
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 6, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Experimental evaluation of worst-case optimal heaps

 Student: Adam Volek

 Supervisor: RNDr. Tomáš Valla, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2020/21

Instructions

Heap is a data structure supporting fast insert and extraction of minimum element, together with several
other fast operations.
The theoretical lower bound is O(log n) time for extraction and O(1) for the remaining operations in worst-
case.
Recently, several data structures meeting this lower bound have been published. We aim to contribute
to this topic by experimental evaluation of selected recently published heaps (e.g.
Brodal, G. S. L.; Lagogiannis, G.; Tarjan, R. E. (2012). Strict Fibonacci heaps. Proceedings of the 44th
symposium on Theory of Computing - STOC '12. p. 1177
Brodal, Gerth S. (1996), "Worst-Case Efficient Priority Queues", Proc. 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 52–58).
The goals are:
- to survey the existing results in the field
- to efficiently implement selected structures in the C language
- to perform experimental evaluation and comparison of these structures on several data sets

References

Will be provided by the supervisor.

Bachelor’s thesis

Experimental evaluation of worst-case optimal
heaps

Adam Volek

Department of Theoretical Computer Science
Supervisor: RNDr. Tomáš Valla, Ph.D.

May 16, 2019

Acknowledgements

I want to thank my supervisor, RNDr. Tomáš Valla, Ph.D., for his guidance
and patience during the work.

Declaration

I hereby declare that the presented thesis is my ownwork and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documenta-
tion (hereinafter collectively referred to as the “Work”), to any and all persons
that wish to utilize the Work. Such persons are entitled to use the Work for
non-profit purposes only, in anyway that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 16, 2019

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Adam Volek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has
been submitted at Czech Technical University in Prague, Faculty of Information Tech-
nology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Volek, Adam. Experimental evaluation of worst-case optimal heaps. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

V rámci této bakalářské práce je vytvořena implementace Brodalovy haldy,
prioritní fronty, která je i v nejhorším případě asymptoticky optimální. Spolu
s ní je vytvořen jednoduchý test měřící efektivitu haldy, ten je následně použit
na zjištění efektivity poskytnuté implementace oproti existující implementaci
Fibonacciho haldy.

Klíčová slova prioritní fronta, halda, asymptotická složitost, benchmarking

Abstract

This thesis provides an implementation of Brodal heap, a worst case efficient
priority queue, along with a simple benchmark to assess its efficiency against
another priority queue. The implementation is tested against an existing im-
plementation of Fibonacci heap.

Keywords priority queue, heap, asymptotic complexity, benchmarking

vii

Contents

Introduction 1

1 Theoretical overview 3
1.1 Fibonacci heap . 4
1.2 Brodal heap . 5

1.2.1 Extendible array . 5
1.2.2 Guide . 5

1.2.2.1 Group destruction 7
1.2.2.2 Handling forced increments 8
1.2.2.3 Implementation remarks 9

1.2.3 Heap structure . 10
1.2.4 Heap order . 12
1.2.5 Tree roots . 13
1.2.6 Implementation details 14
1.2.7 Low-level operations . 14

1.2.7.1 Tree linking and delinking 14
1.2.7.2 Maintaining invariant R1 15
1.2.7.3 Reducing the number of violations 17
1.2.7.4 Maintaining invariants O4 and R2 17

1.2.8 High-level operations 18
1.2.8.1 Meld . 18
1.2.8.2 DecreaseKey 18
1.2.8.3 DeleteMin . 19

2 Implementation and performance evaluation 21
2.1 Brodal heap . 21
2.2 Performance evaluation . 22
2.3 Evaluation results . 23

ix

Conclusion 27

Bibliography 29

A Contents of enclosed CD 31

x

List of Figures

1.1 An example of a possible valid partitioning of a guide 7
1.2 Ilustration of guide’s internals [2, p. 4] 7

2.1 DeleteMin runtimes on Fibonacci heap given its size 24
2.2 DeleteMin runtimes on Brodal heap given its size 24
2.3 Consecutive DeleteMin runtimes on Fibonacci heap given its size 25
2.4 Consecutive DeleteMin runtimes on Brodal heap given its size . . 25

xi

List of Tables

2.1 Summary of the benchmark results 23

xiii

Introduction

A priority queue is a data structure supporting fast insertion and fast extrac-
tion of the minimum element, along with some other operations, its imple-
mentation being a classical problem in computer science [1]. Whether it is
possible to implement a priority queue with worst-case optimal asymptotic
complexity was a long-standing open question, first answered by Brodal in
[2]. Different implementations meeting the same asymptotic bounds were
found later [3, 4].

While these implementations answered an important open question, their
practical applicability is unclear as they are often very complex and their
asymptotic complexity might not provide an advantage on datasets of practi-
cal sizes.

This thesis aims to provide an implementation of worst-case optimal pri-
ority queue described in [2] and perform an experimental evaluation of its
performance, comparing it to an existing implementation of the Fibonacci
heap, a priority queue matching Brodal heap’s complexity in an amortised
sense.

The theoretical section of this thesis provides a detailed description of the
queue selected for this work. The practical section describes the methodology
used for the evaluation of the selected queue, details about its implementation,
and the results of the evaluation.

1

Chapter 1
Theoretical overview

A priority queue is a data structure representing a collection of (key, value)
pairs. The structure supports three operations: Insert, which adds a new pair
into an existing queue; FindMin, which returns a pointer to a pair with the
minimum key, and DeleteMin, which modifies the queue so that it will not
contain the pair with a minimum key anymore. Additionally, some priority
queues support two other operations: DecreaseKey, which replaces the key
of a given element with a smaller one, and Meld, which takes two queues
and constructs one containing all the elements contained in the two original
queues.

Binary heap [5] was the first found implementation of a priority queue
that supported sublinear asymptotic complexity for Insert, DeleteMin and
FindMin operations: O(log n) for the first two and O(1) for FindMin. Since
its discovery, heap structures have been extensively studied, resulting inmany
other implementations [1]. Fibonacci heap, described in [7], was the first
to achieve constant amortised asymptotic complexity for all FindMin, Insert,
Meld and DecreaseKey operations, and logarithmic for DeleteMin operation.
These complexities are optimal for a comparison based priority queue, in the
sense that complexity of DeleteMin operation cannot be decreased without
increasing complexities of other operations (which itself follows from lower
bound of Ω(n log n)[6, pp. 191–193] for comparison based sorting algorithm).

Whether a priority queue achieving the same complexities in the worst-
case exists was an open question first answered by Brodal in [2]. The resulting
structure is described as “quite complicated”, with Brodal noting there is a
need to “simplify the construction to make it applicable in practice.”

