
Czeh Tehnial University

Faulty of Transportation Sienes

Department of Mehanis and Materials

Study �eld: Transportation Systems and Tehnology

Modular Multi-proess Control

Software for Experimental Devies

MASTER'S THESIS

Author: B. Válav Rada

Supervisors: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Year: 2019

Delaration

I hereby submit, for the evaluation and defene, the master's thesis elaborated at the

CTU in Prague, Faulty of Transportation Sienes.

I have no relevant reason against using this work in the sense of �60 of At No. 121/2000

Coll. on the Copyright and Rights Related to Copyright and on the Amendment to Certain

Ats (the Copyright At).

I delare I have aomplished my �nal thesis by myself and I have named all the soures

used in aordane with the Guideline on the ethial preparation of university �nal theses.

In Prague, May 25, 2019 ..

B. Válav Rada

2

Aknowledgements

The thesis has been supported by the Operational Programme Researh, Development

and Eduation in projet Engineering appliations of miroworld physis (CZ.02.1.01/

0.0/0.0/16_019/0000766) and by the Grant Ageny of the Czeh Tehnial University in

Prague (grant no. SGS15/225/OHK2/3T/16).

All the support is gratefully aknowledged.

B. Válav Rada

3

Title: Modular Multi-proess Control Software for Experimental

Devies

Author: B. Válav Rada

Study programme: Tehnology in Transportation and Teleommuniations

Study �eld: Transportation Systems and Tehnology

Degree: Master's Thesis

Year: 2019

Supervisors: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Department of Mehanis and Materials, Faulty of Transportation

Sienes, Czeh Tehnial University; Institute of Theoretial and

Applied Mehanis of the Czeh Aademy of Sienes

Abstrat: The proposed thesis enhanes the funtionality of the previous-

generation ontrol software developed in the Department of Me-

hanis and Materials and adds spei� ontrols essential for the

proper operation with newly developed experimental devies, suh

as the support for multiple sensors (load ells, temperature sen-

sors, et.), temperature ontrol, fore ontrol, et. The ontrol soft-

ware is a multi-proess appliation based on a multi-proess ore

whih results in a rapid performane inrease over the previous-

generation. Modular arhiteture of the user interfae enables the

very e�etive adaptation to various experimental devies. Cur-

rently, the ontrol software is fully utilised in ontrolling the experi-

mental devies in the department, numerous sienti� and engineer-

ing experiments have been performed and many valuable studies

have been published.

Keywords: LinuxCNC, Python Interfae, Python, ontrol software,

multiproessing

4

Název: Modulární multiproesová aplikae pro £ísliové °ízení ex-

perimentálníh za°ízení

Autor: B. Válav Rada

Studijní program: Tehnika a tehnologie v doprav¥ a spojíh

Obor: Dopravní systémy a tehnika

Druh práe: Diplomová práe

Rok vydání: 2019

Vedouí práe: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Ústav mehaniky a materiál·, Fakulta dopravní, �eské vysoké

u£ení tehniké v Praze; Ústav teoretiké a aplikované mehaniky

Akademie v¥d �eské republiky

Abstrakt: P°edloºená práe zdokonaluje funkionalitu p°edhozí generae

°ídiího software vyvinutého na Ústavu mehaniky a materiál·

a roz²i°uje jej o ovládaí prvky nutné pro °ízení nov¥ vzniklýh

experimentálníh za°ízení, jako je nap°. podpora m¥°ení p°i pouºití

dvou a víe silom¥r·, pouºití teplotníh £idel, teplotní a silové

°ízení apod. Nov¥ vyvinutý software je multiproesová aplikae,

která se opírá o robustní multiproesové jádro, oº zna£n¥ p°is-

pívá k vysokému výkonu aplikae. Modulární a dynamiky gen-

erované ovládaí prvky uºivatelského rozhraní umoº¬ují velmi

ryhlou a efektivní adaptai pro pouºití r·znýh experimentálníh

za°ízení. �ídií software je v sou£asné dob¥ pln¥ vyuºíván, byla díky

n¥mu provedena °ada v¥dekýh i inºenýrskýh m¥°ení a vznikla

°ada hodnotnýh publikaí.

Klí£ová slova: LinuxCNC, Python Interfae, Python, °ídií software,

multiproessing

5

Contents

1 Introdution 14

2 Theoretial bakground 16

2.1 Stepper motor . 16

2.1.1 Controlling stepper motors . 17

2.1.1.1 Open-loop ontrol system 19

2.1.1.2 Closed-loop ontrol system 19

2.2 Enoders . 20

2.2.1 Optial enoders . 20

2.2.2 Magneti enoders . 21

2.2.3 Inremental and absolute enoders 21

2.2.3.1 Absolute enoders . 21

2.2.3.2 Inremental enoders . 21

2.3 LinuxCNC . 22

2.3.1 Hardware abstration layer . 22

2.3.2 PID ontroller . 22

2.3.2.1 Proportional term . 23

2.3.2.2 Integral term . 23

2.3.2.3 Derivative term . 24

2.3.3 Hostmot2 driver . 24

2.3.4 User interfaes . 24

2.3.5 PyVCP . 24

2.3.6 GladeVCP . 25

2.3.7 Python Interfae . 25

2.3.8 Python HAL omponent . 25

6

2.4 Python . 25

2.4.1 Global interpreter lok . 26

2.4.2 Threading module . 26

2.4.3 Multiproessing module . 26

2.4.3.1 Multiproessing pipes . 27

2.4.3.2 Multiproessing queues . 27

2.4.4 PyQt . 28

2.4.4.1 Qt Creator . 28

2.4.4.2 Qt Designer . 28

2.4.4.3 User Interfae Compiler 29

2.4.5 PyQwt . 29

2.4.6 Matplotlib . 29

2.4.7 PyGnuplot . 29

3 Initial state 30

3.1 Straightforward adaptation to various experimental devies 31

3.2 Sensor support . 32

3.3 Displaement-driven experiments . 32

3.4 Obtaining and logging data . 32

3.5 Real-time plotting and stati plotting . 33

3.6 Overview . 33

4 Developed software 35

4.1 Introdution . 35

4.2 Performane gain . 35

4.2.1 Control software ore . 36

4.2.1.1 Stat Poller . 36

4.2.1.2 Data Logger . 38

4.2.1.3 Data Keeper . 38

4.2.1.4 Command Exeutor . 40

4.2.1.5 I/O Manager . 40

4.2.2 User Interfae . 40

4.2.2.1 Plotting performane benhmark 40

7

4.3 Custom Python sript exeution . 42

4.3.1 Unix domain soket . 44

4.3.2 Serialising modules . 44

4.3.2.1 Pikle and Pikle modules 44

4.3.2.2 JSON module . 45

4.3.2.3 List serialisation benhmark 46

4.3.2.4 Ditionary serialisation benhmark 49

4.3.2.5 Reapitulation . 51

4.4 Enhaned Funtionality . 51

4.4.1 Introdution . 51

4.4.2 Sensor support . 51

4.4.3 Axes position bar . 55

4.4.3.1 Enoder support . 55

4.4.3.2 G92 o�set . 56

4.4.3.3 Positioning error . 57

4.4.3.4 Homed status . 57

4.4.4 Plot plugin . 57

4.4.5 Fore ontrol . 59

4.4.5.1 Common ontrols . 61

4.4.5.2 Constant fore ommand tab 62

4.4.5.3 Linear fore ommand tab 63

4.4.5.4 Sine wave fore ommand tab 64

4.4.5.5 Square wave fore ommand tab 65

4.4.5.6 Triangle wave fore ommand tab 66

4.4.5.7 Sawtooth wave fore ommand tab 67

4.4.6 Temperature ontrol . 68

4.4.7 Rapo library . 70

5 Case Studies 71

5.1 Compression of a spongious sample in simulated physiologial onditions . 71

5.2 Frature analysis of sandstone . 74

6 Work in Progress 77

8

6.1 Remote ontrol . 77

6.1.1 TCP soket . 78

6.1.2 Server Manager . 78

6.1.3 Client Manager . 78

6.1.4 Remote user interfae . 81

6.1.5 Remote sript exeution . 81

7 Conlusion 84

Appendies 89

A Prime fatorisation sript 89

B Communiation shemes desription 94

C Plot omparison sript 99

D Serialising modules omparison sript 102

9

List of Figures

2.1 Stepper motor feed with and without mirostepping 17

2.2 STEP and DIR ontrol signals sheme . 18

2.3 STEP/DIR generated by a PC (CPU) . 18

2.4 STEP/DIR generated by a motion ontroller 18

2.5 Closed-loop ontrol system sheme . 19

2.6 Optial enoder sheme, taken and edited from [1℄ 20

2.7 PID ontroller feedbak loop . 23

2.8 Multithreaded exeution within a single proess 27

3.1 Axes position bars . 31

3.2 Plot plugin of the user interfae . 33

4.1 Results of the prime fatorisation benhmark 37

4.2 The developed ontrol software sheme . 38

4.3 The ontrol software ore inter-proess ommuniation sheme 39

4.4 The ontrol software user interfae sheme 41

4.5 Matplotlib and PythonQwt plot omparison results 42

4.6 The API provider and rapo library onnetion sheme 43

4.7 Python list serialisation performane omparison 47

4.8 Python list deserialisation performane omparison 47

10

4.9 serialised Python list size omparison . 48

4.10 Python ditionary serialisation performane omparison 49

4.11 Python ditionary deserialisation performane omparison 50

4.12 serialised Python ditionary size omparison 50

4.13 Experimental devie for the 4-point bending 52

4.14 Load ell sensor initialising �le ontent . 52

4.16 The plugin for handling the sensors . 53

4.15 Thermometer sensor initialising �le ontent 53

4.17 The axes position plugin of the user interfae 55

4.18 The axes position plugin of the user interfae with G92 o�set ative 56

4.19 The plot plugin of the user interfae . 57

4.20 Fore ontrol �owhart . 60

4.21 Fore ontrol plugin overall view . 61

4.22 Fore ontrol plugin ommon ontrols . 62

4.23 Constant fore ommand tab . 63

4.24 Linear fore ommand tab . 64

4.25 Sine wave fore ommand tab . 65

4.26 Square wave fore ommand tab . 66

4.27 Triangle wave fore ommand tab . 67

4.28 Sawtooth wave fore ommand tab . 68

4.29 Temperature ontrol �owhart . 69

4.30 Temperature ontrol plugin of the user interfae 70

5.1 Human bone speimen and loading devie 72

5.2 Loading devie exploded view in detail . 72

11

5.3 Loading devie exploded view in detail . 73

5.4 Overall view of the ontrol software . 74

5.5 Experimental devie for the 4-point bending mehanial test 74

5.6 Priniple of the 4-point bending and on-the-�y CT 75

5.7 Results of the sandstone analysis . 76

6.1 Sheme of the ontrol software remote ontrol 77

6.2 Control software ore with onnetion to the Server Manager inluded . . . 79

6.3 Server Manager and Client Manager inter-proess ommuniation sheme . 80

6.4 Remote user interfae arhiteture . 82

6.5 Remote API provider and rapo library onnetion sheme 83

12

Aronyms

CNC Computer Numerial Control.

CPU Central Proessing Unit.

CT Computed Tomography.

DVC Digital Volume Correlation.

FIFO First in, �rst out.

FPS Frames per seond.

GIL Global Interpreter Lok.

GUI Graphial User Interfae.

HAL Hardware Abstration Layer.

IDE Integrated Development Environment.

IPC Inter-proess Communiation.

JSON Javasript Objet Notation.

QML Qt Modeling language.

UIC User Interfae Compiler.

WYSIWYG what you see is what you get.

13

Chapter 1

Introdution

In reent years, Computer Numerial Control (CNC) systems have made an enormous

strides. CNC mahines have found utilisation in a wide range of appliations (industry,

mediine, et.). Industrial CNC mahines are typially aimed at the very e�etive and

preise manufaturing of parts with omplex shapes and have many other advantageous

appliations in various industrial �elds. There are many CNC software solutions, whih

vary in prie, performane or losed-soure ommerial (Siemens, FANUC, LabVIEW)

and open-soure solutions (LinuxCNC, Arduino - primarily for hobby operation).

Our researh group, in the Department of Mehanis and Materials in the Faulty of

Transportation Sienes at the Czeh Tehnial University and at the Institute of Theo-

retial and Applied Mehanis of the Czeh Aademy of Sienes, tends to use open-soure

solutions, beause the needs are di�erent from onventional industrial CNC appliations.

Custom experimental devies used for advaned mehanial testing of materials are de-

veloped in the department. Therefore, some properties of the CNC software have to be

operationally modi�ed aording to our requirements. For this purpose, losed-soure

ommerial CNC software is not suitable for use with the devies. The purpose of the

designs an be divided into three groups:

• mehanial loading mahines (e. g., in-situ loading devies for X-ray omputed to-

mography)

• positioning mahines (e. g., optis and sample positioning)

• sample preparation devies (e. g., automati grinders)

14

The devies are designed to be ompat and portable. The devies are equipped with

axes for the preise positioning in ooperation with high resolution enoders. Most of

the devies feature various sensors, suh as load ells and thermometers et., used for

measuring physial quantities, suh as fore or temperature.

For ontrolling the experimental devies, an open-soure system LinuxCNC is used in the

department. The open-soure system is free to use and its funtionality may be ustomised

and extended to �t our requirements with use of the Python programming language

through the LinuxCNC Python Interfae. The Python Interfae enables one to ontrol

the experimental devies diretly using Python.

The performane of the ontrol software is one of the key aspets in terms of reliablility

and preise measurement and data aquisition. Modern CPUs ontain numerous proess-

ing ores whih provide great omputing power when utilised properly in parallel. Another

requirement on the ontrol software is a modular design whih provides a very straight-

forward adaptation for use with various experimental devies operated in the department

inluding devies developed in the future.

The ontrol software proposed in the thesis is a multi-proess appliation with modular

features and ontrols developed in Python programming language. Currently, the ontrol

software is fully used for performing various types of mehanial tests with great suess

and, thanks to this, many studies have been published.

