
Ing. Karel Klouda, Ph.D.
vedoucí katedry

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
děkan

V Praze dne 12. února 2019

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
 Název: Heterogenní kernel

 Student: Samuel Fabo

 Vedoucí: Ing. Jan Motl

 Studijní program: Informatika

 Studijní obor: Znalostní inženýrství

 Katedra: Katedra aplikované matematiky

 Platnost zadání: Do konce letního semestru 2019/20

Pokyny pro vypracování

Mnohé algoritmy ve strojovém učení, například Support Vector Machine, umí pracovat s kernely.
Komplikací ale je, že běžně používané kernely vyžadují, aby data byla vždy jen jednoho datového typu,
například double. Když data obsahují různé datové typy, například typu string a double, můžeme je převést
na jednu reprezentaci. Problém ale je, že výsledná reprezentace bývá paměťově náročná, takže se data už
nemusí celá vejít do paměti. Možným řešením celého problému je navrhnout kernel, který pracuje přímo
s různými datovými typy.

Navrhněte a implementujte kernel, který má následující vlastnosti:
1) umí pracovat s kombinací numerických a nominálních atributů,
2) umí se vypořádat s nominálními atributy o vysoké kardinalitě,
3) umí se vypořádat s chybějícími hodnotami.

Proveďte:
1) rešerši,
2) popište navržený kernel,
3) experimentálně porovnejte navržený kernel s vybranými postupy z rešerše,
4) vyhodnoťte výsledky.

Seznam odborné literatury

Dodá vedoucí práce.





Bachelor’s thesis

Heterogeneous Kernel

Samuel Fabo

Department of Applied Mathematics
Supervisor: Ing. Jan Motl

May 16, 2019





Acknowledgements

I want to thank Ing. Jan Motl, who was guiding me throughout the whole
process of creating this thesis and from whom I learned a lot. Thanks also go
to my parents and family, who are supporting me during my entire studies.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 16, 2019 …………………



Czech Technical University in Prague
Faculty of Information Technology
© 2019 Samuel Fabo. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Fabo, Samuel. Heterogeneous Kernel. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2019.



Abstrakt

Metódy strojového učenia, ktoré používajú kernelové funkcie sú dobre preskú-
mané, avšak väčšina týchto kernelových funkcií vie pracovať len s numerickými
vstupnými dátami. Aby tieto kernely vedeli spracovať kategorické dáta, sme
schopní priviesť do numerickej formy hlavne pomocou metód one-hot-encoding
(OHE) alebo target-encoding. Nevýhodou OHE je, že signifikantne zvyšuje di-
menzionalitu dát, ak je počet hodnôt v kategorických príznakoch (kardinalita)
vysoká.

Táto práca prináša riešenie pre zmiešané dáta, s potenciálne vyššou kar-
dinalitou kategorických príznakov. Je tu predstavený nový kernel, ktorý vie
pracovať so zmiešanými dátami a má veľmi dobré výsledky merania času a
pamäte na dátach s vysokou kardinalitou. Predstavujem tu hlavne tzv. kate-
gorický vektorový súčin, ktorý imituje klasický vektorový súčin po OHE ako aj
kategorické Euclidovské vzdialenosti imitujúce klasický prístup po OHE. Tento
heterogénny kernel vie pracovať ako lineárny, polynomiálny, a RBF kernel.

Výsledky meraní ukázali, že tento kernel vie urýchliť výpočet a zmenšiť
prírastok pamäte, ak by dataset obsahoval ako numerické, tak kategorické
príznaky o vyššej kardinalite. Tento fakt bol taktiež demonštrovaný na reál-
nych datasetoch.

Kľúčové slová Nominálne dáta, kategorické dáta, heterogénne dáta, kernel
metódy, klasifikácia, podporné vektory, SVM, kernelová hrebeňová regresia,
vysoká kardinalita, chýbajúce hodnoty, chýbajúce dáta, predspracovanie dát

vii



Abstract

Machine learning methods using kernel functions are well explored, but most
of the kernel functions work only with numerical input. To let these numerical
kernels work with categorical features, we need to use preprocessing methods
such as one-hot-encoding (OHE) or target-encoding. The disadvantage of
OHE is that it significantly increases the dimensionality of the data whenever
the number of values in categorical features (cardinality) is high.

This thesis proposes a solution for mixed data with potentially high cardi-
nality categorical features. A new kernel for heterogeneous data is introduced,
having good runtime and memory results on data with higher cardinality.
Here, I introduce categorical dot product, imitating dot product after OHE,
same as categorical Euclidean distances, imitating classical approach after
OHE. This heterogeneous kernel can work as linear, polynomial, and RBF
kernel.

Results of measurements have shown how this kernel can decrease the
runtime and lower the memory consumption if the dataset contains both nu-
merical and categorical features of high cardinality. I also demonstrated this
fact on real datasets.

Keywords Nominal data, categorical data, heterogeneous data, kernel meth-
ods, classification, support vector machine, kernel ridge regression, high-cardinality,
missing data, missing values, data preprocessing

viii



Contents

Introduction 1

Goals 3

1 Kernel Models 5
1.1 The Maximal Margin Classifier . . . . . . . . . . . . . . . . . . 5
1.2 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Suppor Vector Machine (SVM) . . . . . . . . . . . . . . . . . . 10
1.5 Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Existing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Multi-kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Data Preprocessing 17
2.1 Categorical Features . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 One-Hot Encoding (OHE) . . . . . . . . . . . . . . . . . . . . . 17
2.3 Target Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Method And Data Description 21
3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 OHE Representation . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Naive Heterogeneous kernel . . . . . . . . . . . . . . . . . . . . 23
3.4 Categorical Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Categorical Euclidean Distances . . . . . . . . . . . . . . . . . . 24
3.6 Heterogeneous kernel . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Evaluation 29
4.1 Accuracy, Cohen’s Kappa, AUC-ROC, R2 . . . . . . . . . . . . 29

ix



4.2 Measurements Description . . . . . . . . . . . . . . . . . . . . . 29
4.3 Kernel Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Grid Search & Cross Validation . . . . . . . . . . . . . . . . . . 31
4.5 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Runtime On Random Data . . . . . . . . . . . . . . . . . . . . 34
4.7 Runtime On Real Datasets . . . . . . . . . . . . . . . . . . . . 38
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Conclusion 41

