(m) can have 2s

different results and each result Ph has the same probability 1/2s. The attacker
has to choose on average 2s/2 different inputs m, until he finds h = H(m).
The same idea applies to second preimage resistance, so the complexity of an
attack against first and second preimage resistance is 1/2 ∗ 2s = O(2s).

Unfortunately it takes on average only O(
√

2s) hash operations to find a
pair m1, m2 such that H(m1) = H(m2). Breaking the collision resistance is
easier than breaking preimage resistance due to the birthday paradox. It deals
with the probability that, in a set of n randomly chosen people, some will
have the same birthday.

The probability is 100% when the number of people reaches number of
days in a year. However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people, assuming each day of the year is equally
probable for a birthday.

To demonstrate the importance of collision resistancy, assume that Alice
is able to find D1 and D2 such that H(D1) = H(D2). Suppose D1 says “Pay
Alice 1 Bitcoin” and D2 says “Pay Alice 1000 Bitcoins”. If someone signs D1,
he also signs D2, thus Alice can now present the signature as being on D2 and
getting paid 1000 Bitcoins instead of 1 Bitcoin. [6]

Figure 2.2: Hash function security properties[8]
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2. Cryptography

2.1.3 SHA

The hash function needs to be executed fast, for example when digitally signing
a document, it can can be many megabytes in length. Due to the speed re-
quirement, hash functions are constructed using mixing operations rather than
basing them on classical hard mathematical problems. The most used hash
function nowadays is called SHA (Secure Hash Algorithm). There are sev-
eral versions of SHA that achieve different level of security, such as SHA-224,
SHA-256 or SHA-512. SHA-n signifies that the output is n bits in length, it
takes approximately 2n/2 to find a collistion. The exception is the original
SHA-1 whose output length is 160 bits. [6]

Hash functions are used extensively in cryptocurrencies for creation of
addresses and in the mining algorithm. Since Bitcoin and Fitcoin utilizes
the SHA-256, I briefly demonstrate how the SHA family works by illustrating
the structure of SHA-1 in Alogrithm 1 from An Introduction to Mathematical
Cryptography [6]. [4]

Algorithm 1 SHA-1 Algorithm
Break document D (with extra appended bits) into 512-bit chunks
Start with five specific initial values h0,. . . ,h4
for all 512-bit chunks do

Break a 512-bit chunk into sixteen 32-bit words
Create eighty 32-bit words w0, . . . , w79 by rotating the initial words
for i← 0 to 79 do

Set a = h0, b = h1, c = h2, d = h3, e = h4
Compute f using XOR and AND operations on a, b, c, d, e
Mix a, b, c, d, e by rotating some of their bits, permuting them
Add f and wi to a

end for
h0 ← h0 + a, . . . , h4 ← h4 + e

end for
return h0||h1||h2||h3||h4

2.2 Hash Pointer

In cryptocurrencies hashes are utilized within several datastructures in the
form of hash pointers. “A hash pointer is a pointer to where data is stored
together with a cryptographic hash of the value of that data at some fixed point
in time.” [10]

A regular pointer provides a way to get an information, a hash pointer
enables us to verify that the information hasn’t been changed. By implementig
familiar structures with hash pointers, they acquire interesting properties like
for example immutability (it cannot be changed). [10]
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2.3 Merkle Tree

“A merkle tree, also known as a binary hash tree, is a data structure used for
efficiently summarizing and verifying the integrity of large sets of data.” [4] It
is named after its inventor Ralph Merkle.

Suppose there are some blocks of arbitrary data. A merkle tree can be
built with the hash pointers. The blocks are put into the leaves of the tree.
They are then grouped into pairs of two, and a data structure with two hash
pointers pointing to each of the blocks is built for each pair. These structures
form the next level of the tree. They are again grouped into pairs and a new
structure containing hash of each is created. By continuing we reach a single
block called the merkle root. Figure 2.3 illustrates this whole process. [10]

Figure 2.3: Merkle Tree[4]

Merkle trees are used in cryptocurrencies to summarize all the transac-
tions in a block, creating a fingerprint of the entire set of transactions. This
facilitates an easy way to verify whether a transaction is included in a block. [4]

It doesn’t matter how many transactions are in a block, the merkle root
always summarizes them into a single digest. It takes only 2 ∗ log2(N) calcu-
lations to check if a transaction is in a tree made from N transactions. [4]

Merkle tree reduces the amount of data that has to be maintained for
verification purposes and helps verify that data is is presented and recorded
in a chronological order. The ability to prove that a log is complete and
consistent is essential to blockchain technology. [10]

To prove that certain a element is a member of the merkle tree just the
hashes on the path from the element to the root are needed. The rest of the
tree can be ignored, as the provided hashes on the path are enough to verify
the hashes all the way up to the root as is visualized in figure 2.4. [10]

9



2. Cryptography

Figure 2.4: Proof of Membership [10]

Although Fitcoin does not utilize merkle trees for this purpos, in Bitcoin
a method called Simplified Payment Verification (SPV) implemented. SPV
allows a lightweight client to verify that a transaction is included in the Bitcoin
blockchain, without downloading the entire blockchain.

2.4 Public Key Cryptography

Symmetric key algorithms use the same secret key and both of the parties
have to keep it secret. The key in such a system has to be exchanged in a
secure way and that is a nontrivial requirement. On top of that, if messages
are meant to be secure from other users, a separate key is needed for each
possible pair of users. [8]

Public key cryptography is based on a revolutionary idea, that the key to
decrypt the message has to be secret, but the key for encrypting does not. [8]

Public-key cryptography is a system that uses pairs of keys: public keys
which may be shared, and private keys which should be kept secret. Only the
private key is required to be unpublished. Sharing the public key does not
compromise the security. [7]

The generation of keys depends on mathematical problems used to con-
struct one-way functions. They are practically irreversible, which means that
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it’s easy to calculate the output, but it is infeasible to get the input from the
output. [4]

Let’s imagine that Bob shares a public encryption key and keeps the match-
ing private key used for decryption secret. The key K consists of two parts,
a public part, Kpub , and a private one, Kpr. Anyone is able to encrypt data
using Kpub, but that encrypted data can only be decrypted with Kpr. [8].

In cryptocurrencies the public key can be shared to receive funds, while
the private key is kept secret and is needed to spend the funds [4].

Figure 2.5: Public Key Cryptography[8]

2.5 Digital Signatures

To explain the importance of digital signatures, an example with two commu-
nicating parties Alice and Bob from the book Understanding cryptography is
presented. [8]. It is often the case that Alice and Bob want to communicate
securely with each other, but at the same time they might be interested in
cheating each other.

Suppose that Alice owns a dealership for cars where you can order cars
online. Bob chooses a pink car and sends the encrypted order to Alice, she
decrypts it and is happy to have sold another model.

Upon delivery Bob changes his mind, but Alice has a “no return” policy.
Since Bob now claims that he never ordered the car, she sues him. Alice’s
lawyer presents Bob’s digital car order together with the encrypted version of
it, but the judge has no way of knowing whether it was generated by Bob or
Alice.

This can be solved, by Bob signing the message x with a signature algo-
rithm, which is a function of Kpr and the message x itself. The message is
then sent together with the the signature s to Alice and the signature serves
as a proof, that the message was generated by Bob.

