
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 8, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Open-source DEMO Construction and Process Model Designer

 Student: Petr Ančinec

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Design and Engineering Methodology for Organizations (DEMO) is a methodology for analysing and
modelling organisations and its processes. Several modelling tools that support this methodology exist.
However, these tools are closed-source and do not support all DEMO aspect models according to their
latest DEMO specification. The primary goal of this project is to deliver an open-source web-based
modelling environment with a great user experience that can be used as a standard across the enterprise-
engineering community, and in DEMO certification courses.

Steps to take:

- Review the latest specification for DEMO Construction and Process model notation.
- Design a DEMO model designer with excellent user experience.
- Create an MIT-licensed implementation of the proposed designer in Typescript.

All DEMO aspect models are connected and affect each other. Therefore it is essential that the designer
maintains consistency between them.

References

Will be provided by the supervisor.

Bachelor’s thesis

Open-source DEMO Construction and
Process Model Designer

Petr Ančinec

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 12, 2019

Acknowledgements

I would like to thank my supervisor Ing. Marek Skotnica for his guidance,
mentoring and tips. I would also like to thank everyone who participated in
the modeling speed case study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 12, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Petr Ančinec. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ančinec, Petr. Open-source DEMO Construction and Process Model Designer.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2019.

Abstrakt

Práce se zabývá konstrukčńım a procesńım diagramem metodiky DEMO.
Nedávné změny ve specifikaci DEMO zapř́ıčinili, že neexistuje modelovaćı
nástroj, který by tuto specifikaci podporoval a zároveň kontroloval jej́ı pravidla
a omezeńı. Hlavńım ćılem této práce je vytvořit moderńı, uživatelsky př́ıvětivý
webový nástroj pro vytvářeńı model̊u v DEMO 4 specifikaci a tento nástroj
poskytnout s volně př́ıstupným zdrojovým kódem. K dosažeńı tohoto ćıle je
potřeba pochopit DEMO specifikaci, protože všechny modely jsou mezi sebou
propojené a maj́ı r̊uzná omezeńı, které je potřeba dodržet. Vytvořený nástroj
usnadňuje uživatel̊um práci s modelováńım d́ıky jeho př́ıvětivosti a také kon-
troluje, aby byly dodrženy omezeńı dané specifikaćı DEMO. Př́ıpadová studie
vytvořená v rámci této práce ukázala, že nový nástroj je v pr̊uměru 2.3krát
rychleǰśı než nástroj, který byl nejlépe hodnocen v rámci analýzy existuj́ıćıch
nástroj̊u.

Kĺıčová slova DEMO, OCD, PSD, konstrukčńı model, procesńı model,
modelováńı, Angular, TypeScript

vii

Abstract

This thesis focuses on Organization Construction Diagram (OCD) and Pro-
cess Structure Diagram (PSD) of the Design and Engineering Methodology for
Organizations (DEMO). Recent developments in DEMO have increased the
need for a new modeling tool that supports the new DEMO 4 specification and
verifies its rules. The primary goal of the thesis is to create a modern, user-
friendly, open-source, web-based modeling tool that will support the latest
DEMO specification. It is necessary to understand the DEMO specification if
we want to achieve this goal because all four aspect models are connected and
have specific constraints that need to be abided. Therefore, DEMO specifica-
tion has to be reviewed and analyzed to deliver an efficient and user-friendly
modeling tool. The new modeling tool helps users create DEMO models faster
compared to currently existing solutions, and it also prevents users from break-
ing the specification rules. A case study created during this thesis has shown
that the new modeling tool is on average 2.3 times faster when compared to
the modeling tool that placed first in the review of existing modeling tools.

Keywords DEMO, OCD, PSD, construction model, process model, model-
ing, Angular, TypeScript

viii

Contents

Introduction 1

1 Theoretical foundations 3
1.1 Models and diagrams in DEMO 3
1.2 OCD and PSD in DEMO 3 . 4
1.3 OCD and PSD in DEMO 4 . 7

2 Review of existing modeling tools 9
2.1 Draw.io . 10
2.2 DEMOWorld . 11
2.3 Modelworld . 12
2.4 Enterprise Architect - mDemosyne 14
2.5 UMLet . 15
2.6 Summary . 16

3 Architecture & design of a new modeling tool 19
3.1 Features . 19
3.2 Contract meta model . 20
3.3 Architecture . 20
3.4 Design . 22

4 Proof of concept implementation 27
4.1 Used technologies . 27
4.2 Development process . 28
4.3 Integration process . 31
4.4 Testing . 31
4.5 Modeling capabilities . 33
4.6 Modeling speed . 33

Conclusion 35

ix

Bibliography 37

A Acronyms 39

B Contents of enclosed CD 41

x

List of Figures

1.1 The aspect models of DEMO . 4
1.2 DEMO 3 OCD actor roles, transaction kinds and links 5
1.3 The OCD of GloLog enterprise according to DEMO 3 6
1.4 DEMO 3 PSD transaction kind . 7
1.5 DEMO 4 OCD actor roles, transaction kinds and links 7
1.6 The OCD of GloLog enterprise according to DEMO 4 8
1.7 DEMO 4 PSD transaction kind . 8

2.1 Draw.io modeler . 11
2.2 DEMOWorld modeler . 13
2.3 Modelworld modeler . 14
2.4 mDemosyne modeler . 15
2.5 UMLet modeler . 16

3.1 UML diagram of the Contract meta model 20
3.2 State management service . 21
3.3 OCD communication service . 22
3.4 Layout of the components in the application 23
3.5 Wireframe of the application . 23
3.6 Diagram element sketches . 25

4.1 Graphical representation of elements 28
4.2 Height difference problem . 29
4.3 Closest element problem . 30
4.4 OCD of the Construction licensing 32

xi

List of Tables

2.1 Modeling tools comparison . 17

4.1 Time taken to create the OCD of GloLog enterprise 33

xiii

Introduction

Many organizations are growing in size and require a modern solution to doc-
ument the structure of the organization and what happens within it. DEMO
offers a very efficient and scientific method of documenting organizations and
mapping social interactions between subjects.