Bibliography 43

A Acronyms 47

B Notation 49

C Details Of Evaluation 51
C.1 Details Of Grid Search . . . . . . . . . . . . . . . . . . . . . . . 52
C.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D Contents of enclosed CD 57

x



List of Figures

1.1 Sample data with margins and separating hyperplane. [1], [2] . . . 8
1.2 Classification problems on various data, solved by SVM. Compar-

ison of the same polynomial kernel on various data. . . . . . . . . . 13
1.3 XOR Classification problem, solved by SVM using RBF kernel,

same as in Fig. 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Memory comparison of NumPy’s dot & OHE, and heterogeneous
kernel on various input data types. . . . . . . . . . . . . . . . . . . 34

4.2 Runtime comparison of naive heterogeneous kernel, heterogeneous
kernel and NumPy’s dot product after OHE on data with a various
number of samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with a various number of samples. 36

4.4 Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with a various number of features. 36

4.5 Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with various cardinality in each
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Runtime comparison on real datasets, comparing the runtime of
linear kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Runtime comparison on bigger real datasets. . . . . . . . . . . . . 39

C.1 Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with higher cardinality in each
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.2 Runtime comparison on real datasets, comparing the runtime of
polynomial kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.3 Runtime comparison on real datasets, comparing the runtime of
RBF kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi





List of Tables

2.1 A simple example of target encoding. [3] . . . . . . . . . . . . . . . 19

3.1 Datasets gathered from OpenML [23] and UCI [22] with approxi-
mate accuracy from rankings. . . . . . . . . . . . . . . . . . . . . . 26

3.2 Information about gathered datasets. . . . . . . . . . . . . . . . . . 27

4.1 Comparison of prediction metrics, using SVM with various linear
kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Comparison of the pairwise kernels, NumPy kernels after OHE,
and the heterogeneous kernel. . . . . . . . . . . . . . . . . . . . . . 31

4.3 Grid search and cross-validation results using (a) heterogeneous
kernels and (b) other kernels on target encoded categorical features. 32

4.4 Results of grid search and cross-validation on regression task. . . . 34

C.1 Comparison of prediction metrics, using SVM with various poly-
nomial kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C.2 Comparison of prediction metrics, using SVM with various RBF
kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.3 Train folds results. Each column stands for the mean ± standard
deviation of the given metric on all train folds. . . . . . . . . . . . 52

C.4 Test fold results. Each column stands for the mean ± standard
deviation of the given metric on test folds. . . . . . . . . . . . . . . 53

xiii





List of Listings

1 Generating dummy variables from categorical columns in DataFrame. 22
2 The naive implementation of the heterogeneous kernel. . . . . . 23
3 The implementation of the categorical dot kernel. . . . . . . . . 24
4 The implementation of categorical Euclidean distances. . . . . . 25
5 Pseudo Python code for the heterogeneous kernel. . . . . . . . 25
6 Hardware specifications of the machine where all measurements

were done. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv





Introduction

Heterogeneous data, considered in this thesis, are a mixture of numerical data
and categorical (nominal) data. Categorical features have a cardinality (defin-
ing how many values the feature has), which can be high and hard to deal
with. There are well known preprocessing methods which can be applied
when dealing with heterogeneous data with high-cardinality categorical fea-
tures. Similar to no-free-lunch-theorem, all methods need to be applied and
tried separately for every single dataset – we do not have a universal solution.

There is no kernel in Scikit-learn library [4] designed for heterogeneous
data. This thesis proposes a plug-in replacement for Scikit kernels that re-
quires no preprocessing of heterogeneous data. One can process categorical
data with less memory consumption, smaller runtime and less tweaking of the
used model.

In this thesis, I will introduce some methods of preprocessing categori-
cal data (as a part of the heterogeneous data), and for the numerical data.
Then I will talk about statistical models used for prediction, mostly about
kernel models. In the end, I will introduce a kernel designed by my own,
usable for dealing with heterogeneous data, hand-by-hand with experiments
and runtime/memory results.

1





Goals

To gain some basic knowledge, I will research how statistical kernel models
work, how they process the data, etc. When dealing with categorical features,
many preprocessing techniques are used, I will describe and compare them.

I will compare my designed kernel(s) with other methods numerically.
Then I will provide some tests and comparisons with other preprocessing
methods. I will describe my methods in detail. My kernels will be able to
deal with a combination of numerical and categorical features, high cardinal-
ity categorical features (in reasonable time), and missing values in categorical
features.

3





Chapter 1
Kernel Models

In pattern analysis, we want to find similarities in our data. We can pass
them into algorithms, which are effective, robust and can spot (possibly lin-
ear) patterns in given data. We can call the data-points in a given space as
vectors in a feature space. If needed, we can transform our feature space into
another, possibly with more dimensions. Here, the kernel-trick is used, where
we compute the similarity measure (e.g., dot product) of two vectors in other
feature space, with no need for transformation. This trick is done for capacity
and efficiency reasons. [2]

I will discuss some of the models, which use kernel-trick and kernel methods
in general below.

1.1 The Maximal Margin Classifier
Before we can move to the definition of the support vector machine, we need
to introduce the problem of binary classification.

Let’s start with a simple case, with target class variable (labels) Y , where
Yi ∈ {±1} at values x1, ..., xp of features X1, ..., Xp are composing the training
set

S = {(x1, Y1), ..., (xN , YN )}. (1.1)

Then we want to find a prediction function

f(x) = sgn(wT x + b), (1.2)

such that E(0.5|f(x) − Y |). [1]

1.1.1 Linearly Separable Case
The precondition of this approach says that points need to be linearly sepa-
rable, which means there is no noise between positive and negative points. [2]

5



1. Kernel Models

In R2 this would be a line drawn between positive and negative points as seen
in Fig. 1.1a.

We want to find a hyperplane

wT xi + b, (1.3)

∀i ∈ {1, . . . , N}, separating the positive and negative points. The weigh
vector of the hyperplane in Eq. 1.3 is w. The |b|

||w|| is a perpendicular distance
from the origin to the hyperplane (also called an offset). [5] By ||.|| we mean
Euclidean norm.