A digital signature without the message is like a handwritten signature on
a piece of paper without the contract. Assuming the signer kept his private
key secret, noone else is able to generate a signature on his behalf.
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Public key cryptosystem is like a digital version of a bank deposit vault.
Anyone can put an envelope through a narrow slot to a bank deposit, however
only the one with the key to the vault’s lock can read the the messages. By
contrast, digital signature can be viewed as a digital signet ring. The owner
of the ring puts some wax onto a document and presses the ring to make
an impression. Anyone can verify that the wax impression was made by the
owner, since he is the only one who has the ring. [6]

“A digital signature is a data string which associates a message (in digital
form) with some originating entity.” It is a number dependent on a secret
known only to the signer and on the message being signed. In case of a
dispute, an unbiased third party can resolve the matter, without having the
access to the signer’s private key. [7]

To create a digital signature, the document is hashed and the digest is
encrypted by the private key. The signature is then sent together with the
document. Any change in the document produces a different digest, which en-
ables others to validate the integrity. The authenticity is also ensured, because
only the owner of the private key can encrypt the digest. This encrypted digest
can be reverted back to the original only with the use of the corresponding
public key through the verification algorithm.[6]

Figure 2.6: Digital Signature[6]

The first method discovered was the RSA signature scheme remaining one
of the most practical approach available. Following research has resulted in
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alternative techniques. Bitcoin utilizes elliptic curves for digital signatures,
but public-key cryptography family of integer factorization and discrete loga-
rithms can be also used. [4]

2.6 Byzantine Generals Problem

This whole section is based on the publication The Byzantine generals prob-
lem [5]. The Byzantine generals problem is faced by any distributed computer
system network and can be expressed with the following question: “How do
you make sure that multiple entities, which are separated by distance, are in
absolute full agreement before an action is taken?” [11]

To demonstrate the problem, imagine several divisions of an army, com-
manded by their generals, attacking a city. Generals are too far from each
other, therefore they have to communicate via a messenger. The goal is to
agree on a battle plan, however, some of the generals might be traitors, trying
to prevent an agreement.

Byzantine generals problem can be depicted as follows: A commanding
general must send an order to his n-1 lieutenant generals such that:

• All loyal lieutenants obey the same order.

• If the commanding general is loyal, then every loyal lieutenant obeys the
order he sends.

If the generals can send only oral messages, no solution will work unless
more than two-thirds of the generals are loyal. There is no solution with only
three generals in presence of just a single traitor.

An oral message is wholly under the control of the sender, so a traitor can
transmit any possible message, which corresponds to how computers commu-
nicate.

In both scenarios shown in figure 2.7 and figure 2.8, Lieutenant 1 does not
know who the traitor is. He cannot tell, what message did the commander send
to Lieutenant 2. Both of these scenarios look exactly the same to Lieutenant 1,
so he must obey the “attack” instruction in both of them, to satisfy the second
condition in the Byzantine Generals’ Problem.

The solution to the problem relies on an algorithm that can guarantee that
loyal generals decide upon the same plan. The algorithm has to guarantee the
first condition no matter the traitors’ behaviour, however the traitors may do
anything they wish.

In a decentralized cryptocurrency network, all participants are exactly of
equal hierarchy. Nodes in a distributed ledger must agree on certain rules and
agree on transaction assesment before it is added to the database.

If a corrupted message is transmitted, the network as a whole should resist
such an attack. The network in its entirety has to agree upon all messages in
the network.
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Figure 2.7: Lieutenant is a traitor[5]

Figure 2.8: Commander is a traitor[5]

2.7 Proof of Work

Proof of Work was originally designed to prevent spam attacks. “The main
idea is for the mail system to require the sender to compute some moderately
expensive, but not intractable, function of the message and some additional
information. Such a function is called a pricing function.” [12]

According to [13] a proof of work system is: “a protocol in which a prover
demonstrates to a verifer that she has expended a certain level of computa-
tional effort in a specified interval of time. Although not defined as such or
treated formally, proofs of work have been proposed as a mechanism for a num-
ber of security goals, including server access metering, construction of digital
time capsules, and protection against spamming and other denial-of-service
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attacks.”
To calculate the solution, extra work has to be done, which can be easily

verified when presented to others. It has to be hard to find a solution but
easy to verify that an answer solves the problem. [12]

Proof of Work system disincentivizes malicious behavior, due to the fact
that if a moderate work is required for an action, then the attacker wouldn’t
have enough computational power or the financial costs of the processing
power would likely exceed the profits. [12]

In cryptocurrencies if enough nodes are searching for a specific solution,
then the processing power required to manipulate a network becomes unattain-
able for any single bad actor.
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Chapter 3
Cryptocurrency

Cryptocurrency is a digital asset used as a medium of exchange secured by
cryptography to prevent fraudulent behaviour.

Cryptography means “secret writing” in Greek, but ironically encryption
is not an important part of Cryptocurrency as the transaction data does not
need to be secret to protect the funds [4].

At the core of cryptocurrency is the distributed ledger which contains a
record of all transactions in a system. Distributed means that the data is
stored across a network of nodes. The key is to ensure the nodes on the
network agree with the order of the transactions in the network, preventing
double spending or other invalid data. [4]

3.1 Transaction

The ownership of coins is established with the help of digital keys, digital sig-
natures and addresses. Transactions require a digital signature to be accepted
by others. Only the owner of the secret key can generate such signatures and
spend the funds.

A transaction T moving n coins between user a and b is a tuple: T =
(Puba, Pubb, n, Proof), where Puba is the public key of user a, Pubb of user
b, n is the number of coins and Proof indicates the proof of ownership. [14]

The proof is a digital signature generated by a corresponding private key
to Puba. It provides authenticity (information is from the source it claims to
be), integrity (data cannot be modified) and non-repudiability (author cannot
dispute it’s authorship). [14]

3.1.1 Transfer

To demonstrate how transaction works, a simplified example from book the
Bitcoin and Cryptocurrency Technologies [10] is presented. Imagine three en-
tities, Alice, Bob, Charlie and an electronic coin with two rules.
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First rule is that a chosen entity, Alice, can generate new coins that belong
to her. To create coins, Alice constructs a string “Generate [ID]” where “[ID]”
is a unique coin id that has never been generated before and computes a digital
signature of this string using her private key. The string with Alice’s signature
is a coin. Anyone can check that the signature of the statement is valid, thus
is a valid coin.

The second rule is anyone owning coins can transfer them to someone else.
Let’s say Alice wants to pay to Bob. She creates a statement “Pay [ID] to
Bob” where “[ID]” is hash pointer referencing the coin.

Identities are just public keys, so “Bob” refers to Bob’s public key. The
statement has to be signed by Alice, because she owns the coin. Bob can then
prove to anyone that he owns the coin by showing the statement signed by
Alice.

Bob can now send the coin to Charlie by signing a statement “Pay [ID2]
to Charlie” where “[ID2]” is the hash referencing to previously received coin.

Anyone can verify that Bob is the owner by following the chain of hash
pointers and verifying at each step, that the owner signed a correct statement.
An example of series of transactions is demonstrated in figure 3.1. For sim-
plicity, the hash in the table is just a short made up 4 digit number signifying
the hash by which is the coin referenced.

hash statement signature
6742 Generate id00001 Alice’s signature
1342 Pay 6742 to Bob Alice’s signature
3441 Pay 1342 to Charlie Bob’s signature

Figure 3.1: Series of transactions in the simplified electronic coin example

The problem with such system is, that the coins cannot be subdivided. To
solve this problem, let there be two kinds of transactions. “Generate coins”
and “Transfer coins”.

“Generate coins” is valid only if it’s signed by Alice and it creates multiple
coins, each having a value, recipient (public key), and a serial number within
the transaction. The “Transfer coins” consumes coins and destroyes them and
then creates new of the same total value, which might belong to someone else.

The transaction is valid if all following conditions are met:

• Destroyed coins were previously generated

• Destroyed coins were not already spent

• Total value of destroyed coins equals total value of new coins

• The transaction is digitally signed by the owners of all of destroyed coins.
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Although coins are still undivisible in such system, the effect of coin di-
vision is achieved by using transactions. For example there can be created a
transaction destroying one coin and creating two new coins assigned back to
the owner.

