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Abstract

My work explores the field of automatic URL classification with particular
attention to character-level deep neural networks. It summarizes recent ad-
vancements in the field and proposes a working model which outperforms the
enterprise baseline on a real world dataset.

Keywords url classification, character-level model, natural language pro-
cessing, convolutional neural networks, machine learning, deep learning
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Abstrakt

Tato bakalarska prace se zabyva problémem automatické klasifikace inter-
netovych adres. Duraz je kladen na hluboké neuronové sité, konkrétné na
modely, které pracuji se vstupem na trovni jednotlivych znakidl. V praci je
shrnuty soucasny stav feseni a je navrzen model vhodny pro nasazeni do pro-
dukce realného firemniho prostredi.

Klicova slova Kklasifikace url, neuronové sité, zpracovani prirozeného jazyka,
konvoluéni neuronové sité, strojové uceni, hluboké iceni
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Introduction

Most of the URLs used in the World Wide Web carry a semantic meaning.
This meaning helps users to identify the content of a website just by looking
at the URL. Automatic detection of website category without the need of
loading the site can be potentially very useful by a number of real life use
cases: malicious URL detection, crawlers, parental control, network traffic
logging and many more.

The dataset used in this thesis comes from a real production environ-
ment. The digital intelligence company which provided the dataset uses URL
clickstream (sequence of URL addresses) to provide marketing analysis and
insights into online consumer behavior. To extract valuable data from se-
quences of URLs, each URL is assigned a category. Hand written regular
expressions are created and matched to the URLs to obtain a category de-
scribing the site’s content. An automatic URL classification system is used
as a tool which assists the employees developing the regular expressions when
searching for URLS of a particular category. Currently, a traditional machine
learning solution is deployed in the production.

First chapter describes a theoretical background behind the strategies of
deep learning. It starts with a gentle introduction to the neural network
models and then continues with some of the promising concepts in context of
the URL classification task. A particular attention is put to the understanding
of convolutional neural networks in the field of natural language processing.
The theoretical section could be used as a summary by anyone looking for
a comprehensive introduction to the character-level convolutional networks.

Second chapter first describes the dataset, and then surveys methods,
which might be useful for URL classification. The most promising methods
are implemented and their performance is compared in chapter 3. Some of the
interesting experiments related to the hyperparameter selection are described
in chapter 4. Finally, the best performing model is described in depth and
evaluated against the industrial baseline in chapter 5.






CHAPTER ].

State of the Art

This chapter is meant to summarize some of the basic terms used in the field
of machine learning and to introduce reader into some of its jargon.

1.1 Unique Resource Locator

Unique Resource Locator, abbreviated as URL, is the address of a resource on
the World Wide Web. An URL is composed of the main two components (sep-
arated by a colon and two toward dashes): protocol identifier and a resource
name. Protocol identifier specifies used internet protocol, while the resource
name is an address or domain name where the resource is located. Example
of an URL and its structure is shown on the Figure 1.1.

Browser Host name
A
i’ Top-level Domain

—3 http://www. google. com. sg/webhp?hl=zh-CN

\—,—/ . i .
Primary Domain
T Protocol Path

http://218. 253. 0. 77/webhp?h1=zh-CN

< >

Figure 1.1: Structure of Uniform Resource Locator. Adopted from [1].

URLs are often meant to be easily understood by humans, and websites
with good URL encoding design often include useful information into the URL
itself [2]. Unique resource locators therefore impose extremely good features
for machine learning [3]. They are easy to extract and can be read without
the need of downloading the website which allows for fast classification.
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1.2 Machine Learning

Traditional approach to solving a problem with help of a computer was to
write a program with hardcoded instructions. This required a skilled engi-
neer with knowledge of the domain and usually did not scale well with the
task’s complexity. Machine Learning (ML) uses a different approach to solv-
ing a problem. “A machine-learning system is trained rather than explicitly
programmed.” [4] Machine learning models gain all of their inference ability
from data presented to them.

The rise of a new millennium did not only bring us powerful computers
and the World Wide Web, but also lots of data to process. Machine learning
takes an advantage of the amounts of data available to date. Modern ma-
chine learning models are often able to outperform some of the most complex
hand crafted computer programs of the past. In some areas [5, 6, 7], highly
specialized ML models have shown being able to exceed humans.

Based on the kind of input data and expected outputs, machine learning
algorithms are traditionally divided [8] into 3 categories:

Supervised learning makes the model learn from input (image, text, array
of numbers...) and a desired output (value or a class). The goal of the
model is to learn the mapping between the input and output pairs.
Ideally, the algorithm learns to generalize well and predicts correctly
even on unseen data.

Unsupervised learning does not rely on labels but it instead tries to find
similarities in data. Outputs of an unsupervised learning model are
typically clusters (groups) of similar data.

Reinforcement learning falls, in a sense, between supervised and unsuper-
vised learning. Some form of supervision exists, but the model receives
its feedback from the interactions with the environment. This feedback
indicates how well the model fulfills its tasks.

1.3 Deep Learning

The term Deep Learning, nowadays often an overused buzzword, is a subfield of
machine learning. The word deep refers to a high number of consecutive layers
used in a neural network. For complex tasks, it is not uncommon to see tens
to hundreds [4] of hidden layers stacked together. This allows the network to
obtain a great generalization ability and has proven its capability by obtaining
state of the art results [9] in a wide variety of applications (computer vision,
speech recognition, natural language processing, etc.).

4



1.4. Classification task

1.4 Classification task

In supervised learning, the algorithm learns from pairs of inputs and desired
outputs. The main goal of the classification task is to construct a function
f that based on a set of inputs Xg, X1,...,X,_1 predicts a variable Y, such
that

Y =~ f(Xo, Xl, e ,anl)-

Opposed to the regression problem, results of the classification fall into a dis-
crete set of labels obtained during the training phase.

Binary classification is a task which consists of classifying data into one
of two distinct classes. Examples of binary classification models include
Decision Trees, Random Forests or Neural Networks. Some of the clas-
sical machine learning algorithms (i.e. Support Vector Machine, Naive
Bayes or Logic Regression) support, by default, only binary classifica-
tion. However, there are several techniques which allow us to utilize
a binary classifier on a multiclass classification task as well.

Multiclass classification consists of classifying the input data into three or
more discrete classes. In terms of deep neural networks this is usually
done by having a neural network with same number of output neurons
as the number of possible classes. We apply a softmax activation on the
last layer which yields the predicted probability distribution over each
possible output class.

1.5 Natural Language Processing

Natural Language Processing (NLP) is an area of machine learning specialized
in understanding and processing of natural language by computers. In a wide
sense, it covers any kind of computer manipulation of the natural language.

In the past few years, natural language processing has undergone a massive
growth [10]. NLP use cases range from machine translation [11], all the way
to the text categorization, spam filtering and information extraction [12].

1.5.1 Tokenization

In order to feed the text into a machine learning model, the raw textual input
must be first processed and converted into a sequence of tokens. There are
several token representations, varying in the size granularity of the input chunk
captured in the token.

The input dictionary usually needs to be predetermined before the start
of learning in order to figure out the dimension of the input space. This, in
terms of word-level models, means that all of the data needs to be loaded and
preprocessed before the training of a model starts.



1. STATE OF THE ART

1.5.1.1 Word-Level Tokens

Word-level tokenization approach is the most commonly used approach among
many of the NLP tasks. Words are basic building blocks of our language,
so extracting them is a logical step. Words can be easily obtained by splitting
sentences by spaces or other special characters. However, this method conveys
several possible drawbacks. Human language often contains up to hundreds
of thousands of words, and without stemming (process of reducing a word to
its base form) the number of words the machine learning model can encounter
might grow very high. When using a model with bag-of-words encoding,
a large number of the possible words could cause the embedding dimension to
explode.

1.5.1.2 Character-Level Tokens

Character-level tokenization encodes each character as a separate token. This
approach yields a small embedding dimension and also has a low chance of
seeing an out-of-dictionary character on the input.

1.5.1.3 N-gram Tokens

N-Gram is a group of N (or fewer) consecutive characters or words [4]. This
helps us with the fact, that the bag-of-words encoding does not preserve any
information about the order of individual tokens. By using the n-gram model,
the order of N words or characters can be captured. We distinguish two n-gram
types: character-level and word-level n-grams.

Character-level n-grams are groups of N consecutive letters. A benefit to
using character n-grams is the limited number of tokens which might
occur on the input. Lowercased english alphabet only consists of 26
characters. With 10 numbers, 16 punctuation marks, 1 character for
space and 1 Out Of Vocabulary (OOV) token, we have a set of 54 pos-
sible characters which might occur in the input text. 543 = 157,464
possible combinations of 3 consecutive characters can therefore occur on
the input. The length of the feature vector would be 157,464 and could
be determined prior to training without the need of preprocessing of the
whole input dataset.

Word-level n-grams are groups of N consecutive words. Since the number
of possible words appearing in a language is usually high, the word n-
grams might yield an embedding which is magnitudes larger than the
single word embedding itself.