15

Chapter 2

Theoretial bakground

Experimantal devies operated at our department use various types of atuators. The

largest portion of them is equipped with stepper motors, due to their simpliity and low

ost. The devies are equipped with optial or magneti enoders whih provide position

feedbak. For ontrolling the devies an open-soure system LinuxCNC is used.

2.1 Stepper motor

A stepper motor is a brushless eletri motor, whih rotates in a number of equal steps.

A stepper motor primarily onsists of two parts: a stator and a rotor. The rotor is a

permanent magnet

1

of a gear shape with a given number of teeth. The stator onsist of

oils, whih an be magnetised in a ertain order by an eletri urrent and make the

rotor turn to the losest stable position.

Magnetising the oils in a ertain order is ahieved by a stepper motor driver. The stepper

motor driver takes low-level voltage impulses (ommonly 5 V) on the input and produes

a high-urrent signal whih is delivered to the oils in the motor. The impulses on the

driver input are usually in the form of STEP and DIR signals. A STEP signal is a square

shaped signal and eah STEP signal impulse

2

makes the rotor revolve to a �xed angle. This

angle is alled a step. Stepper motor drivers usually support a mirostepping funtionality

1

Besides permanent magnet (PM) stepper motors, other types suh as variable relutane (VR) and

hybrid synhronous stepper motors exist

2

Or rather eah rising or sinking edge of the STEP ontrol signal

16

time

fe
e

d

feed without microstepping

feed with microsteping

Figure 2.1: Stepper motor feed with and without mirostepping

whih provides a smoother motion of the stepper motor. In theory, the mirostepping may

inrease the motion preision in ase a load driven by the motor is well within its maximum

apaity, see Figure 2.1

The DIR signal determines the diretion of the stepper motor rotation. For instane, if the

DIR signal is equal to 0 V, the motor rotates lokwise and if the DIR signal is equal to

5 V, the motor rotates the other diretion - in this ase ounter-lokwise, see Figure 2.2.

2.1.1 Controlling stepper motors

Controlling stepper motors involve the preise generation of the STEP and DIR signals

for the stepper motor driver.

The simplest approah is to generate the signals by the Central Proessing Unit (CPU) of

a PC and deliver it to the driver using an output port (e.g., parallel port), see Figure 2.3.

However, this approah has a massive drawbak. In this ase, the signal generation is CPU-

bound, therefore, it is very dependent on the CPU workload and an exhibit signi�ant

lateny. If the CPU is stressed high, the STEP and DIR signals might not be generated

by the CPU preisely in time, hene the system is a�eted by exessive lateny.

Another approah is to generate STEP and DIR signals on a dediated motion ontroller

or another form of the real-time hardware layer. The motion ontroller enables dereasing

17

5V

5V

time

time

voltage

voltage

STEP signal

DIR signal

feed direction change

0V

0V

Figure 2.2: STEP and DIR ontrol signals sheme

PC
Driver

(amplifier)
Motor

 STEP/DIR position

(output)

Figure 2.3: Stepper motor ontrolling sheme, the STEP/DIR generator is a PC (CPU)

Motion

Controller
PC

Driver

(amplifier)
Motor

 STEP/DIRcommand

(input)

position

(output)

Figure 2.4: Stepper motor ontrolling sheme, the STEP/DIR generator is a motion on-

troller

18

Motion

Controller
PC

Driver

(amplifier)
Motor

 STEP/DIRcommand

(input)

Feedback

position

(output)

Feedback loop

Figure 2.5: Closed-loop ontrol system sheme

the system lateny as the STEP and DIR signals are generated by the motion ontroller

independently on a CPU workload. The sheme of this approah is shown in Figure 2.4

2.1.1.1 Open-loop ontrol system

Stepper motors have an inherent ability to ontrol the position, as the position an be

determined by the number of steps to rotate. This makes them very easy to use without

any feedbak enoder, but the lak of an enoder limits its performane. In an open-

loop ontrol system, the stepper motor an drive a load whih is well within its apaity,

otherwise using a stepper motor beyond the limits may lead into positioning errors due

to missed steps. An open-loop ontrol system sheme is shown in Figures 2.3 and 2.4

2.1.1.2 Closed-loop ontrol system

On the other hand, a losed-loop ontrol system is based on an open-loop ontrol system

onept, but has one or more feedbak loops. Closed loop systems are designed to auto-

matially produe and maintain the intended position (ommand) by omparing it with

the atual position (feedbak). The di�erene between the ommand and the feedbak de-

termines the error whih the ontrol system must ompensate for. A losed-loop ontrol

system sheme is shown in Figure 2.5

19

Figure 2.6: Optial enoder sheme, taken and edited from [1℄

2.2 Enoders

An enoder is a sensor or transduer that enodes a position to an analog signal, whih

an then be deoded by a motion ontroller bak into position. Enoders may work on

various physial priniples.

2.2.1 Optial enoders

Optial enoders are one of the most ommonly used enoders in automation appliations.

Optial enoders are based on light detetion as the light passes through an enoder wheel.

A soure of light (mostly LED) shines through an enoder wheel whih has a series of

slots in it. As the wheel rotates, the detetor detets light passing though the slots. Eah

detetion of the light exhibits the rotation of the enoder wheel by a de�ned angle. Optial

enoders an ahieve very high preision and are suitable for high feed rates. However,

optial enoders are sensitive to ontaminants suh as dust, liquid and grease, also to

shoks and vibrations, whih makes them inonvenient for use in industrial environments.

20

2.2.2 Magneti enoders

Magneti enoders employ a magnetised sale and a read head. The read head an use ei-

ther a Hall e�et or a magnetoresistive sensor to detet signals generated by the magneti

ode of the sale to provide position information. Unlike optial enoders, magneti en-

oders are more resistant to environmental impats, whih makes them more suitable for

use in dirty environments. However, the preision of magneti enoders is lower ompared

to optial enoders.

2.2.3 Inremental and absolute enoders

Positioning tasks require preise position values to monitor or ontrol the motion. In

many appliations, position sensing is undertaken using rotary enoders, also alled shaft

enoders or simply enoders. These sensors transform the mehanial angular position of

a shaft or axle into an eletroni signal that an be proessed by a ontrol system.

2.2.3.1 Absolute enoders

Absolute rotary enoders are apable of providing unique position feedbak from the

moment they are swithed on. This is aomplished by sanning the position of a oded

element. All positions in these systems orrespond to a unique ode. Even motion that

ours while the system is without power is translated into aurate position feedbak

one the enoder is powered up again.

2.2.3.2 Inremental enoders

Inremental rotary enoders generate an output signal eah time the shaft rotates a de�ned

angle. (The number of signals per turn de�nes the resolution of the devie.) Eah time

the inremental enoder is powered on it begins ounting from zero, regardless of where

the shaft is. The initial homing proedure to a referene point is, therefore, neessary in

all positioning tasks, both upon start up of the ontrol system and whenever power to the

enoder has been interrupted.

21

Experimental devies in the Department of Mehanis and Materials are ontrolled by an

open-soure system LinuxCNC.

2.3 LinuxCNC

LinuxCNC [2℄ is an open-soure software system for the numerial ontrol of CNC ma-

hines suh as lathes, milling mahines, utting mahines, robots, et. Due to the preise

ontrol of the CNC mahines, LinuxCNC requires real-time omputing apabilities whih

are provided by real-time extensions of the operating system.

LinuxCNC uses a Hardware Abstration Layer (HAL) to on�gure the ontrol system

hardware.

2.3.1 Hardware abstration layer

The hardware abstration layer [3℄ is a software subsystem whih provides hardware ab-

stration. It allows appliations to use the hardware of the system through a simple

and abstrat interfae. For instane, the Hostmot2 driver is a pakage for the Hardware

Abstration Layer whih provides abstration of Mesa Eletronis Anything I/O FPGA

ards, whih are used in our department. It features many other abstration omponents

suh as a PID ontroller, et. and also inludes various tools, suh as a virtual osillosope

to examine real-time signals.

2.3.2 PID ontroller

A PID (proportional�integral�derivative) ontroller [4℄ is a ontrol loop based on a feed-

bak mehanism widely used in industrial ontrol systems and various other appliations

requiring ontinuous ontrol. A PID ontroller ontinuously alulates an error value e(t)

as the di�erene between the measured proess variable y(t) and the desired setpoint

r(t), see Formula 2.1. It applies a orretion based on proportional (P), integral (I), and

derivative (D) terms whih onstitute the manipulated variable u(t), see Formula 2.2 and

22

Figure 2.7: PID ontroller feedbak loop

Figure 2.7.

e(t) = r(t)− y(t) (2.1)

u(t) = Kp · e(t) +Ki ·

∫ t

0

e(τ)dτ +Kd ·
de(t)

dt
(2.2)

2.3.2.1 Proportional term

The proportional term P = Kp · e(t) is proportional to the urrent value of e(t). The

oe�ient Kp is a proportional gain. The proportional term is the fundemantal term

of the PID ontroller. The value of the proportional gain Kp is ritial to the response

rate and system stability. The proportional term alone annot ahieve a stable deviation

between the ommand and feedbak, so other terms are used.

2.3.2.2 Integral term

The integral term I = Ki ·

∫ t

0
e(τ)dτ reords the past values of e(t) and intergrates them

gradually to alulate the I term. Using this term allows one to reah a stable deviation

between the ommand and feedbak, often in exhange for a longer settling time.

23

2.3.2.3 Derivative term

The derivative term D = Kd ·
de(t)
dt

estimates the future trend of e(t). The derivative term

represents the predition element of the ontroller and allows the settling time to be

shortened and the system response smoothened.

2.3.3 Hostmot2 driver

Hostomot2 [5℄ is an open-soure driver developed by Mesa Eletronis for FPGA Anything

I/O motion ontrol ards. It provides modules suh as STEP/DIR generators, PWM

generators, enoders (quadrature ounters), et. whih an be loaded into HAL to onnet

these module instanes to the I/O headers.

2.3.4 User interfaes

LinuxCNC omes natively preinstalled with various Graphial User Interfaes (GUIs),

suh as Axis - default user interfae [6℄, Touchy - user interfae used with touhsreens [7℄,

et. Preinstalled user interfaes are primarily designed for industrial CNC appliations,

therefore, they are not suitable for use with the ustom experimental devies developed in

our department beause extended futionality is needed. User interfaes with additional

funtionality an be developed using LinuxCNC omponents suh as PyVCP or Glade-

VCP or it an be developed in the Python programming language based on the LinuxCNC

Python Interfae.

2.3.5 PyVCP

PyVCP (Python Virtual Control Panel) [8℄ is a pakage whih provides additional fun-

tionality to native LinuxCNC GUIs. It is based on the same GUI toolkit (Tkinter) as the

Axis user interfae. PyVCP enables adding a ustom panel on the right side of the Axis

user interfae. However, PyVCP is limited to setting and displaying HAL internals only.

24

2.3.6 GladeVCP

GladeVCP (Glade Virtual Control Panel) [9℄ is a LinuxCNC omponent whih also extends

funtionality to native LinuxCNC GUIs. It uses Glade whih is a WYSIWYG graphial

user interfae designer. GladeVCP is based on the GTK user interfae toolkit. Unlike

PyVCP, GladeVCP is not limited to interating with HAL only, as an arbitary Python

ode an be exeuted.

2.3.7 Python Interfae

LinuxCNC Python Interfae [10℄ enables one to ontrol devies diretly using Python

programming language by providing the linuxn module for Python. The module is

ompatible with Python version 2.x and module usage is very straightforward. It provides

observing status variables of HAL suh as axes position, axes veloity, analog/digital

inputs/outputs and sending ommands to it through Python. It uses three operating

hannels: a status hannel, a ommand hannel and an error hannel.

2.3.8 Python HAL omponent

Custom variables of HAL suh as enoder position an be observed using the ustom HAL

omponent [11℄ ompatible with Python. For this purpose, the hal module for Python an

be used. It provides onnetion whih an be linked with HAL and share variables using

the onnetion.

2.4 Python

Python [12℄ is an interpreted programming language supporting multiple programming

paradigms suh as objet-oriented, funtional, proedural and imperative. Python is a

high-level programming language, it provides dynami typing and automati memory

management by using garbage olletor.

In 2019, Python features two inompatible versions, Python 2.x and Python 3.x. Python

3.x was �rst introdued in 2008 and is planned to replae Python 2.x in 2020 when Python

25

2.x will no longer be maintained by the developers. However, some Python modules are

not forward ompatible yet, suh as the linuxn module, see subhapter 2.3.7 whih

might be an obstale in upgrading from Python 2.x to Python 3.x.

Python has multiple implementations suh as CPython, Jython, IronPython, et. CPython

is the default and most ommonly used implementation of Python. CPython implemen-

tation is written in the C programming language and Python.

2.4.1 Global interpreter lok

Python default implementation CPython has a signi�ant performane limitation due

to the use of the Global Interpreter Lok (GIL) [13℄ whih is a thread-safe mehanism

to prevent parallel exution by threads within an interpreter proess. It means that the

Python threads annot bring a performane gain by parallel exeution, beause the thread

needs to aquire the lok in order to exeute any instrution, so a multi-threaded exeution

annot be faster than a single-threaded

3

, see Figure 2.8. When the thread exeutes a

ertain number of Python virtual instrutions or a spei� time period elapses, the GIL

is released and aquired by another thread.

2.4.2 Threading module

The threading module provides a high-level threading interfae. Python threads are some-

times alled light-weight proesses as they do not require muh memory overhead. Multiple

threads within the same proess share the same data spae. It enables Python threads to

share variables so they omuniate with eah other muh more easily than if they were

separate proesses. However, Python threads are limited by the GIL, see subhapter 2.4.1.