3.1.2 Address

In the original Bitcoin whitepaper, transactions are proposed to be done by
“...signing a hash of the previous transaction and the public key of the next
owner and adding these to the end of the coin.”, where coin is defined as a
chain of digital signatures, visualized in figure 3.2. The receiver of funds can
verify the chain of ownership by checking the signatures.[3]

Figure 3.2: Electronic Coin[3]

In reality coins are not send to public keys, rather to an address, which
is a string of alphanumeric characters. The address resembles the recipient
of the funds and is derived from the public key through the use of one-way
cryptographic hashing. [4]

Addresses abstract the reciever, making transactions more flexible, similar
to paper checks which can used to pay to accounts, pay for bills, or pay to
cash. [4]

Address = hash(Public Key)
Private Key → Public Key → Address

Private Key 6← Public Key 6← Address
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3.2 Decentralization

Decentralization is a process by which the activities are distributed away from
a central location or group. Figure 3.3 visualizes different types of networks.
It can be seen that, a centralized organization is like a spider, it is “controlled
by its head, cut off its head and it dies.” [15]

On the other hand, decentralized organization is more like starfish, it has
no head, and its major organs are replicated throughout each arm. Cut it in
half and you get two starfish.” [15] Decentralized organizations are for example
Al-Qaeda, Alcoholics Anonymous, Torrent and Bitcoin.

Distributed currency presents many problems to be solved, such as who
will maintain the ledger of transactions or who has authority over which trans-
actions are valid.

The solution to these problems lies in achieving a general agreement of
the nodes in the network. Mechanism through wich cryptocurrencies achieve
decentralization is a combination of technical methods and clever incentiviz-
ing. [10]

Figure 3.3: Type of networks

3.3 Double Spending

Counterfeit notes could be easily identified by observation, but since digital
money, that is not the case anymore. “The double spending problem is a po-
tential flaw in a cryptocurrency or other digital cash scheme whereby the same
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single digital token can be spent more than once, and this is possible because
a digital token consists of a digital file that can be duplicated or falsified.” [3]

The transactions couldn’t be trusted, if the payer could redirect the money
back to himself afterthe payee accepted the transaction. A double spending
attack is basically convicing the merchant the transaction is confirmed and
then convincing the entire network to believe in an alternative history. The
attacker would then receive the goods and keep his money. [16]

As with counterfeit money, such double-spending leads to inflation, deval-
uates the currency and diminishes user trust. It is usually solved by placing a
third party that can verify the money has been spent, e.g. banks, thus creating
a single point of failure from both availability and trust viewpoints. “While
the system works well enough for most transactions, it still suffers from the
inherent weaknesses of the trust based model.” [3]

To explain this further, imagine three communicating parties (Alice, Bob
and Charlie) in a decentralized currency system. Alice has exactly $10 in her
balance and buys a coffee for $10 from Bob. However, Alice is dishonest and
buys at the same time a slice of pizza from Charlie, even though she doesn’t
have any balance anymore. Since Charlie doesn’t know about Alice buying a
coffee from Bob as demonstrates figure 3.4, he is happy to have sold another
portion. Charlie later finds out he has been cheated.

Figure 3.4: Double Spending

3.3.1 Timestamp Server

In the original Bitcoin whitepaper, the double spending attack is prevented
by introducing a timestamp server. It confirms the transaction itself was not
double spent, nor the previous transactions in the chain. [3]
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It works by “taking a hash of a block of items to be timestamped and widely
publishing the hash.” The timestamp proves that the block must have existed
at the time (the hash would change by changing the time record). “. . . each
timestamp includes the previous timestamp in it’s hash, forming a chain, with
each additional timestamp reinforcing the ones before it”. This is shown in
figure 3.5. [3]

Figure 3.5: Time Stamp Server[3]

In the timestamp server proposal an append-only ledger is described. Be-
cause transactions can only be appended, they will remain forever. Nodes can
then defend against double spending by requiring a transaction to be written
to the ledger before it is accepted to be sure it has not been spent yet. [10]

Double spending could be prevented if this append-only ledger signed by
a designated entity, Filip, is shared, so that anyone can check whether a
transaction is included in the ledger before accepting it. [10]

Filip of course does not include transactions that reference to already spent
coins. If Filip tries to change something in the append-only ledger, it will
change all the following hashes. Assuming everyone is keeping track of the
last hash, the change would be easily detected. [10]

Although such system prevents double spending and Filip can’t create fake
transactions, he could still stop accepting transactions from some users or even
stop updating the ledger. Most of the early proposals assumed there would
be such a central authority. [10]

3.4 Blockchain

In a narrow sense, “blockchain is a linked list that is built with hash pointers
instead of pointers. A use case for a blockchain is a tamper-evident log.” [10]

Blockchain allows to append data to the end and makes it easy to detect
any change of previous data. Each block references the previous block and
because it also contains previous block’s digest it can be easily verified the
previous block hasn’t been changed. [4]

The head of the list is a hash pointer pointing to the last block. If the
attacker alters the data in the middle of the chain, the hash stored in the next
block will not match. The attacker would have to change the following block
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and then the next block and so on. As long as we store the head of the list
at some location, where it cannot be altered, the attacker will not be able to
change any block without being detected. [10]

In a broader sense, blockchain is “. . . a distributed database of records, or
public ledger of all transactions or digital events that have been executed and
shared among participating parties.” Records are verified by general agree-
ment of the majority and once the information is recorded, it can never be
erased. [17]

Blockchain is a way to reach a distributed consensus, allowing participants
to know with certainty that a digital event happened. Cryptocurrencies utilize
blockchain to maintain a decentralized database of ordered transactions. [4]

It is a combination of proven technologies like the internet, public key
cryptography and a protocol governing incentivization applied in a new way.
It allows people to write entries into a record of information, which is managed
by the community of users. [17]

On the surface, it seems similar to Wikipedia, which is maintained by the
community and anyone can add new articles. However, Wikipedia uses the
client-server model, where the client with certain permissions is able to change
entries stored on a centralized server. Users browsing Wikipedia then get a
copy of the entries from a central database managed by central authority. [18]

The distributed database created by the blockchain technology is funda-
mentally different. Data is broadcast throughout the network and nodes up-
date their versions of the database. They independantly come to conclusions
and the most popular record becomes official. It eliminates the need for a
trusted party to facilitate digital relationships. [18]

3.4.1 Cryptocurrency Blockchain

As of now, I have talked about blockchain as a linked list. However distributed
blockchains are a bit more complex. In this section I will briefly introduce a
typical cryptocurrency blockchain.

A distributed blockchain is not just a linked list, rather a tree. A block
has only one parent, however it can have several children during a temporary
situation, called fork. It occurs when two or more blocks are discovered simul-
taneously and gets resolved by appending just one child and discarding the
other. [4]

In cryptocurrencies, blocks are identified by the hash of the block header
and contain the hash of its parent (previous block) inside its own header. The
sequence of hashes linking each block to its parent creates a chain going back
to the first block called genesis block, which is encoded within the software. [4]
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3.4.1.1 Merkle Root

Only the header of the block is hashed, because the block header contains
the merkle root summarizing all the transactions in the block. The spent
transactions can be then discarded to save disk space.