1.5. Natural Language Processing

We will use URL https://www.nic.cz/page/351/ as an example. In order
to obtain words, we would split the URL by special characters. Example of
tokens extracted from this url is shown in the following table:

Table 1.1: Examples of different token representations of an URL

type \ token representation

word https, www, nic, cz, page, 351

character hy t, t, p, s, 2 /s /, w, w, wy ., Ny G Cy
word-level 3-gram https www nic, www nic cz, nic cz page, ...

character-level 3-gram | htt, ttp, tps, ps:, s:/, ://, //w, /ww, ..

An alternative encoding can be called character n-gram over words, where
the input is first split into words, and character n-grams are then generated
only from words not including spaces or other special characters.

1.5.2 Bag-of-words Model

Text is one of the most common forms of sequence data. It can be understood
as sequences of characters, or sequence of words [4]. Juravsky and Martin [14]
define the bag-of-words (BOW) model as “an unordered set of tokens with
their position ignored, keeping only their frequency in the document.” For
example, let’s assume the model’s vocabulary (set of possible tokens) is:

{ good, drink, restaurant, beer, people, stairs }.

A sentence “Good people drink good beer.” would be then converted to
a term vector ¢ of word-level tokens as:

By keeping the word count in the term vector, we can later use it to
construct a weight for each word or even easily select top-k most occurring
words. Other approach to the bag-of-words model neglects the word counts
and only marks whenever the word was present. Such representation of the
above sentence would be:
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1.5.3 Feature Embeddings

When dealing with natural language or other text structures, we first use
a bag of words model to obtain a set of tokens, also called model’s vocabulary.
Every tokenized input sequence can then be be represented as an array of
token indices in the bag of words model. Storing input as an integer array
is an efficient way to store tokenized sequences. This representation can be
easily converted to a one-hot representation.

1.5.3.1 One-hot Representation

One-hot encoding is the most common and basic way of turning a token into
a vector representation. Each of the tokens obtained in a bag of words can be
expressed in so called one-hot representation - a zero vector of length equal
to the size of the vocabulary with a single 1 on the i-th position for token of
index i. The one-hot encoding is completely uninformed - it does not account
for any similarities.

1.5.3.2 Dense Embedding

One-hot representation is a very sparse encoding. Depending on the size of
the input vocabulary, one-hot vectors can have a very high dimension. When
using a neural network, using high dimensional inputs can lead to a large
number of trainable parameters. Instead, we can represent the inputs as dense
representations of lower dimensions. The reduced input dimension is not the
only feature of dense embeddings. As [13] states “The main benefit of the
dense representations is in generalization power: if we believe some features
may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities.”

Embedding layer in the Keras library can be understood as “...a dictio-
nary that maps integer indices (which stand for specific words) to dense
vectors. It takes integers as input, it looks up these integers in an
internal dictionary, and it returns the associated vectors. It’s effec-
tively a dictionary lookup.” [4] In background, the layer is implemented
as a multiplication of a one-hot vector with a trained embedding ma-
trix. The embedding matrix is initialized randomly and trained with
the rest of the network via backpropagation. As [13] states “it may be
worthwhile to let the network figure out the correlations and gain some
statistical strength by sharing the parameters.”

Pretrained word embeddings like Word2Vec [15] or GloVe [16] are an al-
ternative to embeddings trained jointly with the model. Such embed-
dings are generally pretrained in unsupervised manner. Output dense
vectors generally reflect the word co-occurrence statistics. Pretrained
embeddings can often be downloaded for different languages.
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1.6 Neural Networks

The basic unit of the neural network, the perceptron, was described by Frank
Rosenblatt [17] in 1958. The structure of such a unit is vaguely inspired by the
natural structure of the human brain. Since the discovery of perceptron, the
humanity has gone through multiple machine learning revolutions, all fueled
by advancements in the field of neural network research.

The deep learning (1.3) has shown to be able to outperform most of the
classical machine learning algorithms in cases, where there is enough data and
computational power available.

1.6.1 Perceptron

Perceptron denotes the simplest part, a single cell of the neural network.
The original Rosenblatt perceptron used a non-differentiable step activation
function and worked as a simple, single-layer binary classifier.

1.6.1.1 Structure

Perceptron maps an array of inputs z = [1,z1,x2,...,2,] to an output Y
using an array of weights w = [wg, w1, wa, ..., w,]. Weight wp, usually called
bias, is always multiplied by 1 and therefore does not change with different
input data. To obtain the inner potential &, each input is multiplied by a cor-
responding weight and then summed.

n
§= Zwﬂi =w'x (1.1)
i=0

The output Y is obtained by applying a non-linear activation function f
to the inner potential £ as follows:

V= 1) = (X wiri) = f(w'w) (12)

1.6.1.2 Activation function

The Rosenblatt perceptron originally used a step activation function, but for
simplicity, we will use the unit step activation function f defined as:

1 if x>0
f(z) == = (1.3)
—1 otherwise
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1.

}i
4‘

activation function

Figure 1.2: Structure of a perceptron

1.6.1.3 Learning
The perceptron automatically tries to adjust its weights to mimic the expected

output data. The training [18] happens as follows:
1. In the beginning, the weights are initialized randomly.

2. For each data sample:

a) calculate the output ¢ for current input 2
b) update the weights wq, w1, ...w, to match the result §° with ex-
pected output y*. The update Awj is calculated as:

Awy =n(y' —§') - oh (1.4)
Awy, =y —§') - 2,

It is important to note, that the convergence of a Rosenblatt perceptron

is guaranteed only if the training data is linearly separable.

10
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1.6.2 Multi Layer Perceptron

The true power of the neural networks comes from stacking multiple layers of
perceptrons into a multi layer perceptron (MLP) model. We distinguish input,
hidden and output layers of the neural network. Following mathematical
notation is inspired by [19].

Lets describe a [-layers deep neural network where ni,ns,...,n; are the
numbers of neurons in each layer.

Output of the j-th neuron in an é-th layer can be described as a function
g](.z) = R™-1 — R which has on its input the outputs of n;_1; neurons
from a previous layer.

g](.i) () = f(w"z), where f is an activation function, w = [wg, w1, . .., wy]
are the layer weights and « = [1,z1,...,2,,_,| are the inputs from the
previous layer.

To obtain the output value in a fully connected MLP, we calculate the
values of each individual neuron, layer by layer, from the input to the
output layer. The whole forward pass can be described as a function
g : R™ — R™ which is created by stacking the layers as

@o.. .0 g(l_l) o g(l). (1.5)

°g

/\

(&

7Ny

‘w}u X% .\\‘z .
..gv"‘\""\./

N>

input hidden output

Figure 1.3: Structure of a fully connected neural network

11
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1.6.2.1 Learning

Neural network is basically a function which maps n inputs to m outputs as:

f(JUlaCUQw-‘xn)291,3/27-'-,?/171 (]‘6)

To learn the network, we adjust the network’s parameters (weights). To adjust
the weights, we utilize a loss function such as
1 n AN\ 2
MSE = = (yi — i) (1.7)
i=1

where g; is the predicted value and y; the expected value. We then try to
minimize the output of such loss function.

An algorithm, which enabled effective learning of multi layer percetron
networks, backpropagation [20] was popularized by Rumelhart, Hinton, and
Williams in 1986. The algorithm requires that the neural network is a dif-
ferentiable function. Weights are initialized as small random numbers in the
beginning. Training of a single batch can be described [19] as follows:

o We initialize the error J(w) to 0.
o For each training sample (x;,Y;) in the batch:

— we calculate the predicted output

A

Y; = f(xi) (1.8)
— and update the error as
1 N
T(w) & J(w)+ —(Y; = V)% (L9)

e Then, the gradient is calculated as

97 a—‘])T (1.10)

v“"]:(awl’“‘awm

o and weights are updated based on the learning rate n and gradient as

W 4= W — NV, (1.11)

12



1.6. Neural Networks

1.6.3 Activation Function

Activation function’s main purpose is to introduce non-linearity into the net-
work and to control the information passed to the next layer. Different acti-
vation functions vary in convergence speed, as well as resources required for
the computation. In order to compute the gradient vector during backpropa-
gation, activation function should be differentiable. “The weight initialization
and the activation function of deep neural networks have a crucial impact on
the performance of the training procedure.” [21] As [13] states, ReLU units
work usually better than TanH and TanH works better than sigmoid in deep
learning applications.

1.6.3.1 Sigmoid

Sigmoid activation function has been used widely in the past. However, sig-
moid suffers from several drawbacks. Major one being the so-called vanishing
gradient [21]. This problem is caused by the small derivative of a sigmoid
function when training deep neural networks. When calculating the weight
change during backpropagation, we work with derivatives of activation func-
tions, which in case of sigmoid, are very small numbers. This can result in
model only doing very small updates when training.

f(x) = sigmoid(x) = o(x) = (1.12)

10 1

0.8 4

06 4

04 4

0z A

0.0 4

Figure 1.4: Sigmoid activation function

13
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1.6.3.2 Hyperbolic Tangent

Hyperbolic tangent (TanH) is a zero—centered function with the output range
between -1 and 1. The TanH function if often preferred over sigmoid activation
function thanks to its better training performance for multi-layer neural net-
works. Hyperbolic is also known to suffer from the vanishing gradient problem.
The main advantage is that it produces zero centered output thereby aiding
the back-propagation process [22].