2.4.3 Multiproessing module

The multiproessing library provides the ability to spawn separate Python proesses using

an interfae similar to the threading module. The module enables the true parallel exeu-

3

Certain omputational performane-oriented libraries suh as NumPy, SiPy might overome this

limitation in partiular ases

26

Thread 1

Thread 2

Thread 3

run

run

run

time
I

releasing
GIL

acquiring
GIL

Figure 2.8: Multithreaded exeution within a single proess

tion of a Python ode and may utilise multiple CPU ores. However, Python proesses have

distributed memory (does not share data spae) whih makes the interation and om-

muniation between Python proesses (Inter-proess Communiation (IPC)) hallenging.

The multiproessing library provides various types of Inter-proess ommuniation meh-

anisms suh as Queues, Pipes and synhronisation primitives suh as loks.

2.4.3.1 Multiproessing pipes

A multiproessing pipe is one of the simplest types of IPC. It only onnets two proesses

with eah other. The pipe is bidiretional by default. It may also be unidiretional, thus

it only allows sending messages by one proess (produer) and only allows reeiving the

messages by the other proess (onsumer).

2.4.3.2 Multiproessing queues

A multiproessing queue is a multi-produer, multi-onsumer First in, �rst out (FIFO)

queue, i.e., unlike multiproessing pipes, it enables the onnetion between multiple pro-

27

esses. It is implemented using multiproessing pipes and loks/semaphores and a feeder

thread. When data is put to the queue by a proess, the data �rst omes to queue bu�er

and then the feeder thread distributes the data to the multiproessing pipe leading to the

appropriate proess.

2.4.4 PyQt

PyQt [14℄ is a binding

4

of a Qt framework for Python. The Qt framework is a robust

toolkit used for GUI development as well as multi-platform appliations. Qt framework

inludes various development tools, suh as the Qt Creator, the Qt Designer and the User

Interfae Compiler.

2.4.4.1 Qt Creator

Qt Creator is a C++ Integrated Development Environment (IDE) whih is part of the

Qt framework. Qt Creator provides features suh as syntax highlighting, autoompletion,

a visual debugger and integrates the Qt Designer for designing and building GUIs from

Qt widgets

5

.

2.4.4.2 Qt Designer

Qt Designer is a tool inluded in the Qt framework [15℄ whih is used for designing and

building GUIs in a WYSIWYG fashion. The GUI design an be saved in a platform-

independent, XML-formatted (or rather QML

6

) �le with *.ui extension. The �le ontains

the whole user interfae de�nition, whih an be ompiled into a soure ode using the

User Interfae Compiler.

4

Binding is a wrapper library that bridges two programming languages. For instane it enables one to

use a library developed in C/C++ programming language with Python.

5

Widget is the foundation of all objets of the GUI.

6

Qt Modeling language (QML) is a markup language used by the Qt framework for GUI delaration

28

2.4.4.3 User Interfae Compiler

The User Interfae Compiler (UIC) is a tool for ompiling GUIs designed by the Qt De-

signer into a soure ode. The UIC natively ompiles the *.ui �le into a header �le for use

with the C++ programming language. In order to ompile the *.ui �le into the Python

soure ode, PyQt provides a tool PyUIC whih operates the UIC likewise.

2.4.5 PyQwt

PyQwt [16℄ is a Python binding for the Qwt (Qt Widgets for Tehnial Appliations) [17℄

library. Qwt extends the Qt framework with widgets aimed at engineering and sienti�

appliations, suh as a widget to plot 2-dimensoinal data. It also features dials, ompasses,

thermometers, sliders, wheels or knobs to ontrol or display values, et.

2.4.6 Matplotlib

Matplotlib [18℄ is a plotting library for Python whih produes publiation quality �gures

in various formats, suh as *.svg, *.eps, *.pdf, et. It inludes bakends for use with various

widget toolkits, suh as Qt and GTK.

2.4.7 PyGnuplot

PyGnuplot [19℄ is a Python wrapper for Gnuplot [20℄. Gnuplot is a multi-platform plotting

library. It enables the generation of two-dimensional and three-dimensional �gures and

displays them diretly on sreen or saves them in various high quality image formats suh

as *.svg, *.eps, et.

29

Chapter 3

Initial state

In 2017, a �rst-generation ontrol software for experimental devies operated in the De-

partment of Mehanis and Materials in the Faulty of Transportation Sienes at the

Czeh Tehnial University and at the Institute of Theoretial and Applied Mehanis

of the Czeh Aademy of Sienes was developed as part of my Bahelor's thesis [21℄.

The ontrol software was based on the Python Interfae of the open-soure system Lin-

uxCNC [2℄. The ontrol software was developed using the Python programming language

version 2.7. For user interfae development, the Qt framework version 4.8, in ooperation

with Python binding PyQt was used.

The main features of the �rst-generation ontrol software are:

• straightforward adaptation to various experimental devies

• sensor support

• obtaining and logging data

• real-time plotting and stati plotting

• displaement-driven experiment proedures

30

Figure 3.1: Axes position bars

3.1 Straightforward adaptation to various experimen-

tal devies

The devies operated in our department are equipped with ommon parts suh as an

atuator, an enoder, limit swithes and with appliation spei� equipment suh as a

load ell, et. Eah experimental devie omes with its own LinuxCNC initialising �le.

The initialising �le satis�es the devie spei�s, therefore, it is essential for the proper

ontrol software operation. The �le inludes various parameters speifying, for instane,

the number of axes, whih type of hardware is used for the data aquisition, et.

The ontrol software was designed as a set of separate plugins. There are plugins for om-

mon features of all devies suh as an emergeny-stop (E-STOP) button, a power button,

a home position button, axes position display bars, fore display bar, et. On the other

hand, there are plugins for spei� appliations suh as a plugin for a displaement-driven

experiment, et. The user interfae and the plugins inside of it are generated dynami-

ally based on the mahine initialising �le. For instane, the parameters AXES_ACTIVE

and AXES_UNITS orrespond with the axes position diplay bars.

31

3.2 Sensor support

The ontrol software has been used to ontrol the laboratory devies in order to observe

the mehanial properties of materials by obtaining data samples of physial quantities

suh as the fore, position, et. In our department, load ells based on strain gauges are

used for fore measurement.

For proper sensor use, eah sensor is haraterised by a set of onstants (sensitivity, range,

overload fator, et.) and the ontrol software must take them into aount. In ase of load

ells, these ontants refer to the tensometri bridge properties inside the load ell. The

ontrol software features an interfae for one fore sensor only whih beame a signi�ant

limitation (e.g., one of the newly developed experimental devies in our department,

the four-point bending devie [22℄ operates with two loading units and eah of them is

equipped with a fore sensor).

3.3 Displaement-driven experiments

The ontrol software enables one to perform displaement-driven experiments only. The

displaement-driven experiment is a fundamental type of mehanial testing. The defor-

mation of an experimental sample during the experiment is ontrolled by a rosshead

movement. The displaement-driven experiment is very simple to perform, however it

annot be adjusted based on the sample response during the experiment.

3.4 Obtaining and logging data

The ontrol software inludes a disrete thread to obtain data, suh as the fore, the axes

position, et. Eah data sample inludes a unique timestamp to provide a time referene.

The data samples are obtained in a loop with typialy 0.02 seonds period within the

loop whih results in a sampling rate of 50Hz. The data samples are periodially saved to

a text-based output �le.

32

Figure 3.2: Plot plugin of the user interfae

3.5 Real-time plotting and stati plotting

In order to visualise the data, the ontrol software features a plotting funtionality. It

enables the real-time plotting (replotting the data periodially) and stati plotting, see

Figure 3.2. The user an on�gure the plotting parameters, suh as the real-time plot

refresh timeout, data series, et.

It is based on the matplotlib library whih produes high quality �gures, however mat-

plotlib has signi�antly limited performane whih has beome a drawbak espeially for

real-time plotting.

3.6 Overview

The �rst-generation ontrol software has been used in the Department of Mehanis and

Materials in the Faulty of Transportation Sienes at the Czeh Tehnial University and

at the Institute of Theoretial and Applied Mehanis of the Czeh Aademy of Si-

enes for two years in full operation.

The most signi�ant limitation of the ontrol software is the sampling rate performane

and the real-time plot performane due to the Python threads. It features two disrete

threads within a single Python proess. The �rst thread obtains and saves the data,

the other thread is used for the real-time plotting. Referring to the GIL, the Python

threads annot bring any performane gain by the parallel exeution in this senario, see

subhapter 2.4.1. Furthermore, the plotting library matplotlib is not very suitable for

performane-oriented real-time plotting.

The ontrol software does not feature displaying enoder feedbak within the axes position

bars, see Figure 3.1. In order to display the enoder feedbak, an external GladeVCP panel

33

is neessary to be used. The ontrol software features support for a single fore sensor and

the plotting of a single data series whih has beome a limitation with a wider portfolio

of experimental devies operated in the department.

Some of the newly developed experimental devies require support for multiple fore sen-

sors or support of various types of sensors apart from fore sensors, suh as thermometers.

Moreover, these devies require more sophistiated and modular experimental proedures

suh as fore-driven experiments, et. for proper utilisation.

34

Chapter 4

Developed software

The new-generation ontrol software developed as part of this Master's thesis is the su-

essor to the �rst-generation ontrol software desribed in the previous hapter.

4.1 Introdution

The main objetive of the ontrol software development was to improve performane,

primarily the sampling rate and the real-time plot refresh rate apabilities. This required

overoming the Python threads limitations ouring in the �rst-generation ontrol soft-

ware by using separate Python proesses instead of the threads. Furthermore, with a

wider portfolio of experimental devies operated in the department, new demands for

funtionality ame up.

4.2 Performane gain

Python proesses enable the parallel exeution of the Python ode whih may result

in a rapid performane inrease. To demostrate the performane di�erene between the

Python threads and the Python proesses, a simple sript for a benhmark was reated,

see Appendix A. The benhmark is based on a prime fatorisation of a range of numbers

utilising multiple threads or multiple proesses and omparing the exeution time. The

prime fatorisation benhmark was performed on a range of 1 million integers and run on

35

the Intel Xeon W-2145 �4.5 Ghz (8-ore, 16-thread) CPU. The result of the benhmark

is shown in Figure 4.1.

The results on�rm, that the Python threads do not bring any performane inrease. In

fat, the Python threads have a negative impat on the performane due to the swithing

between the threads (releasing and aquiring the GIL, see subhapter 2.4.1). The results

also prove that the performane may be inreased by the parallel exeution of the ode

using separate Python proesses.

The developed ontrol software is based on a multi-proess ore onsisting of proesses

with various funtionality and a single-proess user interfae. Besides the multi-proess

ore and the user interfae, the ontrol software inludes two more proesses. The Server

Manager proess whih is desribed in detail in subhapter 6.1 and the API Provider

proess whih is desribed in subhapter 4.3. The ontrol software arhiteture is shown

in Figure 4.2.

4.2.1 Control software ore

The ontrol software ore onsists of �ve proesses: a Stat Poller, a Command Exeutor,

a Data Logger, a Data Keeper and an I/O Manager. Eah proess has a dediated queue

for reeiving and proessing messages from other proesses. Therefore, the multi-proess

ore is able to utilise multiple CPU ores, whih led into a sampling rate inrease from

50Hz up to 500Hz ompared with the �rst-generation ontrol software. A detailed sheme

of the ontrol software ore is shown in Figure 4.3. A further desription of the sheme

an be found in Appendix B.

4.2.1.1 Stat Poller

The Stat Poller proess is one of the ruial proesses of the ontrol software. It is based on

the status hannel and the error hannel of the LinuxCNC Python Interfae. The status

hannel provides aess to all status variables of the devie, the error hannel heks if

any error ourred. The Stat Poller extends the status hannel funtionality by inluding

an interfae for reading sensors the output signal, et. It supports sensors operating on

an eletrial signal whih is proportional to the applied exitation voltage (millivolts per

36

Figure 4.1: Results of the prime fatorisation benhmark

37

�✁✂✁ ✄☎✆✆✝✞
✟☎✠✠✂✡☛

☞✌✝✍✎✁☎✞

✏✂✁✂

✑☎✒✒✝✞

✏✂✁✂

✓✝✝✔✝✞

✕✖✗

✘✂✡✂✒✝✞

✙✚✛✜✢✚✣ ✤✚✥✜✦✧✢★ ✙✚✢★ ✩✢✧✪✫✬✭✧✣ ✮✯★✢ ✰✛✜★✢✥✧✭★

✱✲✕ ✟☎✞✝

✱✲✕ ✔✆✎✒✳✡ ✴

✱✲✕ ✔✆✎✒✳✡ ✵

✱✲✕ ✔✆✎✒✳✡ ✡✶✴

✱✲✕ ✔✆✎✒✳✡ ✡

✤★✢✷★✢ ✸✧✛✧✹★✢ ✺✻✰ ✻✢✚✷✬✼★✢

✽✟✄ �☎✍✾✝✁ ✲✡✳✌ ✏☎✠✂✳✡ �☎✍✾✝✁

Figure 4.2: The developed ontrol software sheme

volts output signal).

The proess periodially alls the poll method of the LinuxCNC Python interfae status

hannel and the error hannel to obtain the status variables of the devie, the eventual

errors and reads out the sensors output signal. The proess then sends the obtained

variables to other proesses of the ontrol software ore, suh as the Data Logger and

Data Keeper and to the user interfae.

4.2.1.2 Data Logger

The Stat Poller proess sends the obtained data to a queue leading to the Data Logger

proess. The Data Logger reeives the data and saves is periodially to a plain-text-based

output �le.

4.2.1.3 Data Keeper

The Data Keeper reeives the data from the Stat Poller and keeps it in an array. It provides

a simple post-proessing funtionality, suh as a �oating average. The Data Keeper then

sends the data, for instane, to the user interfae in order to show the data in a graph.

38

S��� ������

1

Command

E���	���

2

5

6

7

8

Data

L�

��

Data

K�����

I�

M���
��

3

4

9

11

12

1�

13

14

Figure 4.3: The ontrol software ore inter-proess ommuniation sheme

39

4.2.1.4 Command Exeutor

The Command Exeutor is a proess based on the ommand hannel of the LinuxCNC

Python Interfae. It provides the exeution of the dynamially generated Python string

ommands using the exe statement.

