
Insert here your thesis’ task.

Bachelor’s thesis

Development, Application and
Representation of Algorithms for
Discoveries with the ATLAS Forward
Proton (AFP) Detector at CERN

Martin Vatrt

Department of Applied Mathematics
Supervisor: doc. Dr. André Sopczak

May 16, 2019

Acknowledgements

I want thank to Doc. Dr. André Sopczak for his help and very kind approach
during the work on my thesis, and Dr. Vlasios Petousis for his explanations
on the experimental setup.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 16, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Martin Vatrt. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Vatrt, Martin. Development, Application and Representation of Algorithms
for Discoveries with the ATLAS Forward Proton (AFP) Detector at CERN.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2019.

Abstrakt

Tato práce se zabývá rozšířením výběrových kriterií pro získání signal/background
procesů z dat která byla v roce 2016 a 2017 zaznamenána při AFP experimentu
v CERNu. Experiment se zabývá interakcí protonů které se ve dvou proti-
chůdných paprscích těsně míjejí. K rozšíření výběrových kritérií bylo použito
strojové učení. Práce čtenáře nejprve seznamuje s AFP experimentem a co
vysvětluje znamenají signal/background procesy a jakým pomocí jakých pod-
mínek jsou z dat získávány. Následuje poté úvod do strojového učení včetně
podrobného vysvětlení metody která byla pro tuto úlohu použita - neurono-
vých sítí.

V praktické části je vysvětlen dataset s nasbíranými daty se kterým jsem
pracoval, jsou zde popsány úpravy které jsem v datasetu provedl a kterou
machine-learningovou techniku nakonec zvolil. Jsou zde vysvětleny dva pří-
stupy pro klasifikaci záznamů a jak jsem s jejich kombinací došel k finálnímu
výsledku.

Na závěr popisuji program webovou stránku, které byly použity jako vý-
stup této práce.

Klíčová slova CERN, AFP, strojové učení, neuronové sítě

vii

Abstract

The goal of this thesis is to extend selection criteria for getting signal/background
samples from data collected during the AFP experiment at CERN in years
2016 and 2017. This experiment studies interaction of two near-missing pro-
tons in two crossing beams where both of them go in opposite direction. For
extending the selection criteria machine learning is used.

The thesis first introduces the AFP experiment and explains signal/background
processes and the current critera for retrieving them from data. Then follows
an introduction to machine learning with explanation of a method which was
requested for realization - neural networks.

The practical part explains the dataset I worked with and which adjust-
ments I made in dataset. Then I explain which machine learning method I
have used and why. Also two approaches for getting signal/background sam-
ples are presented and how I combined both of them for obtaining the final
results.

At the end I describe the output of the thesis - webpage and script for
getting desired samples.

Keywords CERN, AFP, machine learning, neural networks

viii

Contents

Introduction 1

1 AFP experiment 3
1.1 Signal and background . 3
1.2 Catching the muons . 4
1.3 Experimental set-up . 4
1.4 Current criteria for signal/background separation 6

2 Machine learning 7
2.1 What is machnine learning . 7
2.2 Neural networks . 8

3 Realisation 15
3.1 Used tools . 15
3.2 Getting data from .root file . 16
3.3 Dataset . 18
3.4 First adjustments . 20
3.5 Signal/background definition 21
3.6 Creating new columns . 22
3.7 Dropping diff column . 22
3.8 Using logistic regression . 23
3.9 Using neural networks . 23
3.10 Standartization of the dataset 23
3.11 Applying method on the whole dataset 26
3.12 Combining probabilities . 27
3.13 Final output . 30

Conclusion 31

Bibliography 33

ix

A Acronyms 35

B Contents of enclosed CD 37

x

List of Figures

1.1 Signal - left and middle diagram, background - right diagram. [2] . 3
1.2 Experimental set-up with description. [2] 5

2.1 Model of a perceptron. [3] . 8
2.2 Graph of sigmoid function. [4] . 9
2.3 Lineary separable problem. 10
2.4 Lineary non-separable problem. 10
2.5 Example of 3-layer neural net. 12
2.6 Decision borders of MLP with 5 neuron in two hidden layers. . . . 13

3.1 Dataset we work with. 18
3.2 Records for one event_n. 20
3.3 Table of biggest weights for logistic regression. 24
3.4 Histograms of columns with biggest weights. 25
3.5 Table with basic statistics for diff column for each probability in-

terval. 26
3.6 Histogram with n_samples for 5% probability intervals. 27
3.7 Estimated probability calculated from diff. 28
3.8 Table with basic statistics for final method diff column for each

probability interval. 29
3.9 Table with basic statistics for final method diff column for each

probability interval. 29
3.10 Probabilities for each sample. 30

xi

Introduction

The European Organization for Nuclear Research[1] known as CERN(from
French Conseil européen pour la recherche nucléaire) is one of the largest sci-
entific research centers of the world situated at northwest suburb of Geneva on
the Franco–Swiss border. It employs more than 2500 scientist and technicians
from nationalities all around the world. Its research is focused on what is the
universe made of and how it works. One of the main topics is the study of the
Higgs boson, antimatter, extending the Standart Model of physics and much
more.