(" =)

e (1.13)

f(x) = tanh(z) =

100
075
050 4
025
0.00 4
—0.25 1
—0.50 1

=075 1

=1.00 1

Figure 1.5: Hyperbolic Tangent activation function

1.6.3.3 Rectified Linear Unit

Thanks to its simplicity and effectiveness when training deep neural networks,
rectified linear unit (ReLU) has become the default activation function across
the deep learning community [22]. The benefits include good gradient prop-
agation, fast computation and scale invariance. Also, the ReLU is one-sided
(biologically plausible) and introduces sparsity into the network. (Only 50%
of hidden units have non-zero output after random initialization.) ReLU is not
differentiable at 0, however we can manually define the value of derivation to
be either 0 or 1. Contrary to classical activation functions (sigmoid, TanH
etc...), ReLU does not suffer from the gradient vanishing problem [21, 13].

0 forx<O

fa) = { (114)

z forz>0

14
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Figure 1.6: Rectified Linear Unit activation function

1.6.3.4 Exponential linear unit

Exponential linear unit (ELU) [23], described only recently in 2015, is an ac-
tivation function, which has shown to be able to speed up learning of deep
neural networks. Unlike RelLu, ELU can produce negative outputs and there-
fore has shown to push the mean activations closer to zero which aids the
training process.

e —1 forz<0
fe) = {:U forx >0 (1.15)
:
4
34
7
14
0
-1
-4 -2 0 2 4

Figure 1.7: Exponential Linear Unit activation function
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1.6.3.5 SoftMax

Contrary to other previously described activation functions, SoftMaz requires
outputs of the whole output layer in order to be computed. The output lies
between 0 and 1 and sums to 1 for the whole layer. SoftMax is often used
as a last layer of neural networks in multi-class classification tasks. The output
represents the predicted probability of input belonging to the i-th class [13].

eri

f(xz) = Zj e

(1.16)

1.6.4 Regularization

When training neural networks, especially on small datasets, we might see
the neural network to learn the outputs for the training data really well. But
when it is presented with unseen data, it fails to generalize. Behavior of having
small bias on training data, but high variance on test data is called overfitting.
Best solution to fight the overfitting is to get more data, a process, that is not
always possible. “Regularization is any supplementary technique that aims
at making the model generalize better, i.e. produce better results on the test
set.” [24] This sections describes some of the most popular techniques used to
deal with overfitting.

1.6.4.1 Reducing the Size of a Neural Network

The idea behind this approach is, that reducing the size of a neural network
also reduces its capacity to learn perfect mappings between specific inputs and
outputs. As [4] notes: “Deep learning models seem to be very good at fitting
to the training data, but the real challenge is generalization, not fitting.”

1.6.4.2 Weight Regularization

With high number of parameters in a neural network, there might be many
possible settings of weights to produce the same training error. Models with
large weights can signalize an unstable neural network, where small changes
in the input can lead to significant differences on output. This might be a sign
of overfitting. To reduce the variance we can add a regularization term [4],
which will be added to our loss function and will encourage the network to
keep the weights small.
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L1 regularization — The cost added is proportional to the sum of absolute
weight coefficients. (L1 norm)

loss = L(Y,Y) + A > |wj| (1.17)

L2 regularization — The cost added is proportional to the sum of squared
weight coefficients. (L2 norm)

loss = L(Y,Y) + A wy (1.18)

1.6.4.3 Dropout

Dropout, proposed by Geoffrey Hinton et al. [25], is one of the most widely
used and most effective regularization techniques for neural networks. “Dur-
ing training, dropout, applied to a layer, randomly changes some of the layer
weights to zero.” [4] The core idea is that by dropping out some of the weights
we break some of the insignificant patterns and motivate the network to gen-
eralize well.

1.6.4.4 Batch Normalization

Batch normalization, proposed by Sergey loffe and Christian Szegedy in 2015 [26]
is a technique which improves stability, performance and training speed of neu-
ral networks. The goal is to transform the layer inputs to have a mean output
activation of zero and standard deviation of one [27]. It works by adding two
trainable parameters to each layer. The normalized output is multiplied by
a “standard deviation” added a “mean” based on the trained parameters [28].
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1.7 Convolutional Neural Networks

Convolutional neural networks (CNN) are a category of neural networks which
gained its popularity mainly with the computer vision and image-driven pat-
tern recognition tasks [29].

Convolutional layers work by applying the convolution operation by sliding
an n-dimensional window (also called filter) over the input matrix, multiplying
its weights element-wise with the input values and summing the product. This
process is shown on the Figure 1.8. To introduce non-linearity, an activation
function (1.6.3) is applied to each individual summed output value. The filter
weights are randomly initialized at start and are trained by backpropagation.

0 10.3/0.5 Wo | W1 | W2 0.310.210.9
0 10.9/0.2 * | W3 | Wa | Ws = 0.5
0 10.1/0.2 We | W7 | W8

0 padded input weights output

Figure 1.8: 2D convolution on a zero padded input with 3x3 filter size

1.7.1 Padding

Padding consists of adding an appropriate number of rows and columns of
zeros on each side of the input matrix [4]. There are several reasons to use
the padding with CNNs:

size of the output: by adjusting the padding size, we can control the size
of the output

information loss: the data close to the border of the input matrix would
be seen less by the convolutional filter and therefore would have smaller
effect on the output

1.7.2 Stride

Other parameter influencing the size of the output of a convolutional layer
is stride. Stride basically means the distance between 2 consecutive appli-
cations of the convolution window. By controlling the size of stride, we can
effectively control the size of the output. Since the stride has effect on the
output size, pooling layers can sometimes be replaced [30] by convolutional
layers with stride larger than one.
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0 100 200 300 400 500

Figure 1.9: Example of convolutional filter detecting horizontal lines

1.7.3 Max Pooling

Max pooling is the most popular technique of downsampling the input into
a smaller number of features. By reducing the size of the convolutional out-
put, we can connect the convolutional layers to a fully connected layer of
a reasonable size. Max pooling works similar to convolution operation and
also utilizes a sliding window but with stride equal to the size of a window.
Contrary to the convolution, the output is simply a maximum value of the
sliding window applied to the input matrix.

o
100

20 2x2 max-pooling

o 100 150 200 250

Figure 1.10: Example of 2x2 max pooling applied on the output of 1.9, the
output is downsampled by a factor of 2.

1.7.4 Global Max Pooling

Global max pooling is described as an operation, which performs a max pool-
ing operation over the whole input. Result of a max pooling operation is a sin-
gle value. This allows us to take an input from a convolutional filter of arbi-
trary size and downsample it into a single value.
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1.7.5 Usage in Text Classification

The problem with using a bag of words model is that the order of tokens
is not preserved. To tackle this issue, convolutional filters of different sizes
can be used on top of input embeddings to learn to identify useful patterns
from certain groups of tokens appearing together.

This process can be seen on the Figure 1.11. As [31] points out, CNNs can
be used effectively for text classification task. They can achieve great results
even without excessive parameter tuning. A description of model using a CNN
for text classification is visualized on the Figure 1.12 and can be summarized
[13] as follows:

1. Important n-grams are detected by ConvolutionlD filters, each learning
a specific category of n-grams.

2. MaxPooling1D is used to detect the most activated filters.
3. Fully connected layers perform the decision making.

The function of convolutional filters in text classification is researched and
explained in [32]: “Current common wisdom posits that filters serve as ngram
detectors: each filter searches for a specific class of ngrams, which it marks by
assigning them high scores. These highest-scoring detected ngrams survive the
max-pooling operation. The final decision is then based on the set of ngrams
in the max-pooled vector (represented by the set of corresponding filters).
Intuitively, ngrams which any filter scores highly (relative to how it scores
other ngrams) are ngrams which are highly relevant for the classification of
the text.”

The paper [32] also mentions that “..filters are not homogeneous, i.e. a sin-
gle filter can, and often does, detect multiple distinctly different families of
ngrams. Filters also detect negative items in ngrams — they not only select
for a family of ngrams but often actively suppress a related family of negated
ngrams.”
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tokens domain com add to cart
0 0 1 0 0 0.5 0.2 0.4 0.5 0.5
0 0 0 0 1 0.9 0.9 0.5 0.9 0.3
1 0 0 0 0 learned 04| |o2| |o9] [o9] o1
— — — — token — — | —
one-hot 0 0 0 1 0 embeddings 0.3 0.3 0.4 0.3 0.2
encoded — 1 1 —1 1 [ 1 [
tokens B I O I I O ] e
0 1 0 0 0 0.1 0.4 0.5 0.2 0.9
0 0 0 0 0 w1y Wa w31
l l i l i w12 w22 w32
] ] ] w13 W23 w33
0.5 0.2 0.4 0.5 0.5 convolutional — —
| | w14 W4 W34
09| |o9| |os| [o9| |03 filter .
learned 04| |o2| |oo| |o9| o1 -
token — — —— — wir, war, ws,
embeddings | 0.3 0.3 0.4 0.3 0.2 N [ | S () S
o 5 e @R R A
outputs

Figure 1.11: Sparse one-hot feature vectors are transformed into dense k-
dimensional embedding vectors and a convolutional filter is applied.

convolution outputs
of multiple filters

max pooled results

Figure 1.12: Global max pooling over the filter outputs produces a fixed-size
output equal in size to the number of used filters.
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1.8 Recurrent Neural Networks

One of the limitations of the feed forward neural networks is their lack of

“memory”. By processing each input separately, the network has no knowledge
of previous inputs when making a decision [4]. In order to process sequences
with such networks, we must present the whole sequence on the input at the
same time. Recurrent Neural Networks (RNN) work by sequentially iterating
through the input and keeping an internal state. This is achieved by using
the output from the previous state as one of the inputs to the network. This
is visualized on the Figure 1.13.