“Once the latest transaction in a coin is burried under enough blocks, the
spent transactions before it can be discarded to save disk space. To facilitate
this without breaking the block’s hash, transactions are hashed in a Merkle
Tree, with only the root included in the block’s hash. Old blocks can then be
compacted by stubbing off branches of the tree.” [3]

Figure 3.6: Reclaiming Disk Space [3]

Merkle root also facilitates payment verification, without keeping the whole
blockchain locally. A user keeps just the block headers of the longest chain
and obtains from the network the merkle branch linking the transaction to
the block it is timestamped in. “He can’t check the transaction for himself,
but by linking it to a place in the chain, he can see that a network node has
accepted it, and blocks added after it further confirm the network has accepted
it.” [3]

3.4.2 Nonce

The block header also contains a nonce. Nonce is an arbitrary number that
serves as a security against malicious nodes. Nodes search for a nonce, such
that the hash of the block produces a hash with a fixed number of leading
zeros. It’s not possible to find a correct nonce other than trying random values
one by one. It is used to prove, that someone exerted a lot of computation
power. [4]
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Figure 3.7: Cryptocurrency Blockchain [3]

The block header changes when the parent changes. It creates a cascade
effect, causing that a block cannot be altered without recalculation of all
consecutive blocks. Because a correct nonce has to be found for each block,
the recalculation would require immense computation power. A long chain of
blocks makes the blockchain’s history practically immutable. [4]

3.4.3 Timestamp and Difficulty

The timestamp provides an approximate information when the block was
found. It’s main purpose is to know, how often the blocks are created. This
fact is then used to establish how many preceding zeros should be required for
the hash of a block to be accepted as valid. This requirement for preceding
zeros has to be flexible, so that it doesn’t take too little or too much time
to create new blocks. Both the timestamp of the block and the calculated
difficulty are stored in the block header. [10]

3.5 General Agreement

To achieve decentralization, all nodes have to agree on a single valid history.
A mechanism to ensure all nodes agree on which transactions are legitimate
is needed.

Consensus is a process that facilitates synchronization across a distributed
network of untrusted nodes, simply said it’s a general agreement of the net-
work. According to [17], the following conditions have to be met to establish
consensus:

• No single party should be able to change or influence the records

• Preventing the spread of information across the network should be im-
possible
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A consensus mechanism is a fault-tolerant mechanism, which means, that
it can recover from failure of a node participating in the consensus. Fault
tolerance in distributed system is usually achieved by distributing the shared
state across multiple nodes. Updating the shared state happens according to
pre-defined transition rules. [17]

Let there be a network of nodes and some of them are faulty or malicious.
According to [10] a distributed consensus protocol has to2:

• Terminate with all honest nodes in agreement on the value

• The value must have been generated by an honest node

3.5.1 Possibility of Consensus

Most of the literature on distributed consensus is pessimistic. “With the cur-
rent state of research, consensus in Bitcoin works better in practice than in
theory.” Due to the fact that cryptocurrencies are in fact currencies, incentives
to act honestly can be built in to the consensus protocol. Crytocurrencies thus
solve the Byzantine generals problem in a narrow context and not in a general
sense. [10]

Consensus in cryptocurrencies also embraces the randomness. The con-
sensus happens over a long period of time and the nodes are never certain
that any particular transaction is agreed on, but the probability that a node’s
view matches the consensus increases exponentially over time. [10]

Nodes in a cryptocurrency network achieve to have a complete history that
they can trust with no central authority. The history is assembled indepen-
dently by each node in the network. Nodes in the network communicating
over insecure network assemble the copy of the same public ledger as everyone
else. [4]

When Alice wants to pay Bob, she broadcasts the signed transaction to
the whole network. The ownership of the coin will change to Bob’s whether
he is running his node or not, but obviously he gets notified only when he runs
it. The nodes keep track about transactions they have heard about, but they
accept only those which the network has agreed on using a consensus protocol.
Some nodes might have heard about transactions others might not. [10]

Consensus is a hard problem since there could be faults in the network,
so running a consensus where all nodes have to participate is impossible. The
network is also vulnarable to sybil attacks, which are fake identities made by
a malicious adversary, which are in fact controlled by him. Further, due to
the high latency of the network, there is no global time, which constraints the
set of algorithms that can be used. [10]

2This is the Byzantine generals problem
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3.5.2 Simplified Consensus

This section discusses a simplified consensus mechanism and possible attacks
in such system. The contents of this section is based on a chapter Consensus
without identity using a blockchain from Bitcoin and Cryptocurrency Tech-
nologies [10].

One way to achieve the consensus is, all nodes would propose at regular
intervals its transaction pool to be the next block. The nodes then together
decide which block will be appended to the blockchain. If some valid transac-
tions were not included, they will be in the next blocks.

Assume there are no sybil nodes and that we are able to choose a ran-
dom node from all nodes in the network. With such assumptions an implicit
consensus is possible with following algorithm:

• New transactions are broadcast

• All nodes collect transactions to a block

• In each round a random node broadcasts its block

• Other nodes accept it only if the transactions in it are valid

• The acceptance of the block is done by including a its hash in the next
broadcast block

If a malicious node is chosen to propose a new block, it cannot steel others’
coins, because it is not possible to forge the signatures. What the node could
do, is a denial attack. The node could not include transactions of a particular
user. However, that is not a problem, because an honest node would include
the denied transaction in the next round.

The malicious node could double spend coins. Imagine the attacker orders
online from a merchant. Assume the latest block includes the transaction for
the online order and that it was generated by an honest node. When the
merchant sees it is included in the block he knows that the network agreed on
it, so he ships the package.

If the malicious node is chosen to generate the next block, it can ignore
the last block with the transaction sending coins to the merchant and instead
propose another block pointing to the previous block, thus creating an alter-
native chain. The attacker can then replace the transaction sending the coins
to the merchant by a different one sending the coins to the attacker himself,
which demonstrates figure 3.8.

The honest nodes will always behave according to the protool and will
extend the longest valid branch of the blockchain. From technological view,
these transactions are both valid and nodes looking at them have no way to
tell which is the morally legitimate transaction.
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Figure 3.8: Double Spend Attempt[10]

The merchant can protect himself by waiting for more blocks than just
one. Shorter branch with the double spend attack has low probability to
catch up due to the fact that several malicious nodes would have to be chosen
in succesion.

3.6 Mining

Present cryptocurrencies take advantage of various concepts for securing the
system and reaching the consensus, but only the proof of work based cryp-
tocurrencies are considered secure. This chapter focuses on a proccess of
mining.

Miners record transactions to the global ledger. Transactions added to the
blockchain are considered confirmed, which allows the new owners to spend
what they received in those transactions. Miners compete to find a solution
of a difficult problem, called proof of work, to receive a reward. [4]

3.6.1 Incentives

Mining secures the system and enables network-wide consensus without a
central authority. Mining is incentivized by a reward that aligns the actions
of miners with the security of the network. It is the incentive system by which
the network is decentralized. [4]

Once a solution is found, it is broadcast, verified and appended to the
blockchain. Miners start to mine a new block of transactions which can be
chosen arbitrarily. The transactions are accompanied by a small fee, that the
miners could claim, so the miners usually choose in such a way to collect as
many fees as possible. A lot of attacks are infeasible if the majority of miners
are following the protocol. [4]
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It was assumed, there are no sybil nodes in the network, thus we are able to
pick a random node. A good enough algorithm to establish consensus without
such assumptions is possible with incentivizing the honest behaviour, which
is possible only because the application build through this consensus is in fact
a currency. [10]

Since the coins are accepted by others only if they are in the longest chain,
it incentivizes nodes to behave in such a way, that others will extend their
blocks. [4]

The users can be incentivized through new minted coins or through through
transaction fees. The creator of a transaction can make the total output less
than the total input. Whoever then includes such transaction into a block,
gets the difference. [4]

3.6.2 Proof of Work

To pick a random node and decrease the probability for choosing a sybil node,
“. . . we can approximate the selection of a random node by instead selecting
nodes in proportion to a resource that we hope that nobody can monopo-
lize”. [10] If the resource is computing power, it is a proof of work system,
but it could be in proportion to ownership of currency, that is called proof of
stake [17].

“Another way of understanding this is that we’re allowing nodes to compete
with each other by using their computing power, and that will result in nodes
automatically being picked in that proportion.” Yet another way to look at it
is that it’s difficult to create new identities. [10]

Proof of work is highly wasteful, around 3 billion dollars are spent for
electricity by miners each year trying to solve deliberately hard problem just
to establish the consensus [17].