4.2.1.5 I/O Manager

The I/O Manager provides the ommuniation with the real-time HAL using the Python

HAL omponent (see subhapter 2.3.1) or using analog and digital inputs/outputs. The

Python HAL omponent is, for instane, used for experiments driven by non-linear dis-

plaement or fore-driven experiments, see subhapter 4.4.5.

4.2.2 User Interfae

The user interfae of the ontrol software runs separatedly from the ontrol software ore

whih results in a performane inrease on the side of user interfae as well. It is a single-

proess objet onneted with the ontrol software ore using various queues. The user

interfae is built ontop of user interfae ore, whih provides all neessary funtionality

for ommuniation with the ontrol software ore, see Figure 4.4 and Appendix B.

The user interfae is designed as a set of separate plugins, whih gives it an ability to be

modular and makes it very e�etively adjustable for partiular appliations. One of the

plugins is a plotting plugin whih has been a signi�ant limitation of the �rst-generation

ontrol software, as it was developed on top of the matplotlib bakend for the Qt frame-

work. The plotting plugin of the new-generation ontrol software is built on top of the

PythonQwt library whih provides more plotting performane over the matplotlib.

4.2.2.1 Plotting performane benhmark

To demostrate the plotting performane di�erene of PythonQwt and matplotlib, a simple

benhmark was performed. It was run on the Intel Xeon W-2145 �4.5 Ghz (8-ore, 16-

thread) CPU. The benhmark is based on plotting a single period of a sinus funtion

f(x) = sin(x). The sript used for the benhmark is shown in Appendix C.

40

�✁✂ ✄☎✆✝

✞✞

✞✟

✠

✡

☛

✞

✟

☞

✌

�✁✂ ✍✎✏✑✒✓ ✞

�✁✂ ✍✎✏✑✒✓ ✟

�✁✂ ✍✎✏✑✒✓ ✓✔✞

�✁✂ ✍✎✏✑✒✓ ✓

Figure 4.4: The ontrol software user interfae sheme

41

Figure 4.5: Matplotlib and PythonQwt plot omparison results

Unlike matplotlib whih is written entirely in Python, PythonQwt is a Python wrapper (or

binding) for the Qwt library whih is written in C++, so it an deliver more performane

over the matplotlib library.

The performane inrease also enabled the new-generation plot plugin to plot multiple

data series in real-time.

4.3 Custom Python sript exeution

The ontrol software also allows sending ommands to the ontrol software ore through

an external Python sript. The external Python sript exeution an be used for the

automated measurement, et.

The ommuniation of the external Python sript with the ore was implemented by an

API Provider proess whih is onneted with the ontrol software ore using queues, see

Figure 4.2 and Figure 4.6 and Appendix B.

The external Python sript is onneted with the API Provider proess using the ustom

42

������ ��������

� ���� ! "�� $�% " &

import rapo

� ' ("!()!"!*) "+, '���"+, '-"++($)

) s "��.�)!"!/ (��!(s0"$)(5

' s "��.'���"+,/5

� *�,"!()!"!*) 6" �"%$()

).��$$/5

� 7(! $�)! �8 (:*���(,)(+)�)

).)(+)�);"'!*"$/5

� (:*��)(+)� +"�(, <$�",'($$<

'.$�'c;)(+)�)/=<$�",'($$<>?=@>5

A�B �C�DF�GC

HJ

HN

HO

8

7

H

P

J

N

U�FQ R���F� T��VG�

C�r� WFXC�C�

HY

U�FQ R���F�

Socket

HY

Figure 4.6: The API provider and rapo library onnetion sheme

43

rapo library (see subhapter 4.4.7) whih features a Unix domain soket.

4.3.1 Unix domain soket

The Unix domain soket (or inter-proess ommuniation soket) is a ommuniation

endpoint for sending messages between proesses running on the same host system. Unix

domain sokets share the same semantis as network sokets, but Unix domain sokets do

not onnet via a hostname and port. They onnet using a �le system, thus, the whole

ommuniation ours entirely within the operating system.

In order to send Python data objets suh as a list, ditionary, et. through the Unix

domain soket, the data objet must be �rstly serialised into a stream of bytes format

whih an be pushed through the soket.

4.3.2 Serialising modules

Python features various serialising modules suh as pikle, Pikle, json, et. whih

provide protools for serialising and deserialising Python data objets.

4.3.2.1 Pikle and Pikle modules

The pikle module is part of the Python standard library and is widely used for seriali-

sation in Python. However, it is written entirely in Python whih limits its performane

and the data format used by pikle is Python-spei�, therefore, it is not suitable for

appliations with interoperability requirements.

The Python standard library also features a Pikle module whih provides the same

futionality as the pikle module. Unlike pikle, Pikle is written in the C programming

language, so Pikle gives more performane than pikle whih makes it more suitable for

performane-oriented appliations. Pikle and Pikle feature various serialising protools:

• Protool 0 is the original ASCII protool whih is human-readable and is bakwards

ompatible with other versions of Python.

44

• Protool 1 is an obsolete binary format whih is also bakwards ompatible. It has

been substituted by protool 2.

• Protool 2 was introdued with Python version 2.3 and is the highest protool of

Python 2.x. It provides muh more e�ient serialisation of the new-style lasses.

1

• Protool 3 was introdued in Python 3.0. It has expliit support for bytes objets

and annot be unpikled by Python 2.x.

• Protool 4 was added in Python 3.4. It is the highest protool of Python 3. It

adds support for very large objets, pikling more kinds of objets, and data format

optimisations.

4.3.2.2 JSON module

Javasript Objet Notation (JSON) is a standardized format used for serialising data ob-

jets to a human-readable format. Unlike pikle and Pikle, JSON is a language inde-

pendent data format derived from JavaSript.

It uses onventions that are ompatible with programming languages inluding C, C++,

C#, Java, JavaSript, Perl, Python, and many others. These properties make JSON an

ideal serialising format for appliations with data-interhange and interoperability require-

ments.

The proposed ontrol software is entirely developed in Python programming language,

thus, any data-interhange apability is not required. The only requirement for the seri-

alising module used within the developed software is to provide as muh performane as

possible. For that reason a benhmark omparing the serialising performane and memory

onsumption of the serialised objet was performed.

The benhmark is based on serialising and deserialising Python list and ditionary objets.

These objets were hosen purposefully as they are the data objets transfered through

the Unix domain soket.

1

A new-style lass inherits from the objet lass and is a reommended option for reating a lass in

modern Python.

45

The list used for the serialisation benhmark was a range of one million integer numbers

and the ditionary onsisted of one million (key, value) pairs. In ase of the pikle and

Pikle modules, the performane of the di�erent serialising protools was also benh-

marked. In addition to the performane benhmark, the size of the serialised data objet

is also a signi�ant fator in terms of the memory onsumption and data transfer per-

formane, so the size of the serialised objet was also ompared. The whole sript used

for the benhmark is inluded in Appendix D. The benhmark was run on the Intel Xeon

W-2145 �4.5 Ghz (8-ore, 16-thread) CPU.

4.3.2.3 List serialisation benhmark

List serialisation performane is shown in Figure 4.7. The benhmark results show that

the serialisation of the Python list using the pikle module is signi�antly slower regard-

less of the used serialising protool ompared to the JSON module or even the Pikle

module. The Pikle module was able to provide the best performane out of the tested

modules. Unlike pikle, the Pikle performane di�ered depending on the serialising pro-

tool used. CPikle protool 0, whih is the default protool is the slowest out of the

protools tested but it gives a omparable performane with JSON. Pikle protools 1

and 2 have signi�antly better performane than Pikle protool 0 and JSON.

In the ase of the deserialisation performane, Pikle shows the best performane, the

same as during the serialisation task. JSON performane is slightly lower, whereas the per-

formane of the pikle module is inomparably worse. The list deserialisation performane

is shown in Figure 4.8.

An additional aspet of the serialising module omparison was the serialised objet size.

The size of the objet a�ets the data transfer performane and memory onsumption.

Pikle and Pikle protools 1 and 2 serialise the data to a binary format whih is the

least memory-intensive ompared to protool 0 or JSON. Protool 0 and JSON produe

a human-readable ASCII-based format whih onsumes more memory ompared to the

binary format. The results of the serialised objet size omparison is shown in Figure 4.9.

46

Figure 4.7: Python list serialisation performane omparison

Figure 4.8: Python list deserialisation performane omparison

47

Figure 4.9: serialised Python list size omparison

48

Figure 4.10: Python ditionary serialisation performane omparison

4.3.2.4 Ditionary serialisation benhmark

Besides the list serialisation perfomane omparison, a ditionary serialisation was also

benhmarked. The results are very similar to the list serialisation. When it omes to

the ditionary serialisation, the pikle module exhibits signi�antly worse results during

the ditionary serialisation when ompared to the Pikle and JSON modules. CPikle

protool 0 is slightly faster than JSON and in general the Pikle protools are the fastest.

The performane di�erene between Pikle protools 1 and 2 is marginal, see Figure 4.10.

The Pikle module delivers the best ditionary deserialisation performane likewise in the

list deserialisation task. JSON is seond with a large gap, the worst results were ahieved

by the pikle module, see Figure 4.11.

In relation to the memory onsumption, the JSON module has the lowest demands, the

demands of Pikle protools 1 and 2 are slightly higher. The serialised ditionary by the

pikle module is approximately twie as large in size, see Figure 4.12.

49

Figure 4.11: Python ditionary deserialisation performane omparison

Figure 4.12: serialised Python ditionary size omparison

50

4.3.2.5 Reapitulation

The list and ditionary serialisation/deserialisation benhmarks pointed out that Pikle

is the most suitable module for performane-oriented appliations. Espeially Pikle pro-

tools 1 and 2 deliver muh more performane ompared to the pikle and JSON modules.

The developed ontrol software does not require any interoperability apabilities as it is

developed using the Python programming language only. The aim of the ontrol software

is to provide as muh performane as possible whih makes Pikle a perfet andidate

for the serialising module. The benhmarks showed that Pikle is the most performane-

oriented serialising module out of the benhmarked modules. In partiular, the Pikle

protool 2 ful�ls the performane requirements the best so it was hosen as the serialising

module for the developed ontrol software.

4.4 Enhaned Funtionality

4.4.1 Introdution

The need to develop the proposed ontrol system was not motivated by the performane

limitations only, but also by progress in the devie's onstrution and the use of advaned

experimental proedures.

Sine the �rst-generation software has been developed, various new experimental devies

have been onstruted whih also involved developing a new set of funtionality features,

suh as the support for multiple and various types of sensors or advaned experimental

proedures, et.

4.4.2 Sensor support

One of the newly developed experimental devies was a loading devie intended to perform

4-point bending experiments [22℄. This involves the usage of two load ells whih the �rst-

generation ontrol software did not support, see Figure 4.13.

51

Figure 4.13: Experimental devie for the 4-point bending

The new-generation ontrol software supports a theoretially unlimited number

2

of sen-

sors. Moreover, another experimental devie [23℄ involves the support for di�erent types

of sensors (load ells and thermometers) in terms of measuring the physial quantities,

due to simultaneous fore measurement and irulating �uid temperature measurement.

Eah sensor is identi�ed and initialised by the ontrol software using its own initialising

�le with a spei� header and parameters. The header (the �rst line of the initialising

�le starting with a # sign) determines the type of the sensor (load ell, thermometer,

et.), the parameters inside the �le desribe the important sensor parameters neessary

for the realiable and preise measurement, suh as sensitivity, et. The load ell initialising

�le ontent is shown in Figure 4.14, the thermometer initialising �le ontent is shown in

Figure 4.15.

Figure 4.14: Load ell sensor initialising �le ontent

2

For the sensor signal readout a LabJak T7 Pro (Labjak Corporation, USA) is used whih features

up to 14 analog input hannels. With this data aquisition setup, the ontrol system is able to handle up

to 14 sensors, whih is the hardware limitation.

52

Figure 4.16: The plugin for handling the sensors

Figure 4.15: Thermometer sensor initialising �le ontent

These initialising �les are loaded into a ontrol software sensor database during the ontrol

software startup. The sensors plugin of the ontrol software user interfae provides the

funtionality for operating the sensors, see Figure 4.16.

The plugin for handling the sensors inludes omboboxes

3

used to selet atual sensors

from the list of the loaded sensor initialising �les. Underneath these �elds are spinboxes

4

to speify a �oating average window width, see the red boxes in Figure 4.16. The �oating

average is used to eliminate noise whih may our in the data. Based on initialising �le

ontents of the hosen sensors, the display bars of the sensors are dynamially generated,

see the blue boxes in Figure 4.16.

The display bar of the load ell (the upper blue box in Figure 4.16) onsists of a label

5

for

displaying the atual fore with [N] units. The display bar of the load ell also features

3

QCombobox is a seletion widget that displays the urrent item and an pop up a list of seletable

items.

4

QSpinBox allows the user to hoose a value by liking the up/down buttons or pressing up/down

on the keyboard to inrease/derease the value urrently displayed. The user an also type in the value

manually.

5

QLabel is a widget used for displaying the text or an image.

53

various signalisation mehanisms. For instane, it provides a diode

6

signaling whether the

load ell is in ontat with the tested sample. If the atual fore is greater than the value

of the CONTACT parameter in the load ell initialising �le, the diode hanges from grey

to orange. The other diode is used for the load ell overload signalisation. If the atual

fore is below the value of the RANGE parameter, the diode remains grey. When the

fore exeeds the RANGE limit, the diode beomes orange. If the fore even exeeds

the RANGE ∗ OV ERLOAD value, the diode beomes red to signal the eventual load

ell damage if the load ontinues to inrease further. The ontrol software automatially

triggers the E-STOP (emergergeny-stop) proedure and stops the mahine to prevent the

load ell damage whenever the load ell ould be in danger due to a high load. The display

bar inludes a tare button

7

whih tares the load ell based on the last data samples. The

number of samples used for determining the tare value depends on the data aquisition

rate and on the signal noise.