The main component of CERN by which are most of the experiments done is
Large Hadron Collider - LHC. LHC is the world’s largest and most powerful
particles accelerator which lies up to 175m underground. The LHC consists
of a 27-kilometre ring of superconducting magnets with a number of accel-
erating structures to boost the energy of the particles along the way. Inside
the accelerator, two high-energy particle beams travel at close to the speed
of light before they are made to collide. The beams travel in opposite direc-
tions in separate beam pipes – two tubes kept at ultrahigh vacuum. They are
guided around the accelerator ring by a strong magnetic field maintained by
superconducting electromagnets. Then these particles are forced to collide at
one of LHC detectors.

One of these detectors is called ATLAS. It is a general purpose detector and
investigates a wide range of physics. Newly an AFP[2] detector was added
to extend the basic functionality of ATLAS detector. This detector operated
for the first time in 2016 and its purpose is to study protons which nearly
missed each other at ATLAS and made a short interaction. The project I
have collaborated with during the works on my Bachelor’s thesis study are
these near-miss interactions. My task was to extend the selection criteria for
getting the events this project investigates based on the data collected from
the ATLAS detector and AFP stations. For this task I was requested to im-

1

Introduction

plement a suitable neural network which will do the job.

Having a new criteria and more samples to study might help the project
to better understand the interaction and possibly to make new discoveries in
physics.

In the next chapters I explain the experimental setup and describe the ex-
periments in more detail. Then I explain how do the neural networks work
and why they can be useful for the task.

In the practical thesis part I describe the dataset and the approaches I have
chosen to find the best separation model.

2

Chapter 1
AFP experiment

1.1 Signal and background

At first, it is important to understand the processes which the project studies.
When two beams of protons going in the opposite direction cross, there are
more types of interactions which can take place, but there are only a few we
are interested in. These interactions are called signal. All the other interac-
tions, which may be detected but are not important for the analysis are called
background.

When two protons fly very close to each other there is an electromagnetic
interaction between them. Because both of these particles have a positive
electric charge, they repeal and both particles are deflected from their original
trajectory. These particles which escape the beam are caught at the AFP.
Problem is that these particles can be dissolved during the interaction. Situ-
ations, where at least one proton comes from the interaction is considered as
signal in our analysis (left and middle diagram in Fig. 1.1]). These intractions
are called ”elastic”[2].

Figure 1.1: Signal - left and middle diagram, background - right diagram. [2]

3

1. AFP experiment

Situations where both protons dissolve into more particles are considered as
background (right digram in Fig. 1.1). Background may also come from dif-
ferent sources. For example, when two particles hit each other, many new
particles are created and may be detected in the AFP. Also, when the intact
proton hits some AFP component, e.g. magnet or pipe, it is smashed and
creates a showers of particles we are not interested in. All these background
situations need to be filtered out.

1.2 Catching the muons
From the quantum physics perspective, electromagnetic interaction is done
by sending virtual photons γγ from both particles. When these two photons
meet, they create a muon pair µ+µ− which is shown in Fig 1.1. These muons
are caught in ATLAS and are essential for finding deflected protons at the
AFP.

When two protons interract they both lose a fraction of their momentum/energy.
From the law of conservation of energy it is known that this lost energy must
have transformed into something else. And it is these newly created muons
the energy has transformed to. From Einstein’s equation E = mc2 we know
there is a relation between energy and mass. That means that we can calculate
the energy loss from elastic interaction from the mass of the muons. For this
we use the following formula 1.1 [2] where s is the centre of mass energy of
the proton beams, and η the pseudo-rapidity angle(with respect to the beam
pipe):

ξµµ = mµµ√
s

e±η (1.1)

1.3 Experimental set-up
At LHC, the beam is in fact separated into bunches of protons which are 25
ns away from each other. Each segment contains about 1014 protons. At
interaction point(IP) these segments are forced to cross each other using the
magnetic fields and particles interact there, and some continue to the AFP
stations. AFP contains 4 stations – two stations on the left side from the IP
and two on the right side. These two stations on both sides are identified as
NEAR and FAR station. NEAR station is situated 205 m away from IP and
FAR station 217 m away from IP. Each AFP station contains 4 silicon planes,
each having a resolution of 336x80 pixels – electro-sensitive units. The area
of these planes is 50x250 m2. Each plane is placed about 2 mm away from
the beam axis to detect only deflected particles. Since the resolution of the
detector in X direction is much higher than in Y direction, very often only X

4

1.3. Experimental set-up

direction is taken in account in the analysis.

Another aspect of the AFP are the magnets along the beam pipe. This mag-
netic field are used to attract particles which escape them beam evelope. Par-
ticles with lower momentum change their trajectory more significantly and
have higher bias from beam axis. Based on the properties of magnets the
following [2] formula was derived:

x(ξ) = −119ξ − 164ξ2 (1.2)

Using this formula we can calculate the X position of a particle if we know it’s
momentum loss ξ. By X position is meant the proton hit on the AFP pixel
detector. This is also how we find our signal candidates since we can calculate
the momentum loss of deflected protons from muons. Figure 1.2 shows the
whole AFP setup:

Figure 1.2: Experimental set-up with description. [2]

5

1. AFP experiment

1.4 Current criteria for signal/background
separation

The solution of the quadratic equation 1.2 is:

ξReco = −119± 656x

328
(1.3)

We consider only solution with + sign in the formula, because the other so-
lution gives unphysical values. This value is called ξReco. It equals to an
expected momentum loss of protons based on the X position.

