
CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Civil Engineering

Department of Mapping and Cartography

DIPLOMA’S THESIS
IMPLEMENTATION OF THE GUI FOR GNU PROJECT GAMA

Author: Bc. Jiří Novák
Thesis supervisor: prof. Ing. Aleš Čepek, CSc.
Date: January - December 2011

Here should be placed the submission paper!!!

ii

Acknowledgements

I would like to thank all the people who gave me relevant pieces of advice while working
on my diploma’s thesis.

At the first place it would be prof. Ing. Aleš Čepek, CSc. for his guidance, for his
proposals and suggestions, which enriched this paper and for his help with developing the
Gama computational facade API.

Last, but not least, I have to thank to my family for their encouragement during the
time of my studies and writing of this paper.

Manifestation

I declare that I elaborated this diploma’s thesis on my own with the exploitation of the
literature mentioned in the Bibliography section.

In Prague, 20th of December 2011

. .
Jiří Novák

iii

Name of the paper: Implementation of the GUI for GNU project Gama
Author: Bc. Jiří Novák
Study program: Geodesy and cartography

Branch of study: Geoinformatics
Thesis supervisor: prof. Ing. Aleš Čepek, CSc.

Consultant: -
Abstract: Implementation of the graphical user interface (GUI) for the

GNU project Gama dedicated to the adjustment of the local
geodetic networks. Implementation is based on the general
SQL database scheme for storing points and clusters of mea-
surement. System is written in C++ with the exploitation
of Qt libraries and focus to the portability issues (Windows,
Linux) and internationalization. It consists of the dialogs for
editing local network measurement configurations, graphi-
cal network overview and several output formats of the ad-
justment results (XML, TXT, HTML). GUI is significantly
modular, on the basis of proper plugin framework providing
flexibility in the further application development.

Keywords: GNU, Gama, geodesy, networks, adjustment, C++, Qt,
XML, XSLT, design patterns, plugin framework, MVC,
SQL, threads

Název diplomové práce: Implementace GUI systému GNU Gama
Diplomant: Jiří Novák
Studijní program: Geodézie a kartografie

Studijní obor: Geoinformatika
Vedoucí diplomové práce: prof. Ing. Aleš Čepek, CSc.

Konzultant: -
Abstrakt: Implementace grafického uživatelského rozhraní (GUI) pro

systém vyrovnání lokálních geodetických sítí GNU Gama.
Implementace vychází z obecného SQL databázového sché-
matu pro ukládání bodů a skupin měření. Systém je napro-
gramován v C++ s využitím Qt knihoven a důrazem na
přenositelnost (Windows, Linux) a vícejazyčnost. Přináší
editační dialogy konfigurací měření v lokální síti, grafický
náhled na síť a výsledky vyrovnání v několika výstup-
ních formátech (XML, TXT, HTML). GUI je do značného
stupně modulární, základem je vlastní pluginovací frame-
work, poskytující flexibilitu při dalším vývoji aplikace.

Klíčová slova: GNU, Gama, geodézie, vyrovnání, lokální sítě, C++, Qt,
XML, XSLT, návrhové vzory, pluginovací framework, MVC,
SQL, vlákna

iv

Contents

Prologue 1

1 GNU Gama 2
1.1 New features in GNU Gama . 4
1.2 Gama observation data structures . 4
1.3 XML schema . 5
1.4 SQL schema . 6

1.4.1 Units in SQL tables . 7
1.4.2 Table Configurations . 7
1.4.3 Table Descriptions . 9
1.4.4 Table Points . 11
1.4.5 Table Clusters . 12
1.4.6 Table Covmat . 13
1.4.7 Table Obs . 14
1.4.8 Table Vectors . 16
1.4.9 Table Coordinates . 17
1.4.10 Implementation issues . 17

2 QGama 1.0.0 developer’s guide 18
2.1 Coding conventions . 19
2.2 Project structure . 19
2.3 Compiling from source . 21

2.3.1 Git installation . 21
2.3.2 Qt SDK installation . 21
2.3.3 Initialization of the git sub-modules 21
2.3.4 Compilation . 22

2.4 Architecture overview . 23
2.5 Logging framework . 24

2.5.1 Log4j and its ports . 26
2.5.2 Log4Qt . 26
2.5.3 Loggers, appenders and layouts . 26
2.5.4 Configuration . 28
2.5.5 Example of the output . 28

2.6 Plugins framework . 29
2.6.1 Qt plugins . 29
2.6.2 QGama plugins . 31
2.6.3 PluginInfo . 32
2.6.4 Plugins manager . 33

v

2.6.5 Thread-safe global object pool . 36
2.6.6 Writing QGama’s plugin . 40

2.7 Dynamic libraries . 44
2.7.1 Exporting symbols . 44
2.7.2 QGama libraries . 45
2.7.3 Gama library . 45
2.7.4 QGama library . 46

2.8 Plugins . 52
2.8.1 CorePlugin . 52
2.8.2 SQLEditor . 61
2.8.3 NetworkOverview . 64

2.9 Known issues . 65
2.10 Features to be implemented . 65

Epilogue 66

Bibliography 67

A QGama 1.0.0 user guide I
A.1 Installation . I
A.2 Defining new connection . VI
A.3 Creating configuration . IX
A.4 Editing points . XIII
A.5 Editing clusters . XV
A.6 Adjusting the network . XVII
A.7 Generating results in different formats . XVII
A.8 Graphical network overview . XX
A.9 Uninstalation . XXII

B GNU Gama SQL schema DDLs XXIII

vi

List of Figures

1.1 Example of local network configuration. [12] 2
1.2 Gama observation data structures [12]. 5
1.3 GNU Gama’s relational model diagram . 10

2.1 Components diagram (designed in Dia). 25
2.2 Plugins View Dialog example. 36
2.3 Plugins error overview dialog. 37
2.4 Error displaying problem with loading the Core plugin. 37
2.5 Plugins view dialog – error in the optional plugin. 37
2.6 Newly added plugin visible in the Edit -> Plugins dialog. 43
2.7 QGama’s HelpBrowser - simple online help viewer. 51
2.8 GamaDataModel is a common ascendant of all models. 54
2.9 QGama application overview. 58
2.10 IEditDialog is a common ascendant of all editing dialogs. 61
2.11 IEditWidget is a common ascendant of all editing widgets. 62
2.12 An example of the implementation of IEditDialog. 63

A.1 Installation process - select setup language. I
A.2 Installation process - welcome screen. II
A.3 Installation process - license agreement. II
A.4 Installation process - select destination location. III
A.5 Installation process - select start menu folder. III
A.6 Installation process - select additional tasks. IV
A.7 Installation process - ready to install. IV
A.8 Installation process - installing. V
A.9 Installation process - completed. V
A.10 QGama’s startup screen. VI
A.11 Create or edit connection dialog - SQLite. VII
A.12 Create or edit connection dialog - MySQL. VII
A.13 Create new file dialog. VII
A.14 Create or edit connection dialog - confirmation. VIII
A.15 Connection tested successfully. VIII
A.16 Create tables of the GNU Gama SQL schema. VIII
A.17 Create tables progress bar. VIII
A.18 New connection successfully added. IX
A.19 Choose edit mode dialog. IX
A.20 Filtering configuration. X
A.21 Edit configuration dialog - name and description. X
A.22 Edit configuration dialog - network definition. XI

vii

A.23 Edit configuration dialog - network parameters. XI
A.24 Edit configuration dialog - corrections. XII
A.25 Edit configuration dialog - select Ellipsoid. XII
A.26 QGama’s navigation panel. XIII
A.27 Edit points dialog - overview. XIII
A.28 Edit points dialog - editing an entry. XIV
A.29 Edit points dialog - deleting an entry. XIV
A.30 Edit clusters dialog – Observations tab. XV
A.31 Edit clusters dialog – Height differences tab. XVI
A.32 Edit clusters dialog – Vectors tab. XVI
A.33 Edit clusters dialog – Coordinates tab. XVII
A.34 Choose output format dialog. XVII
A.35 Choose output format dialog – multiple selection. XVIII
A.36 Adjustment results – HTML output. XVIII
A.37 Adjustment results – XML output. XIX
A.38 Adjustment results – TXT output. XIX
A.39 Network overview – zoom in / out features. XX
A.40 Network overview – reset view. XX
A.41 Network overview – scene printed to PDF. XXI
A.42 Uninstallation process – invocation of uninstaller. XXII
A.43 Uninstallation process – uninstallation confirmation. XXII
A.44 Uninstallation process – successfully uninstalled. XXII

viii

Prologue

Although being in the era of global navigation satellite systems, the adjustment of local
geodetic networks remains to be a base for geodesy and its related engineering disciplines.
GNU Gama is one of few software solutions concerned to this problematic allowing us to
adjust very general sets of measurement. It comes with the idea of clusters, groups of
measurement with a common variance-covariance matrix. This together with the support
for wide range of observation types and a possibility to choose the algorithm of numerical
solution allows us to use Gama for many non-standard applications.

Despite of the benefits listed above, it has also several imperfections. The biggest
one for sure is the missing graphical user interface accompanied with the requirement to
manual creation of the input XML file and complicated support for Windows platform.

During the last year and half, Gama was under an intensive development during which
several new features were added. A breakthrough was the introduction of SQL schmema
for storing the input data and the incorporation for SQLite database as an alternative
data input for the classical XML approach. The file-based project management idea
implemented in my bachelor thesis was thus abandoned and a decision to make QGama
a powerful database browser was adopted.

This diploma thesis is dedicated to the implementation of such a graphical interface
above the GNU Gama’s SQL schema.

The author tried to get use of what he had learned during the 6 month scholarship on
Facultad de Ingeniería, Universidad de Buenos Aires, Argentina where he attended several
courses dedicated to the architecture of software, design patterns, methods of software
development and relational database theory and make thus the developed application as
much professional-looking as possible. Another aspect he was trying to fulfil is to write it
easily extensible so that another students can also easily contribute to the development.

The paper is separated logically into several chapters. The author starts by an overview
of what GNU Gama offers and which structures it uses for storing the observation data.
He also provides a description of its XML input schema and the process of porting it
into SQL followed by a detailed description of all the containing tables, attributes and
constraints.

Second chapter is dedicated to the design and implementation issues of the application.
It is written in the form of a developers guide. It explains step by step the structure of
the project, how to compile it from source, what architecture the software uses. Every
part is explained first theoretically followed by a practical example of the implementation
adopted and a description of problems the author had to face and overcome. The theory
of dynamic libraries, logging and plugins framework and creation of graphic scenes in the
Qt / C++ environment is also covered.

The appendix then contains a user guide with some practical tutorials of the most
common program usage with several screenshots included.

1

Chapter 1

GNU Gama

GNU Gama is a C++ computational library dedicated to the adjustment of geodetic
networks (Gama is an acronym for words Geodesy and Mapping). It enables both:

• adjustment in local Cartesian coordinate systems (gama-local) and

• adjustment in global coordinate systems (gama-g3).

Figure 1.1: Example of local network configuration. [12]

The project emerged back in the year 1998 under the leadership of Aleš Čepek. He is
the project maintainer as well as the main developer. Among the other contributors who
enriched the project within the years we should not forget to name at least our faculty’s
(ex)students: Jiří Veselý, Petr Doubrava, Jan Pytel or Václav Petráš. The complete list
of all project contributors is provided within the documentation.

GNU Gama provides both the “classical” adjustment and a lot of supplementary analy-
ses of the adjusted network. One of the features, appreciated by the surveyors all around
the world, is the possibility of choosing between various numerical algorithms to be applied
for the matrix inversion. Thus, when one approach turns out to be numerically unstable

2

CTU in Prague

(because of some uncommon network configuration), the user has the option to compute
using a different technique. Currently GNU Gama supports 4 different algorithms:

• Singular Value Decomposition (SVD) – the default,

• Gram-Schmidt Orthogonalization block matrix algorithm (GSO),

• Cholesky decomposition of semi-definite matrix of normal equations and

• Cholesky decomposition with the envelope reduction of the sparse matrix.

Project equations are solved directly without forming normal equations in the case of
the first two algorithms.

Furthermore Gama is able to compute with 7 different types of observations 1 :

• horizontal directions,

• horizontal distances,

• horizontal angles,

• slope distances,

• zenith angles,

• height differences (levelling networks),

• observed coordinates (i.e. coordinates with given variance-covariance matrix) and

• observed coordinate differences (vectors).

Gama is a part of GNU free software 2 and is hosted on their official servers:

http://www.gnu.org/s/gama/

Latest source codes can be downloaded from an anonymous read-only Git 3 repository
(current stable version at the time of writing this thesis was 1.11a):

git clone git://git.sv.gnu.org/gama.git

A collection of sample networks in the XML input format is available at the same
location and could serve as a good starting point for experimenting with GNU Gama. It
can be cloned with the following command:

git clone git://git.sv.gnu.org/gama/examples.git

Although it was mentioned that Gama supported also adjustment in the global coordi-
nate systems, this is not covered in the thesis, because there still does not exist a complete
stable version of gama-g3 library. The text describes only the gama-local part of the
library.

1Bc. Václav Petráš is supposed to incorporate new ones as a part of his diploma thesis.
2The GNU Operating System Homepage: http://www.gnu.org/
3Good starting point while beginning with Git is the community documentation: http://book.

git-scm.com/

3

http://www.gnu.org/s/gama/
http://www.gnu.org/
http://book.git-scm.com/
http://book.git-scm.com/

CTU in Prague 1.1. NEW FEATURES IN GNU GAMA

1.1 New features in GNU Gama

In bachelor’s thesis[13] (June 2010) an initial design of the GUI fundamentals was laid.
Nevertheless from that time, dozens of important changes took place in the underlying
GNU Gama’s computational library.

Let us look at them briefly. Two versions were released: 1.10 and 1.11a 4 . Those
included 5 :

1. Numerous bug fixes.

2. Several optimizations.

3. Incorporation of Spanish translation files (provided by Jokin Zurutuza).

4. Redefinition of the tree structure of exception classes to have a common base class
and virtual methods clone() and raise(). This was necessary to allow the incor-
poration of the SQLite database 6 support introduced in [14].

5. Optional support for SQLite database as the gama-local ’s data input.

6. First draft of string functions Utf8::length() and Utf8::leftPad() – intended to
provide aligned well-formed text output also for non-latin languages.

7. Code refactorization (as a preparation for adding new observation types).

For the development of the graphical user interface the previously mentioned changes
meant that the former system of XML based project was completely abandoned and a
new strategy of focusing fully on the SQL approach was adopted.

1.2 Gama observation data structures

Before the newly introduced gama-local SQL scheme will be discussed, we have to reca-
pitulate how Gama stores its observation data internally. The data structures are very
general, designed to enable adjustment of any combination of possibly correlated observa-
tions (like angles derived from observed directions or already adjusted coordinates from a
previous adjustment). To achieve that, it uses the concept of clusters. Cluster is an
object with a common variance-covariance matrix and a list of pointers to observation
objects (distances, directions, angles, etc.)[12].

All clusters are on the same time joined in a common object ObservationData. The
reciprocal relations are also present: observation objects have a pointer to the clus-
ter to which the observation belongs and each cluster contains a pointer to its parent
ObservationData object.

4Current development version is marked 1.11b.
5Full list of the newly introduced features is provided in the ChangeLog file in the official Gama’s git

repository – http://git.savannah.gnu.org/cgit/gama.git/tree/ChangeLog
6SQLite is a self-contained, serverless, zero-configuration, transactional SQL database engine imple-

mented in C. Homepage: http://www.sqlite.org/.

4

http://git.savannah.gnu.org/cgit/gama.git/tree/ChangeLog
http://www.sqlite.org/

CTU in Prague 1.3. XML SCHEMA

Figure 1.2: Gama observation data structures [12].

1.3 XML schema

Gama-local’s input XML corresponds to the internal data structures. 7

• <gama-local> is the enclosing root tag (required) – contains <description>, <parameters>
and <points-observations> tags.

• <description> pair tag contains the textual description of the network – required.

• <parameters> pair tag contains network parameters (optional – defaults took when
not specified).

• <points-observations> pair tag contains all of the observations made (and its
variance-covariance matrices if known) – required.

– Following sections can appear repeatedly several times or does not have to
appear at all (all, but <point/> are pair tags which could be composed by
a single category-specific observation type tag, optionally followed by a pair
<cov-mat> tag if the observations are correlated).

– <point/> single tags containing the points entering the adjustment.

– <coordinates> pair tag containing single <point/> tags.

– <obs> pair tag containing single <z-angle/>, <s-distance/>, <distance/>,
<direction/>, <angle/> tags.

– <vectors> pair tag containing single <vec/> tags.

– <height-differences> pair tag containing single <dh/> tags.

For better illustration, the same idea is subsequently expressed in the XML pseudo-
code.

7Full XML schema definitions of the gama-local input and output XML are available within the source
code of QGama application (src/libs/qgama/resources/xml).

5

CTU in Prague 1.4. SQL SCHEMA

1 <gama-local>
2 <network>
3 <description> ... </description>
4 <parameters ... />
5 <points-observations>
6 <point .../>
7 <coodinates>
8 <point .../>
9 <cov-mat ...>
10 ...
11 </cov-mat>
12 </coordinates>
13 <obs ...>
14 <z-angle .../> | <distance .../> | <direction .../> | <s-distance> | <

angle>
15 <cov-mat ...>
16 ...
17 </cov-mat>
18 </obs>
19 <heigh-differences>
20 <dh .../>
21 <cov-mat ...>
22 ...
23 </cov-mat>
24 </height-differences>
25 <vectors>
26 <vec .../>
27 <cov-mat ...>
28 ...
29 </cov-mat>
30 </vectors>
31 </points-observations>
32 </network>
33 </gama-local>

1.4 SQL schema

Gama-local SQL shema was designed to be as simple as possible so that it would work
with a wide range of database engines 8 . It avoids using non-standard data types and
any other advanced SQL features. 9 It consist of 8 tables corresponding logically to the
structure of the formerly described XML schema. 10 The mapping which has been done
while porting from XML tags to SQL schema followed this strategy.