This section provides a detailed description of Brodal heap, elaborating
on its internal structure, its invariants, and mechanisms that are in place to
make sure those invariants would not get violated. It also provides a brief
description of the Fibonacci heap, along with a link for further reading, as the
Fibonacci heap has been chosen for practical performance comparison with
the Brodal heap.

3

1. Theoretical overview

1.1 Fibonacci heap

Fibonacci heapwas the first priority queue to achieve optimal asymptotic com-
plexity in the amortised sense. The primary motivation behind its creation
was to decrease the asymptotic complexity of other algorithms that rely on a
priority queue internally, most notably the Dijkstra’s shortest path algorithm,
which runs in O(n log n + m) time when using Fibonacci heap [7].

Internally, the Fibonacci heap is somewhat similar to a Binomial heap, but
its structure is somewhatmore flexible. Each element is stored in a single node
and apart from it, every node stores four pointers: a pointer to its parent, to
some of its child, and its left and right sibling. Additionally, for each node x,
we maintain the number of its children r(x) and a flag signifying whether
it is marked. Nodes together form heap ordered trees. Sons of a node are
stored in a circular doubly linked list. The whole heap is then a collection
of such trees, stored itself in a circular doubly linked list (using the roots’
otherwise unused sibling pointers). As the trees are heap ordered, we know
the minimum of the heap is stored in one of the roots. We maintain a pointer
to that node to support FindMin in O(1) time. We maintain an invariant that
no root is marked. Other than that, there are no explicit requirements on the
heap structure.

With the pointer to the smallest element, operation FindMin is trivial.
Meld simply concatenates the lists of trees and re-establishes the minimum
pointer. With Meld implemented, Insert can then be performed as making a
Fibonacci heap containing a single element and using Meld to merge it with
the original queue.

DeleteMin operation is a bit more complicated. So far, we did not enforce
any structure on the heap. DeleteMin is allowed to take amortised O(log n)
time, so we use that time to clean the heap up somewhat. Internally, we make
use of a link operation, which takes two trees of the same rank n and makes
the one with larger element a son of the other, producing a tree of rank n +
1. When deleting the smallest element from the heap, we start by deleting
the node it is in (we know its location as we maintain a pointer to it) and
concatenate the list of its sons with the list of trees in the heap. Then we
perform the following operation until there are no two trees of the same rank
in the heap: we find two roots of the same rank in the heap, link them, and we
add the resulting tree to the list of heap’s trees. After this, we search all the
roots, unmarking those that were marked, finding the node with the smallest
element and point the minimum pointer to it.

Finally, DecreaseKey operation works as follows: we decrease the element
of the given node x and check whether its element is smaller than that of its
parent. If not, or if x is root, we redirect heap’s minimum pointer if necessary
and finish. Otherwise, we decrease the rank of p(x), cut x from its parent and
add it to the list of trees. We check whether the former p(x) is marked and if
not and it is not root, we mark it and finish. Otherwise, we also cut p(x) from

4

1.2. Brodal heap

its parent and perform the marking and cutting recursively on it, potentially
cutting nodes all the way to root if we do not run into a previously unmarked
parent along the way.

Fibonacci heap is asymptotically optimal in amortised sense, meaning its
amortised complexities are O(1) for all operations except DeleteMin, which
has amortised complexity ofO(log n) [7]. The amortised analysis of the struc-
ture is beyond the scope of this thesis but is provided in [7].

1.2 Brodal heap

Brodal heap is the first implementation of a priority queue to achieve worst-
case optimal asymptotic complexity. This section explains how the heapworks
based on its description in [2], along with an explanation of some edge cases
not covered by the original paper. First, two auxiliary data structures are
presented: extendible arrays and guides. The heap is described from section
1.2.3 onwards.

1.2.1 Extendible array

The extendible array is an array that can be extended by one element in worst-
case O(1) time. Extendible arrays “can be obtained from ordinary arrays by
array doubling and incremental copying” [2]. If we still have extra space in the
underlying array, extension operation simply updates the length of the array
that is being used up. If we do not have enough space, we allocate a new array
twice the size of the original, one and with each consecutive extension, we
copy a constant portion of the old array to the new one. By the time we run
out of space in the new array, we would have incrementally copied the whole
old array into the new one and deleted the old one, returning the extendible
array to its original state of having a single array.

1.2.2 Guide

Suppose we have a sequence of integers (an, an−1, . . . , a1) (we write guide
related sequences right to left for convenience) for which wewant to maintain
a property that all elements in the sequence are smaller or equal than a given
integer parameter t. On this sequence, we are forced to increase or decrease
elements at a given index, and for each increase, we are allowed to perform
an O(1) number of Reduce operations, which takes an index n and performs
one of the following transformations on the sequence:

• decrease nth element by one,

• decrease nth element by at least two and increase the (n + 1)st element
by at most one.

5

1. Theoretical overview

Guide’s task is to tell us after each increase at which indices to perform the Re-
duce operation so that all elements of the sequence are smaller or equal than t.

The following notation is used to illustrate transformations on the guided
sequence:

0, 1, 2, 1, 1, 0↑

0, 1, 2↓, 1, 1, 1
0, 2, 0, 1, 1, 1

The sequence is written right to left, a↑n represents a forced increase on an
index n and a↓n represents a Reduce operation on the index n.

When constructing the guide, we can w.l.o.g. assume t = 2. If we are
required to construct a guide for a different t′, we can present to the guide an
alternative sequence (a′n, a′n−1, . . . , a′1) where

a′n =


3, if an = t′ + 1
2, if an = t′

1, if an = t′ − 1
0, otherwise

and assume t = 2.
Internally, the guide splits the sequence into smaller sequences (ax, . . . , ay)

of the length of at least two. We call these subsequences blocks. The elements
of the original sequence can belong to at most one block. The guide tries to
maintain the following two invariants:

G1 for each block (an, . . . , am) the first element am = 0,

G2 if an = 2 then a block (an, . . . , am) exists.

Intuitively, the two invariants say the maximum values of elements in a block
can be (2, 1, . . . , 1, 0), where the number of ones can be zero.

The motivation for these invariants is avoiding the worst-case scenario
for a guide—a sequence with more than O(1) consecutive “2” elements. If
we were forced to increase the first of those elements, we might be forced to
perform more than O(1) Reduce operations to make sure no element in the
sequence is greater than two as shown in this example:

0, 2, 2, . . . , 2, 2, 2↑

0, 2, 2, . . . , 2, 2, 3↓

0, 2, 2, . . . , 2, 3↓, 1
0, 2, 2, . . . , 3↓, 1, 1

. . .
0, 2, 3↓, . . . , 1, 1, 1
0, 3↓, 1, . . . , 1, 1, 1
1, 1, 1, . . . , 1, 1, 1

6

1.2. Brodal heap

0, 1, 1, 2, 1, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0

Figure 1.1: An example of a possible valid partitioning of a guide

Figure 1.2: Ilustration of guide’s internals [2, p. 4]

Invariants G1 and G2 guarantee such a scenario cannot arise, as each “2”must
be at the tail of some block and each block must start with “0”, i.e. each “2” is
separated from each other at least by a “0”.