For the separation of signal/background following criteria are used [2]:

• m < 70 GeV and m > 105 Gev

• 0.02 < ξµµ < 0.1

• (ξµµ − ξReco)/ξµµ < 0.1

• one track at NEAR station and one track at FAR station with close X
positions

The reason for the first condition is that mass in the interval (70, 105) is assos-
siated with z boson interactions. The second condition is set because protons
with ξµµ out of this interval are also out of the AFP acceptance - they do not
hit the sensor plane. The third condition says that recorded momentum loss
and expected momentum loss must be close together. The last condition is
used to be clear that tracks come only from one particle.

The above criteria are very strict. They don’t consider any other samples
with close ξ values, even though there are still many samples which do not
fulfill the second formula but are still highly probable to be a signal. The
current solution does not examine other variables which could be a good pre-
dictor of being a signal - like specific X positions or specific muon weights for
signal/background. To improve the selection and find more candidates the
machine learning algorithm has been developed.

6

Chapter 2
Machine learning

2.1 What is machnine learning

The main purpose of machine learning methods is to find relations in col-
lected data with known output based on which the method is able to predict,
with certain probability, output for some new or non-classified data. With
”output” is usually meant a belonging to some class or some real number.
Task in which we try to assign data a corresponding class are called classi-
fication problem (shortly classification), task where we need to assign data
a real value is called regression problem (shortly regression). As a typical
classification problem could be predicting whether person has/has not have a
specific illness, based on the reported symptoms by pacient, measured temper-
ature etc. As a typical example of regression is predicting the price of a house
based on the location it is situated, accomodation space, number of rooms etc.

To be able to do so, we typicaly need to collect a lot of data with known
output. Then we split the data into training and testing set. On the train-
ing set we train the method. Then we let the method to predict classes (for
classification) or real numbers (for regression) on the testing set. Because we
know what the samples in testing set do equal to, we are able to calculate
how succesful our method is. For classification we usually just calculate the
percentage of correctly assigned samples to total number of samples. For re-
gression we usually use MSE.

Sometimes it happens that a method has a perfect score on a training set
but poor score on testing set. Reason for this is that the separation rules of
the method are too complex to best fit the train set. This problem is called
overfitting and there are many techniques how to reduce it, e.g cross valida-
tion, regularization, etc.

7

2. Machine learning

For some methods we also create a validation set on which we find the best
hyperparameters of the method for current problem. Each method has its
own hyperparameters. For neural nets it’s typically number of neurons, for
logistic regression regulatization type, for decision trees it’s the depth of the
tree, etc.

In our analysis we have only a small dataset we can work with. Since we have
only 69 signal samples, it is not statistically possible to say which method is
definitely the best. That’s why I am also measuring average diff value for
given probability interval in next sections as another criteria for finding the
best method.

2.2 Neural networks

Neural network is a machine learning technique inspired by human brain.
They work well for both regresion and classification. Its main unit is a per-
ceptron which you can see on the picture below.

Figure 2.1: Model of a perceptron. [3]

As you can see, perceptron accepts several inputs and gives one output. It
also has its own weight w vector with one weight for one input. There is also
a special weight w0 which is called intercept and has a constant input x0 = 1.

When the neuron accepts an input from the data(one row of the dataset),
we multiply all the inputs with its corresponding weight and sum them up
according the following formula:

p =
n∑

i=0
wixi (2.1)

8

2.2. Neural networks

Then the output p goes into an activation function from which we get the
output of a neuron. An example of activation function is a sigmoid function
which is defined as:

σ(x) = 1
1 + e−x

= ex

ex + 1
(2.2)

Graph of sigmoid function: We can also use hyperbolic tangent tanh or iden-

Figure 2.2: Graph of sigmoid function. [4]

tity function. Identity function is also used as output function for regression
problems.

2.2.1 What one neuron actually do
Our purpose is to find the best weights for which we get the best score on
training set. Because the dataset with n-columns makes up n-dimensional
data space, we are in fact looking for the best coefficients of hyperplane which
separates the dataspace most effectively. Below is shown an example of such
a separation for 12 datapoints in two-dimensional dataspace.

9

2. Machine learning

Figure 2.3: Lineary separable problem.

A problem is when data are placed in the dataspace followingly:

Figure 2.4: Lineary non-separable problem.

Because we cannot separate these datapoints effectively only with one line
we call them lineary inseparable. Method which can perform only linear sep-
aration are called linear separators. Beside neuron we can logistic regression
[6] or SVM (Support Vector Machine) [6].