L ¥
- \AHAHA\—»

)

Figure 1.13: Unrolled recurrent neural network. Adopted from [33].

One of the features of RNNs is also that they designed to process inputs
of arbitrary length [34].

1.8.1 Limitations of Recurrent Neural Networks

While theoretically being very capable, RNNs pose several limitations. Recur-
rent neural networks can be sensitive to the vanishing and exploding gradient
problem [35]. RNNs are not effective when learning dependencies of 5 to 10
discrete time steps or more. The propagated gradients can become too small,
or blow up [36]. The other limitation of recurrent neural networks is the
demanding computational requirements of training RNN models [37].

1.8.2 Long-Short Term Memory

Long Short Term Memory [38] networks (LSTM), proposed by Hochreiter
and Schmidhuber (1997), are a type of a recurrent neural network capable of
learning long-term dependencies. LSTM tries to solve the issue of standard
RNN which struggles to model long-range dependencies.

In addition to using an internal state, LSTM cell utilizes specialized “gates”
to control the flow of information. Typical LSTM cell [39] contains:

input gate — controls the flow of input information
forget gate — controls whether to keep or forget data in the hidden state

output gate — allows or prevents the internal state to be seen from outside
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1.8. Recurrent Neural Networks

Since texts are basically sequences of tokens (characters, words), RNNs
and especially LSTMs are often used model natural language processing tasks.
Structure of a typical LSTM cell and gates used is shown in the Figure 1.14.
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Input vector Memory from Sigmoid @ Element-wise
current block multiplication
Memory from Output of Hyperbolic o | Element-wise
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Concatenation
Output of
Q previous block Bias: o

Figure 1.14: Structure of a LSTM cell. Adopted from [40].
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1.9 Measuring Performance

During the development of a machine learning model, the developer needs
to have a feedback about the performance and capability of a model. The
development process often involves testing many different architectures and
possible features.

A common good practice is to determine the goals of the model and choose
an appropriate numerical metric which reflects the desired outcome. After the
metric is chosen, a simple baseline model is created to obtain the first score
on validation data. A baseline then serves as a springboard for further model
development and as a comparison to further, more advanced models.

The upcoming sections examine different metrics that can be used to evalu-
ate binary classification with possible extension to the multi-class classification
problem.

1.9.1 Accuracy

Accuracy is the simplest metric, with the easiest interpretability, but with
a huge drawback when working on unbalanced datasets.

Number of correct predictions

Classification accuracy = (1.19)

Total number of predictions

As the above equation 1.19 shows, accuracy can be very easily applied even
to a multi-class classification problem returning the percentage of correctly
classified samples. However, in cases when dealing with skewed datasets, the
tested model can show very high accuracy even though it simply returns the
most common class.

1.9.2 Precision and Recall

A common performance measurement visualization for machine learning clas-
sification tasks is a confusion matrix. In binary case, it is a table containing 4
different combinations of numbers of predictions (true/false) and actual values
(positive/negative):

Table 1.2: Confusion matrix

meaning description

TP True Positive  data labeled positive correctly predicted
TN True Negative data labeled negative correctly predicted
FP False Positive  data labeled negative incorrectly predicted as positive
FN False Negative data labeled positive incorrectly predicted as negative

24



1.9. Measuring Performance

Terms precision and recall come from the data retrieval field, where they
are used to describe performance of a query. Precision describes the number
of data correctly predicted as positive out of all data labeled as positive. Or in
the data retrieval terms, the fraction of correctly retrieved documents out of
all retrieved. “It answers the question: "When it predicts the positive result,
how often is it correct?’” [41]

TP _ # correctly retrieved documents

Procision — =
TeCSIOn = " p # all retrieved documents

(1.20)

Recall, on the other hand, is described as the fraction of data correctly
predicted as positive out of all data that should have been predicted as pos-
itive. In data retrieval, the fraction of correctly retrieved documents out of
all relevant documents. “It answers the question: "When it is actually the
positive result, how often does it predict correctly?’” [41]

TP _ # correctly retrieved documents

Recall = =
eca TP+ FN # all relevant documents

(1.21)

Both precision precision (1.20) and recall (1.21) return a number = from
range 0 < z < 1. Ideally, we would like them both to be one (everything
correct), but usually there is a tradeoff between having a high precision and
a high recall.

By maximizing precision we motivate our model to classify a smaller num-
ber of classes as a positive yielding a low number of false positives (FP). By
maximizing recall, we maximize how sensitive the model is. It is often used
to limit the number of false negatives (FN).

1.9.3 F-Score

Instead of keeping track of both precision and recall, it is often simpler to
monitor a single metric. Fg-score is defined as:

precision - recall
Fy=(1+8%)-

1.22
(B2 - precision) + recall (1:22)

When =1 this (F}) score represents a harmonic mean of precision and
recall. In order for model to obtain a high Fj-score, the precision and recall
both need to be high values.

The beta parameter determines the weight of precision in the combined
score. f < 1 lends more weight to precision, while g > 1 favors recall (8 — 0
considers only precision, 5 — inf only recall) [42].
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In case of a multiclass classification problem, a composite score can be
computed by two different types of average: micro-average and macro-average.
To calculate the micro-averaged F score, we first compute the global precision
(p) and recall (r) as [43]:

p= — 2iem T po e Th (1.23)
Yiem(TP+ FF)" " Yiey(TH + FNy)

The micro-averaged F} score is then calculated as:

2pr
p+r

Fi(micro-averaged) = (1.24)
To obtain the F; macro-averaged score, the F score is computed separately
for each class i € M and divided by the number of classes |M| [43]:

> ien Fri

Fi(macro-averaged) = ]

(1.25)

“It is understood, that the micro-averaged scores (recall, precision and
F1) tend to be dominated by the classifier’s performance on common cate-
gories and that the macro-averaged scores are more influenced by the rare
categories.” [44]

1.9.4 ROC Graph

A receiver operating characteristics (ROC) graph is a technique for visualizing
performance of classifiers [45]. It is a useful measure especially on unbalanced
datasets where accuracy can often be a poor metric.

To draw a point in ROC space, we first need to measure the classifier’s
tp-rate (true positive rate, also called recall, defined in 1.21) and fp-rate
(false positive rate, defined in 1.26). These values are then plotted in a two-
dimensional graph where tp-rate is displayed on the Y axis and fp-rate is dis-
played on the X axis.

FP

—_— 1.2
FP+TN (1.26)

fp-rate =

The following description of ROC analysis is distilled from the paper An
introduction to ROC analysis [45] by Tom Fawcett:

ROC graph shows relative tradeoffs between benefits (true positives) and
costs (false positives). A trained binary classifier produces a point in the
graph. By looking at the ROC graph, we can compare multiple classifiers by
looking at the visualization. Informally, a point in ROC space is better than
another of it is to the northwest (closer to the top left corner). The diagonal
y = x represents the strategy of random guessing.
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1.9.5 ROC Curve

Some of the classifiers such as Naive Bayes classifier or neural networks nat-
urally predict a probability of instance belonging to a class. Such classifier
returning a relative score can be thresholded (a static threshold can be se-
lected) to produce a discrete (binary) classifier. By trying all of the possible
thresholds and projecting the ROC points into a graph ROC curve is con-
structed.

1.9.6 Area Under ROC Curve

By calculating an area under ROC curve (abbreviated as ROC AUC) a score
can be obtained. “The AUC has an important statistical property: the AUC of
a classifier is equivalent to the probability that the classifier will rank a ran-
domly chosen positive instance higher than a randomly chosen negative in-
stance.” [45]

In case of multi-class classification, ROC AUC score is measured separately
for each class. A single composite AUC score can be then calculated for
example as an average of AUC scores for each class (macro averaged ROC
AUC score). In cases, when the classes are not balanced, each AUC score can
also be weighted by the classes prevalence in data.

00
00 02 04 06 08 10
Fales Pactive Rate

Figure 1.15: Example of a ROC curve plotted separately for each class.
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CHAPTER 2

Analysis

Following chapter first analyzes the dataset and then explores the algorithms
and current approaches related to the URL classification task.

2.1 Dataset

The dataset was provided by a big-data marketing company specializing in
customer behavior analysis. For legal reasons, the dataset is not publicly
available. It consists of 2,794,909 sample URLs from 1494 unique domains
belonging to one of the six categories:

Table 2.1: Categories present in the dataset

category description # of samples
cartadd product was added to cart 119,511
startcheckout | checkout has started 144,140
search searched for an item 624,521
conversion purchase was completed 55,837
productpage | product page 1,036,758
other any other category 814,142

To save space while preserving information, the dataset was preprocessed
and duplicate URLs were removed. This led to a compression from 14, 138, 338
to 2,794,909 samples. The number of identical URLs was stored for each
sample as url__count. To motivate the model to obtain the best generalization
ability, a sample_ weight was computed for each sample as:

# of identical URLs
# of URLs in the same category and domain

sample_ weight =
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Purpose for this weight is to motivate the model to learn every category
per each domain with the same importance since the numbers of URLSs in each
category of different domains can be vastly different.