Unlike the load ell display bar, the display bar of the thermometer (the bottom blue box

in Figure 4.16) inludes a label for displaying the atual temperature with [◦C] units. Any

other funtionality is not needed.

The sensors plugin also inludes two buttons to lok and unlok the sensors, see the green

box of in Figure 4.16. The lok button is used to set the hosen sensors and start reading

values from them. Until the sensors are not set/loked, all the ontrols of the user interfae

exept the E-STOP and POWER buttons remain disabled, unable to send any ommands

to the ontrol software ore for safety reasons. The button for unloking the sensors has

inverse funtionality. It unloks the sensors whih have been loked previously in order to

stop reading sensor values or lok other sensors.

At the bottom of the sensors plugin a measured data status bar is loated. The status bar

provides simple information about the measurement, suh as the data aquisition rate, the

time elapsed by the measurement, the number of data samples obtained and the memory

onsumed by the data, see the purple box in Figure 4.16.

6

A diode image put in the QLabel

7

The QPushButton is perhaps the most ommonly used widget in any graphial user interfae. Pushing

it (lik) makes the button ommand the omputer to perform some ation.

54

4.4.3 Axes position bar

The axes position bar is a plugin of the user interfae to show the atual position of the

axes. It provides further information, suh as the axis oordinate and axis units, see the

purple box in Figure 4.17. The plugin also features labels to show the atual position stated

by the LinuxCNC motion interpreter, see the value in bold in the red box in Figure 4.17.

The plugin also indiates the atual position perentagewise using a progress bar

8

, i.e., if

the atual position reahes the minimum axis limit, the progress bar indiates 0 %. If the

atual position reahes the maximum limit, the progress bar indiates 100 %. The axis

minimum and maximum limits are shown within the plugin as well, see the orange boxes

in Figure 4.17.

Figure 4.17: The axes position plugin of the user interfae

The �rst-generation ontrol software did not feature any funtionality for showing the en-

oders position diretly in the axes position bar. It was done using an external GladeVCP

omponent, see subhapter 2.3.6.

4.4.3.1 Enoder support

The newly developed experimental devies are mostly equipped with multiple enoders.

An enoder is a devie whih provides the position feedbak, see subhapter 2.2 and

subhapter 2.1.1.2.

The new-generation ontrol software enables one to show enoders's position within the

axes position bars (see the value in bold in the blue box in Figure 4.17) instead of using the

external GladeVCP omponent. This required aessing the real-time HAL from Python

8

QProgressBar is used to give the user an indiation of the progress. The progress bar uses the onept

of steps. It is set up by speifying the minimum and maximum possible step values, and it will display

the perentage of the steps that have been ompleted.

55

in order to obtain the enoder position. It was ahieved by linking the enoder position in

HAL to the analog input of the LinuxCNC Python interfae whih an be aessed from

Python diretly.

4.4.3.2 G92 o�set

The G92 ommand of the G-ode

9

is used to set the start position (origin) o�set for one

or more axes. The �rst-generation did not support this funtionality at all. The o�set

funtinality is useful for the measurement to set the origin of the oordinate system when

the experimental devie reahes ontat with the sample. Thus the experimental proedure

begins with the position equal to zero.

The atual position and enoder position display areas (see the red and blue boxes in

Figure 4.17) onsist of two values eah. The values are separated by a slash. The value to

the left of the slash is the absolute atual position of the axis. The value to the right of the

slash is the G92 position whih is relative to the shifted origin of the axis. In Figure 4.17,

the atual and the G92 positions are equal whih means that the G92 o�set is zero. If the

G92 o�set is present (i.e., the G92 o�set is a non-zero value), the G92 position beomes

bold to signal that the axis origin has hanged.

Figure 4.18: The axes position plugin of the user interfae with G92 o�set ative

In Figure 4.18, the G92 o�set is shown. The absolute axis position equals 2.000 µm, the

G92 position (the position relative to the new axis origin) equals 0.000 µm. In this ase,

the G92 o�set equals 2000 µm, see Figure 4.18.

9

G-ode is a ommon name for the most widely used numerial ontrol (NC) programming language.

It is mainly used in omputer-aided manufaturing to ontrol automated mahine tools.

56

4.4.3.3 Positioning error

If an axis is equipped with an enoder, the positioning error an be determined. The

positioning error is de�ned as the di�erene of the position given by the LinuxCNC motion

interpreter and the position given by the feedbak enoder. It is displayed within the axes

position bar as well, see the brown box in Figure 4.17. The smaller the positioning error,

the more preise the positioning is.

4.4.3.4 Homed status

The axes position bar of the new-generation ontrol software also provides additional

information, suh as whether the axis is homed (i.e., a referene point has been found).

Eah axis should be homed properly in order to provide preise positioning. The axes

position plugin displays the HOMED text if the axis is homed, otherwise it displays the

UNHOMED text, see the yan box in Figure 4.17.

4.4.4 Plot plugin

One of the main disadvantages of the �rst-generation ontrol software was its limited

real-time plot performane. The plot performane of the new-generation ontrol software

has been signi�antly improved thanks to the ontrol software arhiteture desribed in

subhapter 4.2.

Besides the performane improvement, the plot plugin of the user interfae has been

extended with new funtionality.

Figure 4.19: The plot plugin of the user interfae

57

One of the on�guring parameters of the plot is the plot time window w, see the red box in

Figure 4.19. The plot time window de�nes the time period of the past data samples shown

within the plot. Another parameter is the plot resolution r. The resolution de�nes the

number of data samples to plot within a single seond of the plot time window. The higher

the plot resolution, the more demanding the plotting is in terms of hardware resoures

due to larger number of data samples, see the blue box in Figure 4.19. Total number of

the data samples n within the plot an be determined as:

n = w · r, (4.1)

where w is the plot time window and r is the plot resolution. The total number of the

samples is used for the real-time plot performane predition in formula 4.2.

The plot enables plotting of a multiple data series. The data series of the plot an be

dynamially added with a plus sign button or removed with ross sign button, see the

purple box in Figure 4.19. The data series share the same X-oordinate, the Y-oordinate

is spei� to the data series, see the green and orange boxes in Figure 4.19.

The plot plugin also features simple real-time proessing funtionality, suh as a �oating

average. The smooth input �eld parameter de�nes the �oating average window. If the

smooth parameter equals 1, the �oating average does not take e�et due to the �oating

average window size. When using the �oating average real-time proessing, it is important

to take the inreased omputational demands into onsideration. Therefore, the �oating

average window size is limited up to 1000.

For the real-time plotting performane predition, the plot plugin provides a simple indi-

ator showing the possible Frames per seond (FPS), see the yellow box in Figure 4.19.

The FPS predition is based on the plotting performane of the PythonQwt library. The

results of the PythonQwt plotting benhmark (see subhapter 4.2) have been used to �nd

a linear funtion:

T (n) = K ·C · (A ·n+B), (4.2)

where the funtion T desribes the time period needed to plot n data samples. Coe�ients

A and B are given by linear regression based on the plotting benhmark. Coe�ient

C de�nes the number of data series in the �gure and oe�ient K is a safety fator.

58

The safety fator is primarily used to balane the user interfae overall performane and

�ueny. In most of the appliations, the safety fatorK = 3, whih reserves one third of the

hardware resoures to the real-time plotting funtionality. One the plotting parameters

are on�gured, the real-time plot starts by using the start plot button, see the brown box

in Figure 4.19.

Besides the real-time plotting funtionality, the plot plugin also provides stati plotting.

The stati plotting is realised separately from the user interfae using the external plotting

tootkit Gnuplot in ooperation with the Python wrapper PyGnuplot, see subhapter 2.4.7.

4.4.5 Fore ontrol

Another enhanement of the new-generation ontrol software over the �rst-generation is

the support for fore-driven experiments. An experiment an be driven by a onstant

fore ommand or by a fore funtion. The ontrol software uses the load ell feedbak

to alulate the axis veloity to opy the ontrol ommand. The fore ontrol enables

the ontrolling of the loading fore independently to the displaement, thus, adapting the

loading to a partiular sample.

The fore ontrol is realised using the PID ontroller featured by HAL, see subhapter 2.3.2

and Figure 4.20. The setpoint r(t) of the PID ontroller may be various time-dependent

fore funtions, suh as a linear funtion, periodi waves or a onstant value. The error

e(t) is de�ned as the di�erene of the setpoint r(t) and the atual fore y(t) measured by

the load ell. Based on the proportional, intergral and derivarive terms, the manipulated

variable u(t) is determined. The manipulated variable u(t) is the veloity ommand for

the LinuxCNC motion interpreter. Based on the motion veloity u(t), the measured fore

(output variable) is a�eted.

59

�✁✂✄☎ ✄✁✆✝✂✁✞

☎✆✟✠✞☎✡

☛✝✟✂✝

☛☎✝☞✁✌✆✝✍ ✎✏✑✒

☞✌✡ ✄✁✆✝✂✁✞✞☎✂✍ ✓✔✕ ✓✖✕ ✓✗

✆✁ ✂☎✟✡ ✘✏✑✒

✙☎☛

☎✆✡

✚✏✑✒ ✛ ✎✏✑✒ ✜ ✘✏✑✒

☞✌✡ ✄✁✆✝✂✁✞✞☎✂

✢✏✑✒ ✛ ☞ ✣ ✌ ✣ ✡

✤✟✆✌☞✥✞✟✝☎✡ ✦✟✂✌✟✠✞☎

✏✤✁✝✌✁✆ ✦☎✞✁✄✌✝✙ ✄✁✤✤✟✆✡✒

✢✏✑✒

Figure 4.20: Fore ontrol �owhart

The fore ommand plugin onsists of ontrols ommon to all fore ommand funtions,

suh as sine, square, triangle and sawtooth waves (see the red box in Figure 4.21) and

multiple tabs, eah tab is dediated to a spei� fore ommand funtion (see the blue

box in Figure 4.21).

60

Figure 4.21: Fore ontrol plugin overall view

4.4.5.1 Common ontrols

Some ontrols of the fore ontrol plugin are ommon to all the fore ommand tabs, see

Figure 4.22.

61

Figure 4.22: Fore ontrol plugin ommon ontrols

These ontrols onsist of a button

10

to start or stop the fore ontrol measurement, see the

red box in Figure 4.22. The button inludes a diode to signal the fore ontrol status. If the

fore ontrol is disabled, the diode remains grey. When the fore ontrol is ativated, the

diode beomes green. The fore ontrol features a PID ontroller whih outputs a veloity

ommand. The maximum motion veloity is an attribute of the axis whih annot be

exeeded. The value of the maximum motion veloity is signalled in the ommon ontrols

area, see the green box in Figure 4.22. The PID ontroller maximum output veloity might

be adjusted by setting the ustom veloity limit to the PID ontroller, see the blue box

in Figure 4.22.

4.4.5.2 Constant fore ommand tab

The fore ontrol plugin features a onstant fore ommand tab. The onstant ommand is

on�gured by putting the fore value in a double spinbox

11

, see the red box in Figure 4.23.

The seond parameter of the onstant ommand is the ommand duration. When the fore

ontrol is enabled a timer is trigerred. When the duration time expires, the fore ommand

is set bak to zero and the proedure automatially stops.

10

QToolButton is a speial button that provides quik-aess to spei� ommands or options. As

opposed to a normal ommand button, a tool button usually does not show a text label, but shows an

ion instead.

11

QDoubleSpinBox allows the user to hoose a value by liking the up and down buttons or by pressing

Up or Down on the keyboard to inrease or derease the value urrently displayed. The user an also

type in the value manually.

62

Figure 4.23: Constant fore ommand tab

4.4.5.3 Linear fore ommand tab

Loading aording to the linear funtion is another fore ommand funtion F (t) = A · t+

B implemented in the fore ommand plugin. The linear funtion is de�ned by slope A

in [N/s] units, see the red box in Figure 4.24 and by o�set B in [N] units, see the blue

box in Figure 4.24.

In order to visualise the fore ommand as a funtion of time, a simple plot window is

inluded, see the orange box in Figure 4.24. The plot window may be adjusted by the plot

width parameter, see the purple box in Figure 4.24. As the fore ontrol is started, the

fore given by the fore ontrol funtion starts to grow. The user may de�ne a duration

parameter whih automatially stops the fore ontrol when a ertain ammount of time

elapses, see the geen box in Figure 4.24.

63

Figure 4.24: Linear fore ommand tab

4.4.5.4 Sine wave fore ommand tab

The fore ontrol plugin inludes various periodi fore ommand funtions. The most

ommonly used periodi fore ommand is the sine wave funtion.

The sine wave fore ommand funtion is de�ned as:

F (t) = A · sin(2 ·π · f · t+ ϕ) +B, (4.3)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequeny (the

number of yles per seond), ϕ is the phase shift and B is the o�set.

These parameters may be adjusted using spinboxes within the sine fore ommand tab,

see the red, blue, purple and green boxes in Figure 4.25. The fore ontrol funtion is

visualised using a simple plot window, see the orange box in Figure 4.25. The number

of periods shown within the plot window may be adjusted as well, see the grey box in

Figure 4.25.

64

In order to start the fore ontrol, the number of yles (periods) must be quanti�ed. As

soon as the number of yles is reahed, the fore ontrol automatially stops, see the

brown box in Figure 4.25.

Figure 4.25: Sine wave fore ommand tab

4.4.5.5 Square wave fore ommand tab

Another periodi fore ommand funtion is the square wave funtion. The square wave

fore ommand funtion is de�ned as:

F (t) = A · sgn sin(2 ·π · f · t+ ϕ) +B, (4.4)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequeny (the

number of yles per seond), ϕ is the phase shift and B is the o�set.

The square wave parameters may be adjusted similarly to the previously introdued pe-

riodi funtion and the input �elds of the user interfae for the parameters have the same

65

layout as well, see subhapter 4.4.5.4 and Figure 4.26.