The notation used to depict the state of a guided sequence can be extended
by underlining to show its partitioning in blocks as shown in the figure 1.1.
Blocks are usually in the form of 2, 1, . . . , 1, 0, but a forced decrease of one of
its elements can lead to blocks similar to those in the figure 1.1. This case does
not violate guide invariants.

Internally, blocks are represented by a structure which contains the index
of block’s last element (usually a “2”). The guide maintains an array of point-
ers to the block structures the same length as the sequence, each element in
the sequence thus having its pointer. Pointers of all elements in a block point
to the same block structure. If an element is not in a block, its pointer points
to a block structure which contains a special index ⊥ instead of an index of
some existing element in the sequence. This structure is illustrated in figure
1.2. Representing guide’s blocks thisway gives us two essential properties—in
worst-case O(1) time, we can:

• find outwhether an element is in a block given its index, and if yes, what
is the index of the block’s tail,

• destroy a block by rewriting its tail index to ⊥.

1.2.2.1 Group destruction

Destroying a block can leave the guide in an invalid state—if the tail of the
block were “2”, the guide would not satisfy invariant G2. If that is the case,

7

1. Theoretical overview

however, we can re-establish the invariant by performing a single Reduce op-
eration and re-establishing blocks, which can be done in O(1) time. The fol-
lowing table explains the resolution of all the cases that can arise during block
destruction:

2↓, 1, 1, 0 1, 2↓, 1, 1, 0 1, 2↓, 1, 1, 0 . . . , 0, 2↓, 1, 1, 0 . . . , 0, 2↓, 1, 1, 0
1, 1, 1, 0 1, 0, 1, 1, 0 2, 0, 1, 1, 0 . . . , 0, 0, 1, 1, 0 . . . , 1, 0, 1, 1, 0

Note that, given guide’s internal representation of blocks, the last two cases
are valid even if the trailing 0 is not a part of a block, meaning it is a part
of a block with tail at index ⊥ in the internal representation, as adding the
newly created zero to such block results in it not being in any block. Using
this procedure, we can destroy a block and re-establish guide’s invariants in
worst-case O(1) time using a single Reduce operation.

1.2.2.2 Handling forced increments

The main task of the guide structure is to decide where to perform Reduce
operations to maintain all its invariants when it is notified about a forced in-
crease. Upon notification, one of the three cases can occur. This section anal-
yses each of them and explains the actions needed to make the guide valid
again.

If an element has been increased and its value is now 1, we simply check
whether said element is in a block and destroy it as described in section 1.2.2.1.
After this, no element is greater than 2 and if the invariant G1 became violated
by the increase, it has been re-established by the block destruction operation.
This takes in worst-case O(1) time and requires a single Reduce operation.

Otherwise, if an element has been increased and its value is now 2, we first
perform block destruction on its block if it was in one. This could decrease
the element to 0 if it was a tail of its block in which case the invariants became
re-established and we can stop. If that is not the case, the following table
demonstrates how to re-establish guide’s invariants in that instance:

2↓ 1, 2↓ 1, 2↓ . . . , 0, 2↓ . . . , 0, 2↓

1 1, 0 2, 0 . . . , 0, 0 . . . , 1, 0

The same remark about the possible trailing zero’s block from section 1.2.2.1
holds here, i.e. the case would still yield a valid result even if the element
was not in a block before the Reduce operation. As the group destruction
operation takes at worst O(1) time and uses a single Reduce operation, we
know in this case we need at worst O(1) time and two Reduce operations to
re-establish guide’s invariants.

The last case that can occur is when an element has been increased, and its
value is now 3. Such an element must have had value 2 before the increment,
and because of invariant G2, we know it is a tail of a block. First, we perform
a Reduce on the element. If the operation decreased the element to 2, we

8

1.2. Brodal heap

could end as the previously violated invariant G2 has become re-established.
Otherwise, we proceed depending on the value of the next element, as shown
here:

0, 3↓, , 0, 3↓, , 0, 3↓, , 1, 3↓, , 1, 3↓, . . .
x1, 1, , 0, x1, , 1↑, x1, , 1, x1, , 2↑, x1, . . .

In the first, second and fourth case, the invariantG2 has become re-established,
andwedid not violate the invariant, G1whichmeanswe can finish. That is not
true for the third and the fifth case, where the invariant G1 andG2 respectively
became violated. We can think of the situation as another forced increase
though, and invoke the current procedure recursively for these cases. They
will be handled by the first and second case of the procedure so no recursive
cycle can occur, and since we know those cases take at worst O(1) time and
use at most two Reduce operations, resolution of this case will take at worst
O(1) time and will use at most three Reduce operations.

1.2.2.3 Implementation remarks

The structure used for representing blocks can be extended by adding a ref-
erence counter to it. When we allocate a new one for a new block, we set the
counter to zero, increasing it every time we add an element to the block it rep-
resents and decreasing it every time we remove one. Once we remove the last
element from a block, we can free up the space the structure was taking. This
way we, know there will be at most O(n) of them at any given time during
the guide’s operation.

Note that throughout the case analysis, the guide is shown to perform
Reduce operations only on elements of the sequence whose value is 2 or 3.
This property will be important later on when constructing the heap.

By making guide’s internal extendible, we can support extending guide’s
domain in worst-case O(1) time. If the last element in the newly extended
guided sequence is 0 or 1, we just allocate a new block structure with tail
set to ⊥, i.e. we make sure the new element is not in a block. We require this
always to be the case when extending the guide.

Similarly, we can also shrink a domain of the guide. If the last element is
the tail of a group, we destroy that group and remove the last element from
it. After that, if the underlying array supports it, we can shrink it to free up
resources.

1Can be either 0 or 1 depending on the outcome of the Reduce operation but since the
element is not in a block, neither G1 nor G2 can become violated by the outcome, and we do
not have to care about it.