The dataset was split by domain into train, validation and test datasets.
It is important that the samples in the test and validation sets do not contain
domains from the train dataset as it is relatively easy for model to learn
a representation which works on a particular domain.

Table 2.2: Dataset train, validation and test split

type # of domains # of samples # of unique URLs
train 895 7,169,883 1,473,485
validation 300 3,693,060 688,167
test 300 3,275,395 633,257

Training dataset was used to train the models, while the role of the valida-
tion dataset was to tune hyperparameters of the proposed models. A holdout
test dataset was kept until the final model was selected and then used to
compare performance against the already-implemented production baseline.

2.2 Related Work

The most popular use case of URL classification is for the malicious inter-
net address detection. This task has been traditionally tackled by manually
created domain blacklists. This approach, however, requires time exhaustive
human labor. This led to usage of automated machine learning techniques.
The go to method being logistic regression or SVMs with bag of words fea-
tures. These models are fast, but suffer from several limitations: they often
fail to capture the semantic meaning of the URL, they often require manual
feature engineering and fail to generalize well on unseen data.

Topic of this thesis falls under the field of natural language processing,
specifically text classification. This a common and widely used practice with
usage ranging from automatic social media monitoring, sentiment analysis,
spam detection [46] all the way to the automated malicious (phishing) or
spam URL detection [9, 47].

Related work can be divided into 4 sections: first section (2.2.1) summa-
rizes the usage of classical machine learning models for the topic of automatic
URL classification. The second (2.2.2) and third (2.2.3) sections describe the
usage of character-level convolutional neural networks for text and respectively
for URL classification. In the fourth section (2.2.4), other character-level URL
classification techniques are presented.
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2.2.1 Classical Machine Learning Models in URL
Classification

The single most popular usage of URL classification systems is the binary
task of malicious URL detection. Traditional approach was to compare the
URL to a phishing database like PhishTank!' and check, if it has been tagged
as malicious before [1]. The process of adding malicious URLSs to the database
is time-consuming, and the resulting entry to the database covers only a spe-
cific website. This approach is still the most commonly used [1] by the most
antivirus solutions.

To be able to detect unseen, untagged websites as malicious, machine
learning learning solutions were developed and the process of URL detection
was automated. Any general classification model can be used with an URL
represented as a feature vector created of bag-of-word features. Most popular
models among the automatic website detection field are Support Vector Ma-
chines (SVMs), Logistic Regression, Naive Bayes and Random Forests [1, 48].

Several studies compared use of the traditional models mentioned above.
As [49] shows, Logistic regression and SVMs outperform the Naive Bayes
model on several URL classification datasets. [50] compared kNN (k-Nearest
Neighbors), SVM and a Random Forest algorithm on the UCI Phishing Web-
site dataset. Random Forest classifier was found to be the best performing
algorithm for this task. Random Forest algorithm also performed best [51] on
a Twitter spam URL dataset.

2.2.2 Deep Learning Methods for Text Classification

The following section describes 3 pioneering works in the field of text classifi-
cation using convolutional neural networks. The usage CNNs for text classifi-
cation was first proposed by Kim Yoon [31] (2014) in paper Convolutional deep
learning methods for text classification. Yoon utilized convolving filters on top
of the existing pretrained word2vec vectors. Paper published a year later by
Zhang et al. [52] (2015) explores the use of convolutional neural networks
solely with character-level inputs. Conneau et. al [53] (2016) takes this idea
further by proposing a deep convolutional architecture for text classification.

2.2.2.1 Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification, a paper by Kim
Yoon [31] (2014) shows, that convolutional neural networks, widely used in
the computer vision community, can be effectively used for the text classi-
fication task. A simple CNN with one convolutional layer is trained on top
of pretrained word vectors obtained from an unsupervised language model
Word2Vec.

"https://www.phishtank.com/
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Sentences are padded with zeros or truncated to a fixed length of 300
tokens. The model utilizes filters of sizes 3, 4, 5 with 100 feature maps each,
dropout rate of p = 0.5 and Le-norm constraints on weight vectors of size 3.

This simple model achieves excellent results on multiple benchmarks. Pa-
per points out, that pre-trained vectors are “universal” feature extractors and
can be utilized for various classification tasks. Also that using dropout con-
stantly improves the classification performance by 2-4 %.

2.2.2.2 Character-level Convolutional Networks for Text
Classification

Zhang, X.; Zhao, J.; et al. [52] (2015) propose the use of character-level
convolutional networks for text classification. Their work shows comparison
of character-level deep learning models against traditional models utilizing bag
of words, n-grams and their TFIDF variants. Several different sizes of datasets
are used. It is shown, that traditional methods like n-gram TFIDF remain
strong candidates for datasets of size up to several hundreds of thousands
samples, but are surpassed by CNNs on large scale datasets (over 500,000
samples). LSTMs seem to outperform the traditional methods on the large
scale datasets as well, but are (by a small margin) worse than CNNs in all of
the experiments conducted. Two character-level models (large and small) are
constructed utilizing a lowercased alphabet of 70 characters.

Texts are padded with zeros or truncated to feature vectors of a fixed
length. The model intended for large datasets consists of 6 convolutional
layers of 1024 features each with consecutive kernel sizes of 7, 7, 3, 3, 3 and 3.
Stride is set to one and max pooling of size 3 is applied in the first and last
two layers. Output of the convolutional layers is connected to a sequence of
two fully connected layers of 2048 units each. The fully connected layers are
regularized by dropout.

The most important conclusion of the experiments conducted is that con-
volutional neural networks with character-level inputs are an effective method
which works without the need of word-level input.

2.2.2.3 Very Deep Convolutional Networks for Text Classification

In this work inspired by the success of deep learning models in computer vision
tasks, Conneau, Schwenk et al. [53] (2016), propose a deep learning approach
for text classification. As the paper states, by increasing a depth of a model,
better results can be obtained.

4 models of depth 9, 17, 29 and 49 layers are compared. Whole network
is composed of a series of convolutional blocks as described in 3.2 with optional
shortcuts between the blocks followed by K-MaxPooling (top-k most activated
filters are preserved).
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2.2.3 Deep Learning Methods for URL Classification

Usage of deep convolutional networks solely for the purpose of malicious URL
detection was proposed by Saxe & Konstantin in the eXpose [47] (2017) paper.
A year later, URLNet [9] (2018) used simultaneously both the character and
word-level features with convolutional neural networks to achieve great results
in the binary task of malicious URL detection.
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Figure 2.1: Structure of the eXpose neural network
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2.2.3.1 eXpose

“While similar approaches have been suggested in NLP, eXpose is the first
approach which demonstrates the usage of deep-learning method for cyberse-
curity problems.” [47]

eXpose: A Character-Level Convolutional Neural Network with Embed-
dings For Detecting Malicious URLs, File Paths and Registry Keys [A7] ex-
plores the idea of using the character-level convolutional neural networks to
identify malicious URLs, file paths and registry keys. As it states, applying
a neural network directly to the raw input of short character strings provides
better classification accuracy than previous approaches that rely on hand-
manufactured features.

Input character sequences are first padded with zeros or truncated to
a fixed length of 200. A vocabulary of 87 URL-valid characters is used. Em-
bedding vectors of size 32 are trained jointly with a convolutional network.
To detect the features from learned embeddings, 4 convolutional blocks each
consisting of 256 filters of sizes 3, 4, 5, 6 are used. Dropout of p = 0.5 and
layer-wise batch normalization is used in the convolutional as well as in the
fully connected layers. ReLu activation function is utilized. As opposed to
other text classification papers [31, 9], eXpose utilizes the global sum pooling
operation. All 4 convolutional blocks are concatenated to a joint output of size
1024 (4 x 256 filter outputs). The classification part of the network consists of
3 fully connected layers of size 1024 connected to a sigmoid output of size 1.

2.2.3.2 URLNet

URLNet: Learning a URL Representation with Deep Learning for Malicious
URL Detection [9] aims to improve the detection of malicious URLs. Com-
pared to eXpose, both word and character-level features are used simultane-
ously. The paper describes results of experiments on large-scale datasets and
shows a performance gain over the existing methods.

The input URLs are at first preprocessed to remove the internet protocol.
URL is then divided into primary domain, path, last path token, and top level
domain. For each component, a bag of words is constructed. Several other
features such as token bigrams in path are added along with character n-grams
of the domain. These features help to detect URLs with slightly modified
domain names. In addition, special features such as length of hostname and
number of dots in the URL are used as well. Only the top-k appearing tokens
are kept to keep the number of weights bearable. The preprocessed URLs are
transformed to sequences of integer tokens and zero-padded or concatenated
to a constant length of 200.
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2.2. Related Work

Token arrays are fed into an embedding layer to create 32-dimensional
dense embeddings. 256 convolutional filters of lengths 3, 4, 5 and 6 are used to
capture the order of the embedding layer inputs. Global maz pooling is ran over
all of the filters producing 1024 outputs in each branch connected to a FC layer
of 512 units. Both character and word-level branches are then concatenated
together and connected to fully connected layers of 1024, 512, 256 and 128
units each. Last layer consists of 1 neuron with a softmax activation function.