• Network parameters were stored in the gnu gama local configurations table.

• Description text was stored in a separate table gnu gama local descriptions –
this was to achieve better portability between database engines. It assumed the

8So far this scheme was successfully tested against SQLite3, PostgreSQL 8.4, Oracle 10g XE andMySQL
5.1..

9From the same reason, the creation of a separate database scheme (not supported by SQLite3) was
replaced by the policy of using very long table identifiers.
10Complete list of DDLs statements of the GNU Gama’s SQL schema are available in the annex B.

6

CTU in Prague 1.4. SQL SCHEMA

texts being cut into 1000 characters long pieces to avoid using CLOBs 11 which
could not be present in some of the vendors implementations.

• Points entering the adjustment were stored in the gnu gama local points table.

• Variance-covariance matrices were stored in the gnu gama local covmat table.

• Relations between configurations – clusters and covariance matrices were stored in
the gnu gama local clusters table.

• Individual observations were stored in the separate tables: gnu gama local obs
(distance, direction, s-distance, angle, z-angle and dh observation types),
gnu gama local vectors (vec observation type) and gnu gama local coordinates
(point observation type).

The final mapping to the relational database schema thus would looked like this:

XML tag(s) SQL schema table
<parameters> gnu gama local configurations

<description> gnu gama local descriptions

<points-observations> children gnu gama local points

of type <point/>
<points-observations> gnu gama local clusters

children of the types <obs>,
<vectors>, <coordinates>
<height-differences>

<cov-mat> gnu gama local covmat

<z-angle/>, <distance/> gnu gama local obs

<direction/>, <angle/>
<s-distance/>

<vec/> gnu gama local vectors

<point/> gnu gama local coordinates

1.4.1 Units in SQL tables

• Distances are stored in meters, its standard deviations in millimetres.

• Angular values as well as its standard deviations are stored in radians and converted
to gons or degrees if needed using the following formula:

rad = gon · π
200

= deg · π
180

.

1.4.2 Table Configurations

This table contains both, all the network parameters specified within the XML <parameters/>
tag as well as some of the command-line parameters of gama-local console utility.

11Character Large Objects: http://en.wikipedia.org/wiki/Character_large_object.

7

http://en.wikipedia.org/wiki/Character_large_object

CTU in Prague 1.4. SQL SCHEMA

Primary key: (conf id)
Foreign keys: -

Column Description

conf id Unique network (configuration) identifier within the database.

conf name Unique configuration name within the database.

sigma apr Value of the a priori reference standard deviation (square root of
the reference variance).

conf pr Confidence probability used in the statistical tests.

tol abs Tolerance for the identification of gross absolute terms in the
project equations.

sigma act Actual type of the reference standard deviation used in the statis-
tical tests.

update cc Defines if coordinates of constrained points should be updated in
the iterative adjustment. If test on linearization fails, Gama tries
to improve approximate coordinates of adjusted points and repeats
the whole adjustment.[12]

axes xy Orientation of axes x and y. Value ne means that axis x is oriented
to the north and axis y to the east. For left-handed coordinate
systems ne, sw, es or wn are acceptable and for right-handed
en, nw, se or ws are acceptable.

angles Defines whether observed angles and / or directions are measured
in a counter-clockwise (righ-handed) or clockwise (left-handed)
manner.

epoch Epoch of the measurement (preparation for the adjustment and
analysis of deformations).

algorithm Specifies the numerical method used for the solution of the ad-
justment. Implicitly Singular Value Decomposition (svd) is used,
but you can opt between the František Charamaza’s block ma-
trix algorithm GSO based on the Gram Schmidt Orthogonaliza-
tion, Cholesky decomposition of the semi-definite matrix of nor-
mal equations (cholesky) and Cholesky decomposition with the
envelope reduction of the sparse matrix (envelope).

ang units Angular units to be used in the gama-local’s adjustment output.

latitude Mean latitude of the network area.
ellipsoid Name of the ellipsoid. Complete list of the supported ellipsoids is

available in the Gama’s manual.12

12http://www.gnu.org/s/gama/manual/gama.html#Supported-ellipsoids

8

http://www.gnu.org/s/gama/manual/gama.html#Supported-ellipsoids

CTU in Prague 1.4. SQL SCHEMA

Column Type Nullable Default Constraints

conf id integer N - -

conf name varchar(60) N - unique

sigma apr double N 10.0 check > 0

conf pr double N 0.95 check > 0 and < 1

tol abs double N 1000 check > 0

sigma act varchar(11) N ‘aposteriori’ check in (‘apriori’,
‘aposteriori’)

update cc varchar(3) N ‘no’ check in (‘yes’, ‘no’)

axes xy varchar(2) N ‘ne’ check in (‘ne’, ‘sw’,
‘es’, ‘wn’, ‘en’,

‘nw’, ‘se’, ‘ws’)

epoch double N 0.0 -

algorithm varchar(12) N ‘svd’ check in (‘svd’,
‘gso’, ‘cholesky’,

‘envelope’)

ang units integer N 400 check in (400, 360)

latitude double N 50.0 -
ellipsoid varchar(20) Y - -

1.4.3 Table Descriptions

As it was already mentioned, network description is held separately from the gnu gama
local configurations table, because of the effort of not to rely on the character large
objects, which some of the database engines do not support. Every description is thus cut
into 1000 characters long parts and concatenated while being read.

Primary key: (conf id, indx)
Foreign keys: (conf id)

references gnu gama local configurations (conf id)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the description (text) belongs to.

indx Sequence number of the text chunk within one configuration’s de-
scription.

text 1000 characters of the configuration’s description.

Column Type Nullable Default Constraints

conf id integer N - -

indx integer N - check ≥ 1

text varchar(1000) N - -

9

CTU in Prague 1.4. SQL SCHEMA

Figure 1.3: GNU Gama’s relational model diagram (created using Oracle SQL Data Mod-
eller). P stands for primary key, F for foreign key.

10

CTU in Prague 1.4. SQL SCHEMA

1.4.4 Table Points

Points entering the adjustment could have its type specified as:

fixed Point coordinates are not changed in the adjustment.

adjusted Point coordinates are going to be adjusted (unknown parameters in the adjust-
ment).

constrained Point coordinates are used for the regularization of free networks. If the
network is not free (fixed network), the constrained coordinates are interpreted as
other unknown parameters. In classical free networks, constrained points define
the regularization constraint:

∑
dx2i + dy2i = min, where dx and dy are adjusted

coordinate corrections and the summation index i goes over all constrained points.
In other words, the set of the constrained points defines the adjustment of the free
network (its shape and size) with a simultaneous transformation to the approximate
coordinates of selected points.[12]

If no type is specified, the point will be interpreted as adjusted (unknown parameter).

Primary key: (conf id, id)
Foreign keys: (conf id)

references gnu gama local configurations (conf id)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the point belongs to.

id Point identification - all the printable characters can be used.

x Coordinate X.
y Coordinate Y.

z Coordinate Z.
txy Marks whether the XY coordinates should be fixed,

constrained or adjusted in the adjustment.

tz Marks whether the Z coordinate should be fixed, constrained
or adjusted in the adjustment.

Column Type Nullable Default Constraints

conf id integer N - -

id varchar(80) N - -

x double Y - -
y double Y - -

z double Y - -
txy varchar(11) Y - check in (‘adjusted’,

‘fixed’, ‘constrained’)

tz varchar(11) Y - check in (‘adjusted’,
‘fixed’, ‘constrained’)

11

CTU in Prague 1.4. SQL SCHEMA

1.4.5 Table Clusters

Cluster is a group of observations with common covariance matrix. The covariance matrix
allows to express any combination of correlations among the observations in the cluster
(including uncorrelated observations, where covariance matrix is diagonal).

In the database the observations are stored in three tables depending on their type:

• gnu gama local obs (tags <obs> and <height-differences>),

• gnu gama local coordinates (tag <coordinates>),

• gnu gama local vectors (tag <vectors>).

Cluster’s variance-covariance matrix is stored in the gnu gama local covmat table.
Every observation of any supported type has to be in some cluster!

Primary key: (conf id, ccluster)
Foreign keys: (conf id)

references gnu gama local configurations (conf id)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the cluster belongs to.

ccluster Sequence number of the cluster within the configuration.

dim Dimension of the covariance matrix.
band Bandwidth of the covariance matrix (fully-populated covariance

matrix has a bandwidth of dim-1 and diagonal matrix of 0)

tag Tag attribute specifies the type of observations in the cluster. It
also implies the table where it will be physically stored.

Column Type Nullable Default Constraints

conf id integer N - -

ccluster integer N - check > 0

dim integer N - check > 0

tag varchar(18) N - check in (‘obs’,
‘coordinates’,

‘vectors’,

‘heigh-differences’)

12

CTU in Prague 1.4. SQL SCHEMA

1.4.6 Table Covmat

Covmat table contains individuals cluster variance-covariance matrices. Attributes (conf id,
ccluster) identify the specific matrix, (rind, cind) identify the position of the field in
the matrix 13 and value, the corresponding variance or covariance. Missing record in the
matrix is interpreted as 0. Attributes rind and cind have to respect the corresponding
matrix dimension and bandwidth.

Primary key: (conf id, ccluster, rind, cind)
Foreign keys: (conf id, ccluster)

references gnu gama local clusters (conf id, ccluster)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the variance-covariance matrix be-
longs to.

ccluster Id of the cluster which the variance-covariance matrix belongs to.

rind Row number of the variance-covariance matrix.
cind Column number of the variance-covariance matrix.
val Concrete variance or covariance.

Column Type Nullable Default Constraints

conf id integer N - -

ccluster integer N - -

rind integer N - check > 0

cind integer N - check > 0

val double N - -

13Of course it would be perfectly possible to use an unidimensional index instead. The two indexes
approach was opted with regard to better user’s orientation.

13

CTU in Prague 1.4. SQL SCHEMA

1.4.7 Table Obs

Table gnu gama local obs contains observations of type:

• horizontal distance (tag <distance/>),

• horizontal direction (tag <direction/>),

• horizontal angle (tag <angle/>),

• slope distance (tag <s-distance/>),

• zenith angle (tag <z-angle/>),

• levelling height differences (tag <dh/>).

Primary key: (conf id, ccluster, indx)
Foreign keys: (conf id, ccluster)

references gnu gama local clusters (conf id, ccluster)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the observation belongs to.

ccluster Id of the cluster which the observation belongs to.

indx Sequential number of the observation within the cluster.

tag Type of the observation.

from id Id of the standpoint. Must not differ within the cluster if obser-
vation type is ‘direction’.

to id Id of the target.

to id2 Id of the second target. Must be present if the observation type
is ‘angle’.

val Observed value.
stdev Value of the standard deviation. Just for backward compatibility,

not used in QGama application.

from dh Standpoint’s height.

to dh Target’s height.

to dh2 Second target’s height.

dist Distance of the levelling section. Must be present if the observa-
tion type is ‘dh’.

rejected Specifies whether the observation is rejected (1) or not (0).

14

CTU in Prague 1.4. SQL SCHEMA

Column Type Nullable Default Constraints

conf id integer N - -

ccluster integer N - check > 0

indx integer N - check > 0

tag varchar(10) Y - check in (‘direction’,
‘distance’,

‘angle’,

‘s-distance’,

‘z-angle’, ‘dh’)

from id varchar(80) N - -

to id varchar(80) N - -

to id2 varchar(80) Y - check (tag = ‘angle’
and to id2 is not

null)

val double N - -
stdev double Y - -
from dh double Y - -
to dh double Y - -
to dh2 double Y - -
dist double Y - check (tag = ‘dh’ and

dist is not null)

rejected integer N 0 -

15

CTU in Prague 1.4. SQL SCHEMA

1.4.8 Table Vectors

Table gnu gama local vectors contains coordinate differences (vectors).

Primary key: (conf id, ccluster, indx)
Foreign keys: (conf id, ccluster)

references gnu gama local clusters (conf id, ccluster)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the vector belongs to.

ccluster Id of the cluster which the vector belongs to.

indx Sequence number of the vector within the cluster.

from id Id of the standpoint.

to id Id of the target.

dx Coordinate difference in X.
dy Coordinate difference in Y.

dz Coordinate difference in Z.
from dh Standpoint’s height.

from dh Target’s height.

rejected Specifies whether the observation is rejected (1) or not (0).

Column Type Nullable Default Constraints

conf id integer N - -

ccluster integer N - check > 0

indx integer N - check > 0

from id varchar(80) Y - -

to id varchar(80) Y - -

dx double Y - -
dy double Y - -

dz double Y - -
from dh double Y - -
to dh double Y - -
rejected integer N 0 -

16

CTU in Prague 1.4. SQL SCHEMA

1.4.9 Table Coordinates

Table gnu gama local coordinates contains control (known) coordinates which enter the
adjustment.

Primary key: (conf id, ccluster, indx)
Foreign keys: (conf id, ccluster)

references gnu gama local clusters (conf id, ccluster)
ON DELETE CASCADE

Column Description

conf id Id of the configuration which the coordinate belongs to.

ccluster Id of the cluster which the coordinate belongs to.

indx Sequence number of the coordinate within the cluster.

id Point identification - all the printable characters can be used.

x Coordinate X.
y Coordinate Y.

z Coordinate Z.
rejected Specifies whether the observation is rejected (1) or not (0).

Column Type Nullable Default Constraints

conf id integer N - -

ccluster integer N - check > 0

indx integer N - check > 0

id varchar(80) Y - -

x double Y - -
y double Y - -

z double Y - -
rejected integer N 0 -

1.4.10 Implementation issues

While implementing QGama application and testing the database schema it have been
found that in some of the database engines the foreign key support was not enabled by
default (e.g. the ON DELETE CASCADE clause was ignored). Author did not want to get
rid of its benefits and therefore decided to handle its enforcement manually. That meant
to call PRAGMA foreign keys = ON for SQLite and add the " engine=innodb" clause in
the end of the CREATE TABLE () statements for MySQL.

17

Chapter 2

QGama 1.0.0 developer’s guide

QGama is an easily scalable framework providing graphical user interface (GUI) and seve-
ral other features to the GNU Gama adjustment library. It is written in C++ and Qt
framework from the Nokia corporation. QGama is a skeleton that is extended with plu-
gins. It works above the underlying relational database shema of GNU Gama (described
in 1.4), providing configuration editing dialogs and a simple network overview. Project is
prepared to be internationalized.

Source codes are hosted on the internal Git of Department of Mapping and Cartography
and could be retrieved by executing the following command:

git clone git://geo102.fsv.cvut.cz/qgama.git

Project also has an issue tracker and wiki hosted on the same server:

http://geo102.fsv.cvut.cz/trac/qgama.

Doxygen documentation can be found at:

http://josef.fsv.cvut.cz/~novakj62/qgama/doc/html/.

18

http://geo102.fsv.cvut.cz/trac/qgama
http://josef.fsv.cvut.cz/~novakj62/qgama/doc/html/

CTU in Prague 2.1. CODING CONVENTIONS

2.1 Coding conventions

Throughout the source code author tried to adhere to the following conventions:

• Every class is defined in its separate header (.h) and class (.cpp) file.

• Member variables (attributes) are prefixed with m , class (static) variables with
s .

• Interfaces (non-instantiable abstract classes with the presence of some pure virtual
methods) are prefixed with I.

• Descendants of abstract classes mentioned above hold suffix Impl.

• Each library / plugin is defined in separate namespace.

• CamelCase naming convention was used for identifiers.

• When using pointer parameters, always test them with Q ASSERT() macro to ensure
non-null value before calling a method on them. 1

• When a sub-project defines some constants, they are gathered into the constants.h
file.

• Unified marking of problematic parts of code (// FIXME:) and markings for future
improvements (// TODO:).

2.2 Project structure

QGama has the following directory structure:

dist Version ChangeLogs and a list of known issues.

help Online help pages (in HTML format), that are called from the dialogs
within the GUI.

src Application source codes.

src/app Source code of the main() function.
src/libs Source code of the:

Log4Qt 3dparty shared library (Qt port of the famous Log4j by the
Apache Foundation).2

Scripts Several utilities making possible to build Gama as a shared li-
brary (will be discussed in more detail in the Compilation section).

Gama Computational library for the adjustment of geodetic networks,
compiled shared, with the Gama Adjustment API and several
helper functions as its facade.

1This behaviour can be suppressed in production by defining DEFINES += Q NASSERT symbol in the
project file. Preprocessor will thus expand any Q ASSERT macro invocations in an empty expression.

2Log4j homepage: http://logging.apache.org/log4j/1.2/

19

http://logging.apache.org/log4j/1.2/

CTU in Prague 2.2. PROJECT STRUCTURE

QGama shared library (containing the plugin extension system,
thread-safe global object pool, persistent settings and several other
utilities).

src/plugins Source code of the:

CorePlugin GUI main window, dialogs and infrastructure for estab-
lishing and persisting database connection, creating GNU Gama
SQL schema, definition and filling mechanisms of the data models,
adjustment and conversions worker threads, etc.

SQLEditor All the rest of editing dialogs and widgets.