The idea behind this thesis is to create a new modeling tool that will
improve the modeling experience for students and the DEMO community.
Currently, there are only a few modeling tools, and most of them do not
support the newest DEMO 4 specification. All of these tools have some dis-
advantages compared to the others. The newly created tool should not have
them, therefore making the modeling faster and more friendly to the user.

Recent developments in DEMO have increased the need for a modeling tool
that supports the new DEMO specification. There are many requirements for
the tool to make it user-friendly and useful. One of the main challenges is
preventing the user from creating invalid models and therefore making the
modeling faster and simpler.

The theoretical part of this thesis is focused on reviewing the newest
DEMO 4 specification and comparing it to DEMO 3 so that an application
following all DEMO 4 constraints and rules can be developed.

The practical part of this thesis is focused on creating a web-based, open-
source DEMO modeling application that will help the DEMO community and
the students partaking in any of the DEMO courses. The application should
be released under the MIT license so that it can be further developed, modified
and maintained by the DEMO community.

1

Chapter 1
Theoretical foundations

At the beginning of this chapter, DEMO is briefly explained. Afterward,
the Organization Construction Diagram (OCD) and the Process Structure
Diagram (PSD) are reviewed in both DEMO 3 and DEMO 4 specifications.

1.1 Models and diagrams in DEMO

According to Advances in enterprise engineering VIII [1], the purpose of
DEMO is pointing out the essential parts of an organization and simplify-
ing the organization structure in an ontological model, which consists of 4
aspect models:

The Construction Model (CM) specifies the construction of the organi-
zation system by the identified transaction kinds and the associated
actor roles, as well as the information links between the actor roles and
information banks.

The Process Model (PM) contains the specific transaction pattern of the
transition kind for every type in the CM.

The Action Model (AM) specifies the imperatively formulated business
rules that serve as guidelines for the actors in dealing with their agenda.

The State Model (SM) specifies the state space and the transition space
of the production world with object class, fact types, result types, and
ontological coexistence rules. [1]

In DEMO Specification Language (DEMO-SL) [2], Jan Dietz describes the
representation of CM and PM:

The CM of an organization is represented in an Organisation Con-
struction Diagram (OCD), a Transaction Product Table (TPT),
and a Bank Contents Table (BCT).

3

1. Theoretical foundations

Figure 1.1: The aspect models of DEMO [3]

A PM is represented in a Process Structure Diagram (PSD), op-
tionally complemented by a Transaction Pattern Diagram (TPD)
for one or more of the transaction kinds.

In the sections below, the OCD and the PSD will be reviewed in depth
according to the DEMO specification version. The Global Logistics (GloLog)
enterprise example from The OMEGA Theory [4] will be used to show the
differences between DEMO versions and also when comparing other modeling
tools. The GloLog enterprise consists of four business process kinds: the client
order process, the supply order process, the sea transport process and the land
transport process.

1.2 OCD and PSD in DEMO 3

The OCD in DEMO 3 contains a Scope Of Interest (SOI), actor roles, trans-
action kinds and different links that connect actor roles and transaction kinds.

The actor role can be elementary or composite. Actor roles who are outside
of the scope of interest will always be composite because there is not enough
information known about them or they are not crucial for the organization.

4

1.2. OCD and PSD in DEMO 3

Figure 1.2: DEMO 3 OCD actor roles, transaction kinds and links [2]

In the diagram, actor roles are represented by a white rectangle for actor
roles inside of the SOI and a gray rectangle for actor roles outside of the SOI.
All actor roles are numbered and have a prefix (A- for elementary, CA- for
composite) inside of the rectangle. [5]

The transaction kind can be original (red), informational (green) or doc-
umental (blue). To keep the OCD simple, in most cases, only the original
transaction kinds are used. [3] A transaction kind that is aggregate consists
of one or more transaction kinds and similarly to composite actor role we
know they exist but do not want to know more about them. [6] Similar to
actor roles, the transaction kinds are numbered and carry a prefix (T-).

There are three types of links that connect actor roles with transaction
kinds to create transactions. Every actor role can be an initiator of many
transactions and an executor of one or none. For this, the initiator and ex-
ecutor links are used. If the initiator and executor of the transaction are the
same, we call the actor role self-activating. The last type of link is an informa-
tion link. An information link between an actor role and a transaction kind
means the actor role can access information of the transaction kind. [2]

The graphical interpretation of the OCD elements in DEMO 3 can be
found in Figure 1.2.

The PSD is partially derived from the OCD. The PSD contains transac-
tion kinds from the OCD with their width expanded to fit all the required
information. There is also a non-proportional linear time axis from left to
right, and the transaction kind is divided into three phases: the proposition
phase (left from the diamond), the execution phase (inside the diamond), and
the result phase (right from the diamond). There are two types of links in the
PSD: the initiation link (starts from a C-fact symbol and ends in the request
act) and the waiting link (starts from a C-fact symbol and ends in a C-act
symbol). [2]

The graphical interpretation of the PSD elements in DEMO 3 can be found
in Figure 1.4.