10

2.2. Neural networks

2.2.2 Learning one neuron
As mentioned previously, our goal is to find the best weights for which the
output vector for all the samples z have the least bias from the real output
d. Mathematicaly we want to minimize formula which is called cost function.
One of the most common loss functions is MSE (mean squared error) divided
by number of samples [5]:

P (w) = 1
n

n∑
i=1

(d− z)2 (2.3)

To do this we need to find a gradient for weight vector [5]:

∇wP = (∂P

∂w1
, ...

∂P

∂wn
) (2.4)

When the gradient is calculated, we can use a learning technique called
gradient descent. Gradient descent is a method where we calculate an average
error through a set of samples, calculate gradient for weight vector and ”make
step” in the direction of the gradient. Making step means we update the
weight vector with gradient multiplied by some typicaly small number η which
is called learning rate. Below is the mathematical notation of gradient descent
[5]:

w← w− η∇wP (2.5)

When we run this iteration many times we get to a local minima. Which
is really not so good because we need to find a global minima. Thankfully, for
neural nets with high number of neurons all the local minimas are at similar
level as global minima, so for the same number of neurons we should get
similar results regardless the local minimum we get stuck in.

11

2. Machine learning

2.2.3 Multilayer perceptron
Neural net with mupltiple neurons is called multilayer perceptron(MLP). MLP
always have input layer which just accepts the input from dataset, one or more
hidden layers and output layer. Below is shown a simple 3-layer MLP:

Figure 2.5: Example of 3-layer neural net.

All the outputs from previous layer work as input for next layer. For
getting an output of MLP we need the input go through all layers. This is
called forward pass.

2.2.4 One neuron vs MLP
The reason why neurons are put into networks comes from universal approx-
imation theorem which says that with a MLP with a single hidden layer we
are able to approximate any continuous functions on compact subsets of Rn.

Below is shown how MLP with two hidden layers with 5 neurons in each
one deals with a lineary non-separable problems:

12

2.2. Neural networks

Figure 2.6: Decision borders of MLP with 5 neuron in two hidden layers.

2.2.5 Backpropagation
Training a neural network is called backpropagation. The principle is the
same as for one neuron - we update the weights based on the error we get
from training of samples. Only the formula is different for each layer.

For output layer we calculate the gradient followingly by chain rule:

∂P

∂wi
= ∂P

∂z

∂z

∂p

∂p

∂wi
(2.6)

If we are using MSE as loss function previous formula equals to:

∂P

∂wi
= −2(d− z)σ′(p)yi (2.7)

Now if we want to calculate a component i of gradient of first neuron in
hidden layer from Fig.2.5 we calculate following expression:

∂P

∂wi
= ∂P

∂z1

∂z1
∂p3

∂p3
∂y1

∂y1
∂p1

∂p1
∂wi

+ ∂P

∂z2

∂z2
∂p4

∂p4
∂y1

∂y1
∂p1

∂p1
∂wi

(2.8)

∂P

∂wi
= ∂y1

∂p1

∂p1
∂wi

(∂P

∂z1

∂z1
∂p3

∂p3
∂y1

+ ∂P

∂z2

∂z2
∂p4

∂p4
∂y1

) (2.9)

General formula for gradient component of neuron in layer before the out-
put is(O is the set of output neurons):

∂P

∂wi
= xiσ

′(p)
∑
j∈O

−2(dj − zj)σ′(pi)wi (2.10)

We can see that a part of the expression 2.7 is already calculated in expres-
sion 2.10. This can reduce our computational time for backpropagation. For
this reason we prefer to use neural networks with more hiden layers instead
of a neural network with many neurons in one hidden layer.

13

Chapter 3
Realisation

3.1 Used tools
3.1.1 Jupyter notebook and Python
Jupyter notebook [7] is very convenient tool for data analysis. It supports
most the languages which are used for this purpose - like Julia, Python, R
and much more(its name is also derived from these three languages).

An advantage of these notebooks is that we create blocks of codes which
can be executed independently so we have all of our scripts on one page where
we can also compare the outputs. We can also add blocks of text where we
can describe what the following code does.

Work with Jupyter notebook takes place in internet browser from which we
access them using URL link. Therefore, before using the notebook we need
start the notebook server and then access from the browser.

From this comes another advantage of the notebook - we can easily convert
the output into HTML page. I am also using this utility to create a webpage
output of my thesis.

In the Jupyter notebook I am working with latest Python version. For analysis
I am using the following Python libraries:

• pandas [8] - library for working with datasets

• numpy [9] - library for mathematical operations

• matplotlib [10] - library for making plots

• scikit learn [11] - library with machine learning methods

15

3. Realisation

3.1.2 ROOT
ROOT[12] is a framework developed by IT staff working for CERN. It provides
tools big data processing, statistical analysis, visualisation and storage. It is
mainly written in C++ but integrated with other languages such as Python
and R.

Even though ROOT provides a lot of useful tools, I decided to work in Python
and its libraries because in my opinion it provides more dynamic work and
the functionality is the same.

I still learned the ROOT commands, because all the current results done
with root usage. Also the dataset is saved in special ROOT file so I needed
to convert it to .csv file.

Even though I have been using for most of the parts of the thesis, I have
learnt to work with ROOT in C++, also because the source codes, I was
provided with, are written in C++.