NetworkOverview The network overview graphics/view classes.

tests Unit tests of the application. Shares the same directory structure as the
src folder.

translations Application translation files.

Other important files

Doxyfile Configuration file for Doxygen.3

LICENSE.GPL Text of the GNU GPL v3 license under which the project is
distributed.

README.TXT Brief compilation instructions.

TODO.txt List of the features to be implemented in the future releases.

qgama.pri File with some helper functions used within the sub-projects.
Also defines output and include paths.

qgama.pro Main project file (ensures Qt version at least 4.7.3, starts com-
pilation of the src and test folder).

src/src.pro Wrapper for compiling libs, app and plugins directory.

src/qgamalibrary.pri File with some basic settings valid for every shared library
within the project.

src/qgamaplugin.pri File with some basic settings valid for every plugin within the
project.

src/rpath.pri Settings of the runtime library search path of the particular
program being compiled on the Unix platform (ld’s feature).4

3Doxygen’s homepage: http://www.stack.nl/~dimitri/doxygen/
4Ld’s manual: http://linux.about.com/library/cmd/blcmdl1_ld.htm

20

http://www.stack.nl/~dimitri/doxygen/
http://linux.about.com/library/cmd/blcmdl1_ld.htm

CTU in Prague 2.3. COMPILING FROM SOURCE

2.3 Compiling from source

2.3.1 Git installation

QGama project uses Git Version Control System for managing its source codes. Thus
when a developer wants to compile QGama from sources, there is the need to install
corresponding packages first. Their names might differ slightly, for Debian-based systems,
the following command will install Git together with Gitk – a simple GUI wrapper:

sudo apt-get install git gitk

On Windows use msysgit - the latest release can be downloaded from: http://code.
google.com/p/msysgit/downloads/list.

2.3.2 Qt SDK installation

Once having the source codes, the developer will need Qt libraries and corresponding
compiler (QGama was tested so far with g++ on Linux and mingw on Windows). Author
would recommend to use the Nokia’s Qt SDK online installer, because it:

• brings everything bundled including the QtCreator IDE,

• maintains the installation with the package approach, enabling thus to install /
uninstall new features easily,

• offers library updates once available.

Qt SDK installer can be downloaded in the online and offline version from the following
URL: http://qt.nokia.com/downloads.

2.3.3 Initialization of the git sub-modules

As it was already mentioned QGama depends on two third-party libraries: Gama and
Log4Qt – both of them have its own separate repositories.

Git sub-modules is a way to define a dependency on those projects without including
its source codes. The advantage is that the source code is not duplicated and that the
user whenever compiling will get the latest version of the dependent projects.

Sub-modules are defined in the .gitmodules file in the project’s root directory. From
the following listing it can be seen the author declared two dependencies: GNU Gama
project cloned from the official GNU repository into the src/libs/3dparty/gama/gama
subdirectory and Log4Qt fork from Gitorious.org into the src/libs/3dparty/log4qt/loq4qt
subdirectory.

$ cat .gitmodules
[submodule "src/libs/3dparty/gama/gama"]
path = src/libs/3dparty/gama/gama
url = git://git.sv.gnu.org/gama.git
[submodule "src/libs/3dparty/log4qt/log4qt"]
path = src/libs/3dparty/log4qt/log4qt
url = git://gitorious.org/log4qt/log4qt.git

Before proceeding to the compilation of QGama project, sub-modules have to initial-
ized and updated explicitly:

21

http://code.google.com/p/msysgit/downloads/list
http://code.google.com/p/msysgit/downloads/list
http://qt.nokia.com/downloads

CTU in Prague 2.3. COMPILING FROM SOURCE

$ git submodule init
Submodule ’src/libs/3dparty/gama/gama’ (git://git.sv.gnu.org/gama.git) registered

\
for path ’src/libs/3dparty/gama/gama’
Submodule ’src/libs/3dparty/log4qt/log4qt’ (git://gitorious.org/log4qt/log4qt.git

) \
registered for path ’src/libs/3dparty/log4qt/log4qt’

$ git submodule update
Cloning into src/libs/3dparty/gama/gama...
remote: Counting objects: 9627, done.
remote: Compressing objects: 100\% (2023/2023), done.
remote: Total 9627 (delta 7421), reused 9627 (delta 7421)
Receiving objects: 100\% (9627/9627), 2.14 MiB | 369 KiB/s, done.
Resolving deltas: 100\% (7421/7421), done.
Submodule path ’src/libs/3dparty/gama/gama’: checked out \
’cb24f7d8031b3a41388a366b46f0ade5062009a1’
Cloning into src/libs/3dparty/log4qt/log4qt...
remote: Counting objects: 351, done.
remote: Compressing objects: 100% (270/270), done.
remote: Total 351 (delta 216), reused 82 (delta 47)
Receiving objects: 100% (351/351), 196.45 KiB, done.
Resolving deltas: 100% (216/216), done.
Submodule path ’src/libs/3dparty/log4qt/log4qt’: checked out \
’d0abc2d3011c54a5ff1d7fea96198525cab6dbb8’

2.3.4 Compilation

Makefile should be generated from qgama.pro in the project root and run 5 (or the
project could be opened in Qt Creator IDE and the build button pressed). Project can
be also built in a separate directory (so called shadow build).

Compilation will proceed as follows:

1. version script from src/libs/3dparty/scripts/version will be compiled, linked
and executed.

• This takes the src/libs/3dparty/gama/gama/configure.ac GNU Autotools
file, extracts GNU Gama version and generates a src/app/config.h file including
version defines:

1 #define VERSION "1.11a"
2 #define GAMA_VERSION "1.11a"
3 #define QGAMA_VERSION "1.0.0"

2. libgama files script from src/libs/3dparty/scripts/libgama files will be com-
piled, linked and executed.

• This takes the src/libs/3dparty/gama/gama/lib/Makefile.am GNU Auto-
tools file, extracts the headers and sources conforming the GNU Gama compu-

5If the compilation is performed on a multi-core hardware, "-j<number of cores>" hint could be used
to accelerate the compilation process.

22

CTU in Prague 2.4. ARCHITECTURE OVERVIEW

tational library and generates a src/libs/3dparty/gama/gama files.pri –
sources and headers listing in the format of QMake project include file.

3. Log4Qt from src/libs/3dparty/log4qt will be compiled as a shared library and
placed into the destination directory <build-dir>/libs/qgama.

4. Gama from src/libs/3dparty/gama will be compiled as a shared library (with
the Adjustment API and several helper classes as a facade) and placed into the
destination directory <build-dir>/libs/qgama.

5. QGama from src/libs/qgama will be compiled as a shared library and placed into
the destination directory <build-dir>/libs/qgama.

6. QGama application from src/app/main.cpp will be compiled, linked against
Log4Qt, QGama and Gama and placed into the destination directory <build-dir>/bin.

7. CorePlugin from src/plugins/coreplugin will be compiled as a shared library
and placed into the destination directory
<build-dir>/libs/qgama/plugins/cz.ctu.fce.dmc. 6

8. SQLEditor plugin from src/plugins/sqleditor will be compiled as a shared li-
brary and placed into the destination directory
<build-dir>/libs/qgama/plugins/cz.ctu.fce.dmc.

9. NetworkOverview plugin from src/plugins/networkoverview will be compiled
as a shared library and placed into the destination directory
<build-dir>/libs/qgama/plugins/cz.ctu.fce.dmc.

On Windows platform, shared libraries (excluding plugins) are also copied into the
<build-dir>/bin directory, because there is no way to set path, where dynamic libraries
specific to the binary should be found by the system.

2.4 Architecture overview

As already mentioned QGama consist of two main components: libraries and plugins.
Looking at the source code of the main application (src/app/main.cpp) shows that

it only initializes the logging framework and application translators. Next, it tries to load
the plugins and then it passes control to the main Qt event loop.

1 int main(int argc, char *argv[])
2 {
3 QApplication app(argc, argv);
4

5 setupLog4Qt();
6 setupTranslators(app);
7

8 int result = loadPlugins(app);
9 if (result == CORE_COULD_NOT_START)
10 return 1;

6<build-dir> stands for the directory, where the compilation process takes
place, cz.ctu.fce.dmc is a plugin’s provider identification - in this case:
CZ.CzechTechnicaUniversityInPrague.FacultyOfCivilEngineering.DepartmentOfMappingAndCartography

23

CTU in Prague 2.5. LOGGING FRAMEWORK

11

12 // start the event loop
13 m_logger->info(QObject::tr("Starting main window event loop."));
14 return app.exec();
15 }

Plugins Framework will be covered in more detail in a separate section 2.6. Here
it is enough to say, that the main application will try to load all of the plugins in a
specified directory. This comes defined by SettingsImpl class and will be discussed in
the subsection 2.7.4. If it succeeds at least with the Core plugin, it starts the main
application’s window. If anything goes wrong during the plugins loading process, user will
be notified correspondingly.

In the figure 2.1 an overview of QGama’s principal components could be seen. The
core of the application’s common functionality is in the QGama library – it has the main
access point ApplicationContext class with several public static functions.

It provides access to:

• the thread-safe Global Objects Pool a kind of very simple QObjects application
container,

• ActionsManager a tool for dynamic generation of the main window menus,

• a convenient method for showing the online help page – showHelpPage(),

• application persistent settings map,

• application non-persistent variables map and

• PluginsManager.

Besides that, QGama library brings also several utilities like custom ProgressDialog,
TextEditor, HtmlViewer, etc. QGama depends on Log4Qt library.

Rest of the functionality is brought by plugins. There are 3 principal plugins so far
(CorePlugin, SQLEditor and NetworkOverview), although others are planned to be im-
plemented soon. The first two are essential for running the application, the third one is
optional.

Every plugin depends on QGama library. CorePlugin additionally depends on Gama
library, because CorePlugin contains the worker threads for network adjustment and
output conversions. It also contains all of the necessary dialogs and infrastructure for
database access, model definitions, mechanisms of filling them and notifying all of the
observers when changed.
SQLEditor plugin depends on CorePlugin and it brings all of the editing dialogs and

widgets for points, clusters and measurements.
NetworkOverview plugin depends on CorePlugin and it brings the very simple graph-

ical network overview (has to be completed in future release to provide better interaction).

2.5 Logging framework

Almost every class within the QGama project uses logging framework. This section in-
troduces some of its concept and describes its basic usage.

24

CTU in Prague 2.5. LOGGING FRAMEWORK

Inserting log statements into the source code is a technique which, based on author’s
opinion and experience, increases code readability and helps a lot in the development
process, especially when you are working with threads, whose tracing with debugger could
be tricky.

Figure 2.1: Components diagram (designed in Dia).

The traditional approach in Qt would be using the qDebug(), qWarning(), qFatal()
functions defined in <QtGlobal> header. Using that has several drawbacks:

• It cannot be suppressed without recompilation (by specifying
DEFINES += QT NO DEBUG OUTPUT in the project file).

• The verbosity level of messages cannot be chosen.

• Output is produced only to the console.

With logging framework it is possible to control logging behaviour at runtime or by
editing a configuration file, without modifying the application binary. It is designed in a

25

CTU in Prague 2.5. LOGGING FRAMEWORK

way that the statements could remain in the code without incurring a heavy performance
cost.

Developer is thus equipped with detailed context of what is occurring inside the ap-
plication. Thanks to the concept of log levels and logger hierarchies (which both will be
discussed in more detail following paragraphs / sections), one can also control in great
detail which log statements are displayed. For example, testers and developers would use
maximum verbosity while production release would display only serious problems.

Moreover, the log output can be easily redirected into a file or other output stream,
database, remote logging deamon or send by SMTP. For details documentation should be
consulted:

http://logging.apache.org/log4j/1.2/publications.html.

2.5.1 Log4j and its ports

Log4j is a Java-based logging utility developed by Apache Software Foundation. Through-
out the time it became one of the most popular logging frameworks on the Java platform
and de-facto standard. There exists ports to many programming languages including C,
C++, PERL, JavaScript, Ruby, PHP, SH etc.

The official Log4cxx 7 C++ port could be used, but there would be a problem of
portability. Separate compilation of log4cxx and apr (Apache Runtime) libraries with
MSVC would be needed on the Windows platform. Therefore author finally opted for the
fully Qt port, which can be compiled and distributed within the rest of the source codes
and brings no portability complications.

2.5.2 Log4Qt

Log4Qt does not implement all of the original Log4j Java package functionalities and some
features are implemented using a different approach, nevertheless the basic concepts and
usage remain the same. For the detailed list of differences Log4Qt documentation available
at can be consulted:

http://log4qt.sourceforge.net/html/index.html.

2.5.3 Loggers, appenders and layouts

Log4Qt has three main components:

loggers define type of the log message,

appenders define destination of the log message,

layouts define format of the log message.

The biggest advantage of logging API over the plain std::cout or qDebug() is in its
ability to disable certain log statements while allowing others to be printed unchanged.
This assumes logging space to be categorized based on some developer-chosen criteria. For
this purpose serve loggers. Loggers have hierarchical structure expressed in a similar way
as the Java package naming convention – using the dots as parent-child separator. For
example the logger named QGama is a parent of a logger named QGama.Main, etc.

7Log4Cxx ’s homepage: http://logging.apache.org/log4cxx/

26

http://logging.apache.org/log4j/1.2/publications.html
http://log4qt.sourceforge.net/html/index.html
http://logging.apache.org/log4cxx/

CTU in Prague 2.5. LOGGING FRAMEWORK

There also exist a special root logger, which resides at the top of the logger hierarchy.
This logger always exists and cannot be retrieved by name.

For obtaining a logger, there are two conventional static methods:

• Log4Qt::Logger::logger and

• Log4Qt::Logger::rootLogger.

Each logger has 6 standard levels (ordered ascending in their importance): TRACE,
DEBUG, INFO, WARN, ERROR, FATAL.

The way author use Log4Qt in his project is, that he creates a logger instance for each
structure which needs logging. Logger is created as a private constant static pointer with
the name respecting the fully qualified class name (including the namespace). An example
follows.

Header file:

1 ...
2 namespace QGama {
3

4 class QGAMA_EXPORT SettingsImpl : public ISettings {
5 ...
6

7 private:
8 ...
9 /***** LOGGER */
10 const static Log4Qt::Logger *s_logger;
11 }; // class SettingsImpl
12

13 } // namespace QGama
14 ...

Source file:

1 ...
2 const Log4Qt::Logger* SettingsImpl::s_logger =
3 Log4Qt::Logger::logger("QGama.SettingsImpl");
4 ...

Wherever in the code of the class, anything has to be logged, a call to the corresponding
member function of the s logger pointer should be invoked. For example:

s_logger->debug("Starting adjustment...");

Appenders (output destination) define where the log messages will be printed. Among
others there are appenders to console, file, database, system log or telnet. More than one
appender can be attached to a logger. There is also an option to log asynchronously (a
different thread is then used for the deferred logging).

Layouts enable the programmer to configure precisely the format of the logged mes-
sages.

27

CTU in Prague 2.5. LOGGING FRAMEWORK

2.5.4 Configuration

Configuration of the whole framework could be done in several ways:

• A separate text file log4qt.properties could be used and placed into the same
directory as the application binary. Although we are in Qt/C++, the configuration
file keeps using the original Java properties file syntax and Log4j variables. Both
console and file appenders for the root logger are defined there. It means that every
message from INFO level higher will be printed on console and every message from
WARN level higher will be appended to file.

1 # Console output
2 log4j.appender.console = org.apache.log4j.ConsoleAppender
3 log4j.appender.console.layout = org.apache.log4j.PatternLayout
4 log4j.appender.console.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss} %c

{1} [%p] %m%n
5 log4j.appender.console.Threshold=INFO
6

7 # File output
8 log4j.appender.file = org.apache.log4j.DailyRollingFileAppender
9 log4j.appender.file.File = /tmp/qgama.log
10 log4j.appender.file.DatePattern = "’.’yyy-MM-dd"
11 log4j.appender.file.layout = org.apache.log4j.PatternLayout
12 log4j.appender.file.layout.ConversionPattern = %d{yyyy-MM-dd HH:mm:ss} %c{1}

[%p] %m%n
13 log4j.appender.file.Threshold=WARN
14

15 # Root logger options
16 log4j.rootLogger = ALL, console, file

• Another option specific to Log4Qt is to use QSettings. Log4Qt will automatically
scan it for the presence of configuration and initialize itself according to it.

• Configuration could be made also explicitly in the source code, by instantiating
corresponding classes.

Within QGama there is used the QSettings approach with a slight modification. Be-
cause of the SettingsImpl class is hidden under ISettings interface 8 , Log4Qt does not
detect the presence of configuration automatically and it have to be initialized manually.
This is the meaning of QGama::setupLog4Qt() function in src/app/main.cpp.

However this demonstrates only the basic configuration. More advanced features are
described in the manual of Log4Qt, Log4cxx or Log4j.

2.5.5 Example of the output

Example output as recorded during the application startup is shown below.