Figure 4.26: Square wave fore ommand tab

4.4.5.6 Triangle wave fore ommand tab

The triangle wave fore ommand funtion is de�ned as:

F (t) =
2 ·A

π
· arcsin [sin (2 ·π · f · t+ ϕ)] +B, (4.5)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequeny (the

number of yles per seond), ϕ is the phase shift and B is the o�set.

The triangle wave parameters may be adjusted similarly to the previously introdued

periodi funtion and the input �elds of the user interfae for the parameters have the

same layout as well, see subhapter 4.4.5.4 and Figure 4.27.

66

Figure 4.27: Triangle wave fore ommand tab

4.4.5.7 Sawtooth wave fore ommand tab

The sawtooth wave fore ommand funtion is de�ned as:

F (t) = −

2 ·A

π
· arctan

[

1

tan (π · f · t + ϕ)

]

+B, (4.6)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequeny (the

number of yles per seond), ϕ is the phase shift and B is the o�set.

Adjusting the sawtooth wave parameters is the same as in the ases of the other periodi

funtions, see subhapter 4.4.5.4 and Figure 4.28.

67

Figure 4.28: Sawtooth wave fore ommand tab

4.4.6 Temperature ontrol

The newly developed experimental devies also allow one to perform an experiment with

the sample put in a ontrolled enviroment, beause the mehanial properties of a material

may vary dramatially based on enviromental onditions. To simulate these onditions, an

observed sample an be submerged in a irulating liquid, suh as a simulated body-�uid,

arti�ial blood, water, degradation solutions - aids et., with ontrolled temperature.

To ontrol the temperature, the newly developed devie is equipped with a heating plate.

When the heating plate is under voltage, it heats the �uid to inrease the temperature. As

soon as the measured temperature y(t) reahes the temperature setpoint r(t), the heating

plate is ut o� from the voltage. Then the �uid starts to ool down to the ambient

temperature. When the �uid temperature omes down to the setpoint minus hysteresis

value r(t)− h(t), the heating plate is put under voltage to inrease the �uid temperature

68

bak again, see the temperature ontrol �owhart in Figure 4.29.

�✁✂✄ ☎✆✝�✞✆✟

✁✝✠✡✟✁☛

☞�✠✞�

☞✁�✄✆✌✝�✍ ✎✏✑✒ ✓ ✔✕✖✗ ✘☎

✙✚☞�✁✞✁☞✌☞✍ ✛✏✑✒ ✓ ✗✖✜ ✘☎

✝✆
✞✁✠☛ ✢✏✑✒

✎✏✑✒✣✛✏✑✒✤✢✏✑✒

✚✁☞

✎✏✑✒✥✓✢✏✑✒

✚✁☞ ✚✁☞

✝✆ ✝✆

✁✝☛

✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✆✄ ✙✁✠�✌✝✦

✚✁☞

✝✆

✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✠✞� ✙✁✠�✌✝✦

✝✆

✚✁☞ ✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✆✄ ✙✁✠�✌✝✦

✚✁☞

✝✆

Figure 4.29: Temperature ontrol �owhart

In order to keep the temperature within the whole loop (the so-alled Bioreator) uniform,

the devie is also equipped with a pump whih irulates the �uid. These new features

required developing a plugin for the user interfae with a spei� set of ontrols.

The plugin of the user interfae features a button to swith on and swith o� the pump,

see the red box in Figure 4.30. The button inludes a diode to signal whether the pump

is swith on. Until the pump is swithed, the diode remains grey. When the pump is

69

swithed on, the diode beomes green.

Another button inluded in the plugin is used to swith on and swith o� the temperature

ontrol funtionality. The button also inludes a diode signalling whether the temperature

ontrol is ative. When the temperature ontrol is ativated, the diode beomes green,

otherwise it remains grey, see the blue box in Figure 4.30.

The plugin features another diode, signalling whether the heating plate is under voltage to

heat the �uid. When the heating plate starts heating, the diode beomes orange, otherwise

it remains grey, see the green box in Figure 4.30.

The temperature setpoint needed for the temperature ontrol may be adjusted using a

spinbox within the temperature ontrol plugin, see the purple box in Figure 4.30.

Figure 4.30: Temperature ontrol plugin of the user interfae

4.4.7 Rapo library

The ontrol software omes with ustom developed Python library whih allows one to

send ommands to the ontrol software ore from an external Python sript, see Figure 4.6.

The library features the Unix domain soket onneted with the API provider proess.

The rapo library arhiteture is inspired by the LinuxCNC Python Interfae. It inludes

various status hannels and a ommand hannel. The status hannels provide status vari-

ables of the devie, variables related with the measurement, suh as the measured data,

et. The ommand hannel allows one to send ommands to the experimental devie from

the Python sript in order to automate the experimental proedure.

70

Chapter 5

Case Studies

The newly developed ontrol software found utilisation in ontrolling various experimental

devies at the department and numerous experiments were suessfully performed. Some

of the experiments are presented in this hapter.

5.1 Compression of a spongious sample in simulated

physiologial onditions

In this study [23℄, an in-house designed table top loading devie equipped with a biorea-

tor

1

is used for the in-situ ompression of a human-bone sample in simulated physiologial

onditions, see Figures 5.1 and 5.2.

Fast on-the-�y 4D Computed Tomography (CT) together with a fast readout semiondu-

tor detetor are used as the tools for the advaned volumetri analysis of the deforming

mirostruture of the speimen, see Figure 5.3. Digital Volume Correlation (DVC) is em-

ployed as the method for the 3D strain analysis of the bone struture under loading.

The loading devie with the bioreator was plaed onto the rotary stage of the CT sanner.

The geometry of the CT sanner was adjusted to a fous-objet distane of 60 mm and

a fous-detetor distane of 300 mm. Thus, the nominal magni�ation was 5× with the

1

The bioreator is part of the loading devie whih an simulate the physiologial onditions (temper-

ature and �ow) and it an be either used as an autonomous devie or as an optional modular part of the

loading devie.

71

orresponding pixel size of 15 µm.

The displaement-driven ompression of the speimen was onduted at a onstant loading

veloity of 0.25 µm/s. After the initial ompression, three loading/unloading yles were

performed in the fore range of 200 N − 400 N. At the end of the experiment, the struture

was ompressed to the nominal engineering strain of 2 %. The overall duration of the

experiment was 3200 s.

(a) Tested human bone spe-

imen

(b) Speimen submerged

in the simulated body

�uid

() Cutaway view of the in-situ

loading devie with bioreator

Figure 5.1: Human bone speimen and loading devie

Figure 5.2: Loading devie exploded view in detail

72

Figure 5.3: Loading devie exploded view in detail

The newly developed features of the ontrol software used to perform the experiment

involve the simultaneous fore and temperature measuring funtionality desribed in detail

in subhapter 4.4.2 and the temperature ontrol with the ontrolled �ow of the simulated

body �uid, see subhapter 4.4.6.

During the experiment all of the features inluding the real-time plotting worked as it was

supposed to. The data samples obtained by the ontrol software were suessfully logged

and exported to the plain-text �le. The ontrol software proved that it is apable of on-

trolling the experimental devies reliably, without any issues and the results showed that

the measured data is orret. Overall view of the ontrol software during the experiment

is shown in Figure 5.4.

73

Figure 5.4: Overall view of the ontrol software

5.2 Frature analysis of sandstone

In this study, an in-house designed experimental devie is used for the 4-point bending of

weathered sandstone samples. The experimental devie features two loading units, eah

of whih is motorised by a stepper motor and equipped with a load ell. The frame of the

devie is made of high-strength aluminium alloy and arbon omposite, see Figure 5.5.

Figure 5.5: Experimental devie for the 4-point bending mehanial test

74

The devie is intended to be used for the 4-point bending mehanial test paired with

a CT sanner to perform on-the-�y 4D CT during the bending, see Figure 5.6. The CT

sans may be used for the 3D strain analysis using the DVC.

Figure 5.6: Priniple of the 4-point bending and on-the-�y CT

The sandstone samples were very fragile, therefore a preise positioning was required,

espeially when approahing a ontat fore. The ontat fore was set to 5 N as the on-

stant fore ontrol funtion. Maximum veloity (maximum output of the PID ontroller)

was set to 10 µm/s. As the loading units reahed the ontat fore, a displaement-driven

experiment started. The loading veloity was 1 µm/s and the experiment stopped when

the sandstone sample was broken in half.

Numerous series of sandstone samples were observed. Some of the samples were weathered

by water, some of them were weathered by ie, some of the samples were observed intat.

Results of the experiments are shown in Figures 5.7.

75

Figure 5.7: Results of the sandstone analysis

76

Chapter 6

Work in Progress

Currently, the ontrol software is still being developed. New features are being imple-

mented, suh as a remote ontrol.

6.1 Remote ontrol

The remote ontrol apabilities of the ontrol software allow the user to ontrol the ex-

perimental devies over the network in a lient-server fashion, see Figure 6.1.

Z[\]^_`]abde

device

Control

unit

Remote

fg

TCP/IP

(client) (server)

Figure 6.1: Sheme of the ontrol software remote ontrol

The ontrol unit physially ontrolling the experimental devie ats like a server. The

ontrol software ore, inluding all the real-time demands and seurity proedures, suh

as limit swith supervision or load ell overload inspetion, run within the ontrol unit.

The remote PC is used to send ommands or requests for variables

1

to the ontrol unit

using the TCP stream soket.

1

Variables, suh as status variables, error status, measured data, et.

77

6.1.1 TCP soket

A soket programming interfae provides the routines required for interproess ommu-

niation between the appliations, either on the loal system (Unix domain soket, see

subhapter 4.3.1) or spread in the TCP/IP based network environment. The TCP/IP

onnetion is de�ned as an internet address (IPv4 or IPv6) and a port numerial value.

TCP sokets provide a reliable, nearly error-free data pipe between two endpoints. Both

of the devies an send and reeive streams of bytes so a serialising module must be used

when sending the data struture, suh as a Python list or ditionary, see subhapter 4.3.2.

One devie, known as the lient, reates a soket, onnets to the server, and then begins

sending and reeiving data. On the other side, the server reates a soket and listens for

the inoming onnetion from the lient. One a onnetion is initiated, the server aepts

the onnetion, and then starts to send and reeive data to and from the inoming lient.

The ontrol software inludes a proess of the so-alled Server Manager. The Server man-

ager is onneted with other proesses within the ontrol software ore whih makes the

ontrol software arhiteture more omplex than desribed in Figure 4.3, see Figure 6.2

and Appendix B.

6.1.2 Server Manager

The Server Manager proess is part of the ontrol software running within the ontrol

unit. It provides remote aess over the network to the ontrol software ore using the

TCP soket, see Figure 6.3 and Appendix B. The TCP soket of the Server Manager an

be aessed by the remote PC through the so-alled Client Manager proess.

6.1.3 Client Manager

The Client Manager proess runs within a lient appliation on the remote PC and pro-

vides all funtionality needed for ommuniation with the Server Manager proess running

inside the ontrol unit. The lient appliation inludes the Client Manager proess whih

is onneted with the remote user interfae and with the remote API provider proess.

78

hiji klmmno

p

Command

qtnuvilo

w

5

6

7

8

Data

xlyyno
zjij {nn|no

I/O

Manager

3

4

9

11

12

10

13

14

16

17

18

19

20

21

22

23

24

25

Figure 6.2: Control software ore with onnetion to the Server Manager inluded

79

}~��~� �����~�

24

25

23

22

21

1

2

3

4

��� ����~�

19

20

18

17

16

26

���~�� �����~�

29

30

28

27

31

32

33

34

��� ����~�

35

40

41

42

43

44

36

37

38

39

Figure 6.3: Server Manager and Client Manager inter-proess ommuniation sheme

80

6.1.4 Remote user interfae

The remote user interfae is onneted with the Client Manager using multiproessing

queues. One a ommand is sent from the remote user interfae, it reahes the Client

Manager whih adds an identi�ation stamp to the ommand and sends it through the

TCP soket to the Server Manager running within the ontrol unit. The Server Manager

reeives the ommand and reads the identi�ation stamp. Based on the identi�ation

stamp, the Server Manager puts the ommand to an appropriate queue leading into a

proess suitable for exeuting the ommand.

Due to this identi�ation stamp mehanism, the developed user interfae may be on-

neted either with the ontrol software ore diretly within the ontrol unit, or paired

with the Client Manager within the lient appliation. All the spei� funtionality re-

quired for sending ommands remotely is inluded in Client Manager and Server Manager

proesses, whih reate a transfer layer for the remote ommands. Notie, that the remote

user interfae arhiteture remains the same, it only onnets to queues of the Client

Manager, see Figure 6.4 and Appendix B.

6.1.5 Remote sript exeution

The remote appliation also inludes the API provider proess onneted with the Client

Manager. The API provider allows one to send ommands from the remote Python sript

using the rapo library. The API provider and the rapo library are based on the same

arhiteture shown in Figure 4.6 and desribed in subhapter 4.3 whih makes them

suitable for remote use as well. All the funtionality needed for transfering ommands

from the remote API provider to the ontrol software ore is inluded in Client Manager

and Server Manager proesses, see Figure 6.5 and Appendix B.