9

1. Theoretical overview

1.2.3 Heap structure

The heap is represented by two rooted trees T1 and T2. Each element in the
heap is stored in one node belonging one of the two trees. Nodes are assigned
positive integer ranks. In this thesis, the same notation as in [2] is used:

x either node x or the element stored
in the node, depending on the context

ti root of the tree Ti
p(x) parent of node x
r(x) rank of x

ni(x) number of sons of rank i that x has

The heap structure is governed by the node’s ranks. The way ranks are
assigned, and the way this assignment forces a structure on the two trees is
formalised by the first five heap invariants:

S1 x is a leaf =⇒ r(x) = 0
S2 r(x) < r(p(x))
S3 r(x) > 0 =⇒ nr(x)−1 ≥ 2
S4 ni(x) ∈ {0, 2, 3, . . . , 7}
S5 T2 = ∅ ∨ r(t1) ≤ r(t2)

Invariants S1 and S2 say leaves are assigned a rank of zero and they in-
crease towards the root. Invariant S3 says that except for leaves, each node x
of a rank r(x) has at least two sons of a rank r(x)− 1. Invariant S4 limits the
number of sons of a given rank of x to 7. The reason this invariant does not
allow a node to have a single son of a given rank is that it allows us to cut the
sons of highest rank from a node and assign a new rank to the node so that
S1–S4 are still satisfied. Invariant S5 then simply states that either the rank of
t2 is greater or equal to the rank of t1, or T2 is an empty tree. The motivation
for these invariants is to make a size of a subtree rooted at a node linked to its
rank and, as a side effect, to its height. This is formalised by lemmata 1.1 and
1.2.

Lemma 1.1. The size of the subtree rooted in a node x is at least 2r(x)+1 − 1.

Proof. Let l(n) be the lower bound on the size of the subtree rooted at a node x
of a the rank n. From S3 it follows the smallest number of sons a non-leaf node
x can have is two, each of the rank r(x) − 1. We can, therefore, recursively
define l(n) as follows:

l(n) =

{
1, if n = 0
1 + 2l(n − 1), otherwise

For any integer n ≥ 0, let S(n) denote the statement

S(n) : l(n) = 2n+1 − 1

10

1.2. Brodal heap

We can prove S(n) for any positive integer n by mathematical induction:
Base step(n = 0): S(0) says l(0) = 21 − 1 which is true by the definition of
l(n).
Inductive step S(k) =⇒ S(k+ 1): Fix some k ≥ 0 and assume that S(k) holds:

l(k) = 2k+1 − 1 (By S(k), the ind. hyp.)
1 + 2l(k) = 2k+2 − 1

l(k + 1) = 2k+2 − 1 (By definition of l(n))

Which proves the induction hypothesis. This proves that l(n) = 2n+1 − 1, and
since we defined l(n) to be the lower bound on the size of a subtree rooted at
a node of rank n, this also proves the lemma.

Lemma 1.2. The size of the subtree rooted in a node x is at most 23r(n).

Proof. Let u(n) be the upper bound on the size of the subtree rooted at the
node x of rank n. From S4 it follows a non-leaf node x can have at most seven
sons of each rank smaller than n = r(x). We can, therefore, recursively define
u(n) as follows:

u(n) =

{
1, if n = 0
1 + ∑n−1

i=0 7u(i), otherwise

For any integer n ≥ 0, let S(n) denote the statement

S(n) : u(n) = 23n

We can prove S(n) for any positive integer n by mathematical induction:
Base step(n = 0): S(0) says u(0) = 20, which is true by the definition of u(n).
Inductive step S(k) =⇒ S(k+ 1): Fix some k ≥ 0 and assume that S(k) holds:

u(k) = 23k (By S(k), the ind. hyp.)
u(k) + 7u(k) = 23 · 23k

1 +
k−1

∑
i=0

(7u(i)) + 7u(k) = 23(k+1) (By definition of u(n))

1 +
k

∑
i=0

(7u(i)) = 23(k+1)

u(k + 1) = 23(k+1) (By definition of u(n))

Which proves the induction hypothesis. This proves that u(n) = 23n, and
since we defined u(n) to be the upper bound on the size of a subtree rooted
at a node of rank n, this also proves the lemma.

11

1. Theoretical overview

Corollary 1.2.1. Proofs of lemmata 1.1 and 1.2 showed that the size of a subtree
rooted at a node x is exponential in r(x). Inversely, this shows that the rank of a node
x is logarithmic in the size of the subtree rooted at x. From S1–S3 it follows that the
height of a subtree rooted at a node x is r(x), therefore the height of such subtree is
also logarithmic in its size.

1.2.4 Heap order

Comparison based heap structures usually satisfy a heap order invariant, re-
quiring element in each node except for root(s) to be greater or equal to the
node’s parent’s element. That is not the case for this structure, as violations
of heap order are allowed in specific conditions. We call a node x violating iff
x < p(x), and we call a node good iff it is not violating. To track the violat-
ing nodes, we extend the tree node structure by sequences W and V that store
references to nodes y that are good in regards to x (i.e. x ≤ y) but might be
violating nodes.

For the sake of clarity, we extend the notation introduced in section 1.2.3
as follows:

V(x) V sequence of node x
W(x) W sequence of node x
wi(x) number of nodes of rank i in W(x)

To formalise the role of W and V sequences and to ensure we use them ef-
fectively to keep track of heap order violation, we introduce invariants O1–O5:

O1 t1 = min(T1 ∪ T2)
O2 y ∈ V(x) ∪ W(x) =⇒ y ≥ x
O3 y < p(y) =⇒ (∃x 6= y)(y ∈ V(x) ∪ W(x))
O4 wi(x) ≤ 6
O5 if V(x) = (y|V(x)|, . . . , y2, y1), then

r(yi) ≥ b(i − 1)/αc for i = 1, 2, . . . , |V(x)|
where α is a constant

Invariant O1 requires the minimum element in the heap to be stored at T1.
Without this property, we might not be able to implement FindMin operation
in worst-case O(1) time as a minimum element could be either t1, t2, or it
could be any violating node in the heap. Invariant O2 says that a node has
to be good in respect to the node whose violation sequence it belongs in. In-
variant O3 requires all violating nodes to belong to some violation sequence,
and finally, invariants O4 and O5 bound the lengths of violation sequences
(proven by lemmata 1.3 and 1.4). The reason invariants O4 and O5 are stated
so differently is because the sequences W and V play a very different role in
the construction of the heap. Later we show we will add newly created vio-
lations only to W(t1) in cases of violations of a rank smaller or equal to r(t1)
and V(t1) in cases of violations of larger rank.

12

1.2. Brodal heap

Lemma 1.3. The length of any W sequence is at most logarithmic in the number of
elements contained in the heap.