1 2011-12-14 14:11:01 QGama.Main [INFO] Log4Qt logging framework initialized!
2 2011-12-14 14:11:01 QGama.Main [INFO] Loading bundled translation files.
3 2011-12-14 14:11:01 QGama.Main [WARN] Loading of QGama translator file failed: :/

qgama_en

8More about this topic will be covered in 2.7.4

28

CTU in Prague 2.6. PLUGINS FRAMEWORK

4 2011-12-14 14:11:01 QGama.Main [WARN] Loading of Qt translator file failed:
qt_en_US

5 2011-12-14 14:11:01 QGama.Main [INFO] Loading plugins.
6 2011-12-14 14:11:01 QGama.PluginsManagerImpl [DEBUG] Reading settings.
7 2011-12-14 14:11:01 QGama.ISettings [DEBUG] Group changed to: Plugins
8 2011-12-14 14:11:01 QGama.ISettings [DEBUG] Group reseted to:
9 2011-12-14 14:11:01 QGama.PluginsManagerImpl [DEBUG] Processing provider: cz.ctu.

fce.dmc
10 2011-12-14 14:11:01 QGama.PluginsManagerImpl [DEBUG] Processing information xml:

Core_info.xml
11 2011-12-14 14:11:01 QGama.PluginsManagerImpl [DEBUG] Processing information xml:

SQLEditor_info.xml
12 2011-12-14 14:11:01 QGama.PluginsManagerImpl [TRACE] Done with XML reading.
13 2011-12-14 14:11:01 QGama.PluginInfo [TRACE] Plugin ’Core’: Resolving

dependencies.
14 2011-12-14 14:11:01 QGama.PluginInfo [TRACE] Plugin ’Core’: Successfully resolved

.
15 2011-12-14 14:11:01 QGama.PluginInfo [TRACE] Plugin ’NetworkOverview’: Resolving

dependencies.
16 2011-12-14 14:11:01 QGama.PluginInfo [TRACE] Plugin ’NetworkOverview’:

Successfully resolved.
17 2011-12-14 14:11:01 QGama.PluginInfo [TRACE] Plugin ’SQLEditor’: Resolving

dependencies.
18 ...

2.6 Plugins framework

The heart of QGama application is the plugin framework. It is inspired by the plugin
mechanisms of Qt Creator IDE (http://qt.gitorious.org/qt-creator) and Qtilities
project (http://gitorious.org/qtilities) although it does not want to be such gen-
eral, multifunctional and configurable as they are. Author was trying to make everything
as simple as possible to satisfy his needs.

This section starts with an overview of what Qt offers in the area of plugins and why
that was not enough for QGama application. Then will the author go step by step through
the finally adopted implementation explaining the key concepts.

2.6.1 Qt plugins

Qt plugin is a shared library with several benefits over the classical shared library. It
can be loaded at runtime using QPluginLoader instance. QPluginLoader checks if the
plugin is linked against the same version of Qt as the application and tries to access the
library’s root component (method instance()). After that it remains to test if the root
component implements the expected plugin’s interface using qobject cast(). 9 If it
succeeds, interface implementation brought by plugin is ready to use.

In QGama project, there is one general interface for tying together the application and
plugins, the IPlugin defined in src/libs/qgama/extensionsystem/iplugin.h.

9Plugin should have visible only the symbols confirming the public interface! For better explanation of
the shared libraries and the export of its symbols, section 2.7 shall be consulted.

29

http://qt.gitorious.org/qt-creator
http://gitorious.org/qtilities

CTU in Prague 2.6. PLUGINS FRAMEWORK

1 namespace QGama {
2

3 class QGAMA_EXPORT IPlugin : public QObject
4 {
5 Q_OBJECT
6

7 public:
8 virtual ~IPlugin() {}
9

10 /***** INITIALIZATION AND FINALIZATION */
11 virtual bool initialize(QString &errorString) = 0;
12 virtual bool initializeExtensions(QString &errorString) = 0;
13 virtual void finalize() = 0;
14

15 /***** GLOBAL OBJECT POOL */
16 void addObject(QObject *object);
17 void removeObject(QObject *object);
18 }; // class Plugin
19

20 } // namespace QGama
21

22 Q_DECLARE_INTERFACE(QGama::IPlugin, "cz.ctu.fce.dmc.QGama.IPlugin/1.0")

It consists of 3 pure virtual methods that each plugin has to implement.

• Method initialize(QString &errorString) is called by the plugins manager in
the initial phase. In this method a plugin is supposed to initialize its part which
does not depend on any other plugin and register its proper extension points (inter-
faces) into the global objects pool. For this purpose serves the addObject(QObject
*object) convenience method. 10

• Method initializeExtensions(QString &errorString) is called by the plugins
manager in the phase where all of the other plugins are initialized. In this method
a plugin is supposed to initialize its dependencies.

• Method finalize() is called by the plugins manager before a plugin will be stopped
and deleted. It serves for a clean-up - i.e. removing object registrations from the
global object pool.

The Q DECLARE INTERFACE macro in the end tells the Qt’s meta-object system about
the interface existence. 11

Plugin on the other side (in a separate project) has to:

• Define a plugin access-point class inherited by QObject (in QGama’s case satisfied
yet in the IPlugin interface declaration) and plugin interface defined in the appli-
cation (IPlugin).

10This is just an overview how the things work, it will be discussed in much more detail in section 2.6.3
and 2.6.4.
11If the reader wishes to know exactly to which commands this and other plugin-related macros are

expanded, [13] shall be consulted, at the section 2.9. this topic is covered.

30

CTU in Prague 2.6. PLUGINS FRAMEWORK

1 namespace QGama { namespace Core {
2

3 class QGAMA_CORE_EXPORT CorePlugin : public IPlugin {
4 Q_OBJECT
5 Q_INTERFACES(QGama::IPlugin)
6

7 public:
8 CorePlugin();
9 virtual ~CorePlugin();
10

11 virtual bool initialize(QString &errorString);
12 virtual bool initializeExtensions(QString &errorString);
13 virtual void finalize();
14

15 private:
16 MainWindow *m_mainWindow;
17 static Log4Qt::Logger *s_logger;
18 };
19

20 } } // namespace QGama::Core

• Use the Q INTERFACES() macro (line 5) to tell the Qt’s meta-object system about
the interface existence.

• Export the plugin using the convenience Q EXPORT PLUGIN2() macro.

1 Q_EXPORT_PLUGIN2(Core, QGama::Core::CorePlugin)

The plugin approach described so far nevertheless does not satisfy yet the requirements
which were laid on QGama: “allow almost everywhere to add almost everything”. To satisfy
them, the concept of a global object pool has to be added. Both previously mentioned
projects (Qt Creator IDE and Qtilities) also use it. Advantages of the global object pool
will be discussed in more detail in a section 2.6.5.

2.6.2 QGama plugins

In the source code, plugins could be found in the src/plugins sub-directory. Every
plugin includes basic definitions from src/qgamaplugin.pri. There are the basic settings
of the destination directory, plugin shared library and rpath (on Unix). It also includes
several helper functions. Some of them were took from the Qt Creator IDE source code
with several local modifications. Every such usage is properly marked with Nokia’s GPL
license attached.

Below is an excerpt from a project file for the Core plugin.

1 TARGET=$$qtLibraryTarget(Core)
2 DEFINES+=QGAMA_CORE_LIBRARY
3

4 include(../../qgamaplugin.pri)
5 include(core_dependencies.pri)
6

7 QT += sql xml xmlpatterns
8

31

CTU in Prague 2.6. PLUGINS FRAMEWORK

9 include(core_sources.pri)

Each plugin also has to define a simple meta-data-like XML file named
<plugin-name> info.xml with the following structure:

1 <plugin name="Core" version="1.0.0" compatibilityVersion="1.0.0">
2 <provider>cz.ctu.fce.dmc</provider>
3 <copyright>(c) Jiri Novak</copyright>
4 <license>GNU GPL v3</license>
5 <category>QGama</category>
6 <description>The core plugin for the QGama GUI of GNU project Gama.</

description>
7 <url>http://www.fsv.cvut.cz</url>
8 </plugin>

If there is a need to use refer to some variables from the project file, there is a way.
The file shall in that case be stored under the <plugin-name> info.xml.in name and the
variables called explicitly.

1 <plugin name=\"Core\" version=\"$$QGAMA_VERSION\" compatibilityVersion=\"$$
QGAMA_VERSION\">

2 ...

QMake has one very useful command: QMAKE SUBSTITUTE. If called within a project
(.pro) file, given a file it substitutes all the variables inside it. 12

2.6.3 PluginInfo

PluginInfo (src/libs/qgama/extensionsystem/plugininfo.h) is a class through which
plugins manager controls the individual plugins.

Each plugin can be in several states during its life cycle.

Invalid Initial state, plugin XML was not even parsed yet.

Read Plugin XML was successfully parsed, every piece of informa-
tion included in it is now accessible via PluginInfo class.

Resolved All of the dependencies specified in the <dependencies> tag
were found and they were not circular and within the com-
patibility range specified, their list is now accessible via the
dependencies() method.

Loaded Plugin’s shared library was successfully loaded (Qt version,
interface correspondence were verified), plugin interface is
now accessible via the plugin() method.

Initialized Plugin’s initialize() method was invoked and returned
true (no errors).

Running Plugin’s dependencies were also initialized and
initializeExtensions method was invoked and re-
turned true (no errors).

Stopped Plugin’s finalize method was called.

Deleted Plugin instance was deleted.

12Official documentation for QMake variables is available at: http://doc.qt.nokia.com/latest/
qmake-variable-reference.html, useful wiki for ”undocumented features” of QMake at: http://www.
qtcentre.org/wiki/index.php?title=Undocumented_qmake.

32

http://doc.qt.nokia.com/latest/qmake-variable-reference.html
http://doc.qt.nokia.com/latest/qmake-variable-reference.html
http://www.qtcentre.org/wiki/index.php?title=Undocumented_qmake
http://www.qtcentre.org/wiki/index.php?title=Undocumented_qmake

CTU in Prague 2.6. PLUGINS FRAMEWORK

For switching between states, corresponding methods exist:

1. read(),

2. resolveDependencies(const QList<PluginInfo*> pluginInfos),

3. load(),

4. initialize(),

5. initializeExtensions(),

6. stop(),

7. kill().

If in any step of the initialization process any error occurs, it will be saved in the
PluginInfo’s error string and plugin will stay in its current state (ignoring the rest of
the steps performed on it). PluginInfo has two important getter functions for checking
if something went wrong: hasError() and errorString().

2.6.4 Plugins manager

Plugins manager implementation is hidden behind a IPluginsManager interface, which
has the following declaration:

1 namespace QGama {
2

3 class IPlugin;
4 class PluginInfo;
5

6 class QGAMA_EXPORT IPluginsManager : public QObject {
7 Q_OBJECT
8

9 public:
10 virtual void loadPlugins() = 0;
11

12 // getters
13 virtual PluginInfo* pluginByName(const QString &name) const = 0;
14 virtual QList<PluginInfo*> plugins() const = 0;
15 virtual QHash<QString, QList<PluginInfo*> *> pluginCategories() const

= 0;
16 virtual QStringList disabledPlugins() const = 0;
17 virtual QStringList forcedEnabledPlugins() const = 0;
18 virtual QList<PluginInfo*> nonProblematicLoadOrder() const = 0;
19 virtual bool hasError() const = 0;
20

21 signals:
22 void pluginsChanged();
23

24 protected slots:
25 virtual void shutdown() = 0;
26 }; // IPluginsManager
27

28 } // namespace QGama

33

CTU in Prague 2.6. PLUGINS FRAMEWORK

There is the essential loadPlugins() method, several conventional getters (whose
function is obvious from their names), pluginsChanged() signal and the shutdown()
slot. This has to be connected to the main application’s aboutToQuit() signal.

QObject::connect(&app, SIGNAL(aboutToQuit()), &pluginsManager, SLOT(shutdown()));

In its constructor, plugins manager scans the application settings for the presence of
group Plugins and entries:

directory Path to the directory from which plugins will be loaded.

disabled Determines which plugins should not be loaded on start-up.

forced Determines which plugins are essential.

Once having the name of the directory to be scanned, readPluginInfos() method is
called. This iterates through all subdirectories in the path (each subdirectory is intended
to represent a different plugin provider) and looks up the <plugin-name> info.xml files.
It will parse them and fill the inner lists of plugins and its categories. It will also try to
resolve plugin dependencies.

When loadPlugins() method is invoked, plugins manager :

1. Finds non-problematic load order (topological order algorithm with the detection of
possible circular dependencies).

2. Using the order calculated in step 1 it calls loadPlugin() method for each of the
plugins. This checks if the given plugin does not have any errors, is enabled, is in
the required state (Resolved) and all of its dependencies are already Loaded. If
satisfied, plugin will be loaded, if not, no action will be taken.

3. Using the order calculated in step 1 it calls initializePlugin() method for each
of the plugins. This checks if the given plugin does not have any errors, is enables, is
in the required state (Loaded) and all of its dependencies are already Initialized.
If satisfied, plugin will be initialized, if not, no action will be taken.

4. Using reversed order calculated in step 1 it calls initializeExtensions() method
for each of the plugins. This checks if the given plugin does not have any errors,
is enabled and in the required state (Initialized). If satisfied, plugins extensions
will be initialized, if not, no action will be taken.

5. Emits pluginsChanged() signal in the end.

The shutdown() slot on the other hand, does the following.

1. First it looks if user disabled explicitly some plugin, so that the application would
not load it on the next start-up, and stores this list into the application’s persistent
settings.

2. Finds non-problematic unload order.

3. Using the order calculated in step 2 it calls stopPlugin() method for each of the
plugins. This checks if the given plugin does not have any errors, is enabled, is in
the required state (Running) and all of its dependencies are already Stopped. If
satisfied, plugin will be stopped (finalized), if not, no action will be taken.

34

CTU in Prague 2.6. PLUGINS FRAMEWORK

4. Using reversed order calculated in step 2 it calls deletePlugin() method for each
of the plugins. This checks if the given plugin does not have any errors, is enabled
and in the required state (Stopped). If satisfied, plugin will be killed (deleted), if
not, no action will be taken.

As it was mentioned in the shutdown() slot description, user can access plugins
overview via Edit -> Plugins menu entry (figure 2.2). Plugins which are required for

the application run are greyed out (it is not possible to disable them). sign means

plugin is ok, means plugin is disabled and means plugin has errors (in this case
another tab called Plugin Errors will be visible) – figure 2.5.

QGama has two forced enabled plugins: Core plugin and SQLEditor plugin. Those
plugins cannot be disabled by the user. Moreover if an error occurs in the Core plugin
(which brings among others the application’s main window), application will not start at
all, it will just display an error overview dialog and quit.

We can verify this behaviour from the main window’s loadPlugins() function imple-
mentation listed afterwards.

1. It requests the plugins manager instance (singleton) and calls loadPlugins() on it.

2. Connects application aboutToQuit() signal to the plugins manaager’s shutdown()
slot.

3. Checks if any error occurred, if so, will display an error overview dialog indicating
what went wrong (figure 2.3).

4. Checks if the Core plugin’s state is Running. If not, will display a critical message
dialog and exit the application (figure 2.4).

1 int QGama::loadPlugins(QApplication &app)
2 {
3 // load plugins
4 m_logger->info(QObject::tr("Loading plugins."));
5 IPluginsManager &pluginsManager = ApplicationContext::pluginsManager();
6 pluginsManager.loadPlugins();
7

8 // if an error occured, inform about it
9 if (pluginsManager.hasError()) {
10 PluginsErrorOverviewDialog dialog;
11 dialog.exec();
12 }
13

14 // check if core plugin is running
15 PluginInfo *corePlugin = pluginsManager.pluginByName("Core");
16 if (corePlugin->state() != PluginInfo::Running) {
17 QString message = QObject::tr("Cannot load ’Core’ plugin. Application

quits. Check logs for errors.");
18 m_logger->fatal(message);
19 QMessageBox::critical(0, QObject::tr("QGama Plugins Manager"), message);
20 return CORE_COULD_NOT_START;
21 }
22

23 // connect aboutToQuit signal to the destroy slot

35

CTU in Prague 2.6. PLUGINS FRAMEWORK

24 QObject::connect(&app, SIGNAL(aboutToQuit()), &pluginsManager, SLOT(shutdown
()));

25

26 return CORE_SUCCESSFULLY_LOADED;
27 }

Figure 2.2: Plugins View Dialog example.

2.6.5 Thread-safe global object pool

Thread-safe global object pool is a wrapper class around a simple list of pointers to QObject
instances, which is protected against simultaneous access from the different threads and
provides several useful methods. It is implemented as singleton and its instance is intended
to be accessed via ApplicationContext factory method globalObjectPool().

The meaning of existence of the global object pool is simple: to provide a “storage”
where individual plugins can “register” their extend points (interfaces and implementa-
tions) and provide a set of getters which will make possible to fulfil requests like:

• “Give me all of the instances implementing specified interface.”

• “Give me instance named MyClass”.

One could also said that it is a very simple application container.
Plugins are supposed to register their extension points with the addObject(QObject

*object) method (or better with an equally-named member method of the IPlugin in-
terface) in the initialize() method and unregister in the finalize method. Global
object pool does not take over the ownership of inserted objects (removeObject(QObject
*object) has to be called explicitly).

36

CTU in Prague 2.6. PLUGINS FRAMEWORK

Figure 2.3: Plugins error overview dialog - an error in Core plugin (undefined symbol)
causes that dependent plugins will also fail.

Figure 2.4: Error displaying problem with loading the Core plugin.

Figure 2.5: Plugins view dialog – error in the optional plugin.

37

CTU in Prague 2.6. PLUGINS FRAMEWORK

If plugins need to interact with some component from a different plugin (which was reg-
istered previously in the global object pool), they can do it in the initializeExtension()
method or anywhere in the source code that will follow after the execution of this method.

This approach enables that whenever the programmer feels there could be various
implementations in the future, he will create an interface abstracting the concrete func-
tionality, register its implementation into the global object pool and once generating the
resulting dialog, instead of using the concrete implementation directly, he will ask the
global object pool to give him / her all of the implementations of the required interface
and build thus the dialog’s layout at runtime based on “what is available”.