5

1. Theoretical foundations

Figure 1.3: The OCD of GloLog enterprise according to DEMO 3

6

1.3. OCD and PSD in DEMO 4

Figure 1.4: DEMO 3 PSD transaction kind [2]

Figure 1.5: DEMO 4 OCD actor roles, transaction kinds and links [4]

1.3 OCD and PSD in DEMO 4

The OCD in DEMO 4 introduces a new element to simplify the diagram: the
transactor role. Since every actor role is the executor of one transaction kind
and every transaction kind has one executor actor role, they can be merged
into a transactor role that represents both of them. Another simplification is
the removal of prefixes. There is only a transactor role instead of an actor role
and a transaction kind. Therefore, it can be numbered without a prefix. [4]

The SOI is no longer a grey rectangle that creates a border between actors.
Instead, the SOI is only displayed using the color of the actor part of the
transactor. The colors carry over from DEMO 3. The removal of the SOI
border allows structuring the transactors into a tree and having a uniform
look. [4]

Because of the transactor role, the executor link is no longer present as it
is not needed. The inspection link replaces the information link. It goes from
a transaction kind of a transactor role into an actor role of another transactor
role, and it allows the actor role to read facts from the transaction kind. The
last link of the OCD has been added in DEMO 4, and it is called a wait link.

7

1. Theoretical foundations

Figure 1.6: The OCD of GloLog enterprise according to DEMO 4

Figure 1.7: DEMO 4 PSD transaction kind [4]

Graphically, a wait link looks the same as an inspection link, except it ends
with an arrow. If there is a wait link going from transaction kind into an actor,
it means that the actor must wait for some progress of the target transaction
before continuing. [4]

The graphical interpretation of the OCD elements in DEMO 4 can be
found in Figure 1.5.

The PSD is still partially derived from the OCD. In DEMO 4, the inter-
action structure carries over from the OCD, which means the structure is the
same as in DEMO 3 and the inspection links and the wait links do not carry
over to the PSD. The transaction kinds do not have prefixes anymore, and the
look has changed slightly. While the newly added inspection links and wait
links provide useful insight, it might be too concise for studying the business
processes in detail. [4]

The graphical interpretation of the PSD elements in DEMO 4 can be found
in Figure 1.7.

8

Chapter 2
Review of existing modeling

tools

Multiple modeling tools support DEMO and have different advantages and
disadvantages. The purpose of analyzing other modeling tools is to use what
was proven to be useful and to spot their weaknesses and try to improve upon
them.

For uniform and straightforward analysis, the criteria will be the same for
all tools. The criteria are:

Modeling capability - which aspect models are supported and what is their
DEMO version.

Validation - preventing invalid models or detecting and displaying the cause.

Simulation - putting actors into actor roles and showing the actions step-
by-step.

Modeling speed - a scale from 0 to 10 will be used to make the rating as
fair as possible. The tools will be given points for:

• snapping edges to vertices (1),
• element creation (3),
• convenient element placement (1),
• quick change of element properties (3),
• fast repositioning of elements (2).

User experience - the same 0 to 10 scale will be used. The tools will be
given points for:

• well-made UI (2),
• a simple way of saving and exporting projects (2),

9

2. Review of existing modeling tools

• intuitive controls (3),
• responsivity (2),
• real-time collaboration support (1).

Availability - whether the tools are paid, free with restrictions or completely
free.

Active development - if the tools are being worked on for new DEMO
features.

In the sections below, every tool is described in depth following the criteria
above. Table 2.1 gives a quick overview and comparison of all the tools.

2.1 Draw.io

Draw.io is a free online diagram software that supports community made
palettes. [7] Currently, only the OCD and PSD palettes exist. [8] Since
the palettes are just predefined styles of vertices and edges, Draw.io does
not provide any model validation or simulation, and the modeling itself is
slow because the edges have to be dragged into the canvas manually and it
takes a lot of time and effort to make the connections look nice. All features
including real-time collaboration and Google Drive synchronization are free of
charge and along with a good looking UI provide an excellent user experience.
Draw.io can export the model into HTML, SVG, PDF and image formats and
save them into all sorts of online services and also into device storage.

In figure 2.1 is an OCD version 4 of the GloLog enterprise. Draw.io scored
a total of 6 points in the modeling speed test and a total of 9 points in the
user experience test.

Modeling speed score:

• edges snapping - 1
• element creation - 1
• element placement - 1
• properties change - 1
• element repositioning - 2

User experience score:

• UI - 2
• saving projects - 2
• intuitive controls - 2
• responsivity - 2
• collaboration - 1

10

2.2. DEMOWorld

Figure 2.1: Draw.io modeler

2.2 DEMOWorld

DEMOWorld is an online modeling tool developed by ForMetis. It offers
DEMO modeler with OCD, PSD and OFD support. The modeler has sufficient
error validation and model simulation. [9] The modeling is relatively fast
because the modeler attempts to create links between actors and transactions
automatically and also snaps manually created links to predefined positions
when a user is connecting them. DEMOWorld offers a trial version with a
limit of three transactions per model as well as a free professor version with
a limit of ten transactions. There is currently no way of increasing the limit
above ten transactions. The UI does not look very modern, and the modeler
itself has many pop-ups, but the navigation and modeling are pretty intuitive.
DEMOWorld saves the models into its repository and allows export to a PDF
file.

In figure 2.2 is an OCD version 3 of the GloLog enterprise. DEMOWorld
scored a total of 7 points in the modeling speed test and a total of 5 points in
the user experience test.