Proof. Let x denote the node of maximum rank in the heap, i.e. for all nodes
y 6= x in the heap we know r(y) ≤ r(x). Because of invariant S2, we know this
is one of t1 and t2. Invariant O4 states there cannot bemore than six nodes of a
given rank in a violation sequence. If there is no node of rank greater than r(x),
the sequence cannot contain more than 6r(x) nodes. Corollary 1.2.1 shows
that the rank of a node is logarithmic in the size of the subtree rooted at it. We,
therefore, know the length of any W sequence is at most logarithmic in the
size of the subtree rooted at x, and since this subtree cannot be bigger than
the entire heap, we also know the length of any W sequence can be at worst
logarithmic in the size of the entire heap.

Lemma 1.4. The length of any V sequence is at most logarithmic in the number of
elements contained in the heap.

Proof. Invariant O5 states that for each rank r, any V sequence can contain at
most α nodes of rank equal or larger to r. We can make a similar argument as
in the proof of lemma 1.3: given the node of maximum rank x, there cannot
be more than αr(x) elements in any V sequence, and since α is constant and
r(x) is at most logarithmic in the size of the heap, we know the length of any
V sequence is at most logarithmic in the size of the heap.

The role of α is to represent a maximum number of new large violations
that can be created during a single heap operation. The only important thing
about it is that it is a constant as will be shown later, its exact value is needed
neither for the analysis nor for the construction of the structure.

1.2.5 Tree roots

For nodes t1 and t2, we strengthen the invariants as follows:

R1 ni(tj) ∈ {2, 3, . . . , 7} for i = 0, 1, . . . , r(tj)− 1
R2 |V(t1)| ≤ αr(t1)
R3 y ∈ W(t1) =⇒ r(y) < r(t1)

Invariant R1 is a stronger version of invariant S4, requiring roots tj to have
at least two sons of each rank smaller than r(tj). Invariant R2 strengthens
invariant O5 for the node t1, requiring the length of V(t1) to be at most αr(t1)
instead of αr(x) where x is the node of maximum rank. Finally, invariant R3
requires all nodes in W(t1) to have rank smaller than that of t1.

13

1. Theoretical overview

1.2.6 Implementation details

Each node in the tree can has arbitrarily many sons. The list of sons is im-
plemented by a doubly linked list, which requires each node to store three
pointers: one to the beginning of the list of its sons and two to the previous
and the next son in the list of sons a node belongs to. Additionally, nodes
store a pointer to their parent. W and V sequences are implemented in the
same way: node stores two pointers that represent the beginning of its W and
V sequence, and two other pointers to the previous and the next node in the
violation sequence it belongs to. More pointers are not needed as a node can-
not belong to more than one violation sequence. The leftmost node in a given
violation sequence W(x) or V(x) has a pointer to the previous node in the se-
quence pointed to x.

The only violation sequences we add new violations to are W(t1) and
V(t1). We require that the nodes of the same rank in W(t1) are adjacent. To
support adding a new node to the sequence in O(1) time, we maintain an ex-
tendible array of pointers to nodes of a given rank in W(t1). We may w.l.o.g.
maintain the property that the pointer will point to the rightmost node of a
given rank. This can simplify the implementation of some heap operations.
We also store a single guide that helps us maintaining invariant O4 for W(t1),
as described in section 1.2.7.4.

We require the sons of all nodes to be stored in decreasing order by their
rank, i.e. the leftmost sons of the node are the sons of the highest rank. To sup-
port adding and cutting sons of roots, we maintain two extendible arrays that
point to a son of a given rank of t1 and t2 respectively. As with the W(t1) ar-
ray, we may w.l.o.g maintain the property that the pointer will point to the
rightmost node of a given rank. This also simplifies the implementation of
some heap operations. We also store four additional guides, to maintain the
upper and lower bound of invariant R1 for both roots as described in section
1.2.7.2.

1.2.7 Low-level operations

This section describes low-level operations that are used to maintain heap’s
invariants during higher level operations. As Brodal said in [2], “the mainte-
nance of R1 and O4 turns out to be nontrivial but they can all be maintained
by applying the same idea“—the idea behind the guide structure. Applying
the idea to help to maintain the two invariants is described in section 1.2.7.2
and 1.2.7.4. All operations in this section run in worst-case O(1) time.

1.2.7.1 Tree linking and delinking

Let x, y and z be three nodes of the same rank n. Assume w.l.o.g that x ≤ y
and x ≤ z and make y and z the leftmost sons of x. By increasing r(x) by one,

14

1.2. Brodal heap

structural invariants will have become re-established for x. This operation is
called tree linking, and it results in a single tree of rank n + 1.

Delinking can be thought of as an inverse operation to linking, although
it is slightly more complicated. Let x be a node of non-zero rank. If it has
more than three sons of rank r(x)− 1, we can cut its two leftmost sons and
return those to delink it. The rank of x will not change in that case. If it has
exactly two or three sons of rank r(x)− 1, we cut those and assign the node
plus one of the rank of its leftmost son. This operation takes one node of rank
n and produces two or three nodes of rank n − 1 and at most one node of rank
smaller or equal to n.

1.2.7.2 Maintaining invariant R1

During other heap operations, we might want to get a son of a given rank
from under one of the root, or to push an existing son there. For each root,
we have two guides that help us with maintaining invariant R1 in such cases,
one for guiding the upper bound, and the other for lower bound. Note that is
the reason for such arbitrarily looking bounds in invariant S4 and O1. Since
we will only link sons of rank r if nr(ti) ≥ 7 and delink son of rank r + 1 if
nr(ti) ≤ 2, and since those operations produce or require at most three sons,
{2, 3, . . . , 7} is the smallest interval we could have chosen so that the guides
guiding lower and upper bound of ni(tj) would not interfere with each other.
Also note that guiding lower bound on a sequence is the same as guiding
upper bound on an inverted sequence, no edits to the guide are necessary.

If we want to add a subtree below the root, we notify the guide taking care
of the upper bound that there has been a forced increase in its sequence. Guide
then tells us for what ranks to perform Reduce operation, which, in this case,
maps to the link operation from section 1.2.7.1. No new violations are created
during this operation.

If we want to take a subtree from a root, we notify the guide taking care of
the lower bound. Guide then tells us where to perform delink operations to
re-establish invariant R1. Each delinking can create up to three new violations
if we delink sons of t2, which we handle as described in section 1.2.7.4. The
additional node left after delinkingwe can just addunder the root as described
before.

Finally, we have to consider increasing and decreasing of root’s rank. If
we were to add subtrees to ti indefinitely, eventually the guide would want
us to link three nodes of rank r(ti)− 1, and in such a case we might have no
way of re-establishing the invariant R1 in constant time. The same situation
can happen with delinking, where guide might want us to delink a son of
rank r(ti) when ti can have no such son. To solve this situation, we change
the scheme to let guides control only sequence (n1(ti), n2(ti), . . . , nr(ti)−3(ti)),
and we will maintain invariant R1 for nr(ti)−2(ti) and nr(ti)−1(ti) separately.