Input URL
CHAR WORD CHAR
Embedding 1 Embedding Embedding 2 m
(k=32) (k=32) (k=32) r §.
< o
CHAR-level WORD-level o
URL representation URL representation a
(L, x k), L;=200 (L, x k), L,=200
ll II
O
256 h-length 256 h-length 2
convolutional filters convolutional filters E s
(h=3,4,5,6) (h=3,4,5,6) e c
2
=
Max Pooling Max Pooling
FC - ReLU activation (512 units) FC - ReLU activation (512 units)
Concatenated Char and Word feature vector (1024 dimensions) b
S0
FC - ReLU activation (512 units) o
FC - ReLU activation (256 units)
FC - ReLU activation (128 units)

URL Classification Softmax Output

Figure 2.2: Structure of the URLNet neural network. URLNet is composed of
2 parts: character and a word-character level branches which are concatenated
and fed into a series of fully connected layers.
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2. ANALYSIS

2.2.4 Other Character-level Deep Learning Methods for URL
Classification

The previously described paper Character-level convolutional deep learning
methods also offers a comparison of convolutional methods to a vanilla recur-
rent long-short term memory (LSTM) model. This comparison is done on
the pretrained word-level word2vec vectors. The results of LSTM model are
worse than the CNN implementation in all of the test cases by a small margin.
Usage of LSTM for URL classification is further researched by Bahnsen et al.
in [39] and described below.

2.2.4.1 Classifying Phishing URLs Using Recurrent Neural
Networks

Bahnsen et al. [39] (2017) explore the idea of using the recurrent neural
networks, and more particularly a long-short term memory (LSTM) networks
for binary classification of malicious URLs. The approach of using a recurrent
neural network is compared to a random forest (RF) classification algorithm
with manually created features. The LSTM network has shown over 5% higher
accuracy than the feature-engineered model with RF. It has also shown, that
the LSTM network improves its own performance faster than the RF as the
number of training samples increase.

The LSTM and RF models were compared in terms of training time on
a consumer grade PC as well. The results described in Table 2.3 show, that
the LSTM network took around 100 times longer to train. Interestingly, the
LSTM predictions done on GTX 860M GPU were slower only by a factor of
3 compared to the RF predictions done on a consumer grade processor. The
RF model required almost 500 times the memory to store.

Table 2.3: Comparison of LSTM and RF methods

Method Training Time Evaluation Time Memory consumption

minutes URLs per second MB
RF 2.95 + 0.11 942.12 £+ 95.02 288.7
LSTM 238.7 + 0.79 280.90 + 64.48 0.581

As the authors state, the LSTM model showed an overall better prediction
performance without the need of manual expert feature extraction needed in
a RF model. However, the LSTM model lacks the interpretability of a random
forest model. Also, the neural network models require far more training data,
time and expertise to achieve results comparable to a traditional models such
as RF. Figure 2.3 describes the structure of the classifier.
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2.3. Discussion
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Figure 2.3: Structure of a LSTM classifier proposed by Bahnsen et al. One-hot
input vectors are translated to a dense 128-dimensional embedding. Learned
embeddings are fed to a LSTM layer as a 150-step sequence.

2.3 Discussion

Current trend in natural language processing seems to be in using very deep
models. While the pioneering work by Kim Yoon [31] (2014) utilized only
a shallow convolutional neural networks (just one convolutional layer), the
papers on character-level text classification published more recently seem to
be all benefitting from increased depth CNNs. In case of Zhang, X.; Zhao, J.;
et al. [52] (2015), 6 convolutional layers were used, and in case of Conneau,
Schwenk et al. [53] (2016) model of up to 49 consecutive layers was proposed.

Current research in deep URL classification only utilizes shallow convolu-
tional neural networks [9, 47]. An alternative approach to the URL classifica-
tion is to utilize recurrent neural networks. However the results do not seem
to be in par with usage of CNNs.

The upcoming chapter compares different approaches and models on a real
world dataset. The main question is, whether very deep models can outper-
form the shallow character-level models in the URL classification task. The
primary goal is to obtain the model with best generalization ability, while
also keeping in mind that to utilize the model in real-world production en-
vironment, the model is required to work even with limited computational
resources.
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CHAPTER 3

Experimental Model
Comparison

Based on the prior analysis, numerous different architectures were developed
and evaluated. A dummy classifier which generates predictions based on the
distribution of the training set was evaluated as a simplest baseline.

All of the compared models based on CNNs were evaluated with URLs
truncated or padded to a constant length of 320 tokens with the “post” strat-
egy (described in 4.1) and all of them utilized same alphabet and dense em-
beddings (described in 1.5.3.2) of dimension 32.

Table 3.1: Validation scores of researched models. Random forest macro F1
score was ill-defined and therefore omitted in the table.

model Fliyacro Flmicro AUChacro  AUChicro
Dummy classifier 0.1287  0.3914 0.4999 0.6723
Logistic Regression 0.7685  0.8899 0.9752 0.9856
Naive Bayes 0.6172  0.8273 0.8809 0.9560
Random Forest - 0.6210 0.9350 0.9352
CNN - 1 layer word 0.7754  0.8660 0.9573 0.9823
CNN - 1 layer character | 0.8382  0.9163 0.9785 0.9921
CNN — 2 layer character | 0.8191  0.9108 0.9782 0.9905
CNN - 3 layer character | 0.7764  0.8985 0.9716 0.9896
CNN - VDCNN 0.7462  0.8781 0.9676 0.9849
CNN - URLNet 0.8153  0.9012 0.9805 0.9917
LSTM - character 0.7413  0.8799 0.9571 0.9820

Following section describes the structure of models from the table 3.1.
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3. EXPERIMENTAL MODEL COMPARISON

3.1 Traditional Machine Learning Models

The Logistic Regression, Naive Bayes, and Random Forest algorithms were
all implemented using SKLearn [54] ML library on top of character 3-grams
generated from the input URLs. The inputs were preprocessed by removing
the protocol, domain and also lowercased. Logistic regression has proven to
be the best, with very fast prediction speed and training. Random Forest and
Naive Bayes models both did not perform well.

3.2 Models Based on Convolutional Neural
Networks

Current state of the art among the NLP community is the usage of convolu-
tional neural networks on top of learned dense embeddings. Several promising
architectures varying in depth were implemented and compared.

3.2.1 Shallow (1 Layer) CNN Model

Shallow convolutional model is composed of a single convolutional layer fol-
lowed by global max pooling and 2 fully connected layers. The tests included
character and word-level inputs. As the best performing solution, this model
is further described in the section 5.2.

3.2.2 Deeper (2 and 3 Layer) CNN models

One of the limitations of the single layer convolutional models like [9, 47]
is that the filters learn sequences of tokens of length limited by the longest
filter. Any information about relative positions of detected features is lost
during the global max pooling operation. Solution to this problem can be
to stack multiple convolutional and pooling layers effectively increasing the
receptive field.

Deeper convolutional models used a network similar to the architecture
utilized in 3.2.1. With the only difference that each convolutional branch was
repeated 2 or 3 times with varying number of filters in between.

3.2.3 URLNet Inspired Model

Implementation of this model is based on the architecture of the URLNet
(2.2.3.2). Character-level and Word-level feature vectors are created from
each input URL and used simultaneously. The model takes character-level
inputs of length of 320 characters and word-level inputs of length 160 words.
The word tokens are generated by splitting the URL by special characters.
Only words that appear more than once in the training dataset are preserved.
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3.3. Other Character-Level Models

Both character and word-level branches of 512 filters are each concatenated
to a separate fully connected layer of 512 units. The outputs of these branches
are then concatenated together and fed into 2 fully connected layers of size
1024. Last fully connected layer of size 6 utilizes a SoftMax activation function.

3.2.4 VDCNN Inspired Model

A very deep model based on the architecture of the shallowest model (9 convo-
lutional layers deep, proposed by [53]) was implemented and evaluated. The
architecture of the model was previously explained in section 2.2.2.2.

Tested model consists of character-level embedding layer of dimension 32
followed by 4 ConvPool blocks. The ConvPool blocks utilizes (listed from
input) 64, 128, 256 and 512 filters and is visualised in Table 3.2.

Table 3.2: Structure of a single ConvPool block

i) | ConvlD(kernel size = 3, filters)
ii) | BatchNormalization()

iii) | Activation(”ReLu”)

i) | ConvlD(kernel size = 3, filters)
ii) | BatchNormalization()

iii) | Activation(”ReLu”)
MaxPooling1D(2)

Output of the stacked ConvPool blocks is finished with K-Max pooling
layer and fed into 2 fully connected layers followed by a SoftMax layer of
size 6.

3.3 Other Character-Level Models

An alternative approach to the character-level CNN models is to utilize recur-
rent neural networks. Particularly a long-short-term-memory network.

3.3.1 Vanilla LSTM

Y

A simple "vanilla” LSTM network was implemented and tested on inputs of
120 characters. Outputs from the embedding layer of dimension 32 are fed
into a 64 cell LSTM network. The LSTM is followed by 2 fully connected
layers of 64 units each and a softmax layer of size 6.