Modeling speed score:

• edges snapping - 1

• element creation - 2

• element placement - 1

• properties change - 2

• element repositioning - 1

11

2. Review of existing modeling tools

User experience score:

• UI - 1
• saving projects - 1
• intuitive controls - 1
• responsivity - 2
• collaboration - 0

2.3 Modelworld

Modelworld is a free online modeling tool and repository for collaborative
modeling. It supports OCD, PSD, and OFD creation and validation as well as
model simulation. [10] While modeling in Modelworld, the tool automatically
attempts to create links between actors and transaction kinds and it also allows
snapping links to predefined positions. However, every time a user executes
an operation, it takes the modeler roughly one second to process, which makes
the modeling experience worse compared to DEMOWorld. On the other hand,
the tool is entirely free, offers real-time collaboration and saving the models
into its repository. It also allows importing and exporting the model using an
XML as well as generating PDF and image formats.

In figure 2.3 is an OCD version 3 of the GloLog enterprise. Modelworld
scored a total of 6 points in the modeling speed test and a total of 4 points in
the user experience test.

Modeling speed score:

• edges snapping - 1
• element creation - 2
• element placement - 0
• properties change - 1
• element repositioning - 2

User experience score:

• UI - 0
• saving projects - 2
• intuitive controls - 1
• responsivity - 0
• collaboration - 1

12

2.3. Modelworld

Figure 2.2: DEMOWorld modeler separated into two projects due to a trans-
action limit

13

2. Review of existing modeling tools

Figure 2.3: Modelworld modeler

2.4 Enterprise Architect - mDemosyne

Enterprise Architect (EA) is a client-based modeling tool developed by Sparx
Systems commonly used by enterprises. [11] It supports all four models (OCD,
PSD, OFD, AM) through a plugin called mDemosyne developed by Mphee.
[12] The plugin also contains an external tool for full model validation that
will list all errors in the model on demand. The model simulation is currently
in development. The tool does not automatically create links between trans-
actions and actors, but it does automatically snap the links to a grid. EA is
a big and complex application which makes it more difficult to model in at
first, and it has also reflected on the UI. The plugin itself is free of charge,
but EA is a paid software. It allows export to XML, PDF and many other
formats standardly supported by EA. A user can also import models from an
XML file.

In figure 2.4 is an OCD version 3 of the GloLog enterprise. mDemosyne
scored a total of 6 points in the modeling speed test and a total of 6 points in
the user experience test.

Modeling speed score:

• edges snapping - 1
• element creation - 1
• element placement - 0
• properties change - 2

14

2.5. UMLet

Figure 2.4: mDemosyne modeler

• element repositioning - 2

User experience score:

• UI - 1

• saving projects - 2

• intuitive controls - 1

• responsivity - 2

• collaboration - 0

2.5 UMLet

UMLet is a free, open-source client-based modeling tool written in Java. [13]
It supports DEMO OCD, PSD, and OFD modeling through palettes. The
application is a plain drawing tool and does not support any form of model
validation or simulation. Modeling in UMLet is slow as there is no grid nor
any feature that would make modeling easier and the user has to drag and
adjust everything manually. The application is free along with the palettes.
It offers export to PDF, SVG, and other image formats.

In figure 2.5 is an OCD version 3 of the GloLog enterprise. UMLet scored
a total of 3 points in the modeling speed test and a total of 4 points in the
user experience test.

15

2. Review of existing modeling tools

Figure 2.5: UMLet modeler

Modeling speed score:

• edges snapping - 1
• element creation - 0
• element placement - 0
• properties change - 0
• element repositioning - 2

User experience score:

• UI - 0
• saving projects - 2
• intuitive controls - 0
• responsivity - 2
• collaboration - 0

2.6 Summary

DEMOWorld scored the highest in the modeling speed test because the user
can add new objects into the diagram and change their properties fast with few
clicks. When designing the new modeling tool, the properties of transactors
and actors should be configured using checkboxes and combo boxes rather than

16

2.6. Summary

Table 2.1: Modeling tools comparison
OCD PSD OFD AM Validation Simulation Modeling speed Availability User experience Active developement

Draw.io v41 v4 X X No No 6 Free 9 No
DEMOWorld v3 v3 v3 X Yes Yes 7 Restricted2 5 No
Modelworld v3 v3 v3 X Yes Yes 6 Free 4 No
mDemosyne v3 v3 v3 v3 Yes Yes 6 Restricted3 6 Yes
UMLet v3 v3 v3 3 No No 3 Free 4 No

having multiple different transactor and actor objects that represent simple
property change as seen in Draw.io.

On the other hand, Draw.io has by far the best user experience score.
Draw.io achieved this mainly due to the intuitive controls of moving and re-
sizing elements as well as dragging links and using overlays over an object to
represent actions on the object. The new modeling tool should use an overlay
to add new transactors and actors into the diagram and it should also use an
overlay as a starting point for link dragging between transactors because it
makes the controls intuitive to the user.

1The palettes are created for DEMO 3, but the elements can be grouped and used for
DEMO 4 as well.

2The tool is restricted to 3 transactions for guests, 5 for students and 10 for professors.
3The plugin itself is free, but Enterprise Architect is paid (with a 30-day free trial).

17

Chapter 3
Architecture & design of a new

modeling tool

This chapter provides a quick review of features that are or are not going to be
implemented. Afterward, the chapter focuses on the data model, architecture
and design of the application.

3.1 Features

3.1.1 In the thesis scope

• Implementing a web-based modeling tool under the MIT license that
can run in a browser without any additional plugins.

• The modeling tool should support creating OCD according to DEMO-4
specification.

• The modeling tool should allow the user to capture the information
required for PSD.

• The modeling tool should try to prevent the user from making errors in
the model by not allowing the creation of invalid models.

• The modeling tool should have a property bar where a user can configure
the element properties.

3.1.2 Out of the thesis scope

• The modeling tool will not have server integration.

• The modeling tool will not support creating OFD and AM.

• The modeling tool will not allow simulating or animating the created
model.