81

�✁✂ ✄☎✆✝

✞✟

✞✠

✞✞

✞✡

✞☛

✡☞

✡✌

✡✍

✞✎

�✁✂ ✏✑✒✓✔✕ ☛

�✁✂ ✏✑✒✓✔✕ ✡

�✁✂ ✏✑✒✓✔✕ ✕✖☛

�✁✂ ✏✑✒✓✔✕ ✕

Figure 6.4: Remote user interfae arhiteture

82

� ������ ��������

� ���� ¡ ¢�� £�¤ ¢ ¥

���� ¡ ¢��

� ¦ §¢¡§ ¨¡¢¡©¨ ¢ª« ¦���¢ª« ¦¬¢ªª§£¨

¨ ¢��®�¨¡¢¡¯ §��¡§° ©§±

¦ ¢��®¦���¢ª«¯±

� ©�«¢¡§ ¨¡¢¡©¨ ²¢ �¢¤£§¨

¨®��££¯±

� ³§¡ £�¨¡ �´ §µ©���§« ¨§ª¨� ¨

¨®¨§ª¨� ¨¶¢¦¡©¢£¯±

� §µ©�� ¨§ª¨� ª¢�§« ·£�¢«¦§££·

¦®£�¦¸¶¨§ª¨� ¨¯¹·£�¢«¦§££·º»¹¼º±

½�¾ �¿�ÀÁ�Â¿

43

44

42

41

40

36

37

38

39

Ã�ÁÄ Å���Á� Æ��ÇÂ�

¿�È� ÉÁÊ¿�¿�

15

Ã�ÁÄ Å���Á�

Æ��ÇÂ�

45

Figure 6.5: Remote API provider and rapo library onnetion sheme

83

Chapter 7

Conlusion

Within the proposed thesis, a modular multi-proess ontrol software for experimental

devies operated in the Department of Mehanis and Materials in the Faulty of Trans-

portation Sienes at the Czeh Tehnial University and at the Institute of Theoretial

and Applied Mehanis of the Czeh Aademy of Sienes was developed.

The newly developed ontrol software replaed the �rst-generation ontrol software pub-

lished previously as part of my Bahelor's thesis. The new-generation ontrol software gives

muh more performane than the �rst-generation ontrol software as the new-generation

is based on a multi-proess arhiteture with a robust multi-proess ore and the ontrol

software funtionality was also enahaned with new features to satisfy needs of the re-

ently developed experimental devies, suh as the support for various types of sensors

(load ells, thermometers, et.), enoders support, temperature ontrol funtionality or

the support for performing fore-driven experiments.

Furthermore, the ontrol software features a sripting funtionality whih enables the

exeution of ustom external Python sripts. These sripts an operate with the experi-

mental devie through the developed rapo library. The library allows one to monitor the

status variables of the experimental devie, send various ommands to the devie, et.

Therefore, the library may be used for reating various types of automated proedures,

suh as advaned experimental proedures, et.

Currently, the ontrol software has been utilised with a great suess in ontrolling experi-

mental devies in the department. Thanks to the ontrol software, numerous experiments

84

have been performed and many studies have been published. The ontrol software has

proved its long-term stability and reliability as several experimental proedures last for

many hours and ertain proedures took even more than one day of uninterrupted mea-

surement.

The ontrol software also partiipated at the LinuxCNC ommunity meeting in Stuttgart,

Germany in July 2018. Alhough the ontrol software was still being developed during

that time, the majority of the features had been implemented already. The software drew

the attention of the ommunity as it ombines onventional preise CNC positioning

apabilities with high-performane and high-preision data aquisition.

Still, the ontrol software is being developed and new features are being added. The most

reent feature in the development is the remote ontrol whih enables one to ontrol the

experimental devies remotely over a loal network or even over the internet. Another

feature that has ome into onsideration for future development is the real-time image

proessing funtionality of the imaging data obtained during an experimental proedure,

suh as digital planar image orrelation or digital volumetri image orrelation.

85

Bibliography

[1℄ Eml 2023 � motor ontrol leture 3 � feedbak sensor optial enoder. https://

slideplayer.om/slide/6003777/. Aessed: 2019-03-03.

[2℄ T. LinuxCNC Team. LinuxCNC Getting Started Guide. Samurai Media Limited,

2016.

[3℄ Hal Introdution. http://linuxn.org/dos/html/hal/intro.html. Aessed:

2019-05-11.

[4℄ PID Controller. http://linuxn.org/dos/html/motion/pid-theory.html. A-

essed: 2019-05-11.

[5℄ Mesa HostMot2 Driver. http://www.linuxn.org/dos/html/drivers/hostmot2.

html. Aessed: 2019-05-11.

[6℄ AXIS GUI. http://linuxn.org/dos/html/gui/axis.html. Aessed: 2019-05-

11.

[7℄ Touhy GUI. http://linuxn.org/dos/html/gui/touhy.html. Aessed: 2019-

05-11.

[8℄ Python Virtual Control Panel. http://www.linuxn.org/dos/2.4/html/hal_

pyvp.html. Aessed: 2019-05-11.

[9℄ Glade Virtual Control Panel. http://linuxn.org/dos/html/gui/gladevp.

html. Aessed: 2019-05-11.

[10℄ LinuxCNC Python Interfae Doumantation. http://linuxn.org/dos/2.6/

html/ommon/python-interfae.html. Aessed: 2019-05-11.

86

https://slideplayer.com/slide/6003777/
https://slideplayer.com/slide/6003777/
http://linuxcnc.org/docs/html/hal/intro.html
http://linuxcnc.org/docs/html/motion/pid-theory.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://linuxcnc.org/docs/html/gui/axis.html
http://linuxcnc.org/docs/html/gui/touchy.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html

[11℄ Creating Userspae Python Components. http://linuxn.org/dos/html/hal/

halmodule.html. Aessed: 2019-05-11.

[12℄ What is Python? Exeutive Summary. https://www.python.org/do/essays/

blurb/. Aessed: 2019-05-11.

[13℄ G. Zaone. Python Parallel Programming Cookbook. Pakt Publishing Ltd., 35

Livery Street, Birmingham B3 2PB, UK, 2015.

[14℄ PyQt Doumentation. https://wiki.python.org/moin/PyQt. Aessed: 2019-05-11.

[15℄ Qt Doumentation. http://do.qt.io/qt-5.9/index.html. Aessed: 2019-05-11.

[16℄ PythonQwt Manual. https://pythonhosted.org/PythonQwt/. Aessed: 2019-05-

11.

[17℄ Qwt - Qt Widgets for Tehnial Appliations. http://qwt.soureforge.net/. A-

essed: 2019-05-11.

[18℄ J. D. Hunter. Matplotlib: A 2D Graphis Environment. Computing In Siene &

Engineering 9(3):90�95, 2007. doi:10.1109/MCSE.2007.55.

[19℄ B. Shneider. PyGnuplot: Python wrapper for Gnuplot. https://pypi.org/

projet/PyGnuplot/. Aessed: 2019-05-11.

[20℄ T. Williams, C. Kelley, many others. Gnuplot 5.2: an interative plotting program.

http://gnuplot.soureforge.net/, 2019.

[21℄ V. Rada. Software pro °ízení stroj· a experimentálníh za°ízení. https://

dspae.vut.z/handle/10467/73180?loale-attribute=en, Bahelor's Thesis,

Czeh Tehnial University in Prague, Faulty of Transportation Sienes, Depart-

ment of Mehanis and Materials, 2017.

[22℄ P. Koudelka, T. Fíla, D. Kytý°, et al. Novel devie for 4-point �exural testing of

quasi-brittle materials during 4d omputed tomography. In Strutural Integrity, pp.

27�32. Springer International Publishing, 2018. doi:10.1007/978-3-319-91989-8_5.

[23℄ T. Fíla, J. �leihrt, D. Kytý°, et al. Deformation analysis of the spongious sample

in simulated physiologial onditions based on in-situ ompression, 4d omputed

87

http://linuxcnc.org/docs/html/hal/halmodule.html
http://linuxcnc.org/docs/html/hal/halmodule.html
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://wiki.python.org/moin/PyQt
http://doc.qt.io/qt-5.9/index.html
https://pythonhosted.org/PythonQwt/
http://qwt.sourceforge.net/
http://dx.doi.org/10.1109/MCSE.2007.55
https://pypi.org/project/PyGnuplot/
https://pypi.org/project/PyGnuplot/
http://gnuplot.sourceforge.net/
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
http://dx.doi.org/10.1007/978-3-319-91989-8_5

tomography and fast readout detetor. Journal of Instrumentation 13(11):C11021�

C11021, 2018. doi:10.1088/1748-0221/13/11/11021.

88

http://dx.doi.org/10.1088/1748-0221/13/11/c11021

Appendix A

Prime fatorisation sript

Listing A.1: Prime fatorisation sript

"""

how many numbers? 1000000

single thread: 22.4188029766 seonds

2 threads: 31.318999052 seonds

4 threads: 52.8587779999 seonds

6 threads: 63.3178188801 seonds

8 threads: 71.5121889114 seonds

10 threads: 75.6294119358 seonds

12 threads: 76.9113698006 seonds

16 threads: 81.545334816 seonds

2 proesses: 15.542855978 seonds

4 proesses: 8.67697715759 seonds

6 proesses: 5.94609308243 seonds

8 proesses: 4.50127601624 seonds

10 proesses: 4.2152929306 seonds

12 proesses: 3.7843940258 seonds

16 proesses: 3.41232895851 seonds

"""

import time, math

from multiproessing import Proess, Queue

import threading

89

def fatorize(n):

"""

A fatorization method. Take integer 'n', return list of fators.

"""

if n < 2:

return [℄

fators = [℄

p = 2

while True:

if n == 1:

return fators

r = n % p

if r == 0:

fators.append(p)

n = n / p

elif p ∗ p >= n:

fators.append(n)

return fators

elif p > 2:

Advane in steps of 2 over odd numbers

p += 2

else:

If p == 2, get to 3

p += 1

def plain_fatorizer(nums):

"""

Single threaded method fatorizing list of numbers

:param nums: list of numbers to fator

:return: dit, key is a fatorized integer, value is list of fators

"""

return {n: fatorize(n) for n in nums}

def thread_worker(nums, outdit):

"""

90

The worker funtion, invoked in a thread.

:param nums: list of numbers to fator

:param outdit: results are plaed in outdit

"""

for n in nums:

outdit[n℄ = fatorize(n)

def threaded_fatorizer(nums, nthreads):

"""

Method fatorizing list of numbers using n threads.

:param nums: list of numbers to fator

:param nthreads: number of threads to utilize

:return: dit, key is a fatorized integer, value is list of fators

"""

Eah thread will get 'hunksize' nums and its own output dit

hunksize = int(math.eil(len(nums) / �oat(nthreads)))

threads = [℄

outs = [{} for _ in range(nthreads)℄

for i in range(nthreads):

Create eah thread, passing it its hunk of numbers to fator and output dit.

t = threading.Thread(target=thread_worker, args=(nums[hunksize ∗ i:hunksize ∗ (i + 1)℄,

→֒ outs[i℄))

threads.append(t)

t.start()

Wait for all threads to �nish

for t in threads:

t.join()

Merge all partial output dits into a single dit and return it

return {k: v for out_d in outs for k, v in out_d.iteritems()}

def proess_worker(nums, out_q):

"""

The worker funtion, invoked in a proess.

:param nums: :param nums: list of numbers to fator

91

:param out_q: results are pushed to the queue

"""

outdit = {}

for n in nums:

outdit[n℄ = fatorize(n)

out_q.put(outdit)

def multiproess_fatorizer(nums, npros):

"""

Method fatorizing list of numbers using n proesses.

:param nums: list of numbers to fator

:param npros: number of proesses to utilize

:return: dit, key is a fatorized integer, value is list of fators

"""

Eah proess will get 'hunksize' nums and a queue to put his out dit into

out_q = Queue()

hunksize = int(math.eil(len(nums) / �oat(npros)))

pros = [℄

for i in range(npros):

p = Proess(

target=proess_worker,

args=(nums[hunksize ∗ i:hunksize ∗ (i + 1)℄,

out_q))

pros.append(p)

p.start()

Collet all results into a single result dit. We know how many dits with results to expet.

resultdit = {}

for i in range(npros):

resultdit.update(out_q.get())

Wait for all worker proesses to �nish

for p in pros:

p.join()

return resultdit

92

def main():

"""

Main method of the sript, performs benhmark

:return: exit ode 0

"""

test performane for n threads and proesses from the lists

N_THREADS = [2, 4, 6, 8, 10, 12, 16℄

N_PROCESSES = [2, 4, 6, 8, 10, 12, 16℄

get the numbers to fatorize as user input

N = input("how many numbers? ")

nums = range(N)

benhmark fatorizing by single thread

t0 = time.time()

plain_fatorizer(nums)

t1 = time.time()

print("single thread: {} seonds".format(t1 − t0))

benhmark fatorizing by threads

for nthreads in N_THREADS:

t0 = time.time()

threaded_fatorizer(nums, nthreads)

t1 = time.time()

print("{} threads: {} seonds".format(nthreads, t1 − t0))

benhmark fatorizing by proesses

for npros in N_PROCESSES:

t0 = time.time()

multiproess_fatorizer(nums, npros)

t1 = time.time()

print("{} proesses: {} seonds".format(npros, t1 − t0))

return 0

if __name__ == '__main__':

main()