Let d+ (resp. d−) be the shortest distance from the closest positive (resp.
negative) point to the hyperplane. The sum of these distances is called the
“margin”: d+ + d−. This algorithm tries to find so-called support vectors,
which will define the largest “margin” possible. Best with normalized and
standardized points, these hyperplanes satisfy the following [1]:

wT xi + b ≥ +1, for : Yi = +1 (1.4)

wT xi + b ≤ −1, for : Yi = −1, (1.5)
defining anything on or above (resp. below) this boundary is of one class,
with label 1 (resp. −1). These can be combined into the following set of
inequalities:

Yi(wT xi + b) − 1 ≥ 0, ∀i ∈ {1, . . . , N}. (1.6)
These inequalities require to compute the appropriate scale for w and

b, considering the points, for which the Eq. 1.4 holds. These points lie on
hyperplane:

wT xi + b = +1. (1.7)
Similarly, the points that satisfy the Eq. 1.5 lie on the hyperplane

wT xi + b = −1. (1.8)

Hence d+ = d− = 1
∥w∥ , so the margin is 2

∥w∥ . To minimize the distance
between 1.4 and 1.5 we need to solve the following problem:

minimize
w

∥w∥2

2
subject to constraints from Eq. 1.6.

(1.9)

Bigger the margin ( 2
∥w∥), bigger the generalization power of the final clas-

sifier. In the case of linearly separable data, we want to determine the points,
which will satisfy the Eq. 1.6. [5]

Expression 1.9 is a quadratic optimization problem, which can be solved
using standard quadratic programming optimization methods. [2] The expres-
sion 1.3 measures the length of the perpendicular projection of points xi, onto

6



1.1. The Maximal Margin Classifier

the line determined by w. Given unknown points zj , we can decide, on which
side of the separating hyperplane each one lays by computing sgn

(
wT zi + b

)
.

This is also called the hard margin. [2]
That is how we can predict, which point belongs to which class. We can

see an example in Fig. 1.1a. [2]

1.1.2 Non-Separable case
Most of the time we are working with data, which are not separable – data
are noisy and given classes are overlapping, so we cannot find the separating
hyperplane. In this case, we want to find such hyperplane that will be less
erroneous when predicting. Therefore we need to relax the constraints 1.4 and
1.5, by adding a nonzero slack variables ξi. These constraints then become:
[5] [2]

wT xi + b ≥ +1 − ξi, for : Yi = +1 (1.10)

wT xi + b ≤ −1 + ξi, for : Yi = +1 (1.11)

ξi ≥ 0, ∀i ∈ {1, . . . , N}. (1.12)

if ξ = 0, we will get the previous version, for separable data.
Now we need to deal with the extra cost of errors, which will change the

objective function from 1.9 that we want to minimize, to:

minimize
w,ξ

∥w∥2

2
+ C

n∑
i=0

ξi

subject to Yi(wT xi + b) − 1 + ξi ≥ 0,

ξi ≥ 0, ∀i ∈ {1, . . . , N},

(1.13)

where C is constant, also called a regularization parameter. The constraints
are similar to Eq. 1.6, but the slack variables were added. Same as other
hyperparameters, C needs to be tuned for each model and dataset separately.
The greater the C, the higher error penalization. [1] We can see the error
penalization in Fig. 1.1b

Simple example of the margin is shown in Fig. 1.1. Here, pluses are
positive points; minuses are negative points. Separating hyperplanes are red,
margins are green, offset is blue, support vectors are in red circles. No violation
of the margin is shown in Fig. 1.1a (linearly separable data). Slack variables
are used in Fig. 1.1b. Those points which violate the margin also become
support vectors (circled).

7



1. Kernel Models

(a) Linearly separable data (b) Non separable data

Figure 1.1: Sample data with margins and separating hyperplane. [1], [2]

1.2 Ridge Regression
Linear ridge regression is a classical statistical problem that aims to find a
linear function that models the dependencies [6] between values x1, . . . , xp of
features X1, . . . , Xp determining the target variable Y , by

Y = wT x + ε. (1.14)

In Eq. 1.14, w = (w0, w1, . . . , wp)T are unknown parameters (the weigh
vector), x = (1, x1, . . . , xp)T , and ε is a random variable with the expectation
E(ε) = 0. [7]

We aim to find w by its estimate ŵ and then estimate Ŷ by:

Ŷ = ŵT x. (1.15)

Therefore, we want to find the parameters similar to w, so the error of the
model will be the smallest possible. Then we will use this as ŵ. We can define
the error as a loss function L : R2 → R, which we will apply to the true value
of Y and the corresponding value Ŷ . The most common is the quadratic loss
function: L(Y, Ŷ ) = L(Y − Ŷ )2. [8]

A training set of N sample pairs {(xi, Yi), . . . , (xN , YN )}, are drawn inde-
pendently from the same model, written in matrix form as [8]:

Y = Xw + ε, (1.16)

where

X =

xT
1
...

xT
N

 , Y =

Y T
1
...

Y T
N

 , ϵ =

 ε1
...

εN

 , E(ε) = 0. (1.17)

8



1.3. Kernels

During the training, we want to minimize the residual sum of squares
(RSS):

RSS(w) =
N∑

i=1
L(Yi, wT xi) =

N∑
i=1

(Yi − wT xi)2 = ||Y − Xw||2, (1.18)

where the minimum is given by setting ∇RSS(w) = 0, getting the normal
equations [8]:

XT X − XT Xw = 0. (1.19)

If XT X is regular, there is only one solution minimizing RSS(w):

ŵ = (XT X)−1XT Y . (1.20)

If not, we may introduce a regularization term to RSS(w), which leads to
ridge regression [7]:

RSS(w) = ||Y − Xw||2 + λI′w, (1.21)

where I′ ∈ Rp+1,p+1 is an identity matrix, I′
1,1 = 0, and λ > 0.