3.2 Getting data from .root file
Data in ROOT are usually stored in data structure called tree which class is
called TTree. Every tree has a list of data structure called branch which is an
equivalent of a column in dataset.

For writing data into a tree, we need to create a branche and assign a local
variable for them. With TTree::Branch(const char *bname, void *add)
we create a new branch called bname loading data by variable pointed by
address. Calling TTree::Fill() we create a new record with values stored in
local variables.

Similarly for reading data from a tree we first call TTree::SetBranchAddress(const
char *bname, void *add) and then with TTree::GetEntry(i) we load the
value at index i into a variable pointed by add.

Trees can be saved into a .root file. An advantage of a .root files is that we
can open it with ROOTs browser (which is opened by calling new TBrowser
from ROOT terminal) and see the trees inside the file and their branches. An-
other advantage of .root files is that when we open it in the ROOT browser,
they are automatically converted into histograms. A disadvantage is that only
the root framework can work with this format.

For better work with tree there is a method call TTree::Loop() which creates
a class for the tree. Creating an instance of this class loads the corresponding

16

3.2. Getting data from .root file

tree and assigns branches local variables, which has same name as the branch.
Class provides TreeClass::Loop which loops over the whole tree. Here we
can put our own code and do what we wish to do with each record. So I loaded
each row into a simple .csv file, which just contained the values separated by
';' character.

17

3. Realisation

3.3 Dataset

3.3.1 Meaning of each column
The dataset we are working with looks like this:

Figure 3.1: Dataset we work with.

For better understanding of the dataset I will distinguish three different col-
umn types based on how were the data were obtained. The first type is the
columns which represent data collected at the ATLAS detector, second one
is the data collected at one single AFP station and the third is the column
which was created using the informations from two different AFP stations.

3.3.1.1 Data collected in ATLAS

• m - mass of the muon pair detected at ATLAS which comes from elastic
interaction - our signal. Our purpose will be to find a matching proton/s
by which these muons were created.

• aco - acoplanarity, angle between two crossing beam axes at interaction
point for given event_n.

• xiL, xiR - momentum loss of a proton going to the left/right side of
AFP. This value is calculated from muons caught in ATLAS using pos-
itive/negative η value.

18

3.3. Dataset

• run_n, event_n - identification numbers of an experiments. Relation
between these identifiers is that for one run_n many event_ns are per-
formed. event_n can be seen as identification of two specific bunches of
protons which collide at IP. run_n is the identification number of the
whole experiment - e.g. identification of all bunches of protons acceler-
ated in the same day.

3.3.1.2 Data collected at one AFP station

• stationID - station identificator in range from 0-3. Station 0 and 1 are
NEAR and FAR stations on left side, stations 2 and 3 are NEAR and
FAR stations on the right side.

• side - side where recordings were made. LEFT side corresponds to 0,
RIGHT side corresponds to 1. With previous knowledge at which side
is each station located, this column is redundant.

• xLocal, yLocal - coordinates of a track at given station.

• xSlope, ySlope - these variables are associated with track-create process
from the four planes at one station. The slope is with respect to the
initial proton beam.

• xiAFPx, xiAFPy - columns replaced by xRecoAFP column, approximate
reconstructed xi value in X and Y direction

• xiRecoAFP - momentum loss of a particle calculated from xLocal coor-
dinate at given station of AFP

• n_tracks - number of reconstructed particle trajectories which hit the
AFP station. Reconstruction of a particle is done by combining recorded
electro charges from all 4 plates at one station. This process is called
tracking, this is where does the name of the column come from. Nor-
mally, the number of tracks corresponds to number of rows fow given
station. In some cases there is less rows then number of tracks. It is
because sometimes there is not enough informations for full track recon-
struction, e. g. when a particle hits the border of a detector and doesn’t
leave and electric charge on all 4 plates.

• n_hits - number of activated pixels at AFP station.

• n_clusters - when two hits are next to each other, they are probably
originating from single and are merged into clusters.

19

3. Realisation

3.3.1.3 Data created using the informations from NEAR and
FAR station

• nProtons - number of reconstructed particles using the informations from
NEAR and FAR stations at the same side. Reconstruction is done by
comparing coordinates of a tracks at NEAR and FAR station. When
two coordinates are close together they are believed to originate from
one particle. nProtons also includes all combinations of possible track
trajectory. For example, if we have one track at NEAR station with
xLocal = −5 and then two tracks at FAR station with xLocal1 = −5.5
and xLocal2 = −4.5, nProtons equals to 2.

It is also important to realize that the only variable which change with each
row are xLocal, yLocal, xSlope, ySlope, xiAFPx, xiAFPy and xiRecoAFP. All
the other columns are the same for one station. n_tracks, n_hits, n_clusters
change only with stationID. xiL, xiR and nProtons change with side. And
finally m and aco change only for different event_n. For better understanding
of the dataset, in the table below are rows for one event_n:

Figure 3.2: Records for one event_n.