19

3. Architecture & design of a new modeling tool

Figure 3.1: UML diagram of the Contract meta model [14]

3.2 Contract meta model

The Contract meta model is a model that keeps all the information about the
OCD as well as information about other diagrams present in the application.
It will allow saving, loading and undo/redo operations in the modeling tool.
The graphical information is kept separate to make the loading easier and the
model more clear. The usage of the model is explained in the Architecture
section. The class diagram in Figure 3.1 shows the Contract meta model.

3.3 Architecture

The application has four main components - main screen, canvas, property bar,
and model view. The modeling tool has to use the main screen component,
the canvas component, and the property bar component. These components
communicate with each other through two services – the state management
service and the OCD communication service.

20

3.3. Architecture

Figure 3.2: State management service

The state management service is responsible for the Contract meta model.
The state management service will be treated as a black box because it is
not part of this thesis. Every change that happens on the canvas is sent
to the service using actions, and once the service processes these actions, it
sends back the entire model asynchronously as an update event. Because the
state management service supports synchronization between multiple devices
and tabs similar to Google Docs, the canvas has to redraw the model when
it receives this update so that it is always up to date with the model. The
property bar is also subscribed to the update event, and it keeps track of
the latest model so that it can pull actor roles and transaction kinds from
it and suggest them to the user. The sequence UML diagram in Figure 3.2
describes the communication between the state management service and the
components.

The second service is called OCD communication service, and it is used to
send data between the property bar component, the canvas component and
the main screen component. When a selection happens, the canvas component
sends information required to update the property bar to the OCD communi-
cation service and the property bar updates based on an event created by this
service. When a user changes something in the property bar component, the
property bar component sends the change to the OCD communication service
and the canvas receives an event and updates the selection according to the
action. The main screen component sends an action to the canvas component
when a user clicks on any button on the toolbar. The sequence UML diagram

21

3. Architecture & design of a new modeling tool

Figure 3.3: OCD communication service

in Figure 3.3 describes the communication between the OCD communication
service and the components.

3.4 Design

From a design perspective, the functions of the components are:

Main screen component contains the model name, the menu buttons and
the toolbar. The menu buttons allow the user to trigger

• exporting the diagram to PDF and SVG,

• saving and loading of the model,

• zooming in and out,

• undoing and redoing actions,

• removing objects and adding new processes.

Model view component visualizes the Contract meta model, and it is not
a part of this thesis.

Canvas component is used for drawing and modeling the diagram.

Property bar component allows the user to change the size of the diagram
and adjust properties of the currently selected element.

22

3.4. Design

Figure 3.4: Layout of the components in the application [14]

Figure 3.5: Wireframe of the application [14]

23

3. Architecture & design of a new modeling tool

The layout of the components within the application can be seen in Figure
3.4. The components are placed where most of the users would expect them
to be. The main screen component resides at the top. It is common for
applications to have the menu buttons and the action buttons on the top and
many users expect to find those controls there. That is why the controls are
placed within the main screen component. The canvas component is in the
middle of the screen because the diagram should be in the center of everything
as it is an essential part. The property bar is on the right because applications
like Draw.io and Google Docs, who are used by many users, place it on the
right side of the screen and the user will most likely start looking from there.
A wireframe of the application with some of the controls can be seen in Figure
3.5.

The property bar should be collapsible to allow extending the size of the
canvas if needed. The property bar controls allow the user to modify the
properties of the selected object as well as the paper size and orientation. The
controls show based on the selected element:

Process label allows changing the paper size and orientation because there
is nothing to configure. Same goes for empty selection and selection
of multiple elements because a user can select multiple elements of a
different kind and the options would not be intuitive.

Actor role allows changing all current actor roles and lets the user make the
actor role composite. If an actor role is changed to one that already
exists in the diagram, they become linked, and all edits made to any one
of the linked actor roles modify all linked actor roles.

Transactor role allows changing everything the actor role does since a trans-
actor role consists of an actor role and a transaction kind. It also allows
changing all current transaction kinds based on the same principle as the
actor role linking, except it links together different transaction kinds. It
also lets the user change the transaction sort, which specifies whether
the transaction kind is original, informational or documental.

Initiator link allows changing the cardinality of the target transactor. If
the source of the link is a transactor, it also lets the user change the
coordination act of the source transactor.

Inspection link allows changing the source and target position of the link.
The link can start at the top or the bottom of the transaction kind, and
it can end at the top or the bottom of the actor role. The inspection
link can also be changed into a wait link, which gives the user additional
options.

Wait link has all the controls as inspection link does. Additionally, it also
allows changing coordination act of the source and target transactor.

24

3.4. Design

Figure 3.6: Process name, expanded actor, expanded transactor, regular trans-
actor, regular transactor with overlay (left to right) [14]

The canvas contains a diagram that draws elements. The elements can
be processes, actors, transactors, and links. The user can move the diagram
around, zoom in/out, select elements and create new ones or modify the cur-
rent ones. The elements cannot be moved because they have a fixed position
and are in a hierarchical tree structure starting from the left to the right. As
shown in Figure 3.6, the actors and the transactors are resized based on the
height of all the child transactors they have so that the parent transactor is
the same height as the entire subtree. To start modeling, the user can add a
process into the diagram from the main screen component using the process
button. The process represents one OCD tree and always starts with either
actor or self-activating transactor. Once the process is added to the diagram,
the user can hover over it to toggle the elements overlay. The user can build
the OCD tree by clicking on the overlay icons. An example of the transactor
overlay can be seen in Figure 3.6. Every element has a specific overlay based
on the element type:

The process has two icons in the overlay that allow the user to add an
actor and a self-activating transactor. If the process already has a child,
the overlay no longer shows because every process has only one child
transactor or actor.

The actor has an icon that allows adding an elementary transactor role and
linking it with the actor using an initiator link.