Although the wastefulness may be a small price to pay for the reward of
a decentralized global currency network, there are other options to establish
the consensus like proof of stake or proof of burn. However, they are still con-
sidered unworkable alone and have to be combined with proof of work. [17, 4]

3.6.2.1 Searching for Nonce

The idea behind Proof of Work is to have nodes solve a computationally
expensive problem easily verifiable by others. The computational problem in
proof of work currencies is searching for a hash, such that it begins with a
given number of zero bits. [4]

It is implemented by adding an arbitrary number called a nonce to a block,
which is repeatedly incremented, until a value is found, that produces a hash
with the required number of zero bits. The time to find the digest grows
exponentialy with the number of required zero bits, but the solution can be
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Figure 3.9: Proof of Work [3]

verified easily by just hashing the block. The block could be changed only by
redoing all the work. [3]

Nodes search for a nonce such that when hashed together with the block,
the output hash is a number that falls into a target space.

Hash(block with set nonce) < target

“The idea is that we want to make it moderately difficult to find a nonce
that satisfies this required property, which is that hashing the whole block to-
gether, including that nonce, is going to result in a particular type of out-
put.” [10]

This completely does away with the requirement to pick a random node.
Nodes independently compete to find the hash. If a node is lucky and finds
a nonce that satisfies this property, it gets to propose the next block. That’s
how the system is decentralized, there is noone deciding which node proposes
the nextblock. [10]

Searching for hashes is probabilistic, due to the fact that noone can pre-
dict which nonce will result in an acceptable hash, because the hash function
spreads the outputs evenly over its output range. The only way to do it is to
try different nonces until one succeeds. [7]

Hash rate is the unit of measurement for the amount of computing power a
proof of work cryptocurrency network is consuming in order to be continuously
operational.

The difficulty is the cost to find the correct nonce and it has to be pa-
rameterizable. The difficulty is maintained by the protocol and it’s calculated
from the timestamps of the blocks. As the difficulty increases, there have to
be more zeros at the start of the hash number. The probability of finding a
lower hash value is smaller and so miners have to test more nonces. [4]

All the nodes recalculate the difficulty in regular intervals. If more miners
are coming in, more blocks are going to be found than expected. Nodes will
automatically readjust the difficulty, so it takes the same time. If blocks
were to come in long intervals, it would be too inconvenient to wait for the
confirmation of transactions. [10]
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3.6.3 Fork

Blockchain is a decentralized data structure and nodes might have different
perspectives of it. Nodes try to extend the longest chain of blocks representing
the most work. The network converges to a consistent state when the nodes
select the chain with most cummulative work done – the one where the sum
of the work recorded in every block in that chain is the highest. [4]

As stated before, in a decentralized network the blockchain is a tree with
the root being the genesis block. A branch is a path from a leaf block to
the genesis block, it represents one history of the transactions. Each branch
is internally consistent, however one branch can include a transaction which
spends the same coins in another branch. [16]

A fork happens when there are two branches of the same length. This
occurs whenever two different nodes find a correct nonce within a short time
frame. When they discover the solution for their candidate blocks, they broad-
cast it to their neighbors who begin propagating it further accross the network.
Every receiving node will append the block to its blockchain. Some nodes ap-
pend one block first, while other nodes append the other one, thus two versions
of the blockchain emerge. [4]

It is agreed that each node considers the longest chain as the valid chain.
In case of two branches of the same length, the first known to the nodes
is considered valid. It is expected that nodes creating blocks reference the
longest chain, because if not, their reward for the newly created block would
not be considered valid. Figure 3.10 demonstrates the fork. [16]

Figure 3.10: Branch selection[16]
(a) a possible structure of a blockchain, (b) an invalid branch, (c) a branch
which might be valid, (d) a case when the previously possibly valid branch

got invalidated
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3.6.4 Dishonest Mining

In this section I will describe a problem, that can arise if someone has too much
computing power in a decentralized cryptocurrency network and what are the
consequences. Consensus mechanism is theoretically vulnerable to attack by
miners that attempt to use their hashing power to dishonest ends [4].

“The consensus mechanism depends on having a majority of the miners
acting honestly out of self-interest.” If an entity or a group is able to control
the majority of the hash rate it can potentially cause a network disruption.
It could intentionally exclude or modify the ordering of transactions, or even
reverse transactions it made while being in control. [4]

A particular attack scenario is called the 51% attack. A group of miners
that control a majority of the total network’s hashing power mine the majority
of the blocks and thus can can cause deliberate forks. “While in theory, a fork
can be achieved at any depth, in practice, the computing power needed to force
a very deep fork is immense, making old blocks practically immutable.” [4]

In a senario where an attacker is able to mine blocks faster than the honest
chain and generates an alternate chain, it does not allow him to make arbitrary
changes, such as minting new coins or spending someone elses money. Honest
nodes will not accept blocks containing such transactions. He can only take
back money he already spent. [3]

The attacker wants to make the recipient believe he paid him for a while,
but then change the transaction to pay himself. The receiver will find out
he had been cheated, but the attacker hopes it will be too late. Once the
transaction is broadcast, the attacker secretly starts to work on an alternative
chain with his modified transaction, which sends the coins to himself instead
of to the original recipient. Figure 3.11 shows the scenario of the attack. [3]

Figure 3.11: Double Spending in 51% Attack[16]
(a) Original state of blockchain. (b) The merchants sends the product.

(c) Attacker manages to get his branch to be longer.

32



3.6. Mining

3.6.4.1 Probability

The competition between the attacker and the honest chain can be described
as a series of ±1 steps, where +1 means extending the honest chain by one
block and -1 means extending the attacker’s chain. [3]

The attacker usually finds himself in a situation, where the network has
a transaction crediting coins to the merchant in the longest branch. The
attacker has a branch, which is shorter. Both, the attacker and the honest
nodes, are trying to extend their branches. [16]

q is the probability the attacker finds the next block, p is the probability
an honest node finds the next block. According to [3], the probability qz of an
attacker ever catching up from z blocks behind is:

qz =
{

1 if p ≤ q

(q/p)z if p > q

When the attacker dominates the block creation, he always succeeds no
matter the disadvantage. However “When q < p, the probability of success
decreases exponentially with the disadvantage z; the lower q is, the faster the
decay.” [16]

Figure 3.12 visualizes the calculations from [16] on the probability of a
succesful double spend attack.

Figure 3.12: Probability of a succesful double spend attack [16]
The probability of a succesful double spend attack, as a function of

percentage of the total hashrate of an attacking node. Value n signifies the
number of confirmations.
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Chapter 4
Fitcoin

Fitcoin is a barebones cryptocurrency and serves for educational purposes.
The endeavors were directed toward keeping it as simple as possible, while
incorporating important aspects of a cryptocurrency. Due to the widespread
use of Unix-like operating systems in academic environment, it is desired for
the cryptocurrency to be portable accross such systems. The main priority is
to demonstrate the concept of cryptocurrencies.

Since Fitcoin is a utility running on Unix-like operating systems, the C
programming language was an obvious choice for development. To keep a low
entry point, dependencies were kept to a minimum. The only library used in
the implementation is LibreSSL for cryptographic functions.3

To compile Fitcoin, one needs Unix-like operating system, the GNU Com-
piler Collection and OpenSSL/LibreSSL library. Some open-source tools were
in consideration to enhance the development flow like CMake and Check for
controling the software compilation process and defining unit tests. However,
they were discarded to keep the project plain and simple, both of these devel-
opment practices were handled by using simple makefiles.

4.1 Communication

Fitcoin consists of three parts: ftcd (Fitcoin Deamon), which represents a
network node and it communicates with other such nodes over the network.
The ftcd also forks a child process called miner, which is responsible for
mining and communicates with it using Unix signals. The third part is a
command line utility ftcl (Fitcoin Control), which can send commands to
ftcd over a local socket.