This approach was used at different places within the code:

• The selection mode for the network configurations about to be opened: for sequential
adjustment it will require to allow selecting more than one configuration at the
same time and reorganization of the GUI’s navigation panel would be also required.
Solution:

1. Definition of an interface which all of the selection modes will have to imple-
ment.

1 namespace QGama { namespace Core {
2

3 class QGAMA_CORE_EXPORT IConfigurationChooserView : public
QListView {

4 Q_OBJECT
5

6 protected slots:
7 void selectionChanged(const QItemSelection &selected,
8 const QItemSelection &deselected);
9 void contextMenuEvent(QContextMenuEvent *event);
10

11 public:
12 explicit IConfigurationChooserView(QWidget *parent = 0);
13 virtual ~IConfigurationChooserView() {}
14

15 virtual QString name() const = 0;
16 virtual void accepted() = 0;
17 QModelIndexList selectedModelIndexes() { return

selectedIndexes(); }
18

19 signals:
20 void selectionChanged();
21 }; // class IConfigurationChooserView
22

23 } } // namespace QGama::Core

2. Making the dialog aware of that interface and force it to populate via global
objects pool in its constructor.

1 ConfigurationChooserDialog::ConfigurationChooserDialog(QWidget *parent)
:

2 QDialog(parent),
3 m_ui(new Ui::ConfigurationChooserDialog)
4 {
5 m_ui->setupUi(this);

38

CTU in Prague 2.6. PLUGINS FRAMEWORK

6

7 // populate stack widget with the registered implementations of
8 // IConfigurationChooserView
9 QList<IConfigurationChooserView*> views =
10 ApplicationContext::globalObjectPool().objects<

IConfigurationChooserView>();
11

12 foreach (IConfigurationChooserView *view, views) {
13 m_ui->stackedWidget_SelectConfiguration->addWidget(view);
14 m_ui->comboBox_EditMode->addItem(QIcon(ICON_FILE_DRAFT), view->

name());
15

16 connect(view, SIGNAL(selectionChanged()),
17 this, SLOT(reactToSelectionChange()));
18 }
19

20 s_logger->debug(tr("%1 configuration chooser view implementations
found.").arg(views.size()));

21

22 // connect to the datamanager to handle model updates
23 connect(&ICore::instance().dataManager(),
24 SIGNAL(configurationsAndDescriptionsModelInitialized()),
25 this, SLOT(updateModels()));
26

27 // initialize dialog
28 reactToSelectionChange();
29 }

3. Register the implementation in the plugin’s initialize() method.

1 bool SQLEditorPlugin::initialize(QString &errorString)
2 {
3 Q_UNUSED(errorString);
4

5 // register interfaces
6 ApplicationContext::globalObjectPool().addObject(

m_singleNetworkChooser);
7

8 return true;
9 }

• Another place where to use it is the Edit -> Preferences dialog. Once again there
will be an interface IPreferencesPage, whose implementations will be brought by
plugins and registered into the global object pool. Core plugin will then construct
the dialog in its
extensionsInitialized() method. Because of the Qt’s parent-child system parent
will take care of deletion of all its children. This implies, we have to be careful not
to cause double delete. Therefore the dialog should not be created every time it is
showed, but only once after all plugins have been loaded.

• The same approach was used for the NetworkOverview plugin and the graphics scene
/ view it brings within. If the plugin is loaded, network’s overview will be visualized

39

CTU in Prague 2.6. PLUGINS FRAMEWORK

in the main window’s central widget, otherwise the widget will remain empty.

Getters

Global object pool offers the following methods (a listing with self-explanatory commen-
taries is provided).

1 // get all instances
2 QList<QObject*> allObjects() const;
3

4 // get instance by objectName match
5 QObject* objectByName(const QString &name) const;
6

7 // get all instances of class
8 template <typename T> QList<T*> objects() const { ... }
9

10 // get first instance of class
11 template <typename T> T* object() const { ... }

2.6.6 Writing QGama’s plugin

In this section the author will revise how to write a QGama’s plugin from the scratch. Let
him assume that a developer wants to add a plugin for deformations analysis (where the
configuration chooser dialog, left project navigation panel and some of the dialogs need to
look differently).

1. Latest QGama’s source code should be cloned from git.

2. It should be switched to the src/plugins directory.

3. New folder should be created there, in this example it will be called deformationssanalysis.

4. src/plugins/plugin.pro has to be edited to make it aware of the newly created
plugin.

• New target has to be add to the SUBDIRS.

1 SUBDIRS = plugin_coreplugin \
2 plugin_sqleditor \
3 plugin_networkoverview \
4 plugin_deformationsanalysis

• New target’s subdir and dependencies has to be defined (assuming it will depend
on the Core and SQLEditor plugins).

1 plugin_deformationsanalysis.subdir = deformationsanalysis
2 plugin_deformationsanalysis.depends = plugin_coreplugin

plugin_sqleditor

5. It should be switched into the plugin directory. (src/plugins/deformationsanalysis).

6. Plugins project (deformationsanalysis.pro) file with the following content has to
be created.

40

CTU in Prague 2.6. PLUGINS FRAMEWORK

1 TARGET=$$qtLibraryTarget(DeformationsAnalysis)
2 DEFINES+=QGAMA_DEFORMATIONSANALYSIS_LIBRARY
3

4 include(../../qgamaplugin.pri)
5 include(deformationsanalysis_dependencies.pri)
6

7 QT += sql
8

9 include(deformationsanalysis_sources.pri)

7. The included deformationsanalysis dependencies.pri file has to be created.

1 include(../../plugins/coreplugin/coreplugin.pri)
2 include(../../plugins/sqleditor/sqleditor.pri)

8. The included deformationsanalysis sources.pri file has to be created.

1 HEADERS += \
2 deformationsanalysisplugin.h \
3 deformationsanalysis_global.h
4

5 SOURCES += \
6 deformationsanalysisplugin.cpp
7

8 FORMS += \

9. A convenience deformationsanalysis.pri file has to be created.

1 include(deformationsanalysis_dependencies.pri)
2 LIBS *= -l$$qtLibraryName(DeformationsAnalysis)

10. Plugin info XML specification (deformationsanalysis info.xml.in) has to be cre-
ated.

1 <plugin name=\"DeformationsAnalysis\" version=\"$$QGAMA_VERSION\"
compatibilityVersion=\"$$QGAMA_VERSION\">

2 <provider>cz.ctu.fce.dmc</provider>
3 <copyright>(c) Jiri Novak</copyright>
4 <license>GNU GPL v3</license>
5 <category>QGama</category>
6 <description>DeformationsAnalysis plugin brings the GUI features to

support deformation analysis computations.</description>
7 <url>http://www.fsv.cvut.cz</url>
8 <dependencies>
9 <dependency name=\"Core\" version=\"$$QGAMA_VERSION\"/>
10 <dependency name=\"SQLEditor\" version=\"$$QGAMA_VERSION\"/>
11 </dependencies>
12 </plugin>

11. The deformationsanalysis global.h has to be created as follows. 13 .

13The need for this step is described in section 2.7

41

CTU in Prague 2.6. PLUGINS FRAMEWORK

1 #include <QtCore/qglobal.h>
2

3 #if defined(QGAMA_DEFORMATIONSANALYSIS_LIBRARY)
4 # define QGAMA_DEFORMATIONSANALYSIS_EXPORT Q_DECL_EXPORT
5 #else
6 # define QGAMA_DEFORMATIONSANALYSIS_EXPORT Q_DECL_IMPORT
7 #endif
8

9 #endif // QGAMA_DEFORMATIONSANALYSIS_GLOBAL_H

12. The DeformationsAnalysis class has to be created (does nothing so far).

• Header:

1 #ifndef QGAMA_DEFORMATIONSANALYSIS___DEFORMATIONSANALYSISPLUGIN_H
2 #define QGAMA_DEFORMATIONSANALYSIS___DEFORMATIONSANALYSISPLUGIN_H
3

4 #include <plugins/deformationsanalysis/deformationsanalysis_global.h>
5 #include <qgama/extensionsystem/iplugin.h>
6

7 using namespace QGama;
8

9

10 namespace QGama { namespace DeformationsAnalysis {
11

12 class QGAMA_DEFORMATIONSANALYSIS_EXPORT DeformationsAnalysisPlugin
: public IPlugin {

13 Q_OBJECT
14 Q_INTERFACES(QGama::IPlugin)
15

16 public:
17 DeformationsAnalysisPlugin();
18 virtual ~DeformationsAnalysisPlugin();
19

20 bool initialize(QString &errorString);
21 bool initializeExtensions(QString &errorString);
22 void finalize();
23 }; // class DeformationsAnalysisPlugin
24

25 } } // namespace QGama::DeformationsAnalysis
26

27 #endif //QGAMA_DEFORMATIONSANALYSIS___DEFORMATIONSANALYSISPLUGIN_H

• Source:

1 #include <qgama/qgama.h>
2 #include <plugins/deformationsanalysis/deformationsanalysisplugin.h>
3

4 using namespace QGama;
5 using namespace QGama::DeformationsAnalysis;
6

7 DeformationsAnalysisPlugin::DeformationsAnalysisPlugin() {}
8

9 DeformationsAnalysisPlugin::~DeformationsAnalysisPlugin() {}

42

CTU in Prague 2.6. PLUGINS FRAMEWORK

10

11 bool DeformationsAnalysisPlugin::initialize(QString &errorString)
12 {
13 Q_UNUSED(errorString);
14 return true;
15 }
16

17 bool DeformationsAnalysisPlugin::initializeExtensions(QString &
errorString)

18 {
19 Q_UNUSED(errorString);
20 return true;
21 }
22

23 void DeformationsAnalysisPlugin::finalize() {}
24

25 Q_EXPORT_PLUGIN2(DeformationsAnalysis, QGama::DeformationsAnalysis::
DeformationsAnalysisPlugin)

13. Application should be compiled and run at this moment, the developer should see
the plugin listed in the Edit -> Plugins dialog (figure 2.6).

Figure 2.6: Newly added plugin visible in the Edit -> Plugins dialog.

14. New class (DeformationsAnalysisConfigurationChooser in our example) should
be added to the plugin. This class will inherit from IConfigurationChooser in-
terface from the Core plugin and implement the pure virtual functions in the way
that another navigation widget is provided and offering different options, dialogs and
widgets.

43

CTU in Prague 2.7. DYNAMIC LIBRARIES

2.7 Dynamic libraries

2.7.1 Exporting symbols

While creating a shared library it has to taken into account that every symbol (function,
variable or class) contained within the library and intended to be used by clients (that is
application or other libraries), has to be marked in a special way. Otherwise the dynamic
linker or similar program would not be able to find them. In other words, we have to
export public symbols explicitly to make them visible (accessible from “outside”). The
rest of the symbols should remain hidden.

On some platforms there is also required a special import declaration while using a
shared library from within the client.

Qt provides a couple of conventional macros that are expanded to the necessary
platform-specific definitions.

• Q DECL EXPORT macro that has to be added before the declaration of the symbols of
a public interface to be exported while compiling a shared library.

• Q DECL IMPORT macro that has to be added before the declaration of the symbols of
a public interface when compiling a client that uses the shared library.

We could achieve the right macro to be invoked in both cases by creating a separate
header file with the following definition:

1 #ifndef QGAMA_CORE___GLOBAL_H
2 #define QGAMA_CORE___GLOBAL_H
3

4 #include <QtCore/qglobal.h>
5

6 #if defined(QGAMA_CORE_LIBRARY)
7 # define QGAMA_CORE_EXPORT Q_DECL_EXPORT
8 #else
9 # define QGAMA_CORE_EXPORT Q_DECL_IMPORT
10 #endif
11

12 #endif // QGAMA_CORE_GLOBAL_H

And adding a line to the library project file:

1 DEFINES += QGAMA_CORE_LIBRARY

This ensures that the right macro is expanded when using by library and clients (library
has defined QGAMA CORE LIBRARY and client not). The typical usage then would look
like:

1 #include <plugins/coreplugin/core_global.h>
2

3 class QGAMA_CORE_EXPORT ICore ...

File name convention <project-name> global.h is used for those header files in each
sub-project (library, plugin).

44

CTU in Prague 2.7. DYNAMIC LIBRARIES

2.7.2 QGama libraries

In the same manner as it was in the case of QGama’s plugins, when the developer is creating
a new QGama library, it should be created in the src/libs folder and the inclusion of
qgamalibrary.pri file with the basic definitions should not be forgotten.

A typical project file of a library then looks like this:

1 TEMPLATE = lib
2 TARGET = QGama
3 DEFINES += QGAMA_LIBRARY
4 include(../../qgamalibrary.pri)
5 include(qgama_dependencies.pri)
6

7 QT += xml sql webkit
8

9 include(qgama_sources.pri)
10

11 RESOURCES += \
12 qgama.qrc \
13 ../../../help/help.qrc

Each sub-project additionally defines:

• its source and headers file in a separate <project-name> sources.pri file,

1 HEADERS += \
2 ...
3

4 SOURCES += \
5 ...
6

7 FORMS += \
8 ...

• its dependency includes in a separate <project-name> dependencies.pri file,

1 include(../../libs/qgama/qgama.pri)
2 include(../../libs/3dparty/gama/gama.pri)

• a file <project-name>.pri containing project dependencies file and library linkages.

1 include(core_dependencies.pri)
2 LIBS *= -l$$qtLibraryName(Core)

2.7.3 Gama library

Gama library consist of the GNU Gama’s computational library compiled dynamically
with the Adjustment API and few other classes put as its facade.

QGama::Exception

QGama::Exception is the base class for all of the exceptions within QGama project. For
convenience it is derived from the GNU gama::Exception::base and provides two param-
eters (title, text) and its corresponding getters.

45

CTU in Prague 2.7. DYNAMIC LIBRARIES

GNU Gama Adjustment API

Adjustment API currently consist of a class QGama::Adjustment. It was developed by the
thesis supervisor Aleš Čepek and serves as an interface for:

• Fetching the configuration related data from database into the inner structures
(method read configuration()).

• The actual adjustment (method exec()).

• Obtaining XML with the results (method xml()) or several other convenience getters
of the calculated values.

Furthermore there is a label() signal used to inform about the calculation progress.

Xml2Txt

Xml2Txt is a helper class, which for the given XML input, language, encoding and angular
units generates a resulting TXT format with the adjustment results. Basically deals the
same code as the gama-xml2txt utility distributed within GNU Gama.

2.7.4 QGama library

QGama library is a library providing common, reusable utilities to the rest of the program.
Its design is very general and could be reused for any other Qt based application.

All the library constants are stored within the constants.h file. It also bundles two
separate resources files.

• src/libs/qgama/qgama.qrc which includes css, images, and XMLs from
src/libs/qgama/resources directory.

• translations/translations.qrc which includes .qm files with translations from
translations directory.

As already discussed in the section 2.4, it is conformed by the following components
(everything defined within the QGama namespace).

ExtensionSystem Provides infrastructure for the plugins mechanism. Already dis-
cussed in the section 2.6.

• IPlugin,

• PluginInfo,

• PluginsErrorOverviewDialog, PluginsViewDialog,

• IPluginsManager and PluginsManagerImpl classes.

Global Object Pool Already discussed in the section 2.6.5.

ActionsManager Provides a manager for dynamic creation of the main menu entries
and application shortcuts.

• IActionsManager and ActionsManagerImpl classes.

46

CTU in Prague 2.7. DYNAMIC LIBRARIES

Editors Provides HTML Viewer and Text Editor classes with a common
interface for storing files, detecting changes and setting/retrieving
content.

• Document, HtmlViewer, TextEditor classes.

Preferences Application’s persistent storage of various settings.

• ISettings and SettingsImpl classes.

HelpBrowser A simple browser for the online help pages.

• HelpBrowser class.

Utils XML Syntax highlighter for Text Editor and custom Progress Di-
alog.

• ProgressDialog, XMLSyntaxHighlighter classes.

VariablesManager Global non-persistent map for storing variables during the appli-
cation’s runtime.

• IVariablesManager and VariablesManager classes.

Application context

ApplicationContext class is an entry point of the QGama library. It is a non-instantiable
class with factory methods returning the concrete implementations as the reference to
their interface. 14 Thus when there would be the need of changing the implementation,
it shall be the only place to touch.

Its public interface offers following getters.

1 ...
2 public:
3 static ISettings& settings();
4 static IPluginsManager& pluginsManager();
5 static GlobalObjectPool& globalObjectPool();
6 static IActionsManager& actionsManager();
7 static IVariablesManager& variablesManager();
8 static void showHelpPage(const QString &page);
9 ...

Preferences

For storing the application settings QSettings is currently used. It is a class providing
persistent platform-independent storage of application settings. By default it stores the
key-value pairs in the system registry on Windows, in XML preferences files on Mac OS
and INI text files on Unix. There is also a possibility to enforce specific format on all

14SettingsImpl, PluginsManagerImpl, GlobalObjectPool, ActionsManagerImpl,
VariablesManagerImpl are implemented as singletons

47

CTU in Prague 2.7. DYNAMIC LIBRARIES

platforms. QGama’s application settings thus are stored in the INI format on all platforms.
Default location of the configuration file is:

• ∼/.config/cz.ctu.fce.dmc/QGama.ini on Unix and

• C:\Documents and Settings\<User>\Application Data\cz.ctu.fce.dmc\QGama.ini
on Windows.

QSettings uses internally a QMap indexed by QString and storing QVariants. When
using QSettings organizations and application name has to be set (either in constructor
or transitively by QCoreApplication global methods setOrganizationName(),
setApplicationName()).