15

1. Theoretical overview

Let’s first consider the situation of adding a subtree to the unguided sec-
tion. If we add a subtree there and the root still satisfies invariant R1, we
can quit. If it doesn’t, we can w.l.o.g. assume that the addition happened at
nr(ti)−1(ti) (if it did not, we just link at rank r(ti)− 2 and consider the situation
as an addition on nr(ti)−1(ti)). Since we are in a situation where we might in-
crease the rank of ti and hence the domain of its guides, we need to make sure
both guides can be extended, i.e. we need to make sure 2 < nr(ti)−2(ti) < 7. If
that is not the case, we can perform a single link or delink operation to change
that. Delinkmight additionally cause nr(ti)−1(ti) ≤ 7 in which case R1 became
re-established, and we might end. If that is not the case, we will increase the
rank of tj, extend guides and arrays related to them and finally re-establish
the R1 by two link operations.

The situation is a little more complicatedwhenwewant to take the subtree
from the unguided section. If we take a subtree and the root still satisfies
invariant R1, we can quit. If it does not, and we took a tree of rank r(ti)− 2,
we can perform a single delink operation and regard the situation as if we took
a root of rank r(ti)− 1. From here, we either want tomake sure nr(ti)−1(ti) = 0
so we can decrease the rank of the root and end, or make sure we have re-
established R1 without decreasing the root’s rank. At this point, we know the
following holds:

nr(ti)−1(ti) = 1

2 ≤ nr(ti)−2(ti) ≤ 7

If nr(ti)−2(ti) ≥ 5 we can solve the situation with a single link and end. Other-
wise we perform another delink on rank r(ti)− 1. If after this nr(ti)−1(ti) = 0
we can decrease the rank of t1 and end. Otherwise, we know the following
holds:

nr(ti)−1(ti) = 1

4 ≤ nr(ti)−2(ti) ≤ 7

Notice how the lower bound of nr(ti)−2(ti) got increased by two by this se-
quence of operations. We can perform it again, which will either solve the
problem or increase the lower bound by two again, leaving us in this state:

nr(ti)−1(ti) = 1

6 ≤ nr(ti)−2(ti) ≤ 7

If that happens to be the case, we can now solve the situationwith a single link
operation, after which nr(ti)−1(ti) = 2 and 3 ≤ nr(ti)−2(ti) ≤ 4 which means
R1 got re-established and we can end.

16

1.2. Brodal heap

1.2.7.3 Reducing the number of violations

This operation takes two potential violations (nodes in some violating set) of
a same rank n < r(t1)which are not roots or sons of roots and eithermakes one
of them good, ormakes both of them good and produces atmost one violation
of rank n + 1, thereby decreasing the total number of potential violations in a
heap by one in constant time.

We start by checking that both of the nodes (let’s call them x and y) are still
violations. If not, we remove the one that is not from its violation sequence and
end. Otherwise, we continue as follows. Because of O4, we know both x and
y has at least one sibling of the same rank. If the two nodes are not siblings
already, we can w.l.o.g. assume p(x) ≤ p(y) and swap the subtrees rooted at
x and the sibling of y. This cannot create a new violation, does not violate any
invariant and makes x and y siblings.

Since t1 is the smallest element in a heap, we can make any node good by
adding it under t1 as described in section 1.2.7.2. This operation tries to do
precisely that, making sure no invariant gets violated along the way.

If x and y have another sibling of the same rank, we can simply cut x off,
add it under t1, extract it from its violation set and end. This does not violate
O4 since there will still be two sons of the same rank. If x and y are the only
siblings of the same rank and they are not the sons of the highest rank of their
parent, we can cut off both of them, add them under t1 and end. This, again,
does not violate O4. The only case remaining now is when x and y are the
sons of the highest rank of p(x), in which case cutting them off affects the rank
of p(x) because of O3. To make sure this does not affect the node p(p(x)), we
cut all of the nodes x, y and p(x) from their parent and replace p(x) by a node
of the same rank that we can obtain from t1 as described in section 1.2.7.2. If
the replacement for p(x) is now a violating node we simply add it to W(t1),
make all x, y and p(x) good nodes of t1 and end.

1.2.7.4 Maintaining invariants O4 and R2

When we create a new violation x, we add it to W(t1), if r(x) ≤ r(t1) or V(t1)
otherwise. This might cause a violation of invariant O4 or R2.

To prevent violating R2, with each heap operation, we move a constant
number of sons of t2 to T1, increasing its rank. This allows us to create α
new big violations with each operation without violating R2. We can only
do this when T2 is not empty, but in cases where it is, t1 is guaranteed to be
the node of maximum rank, no new big violations cannot be created, and R2
cannot become violated in the first place.

When adding a new violation of rank n to W(t1), we notify its guide that
wn(t1) has been forced to increase. The guide then tells us at which ranks to
perform the violation reducing transformations to maintain O4. We actually
only do the transformation in cases where there are at least two violations of

17

1. Theoretical overview

that rank that are not sons of t2. If there are more than four nodes of the same
rank in W(t1) that are sons of t2, we just cut one, link it under t1 and remove
it from the violation set. This will not affect guides guiding R1 on t2.

1.2.8 High-level operations

With the lower level operations built, we can finally proceed to high-level
operations. Brodal heap supports the following six operations: MakeQueue,
FindMin, Insert, Meld, DecreaseKey and DeleteMin. First five are supported
in worst-case O(1), while the last one takes worst-case O(log n).

MakeQueue is trivial, returning a structurewhere both T1 and T2 are empty.
FindMin is simple because of invariant O1; we just return the element stored
in t1 assuming the heap is not empty. Furthermore, Insert is defined in terms
of Meld. We define the heap with a single element as a heap with one node as
a root of T1 storing that element. Insert then simply creates such a queue con-
taining the element to be inserted and then uses Meld to insert the element
in the original heap. Other three operations are explained in separate subsec-
tions:

1.2.8.1 Meld

Meld handles a maximum of four trees, two from each heap. First, the tree
with the smallest root is made the new T1. If this tree also happens to be the
tree of maximum rank, we add all other trees under t1 as described in section
1.2.7.2. If this is not the case, we make the tree of maximum rank T2 and link
the other trees under t2. Possibly we have to delink them if some other trees
have the same rank, but it is guaranteed that no more than three delinks are
necessary for each tree to lower its rank by one.

The last case we have to consider is when all trees are of rank 0, where
we could not use the procedure above as we cannot delink a tree of rank 0.
If Meld handles two trees of rank 0, it simply makes the one with smaller
root T1 and the other T2. If it handles more of them, it makes the one with
smallest root T1, increases its rank to 1 and adds the other two or three nodes
as its sons. We could not have done this in case of two rank zero trees because
we would violate invariant S4.