Therefore normal equations are given by:

XT X − XT Xw − λI′w = 0, (1.22)

and since XT X−λI′ is regular for every λ > 0, there is exactly one solution [7]

ŵλ = (XT X − λI′)−1XT Y . (1.23)

The prediction of Ŷ of the unseen data z is [8]:

Ŷ = ŵT
λ z. (1.24)

This was the introduction to the ridge regression model. To define kernel
ridge regression, we first need to introduce the kernel in general.

1.3 Kernels
Kernel functions are characterized by the property that all finite kernel ma-
trices are positive semi-definite. An equivalent formulation is that the ker-
nel satisfies Mercer’s conditions. It also needs to reproduce kernel Hilbert
space. [2]

Again, we are given some training data

(x1, y1), . . . , (xN , yN ) ∈ X × Y , (1.25)

where X is an input domain, and Y is the target (or class) of the domain
(recalling to Sec. 1.1). In the case of binary pattern recognition, given some

9



1. Kernel Models

new input z ∈ X, we want to predict the corresponding Yz ∈ ±1. Loosely
speaking, we want to choose Yz such that (z, Yz) is in some sense similar to the
training examples. To this end, we need similarity measures in X and {±1}.
The latter is easier, as two target values can only be identical or different. For
the former, we require a function

k : X × X → R, (xi, xj) 7→ k(xi, xj), (1.26)
satisfying ∀i, j ∈ {1, . . . , N}, ∀xi, xj ∈ X, and

k(xi, xj) = ϕ(xi)T ϕ(xj), (1.27)
where ϕ(·) maps into some dot product space H, called the feature space. The
similarity measure k(·, ·) is usually called a kernel, and ϕ is called its feature
map. [9]

There are examples of positive definite kernels which can be be efficiently
evaluated even though they correspond to dot products in infinite dimensional
dot product spaces. In such cases, substituting k(xi, xj) for ϕ(xi)T ϕ(xj) is
crucial and is called the kernel trick. [9]

Given a kernel k and inputs x1, . . . , xn ∈ X, ∀i, j ∈ {1, . . . , N} we can
define N × N sized matrix G. This is called the Gram matrix (or kernel
matrix) of k with respect to x1, . . . , xn. The i, j-th element of G is defined
as: [9]

Gi,j = ϕ(xi)T ϕ(xj) = k(xi, xj) (1.28)

1.4 Suppor Vector Machine (SVM)
The key features of SVMs are the use of kernels, the absence of local minima,
the sparseness of the solution and the capacity control obtained by optimizing
the margin. [2]

In SVM, transforming the training set space with ϕ, we want to find the
hyperplane similar to Eq. 1.3:

wT ϕ(x) + b, (1.29)
and define the set of inequalities (boundaries of the separation), similar to Eq.
1.6 again, already with the slack variables, because most of the time we are
working with noisy data:

Yi(wT ϕ(xi) + b) − 1 + ξi ≥ 0, ∀i ∈ {1, . . . , N}, (1.30)
which brings us to redefining the optimization problem, similar to expression
1.13: [10]

minimize
w,b,ξ

∥w∥2

2
+ C

n∑
i=0

ξi,

subject to Yi(wT ϕ(xi) + b) − 1 + ξi ≥ 0,

ξi ≥ 0, ∀i ∈ {1, . . . , N}.

(1.31)

10



1.5. Kernel Ridge Regression

Using the method of Lagrange multipliers and the duality principle it can
be shown that the equivalent Lagrangian dual problem [2] [10] is to

minimize L̃(a) =
N∑

i=1
an − 1

2

N∑
i,j=1

aiajYiYj , k(xi, xj)

with respect to a1, . . . , aN ,

subject to 0 ≤ ai ≤ C and
N∑

i=1
aiYi = 0.

(1.32)

The solution is called support vector machine (SVM), and the hyperplane
we are looking for is taking form

f(x) =
N∑

i=1
aiYik(xi, xj) + b, (1.33)

and a prediction of given z is given by Ŷ (z) = sgn(f(z)). [10]

1.5 Kernel Ridge Regression
Given some input training set X, Y and ε are defined as in Eq. 1.17, where
Φ =

(
ϕ(x1)T , . . . , ϕ(x)T

)T
we can determine the target variable in a matrix

form: [8]
Y = Φw + ε, (1.34)

Similarly, as in ridge regression, Eq. 1.21, we minimize RSS, but in its
dual representation [8]:

RSSλ(w) = ||Y − Φw||2 + λwT w. (1.35)

The parameters w are taking form ΦT α, where ∈ RN . Inserting this into
RSSλ(w) we get:

RSSλ(α) = ||Y − ΦT Φα||2 + λαT ΦΦT α

= ||Y − Gα||2 + λαT Gα
(1.36)

with Gram matrix G, where normal equations are similar to Eq. 1.22:

ΦT Y − ΦT Φw − λI′w = 0
G(Y − Gα − λα) = 0.

(1.37)

Hence the matrix (G + λI′) is positive definite [8], and λ > 0, there is
always exactly one solution, and we get α̂ as an estimate of α:

α̂ = (G + λI′)−1Y . (1.38)

11



1. Kernel Models

The prediction of unknown vector z is then

Y (z) =
N∑

i=1
α̂ik(xi, z) = α̂ik(z), (1.39)

where k(z) = (k(x1, z), . . . , k(xN , z))T . [6] [8]

1.6 Existing Kernels

Two key properties are required for an application of a kernel function. Firstly,
it should capture the measure of similarity appropriate to the particular task
and domain, and secondly, its evaluation should require significantly less com-
putation than would be needed in an explicit evaluation of the corresponding
feature mapping ϕ. [5]

1.6.1 Dot (Linear)

Let V be a vector space. We define an operation ⟨·, ·⟩ : V × V → R a scalar
multiplication (denoted as xT y in a vector form), if it satisfies properties:
commutative, distributive, scalar multiplication, and xT x ≥ 0, xT x = 0 ⇔
x = 0. [11]

Dot kernel is a simple dot product (scalar multiplication) of two points in
Hilbert’s space, defined as

k(x, y) = ⟨x, y⟩ = xT y. (1.40)

It is also called a linear kernel. [2] For visualization see Fig. 1.1.