Training the LSTM network was a challenging task, since the network
failed to converge when long input sequences were presented. Experiments
with utilizing longer input sequences and also increasing the number of LSTM
units only led to decrease in performance. Also, the training of a single batch
was around 4 times slower than in the case of shallow CNN models. The
model converged very slowly during training.
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3. EXPERIMENTAL MODEL COMPARISON

3.4 Conclusion

Table 3.1 describes the validation performance of implemented models. Out of
classical machine learning models, Logistic Regression was observed to be the
best performing. Several different depths and architectures of convolutional
models were implemented and compared. It seems, that the task of URL
detection does not necessarily improve with deeper convolutional models.

Several different input features were used. While the classical models
used character 3-grams, a shallow CNN model with word-level inputs was
implemented and evaluated as well.

A simplified model inspired by the structure of URLNet has shown to be
able to obtain the highest macro AUC score, however only by a very small
margin compared to the shallow character-level model. Also, the URLNet
model is twice the size, slower in training and prediction and most importantly
requires a complicated extraction of word features prior to training. Slightly
better performance can be explained by a larger receptive field due to the use
of the word-level inputs.

A “vanilla” LSTM was observed to be effective on inputs of smaller length.
It did not scale well with long sample lengths.

Shallow character-level convolutional neural networks seems to be the best
choice for an URL classification task. Apart from tokenization and padding,
they require no preprocessing, are stable during training and the inference
speed is better than in case of larger models.
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CHAPTER 4

Other Experiments

In order to understand the role of different hyper-parameters, several experi-
ments were concluded. The results are presented below.

4.1 Input length

Although 1D convolution operation followed by global max pooling should
support inputs of variable lengths, it seems that all of the current research
[52, 47, 9] done in the area of text CNNs uses texts of constant size as inputs.
This is done by truncating the string if it is longer than the maximum number
of tokens, or padding it from one side with zeros to match the constant length.

This is most likely due to a fact that using very long input sequences
proportionally slows down the training and is not necessary when comparing
different approaches.

The experiment concluded tested how the shallow CNN model’s perfor-
mance differs on URLs of different lengths with different padding/truncate
options:

e pre — pad before the sequence starts, remove values from sequence longer
than the maximum length at the beginning

e post — pad after sequence ends, remove values from sequence longer
than the maximum length at the end

The results are shown in the Figure 4.1. After using the lengths of input
URLs longer than 300 characters, the type of padding seems to have no seri-
ous effect. This is likely due to the fact, that more than 95% of samples are
less than 300 characters in length. More valuable conclusion of this experi-
ment is that the information needed for the correct classification is contained
towards the start of the URL.
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4. OTHER EXPERIMENTS

Maximum length of padded URL versus padding/concatenation direction
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Figure 4.1: Comparison of padding settings.

4.2 Learned Embeddings

Convolutional filters are used on the top of dense learned embeddings as de-
scribed in 1.5.3.2. To visualize the learned embeddings, a 32-dimensional em-
bedding matrix was projected to 2D using t-SNE and to 3D using PCA. The
<p> denotes a padding character and <u> the OOV (unknown) character.
The projections indicate that the model learned that numbers have a similar
semantic meaning, whereas special characters are far less similar. The results
are visualized on the Figure 4.3. Different embedding dimensions were tested
for the input of 120 characters. The results are shown in the Figure 4.2.

Comparison of different emb. dims. for 120 characters
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Figure 4.2: Comparison of different embedding dimensions for 120 characters

44



4.2. Learned Embeddings

Figure 4.3: Projection of 32-dimensional embedding matrix to 2D using t-SNE
(top) and to 3D using PCA (bottom). Numbers are visualized in blue, char-
acters in red, special characters in black and special tokens yellow.
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CHAPTER 5

Implementation

Goldberg [13] defines the general structure of a NLP classification system as:

1. “Extract a set of core linguistic features f1,..., fi that are relevant for
predicting the output class.

2. “For each feature f; of interest, retrieve the corresponding vector v(f;).

3. “Combine the vectors (either by concatenation, summation or a combi-
nation of both) into an input vector x.

4. “Feed x into a non-linear classifier (feed-forward neural network).”

The following chapter describes the best performing model selected as a final
solution from the implemented and compared architectures in greater detail.
The performance of the final model is also compared to the industrial baseline.

5.1 Library

For the implementation of the model itself, Keras? python deep learning li-
brary was used:

“Keras is a high-level neural networks API, written in Python and
capable of running on top of TensorFlow, CNTK, or Theano. It
was developed with a focus on enabling fast experimentation. Be-
ing able to go from idea to result with the least possible delay
is key to doing good research.”

*https://keras.io/
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5. IMPLEMENTATION

5.2 Model Architecture

Figure 5.1 shows the visualization of the selected model. First, the tokenized
input is fed into a dense embedding layer of size 32. The embedding layer
is randomly initialized and trained simultaneously with the rest of the model.

Convolutional filters of kernel sizes 3, 5, 7 and 9 each with 128 features are
utilized. Global max pooling is applied to the output of each filter. Outputs
of the convolutional branches are regularized by dropout.

The max pooled outputs are concatenated to a vector of size 512 and
fed into 2 fully connected layers each of size 512. Both fully FC layers are
regularized by batch normalization and dropout.

Input

Embedding (32)

Dropout (0.25)

ConvolutionlD § ConvolutionlD § ConvolutionlD § ConvolutionlD g

kernel size=3 kernel size=5 kernel size=7 kernel size=9

activation=elu activation=elu activation=elu activation=-elu
GlobalMaxPoollD GlobalMaxPoollD GlobalMaxPoollD GlobalMaxPoollD

Dropout (0.5)

Concatenate

FullyConnected (size=512, activation=relu)

BatchNormalization
Dropout (0.5)

FullyConnected (size=512, activation=relu)

BatchNormalization
Dropout (0.5)

FullyConnected (size=6, activation=softmax)

Figure 5.1: Architecture of the final shallow character-level CNN model

Unlike [9, 47] which were designed for a binary classification task, devel-
oped model is meant to predict one out of n classes on its output. The size
of the last fully connected layer is therefore equal to the number of predicted
classes. SoftMax activation is applied to predict a probability of sample be-
longing to class.
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5.3. Training and Preprocessing

5.3 Training and Preprocessing

The model was trained using 4 nVidia Tesla P100 graphical processing units
(GPU) using the Google Cloud? virtual machine. Using a cloud solution allows
for quick development without the need of purchasing expensive hardware.
Batch size of 4096 samples has shown to be the best compromise between the
training speed and learning performance.

Since related work only proposes use of inputs of fixed length, one of the
challenges to be solved during the development was the usage of variable
length inputs. When training the model, all of the samples in the batch are
required to be of same length. To solve this task, each batch is preprocessed
separately. Batches are zero padded to the longest sample present in each
batch. Keras Generator object allows for preprocessing to be done in parallel
with the training or prediction which further improves the overall prediction
speed. Padding utilizes the “post” strategy as described in 4.1.

Prior to prediction, input URLs are first sorted by length. After sorting,
average length of padded sequence that needs to be processed by the model
is smaller and the prediction is therefore faster. Whole process of batch pre-
processing is visualized on the Figure 5.2.

. http://www.shop.com/buy=Trousers%$20L

. http://www.shop.com/buy=Trousers L

. http://www.shop.com/buy=trousers 1

com/buy=trousers 1

24 11 28 41 26 9 22 42 7 6 11 9 14 5 6 14 48 21
longest sample or fixed maximum length

g w N

|24|11|28|41|26| 9 |22|42| 7 | 6 |11| 9 |14| 5 | 6 |14|48|21|

|14]20[45[20[11]14]10]20] 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \

|24]11]28]45]24]18] 5 [24]20[11] 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \

22zTs yoleq

12]21]45|14]20]21] 5 [12]41]26] 9 [22] 0 \ 0 \ 0 \ 0 \ 0 \ 0 \

Model training Batch
on a batch preprocessing

Figure 5.2: Example of preprocessing of a single batch

Shttps://cloud.google.com/
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5. IMPLEMENTATION

5.3.1 Tokenization

The URL is first decoded from the ASCII codes, lowercased and then stripped
of the protocol and domain name. The top level domain is kept in order to
provide information for the model which language might be used. Domain
name can contain valuable information about the type of website, however,
it does not directly correspond to the structure of URLs used for pages of
different categories. Since the main goal is to create a model with the best
generalization ability on any domain, the domain name is removed.

\lgwertzuiopasdfghjklyxcvbnm1234567890
N\=/=&_.7+ o, [BO#\" " 5 ~\n!@$x(){}

Figure 5.3: Characters used as the model’s input alphabet

If a character is not present in the given alphabet, it is replaced by a special
OOV (out of vocabulary) character “\1”. The vectorized inputs are padded
with zeros (“\0” character) or truncated to a vector of fixed length of 320
tokens. Example of the preprocessing is shown in the table 5.1.