The transactors have everything the actor has and additionally also two
arrows that allow the user to start dragging a wait link to another trans-
actor from the top or the bottom.

25

3. Architecture & design of a new modeling tool

The links do not have any overlay because if they exist, they already link
two elements, and there is no reason to create anything from them.

Since the elements have a fixed position in the tree structure, the user has
to be able to reposition the elements within the tree. To achieve this, the user
can drag an element over another element to swap them, drag an element near
another element to append to that element or drag an element in between two
elements to place the element in between. Only elements of the same type can
be swapped, and only transactors can be appended to either actor or another
transactor to keep the model valid.

26

Chapter 4
Proof of concept

implementation

This chapter describes the choices of technologies used for the implementation,
some interesting problems that happened during the development, how the
modeling tool integrates with the application and how it is tested. At the end
of the chapter, the modeling capabilities are shown, and a small case study is
made to measure and compare how fast the new modeling tool is.

4.1 Used technologies

4.1.1 mxGraph

mxGraph is a JavaScript library that allows creating an interactive graph and
charting applications that run natively in any major browser. [15] The main
advantage of mxGraph is that it has been continuously developed and used in
many large enterprises commercially from 2005 until 2016, which makes the
library rich in features and well-tested with very few bugs. [16] The mxGraph
library is also used for the Draw.io diagram software, which means it will be
good enough for the implementation part of this thesis.

4.1.2 TypeScript

“TypeScript is a language for application-scale JavaScript. TypeScript adds
optional types to JavaScript that support tools for large-scale JavaScript ap-
plications for any browser, for any host, on any OS. TypeScript compiles to
readable, standards-based JavaScript.” [17]

Since TypeScript compiles to JavaScript, it can be used with the mxGraph
library. TypeScript will allow creating more readable and higher quality
object-oriented code.

27

4. Proof of concept implementation

Figure 4.1: SVG template for elementary transactor with the graphical rep-
resentation of transactor and actor elements

4.1.3 Angular

“Angular is a platform and framework for building client applications in HTML
and TypeScript. Angular is written in TypeScript. It implements core and op-
tional functionality as a set of TypeScript libraries that you import into your
apps.” [18]

Angular will be used because it is a modern framework that excels in
single-page applications [19] and the component system will help dividing the
application into separate modules. Because the implementation part of this
thesis is a piece of a bigger project that uses Angular, it will be useful when
it comes to integrating the implementation into the project.

4.1.4 Material Design

“Material is an adaptable system of guidelines, components, and tools that
support the best practices of user interface design. Backed by open-source code,
Material streamlines collaboration between designers and developers, and helps
teams quickly build beautiful products.” [20]

Material Design will be used to create nice looking and responsive UI. All
controls in the property bar and the toolbar will be using Material Design for
a unified look that should make the application user-friendly and intuitive for
new users.

4.2 Development process

The implementation part of this thesis is done according to the design and
architecture described in Chapter 3. However, there were some problems
during the development process that are worth mentioning.

28

4.2. Development process

Figure 4.2: Differences in height using height adding method and coordinate
difference method

The property bar implementation is straightforward. Thanks to Angulars
Material Design form controls and two-way data binding, only the communi-
cation between the canvas component and the property bar component has to
be implemented. Whenever there is a change in any of the control forms, all
the control forms current values are sent to the canvas component, where it
is used based on what element is currently selected. When a selection of ele-
ment changes, the canvas component sends required data about the selected
element to the property bar component and the control forms are shown and
filled with values based on that element.

The biggest challenge was implementing the canvas component since the
mxGraph library used for drawing the diagrams has an incredible amount of
features, and learning how the library works takes a long time. SVG images are
used to represent all the elements in the diagram to make the graph scalable
and the properties changeable through code. To make mxGraph use the SVG
images, they have to be taken as a string, the color and the text properties of
the image have to be replaced based on the element properties, and the final
string is prepended with “data:image/svg+xml,” to specify that the image is
in the SVG format. In Figure 4.1 there is an SVG template for elementary

29

4. Proof of concept implementation

Figure 4.3: Differences in closest element calculation methods

transactor along with some graphical representations of the elements. Some
of the height related information about the SVG image is in percentage units
so that it automatically resizes when the element height changes.

The height change based on children elements was one of the more difficult
tasks. Whenever an element is added, moved or removed, the algorithm has to
resize all elements on the path to the root of the OCD tree. The first approach
when resizing an element to be the same height as all of the children was to
iterate the children and add up all of their heights plus a fixed gap between
them. This approach caused problems because the gaps were not always
the same size based on the placement of nearby elements, which would then
start accumulating the height error with every level of the tree. The second
approach was to take the y-coordinate of the uppermost element and the
height plus y-coordinate of the bottommost element and subtract them. This
approach was tested to give accurate results. Figure 4.2 shows the different
results of the two methods with the correct height being 600. Note that
transactor 4 (on the left) already accumulated an error of 5 from its children.
The difference is only 10, and it is not noticeable, but for big models, the error
accumulates, and the edge starting points get misaligned.

Another problem worth mentioning was element swapping and appending.
When a user holds left click on an element, he can drag it around and trigger
swap and append actions. When the dragging is going on, a distance to the
closest element is needed to show the appropriate append actions (user can
append between two elements on the same level or append to an element when

30

4.3. Integration process

to the right of it). The first approach was to take the center of every element
placed in the diagram and calculate the distance to the mouse coordinate.
This method works well when all elements are approximately the same height.
However, when an elements height increases, the center of the element can be
further than another element that has a smaller height. The left part of Figure
4.3 shows the problem with calculating the closest element as the distance
from the center. The self-activating transactor should be chosen as the closest
element because the mouse is next to its border. However, the actor element
is chosen instead, and the self-activating transactor is the fourth closest when
it should be the first. The solution was to sample elements whose height is
bigger than the default height so that this problem does not occur. As seen
in Figure 4.3 on the right, the self-activating transactor is sampled every 100
pixels and additionally at the bottom of the element because it is common
to append in between two elements. This way, the closest element is chosen
more accurately without sacrificing many additional resources.