3.4 First adjustments
As a first step I looked for a columns which do not bring any new informations
for our analysis.

20

3.5. Signal/background definition

At first I have discarded xiAFPx and xiAPFy. Next I discarded ySlope because
it also contained a lot if undefined values. I also discarded run_n column since
it is just an identification number of the experiment.

I also replaced xiL and xiR columns with xiMM and xiMMotherDir columns
to make it clear with which ξ value we are working with. xiMM is the mo-
mentum loss calculated from muon associated with the corresponding side,
xiMMotherDir is the momentum loss calculated from a muon corresponding
to the other side. For side = 0, xiMM equals to xiL, for side = 1 xiMM equals
to xiR.

Next, I decided to work only with rows from NEAR station so I created a
new columns n_trackFar, n_clustersFar and n_hitsFar to have all the nec-
essary informations from both stations in one row. Rows from FAR station
were dropped.

Finally, I have dropped the stationID column and kept only side column.
With merged data from NEAR and FAR station into one row, this column is
redundant.

3.5 Signal/background definition

For getting a signal I created a new diff variable, defined as:

diff = xiMM − xiRecoAFP
xiMM

(3.1)

This calculates how different is the calculated ξ from muons and calculated
ξ value from a track.

Now for getting signal samples I put following criteria:

1. m < 70 GeV or m > 105 GeV

2. diff < 0.1

For background I have used similar criteria, only with diff > 1.0.

After applying these rules I got 69 signal samples and and 398 background
samples. Samples with diff ∈ (0.1, 1.0) weren’t used for training, because may
contain some signal candidates and our purpose is to find with our method.
Number of samples in this set was 158.

21

3. Realisation

3.6 Creating new columns
With this cleaner dataset I have created as many columns as possible which
could carry some informations specific for signal/background. I focused on
comparing the records at NEAR and FAR stations created columns, for which
the values for signal/background distributions might be different. If there were
no records at FAR station, value was set to -1.

• xDiff, yDiff - distance from the nearest track at FAR in X/Y direction.
For getting the nearest track at FAR station I was comparing only xLo-
cals of the tracks. For example, for a track with coordinates (-4.0, 0.0) at
NEAR station with 2 tracks at FAR station with coordinates (-5, 3.0),
(-2.5, 1.0), the xDiff and yDiff values will be 1.0 and 3.0
Reason for creating these columns was that background particles might
travel differently and have different X/Y bias than signal particle.

• tracksInc - increase/decrease of the n_tracks, n_clusters and n_hits
at FAR station by formula n_tracksF AR/n_tracksNEAR (for tracks).
The motivation for creating these columns was that we don’t know exact
behaviour of the particles at NEAR/FAR station. For example, if back-
ground particles had higher tendency to dissolve while traveling between
stations, there should be higher tracksInc ratio for background than for
signal.

• hitsMean, clustersMean - average number of hits and clusters per track at
NEAR station calculated by formula nhitsNEAR/ntracksNEAR(for hits).
Motivation for creation of these was similar as before - if background
particles had higher/lower dissolving character than signal particles, it
should be reflected in these columns.

• hitsMeanFar, clustersMeanFar - same value as before, just for FAR sta-
tion.

• recoOther - this value says if there is at least one record at FAR station.
If there is, this value is 1, otherwise 0.

3.7 Dropping diff column
In the following trainings, I always drop the diff column. The reason is that
since we classified our sample based on the values from this column, the
method would assign a biggest weight to this variable and make classifica-
tion only using this value. Therefore we don’t find any new candidates for
signal/background, we just get those we already have.

When I ran the method on train data with this columns and test it on test

22

3.8. Using logistic regression

data, classification succes rate was almost 100%. Running the method on the
rest of the dataset gave me only exactly the same signal samples I already had
and didn’t find any new one - as expected.

3.8 Using logistic regression
At first I have tried to use linear separation. I have used SGDClassificator
[13] with no regularisation and perceptron as loss function. I also used Lo-
gistic regression [14] with lbfgs solver and L2 regularisation [16].

For 69 signal samples I always randomly picked 69 background samples and
merged them into one set. Then I randomly shuffled the dataset and created
training and testing set in 1:1 ratio.

I ran this iteration 10 times and saved the accuracy rate on test data. The
average accuracy rate was 84%, with 72% minimum and 96% maximum accu-
racy rate. Based on theses rates we can say, that signal and background are
quite well lineary-separatable.

3.9 Using neural networks
Even though linear separation worked quite well, I also tried how good is the
neural network for separation. I’ve used 3 and 4 layer perceptron with tanh
activation function and stochastic gradient descend as a solver. I did not use
validation set to find the real accuracy, I just wanted to try if neural network
can work better than logistic regression. I prepared the training and testing
samples the same way as I did with the logistic regression.

For 3-layer percepton I was putting 1-20 neurons in the hidden layer, with
accuracy test in each iteration. For 4-layer neural network I put 1-5 neurons
in each layer and also testing the accuracy. I ran this for 5 randomly picked
background samples.

The best accuracy I got was 75% with 2 hidden layers with 5 neurons in
the first one and 3 neurons in the second one which means linear separation
works better for our problem. This is good for our analysis, since we would
have small data for creating a validation layer for finding the hyperparameters.