1.6.2 Polynomial

Here the kernel trick is done, and the kernel operates in higher dimensional
space than the original feature space. Definition:

k(x, y) = (xT y + a)d (1.41)

Where a ∈ N and d ∈ N\{0} are parameters of this kernel. This is a special
case of more general kernel k(x, y) = p (k(x, y)) where p(·) is any polynomial
with positive coefficients. [2]

The example of a polynomial kernel in SVM is shown in Fig. 1.2

12



1.6. Existing Kernels

(a) Circles problem (b) XOR problem

Figure 1.2: Classification problems on various data, solved by SVM. Compar-
ison of the same polynomial kernel on various data.

1.6.3 Gaussian

Gaussian kernels are widely used and studied in neighboring fields. [2] This is
also called radial basis function (RBF) kernel. The kernel is defined as:

k(x, y) = exp
(

−||x − y||2

2σ2

)
, (1.42)

which is a special case of k(·, ·) = exp (k(·, ·)). It can be simplified to:

k(x, y) = exp
(
−γ||x − y||2

)
, (1.43)

where γ is equal to 1
2σ2 and by ||x−y|| we denote a Euclidean distance between

two vectors. [2]
The parameter σ controls the flexibility of the kernel in a similar way to

the degree d in the polynomial kernel, as we can see in Fig. 1.3. Small values
of σ correspond to large values of d since, for example, they allow classifiers
to fit any labels, hence risking overfitting, as seen in Fig. 1.3b. In such cases,
the gram matrix becomes close to the identity matrix. On the other hand,
large values of σ gradually reduce the kernel to a constant function, making
it impossible to learn any non-trivial classifier. [2]

The feature space has infinite-dimension for every value of σ, but for large
values, the weight decays very fast on the higher-order features. In other
words, although the rank of the gram matrix will be full, for all practical
purposes the points lie in a low-dimensional subspace of the feature space. [2]

13



1. Kernel Models

(a) Average generalization (b) Bad generalization (overfitted model)

Figure 1.3: XOR Classification problem, solved by SVM using RBF kernel,
same as in Fig. 1.2.

1.6.4 Delta

This kernel belongs to the category of locally stationary kernels. The name
and definition comes from the Kronecker delta

k(x, y) = δx,y =
{

1, if x = y,

0, if x ̸= y.
(1.44)

This kernel is positive definite [12].

1.6.5 Other

In previous subsections I introduced only basic kernels in closed form, working
mostly with real numbers. There are several other categories of kernels, such
as kernels for text, graphs, structured data, kernels from generative models,
etc. [2]. However, in this thesis, I am not using any of these.

1.7 Multi-kernel

Simple operations that combine simpler kernels can construct more complex
kernels. If the created kernel preserves its positive semi-definiteness, we say
that it is closed under such operations. [2]

14



1.7. Multi-kernel

Closure properties: Let k1 and k2 be kernels over X × X, X ⊆ Rn,
a ∈ R+, f(·) a real-valued function on X, ϕ : X → RN with k3 a kernel over
RN × RN , and B a symmetric positive semi-definite n × n matrix. Then the
following functions are kernels: [2]

i k(x, y) = k1(x, y) + k2(x, y),

ii k(x, y) = ak1(x, y),

iii k(x, y) = k1(x, y)k2(x, y),

iv k(x, y) = f(x)f(y),

v k(x, y) = k3(ϕ(x), ϕ(y)),

vi k(x, y) = xT By.

The proof of these properties for construction of new kernels is in [2].

15





Chapter 2
Data Preprocessing

In this chapter, I will introduce and describe some of the preprocessing meth-
ods used nowadays in machine learning and data analysis. There are many
more, but I will explain in detail those, which are used in my designed method.
Some of these methods are designed for categorical data:

2.1 Categorical Features
Categorical data (also called nominal) occur when we are talking about some
information, which we cannot order. Apart from ordering, no basic operations
could be done with the categorical values themselves. These can be, e.g.,
postal zip codes, gender, yes/no answers. [13]

We cannot say that the postal code of Prague 6: 160 00 is higher than
Prague 1: 110 00. Same as we cannot add 5000 to get Prague 6’s postal code
from Prague 1’s.The better way to think of postal codes may be looking to
a distance to the city center or the distance to the nearest city, etc. When
working with these types of data, one should be aware of the problem trying
to solve and adjust the data in a correct way. When there is no such transfor-
mation available, we can think of some other techniques, which I will describe
below. [14]

When talking about a categorical feature, we denote it a set S, which
contains c categories. If c is a large number, some techniques such as one-hot
encoding can increase the dimensionality of the dataset rapidly. Standard
methods and models may have problems with high dimensional datasets – the
curse of dimensionality – mostly those using metrics. [15]

2.2 One-Hot Encoding (OHE)
This method is designed mostly for categorical features. We need to add at
least c more columns to indicate an occurrence of an item from S in each row.

17



2. Data Preprocessing

This technique is pretty old; it is used in electronics, same as statistics and
economics. Newly created features are also called dummy variables. [16]

For example, let us have a set of four postal zip codes

S = {160 00, 110 00, 120 00} (2.1)

Which we can encode to:

160 00 → (1, 0, 0)
110 00 → (0, 1, 0)
120 00 → (0, 0, 1)

Order of zeros and ones does not matter, but we need to determine it
before transforming into one-hot-encoding.

This technique is also well prepared for missing values. If there is any,
transformed variable from set S of c = 3 unique values would be either (0, 0, 0)
or you can add another column as an indicator of missing value: (0, 0, 0, 1).

If the categorical data are of high cardinality, the dimension is getting
higher and too big for evaluation (take in mind limited RAM and long run-
time). Sparse matrices may come in handy, which can reduce memory con-
sumption. However, sparse matrices, in general, cannot store more than one
type, so it is still consuming much memory. If you have a continuous feature
in your data, which is of type double, also the dummy variables need to be of
type double, which is not very efficient in terms of memory [17].