3The OpenBSD project forked LibreSSL from OpenSSL in 2014 as a response to the
Heartbleed security vulnerability, with the goal to improve security.
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Figure 4.1: Fitcoin Communication

4.1.1 Peer to Peer

The Fitcoin Daemon starts to listen on port 8888 and whenever a peer tries
to establish a connection, it is saved to a double linked list. This list of peers
is saved to the peer file upon exiting the daemon. The next time the ftcd is
started, it loads the IP addresses from the file and tries to connect to them.

4.1.2 Fitcoin Client

The Fitcoin Daemon listens on a local socket /tmp/ftc for new connections
from the Fitcoin Client. Whenever a connection is requested, that is by start-
ing the Fitcoin Client on the same machine, ftcd assigns a new socket to such
connection and listens for incoming messages.

4.1.3 Fitcoin Miner

The communication of the miner with the Fitcoin node is visualized in fig-
ure 4.2. ftcd creates a temporary file /tmp/newblock.[ID], where [ID] is
a unique identifier and then forks the miner. The miner looks into the folder
∼/.ftc/fresh where the transactions that have yet not been mined are stored
and starts to mine a block made of these transactions.
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Each unix program by default sends a signal SIGCHLD to the parent process
when it finishes. This is utilized in the miner to ftcd communication. After
the miner mines a block, it writes it to the temporary file and sends the
SIGCHLD signal to ftcd, which processes the block and eventually might fork
miner again.

Figure 4.2: Fitcoin Miner communication

4.2 Blockchain

In this chapter, the structure of the Fitcoin’s blockchain is described. The
blockchain is saved on the file system in big endian byte order as individual
files.

4.2.1 Block

A block is a data structure containing transactions. Fitcoin follows similar
structure to Bitcoin’s block, it consists of a header and a list of transactions.
Its unique identifier is a hash made by hashing the block header. A block can
also be identified by its height, where the genesis block has height 0 and each
child increases its height by one. Although height can be derived from the
blockchain and storing it is unnecessary, opposing to Bitcoin it is part of the
header in Fitcoin to facilitate simpler implementation. This is how the block
data stucture looks in Fitcoin:
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struct block {
uint32 t s i z e ;
char prev [ 3 2 ] ;
uint32 t he ight ;
uint32 t t s ;
uint32 t nonce ;
char t a r g e t [ 3 2 ] ;
char merkle [ 3 2 ] ;
uint32 t numtx ;
unsigned char data [ ] ;

} ;

Figure 4.3: Block structure

Size is the total block size including the field itself and the size of all of the
block’s transactions. Prev is the the SHA256 digest of its parent block. Height
is the current block height. Ts is a unix timestamp (Number of seconds since
January 1st, 1970 UTC). Nonce is a number that makes the hash of the block
header lower than the target. Target is a 32 bytes long number calculated
from the timestamps of previous blocks, so that it takes fixed amount of time
to mine each block. Merkle is the merkle root of the transactions in the block.
Numtx conveys how many transactions are in the block and data contains the
actual transactions. The target and prev are character arrays, however they
are often converted to a special type big number provided by LibreSSL to be
able to do mathematical operations with it.

4.2.2 Input/Output structure

The building block of a Fitcoin transaction is a transaction input/output. It
is recorded on the blockchain and consists of an amount of Fitcoin and an
address. User’s balance is a sum of all unspent transaction outputs which are
associated with an address generated from a public key that is controlled by
the user owning the corresponding private key.

A transaction output is used as a transaction input for another transaction.
It is always spent in its entirety by the next transaction. However, change can
be generated to send coins back. A data structure shown in figure 4.4 is used
for such purposes.
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struct i o {
char addr [ 3 2 ] ;
uint32 t amount ;

} ;

Figure 4.4: Input/Output data structure

The io structure contains an address addr, which is always a SHA-256
hash of a public key. It also contains amount, which signifies the number of
tied coins to that address. The data structures can represent three different
things depending on its context:

• transaction input

• transaction output

• address balance

In the transaction output, the address is a destination address to which
the coins are sent. In the transaction input, the address signifies the source
address of the coins. If the structure is used as an address balance, the address
signifies the amount of coins belonging to the address.

The address balance is calculated on the startup by going through all
blocks in the blockchain and each transaction in it, suming up all unspent
transaction outputs belonging to an address. These address balances are then
saved to the coins directory and are recalculated every time a new block is
appended.

4.2.3 Transaction structure

Transactions are data structures that encode the transfer of value between
participants in the system. It carries information about its size, number of
transaction inputs, number of transaction outputs and the actual input/out-
puts in an array.

struct tx {
u i n t 1 6 t s i z e ;
u i n t 8 t numi ;
u i n t 8 t numo ;
struct i o i o [ ] ;

} ;

Figure 4.5: Transaction structure
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Tx stands for transaction and it represents a transfer of coins. Oppos-
ing to the struct io, there is a need to keep track of the size, since each
transaction can have different amount of transaction inputs and outputs. As
mentioned before, there is no difference between transaction inputs and trans-
action outputs themself, they are both represented by the same structure.
Their meaning is determined by the number of inputs and number of outputs.
The first numi structures are inputs, and the other numo structures are out-
puts. A valid input is an output from another transaction, that has not yet
been spent.
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Chapter 5
Implementation

It is difficult to demonstrate the concepts in C programming language, there-
fore a pseudocode with C style programming conventions is used throughout
this chapter to demonstrate the concepts better.

5.1 Ftcd

Fitcoin Daemon is the most important part of the whole Fitcoin ecosystem.
It is the full node that communicates with the outside world. The whole
structure of the program is described in pseudocode in Algorithm 2.

Algorithm 2 Ftcd
init directories
if blockchain does not exist then

create genesis block
end if
check blockchain integrity
calculate address balances
start miner
load wallet
connect to peers and Ftctl
loop

if someone tries to connect then
sockets.insert(new socket for such communication)

end if
for all sockets do

handle incoming message
end for

end loop
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5.2 Miner

Miner is the piece of software that bundles transactions together and creates
valid blocks from them. First the algorithm for merkle root calculation and
algorithm for calculating difficulty are described, which are needed for the
creation of valid blocks, then the actual mining is described in Algorithm 5.

5.2.1 Merkle Root

Merkle root is utilized in several different ways in cryptocurrencies. In Fitcoin
it’s only purpose as of now is to simplify the process of hashing a block. Since
each block contains merkle root, which is calculated from all the transactions
in a block, only the header needs to be hashed.

The Algorithm 3 used for merkle root calculation is recursive. To not dive
into unnecessary technicalities, in this pseudocode it is assumed 2n number
of transactions are on input. Of course the actual implementation in Fitcoin
does not have this assumption.

Algorithm 3 Merkle root calculation
⊕ means concatenation

Function Merkle is:
Input: Transactions T1. . . TN , where N = 2n

Output: Merkle root
1: for i← 1 to N do
2: Di ← hash(Ti)
3: end for
4: if N = 1 then
5: return D1
6: else
7: for i← 1 to N/2 do
8: Di ← hash(Di∗2−1 ⊕Di∗2)
9: end for

10: end if
11: return merkle(D1. . . DN/2)

5.2.2 Difficulty

Valid blocks must produce a hash below the target, that is specified by the
Fitcoin protocol. This target is recalculated every 12 blocks so that mining a
single block takes about 30 seconds. It is calculated by this formula:

next target = current targettime to mine last 12 blocks
30 ∗ 12
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Algorithm 4 is called every time the miner starts mining and it readjusts
the difficulty every 12th block. The AdjustTarget in the pseudocode is the
equivalent to the formula stated above.

Algorithm 4 Target recalculation
Input: Current target T , Blockchain of blocks B0, B1, B2 . . .
Output: New target

1: h←current height
2: if h = 0 or h mod 12 6= 0 then
3: new target ← current target
4: return
5: end if
6: elapsed← Bh.timestamp - Bh−12.timestamp
7: AdjustTarget(current target,new target,elapsed,30*12)

5.2.3 Mining

Algorithm 5 shows the mining process. The mining loop is just about trying
different nonces until a correct one is found.