3.10 Standartization of the dataset
Knowing that the data are lineary separatable, we can take advantage of lo-
gistic regression method - getting the columns with largest weights from the

23

3. Realisation

learned model. To be able to do that, we need all the columns to be compa-
rable - having the same units. Since all of our variables are on very different
scale, for example xLocal having the values in the interval (-14,-2), while xiMM
in the interval (0.06, 0.0002), changes of the xiMM will be much more weighed
than changes of xLocal.

To make the columns comparable, we use the standartization, which makes all
the columns having the same mean=0 and same variance=1. To standartize
the dataset, we use the following formula [16] on every element of the dataset,
(µ - mean value of the column, σ - standart devation of the column):

z = x− µ

σ
(3.2)

After this, we can run the method again and see the weights.

After running the method on dataset with standartized values, success rate
on the test sample increased to almost 100% for any background sample.

Here are the the examples of weights from three different methods learned
on three different random background samples (sign is the +/- sign of the
weight, coef is the absolute value of the weight):

Figure 3.3: Table of biggest weights for logistic regression.

24

3.10. Standartization of the dataset

As we can see, in all 4 cases xiMM, xiRecoAFP, xLocal, xiMMotherDir are the
columns with the highest influence on signal/background separation. When
we look at the histograms on Fig. 3.4 of these columns, we can see that the
distributions of these values are really very different for signal/background:

Figure 3.4: Histograms of columns with biggest weights.

It is not surprising that all these 4 concrete variables have specific distri-
butions for signal/background.

As we can see from the first two histograms, signal is probably associated with
specific momentum losses calculated from muons. Because X positions are al-
most lineary dependent on this momentum loss, then also X positions have
specific distributions for signal/background. Now xiRecoAFP is also almost
lineary dependant on xLocal, therefore also has specific signal/background dis-
tribution.

Quite misleading is the high weight for xiMMotherDir column. Because it
is the momentum of loss the muon associated with the other side, it should
not be a predictor for signal/background on the current side. This is why I
decided to drop this column. The performance of logistic regression was not
affected by this adjustment.

25

3. Realisation

3.11 Applying method on the whole dataset
Now when we have the trained method, we can use it on the whole dataset and
see how the signal/background candidates stand with real signal/background
criteria - the diff column.

To find the best method parameters, I was randomly picking background
candidates and with each call constructed a table below. By randomly pick-
ing background samples and checking the correlation with expected values,
I wanted to find the best hyperplane position which separates the dataspace
most efficiently and give us the most reliable signal candidates.

To do this I have created following table for each background sample. min,
max, mean and std columns stand for minimum/maximum value of diff in the
interval and for mean and standart deviation of the diff values in the interval.
Because diff column values spread over a large scale, starting with 0.002 and
ends with 429, I also used mean_log which stands for mean of diff values after
aplying natural logarithm on them. This showed up to be better approach
than a standart mean, because with one wrongly assigned sample with big diff
value, the mean of the interval changed significantly.

For each random background sample I also calculated the correlation coe-
ficient between mean_log and the starting left border of the interval(for first
row it was 0.95, for second 0.90 etc.). The reason for this was that with a lower
signal probability we expect the diff value to have higher values. Therefore
the average diff value should grow with lower probability interval.

After training 10 methods with different background samples, here is the
output of the best one I got. The correlation coefficient was -0.97.

Figure 3.5: Table with basic statistics for diff column for each probability
interval.

26

3.12. Combining probabilities

Here you can see the histogram of probabilities after applying the method
on the whole dataset:

Figure 3.6: Histogram with n_samples for 5% probability intervals.

Most of the samples lie in the (0.0, 0.05) and (0.95, 1.0) intervals. This is
because of the sigmoid output function in logistic regression (which is also in
neural network). Because the linear region of sigmoid function is pretty short,
most of these values are close to 1 or 0. They are still comparable – values
with higher distance from plane have higher probability rate, we just aren’t
able to effectively say which sample is far away and which sample very far
away.

3.12 Combining probabilities
With the new method we have a new criteria for separation which uses infor-
mations from the whole dataset, except for diff. Because the diff column is
another important predictor for signal/background, we should somehow com-
bine the probabilities from both methods to filter out badly classified samples
and to make the final probability output more reliable.

For this purpose, we need to create a function which assigns a probability
for each diff value. The issue is that all we know is that in the (0.0, 0.1)
interval the probability is high. Thus all we can do is to make estimations.

27

3. Realisation

We can expect that with a higher diff value the probability for signal expo-
nencially decreases. With this knowledge we can use a formula for exponencial
distribution and fit it to some estimated points. The formula is following (l
and s are the parameters we need to find):

p(diff) = le−ldiff

s
(3.3)

I don’t use an exact formula for exponencial distribution because I divide
the values with s for better fitting with the points.

The estimated probability for diff =0.1 is 0.85, for diff =0.5 it is 0.4. For find-
ing the best parameters I was looking for the least MSE error for s ∈ (0, 10)
and l ∈ (0, 10). Best fitting parameters were s=1.81 and l=1.82. Below the
estimated probability distribution for diff is given.