Table 5.1: Example of preprocessing and tokenization of an URL: (i) URL
is decoded, (ii) lowercased, (iii) protocol and domain name are removed, (iv)
the URL characters are tokenized

| https://alza.cz/CartAdd.htm?id=170&pkitem=544&iname=nVidia%20V 100
i. | https://alza.cz/CartAdd.htm?id=170&pkitem=544&iname=nVidia V100
ii. | https://alza.cz/cartadd.htm?id=170&pkitem=544&iname=nvidia v100
iii. | cz/cartadd.htm?id=170841881&pkitem=>544&iname=nvidia v100
iv. | 23,7, 40, 23, 12, 5, 6, 12, 14, 14, 44, 17, 6, 27, 45, 9, 14, 41, 28, 34, 37, 35,..

5.3.2 Optimizer

RMSprop optimizer has shown to obtain high validation scores in fewer epochs
compared to the Adam optimizer, which usually took longer but the training
was more stable and converged to slightly better results.

5.3.3 Loss Function

Since ROC AUC score is not differentiable, it cannot optimized directly as a loss
function. A common approach is to use a proxy-objective, such as categorical
cross entropy, but it does not necessarily improve the ROC AUC score. An
alternative differentiable approximation based on Wilcoxon-Mann-Whitney
statistic [55] implemented in the tflearn* library was used.

‘https://github.com/tflearn/tflearn/
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5.4. Evaluation Metrics

5.4 Evaluation Metrics

The selection of the right metric was one of the most challenging tasks during
the development of the model. A simple accuracy score does not provide
a good metric on unbalanced datasets. Instead, 4 scores were recorded: macro
F1, micro F1, macro AUC and micro AUC. Primary goal was optimizing the
macro AUC metric. All the scores were weighted by the url__count (described
in 2.1) to take in mind that duplicate URLs were removed prior to training.

5.4.1 Monitoring Training Performance

Custom callback function was developed to both automatically monitor the
metrics and save the results during the experiments for further examination.
The dashboard used to monitor the training performance is shown on the
Figure 5.4.

o

Figure 5.4: Overview of the training dashboard. Validation score is shown on
the top left, an average of confusion matrices calculated separately for each
class on the top right, ROC graph on the bottom.
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5. IMPLEMENTATION

5.5 Model Evaluation

Before the training and development started, a holdout “test” dataset was put
away. A purpose of this dataset was to show a real, unbiased performance gain
over the existing baseline model which is currently utilized in production.

Current production “autodetection” system uses a logistic regression clas-
sifier built on top of character trigrams using VowpalWabbit® library. Vow-
palWabbit (VW) is a machine learning library developed by Microsoft. It was
originally selected for its emphasis to inference and training speed. Logistic
regression is one of the most popular approaches used in text classification. It
is fast to train yet effective. The major limitation is that it is unable to easily
detect dependencies of characters longer than the length of the n-gram.

The final model trained on the inputs of a fixed length of 320 characters
is compared to the baseline, and also to a model of the same architecture, but
retrained and used with inputs of arbitrary length.

Table 5.2: Test score comparison of a final model

iHPUt length Flmacra Flmicro AUCmacro AUCmicro
VW baseline 0.7889 0.8888  0.9695 0.9820
CNN fixed length 0.8438 0.9317 0.9796 0.9929
CNN arbitrary length | 0.8451 0.9257  0.9803 0.9924

It is clear, that the developed model based on character-level CNN model
outperforms the logistic regression solution by a considerable margin. The
usage of variable length inputs is debatable.

Shttps://github.com/VowpalWabbit/vowpal_wabbit/

02


https://github.com/VowpalWabbit/vowpal_wabbit/

Conclusion

The theoretical part of this thesis sums up most of the elementary knowledge
needed to efficiently understand the concepts used in deep learning. Spe-
cial attention is put to the description of deep character-level convolutional
networks for natural language processing.

One of the goals of this thesis was to research current approaches used for
the URL classification task. This has traditionally been done using classical
machine learning models on top of character n-grams or word-level features.
However, these are outperformed by modern classification systems inspired by
natural language processing. Current state-of-the-art approaches such as eX-
pose or URLNet utilize convolutional neural networks on top learned dense
embeddings.

Based on the survey of the related work, several different architectures
varying in depth, structure and different input features were implemented and
evaluated on a real life dataset. Experimental results confirm, that the use of
character-level convolutional networks is a viable alternative to the classical
machine learning algorithms.

Simple convolutional networks with character-level inputs were observed to
achieve great results even when compared to models like URLNet which utilize
both character and word-level features. This indicates, that the word-level
input is not necessary for effective URL classification as the character-level
convolutional filters are able to learn the important features themself.

A LSTM recurrent neural network was implemented and tested as an al-
ternative to the convolutional neural networks. Compared to the CNN-based
models, the training was very difficult and results inferior. Concluded experi-
ments suggest, that the the performance of the URL classification system does
not necessarily improve with increased the depth of the network. Instead, the
classifier benefits from powerful feature extraction of a shallower CNN models.
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CONCLUSION

Best performing model was described in depth in the implementation chap-
ter. Since this model outperformed the baseline solution, it is currently get-
ting deployed in a real production environment. The model will be trained on
dataset several magnitudes larger than utilized in this thesis. Since the neu-
ral networks are notoriously known to scale well when enough training data
is available, final model is expected to perform even better.

Preprocessing

When dealing with numerical features, especially with inputs of different scale
or range, it can be beneficial to standardize or normalize the inputs. However,
these techniques do not apply to models dealing with sequences of characters.
A common preprocessing practice in NLP, lemmatization, can be used to
reduce each word to its basic form. This leads to lower dimension of the input
vocabulary.

Since URLs are often sequences of arbitrary characters, it does not make
a great sense to utilize lemmatization. One of the features of character-level
neural networks is that they do not require any prior preprocessing. Except
from removing the protocol and domain, lowercasing of the input was the only
preprocessing step applied to the URLs. No improvements were observed with
uppercase letters preserved.

Challenges Encountered

Although not described as a part of this thesis, the first task that had to be
solved was the creation of the dataset itself. Working with Big Data can be
a time consuming and error prone task. Since accuracy is not a representative
score when working with imbalanced datasets, a challenge, not obvious at
first, was to select a representative metric. Also, a custom training dashboard
was developed in order to monitor the training progress.

Since the train, test and validation datasets were split per domain, a large
dataset had to be utilized in order to provide representative results. To train
the models in an effective manner, a virtual machine with several modern
GPUs was used in the cloud environment. Due to the size of the dataset and
memory requirements the models could not be easily trained on a consumer
grade workstation.

A lot of effort was put to train the neural network with inputs of varying
sizes. All of the approaches in related work utilized inputs of fixed length.
The solution to this task was to implement a custom batch generator and pad
each batch to the length of the longest sample. By sorting the dataset prior
to prediction, faster predictions can be achieved thanks to the fact, that the
most of the URLs are relatively short.
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Benefits and Limitations of Character-Level Models

Benefits and Limitations of Character-Level Models

When training classical machine learning models with textual inputs, the texts
need to be first tokenized using a bag-of-words model or its TF-IDF variant.
To determine the size of the input feature space, all of the training data usually
needs to be preprocessed prior to training. When working with large datasets,
the number of features can become extremely high. This preprocessing can be
time and memory consuming too. This issue can be tackled by using the so-
called hashing trick, however it usually comes with a decline in performance.

Main feature of the character-level neural networks is a small-to-none need
for text preprocessing. There is no need to tokenize the dataset prior to
training since we are dealing only with sequences of individual characters and
fixed alphabet.

A common limitation to all neural network models is the limited explain-
ability of the inference mechanism. Development of neural networks can be
demanding, as the hyperparameter space is extremely high and finding an
ideal solution is often a long haul.

Effective training of neural networks is generally a time consuming task
and is highly dependent on fast GPUs. This is not a common equipment of
many of the companies since there is usually no usage for GPUs other than
for machine learning.

Proposed Improvements

Keras library currently does not support zero masking® of zero-padded se-
quences in its convolutional layers. The model therefore learns embeddings
even for the padding characters. This is not desirable as this noise negatively
affects the performance of the model. This is most likely the main limiting
factor of the model with variable input lengths.

The proposed models could possibly be improved by using an embedding
such as Word2Vec [15], GloVe [16] or fastText [56]. Since these methods are
unsupervised, there is no shortage for training data.

Shttps://github.com/keras-team/keras/issues/411
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APPENDIX A

Acronyms

URL Unique resource locator
ML Machine learning
NLP Natural language processing

BOW Bag of words

oov Out of vocabulary (token)
MLP Multi layer perceptron

NN Neural network

CNN Convolutional neural network
FC Fully connected (layer)
TanH Hyperbolic tangent

ReLu Rectified linear unit

ELU Exponential linear unit
RNN Recurrent neural network

LSTM Long-short term memory

RF Random forest
ROC Receiver operating characteristics
AUC Area under curve
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APPENDIX B

Contents of Enclosed CD

readme.tXb..vvveriiinnnnnnnnnnennn... file with CD contents description
T o o PP directory containing the source code
requirements.txt............... file containing python dependencies
jupyter........oiiiiiiiii, directory containing Jupyter Notebooks
python ............. directory containing python functions and classes
thesiS..vvirereneennnn.. directory of IXTEX source codes of the thesis
I ] =5 thesis text directory
Lthesis.pdf ................................ thesis text in PDF format
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