Finally, we drop the arrays and guides related to trees that are not roots
anymore after the Meld operation.

1.2.8.2 DecreaseKey

With the violation handling mechanisms from section 1.2.7.4 implemented,
the main invariant we have to worry about is O1 because we cannot allow any
element to be smaller than t1. If this is the case after a DecreaseKey operation
on a node x, we swap the element stored in x and t1. After that, if the node is
a violation, we handle the situation as described in section 1.2.7.4.

18

1.2. Brodal heap

1.2.8.3 DeleteMin

This is the only operation that is allowed to take worst-case O(log n) time.
First we make T2 empty by incrementally increasing the rank of t1. The new
minimum (we name the node m) is found by searching the sons of t1 (among
which is now the original t2) and its violation sequences. From the proofs of
lemmata 1.1, 1.2, 1.3 and 1.4, we know this is at the most O(log n) nodes to
search. If m is a violation, we swap it with a son of t1 of the same rank. This
might create a violation which for now we just call v we remember to solve it
later. Finally, we remove m from its violation set as it is not a violating node
anymore.

The node m is now a son of t1. We cut it from its parent and use the
procedure described in section 1.2.7.2 to re-establish invariant R1. We then
cut all sons of m (there is at mostO(log n) of them) from their parent and add
them below t1, again using the procedure from 1.2.7.2 to maintain R1 for t1.

Wenow take a sequencesW(t1),V(t1),W(m) andV(m), concatenate them,
adding the node v to one of them if v is a violation, and use a linear time
sorting algorithm such as pigeonhole sort [8] to sort them by their rank. We
know this sequence can be atmostO(log n) long and the highest ranking node
in the heap has a rank of at most O(log n), we know this will take at worst
O(log n) time. We now make this sequence into the new W(t1), emptying
V(t1),W(m) andV(m), and use the transformation described in section 1.2.7.3
atmostO(log n) times tomake sure wi(t1) ≤ 2 for all i ∈ 0, . . . , r(t1)− 1. Note
that we do not have to be strict about the two here, if the implementation
of the transformation from section 1.2.7.3 requires there to be at least three
nodes to function, we can increase the limit. As long as we will not increase
it above five, we do not violate O4, and we will not make the guide guiding
W(t1) invalid. This re-establishes invariant O4 for t1 if it has been invalidated,
and does not affect the validity of guide guiding wi(t1). It also re-establishes
invariant O2 and O3 for v if it became a violation after the swap with m at the
beginning.

At this point, all heap invariants have been re-established. Node m is nei-
ther in T1 nor in T2, it has no sons, and its violation sequences are empty. It
has no additional information useful for the rest of the heap and can safely
be deleted, together with the former smallest element it now holds. The root
of T1 now holds the next smallest element, and all heap invariants are satis-
fied.

This procedure assumes that we can always cut a son of t1 and re-establish
invariant R1 for it using the procedure described in section 1.2.7.2. There is one
important edge case where this is not true—when the heap contains exactly
three elements (we call them a, b and c and assume w.l.o.g. that a ≤ b ≤ c).
In this case, r(t1) = 1, t1 has exactly two sons, and there is no way of cutting
one of them without violating R1. This can be solved easily though, as we
can just delete a and make b and c rank zero roots of T1 and T2 respectively.

19

1. Theoretical overview

This resolves the edge case as it results in a valid heap, and does not affect the
asymptotic complexity of the DeleteMin operation.

20

Chapter 2
Implementation and

performance evaluation

2.1 Brodal heap

As a part of this thesis, an implementation of the structure described in section
1.2 in the C language is provided. The implementation has the following API:

typedef int (*bh_compare_pt)(void *, void *);

void bh_initialize(bh_heap_t *heap, bh_compare_pt compare);
void *bh_find_min(bh_heap_t *heap);
bh_tree_node_t *bh_insert(bh_heap_t *heap, void *elem);
int bh_meld(bh_heap_t *heap, bh_heap_t *other);
bh_tree_node_t *bh_decrease_key(bh_heap_t *heap,

bh_tree_node_t *node, void *elem);

bh_tree_node_t *bh_delete_min(bh_heap_t *heap);
void bh_delete(bh_heap_t *heap);

The first six functions implement respective high-level heap operations
from section 1.2.8, while bh_delete is a helper function that frees up all re-
sources allocated by heap during initialisation and operation. The heap is
represented by bh_heap_t and bh_tree_node_t represents a single node in
the heap. The implementation works for any comparable object as it takes
void * as the elements it stores and the only assumption it makes about the
elements is that they are comparable using the compare function provided to
bh_initialize. The return value of bh_decrease_key represents the node in
which the new elem is stored. It can be different from node as a consequence
of the way the operation works (more details on this are in section 1.2.8.2).

21

2. Implementation and performance evaluation

The return value of bh_delete_min represents the address of a node that got
freed up during the deletion and is no longer a part of the heap.

2.2 Performance evaluation

To assess a priority queue performance, I built a test suite that performs oper-
ations on the structure in a pseudorandomized fashion, measuring the dura-
tion of each operation and logging the result. Its core function is make_heap,
which takes a number of operations n, initialises an empty heap and an array
storing references to nodes for DecreaseKey, and performs one of the follow-
ing n times:

• Generate a pseudorandom number and insert it to the heap. Take the
node reference returned by the operation, store it to the helper array and
mark it valid.

• Choose a pseudorandom reference from the helper array and check its
validity. If it is not valid, choose another pseudorandom reference. Re-
peat this until a valid reference is chosen. If a valid reference has not
been chosen after a constant number of attempts, do nothing. Other-
wise, generate a pseudorandom number and, if it is smaller than the
element of the chosen node, perform the DecreaseKey operation on the
chosen node.

• If the heap is not empty, perform the DeleteMin operation on it. Find
the returned reference in the helper array and mark it invalid there.

Which operation is chosen depends on the output of a pseudorandom num-
ber generator. In my benchmarks, the first operation had 60% chance of hap-
pening, the second 30% and the last 10%. This ensures the heap will always
grow in size over time.

When the benchmark starts, first, a heap is created using the make_heap
function with parameter 10000. This will be the main heap for the duration
of the benchmark. Then the following operations are performed sequentially
in a loop:

• The DeleteMin operation is performed on the main heap.

• A new small heap is created using the make_heap function with param-
eter 1000 and is merged into the main heap using the Meld operation.

• The DeleteMin operation is performed on the main heap again.