2.3 Target Encoding
The idea is to transform categorical feature to the means of the target (which
can be a binary, n-ary, continuous feature, etc.). For each distinct element
x in S, we need to compute the average of the corresponding values in the
target. Fig. 2.1 shows a simple example of a transformation of the data. [14]

In Python, we can easily do this, using pandas library (df is pandas [18]
DataFrame object, 'x' is the name of the categorical column, 'y' is the target
column):

df['x'] = df['x'].map(df.groupby('x')['y'].mean())

This is the most basic approach. However, as you can see in Fig. 2.1b, the
last value of column x1 is zero, because there was no other target class as 0
for this particular value. When dealing with any dataset, we need to take in
mind, that we have only a part of the all possible data. In x1 we can see that
the last value is encoded as 0 because there is only one instance of this type
of variable. This effect is called overfitting. [3]

18



2.4. Feature Scaling

There are several approaches on how to deal with overfitting. We can
compute the mean in each one of k-folds when cross-validating. Alternatively,
we can use additive smoothing. The smoothed mean itself is determined as:

x̂ = n · x̄ + m · w

n + m
, (2.2)

where x̂ is the mean we are trying to compute, n is the number of values, x̄ is
the mean estimated by the previous group-by function, m is the “weight” we
want to assign to our overall mean, and w is the overall mean. In Fig. 2.1c
we can see encoded features when additive smoothing is applied. [14] [3]

x0 x1 y

a a 1
a a 1
a a 1
a a 1
a a 0
b a 1
b a 0
b a 0
b a 0
b b 0

(a) Sample data

x0 x1 y

0.8 0.556 1
0.8 0.556 1
0.8 0.556 1
0.8 0.556 1
0.8 0.556 0
0.2 0.556 1
0.2 0.556 0
0.2 0.556 0
0.2 0.556 0
0.2 0.0 0

(b) Simple encoding

x0 x1 y

0.6 0.526 1
0.6 0.526 1
0.6 0.526 1
0.6 0.526 1
0.6 0.526 0
0.4 0.526 1
0.4 0.526 0
0.4 0.526 0
0.4 0.526 0
0.4 0.455 0

(c) Smoothed encoding

Table 2.1: A simple example of target encoding. [3]

In Tab. 2.1 y is a target variable, x0, x1 are the categorical features. Tab.
2.1a shows the sample data, Tab. 2.1b shows a simple transformation of
the data, and Tab. 2.1c shows the smoothed target encoding, with “weight”
w = 10. [3]

2.4 Feature Scaling
Most of the times, the dataset will contain features highly varying in mag-
nitudes, units, and range. Since some of the machine learning algorithms
use distance metrics in their computations, this is a problem. If left alone,
these algorithms only take in the magnitude of features neglecting the units.
The results would vary hugely, e.g., between different weight units (5kg and
5000g). The features with high magnitudes will weigh in a lot more in the
distance calculations than features with low magnitudes. To suppress this
effect, we need to bring all features to the same level of magnitudes. This can
be achieved by scaling. [19]

These common methods are used to perform feature scaling:

19



2. Data Preprocessing

• Standardization (or Z-score normalization) replaces the values in
each feature by its Z-scores:

z = x − x

σ
, (2.3)

where x′ is the computed value, x is the average of the feature and σ is
the standard deviation. Features will have the properties of a standard
normal distribution with µ = 0, σ = 1. This is important not only if
we are comparing measurements that have different units but can also
make some of the algorithms faster and more accurate. [20]

• Rescaling (min-max normalization) is an alternative approach to Z-
score normalization. Here, the data are scaled to a fixed range - usually
0 to 1:

x′ = x − min x

max(x), min(x)
. (2.4)

The cost of having the limited range – in contrast to standardization
– is that we will end up with smaller standard deviations, which can
suppress the effect of outliers. [20]

20



Chapter 3
Method And Data Description

In this chapter, I will introduce my method on how to deal with categorical
features, and heterogeneous data, where the features are mixed. Then I will
introduce the datasets used as empirical proof, that my method works with
results that are equal to the vastly used methods, with less memory consump-
tion and smaller runtime.

3.1 Analysis
When using the standard linear kernel, which is a dot product, we cannot
provide a scalar multiplication of two vectors with various data types. Cat-
egorical features are mostly represented as strings. Usually, we will create
dummy variables (described in Sec. 2.2), and then we can deal with them
appropriately when providing a dot product of two vectors (with the trans-
formed string data type). What will happen in a dot product of two encoded
categories is conditioning their equality. Small example:

Let us have a categorical feature containing three values (nationality): SK,
CZ, PL. If we provide dummy variables for this kind of feature, it will look
like:

SK → (1, 0, 0)
CZ → (0, 1, 0)
PL → (0, 0, 1)

This set consists of unique values from a feature in our dataset (in this
example there are three values). Let us see, how does the dot products of
various combinations of the values from the set after OHE look like:

⟨SK, CZ⟩ = (1, 0, 0) · (0, 1, 0)T = 0
⟨PL, PL⟩ = (0, 0, 1) · (0, 0, 1)T = 1

Here we can see, how the dot product of transformed variables only rep-
resents the equality of two categorical values. We can generalize this fact for

21



3. Method And Data Description

p dimensions of categorical features. Let’s see, how this may look like, if we
will have two categorical features:

⟨(SK, CZ), (CZ, CZ)⟩ = (1, 0, 0, 0, 1, 0) · (0, 1, 0, 0, 1, 0)T = 1
⟨(PL, SK), (PL, SK)⟩ = (0, 0, 1, 1, 0, 0) · (0, 0, 1, 1, 0, 0)T = 2

When we look closely on the example, this is just the comparison of values
on corresponding indexes in the vectors and summing number of ones on the
same positions in them.

3.2 OHE Representation
In the example from the previous section, we saw how one-hot-encoding in-
creased the dimensionality. Without loss of generality, assume that the set of
categories, in each of the categorical feature in our dataset, is finite. Therefore
we can “label” the categories in the set. This is also called string imputing.
Categorical data type in Pandas library [18] makes possible to grab the “codes”
of unique categories. Therefore we can compare these values faster (with no
need of inefficient string comparison), which is the core of the categorical
kernel (which I will describe later).

In the scikit-learn library, we can find many encoders. The one used for
OHE can be found in sklearn.preprocessing.OneHotEncoder. However, I
do not use it in my implementation.