4.3 Integration process

The new modeling tool is integrated into a bigger project which consists of
multiple modeling tools. All of the modeling tools modify the Contract meta
model. The state management of the Contract meta model is part of a differ-
ent thesis and will be treated as a black box. Every change to the Contract
meta model has to be sent to the state management service, and every time
the state management service sends an update to the modeling tool, the mod-
eling tool has to redraw the entire model. In return, the state management
implements undo/redo operations and cross-browser synchronization, which
allows collaborative modeling.

When the new modeling tool receives an update from the state manage-
ment service, the update carries the entire Contract meta model and some
graphical information such as positions of transactors in the OCD tree and
coordinates of line bends for inspection links and wait links. The graphical
information is minimal because all elements have set positions within the di-
agram. When updating the diagram, it has to be cleared completely, and
afterward, the new Contract meta model is parsed and drawn into it.

4.4 Testing

Since the project uses the Angular framework, every component has its file for
unit tests. The mxGraph library has been in production for over ten years and
should not contain many reproducible bugs. A lot of the features in the im-
plementation part are difficult to create tests for because they usually require
user input such as mouse movement and clicking. The created tests cover
the component initialization such as initializing the graph with all required

31

4. Proof of concept implementation

Figure 4.4: OCD of the Construction licensing [21] separated into two parts

properties, adding elements and removing elements. After that, the tests try
reproducing simple communication between the canvas component and the
property bar component using the OCD communication service.

32

4.5. Modeling capabilities

Table 4.1: Time taken (minutes and seconds) to create the OCD of GloLog
enterprise

New modeling tool Draw.io
Subject 1 5:09 11:54
Subject 2 3:17 13:26
Subject 3 8:14 17:41
Subject 4 10:00 20:00
Subject 5 6:35 13:50
Average 6:39 15:22

4.5 Modeling capabilities

The OCD of Construction licensing [21] that can be seen in Figure 4.4 has been
created in the new modeling tool to demonstrate the modeling capability and
handling of complex models. The new modeling tool fully covers the OCD for
the DEMO 4 specification, and because of the coordination acts on initiator
links and wait links, it also covers the majority of the PSD in a single diagram.

4.6 Modeling speed

To measure how much faster a user can create models compared to existing
modeling tools, a small case study has been made. This case study compares
the new modeling tool to the Draw.io modeler. The Draw.io modeler was
chosen because it was one of the highest rated modeling tools in the review
of existing modeling tools. While DEMOWorld was rated the fastest, it only
allows ten transactions per project, which is not enough to measure the model-
ing speed accurately. Several users across the DEMO community were asked
to create the OCD of GloLog enterprise in both modeling tools. Table 4.1
shows all participants along with the time taken to create the OCD in each
tool. The study has shown that the average time is 6:39 for the new modeling
tool and 15:22 for Draw.io. On average, the user should spend 2.3 times less
time in the new modeling tool compared to Draw.io.

33

Conclusion

The goal of this thesis was to compare the existing modeling tools for DEMO
and based on that design and implement a prototype of a new user-friendly
modeling tool supporting the DEMO 4 specification.

The review of the DEMO 4 specification in the chapter Theoretical foun-
dations revealed how the model is created and which constraints need to be
enforced. The review of the existing modeling tools revealed features that
allow fast modeling and good user experience.

The implementation is available at [22] with the full source code released
under the MIT license at [23]. The solution uses Material Design which makes
the application look nice. In the chapter Proof of concept implementation, a
small case study measured the new modeling tool to be 2.3 times faster in
modeling OCD when compared to the best scoring application in the chapter
Review of existing modeling tools. The design of the application along with
the intuitive controls and automatic element creation and connection make
the application easy to use and user-friendly.

In the future, the PSD could be extended, and a feature allowing simulation
of the model could be added into the project.

35

Bibliography

1. AVEIRO, David; TRIBOLET, José; GOUVEIA, Duarte. Advances in
enterprise engineering VIII. 1st edition. New York: Springer, 2014. ISBN
978-3-319-06504-5. Available from DOI: 10.1007/978-3-319-06505-2.

2. DIETZ, Jan. DEMOSL-3 DEMO Specification Language [online]. 2017
[visited on 2019-04-19]. Available from: http://www.ee- institute.
org / en / documents / 21 / methodology - documents. Technical report.
Enterprise Engineering Institute.

3. DIETZ, Jan. The Essence of Organisation: An Introduction to Enterprise
Engineering. 2nd edition. Sapio Enterprise Engineering, 2015. ISBN 978-
9-081-54494-8. Available also from: https://books.google.com/books?
id=XtyEAQAACAAJ.

4. DIETZ, Jan. The OMEGA theory - understanding the construction of
organisations [online]. 2017 [visited on 2019-04-17]. Available from DOI:
10.13140/RG.2.2.22806.24642. Technical report.

5. HUŇKA, Frantǐsek. Podnikové ontologie [online]. Ostrava, 2012 [visited
on 2019-04-14]. Available from: http://www1.osu.cz/˜hunka/vyuka/
javaOOP/XXPONT.pdf. Technical report. Ostravská univerzita v Ostravě.

6. DIETZ, Jan. Enterprise Ontology: Theory and Methodology. Springer
Berlin Heidelberg, 2010. ISBN 9783642067150. Available also from: https:
//books.google.com/books?id=ZXuccQAACAAJ.