The loop is repeated 100000 times to get as diverse measurements as possible.
The reason the DeleteMin operation is performed in the main loop as well as

22

2.3. Evaluation results

Table 2.1: Summary of the benchmark results

Brodal heap Fibonacci heap
mean sd mean sd

Insert 5.9 × 10−7 s 3.49 × 10−7 4.93 × 10−7 s 3.03 × 10−7

Meld 7.81 × 10−7 s 4.37 × 10−7 4.43 × 10−7 s 2.57 × 10−7

DecreaseKey 1.06 × 10−6 s 5.16 × 10−7 4.39 × 10−7 s 2.4 × 10−7

DeleteMin 6.49 × 10−6 s 2.66 × 10−6 3.93 × 10−6 s 1.83 × 10−6

in make_heap function is because this is the only operation that is asymptoti-
cally slower thanO(log n) and it is important to test its running time on bigger
heaps as well. Finally, the DeleteMin operation is called on the main heap un-
til it is empty. This tests how the heaps behave when consecutive DeleteMin
operations are performed on the heap, which is the case in some algorithms
using heaps such as heapsort [5]. The runtime of the consecutive deletions at
the end is logged separately from the runtimes of other DeleteMin operations.

2.3 Evaluation results
I choose the Fibonacci heap [7] for a comparison with the Brodal heap imple-
mentation I provided. The reason for this is that Fibonacci heap supports the
same set of operations as Brodal heap and their amortised asymptotic com-
plexitymatches theworst-case asymptotic complexity of the Brodal heap. The
main difference between the two is the Brodal heap being vastly more com-
plex, with many complicated internal bookkeeping mechanisms allowing for
its asymptotic optimality, which according to [2] makes the structure unlikely
to be applicable in practice. I choose the implementation of a Fibonacci heap
by [9].

I ran the benchmark described in section 2.2 on a PC with Intel Core i7-
3820QM CPU. The summary of its results is provided in table 2.1. We see
that on average, Brodal heap is slower during every operation: by 20% in
case of Insert, 65% in case of DeleteMin, 76% in case of Meld, and 141% in
case of DecreaseKey operation. Since the DeleteMin operation does not run
in a constant time given heap size, it is also interesting to see the relation
between its runtime and heap size. Figures 2.1 to 2.4 help to illustrate that.
Figures 2.1 and 2.2 were created with data only from DeleteMin operations
that happen in the main loop, whereas figures 2.3 and 2.4 show data from
the last part of the benchmark where the heap gets deleted by consecutive
DeleteMin operations, showing how the heap would behave if it were used
to implement the heap sort algorithm.

23

2. Implementation and performance evaluation

Figure 2.1: DeleteMin runtimes on Fibonacci heap given its size

Figure 2.2: DeleteMin runtimes on Brodal heap given its size

24

2.3. Evaluation results

Figure 2.3: Consecutive DeleteMin runtimes on Fibonacci heap given its size

Figure 2.4: Consecutive DeleteMin runtimes on Brodal heap given its size

25

Conclusion

In my thesis, I provided an implementation of Brodal heap, the first priority
queue achieving constant worst-case asymptotic complexity for all FindMin,
Insert, Meld and DecreaseKey operations, andworst case logarithmic asymp-
totic complexity for DeleteMin operation. I explained in detail how the struc-
ture works and how it achieves its optimal complexity, following through on
some aspects of the structure that were left unexplained in [2], such as the
details of guide operation, proofs of lemmata 1.1, 1.2, 1.3 and 1.4, or edge
cases concerning operations on the unguided portion of root’s sons in section
1.2.7.2.

I designed a simple benchmark and used it to compare my implementa-
tion of Brodal heap to an existing implementation of the Fibonacci heap by
[9]. Although I did find that the Brodal heap was the less efficient than the Fi-
bonacci heap, the relative disparity between the twowas smaller than initially
expected, especially given the disparity in the structure complexity, with the
Brodal heap implementation spanning over two thousand lines of C. Perfor-
mance of the Insert operation on the Brodal heap was the most surprising as
it was only 20% slower than its counterpart from Fibonacci heap.

An interesting problem for future work is to assess the performance of
newer worst-case efficient priority queues. Since Brodal’s paper in 1996, two
new priority queues matching Brodal heap’s asymptotic complexities were
discovered [3, 4]. With each being more simple than the original Brodal heap,
it would be interesting to see how would they fare against it in a practical
benchmark.

27

Bibliography

[1] Brodal, G.S., 2013. A survey on priority queues. In Space-Efficient Data
Structures, Streams, and Algorithms (pp. 150–163). Springer, Berlin, Hei-
delberg.

[2] Brodal, G.S., 1996, January. Worst-Case Efficient Priority Queues. In
SODA (Vol. 96, pp. 52–58).

[3] Brodal, G.S., Lagogiannis, G. and Tarjan, R.E., 2012, May. Strict fibonacci
heaps. In STOC (pp. 1177–1184).

[4] Elmasry, A. and Katajainen, J., 2012, July. Worst-case optimal priority
queues via extended regular counters. In International Computer Science
Symposium in Russia (pp. 125–137). Springer, Berlin, Heidelberg.

[5] Williams, J.W.J., 1964. Algorithm 232: heapsort. Commun. ACM, 7, pp.
347–348.

[6] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., 2009. Introduc-
tion to algorithms. pp. 191–193. MIT press.

[7] Fredman, M.L. and Tarjan, R.E., 1987. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM (JACM),
34(3), pp. 596–615.

[8] Black, P.E., pigeonhole sort, inDictionary of Algorithms andData Structures
[online], ed. 11 February 2019. (accessed 14 May 2019) Available from:
https://www.nist.gov/dads/HTML/pigeonholeSort.html

[9] Message, R., fibonacci, ed. 10 July 2018. (accessed 14May 2019) [online],
Available from: https://github.com/robinmessage/fibonacci

29

Appendix A
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src .. the directory of source codes

heap...implementation sources
thesis............... the directory of LATEX source codes of the thesis

text...the thesis text directory
thesis.pdf.............................the thesis text in PDF format

tools.................................various tools described in readme
data.tar.xz........................original datasets used for this thesis

31

	Introduction
	Theoretical overview
	Fibonacci heap
	Brodal heap
	Extendible array
	Guide
	Group destruction
	Handling forced increments
	Implementation remarks

	Heap structure
	Heap order
	Tree roots
	Implementation details
	Low-level operations
	Tree linking and delinking
	Maintaining invariant R1
	Reducing the number of violations
	Maintaining invariants O4 and R2

	High-level operations
	Meld
	DecreaseKey
	DeleteMin

	Implementation and performance evaluation
	Brodal heap
	Performance evaluation
	Evaluation results

	Conclusion
	Bibliography
	Contents of enclosed CD