In Pandas library [18] we can find Data Frame object, which has many ap-
plications. It can store the dataset more comprehensively. Pandas library has
a built-in function get_dummies, which encodes all columns of type category
to dummy variables (OHE). This conversion is displayed in Lis. 1.

import pandas as pd

df = pd.DataFrame(X)
for col in categoricals:

df[col] = df[col].astype('category')
df_ohe = pd.get_dummies(df, dummy_na=True)

Listing 1: Generating dummy variables from categorical columns in
DataFrame.

In Lis. 1, X may be a dictionary or n-dimensional array. This is how the
dataset is roughly represented. Variable categoricals is an array of column
names, representing the names of categorical features. df_ohe is the output
DataFrame.

22

https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html


3.3. Naive Heterogeneous kernel

3.3 Naive Heterogeneous kernel

The first implementation (which is rather explanatory) is a for-loop, where I
first iterate through all scalar values of given vectors and check if the scalar
values are categorical. We can see it in Lis. 2

import numpy as np

def naive_heterogeneous_kernel(x, y, categories=None):
if categories is None:

return np.dot(x, y)
acc = 0
for i in range(0, len(x)):

if (categories[i]):
acc += x[i] == y[i]

elif (x[i] is np.nan) or (y[i] is np.nan):
acc += x[i] != y[i]

else:
acc += x[i] * y[i]

return acc

Listing 2: The naive implementation of the heterogeneous kernel.

If the values (on same positions in both vectors) are equal, I will add 1
to the accumulator (acc) value, else 0 (the result of operator == in Python).
If the value is of a numerical type, I will multiply the value on the same
position in the second vector to imitate dot product. If two NaN (NumPy’s
Not a Number) numbers are compared, the output of this comparison is False,
which is represented as 0. Therefore there is another if statement to mimic
equality as True when taking the categorical or numerical feature’s equality
measure. The Python code is shown in Lis. 2.

Here the parameters x, y are given vectors, categories is a mask of cate-
gorical features (True/False values on corresponding positions). np stands for
NumPy [21] package. As you can see, the condition is also expanded for deal-
ing with missing values. I will treat the missing value as another categorical
value.

Python’s for-cycles are very slow compared to NumPy’s vectorization,
broadcasting, etc. We can see this in Fig. 4.2, where I compare OHE and
NumPy’s dot product over this naive implementation of the heterogeneous
kernel. Therefore I needed to move from the implementation in Lis. 2 into
another.

23



3. Method And Data Description

3.4 Categorical Kernel
SVM implemented in scikit-learn [4] takes either precomputed gram matrix
or a callable object. Precomputed Gram matrix is done by iterating through
all vectors of two given matrices, giving the dot product of all combinations
of vectors. In Lis. 3 we can see the implementation of the categorical kernel.

The function defined in Lis. 3 is taking two matrices and outputs the
gram matrix. First, we iterate through each vector in X1, and using NumPy’s
broadcasting [21] we will sum the number of same values on each same position
for each pair of vectors (from X2).

def categorical_gram_dot(X1, X2):
gram_matrix = np.zeros((X1.shape[0], X2.shape[0]))
for i in range(X1.shape[0]):

gram_matrix[i, :] = np.sum(X1[i, :] == X2, axis=1)
return gram_matrix

Listing 3: The implementation of the categorical dot kernel.

Before using this kernel, one must provide input matrices of labels of the
categories, because the comparison of strings is expensive. We can do this sim-
ply using pandas DataFrame with categorical columns of data type category.
We can get the labels of the categories from the given column by calling
column.cat.codes. First seen category will have a smaller number than oth-
ers. The missing values will have a label -1, so I treat it as a separate value.

This is how I mimic the dot product of categorical features after OHE.
The polynomial kernel uses the dot product, so we can use this categorical
dot product also there, as you can see in Eq. 1.41. Here, only two more
parameters need to be provided.

3.5 Categorical Euclidean Distances
RBF kernel uses Euclidean distances, which are computed using NumPy’s
framework. We can find the implementation of Euclidean distances for nu-
merical vectors in scikit-learn:

sklearn.metrics.pairwise.euclidean_distances

However, this only works for numerical vectors, not for categorical – my
implementation in Lis. 4 of Euclidean distances gives the same results, as
you would provide OHE of categorical features and then apply the squared
numerical version. I am looking for inequalities, summing their number and
multiply the resulting array by 2. We will need this kernel when computing
the RBF kernel’s Gram matrix.

24



3.6. Heterogeneous kernel

def categorical_eucl_dist(X1, X2):
dist_matrix = np.zeros((X1.shape[0], X2.shape[0]))
for i in range(X1.shape[0]):

dist_matrix[i, :] = 2 * np.sum(X1[i, :] != X2, axis=1)
return dist_matrix

Listing 4: The implementation of categorical Euclidean distances.

3.6 Heterogeneous kernel
To preserve similarity measure between numerical and categorical data, I com-
pute the gram matrix as an addition of two kernels: numerical and categorical.
The algorithm takes two heterogeneous matrices X1, X2 as an input and out-
puts the gram matrix. We can see this in Lis. 5:

def heterogeneous_kernel(X1, X2):
gram = np.zeros((X1.shape[0], X2.shape[0]))
X1_cat, X1_num = split_data(X1, categoricals)
X2_cat, X2_num = split_data(X2, categoricals)
gram += categorical_kernel(X1_cat, X2_cat)
gram += numerical_kernel(X1_num, X2_num)
return gram

Listing 5: Pseudo Python code for the heterogeneous kernel.

Parameter categoricals in Lis. 5 is a mask of indexes of categorical
features of the given matrices. split_data splits the data into numerical and
categorical. Delta and dot kernel were described in Sec. 3.4, 1.3

When there is a need for computing polynomial or RBF kernel, simply
change the return value to np.power(coef0 + gram, degree) for polyno-
mial kernel. For RBF change the dot kernel into Euclidean distance and
categorical kernel to nominal Euclidean distance (Lis. 4) and the return value
to np.exp(-gamma * gram) as defined in Eq. 1.43.

The output from the heterogeneous kernel, described in Lis. 5 is not only
correct in terms of equality to the OHE method (as described in Sec. 4.3),
but also satisfies the first condition from the list in Sec. 1.7.