93

Appendix B

Communiation shemes desription

1
Connetion to a queue leading to the Stat Poller, used for sending ommands to the

Stat Poller

2 Connetion to a queue leading to the Command Exeutor, used for sending om-

mands to the Command Exeutor

3 Connetion to a queue leading to the I/O Manager, used for sending ommands to

the I/O Manager

4 Connetion to a queue leading to the Data Keeper, used for sending ommands to

the Data Keeper

5 Connetion to a queue leading to the GUI ore, used for sending mahine status

variables from the Stat Poller to the GUI

6 Connetion to a queue leading to the GUI ore, used for sending eventual error

messages from the Stat Poller to the GUI

7 Connetion to a queue leading to the API Provider, used for sending mahine status

variables from the Stat Poller to the API Provider

8 Connetion to a queue leading to the API Provider, used for sending eventual error

messages from the Stat Poller to the API Provider

9 Connetion to a queue leading to the GUI ore, used for sending I/O status variables

from the I/O Manager to the GUI

94

10
Connetion to a queue leading to the API Provider, used for sending I/O status

variables from the I/O Manager to the API Provider

11 Connetion to a queue leading to the GUI ore, used for sending measured data

variables from the Data Keeper to the GUI

12 Connetion to a queue leading to the GUI ore, used for sending data to plot from

the Data Keeper to the GUI

13 Connetion to a queue leading to the API Provider, used for sending measured data

variables from the Data Keeper to the API Provider

14 Connetion to a queue leading to the API Provider, used for sending data to plot

from the Data Keeper to the API Provider

15 Connetion of the API Provider and rapo library through the Unix domain soket

16 Connetion to a queue leading to the Server Manager, used for sending mahine sta-

tus variables from the Stat Poller through the Server Manager and Client Manager

to the remote GUI

17 Connetion to a queue leading to the Server Manager, used for sending eventual error

messages from the Stat Poller through the Server Manager and Client Manager to

the remote GUI

18 Connetion to a queue leading to the Server Manager, used for sending mahine sta-

tus variables from the Stat Poller through the Server Manager and Client Manager

to the remote API Provider

19 Connetion to a queue leading to the Server Manager, used for sending eventual error

messages from the Stat Poller through the Server Manager and Client Manager to

the remote API Provider

20 Connetion to a queue leading to the Server Manager, used for sending I/O status

variables from the I/O Manager through the Server Manager and Client Manager

to the remote GUI

95

21
Connetion to a queue leading to the Server Manager, used for sending I/O status

variables from the I/O Manager through the Server Manager and Client Manager

to the remote API Provider

22 Connetion to a queue leading to the Server Manager, used for sending measured

data variables from the Data Keeper through the Server Manager and Client Man-

ager to the remote GUI

23 Connetion to a queue leading to the Server Manager, used for sending data to

plot from the Data Keeper through the Server Manager and Client Manager to the

remote GUI

24 Connetion to a queue leading to the Server Manager, used for sending measured

data variables from the Data Keeper through the Server Manager and Client Man-

ager to the remote API Provider

25
Connetion to a queue leading to the Server Manager, used for sending data to

plot from the Data Keeper through the Server Manager and Client Manager to the

remote API Provider

26 Connetion of the Server Manager and Client Manager through the TCP soket

27 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote GUI to the Stat Poller through the Client Manager and Server

Manager

28
Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote GUI to the Command Exeutor through the Client Manager and

Server Manager

29 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote GUI to the I/O Manager through the Client Manager and Server

Manager

30 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote GUI to the Data Keeper through the Client Manager and Server

Manager

96

31
Connetion to a queue leading to the remote GUI ore, used for sending mahine

status variables from the Stat Poller to the remote GUI

32 Connetion to a queue leading to the remote GUI ore, used for sending eventual

error messages from the Stat Poller to the remote GUI

33 Connetion to a queue leading to the remote GUI ore, used for sending I/O status

variables from the I/O Manager to the remote GUI

34 Connetion to a queue leading to the remote GUI ore, used for sending measured

data variables from the Data Keeper to the remote GUI

35 Connetion to a queue leading to the remote GUI ore, used for sending data to

plot from the Data Keeper to the remote GUI

36 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote API Provider to the Stat Poller through the Client Manager and

Server Manager

37 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote API Provider to the Command Exeutor through the Client Man-

ager and Server Manager

38 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote API Provider to the I/O Manager through the Client Manager and

Server Manager

39 Connetion to a queue leading to the Client Manager, used for sending ommands

from the remote API Provider to the Data Keeper through the Client Manager and

Server Manager

40 Connetion to a queue leading to the remote API Provider, used for sending mahine

status variables from the Stat Poller to the remote API Provider

41 Connetion to a queue leading to the remote API Provider, used for sending eventual

error messages from the Stat Poller to the remote API Provider

42 Connetion to a queue leading to the remote API Provider, used for sending I/O

status variables from the I/O Manager to the remote API Provider

97

43
Connetion to a queue leading to the remote API Provider, used for sending mea-

sured data variables from the Data Keeper to the remote API Provider

44 Connetion to a queue leading to the remote API Provider, used for sending data

to plot from the Data Keeper to the remote API Provider

45 Connetion of the remote API Provider and rapo library on the remote devie

through the Unix domain soket

98

Appendix C

Plot omparison sript

Listing C.1: Plot omparison sript

"""

PythonQwt: plotting 100 data samples took 0.00383186340332 seonds

Matplotlib: plotting 100 data samples took 0.0366899967194 seonds

PythonQwt: plotting 1000 data samples took 0.00513195991516 seonds

Matplotlib: plotting 1000 data samples took 0.0264139175415 seonds

PythonQwt: plotting 10000 data samples took 0.00405383110046 seonds

Matplotlib: plotting 10000 data samples took 0.0248889923096 seonds

PythonQwt: plotting 50000 data samples took 0.00433802604675 seonds

Matplotlib: plotting 50000 data samples took 0.0284330844879 seonds

PythonQwt: plotting 100000 data samples took 0.00466799736023 seonds

Matplotlib: plotting 100000 data samples took 0.0300550460815 seonds

PythonQwt: plotting 250000 data samples took 0.00639510154724 seonds

Matplotlib: plotting 250000 data samples took 0.0396320819855 seonds

PythonQwt: plotting 500000 data samples took 0.00936698913574 seonds

Matplotlib: plotting 500000 data samples took 0.0492820739746 seonds

PythonQwt: plotting 1000000 data samples took 0.0142869949341 seonds

Matplotlib: plotting 1000000 data samples took 0.0847151279449 seonds

"""

from PyQt5.QtWidgets import QAppliation

from qwt import QwtPlot, QwtPlotCurve

from matplotlib.bakends.bakend_qt5agg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.�gure import Figure

99

import numpy as np

import time

import sys

def plot_qwt(n_samples):

"""

Plot n data samples using PythonQwt

:param n_samples: number of samples

:return: exit ode

"""

reate QAppliation and Qwt plot widget

app = QAppliation(sys.argv)

gui = QwtPlot()

prepare data samples

x = np.arange(0.0, 2∗np.pi, 2∗np.pi/n_samples)

y = np.sin(x)

start measuring plot time

t0 = time.time()

urve = QwtPlotCurve()

urve.setData(x, y)

urve.attah(gui)

t1 = time.time()

print results

print "PythonQwt: plotting {} data samples took {} seonds".format(n_samples, t1−t0)

gui.show() # unomment to show user interfae

return sys.exit(app.exe_()) # unomment to start QAppliation event loop

def plot_matplotlib(n_samples):

"""

Plot n data samples using matplotlib

:param n_samples: number of samples

:return: exit ode

"""

reate QAppliation and matplotlib widget

100

app = QAppliation(sys.argv)

�gure = Figure()

subplot = �gure.add_subplot(111)

gui = FigureCanvas(�gure)

prepare data samples

x = np.arange(0.0, 2∗np.pi, 2∗np.pi/n_samples)

y = np.sin(x)

start measuring plot time

t0 = time.time()

subplot.plot(x, y)

gui.draw()

t1 = time.time()

gui.show() # unomment to show user interfae

print results

print "Matplotlib: plotting {} data samples took {} seonds".format(n_samples, t1−t0)

return sys.exit(app.exe_()) # unomment to start QAppliation event loop

def main():

"""

Main method of the sript

:return: exit ode 0

"""

for n in [100, 1000, 10000, 50000, 100000, 250000, 500000, 1000000℄:

plot_qwt(n)

plot_matplotlib(n)

return 0

if __name__ == '__main__':

main()

101

Appendix D

Serialising modules omparison sript

Listing D.1: Serialising modules omparison sript

"""

pikle.dumps − protool 0: type <type 'list'> took 1.23852205276 seonds, size 8888896 B

Pikle.dumps − protool 0: type <type 'list'> took 0.118358135223 seonds, size 8888896 B

pikle.dumps − protool 1: type <type 'list'> took 1.43744206429 seonds, size 4870676 B

Pikle.dumps − protool 1: type <type 'list'> took 0.0186970233917 seonds, size 4870676 B

pikle.dumps − protool 2: type <type 'list'> took 1.43182492256 seonds, size 4870678 B

Pikle.dumps − protool 2: type <type 'list'> took 0.0189759731293 seonds, size 4870678 B

pikle.loads: type <type 'list'> took 0.590484857559 seonds

Pikle.loads: type <type 'list'> took 0.0240499973297 seonds

json.dumps: type <type 'list'> took 0.105890989304 seonds, size 7888890 B

json.loads: type <type 'list'> took 0.0827050209045 seonds

pikle.dumps − protool 0: type <type 'dit'> took 2.33178496361 seonds, size 16777786 B

Pikle.dumps − protool 0: type <type 'dit'> took 0.241229057312 seonds, size 16777786 B

pikle.dumps − protool 1: type <type 'dit'> took 2.68368887901 seonds, size 9739348 B

Pikle.dumps − protool 1: type <type 'dit'> took 0.0424699783325 seonds, size 9739350 B

pikle.dumps − protool 2: type <type 'dit'> took 2.68153905869 seonds, size 9739350 B

Pikle.dumps − protool 2: type <type 'dit'> took 0.0431780815125 seonds, size 9739352 B

pikle.loads: type <type 'dit'> took 1.30437397957 seonds

Pikle.loads: type <type 'dit'> took 0.0720989704132 seonds

json.dumps: type <type 'dit'> took 0.286577939987 seonds, size 17777780 B

json.loads: type <type 'dit'> took 0.533478021622 seonds

"""

102

import pikle

import Pikle

import json

import time

import sys

def dumps_pikle(data, protool):

"""

Pikle/serialize data with pikle module using a protool

:param data: data to pikle/serialize

:param protool: protool used for pikling/serialization

:return: pikled/serialized data

"""

return pikle.dumps(data, protool=protool)

def loads_pikle(data):

"""

Unpikle/deserialize data with pikle module

:param data: data to unpikle/deserialize

:return: unpikled/deserialized data

"""

return pikle.loads(data)

def dumps_Pikle(data, protool):

"""

Pikle/serialize data with Pikle module using a protool

:param data: data to pikle/serialize

:param protool: protool used for pikling/serialization

:return: pikled/serialized data

"""

return Pikle.dumps(data, protool=protool)

def loads_Pikle(data):

"""

103

Unpikle/deserialize data with Pikle module

:param data: data to unpikle/deserialize

:return: unpikled/deserialized data

"""

return Pikle.loads(data)

def dumps_json(data):

"""

Pikle/serialize data with json module

:param data: data to pikle/serialize

:return: pikled/serialized data

"""

return json.dumps(data)

def loads_json(data):

"""

Unpikle/deserialize data with json module

:param data: data to unpikle/deserialize

:return: unpikled/deserialized data

"""

return json.loads(data)

def main():

"""

Main method of the sript

:return: exit ode 0

"""

PROTOCOLS = [0, 1, 2℄

DATA = [list(range(1000000)), dit(zip(range(1000000), range(1000000)))℄

for data in DATA:

benhmark various pikle and Pikle protools

for protool in PROTOCOLS:

benhmark pikle.dumps

t0 = time.time()

pikled = dumps_pikle(data, protool)

104

t1 = time.time()

print "pikle.dumps − protool {}: type {} took {} seonds, size {} B".format(

→֒ protool, type(data), t1−t0, len(pikled))

benhmark Pikle.dumps

t0 = time.time()

pikled = dumps_Pikle(data, protool)

t1 = time.time()

print "Pikle.dumps − protool {}: type {} took {} seonds, size {} B".format(

→֒ protool, type(data), t1−t0, len(pikled))

benhmark pikle.loads

t0 = time.time()

unpikled = loads_pikle(pikled)

t1 = time.time()

print "pikle.loads: type {} took {} seonds".format(type(data), t1 − t0)

benhmark Pikle.loads

t0 = time.time()

unpikled = loads_Pikle(pikled)

t1 = time.time()

print "Pikle.loads: type {} took {} seonds".format(type(data), t1−t0)

benhmark json.dumps

t0 = time.time()

pikled = dumps_json(data)

t1 = time.time()

print "json.dumps: type {} took {} seonds, size {} B".format(type(data), t1−t0, len(

→֒ pikled))

benhmark json.loads

t0 = time.time()

unpikled = loads_json(pikled)

t1 = time.time()

print "json.loads: type {} took {} seonds".format(type(data), t1−t0)

return 0

if __name__ == '__main__':

main()

105

	Introduction
	Theoretical background
	Stepper motor
	Controlling stepper motors
	Open-loop control system
	Closed-loop control system

	Encoders
	Optical encoders
	Magnetic encoders
	Incremental and absolute encoders
	Absolute encoders
	Incremental encoders

	LinuxCNC
	Hardware abstraction layer
	PID controller
	Proportional term
	Integral term
	Derivative term

	Hostmot2 driver
	User interfaces
	PyVCP
	GladeVCP
	Python Interface
	Python HAL component

	Python
	Global interpreter lock
	Threading module
	Multiprocessing module
	Multiprocessing pipes
	Multiprocessing queues

	PyQt
	Qt Creator
	Qt Designer
	User Interface Compiler

	PyQwt
	Matplotlib
	PyGnuplot

	Initial state
	Straightforward adaptation to various experimental devices
	Sensor support
	Displacement-driven experiments
	Obtaining and logging data
	Real-time plotting and static plotting
	Overview

	Developed software
	Introduction
	Performance gain
	Control software core
	Stat Poller
	Data Logger
	Data Keeper
	Command Executor
	I/O Manager

	User Interface
	Plotting performance benchmark

	Custom Python script execution
	Unix domain socket
	Serialising modules
	Pickle and cPickle modules
	JSON module
	List serialisation benchmark
	Dictionary serialisation benchmark
	Recapitulation

	Enhanced Functionality
	Introduction
	Sensor support
	Axes position bar
	Encoder support
	G92 offset
	Positioning error
	Homed status

	Plot plugin
	Force control
	Common controls
	Constant force command tab
	Linear force command tab
	Sine wave force command tab
	Square wave force command tab
	Triangle wave force command tab
	Sawtooth wave force command tab

	Temperature control
	Rapo library

	Case Studies
	Compression of a spongious sample in simulated physiological conditions
	Fracture analysis of sandstone

	Work in Progress
	Remote control
	TCP socket
	Server Manager
	Client Manager
	Remote user interface
	Remote script execution

	Conclusion
	Appendices
	Prime fatorisation script
	Communication schemes description
	Plot comparison script
	Serialising modules comparison script