QVariant QVariant is a class that works in a similar way as the standard C++ unions.
It permits to store most common Qt data types, holding always a single value of a single
type (including lists, hashes, maps, etc.) at a time. It is possible to:

• Get the type QVariant currently holds by the type() method.

• Convert it to the different type with the convert() method (there also exist conve-
nience methods for the most frequent types: toSize(), toString(), toStringList(),
toHash(), etc.).

• Confirm if it could be converted to specified type with the canConvert() method.

For more detailed description Qt documentation should be consulted.

Storing custom types with QSettings There is also a way how to store custom data
types (e.g. user-defined structure) into QSettings.

Let the author demonstrate it with the following structure.

1 struct Employee
2 {
3 QString name;
4 qint32 jobId;
5 };
6 Q_DECLARE_METATYPE(Employee)

The meta-type registration in the last row of the header file is essential. Every type
which provides a public default constructor / destructor / copy constructor can be defined
as meta-type. This causes that it will be possible to store it into the QVariant using the
qVariantFromValue() global function and retrieve it back with the member value<T>()
QVariant template method. It is very useful when there is for example the need of storing
a custom pointer as the action data or similar situations.

Nevertheless this is not all, if the custom type should be also QSettings-aware. For
enabling this, the custom type has to define two QDataStream operators to let Qt know
how to serialize / deserialize it.

1 QDataStream &operator<<(QDataStream &out, const Employee &emp)
2 {
3 out << emp.name << emp.jobId;
4 return out;
5 }

48

CTU in Prague 2.7. DYNAMIC LIBRARIES

6

7 QDataStream &operator>>(QDataStream &in, Employee &emp)
8 {
9 in >> emp.name >> emp.jobId;
10 return in;
11 }

It also requires run-time registration of the data-type before the first instantiation of
the QSettings object will take place.

1 qRegisterMetaType<CustomStructure>("Employee");
2 qRegisterMetaTypeStreamOperators<CustomStructure>("Employee");

The author was about to use this technique while facing the storing of the database
connection parameters in the Core plugin, but he could not use it because it was impossible
to satisfy the last condition – QSettings is being used for the first time in the application’s
main function when retrieving the logging framework settings and at that time it cannot
know anything about any custom types which plugins will define. Therefore: when a de-
veloper needs to store a custom data-type into application settings, non-elegant transform
functions to convert it for example to QHash and back should be written. That is what
was adopted in the case of DbParameters struct in the Core plugin.

ISettings and SettingsImpl classes QSettings class is not used directly, instead
another level of indirection was introduced.

• An abstract interface ISettings with its proper inner
QMap<QString, QVariant> was created.

• Its implementation ISettingsImpl was created. It fills the inner map from the
persistent QSettings file in its constructor and saves it back there in the destructor.
15

As it was already mentioned, SettingsImpl is implemented as singleton and its ac-
cessible via ApplicationContext::settings().

An example of storing a value into it and retrieving it back is listed bellow. It is an
excerpt from the SettingsImpl constructor, where the basic settings for plugins (path,
forced-enabled plugins), logger (console / file appender, log level) and default window size
(800 x 600) are stored.

1 ...
2 /***** PLUGINS DEFAULT SETTINGS */
3 beginGroup("Plugins");
4 // set plugin directory to the standard application folder
5 if (!contains("directory"))
6 set("directory", QString::fromAscii(QGAMA_PLUGIN_PATH));
7 // set the plugins which has to be loaded all the time
8 if (!contains("forced"))
9 set("forced", QStringList() << "Core" << "SQLEditor");
10 endGroup();
11 ...

15This approach allows easier future changes when for example the data would be stored in the database.

49

CTU in Prague 2.7. DYNAMIC LIBRARIES

Actions manager

ActionsManager is a class providing a support for dynamic menu creation. Every plugin
can specify in its initialize() method, which action and where wants to add and which
shortcut within the application it should have.

A small example of its usage - the definition of the “File” menu creation follows.

1 void MainWindow::createMenuFile()
2 {
3 IActionsManager& am = ApplicationContext::actionsManager();
4

5 // Open Connection
6 am.addAction(FILE_OPEN_CONNECTION,
7 tr("Open connection"),
8 tr("Open recently defined database connection."),
9 QKeySequence::Open,
10 QIcon(ICON_DATABASE_CONNECT),
11 MENU_EDIT);
12 connect(am.action(FILE_OPEN_CONNECTION), SIGNAL(triggered()),
13 this, SLOT(onMainWindowOpened()));
14

15 // Disconnect
16 am.addAction(FILE_DISCONNECT,
17 tr("Close connection"),
18 tr("Disconnects from the active database connection."),
19 QKeySequence::Close,
20 QIcon(ICON_DATABASE_DELETE));
21 connect(am.action(FILE_DISCONNECT), SIGNAL(triggered()),
22 this, SLOT(disconnectFromDb()));
23

24 // Separator
25 am.addSeparator(FILE_SEPARATOR_CONNECT);
26

27 // Exit
28 am.addAction(FILE_QUIT,
29 tr("Quit"),
30 tr("Quit the application."),
31 QKeySequence::Quit,
32 QIcon(ICON_QUIT));
33 connect(am.action(FILE_QUIT), SIGNAL(triggered()),
34 this, SLOT(close()));
35 }

The position in the menu is defined by the dot separators in the constants - that is if
one is creating an action ”File.Quit” a ”File” menu is automatically created and action
”Quit” is added to it. Same approach is used when specifying where the action should be
added, the place is once again determined by a plain string comparison. Constants are
defined with QT TR NOOP() macro to force thus their inclusion into the translation files.

Help browser

HelpBrowser is a very simple Online Help viewer. Every dialog is designed with a Help
button, which should display a corresponding online help HTML page. Because this is
not a critical feature, only one page was created as a proof of concept.

50

CTU in Prague 2.7. DYNAMIC LIBRARIES

In the figure 2.7 you can see the Create or edit configuration dialog and the corre-
sponding HTML page displayed in the HelpBrowser.

Figure 2.7: QGama’s HelpBrowser - simple online help viewer.

If a developer wants to get use of the HelpBrowser, it is very simple.

• The HTML page with the dialog-related content has to be created and saved into
the help folder in the root of QGama’s project.

• HTML page has to be registered in the help.qrc resource list.

• New private slot has to be added into the developed dialog class.

1 void CreateOrEditConfigurationDialog::showHelp()
2 {
3 ApplicationContext::showHelpPage(":/create_configuration.html");
4 }

• The dialog’s button box signal helpRequested() has to be connected to the recently
created slot.

1 // help
2 connect(m_ui->buttonBox, SIGNAL(helpRequested()),
3 this, SLOT(showHelp()));

51

CTU in Prague 2.8. PLUGINS

Translations

Translations for all of the components of QGama (main application, QGama library, all of the
plugins) are held now in one translation file (there was created a fake project containing
all of the mentioned source codes).

1 TEMPLATE = app
2 DEPENDPATH += \
3 ../src/app \
4 ../src/libs/3dparty/gama \
5 ../src/libs/qgama \
6 ../src/plugins/coreplugin \
7 ../src/plugins/networkoverview \
8 ../src/plugins/sqleditor
9

10 include(../src/app/app_sources.pri)
11 include(../src/libs/3dparty/gama/gama_sources.pri)
12 include(../src/libs/qgama/qgama_sources.pri)
13 include(../src/plugins/coreplugin/core_sources.pri)
14 include(../src/plugins/networkoverview/networkoverview_sources.pri)
15 include(../src/plugins/sqleditor/sqleditor_sources.pri)
16

17 TRANSLATIONS = \
18 qgama_cs.ts

If a developer wants to add a new language, he should follow these steps:

1. Add a new entry into the translations/translation.pro file, under the TRANSLATIONS
target.

2. Run lupdate translation.pro to generate a corresponding .ts file.

3. Do the translation with the Qt’s linguist tool.

4. Generate production binary with the lrelease command - this will generate the .qm
file.

5. Add the newly created .qm file into the translations.qrc resource.

More about the internationalization process in Qt could be found in [13], section 5.8.

2.8 Plugins

2.8.1 CorePlugin

Core is the place where all of the infrastructure for database access, definition of a new
connections / configurations, filling of models of the Model-View-Controller pattern, ad-
justment computation and format conversions take place.
Core plugin is declared inside the QGama::Core namespace and has the following basic

components.

52

CTU in Prague 2.8. PLUGINS

ICore interface

Singleton providing access to most important features of the Core plugin.
It provides access to:

• the applications important widgets (mainWindow(), statusBar(),
navigationDockWidget(), centralWidget()),

• data manager which handles the filling of data models with corresponding data,

• active database parameters (to enable workers to establish another connection in the
background thread).

It also emits signals informing about the current application’s state:

coreOpened() is emited when the Core plugin’s MainWindow is initialized,

coreAboutToConnect() emited while opening the Recent connections dialog,

coreConnected() emited if the connection to a database was successfully established,

configurationModelIndexesSelected() emited when user selects configuration(s) to
be edited in the Configuration Chooser dialog,

coreAboutToDisconnect() emited when user requested to disconnect from the active
database,

coreAboutToClose() emited from the Core plugin’s finalize() method,

coreModelsReady() emited when data manager finishes fetching data of the selected
configuration(s).

Data manager and models

Core plugin uses extensively the Model-View-Controller design pattern. It enable us to
store data once and enable different, synchronized views on them.
DataManagerImpl is a singleton class which takes care of:

• Providing SQL DDL statements list for creating GNU Gama’s SQL schema if needed.

• Providing a global access-point to the data models and managing its life-cycle.

• Providing information about the currently edited configuration(s) features.

Once again, it is hidden behind an interface called IDataManager, which defines a cou-
ple of signals informing about the implementation state (its names are self-explanatory).

• configurationsAndDescriptionsModelInitialized() and

• restOfTheModelsInitialized().

A common ascendant of all the models is GamaDataModel class. This inherits the
QSqlTableModel which is a convenient class providing a higher-level interface for the
database table access. It has several drawbacks.

53

CTU in Prague 2.8. PLUGINS

• It has to operate only above one table (joins not accepted) and it is filled syn-
chronously while select() method called

• In Qt, database connection cannot be shared between threads.

• There is a need to have models in the main event loop thread, because all of the
views are there.

• Application should not momentarily stop responding while fetching a large amount
of data (e.g. extend network configuration from the remote database - which is the
worst case).

Figure 2.8: GamaDataModel is a common ascendant of all models.

Unfortunately, Qt does not solve this issue. A possible solution to that problem pub-
lished Wysota (Qt enthusiast) on his blog 16 . In QGama currently this is not implemented
and all of the models are filled within the main event loop thread.

It of course causes delays, which are compensated with busy cursors, working-indicating
progress bars and calling to qApp->processEvents() to stay responsive. On the other
hand, 99% of the QGama users will use the build-in SQLite (lightweight file-based database)
support where no contention is noticed even when working with a large datasets (contain-
ing all of the gama-local’s examples from the git repository).

After a database connection is established (detailed description is provided within the
User Guide, annex A), only Configurations and Descriptions models are fully fetched.
Rest of the models are fetched after the selection of a specific configuration and are limited
just to that configuration (which is obvious from the following code snippet).

1 // initialize model
2 setTable(TABLE_OBSERVATIONS);
3 setEditStrategy(QSqlTableModel::OnRowChange);

16http://blog.wysota.eu.org/index.php/2006/12/26/remote-models/

54

http://blog.wysota.eu.org/index.php/2006/12/26/remote-models/

CTU in Prague 2.8. PLUGINS

4 setFilter(whereClause + " and tag != ’dh’ order by ccluster asc, indx asc");
5 select();

Each model defines also a sort filter proxy model available via sortFilterModel()
method. This model is an wrapper to the original model enabling us to easily make sorting
and filtering of the original model data. GamaDataModel also contains a static method
localizableEnumModel(), which given the list of pairs (localized string, identifier) returns
a QStandardItemModel. This is used whenever there is an enumeration of values that
can be stored in some field of the database, for showing the user a localized string, but
internally work with a fixed identifier (which is what is going to be actually stored in the
database).

There are also 4 important data manipulation functions (pure virtual): appendEntry(),
insertEntryBefore(), insertEntryAfter(), deleteEntry() and 1 virtual slot preset-
Fields() returning a map of column integer and its value (it is intended to be called from
within the functions for inserting a new entry to the model for calculation of the values of
indexes - by default it returns an empty map).

Each individual model contains a public enumeration for referencing the columns.
Each model also defines header data for its columns to support better descriptive and
internationalized title than the original database identifiers. When some field has its own
enumeration it is provided with the usage of the localizableEnumModel() and there
exists a public getter for the pointers of those models. If some integer / double valued
field has certain range that has to be satisfied, model offers also corresponding validator
getters. Rest of the constraints like if the value is not empty are tested within dialogs
and if not satisfied, the Ok button is disabled. The idea was not to bother user with the
error dialog which would arise while trying to commit an invalid field into the underlying
database.

Each model is also set to commit the data from cache to the database only when
explicitly requested and does not work with on the level of individual fields, but records.

If a model needs to visualize and edit the data in a different format that they are
physically stored there is a way. Let the author demonstrate the case on the Observations
model, where exactly the same is required when dealing the angular values (they are stored
in radians, but has to be visualized in gons or degrees 17). Only thing that has to be done
is to reimplement QSqlTableModel’s data and setData methods to behave as requested.

1 QVariant ObservationsModel::data(const QModelIndex &index, int role) const
2 {
3 if (role == Qt::TextAlignmentRole) {
4 if (index.column() == ObservationsModel::val) {
5 return QVariant(Qt::AlignRight | Qt::AlignVCenter);
6 } else {
7 return QVariant(Qt::AlignHCenter | Qt::AlignVCenter);
8 }
9 }
10

11 const QString tag = GamaDataModel::data(index.sibling(index.row(),
12 ObservationsModel::tag)).toString();
13

14 if (role == Qt::DisplayRole &&

17The same approach is adopted also while visualizing the standard deviation from CovMat model -
physically a variance is stored in the model.

55

CTU in Prague 2.8. PLUGINS

15 (tag == "direction" || tag == "z-angle") &&
16 index.column() == ObservationsModel::val) {
17 return GamaDataModel::data(index).toDouble() * m_angularUnits / M_PI;
18 }
19

20 return GamaDataModel::data(index, role);
21 }

The first if statement only gives some alignment related hints to the visualizer widget
- in concrete that values should be aligned horizontally to the right and all the rest of field
should remain centred.

The advertised conversion from radians (for all of the values of direction or z-angle)
takes place at row 17. For all the rest of the cases we just call the default (inherited)
implementation.

1 bool ObservationsModel::setData(const QModelIndex &index,
2 const QVariant &value,
3 int role)
4 {
5 const QString tag = GamaDataModel::data(index.sibling(index.row(),
6 ObservationsModel::tag)).toString();
7

8 if (role == Qt::DisplayRole &&
9 (tag == "direction" || tag == "z-angle") &&
10 index.column() == ObservationsModel::val) {
11 double val = value.toDouble() * M_PI / m_angularUnits;
12 return GamaDataModel::setData(index, val, role);
13 }
14

15 return GamaDataModel::setData(index, value, role);
16 }

The reverse setData method adopts exactly the same approach.

NullAwareItemDelegate To achieve interpreting a non-filled value (empty string) as
a null value in the database, a developer has to subclass the QStyledItemDelegate, reim-
plement its setEditorData() and setModelData() methods and use this class whenever
the model’s data need to be shown. This implies either the using of convenience Qt view
classes or QDataWidgetMappers through which it is possible to map the model’s data into
any widget. In both cases there is a setter method setItemDelegate()).
NullAwareItemDelegate uses Qt’s properties system (which is based on Qt’s meta-

object system – kind of Qt’s reflexion through which also the signal-slot mechanism is
implemented). It searches the editor’s meta-object for one of the properties text or plain-
Text. When editor is a combo-box, reading and storing data is handled separately. In
both cases nevertheless empty strings are handled as invalid QVariants which posted to
the model will be handled as null values.

MainWindow

MainWindow is the application’s principle widget. It handles the main menu initialization,
creating, (un)registering and populating of the central and navigation widget (figure 2.8.1),

56

CTU in Prague 2.8. PLUGINS

emitting of the application state related ICore’s signals. It also defines all of the about
dialogs and other features.

Connection and Configuration related dialogs

Core plugin also brings essential dialogs for initialization of each of the QGama’s sessions.
Because QGama is basically spoken just a customized visualizer / editor of the database
data, there has to be CRUD (Create / Replace / Update) features for database connections
and configurations stored inside them.

In src/plugins/coreplugin/dialogs there are several classes:

RecentConnectionsDialog QGama’s initial dialog, serves for the
persistent management of the database
connections. Connections parameters
are defined within the DbParameters
structure and stored together with the
rest of the application settings inside
the .ini file as specified in the subsec-
tion 2.7.4.

CreateOrEditConnectionDialog Serves for defining a new database con-
nection or editing the existing one.
When confirming this dialog, it tries
to establish the connection and inform
user about the result. Furthermore it
looks up the user-visible tables for the
presence of the tables of GNU Gama’s
SQL schema and if any of them not
found, pop-ups a dialog where it will
request the confirmation with its cre-
ation.

NewFileDialog Serves when user wishes to create a new
file-based database (SQLite).

CreateOrEditConfigurationDialog Serves for defining a new network con-
figuration or editing the existing one.

ConfigurationChooserDialog Provides a filtered list of avail-
able configurations within the
database, enabling the selection
of those which should be opened
(this is done by providing all the
IConfigurationChooserView imple-
mentations found at run-time while
creating the dialog).18

Also enables the creation / deletion of
new configurations and editing param-
eters of the current ones.