Algorithm 5 Mining a block
Input: Unconfirmed transactions T1. . . TN

Output: Block B with correct nonce
1: for i← 1 to N do
2: append serialized Ti to B.data
3: end for
4: B.merkle← merkle(T1. . . Tn)
5: B.prev ← highest block hash
6: B.height← highest block height + 1
7: B.target← calculate new target
8: B.nonce← 0
9: B.ts← seconds since January 1st, 1970 UTC

10: loop
11: if hash(B) < B.target then
12: return B
13: end if
14: B.nonce← B.nonce + 1
15: end loop
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5.3 Portability

The requirement is not only that Fitcoin runs on different operating systems
but also on different hardware devices. To stay portable data is converted to
big endian byte order before it is saved on disk and vice versa when reading
from the file system. Such conversions are also needed when communicating
over the network and also when hashing transactions and blocks.

This is solved by utilizing internet operations functions htonl, htons,
ntohl and ntohs found in <arpa/inet.h> header. Function htonl converts
long integer from host to network byte order (big endian), htons does the
same for short integer. The funcsions ntohl and ntohs do the same in the
opposite direction.

An example of converting a transaction structure to big endian byte order
in C programming language is shown in Algorithm 6. The algorithm for
conversion back to the host byte order is the same, but instead of htonl
and htons functions, ntohl and ntohs are used. All of these functions are
designed to work in place.

Algorithm 6 Transaction conversion to big endian

1 void htontx ( struct tx ∗ tx ) {
2 uint32 t i , l en ;
3 struct i o ∗ i o ;
4 i f (NULL == tx )
5 return ;
6 tx−>s i z e = htons ( tx−>s i z e ) ;
7 l en = tx−>numi + tx−>numo ;
8 for ( i =0, i o=tx−>i o ; i<l en ; i ++, i o++)
9 io−>amount = hton l ( io−>amount ) ;

10 }
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Chapter 6
Testing and Start Up

The importance of testing depends on the purpose of the program. Although
the cryptocurrency Fitcoin is not meant to be used in the real world, there
have been done at least following tests:

• Fitcoin was tried to run on different operating systems to test the soft-
ware portability

• File system operations were tested on machines with different hardware
architectures

• Unit tests were done for a selected set of functions

Fitcoin should work accross major Unix based operating systems. On top
of that, it should correctly run without on systems with different hardware
specifications. The focus was mainly on the correct byte order while working
using the file system and network.

Since several people worked on Fitcoin, it had to be tested that every-
thing works well together throughout the development. However, thorough
integration tests were not done.

Only unit tests of functions utilized in the mining software were done as
part of this thesis, however other students working on Fitcoin did write unit
tests for the other areas of Fitcoin.

6.1 Portability

Fitcoin was tested on various machines. The tests are by no means thorough,
but the most important issues were tested, such as that the program works
correctly on big endian architecture as well as on little endian ones. Fitcoin
was tested on following systems:

• OpenBSD macppc (big endian)
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• SunOS SPARC-Enterprise-T5120 (big endian)

• OpenBSD armv7 (little endian)

• OpenBSD amd64 (little endian)

• FreeBSD i386 (little endian)

• NetBSD i386 (little endian)

• MacOSX amd64 (little endian)

• Linux Debian amd64 (little endian)

Fitcoin runs succesfully on all these machines, although the compilation
process is not flawless. Problems can be caused by various issues, for example
by old version of OpenSSL/LibreSSL, different header file definitions etc., but
they can be easily solved, since Fitcoin has very little dependencies.

I recommended to compile the program with GCC 6.3.0. Other versions of
GCC were also tested and some of them output warnings, however the program
still compiles correcly. SunOS 5.11 comes with an ancient version of OpenSSL.
Extra libs for socket() etc. are needed. To be able to compile on SunOS 5.11,
one has to install a recent LibreSSL into $HOME, then build with: make CC=gcc
CFLAGS="-I$HOME/include" LDFLAGS="-L$HOME/lib -lcrypto -lsocket -lnsl
-Wl,-rpath,$HOME/lib"

There are also problems when compiling on Debian. The only solution that
worked for me was to not specify -std=c99 during compilation. This solution
is not ideal. According to the manual pages, one should use -D XOPEN SOURCE
and -D USE MISC flags during compilation however, that didn’t fix the prob-
lem.

It was tested that the Fitcoin Daemon can connect to other peers and that
the miner mines valid blocks on all systems. It was also tested that the genesis
block looks exactly as in figure 6.1 on each tested machine.
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$ hexdump −C ˜/ . f t c / chain /000000. blk
000000 00 00 00 9c 00 00 00 00 00 00 00 00 00 00 00 00
000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000020 00 00 00 00 00 00 00 00 5c 1b a7 40 00 00 00 00
000030 00 00 00 f f f f f f f f f f f f f f f f f f f f f f f f f f
000040 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f
000050 28 f f 19 96 79 0c b8 9d 58 02 69 3b 46 a9 10 4e
000060 a5 55 2e f9 1 f 39 b3 82 ce f0 29 55 ca 8b 86 43
000070 00 00 00 01 00 28 00 01 33 88 e2 b4 a6 d8 a4 8e
000080 d0 48 b8 12 57 f2 3b eb 66 4c bf de 9c b8 2e 96
000090 e0 b5 42 76 16 0c df 31 00 00 04 00
00009 c

Figure 6.1: Genesis Block

6.2 Unit Tests

Unit tests including the functionality of the miner are available and can be
started by following command:

$ make t e s t

The following functionality is tested:

• withdraw and deposit

• transactions

• hashing

• difficulty

• blocks

Compilation

The process of compilation is managed by a Makefile. There are several possi-
ble commands that are implemented. The first and most important one is the
the install command. It Installs the Fitcoin Client (Ftctl) and Fitcoin Dae-
mon (Ftcd), so that it can be started anywhere. It also installs the manual
pages for Ftctl as well as Ftcd. Other commands are just a subset of this one.

To install everything:
$ make i n s t a l l

To compile Ftcd, Ftctl and run the unit tests:
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$ make a l l

To build the Fitcoin Client:
$ make f t c t l

To build the Fitcoin Daemon:
$ make f t c d

To run the unit tests:
$ make t e s t

To clean the build folder:
$ make c l ean

Running the program

Fitcoin Daemon can be started by typing ./ftcd in the build directory or
ftcd after installing it. The daemon does not have any user interface. One
has to use ftctl, which is a command line interface communicating locally
with Fitcoin daemon over a local socket /tmp/ftc. To be able to start ftctl,
ftcd has to be already running. One can send following messages to ftcd
through ftctl:

g e tpe e r s
addpeer
de lpe e r
newaddr
pay
qu i t

The commands are quite self explanatory. The getpeers, newaddr and
quit commands don’t accept any arguments. The addpeer and delpeer
commands register or delete a peer and their argument is the IP address of
the peer. The pay command accepts two arguments, first is the address of
the payee specified as a string made of 64 hexadecimal characters, the second
argument is the amount to be sent to that address specified as a decimal
number.

When first running the Fitcoin Daemon, there are no transactions made
yet, so the miner will will not mine. I will explain how to make new trans-
actions to test the miner. First, compile and run the Fitcoin Daemon. On
startup, the Fitcoin Deamon initializes the directory structure in ∼/.ftc.
Now kill the Fitcoin Daemon and copy the wallet folder from the accompa-
nied flash disk to ∼/.ftc/wallet.

The wallet folder contains the private key that corresponds to the public
key in the genesis block. Without this key, you would not be able to create new
transaction. Assuming you didn’t connect to any peers, the only block in your
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blockchain is the genesis block, which creates the first 1024 coins and sends it
to 3388e2b4a6d8a48ed048b81257f23beb664cbfde9cb82e96e0b54276160cdf31.