7. JGRAPH. draw.io [online]. 2018 [visited on 2019-04-20]. Available from:
https://www.draw.io/.

8. DUNAEVSKIY, Sergey. Design & Engineering Methodology for Organ-
isations (DEMO) palettes for draw.io [online]. 2018 [visited on 2019-04-
20]. Available from: https://github.com/dunaevskiy/DEMO-drawio-
palette.

9. FORMETIS. About DEMOworld [online]. 2019 [visited on 2019-04-20].
Available from: https://www.demoworld.nl/Portal/Home/About.

37

http://dx.doi.org/10.1007/978-3-319-06505-2
http://www.ee-institute.org/en/documents/21/methodology-documents
http://www.ee-institute.org/en/documents/21/methodology-documents
https://books.google.com/books?id=XtyEAQAACAAJ
https://books.google.com/books?id=XtyEAQAACAAJ
http://dx.doi.org/10.13140/RG.2.2.22806.24642
http://www1.osu.cz/~hunka/vyuka/javaOOP/XXPONT.pdf
http://www1.osu.cz/~hunka/vyuka/javaOOP/XXPONT.pdf
https://books.google.com/books?id=ZXuccQAACAAJ
https://books.google.com/books?id=ZXuccQAACAAJ
https://www.draw.io/
https://github.com/dunaevskiy/DEMO-drawio-palette
https://github.com/dunaevskiy/DEMO-drawio-palette
https://www.demoworld.nl/Portal/Home/About

Bibliography

10. HOMMES, Bart-Jan. Modelworld [online]. 2011 [visited on 2019-04-20].
Available from: http : / / www . modelworld . nl / index . php ? page =
documentation.

11. SPARX SYSTEMS. Enterprise Architect [online]. 2019 [visited on 2019-
04-20]. Available from: https://sparxsystems.com/products/ea/
index.html.

12. MPHEE. mDemosyne [online]. 2019 [visited on 2019-04-20]. Available
from: http://www.mphee.nl/demo-tool/.

13. THE UMLET TEAM. UMLet [online]. 2015 [visited on 2019-04-20].
Available from: https://www.umlet.com/.

14. SKOTNICA, Marek. Lecture notes in Software Team Project: Functional
Specification - PSI Contract Designer. 2019.

15. JGRAPH. mxGraph [online]. 2019 [visited on 2019-04-24]. Available from:
https://jgraph.github.io/mxgraph/.

16. JGRAPH. mxGraph - NPM [online]. 2019 [visited on 2019-04-24]. Avail-
able from: https://www.npmjs.com/package/mxgraph.

17. MICROSOFT. TypeScript [online]. 2019 [visited on 2019-04-24]. Avail-
able from: https://github.com/Microsoft/TypeScript.

18. GOOGLE. Angular - Architecture overview [online]. 2019 [visited on
2019-04-24]. Available from: https://angular.io/guide/architecture.

19. FREEMAN, Adam. Pro angular 6. 3rd edition. New York, NY: Springer
Science+Business Media, 2018. ISBN 978-1-4842-3648-2.

20. GOOGLE. Material Design [online]. 2019 [visited on 2019-04-24]. Avail-
able from: https://material.io/design/.

21. AVEIRO, David; PINTO, Duarte. Devising DEMO Guidelines and Pro-
cess Patterns and Validating Comprehensiveness and Conciseness. In:
Enterprise, Business-Process and Information Systems Modeling. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 408–423. ISBN 978-3-
662-43745-2.

22. SKOTNICA, Marek. Enterprise Designer [online]. 2019 [visited on 2019-
05-08]. Available from: https://smartcontracts.azurewebsites.net.

23. SKOTNICA, Marek. Enterprise Designer Repository [online]. 2019 [vis-
ited on 2019-05-08]. Available from: https://dev.azure.com/CCMiResearch/
_git/VSContract.

38

http://www.modelworld.nl/index.php?page=documentation
http://www.modelworld.nl/index.php?page=documentation
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html
http://www.mphee.nl/demo-tool/
https://www.umlet.com/
https://jgraph.github.io/mxgraph/
https://www.npmjs.com/package/mxgraph
https://github.com/Microsoft/TypeScript
https://angular.io/guide/architecture
https://material.io/design/
https://smartcontracts.azurewebsites.net
https://dev.azure.com/CCMiResearch/_git/VSContract
https://dev.azure.com/CCMiResearch/_git/VSContract

Appendix A
Acronyms

AM Action Model

BCT Bank Contents Table

CM Construction Model

DEMO Design & Engineering Methodology for Organizations

EA Enterprise Architect

GloLog Global Logistics

OCD Organization Construction Diagram

OFD Object Fact Diagram

PDF Portable Document Format

PM Process Model

PSD Process Structure Diagram

SM State Model

SOI Scope Of Interest

SVG Scalable Vector Graphics

TPD Transaction Pattern Diagram

TPT Transaction Product Table

UI User Interface

UML Unified Modeling Language

XML eXtensible Markup Language

39

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

application................................implementation sources
readme.txt . list of files from application that belong to this thesis

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

41

	Introduction
	Theoretical foundations
	Models and diagrams in DEMO
	OCD and PSD in DEMO 3
	OCD and PSD in DEMO 4

	Review of existing modeling tools
	Draw.io
	DEMOWorld
	Modelworld
	Enterprise Architect - mDemosyne
	UMLet
	Summary

	Architecture & design of a new modeling tool
	Features
	Contract meta model
	Architecture
	Design

	Proof of concept implementation
	Used technologies
	Development process
	Integration process
	Testing
	Modeling capabilities
	Modeling speed

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