18As already discussed in the section 2.6.5 dedicated to the global object pool.

57

CTU in Prague 2.8. PLUGINS

Principal widgets

Core plugin has two principal widgets (figure 2.9):

• CentralWidget (main window’s central widget dedicated to visualize various graph-
ical network views) and

• a dockable NavigationDockWidget (providing a central point for the navigation
while editing configuration(s)).

Figure 2.9: QGama application overview - NavigationDockWidget on the left,
CentralWidget on the right, main menu above.

NavigationDockWidget is inherited from QDockWidget (to add it the dockable fea-
tures) and contains an instance of QStackedWidget - a class which provides a stack of
widgets when always just one widget is visible at a time. It has two public functions for
setting the sub-widgets and making them visible:

• addSubWidget(QWidget *widget) for adding a navigation widget if it is not already
in the stack and

• setSubWidgetVisible(QWidget *widget) for making some of the stacked widgets
visible.

Those are used typically in the accepted()method implementation of the IConfigura-
tionChooserView interface as we can see for example in the SingleNetworkConfigura-
tionChooserView class of the SQLEditor plugin.

58

CTU in Prague 2.8. PLUGINS

1 void SingleNetworkConfigurationChooserView::accepted()
2 {
3 s_logger->info(tr("Configuration selection accepted."));
4

5 static SingleNetworkConfigurationNavigationWidget *navigationWidget =
6 new SingleNetworkConfigurationNavigationWidget(this);
7

8 ICore::instance().navigationDockWidget()->addSubWidget(navigationWidget);
9 ICore::instance().navigationDockWidget()->setSubWidgetVisible(

navigationWidget);
10 }

On the fifth row there is created (on the first method invocation) a single-network-
configuration-specific navigation widget and every time a configuration is selected and
opened in this configuration-chooser mode, this widget is made visible in the stackable
NavigationDockWidget.

CentralWidget is composed by a QStackedWidget and a combo-box for switching
the contained widgets. It contains an initializeExtensions() method called from the
equally-named MainWindow’s method which populates the stacked widget with the run-
time found implementations of IConfigurationView - another example of the global object
pool ’s usage.

1 void CentralWidget::initializeExtension(QString &errorMessage)
2 {
3 Q_UNUSED(errorMessage)
4

5 QList<IConfigurationView*> views =
6 ApplicationContext::globalObjectPool().objects<IConfigurationView>();
7

8 s_logger->info(tr("%1 configuration views found.").arg(views.size()));
9

10 foreach (IConfigurationView *view, views) {
11 m_stackedWidget->addWidget(view);
12 m_comboBox->addItem(view->name());
13 }
14

15 // if no implementation found, hide the implementation-chooser combobox
16 if (views.size() == 0)
17 m_comboBox->setVisible(false);
18 }

So far the only implementation of the IConfigurationView interface brings the Network-
Overview plugin, but it is planned to provide several once (for example a view with the
adjustment-resulting error ellipses).

Worker threads

The last substantial classes, forming the Core plugin are worker threads:

• SolveNetworkTread in which adjustment of the network takes place,

59

CTU in Prague 2.8. PLUGINS

• XsltTransformThread in which XSLT transformation of the adjustment results
from the input XML format to the XSL-defined output format takes place and

• Xml2TxtTransformThread which copies the functionality of the original gama-xml2txt
command line utility.

Each of the listed classes is inherited from QThread exploiting its very useful terminated()
signal, which is connected to the custom private slot with the following implementation:

1 void XSLTTransformThread::onTerminate()
2 {
3 s_logger->debug(tr("Deleting conversion thread."));
4 delete this;
5 s_logger->debug(tr("Conversion thread deleted."));
6 }

This ensures that the thread will delete itself automatically when its execution termi-
nates. It is very convenient because while using the thread class, the programmer only
needs create it on the heap, connect its succeded / failed signals to corresponding slots,
call start() on it and that is all.

SolveNetworkThread takes the unique configuration name as the constructor param-
eter. In its run() implementation:

1. It tries to initialize a new database connection 19 (Qt does not support sharing the
connection between threads).

• If unsuccessful a solvingFailed(QString, QString) signal is emitted (first
parameter stands for error title / category, second for error message) and the
thread terminates.

• If successful, an Adjustment instance is created, its label() signal is con-
nected to the thread’s label() signal and the read configuration() and
xml() methods are called.

2. If adjustment succeeds, solved(QString) signal will be emitted (providing the re-
sulting XML string as the parameter). If the adjustment fails at any phase, exception
is caught and the solvingFailed(QString, QString) signal will be emitted with
the exception’s title and text as its parameters.

3. If the database connection in step 1 was successfully established, it will be closed in
the end.

XsltTransformThread takes input data and XSL definition as parameters of its con-
structor. In its implementation:

1. It creates an QXmlQuery with the QXmlQuery::XSLT20 parameter saying we want to
use it as a XSLT processor.

2. It sets input stream and XSL definition correspondingly, it also installs a message
handler (MessageHandler class).

19Active database connection parameters are obtained via the ICore::instance().active
DbParameters() method invocation.

60

CTU in Prague 2.8. PLUGINS

3. The evaluateTo() method is called.

4. If query’s isValid() method returns true, converted(QString) signal will be emit-
ted with the output format as its parameter.

5. Otherwise conversionFailed(QString, QString) is emitted.

Xml2TxtTransformThread takes input data, required language, encoding and angu-
lar units as parameters of its constructor. In its implementation:

1. It creates an instance of Xml2Txt class from Gama library, connect its label() signal
to the thread’s label() signal and calls the instance txt() method.

2. If exception is caught, conversionFailed(QString, QString) will be emitted with
the exception’s title and text as its parameters.

3. Otherwise converted(QString) signal will be emitted with the formatted output
as parameter.

2.8.2 SQLEditor

SQLEditor plugin is the second of so-called forced-enabled (required) plugins. It brings, so
far the only one, Core plugin’s IConfigurationChooserView implementation (dedicated
to the single-network editing). It offers:

• Dialog for editing / creating / deleting of the points entering the adjustment.

• Dialog for editing / creating / deleting of the observation clusters entering the ad-
justment.

• Dialog for choosing output format of the adjusted network (ChooseOutputFormatDialog).

• Dialog for TXT output parameters (TxtOutputDialog).

Edit dialogs and widgets

Editing dialogs for points and clusters, both inherits from the IEditDialog interface,
which is basically just a QDialog with some of its events redefined, a QTabWidget and two
important public functions addTab() and setCategoryCount().

Figure 2.10: IEditDialog is a common ascendant of all editing dialogs.

All the logic is implemented inside the EditDialogPageWidget class which takes an
IEditWidget pointer, a list of column numbers which should be hidden in the view, a list
of column numbers which should be rounded in the view (by default to 4 decimal places)
and an optional parent pointer as its constructor parameters.

61

CTU in Prague 2.8. PLUGINS

Figure 2.11: IEditWidget is a common ascendant of all editing widgets.

It also includes an important updateSourceModel() public slot updating the source
model of the visible sort filter proxy model and a signal rowCountChanged(), which is
emitted every time user add / delete some entry from the model.

In the figure 2.12 basic components of such an EditDialogPageWidget can be appreci-
ated. In the upper section there is a SortPanelWidget and a CustomTableView enabling
user to filter entries based on a regular expression matching values in a specified column
(in a case sensitive or insensitive way).

The lower section is formed by an ActionsPanelWidget (including buttons for Editing,
Saving, Deletion of the selected entry and an extensible context-aware action combo-box)
accompanied by the concrete IEditWidget subclass (see figure 2.11).
IEditWidget provides only a common interface for all the widgets, through which it

is integrated into the EditDialogPageWidget interactions.
A typical constructor of an IEditDialog’s subclass then looks like:

1 EditPointsDialog::EditPointsDialog(QWidget *parent) :
2 IEditDialog(parent)
3 {
4 // create pages
5 m_pagePoints = new EditDialogPageWidget(new EditPointsWidget(this),
6 QList<int>() << PointsModel::conf_id,
7 QList<int>() << PointsModel::x
8 << PointsModel::y
9 << PointsModel::z,
10 this);
11

12 // add pages
13 addTab(m_pagePoints, QIcon(ICON_NETWORK_POINTS), "Points");
14

15 // connect model changes
16 connect(&ICore::instance().dataManager(),
17 SIGNAL(restOfTheModelsInitialized()),
18 this,
19 SLOT(updateModels()));
20 connect(m_pagePoints, SIGNAL(rowCountChanged(int)),
21 this, SLOT(updatePointsCount(int)));
22

23 // set title
24 setWindowTitle(tr("Edit Points"));
25 }

62

CTU in Prague 2.8. PLUGINS

Figure 2.12: An example of the implementation of IEditDialog.

Several important actions should be noticed in the code listed above:

• the creation of a tab for the points model at line 5,

• adding this tab to the tab widget’s stack at line 13,

• connecting the DataManager’s model changes to the slot which takes care of updating
the corresponding model explicitly at line 16,

1 void EditPointsDialog::updateModels()
2 {
3 m_logger->debug(tr("Updating points model."));
4 m_pagePoints->updateSourceModel(ICore::instance().dataManager().

pointsModel());
5 }

• connecting the EditDialogPageWidget’s rowCountChanged(int) signal to the
updatePointsCount(int) slot at line 20.

1 void EditPointsDialog::updatePointsCount(int count)
2 {
3 setCategoryCount(0, count);
4 }

63

CTU in Prague 2.8. PLUGINS

SingleNetworkConfigurationNavigationWidget

Nevertheless, the most important part of the SQLEditor plugin is
SingleNetworkConfigurationNavigationWidget. It is a global crossroad offering the
functionalities of this plugin. It contains the corresponding slots where the adjustment
and conversion worker threads are started and is a parent for all of the editing dialogs.

2.8.3 NetworkOverview

NetworkOverview is the last plugin implemented so far. It does not have ambitions to
provide complete interaction between the Core plugin’s data models and graphical features,
so far the only thing it does is to display a simple network overview (with zooming and
printing features) once the configuration is loaded. An example is provided in the figure
2.9.

Network scene, view and items

The implementation is based on the Qt’s QGraphics Scene / View framework. In prac-
tice it implements also the MVC pattern, but this time composed by a QGraphicsScene
(containing QGraphicsItems as entities) and several synchronized yet independent QGraphicsViews
(which could be transformed - scaled, rotated, moved, etc.). An excellent starting point
is Qt Documentation:

http://developer.qt.nokia.com/doc/qt-4.8/graphicsview.html.

NetworkOverview plugin is composed by the following classes:

NetworkScene Most important class, contains pointers to the Core data mod-
els, draws background grid and points and observations once
the models are filled.

NetworkView IConfigurationView subclass, containing QGraphicsView and
features for zoom in / out and printing the scene.

PointItem QGraphicsItem subclass for representing points entering the
adjustment (adjusted points are painted in red, constrained in
blue, fixed in green and unknown types in yellow). PointItem
is selectable with the hover effect defined.

MeasurementItem QGraphicsItem subclass for representing the measurements be-
tween the points with known coordinates.

Interaction with Model / View framework Unfortunately in Qt there is no direct
way how to interconnect the Model / View framework with QGraphics Scene / View
framework. Theoretically it should be sufficient just to interconnect the following signals
& slots between model and scene subclass (and in the slots create / edit / delete the
QGraphicItems correspondingly) 20 :

• connect(model, SIGNAL(modelReset()), scene, SLOT(reset())),

• connect(model, SIGNAL(layoutChanged()), scene, SLOT(layoutChanged())),

20As pointed out Joachim Schiele at his blog: http://invalidmagic.wordpress.com/2010/10/05/
qgraphicsscene-used-as-a-qabstractitemview-iii/.

64

http://developer.qt.nokia.com/doc/qt-4.8/graphicsview.html
http://invalidmagic.wordpress.com/2010/10/05/qgraphicsscene-used-as-a-qabstractitemview-iii/
http://invalidmagic.wordpress.com/2010/10/05/qgraphicsscene-used-as-a-qabstractitemview-iii/

CTU in Prague 2.9. KNOWN ISSUES

• connect(model, SIGNAL(rowsInserted(const QModelIndex&, int, int)), scene,
SLOT(rowsInserted(const QModelIndex&, int, int))),

• connect(model, SIGNAL(rowsAboutToBeRemoved(const QModelIndex&, int, int)),
scene, SLOT(rowsAboutToBeRemoved(const QModelIndex&, int, int))),

• connect(model, SIGNAL(dataChanged(const QModelIndex&, const QModelIndex&)),
scene, SLOT(dataChanged(const QModelIndex&, const QModelIndex&))).

And vice-versa if there would be need to provide also a way to add / edit / delete
entries from within the graphical view. Adding support for this features is beyond the
scope of this thesis.

2.9 Known issues

This is a list of known issues, which have to be repaired in the future releases:

• XSLT transformation with QXmlPatterns does not work with Qt version higher than
4.7.3. Reported at Nokia’s bug list: https://bugreports.qt.nokia.com/browse/
QTBUG-22076.

• Crash of QGama::Xml2Txt under Linux complaining about ”Invalid read of size 8”
from inside the GNU Gama library.

• Although application translator (including localized strings for all of the components
- libraries, plugins) is successfully installed, only strings from the main application
are translated.

2.10 Features to be implemented

A list of features to be implemented in the future releases.

• More interactive NetworkOverview plugin.

• Display results of the adjustment in a separate model, but similar views/dialogs
as the input data - display the correspondent relations between adjusted and not
adjusted values.

• Add plugin for displaying error ellipses.

• Complete online help pages and improve source code documentation for Doxygen.

• Rewrite models to be asynchronously filled from the worker thread.

• Solve the problematic of rounding the decimal values in editing widgets.

• Implement Edit -> Preferences dialog.

• Prepare .deb package with Linux binaries.

• Redesign translation files structure to allow plugins bring their own translation files.

65

https://bugreports.qt.nokia.com/browse/QTBUG-22076
https://bugreports.qt.nokia.com/browse/QTBUG-22076

Epilogue

The objective of this thesis was to create a user-friendly, object-oriented graphical and
portable interface for GNU Gama’s computational library for adjusting the local geodetic
network. Author believes that was fulfilled.

QGama application as a powerful database front-end working above the GNU Gama’s
SQL schema was created. It offers the standard features of the original gama-local console
application and brings several new ones like HTML format of the adjustment results or a
graphical overview of the network being adjusted.

From the developer point of view, QGama was written in a significantly modular
manner – almost every feature is a plugin or shared library. This allows both: the third-
party developers to contribute the application with an extension specific to their particular
needs or very ease change of e.g. editing dialogs appearance without having to deal with
the rest of the application logic.

Although many features remain to be properly tested or are currently provided only
as a prove of concept, author believes QGama is ready to be deployed and tested by its
first users. I hope it will not last long and that QGama would start to be used in both:
the educational process at our faculty and a common surveyor’s praxis.

Author was trying to write this paper as a handbook for any possible advanced Qt
developer who would like to join the QGama development. He explained all the impor-
tant features step by step and thus it should not be difficult for any possible follower to
contribute.

Unfortunately the scope of this thesis did not allow the author to cover and explain all
of the topics which would also deserve to be included. Either he refers to the recapitula-
tion of the Qt way of C++ and its non-standard building process (including meta-object
compiler, user-interface compiler, resource compiler), meta-object and properties system
(Qt answer to the reflection pattern), signal-slots mechanism or some advanced Qt fea-
tures like: smart pointers, threading, model / view framework, graphics scene / graphics
view framework, undo framework, unit testing, problematic of asynchronous database ac-
cess etc. The involved design patterns and tools used during the development phase (git,
valgrind memory leak checker) would deserve their corresponding chapters.

Although this thesis is author’s final work of the master programme, he would like to
continue on the QGama development also in the future, because he is not unconcerned
about its faith.

66

Bibliography

[1] BLANCHETTE, Jasmin; SUMMERFIELD, Mark: C++ GUI Programming with Qt
4, 2nd edition, Prentice Hall, 2006

[2] THELIN, Johan: Foundations of Qt Development, Apress, 2007

[3] SUMMERFIELD, Mark: Advanced Qt Programming - Creating Great Software with
C++ and Qt 4, Prentice Hall, 2010

[4] EZUST, Alan; EZUST, Paul: An Introduction to Design Patterns in C++ with Qt
4, Prentice Hall, 2007

[5] MOLKENTIN, Daniel: The Book of Qt 4 - The Art of Building Qt Applications,
Open Source Press GmbH, 2007

[6] GAMMA, E. et al.: Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 2004

[7] ECKEL, Bruce: Myslíme v jazyku C++, knihovna programátora, Grada Publishing,
2000

[8] ECKEL, Bruce; ALLISON, Chuck: Myslíme v jazyku C++, 2. díl knihovna zkušeného
programátora, Grada Publishing, 2006

[9] BRADLEY, Neil: XML, kompletní průvodce, Grada Publishing, 2000

[10] HOLZNER, Steven: XSLT, příručka internetového vývojáře, Computer Press, 2002

[11] KOSEK, Jiří: XSLT v příkladech [online], last update 2004 [quoted 2010-05-01], ac-
cessible from WWW: http://www.kosek.cz/xml/xslt/,

[12] ČEPEK, Aleš: GNU Gama Project Homepage [online], last update January 20, 2009
[quoted 2011-12-13], accessible from WWW: http://www.gnu.org/s/gama/,

[13] NOVÁK, Jiří: Bachelor’s thesis: Object - Oriented GUI for GNU Gama, Depart-
ment of Mapping and Cartography, Faculty of Civil Engineering, Czech Technical
University in Prague, 2010

[14] PETRÁŠ, Václav: Bachelor’s thesis: Support of SQLite database in program Gama-
local, Department of Mapping and Cartography, Faculty of Civil Engineering, Czech
Technical University in Prague, 2011

[15] CREATE LOGIC: Writing Qt Creator Plugins (Beta) [online], last update September
11, 2009 [quoted 2011-12-13], accessible from WWW: http://www.vcreatelogic.
com/downloads/files/Writing-Qt-Creator-Plugins.pdf,

67

http://www.kosek.cz/xml/xslt/
http://www.gnu.org/s/gama/
http://www.vcreatelogic.com/downloads/files/Writing-Qt-Creator-Plugins.pdf
http://www.vcreatelogic.com/downloads/files/Writing-Qt-Creator-Plugins.pdf

CTU in Prague BIBLIOGRAPHY

[16] WIKIPEDIA.org: Valgrind [online], last update December 8, 2011 [quoted 2011-12-
17], accessible from WWW: http://en.wikipedia.org/wiki/Valgrind,

68

http://en.wikipedia.org/wiki/Valgrind

Appendix A

QGama 1.0.0 user guide

A.1 Installation

For Windows platform an installer which could be downloaded from the project’s home-
page is available.

http://geo102.fsv.cvut.cz/trac/qgama.