Figure 3.7: Estimated probability calculated from diff.

Now with two probability outputs – one from method and one from formula I
have used – we need to combine these two probabilities to get the final prob-
ability output(pm is the probability from the method, pe probability from
estimation based on diff):

p = (pe + pm)/2 (3.4)

28

3.12. Combining probabilities

This is the distribution of final probability and the previous table with new
values:

Figure 3.8: Table with basic statistics for final method diff column for each
probability interval.

Figure 3.9: Table with basic statistics for final method diff column for each
probability interval.

29

3. Realisation

I was also requested to make a plot with probability for each row so it will
be easier to cut out the samples with lower/higher probability at given point.
To do that I sorted all the rows based on the probability output. Then I
changed the index of each row, so the first row has the lowest probability and
last row has the highest probability. Below you can see the graph of y with
dependency on row index:

Figure 3.10: Probabilities for each sample.

3.13 Final output
As a webpage output I have exported the notebook I have worked with into a
HTML format so it can be published on the internet. Before this I cut off the
Python source codes and put them into a single script. I also added a tags for
downloading the thesis and the script.

The script I have created just simply accepts the percantage at which we
want to perform a cut. Then it returns a .csv file with samples having the
probability higher/lower than requested probability.

30

Conclusion

The purpose of the thesis was to extend the criteria for getting signal/background
using the neural network. After explaining how neural network works and for
which tasks it is suitable for we tried how can neural network deal with our
data.

We found out that our data are lineary separable and thus the best fitting
neural net was the one with only one neuron. Because of better documenta-
tion I decided to work with LogisticRegression which is also a linear separator,
only with different method for finding the weights of the model.

We also transformed our current separation rules into a probability estima-
tion. With combination with our method output we assigned each sample a
final probability we work with.

We are now able to work with more samples with still high probability for
being a signal, which was the goal of this thesis. Having more signal candi-
dates might help to understand better the elastic interactions, which is the
main goals of AFP experiment.

31

Bibliography

[1] Who we are. [online], Available from: https://home.cern/

[2] V. Petousis and A. Sopczak, Observation of tagged protons in events with
central exclusive muon pairs with the ATLAS Forward Proton detectors at
13 TeV, ATL-COM-FWD-2019-004. Geneva, CERN, 2019.

[3] What the Hell is Perceptron? [online], Available from: https:
//towardsdatascience.com/what-the-hell-is-perceptron-
626217814f53

[4] Logistic function . [online], Available from: https://en.wikipedia.org/
wiki/Logistic_function

[5] P.Lopez and D. Vašata, Neural networks. URL: https:
//courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-
slides.pdf. [Page available only for FIT CTU students - copy of
presentation can be found at enclosed CD.]

[6] Generalized Linear Models. [online], Available from: https://scikit-
learn.org/stable/modules/linear_model.html

[7] What is the Jupyter Notebook? [online], Available from:
https://jupyter-notebook-beginner-guide.readthedocs.io/en/
latest/what_is_jupyter.html

[8] pandas: powerful Python data analysis toolkit. [online], Available from:
https://pandas.pydata.org/pandas-docs/stable/

[9] NumPy v1.16 Manual. [online], Available from: https://docs.scipy.org/
doc/numpy/

[10] User’s Guide. [online], Available from: https://matplotlib.org/users/
index.html

33

https://home.cern/
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-slides.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-slides.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-slides.pdf
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://pandas.pydata.org/pandas-docs/stable/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://matplotlib.org/users/index.html
https://matplotlib.org/users/index.html

Bibliography

[11] Documentation of scikit-learn 0.21.1. [online], Available from: https:
//scikit-learn.org/stable/documentation.html

[12] ROOT User’s guide. [online], Available from: https://root.cern.ch/
root/htmldoc/guides/users-guide/ROOTUsersGuide.html

[13] SGDClassifier. [online], Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_
model.SGDClassifier.html#sklearn.linear_model.SGDClassifier

[14] Logistic Regression. [online], Available from: https://
scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html

[15] MLPClassifier. [online], Available from: https://scikit-
learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

[16] D. Vašata, Ridge Regression. URL: https://courses.fit.cvut.cz/BI-
VZD/lectures/files/BI-VZD-09-cs-slides.pdf. [Page available only
for FIT CTU students - copy of presentation can be found at enclosed
CD.]

34

https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-09-cs-slides.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-09-cs-slides.pdf

Appendix A
Acronyms

LHC Large Hadron Collider

AFP ATLAS Forward Proton detector

SVM Support-vector machine

MLP Multilayer perceptron

35

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

html directory with HTML thesis output
script.................................directory with script and data
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

37

	Introduction
	AFP experiment
	Signal and background
	Catching the muons
	Experimental set-up
	Current criteria for signal/background separation

	Machine learning
	What is machnine learning
	Neural networks

	Realisation
	Used tools
	Getting data from .root file
	Dataset
	 First adjustments
	Signal/background definition
	Creating new columns
	 Dropping diff column
	 Using logistic regression
	 Using neural networks
	 Standartization of the dataset
	 Applying method on the whole dataset
	 Combining probabilities
	Final output

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