Now that you have the private key to the address in the genesis block, you
can spend the available coins. Run the Fitcoin Daemon again and then start
the Fitcoin Client. Type newaddr in the Fitcoin Client, which instructs the
Fitcoin Daemon to create another key in the wallet folder.

The Fitcoin Client will output a new address, which you can use in the pay
command to create new transaction, for example following command sends 512
coins to the address fa341325: pay fa341325 512. Keep in mind, that you
can’t spend more than 1024 coins. By running this command, the Fitcoin
Dameon will create a transaction in ∼/.ftc/fresh. The miner should create
a block from this single transaction and should start mining it.

New blocks will start appearing in ∼/.ftc/chain. These blocks consist
of all of the transaction from the ∼/.ftc/fresh folder. Since Fitcoin Dae-
mon does not remove the mined transactions from the folder, the miner will
infinitely mine the same transactions. Apart from the fact, that the blocks are
made from the same transactions, they are otherwise valid. This issue could
be easily fixed, but it comes in handy for the demonstration of the miner
software.

Data Storage

The Fitcoin Daemon creates a hidden folder .ftc in the home directory of
current user on startup. The structure of the folder is shown in 6.2:

chain ....................... The individual blocks forming a blockchain
coins.............Addresses and the amount of coins belonging to them
fresh............................Transactions which are not yet mined
peers....................................I.P. addresses of known peers
wallet...............................................The private keys
ftcd.log .......................................... The default log file

Figure 6.2: Structure of the Fitcoin directory

The chain directory contains files 000000.blk, 000001.blk, . . . . These
files represent individual blocks, where each block refers to the one before him.
These files might vary in size, since each block contains different amount of
transactions.

The coins directory contains files with 64 characters long names, which
represent the hexadecimal representation of an address. Each file is exactly 4
bytes in size and contains one single integer recording the amount stored at
that address.

The fresh directory contains files of different sizes with 67 characters long
names. The files represent transactions that haven’t been mined yet. The first
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64 characters are a SHA-256 hash of the saved transaction in big endian format
followed by a suffix “.tx”.

peers is a file containing known peers in form of I.P. addresses separated
by a newline. The Fitcoin Daemon dumps all addresses it knew about to this
file on successful exit.

The wallet directory contains files, where each one stores a single private
key in hexadecimal format. The names of the files are again 64 bytes long
addresses,i.e., SHA-256 hashes of the corresponding public keys.
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Conclusion

In this thesis, I briefly introduced important cryptography concepts facili-
tating the cryptocurrency technology and analyzed the inner workings of a
cryptocurrency. I focused mainly on the concepts relating to the miner. De-
centralization poses challenges, which can be solved by achieving a general
agreement of the network. The general agreement emerges by maintaining
a history of timestamped blocks of transactions accompanied by solutions to
artificially difficult problems.

Miner is a node running special software that searches for such solutions.
I implemented such software in the C programming language and used the
LibreSSL library of cryptographic functions. The miner successfully creates
valid blocks from new transactions and adjusts the difficulty for the network
at regular intervals.

The miner was integrated to the barebones cryptocurrency Fitcoin and it
was tested on major Unix based operating systems and a variety of hardware,
including little endian and big endian architectures.

Fitcoin was developed for educational purposes. Its implementation is
simple, portable, and extensible. It demonstrates the important concepts of a
cryptocurrency and provides an environment to test new theories.

51





Bibliography

[1] WEI, Dai. b-money, an anonymous, distributed electronic cash sys-
tem. [online]. 1998. [visited on 2019-4-3]. Available from: http:
/www.weidai.com/bmoney.txt Archived email sent to cypherpunk mail-
ing list.

[2] WEI, Dai. Making money with Bitcoin?. [online] 2011 [visited
on 2019-4-19]. Available from: https://www.lesswrong.com/posts/
ijr8rsyvJci2edxot/making-money-with-bitcoin. Wei Dai comments
on the article.

[3] NAKAMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system.
[online]. 2008. Available from: https://bitcoin.org/bitcoin.pdf

[4] ANTONOPOULOS, Andreas. Mastering Bitcoin: unlocking digital cryp-
tocurrencies. [online]. O’Reilly Media, Inc., 2014. Edition 1. ISBN-13:
978-1491954386. Available from: https://github.com/bitcoinbook/
bitcoinbook/releases/tag/Edition1Print2

[5] LAMPORT, Leslie and SHOSTAK, Rober and MARSHALL, Pease. The
Byzantine generals problem, ACM Transactions on Programming Lan-
guages and Systems. ACM, 1982, 4(3), 382–401.

[6] SILVERMAN, Joseph and PIPHER, Jill and HOFFSTEIN, Jeffrey. An
Introduction to Mathematical Cryptography. New York: Springer-Verlag,
2008. Edition 1. eBook ISBN: 978-0-387-77994-2 DOI:10.1007/978-0-387-
77993-5

[7] KATZ, Jonathan and MENEZES, Alfred J. and OORSCHOT, Paul C.
van and VANSTONE, Scott. A method for obtaining digital signatures
and public-key cryptosystems., CRC Press, 1996. 1st edition. ISBN-10:
9780849385230

53

http:/www.weidai.com/bmoney.txt
http:/www.weidai.com/bmoney.txt
https://www.lesswrong.com/posts/ijr8rsyvJci2edxot/making-money-with-bitcoin
https://www.lesswrong.com/posts/ijr8rsyvJci2edxot/making-money-with-bitcoin
https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoinbook/bitcoinbook/releases/tag/Edition1Print2
https://github.com/bitcoinbook/bitcoinbook/releases/tag/Edition1Print2


Bibliography

[8] PAAR, Christof and PELZL, Jan. Understanding cryptography: a text-
book for students and practitioners. Springer, 2010. ISBN-10: 3642446493

[9] BECKER, Georg. Merkle signature schemes, merkle trees and their crypt-
analysis. [online]. Ruhr-University Bochum, 2008 [visited on 2019-3-
14]. Available from: https://www.emsec.ruhr-uni-bochum.de/media/
crypto/attachments/files/2011/04/becker_1.pdf

[10] NARAAYANAN, Arvind and BONNEAU, Joseph and FELTEN, Edward
and MILLER, Andrew and GOLDFEDER, Steven. Bitcoin and cryp-
tocurrency technologies: A comprehensive introduction. Princeton Uni-
versity Press, 2016. ISBN13: 9780691171692

[11] MALONEY, Mike. From Bitcoin To Hashgraph (Documentary) Hidden
Secrets Of Money Episode 8. [online video] 2017 [visited on 2019-3-12].
Available from: https://www.youtube.com/watch?v=SF362xxcfdk

[12] DWORK, Cynthia and NAOR, Moni. Pricing via processing or combat-
ting junk mail. In: Annual International Cryptology Conference. Springer,
1992,139–147.

[13] JAKOBSSON, Markus and JUELS, Ari. Proofs of work and bread pud-
ding protocols. Secure Information Networks. Springer. 1999, 258–272.
1540-7993, DOI: 10.1007/978-0-387-35568-9 18
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Appendix A
Acronyms

CPU Central processing unit

BSD Berkeley Software Distribution

GNU Recursive acronym for “GNU’s Not Unix!”

IP Internet Protocol

UTC Coordinated Universal Time

CTU Czech Technical University

SHA Secure Hash Algorithm

SPV Simplified Payment Verification

GCC the GNU Compiler Collection
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Appendix B
Contents of enclosed USB drive

readme.txt............brief description of the contents of the USB drive
A Miner for Fitcoin.pdf................................... the thesis
ftc ............................... the directory of Fitcoin source codes
wallet.......contains the private key to the address in the genesis block
latex..................the directory of LATEX source codes of the thesis

57