For Linux so far does not exist another way than compile the source code 1 as de-
scribed in the section 2.3.

Installation is simple:

1. Download the qgama 1.0.0 setup.exe from the project’s homepage.

2. Double click on it, a language-selector will be displayed. Confirm the selection with
the Ok button.

Figure A.1: Installation process - select setup language.

1Although a creation of distributable .deb binary package is planned.

I

http://geo102.fsv.cvut.cz/trac/qgama

CTU in Prague A.1. INSTALLATION

3. Wizzard’s welcome screen is displayed, continue with clicking on the Next button.

Figure A.2: Installation process - welcome screen.

4. Read the licence (GNU GPL v3) and accept it by clicking on the Next button.

Figure A.3: Installation process - license agreement.

II

CTU in Prague A.1. INSTALLATION

5. Select the destination directory. By default program is installed into C:\Program
Files\QGama. Confirm with the Next button.

Figure A.4: Installation process - select destination location.

6. Select under which folder the shortcut in Start menu should be created. By default
is is QGama. Confirm with the Next button.

Figure A.5: Installation process - select start menu folder.

III

CTU in Prague A.1. INSTALLATION

7. Check whether to create desktop and / or quick launch icons. By default both are
unchecked. Confirm with the Next button.

Figure A.6: Installation process - select additional tasks.

8. Recapitulation screen, confirm the installation by clicking on the Install button or
return to correct the selection by clicking on the Back button.

Figure A.7: Installation process - ready to install.

IV

CTU in Prague A.1. INSTALLATION

9. Wait until the installation completes with copying files.

Figure A.8: Installation process - installing.

10. Installation was successful, check or uncheck the option to launch QGama immediately
and click on the Finish button.

Figure A.9: Installation process - completed.

V

CTU in Prague A.2. DEFINING NEW CONNECTION

A.2 Defining new connection

On every QGama’s startup, the Recent connections dialog is opened. As this is the first
application run, there are no connections defined yet.

Figure A.10: QGama’s startup screen.

Recent connections dialog serves for creating, editing or deleting database connections.
For defining a new one, the following steps should be followed:

1. Click on New button on the right.

2. Create or edit connection dialog is opened.

• Depending on the Qt’s SQL driver plugins found on the system 2 (QGama is
distributed only with the SQLite support) the corresponding driver choices are
shown in the Server Type combo-box.

• Depending on the database driver chosen, different pieces of information are
required to be entered.

2For information how to add support for your favourite database, Qt’s documentation should be con-
sulted:
http://developer.qt.nokia.com/doc/qt-4.8/sql-driver.html.

VI

http://developer.qt.nokia.com/doc/qt-4.8/sql-driver.html

CTU in Prague A.2. DEFINING NEW CONNECTION

• For SQLite only file name and label fields are required.

Figure A.11: Create or edit connection dialog - SQLite.

• For the rest of the relational database management systems hostname, port,
database, username, password and label are required.

Figure A.12: Create or edit connection dialog - MySQL.

3. Let the author demontrate a connection using the QSQLITE driver. A label has to

be filled and either icon for creating a new file (figure A.13) or for opening
an existing file (there is an example set of configurations distributed together with
QGama which can be found at C:\Program Files\QGama\examples\readdemo.db)
invoked.

Figure A.13: Create new file dialog.

VII

CTU in Prague A.2. DEFINING NEW CONNECTION

4. Confirm the selection by clicking on the Ok button.

Figure A.14: Create or edit connection dialog - confirmation.

5. Connection is tested and notification about the result appears.

Figure A.15: Connection tested successfully.

6. If creating a new SQLite database, a prompt to confirm creation of GNU Gama’s SQL
schema tables appears. Click on the Yes button to continue.

Figure A.16: Create tables of the GNU Gama SQL schema.

7. Progress bar informs about which tables are being created.

Figure A.17: Create tables progress bar.

VIII

CTU in Prague A.3. CREATING CONFIGURATION

8. Connection was successfully added, it can be seen now in the Recent connections
dialog list.

Figure A.18: New connection successfully added.

9. Select the recently defined configuration and click on the Ok button. Choose edit
mode dialog will be shown.

A.3 Creating configuration

1. In the Choose edit mode dialog either an existing configuration can be edited or
deleted or a new one created. If creating a new one, it will be added automatically
to the list with name Untitled configuration.

Figure A.19: Choose edit mode dialog.

IX

CTU in Prague A.3. CREATING CONFIGURATION

2. Choose edit mode dialog offers also a filtering option, it is thus easy to locate the
required configuration and edit it.

Figure A.20: Filtering configuration.

3. Edit configuration dialog is separated into 4 pages. First one allows us to specify
configuration name and description.

Figure A.21: Edit configuration dialog - name and description.

X

CTU in Prague A.3. CREATING CONFIGURATION

4. Second page contains network definition parameters (a-priori standard deviation,
confidence probability, tolerance for gross term identification, numerical algorithm
to be used, whether constraint coordinates should be updated and which standard
deviation should be taken).

Figure A.22: Edit configuration dialog - network definition.

5. Third page contains network parameters (orientation of the axes, angular units to
be used, observation direction and observation epoch).

Figure A.23: Edit configuration dialog - network parameters.

XI

CTU in Prague A.3. CREATING CONFIGURATION

6. Fourth page contains optional corrections which could be used when observed vertical
and / or zenith angles need to be transformed into the projection plane. Implicit
value for latitude is 45 degrees (50 gons) and implicit ellipsoid is WGS84.

Figure A.24: Edit configuration dialog - corrections.

7. A different ellipsoid to be used in the corrections can be selected.

Figure A.25: Edit configuration dialog - select Ellipsoid.

XII

CTU in Prague A.4. EDITING POINTS

A.4 Editing points

1. Dialog for editing points conforming the network configuration is accessible from the
main window’s navigation panel.

Figure A.26: QGama’s navigation panel.

2. Edit points dialog is formed by a filtering widget, simplified table view, actions panel
and editing widget. Select the row to edit and click on the Edit button.

Figure A.27: Edit points dialog - overview.

XIII

CTU in Prague A.4. EDITING POINTS

3. Editing widget fields got enabled and its values can be changed now. To save the
changes made, click on the Save button.

Figure A.28: Edit points dialog - editing an entry.

4. While deleting an entry, the confirmation is needed.

Figure A.29: Edit points dialog - deleting an entry.

5. Adding a new entry (appended in the end, inserted before / after some specific
entry) should be accessible through the Action combo-box. Unfortunately it was
not implemented yet in the time of the writing this paper, so the author could not
provide a corresponding screenshot here.

XIV

CTU in Prague A.5. EDITING CLUSTERS

A.5 Editing clusters

1. Dialog for editing clusters of observations shares the same structure as the Edit
points dialog. There are tabs for Observations, Height Differences, Vectors and
Coordinates. Corresponding editing widgets shares the philosophy of:

• having the corresponding terms on the same line and

• mark the required terms with .

2. Adding a new entry (appended in the end of the current cluster, appended before /
after some specific entry within the current cluster, adding a new cluster) and editing
widget of the cluster’s variance - covariance matrix should be accessible through the
Action combo-box. Unfortunately it was not implemented yet in the time of writing
this paper, so the author could not provide a corresponding screenshot here.

3. Screenshots of all the tabs Edit clusters dialog offers follows.

Figure A.30: Edit clusters dialog – Observations tab.

XV

CTU in Prague A.5. EDITING CLUSTERS

Figure A.31: Edit clusters dialog – Height differences tab.

Figure A.32: Edit clusters dialog – Vectors tab.

XVI

CTU in Prague A.6. ADJUSTING THE NETWORK

Figure A.33: Edit clusters dialog – Coordinates tab.

A.6 Adjusting the network

1. Start the network adjustment by clicking on the solve icon in the navigation
panel.

2. Progress bar informing about the calculation progress appears.

A.7 Generating results in different formats

1. On adjustment success, a dialog for choosing a desired output format is displayed.
On adjustment failure an error dialog informing of what went wrong is displayed.

Figure A.34: Choose output format dialog.

XVII

CTU in Prague A.7. GENERATING RESULTS IN DIFFERENT FORMATS

2. Select which formats to generate and click on the Ok button.

Figure A.35: Choose output format dialog – multiple selection.

3. Examples of adjustment results in HTML, XML and TXT formats follow.

Figure A.36: Adjustment results – HTML output.

XVIII

CTU in Prague A.7. GENERATING RESULTS IN DIFFERENT FORMATS

Figure A.37: Adjustment results – XML output.

Figure A.38: Adjustment results – TXT output.

XIX

CTU in Prague A.8. GRAPHICAL NETWORK OVERVIEW

A.8 Graphical network overview

1. NetworkOverview plugin brings a trivial implementation of the graphical view on
the network being adjusted. The view has zoom in / out features.

Figure A.39: Network overview – zoom in / out features.

2. View can be reset to its default extension (button 0).

Figure A.40: Network overview – reset view.

XX

CTU in Prague A.8. GRAPHICAL NETWORK OVERVIEW

3. Scene can be also printed (icon). An example of such printed PDF follows.

Figure A.41: Network overview – scene printed to PDF.

XXI

CTU in Prague A.9. UNINSTALATION

A.9 Uninstalation

1. Uninstallation process is very simple. Invoke the uninstaller from the Start Menu’s
QGama folder.

Figure A.42: Uninstallation process – invocation of uninstaller.

2. Confirm the removal of all the QGama’s components.

Figure A.43: Uninstallation process – uninstallation confirmation.

3. If everything goes well, a notification about the successful uninstallation is displayed.

Figure A.44: Uninstallation process – successfully uninstalled.

XXII

Appendix B

GNU Gama SQL schema DDLs

1 /*
2 GNU Gama -- adjustment of geodetic networks
3 Copyright (C) 2010 Ales Cepek <cepek@gnu.org>, 2010 Jiri Novak
4 <jiri.novak@petriny.net>, 2010 Vaclav Petras <vaclav.petras@fsv.cvut.cz>
5

6 This file is part of the GNU Gama C++ library.
7

8 This library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12

13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17

18 You should have received a copy of the GNU General Public License
19 along with this library; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 $
21 */
22

23

24 create table gnu_gama_local_configurations (
25 conf_id integer primary key,
26 conf_name varchar(60) not null unique,
27 sigma_apr double precision default 10.0 not null check (sigma_apr > 0),
28 conf_pr double precision default 0.95 not null check (conf_pr > 0 and conf_pr

<1),
29 tol_abs double precision default 1000 not null check (tol_abs > 0),
30 sigma_act varchar(11) default ’aposteriori’ not null check (sigma_act in (’

apriori’, ’aposteriori’)),
31 update_cc varchar(3) default ’no’ not null check (update_cc in (’yes’, ’no’)),
32 axes_xy varchar(2) default ’ne’ not null check (axes_xy in (’ne’, ’sw’, ’es’,

’wn’, ’en’, ’nw’, ’se’, ’ws’)),
33 angles varchar(12) default ’right-handed’ not null check (angles in (’left-

handed’, ’right-handed’)),
34 epoch double precision default 0.0 not null,

XXIII

CTU in Prague

35 algorithm varchar(12) default ’svd’ not null check (algorithm in (’svd’, ’gso’
, ’cholesky’, ’envelope’)),

36 ang_units integer default 400 not null check (ang_units in (400, 360)),
37 latitude double precision default 50 not null,
38 ellipsoid varchar(20)
39);
40

41 create table gnu_gama_local_descriptions (
42 conf_id integer references gnu_gama_local_configurations (conf_id) on delete

cascade,
43 indx integer check (indx >= 1),
44 text varchar(1000) not null,
45 primary key (conf_id, indx)
46);
47

48 create table gnu_gama_local_points (
49 conf_id integer references gnu_gama_local_configurations (conf_id) on delete

cascade,
50 id varchar(80),
51 x double precision,
52 y double precision,
53 z double precision,
54 txy varchar(11) check (txy in (’fixed’, ’adjusted’, ’constrained’)),
55 tz varchar(11) check (tz in (’fixed’, ’adjusted’, ’constrained’)),
56 primary key (conf_id, id)
57);
58

59 create table gnu_gama_local_clusters (
60 conf_id integer references gnu_gama_local_configurations (conf_id) on delete

cascade,
61 ccluster integer check (ccluster > 0),
62 dim integer not null check (dim > 0),
63 band integer not null,
64 tag varchar(18) not null check (tag in (’obs’, ’coordinates’, ’vectors’,

’height-differences’)),
65 check (band between 0 and dim-1),
66 primary key (conf_id, ccluster)
67);
68 -- upper triangular variance-covariance band-matrix (0 <= bandwidth < dim)
69

70 create table gnu_gama_local_covmat (
71 conf_id integer,
72 ccluster integer,
73 rind integer check (rind > 0),
74 cind integer check (cind > 0),
75 val double precision not null,
76 primary key (conf_id, ccluster, rind, cind),
77 foreign key (conf_id, ccluster) references gnu_gama_local_clusters (conf_id,

ccluster) on delete cascade
78);
79

80 create table gnu_gama_local_obs (
81 conf_id integer,
82 ccluster integer check (ccluster > 0),

XXIV

CTU in Prague

83 indx integer check (indx > 0),
84 tag varchar(10) check (tag in (’direction’, ’distance’, ’angle’, ’s-

distance’, ’z-angle’, ’dh’)),
85 from_id varchar(80) not null,
86 to_id varchar(80) not null,
87 to_id2 varchar(80),
88 val double precision not null,
89 stdev double precision,
90 from_dh double precision,
91 to_dh double precision,
92 to_dh2 double precision,
93 dist double precision, -- dh dist
94 rejected integer default 0 not null,
95 primary key (conf_id, ccluster, indx),
96 foreign key (conf_id, ccluster) references gnu_gama_local_clusters (conf_id,

ccluster) on delete cascade,
97 check (tag <> ’angle’ or to_id2 is not null),
98 check (tag = ’dh’ or (tag <> ’dh’ and dist is null))
99);
100

101 create table gnu_gama_local_coordinates (
102 conf_id integer,
103 ccluster integer check (ccluster > 0),
104 indx integer check (indx > 0),
105 id varchar(80),
106 x double precision,
107 y double precision,
108 z double precision,
109 rejected integer default 0 not null,
110 primary key (conf_id, ccluster, indx),
111 foreign key (conf_id, ccluster) references gnu_gama_local_clusters (conf_id,

ccluster) on delete cascade
112);
113

114 create table gnu_gama_local_vectors (
115 conf_id integer,
116 ccluster integer check (ccluster > 0),
117 indx integer check (indx > 0),
118 from_id varchar(80),
119 to_id varchar(80),
120 dx double precision,
121 dy double precision,
122 dz double precision,
123 from_dh double precision,
124 to_dh double precision,
125 rejected integer default 0 not null,
126 primary key (conf_id, ccluster, indx),
127 foreign key (conf_id, ccluster) references gnu_gama_local_clusters (conf_id,

ccluster) on delete cascade
128);

XXV

	Prologue
	GNU Gama
	New features in GNU Gama
	Gama observation data structures
	XML schema
	SQL schema
	Units in SQL tables
	Table Configurations
	Table Descriptions
	Table Points
	Table Clusters
	Table Covmat
	Table Obs
	Table Vectors
	Table Coordinates
	Implementation issues

	QGama 1.0.0 developer's guide
	Coding conventions
	Project structure
	Compiling from source
	Git installation
	Qt SDK installation
	Initialization of the git sub-modules
	Compilation

	Architecture overview
	Logging framework
	Log4j and its ports
	Log4Qt
	Loggers, appenders and layouts
	Configuration
	Example of the output

	Plugins framework
	Qt plugins
	QGama plugins
	PluginInfo
	Plugins manager
	Thread-safe global object pool
	Writing QGama's plugin

	Dynamic libraries
	Exporting symbols
	QGama libraries
	Gama library
	QGama library

	Plugins
	CorePlugin
	SQLEditor
	NetworkOverview

	Known issues
	Features to be implemented

	Epilogue
	Bibliography
	QGama 1.0.0 user guide
	Installation
	Defining new connection
	Creating configuration
	Editing points
	Editing clusters
	Adjusting the network
	Generating results in different formats
	Graphical network overview
	Uninstalation

	GNU Gama SQL schema DDLs