3.7 Data Description
To provide evidence, that my method also works on real datasets, I gath-
ered some from UCI Machine Learning Repository [22] and OpenML repos-
itory [23]. They are all heterogeneous, which means they contain not only

25



3. Method And Data Description

numerical but also categorical features. Every dataset should boil into a bi-
nary classification problem. If not, I will take the majority class as positive
and the rest as negative class. It would not be a problem to take all classes and
use One-against-one or One-against-all technique as discussed in [24]. How-
ever, this is not the target of this thesis, and therefore I binarize the target
label in multiclass datasets if needed.

All the datasets described in the Tab. 3.1 are used in OpenML [23] chal-
lenges. Here, people try to create the best model for classification (or regres-
sion) and try to be first in the leaderboard. I found the leading accuracies
for each dataset, using SVM (mostly) with RBF or Polynomial kernel. The
approximate values of accuracy are shown in Tab. 3.1.

File Name Dataset Name Accuracy in %
adult Adult 76
bands Cylinder Bands 86
cmc Contraceptive Method Choice 56
credit-g Statlog (German Credit Data) 78
crx Credit Approval 87
diagnosis Acute Inflammations 100
heart Heart Diseas 81
hepatitis Hepatitis 83
horse-colic Horse Colic 82
house-votes Congressional Voting 96
ilpd ILPD (Indian Liver Patient Dataset) 73
irish Irish Educational Transitions Data 100
kobe Kobe Bryant Shot Selection -
labor Labor Relations 94
post-operative Post-Operative Patient 48
profb Pro Football Scores 76

Table 3.1: Datasets gathered from OpenML [23] and UCI [22] with approxi-
mate accuracy from rankings.

The accuracy column in Tab. 3.1 is an approximate accuracy gathered
from OpenML rankings (hyperlinks only in pdf). Accuracy for “kobe” is un-
known.

26

https://archive.ics.uci.edu/ml/datasets/adult
https://www.openml.org/t/2071
https://archive.ics.uci.edu/ml/datasets/Cylinder+Bands
https://www.openml.org/t/14968
https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
https://www.openml.org/t/23
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://www.openml.org/t/31
https://archive.ics.uci.edu/ml/datasets/credit+approval
https://www.openml.org/t/29
https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
https://www.openml.org/t/10089
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://www.openml.org/t/52
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://www.openml.org/t/54
https://archive.ics.uci.edu/ml/datasets/Horse+Colic
https://www.openml.org/t/27
https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
https://www.openml.org/t/55
https://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)
https://www.openml.org/t/9971
http://lib.stat.cmu.edu/datasets/irish.ed
https://www.openml.org/t/3543
https://www.kaggle.com/c/kobe-bryant-shot-selection/data
https://archive.ics.uci.edu/ml/datasets/Labor+Relations
https://www.openml.org/t/4
https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient
https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient
https://www.openml.org/d/470
https://www.openml.org/d/470


3.7. Data Description

File Name samp num cat sum. card ave. card
adult 32561 6 8 102 12.75
bands 540 20 18 810 45
cmc 1473 3 6 20 3.333
credit-g 1000 7 13 54 4.154
crx 690 6 9 40 4.444
diagnosis 120 1 5 10 2
heart 270 6 7 19 2.714
hepatitis 155 6 13 73 5.615
horse-colic 368 8 15 398 26.53
ilpd 583 9 1 2 2
irish 500 2 3 15 5
kobe 25697 11 9 1733 192.6
labor 57 8 8 21 2.625
post-operative 90 1 7 19 2.714
profb 672 5 4 61 15.25

Table 3.2: Information about gathered datasets.

In Tab. 3.2 I provide some basic information of the datasets shown in
Tab. 3.1. From left to right: nr. of samples, nr. of numerical features, nr.
of categorical features, the sum of cardinalities of the categorical features,
average cardinality of the categorical features. Some of the columns were
dropped, because of small to zero informative value, such as IDs, timestamps,
etc.

27





Chapter 4
Evaluation

In test classes, I am comparing my method with already defined kernels. When
comparing dot kernel, I first make OHE on randomly generated data, for each
feature. Then I apply NumPy’s dot function. The output of this function is
the gram matrix. Then I apply my kernel for the same data, and the output
Gram matrix is compared with the previous one. I do the same in the compar-
ison of the polynomial kernel. Everything was done in the test_kernels.py
file, attached. All tests are passing and all kernels implemented by me give
identical Gram matrices to the methods by the NumPy’s library.

4.1 Accuracy, Cohen’s Kappa, AUC-ROC, R2
To measure any prediction results, I use three metrics: Acc stands for accu-
racy, Kappa for Cohen’s kappa and AUC for Area Under Curve - Receiver
Operating Characteristic (ROC). R2 is called the coefficient of determina-
tion [25] and is used as a metric for regression tasks. I use these metrics not
only when making a comparison of the kernels, but also further, where I am
looking for the best parameters for the given dataset.

4.2 Measurements Description
All numerical features were scaled by the standardization method (Z-scores).
I used scaler from: sklearn.preprocessing.StandardScaler. After scaling,
each numerical feature has zero mean and unit variance.

Missing values in numerical features were filled by the mean of the feature
vector (which is zero after scaling). Missing values in categorical features do
not have to be treated. After getting the category codes, missing values are
labeled as -1. The implementation of the heterogeneous kernel can work with
them and treat them as another category as described in Sec. 3.4 OHE was
set to produce a separate column for the missing categorical values.

29



4. Evaluation

4.3 Kernel Comparison

To demonstrate the equality of heterogeneous kernel and linear kernel after
OHE, I split each dataset from Tab. 3.1 into the train (85%) and test (15%)
set, passed each of the kernels as a parameter to SVM or kernel ridge (depends
on type of problem ), then fit them with training data and obtain mentioned
metrics when predicting on the test data.

4.3.1 SVM Classification

Tab. 4.1, C.1, and C.2 demonstrate the equality of the heterogeneous kernel,
compared to NumPy’s or libsvm version (after OHE).

Dataset Name OHE & Numpy OHE & libsvm Heterogeneous
adult (0.85, 0.56, 0.91) (0.85, 0.56, 0.91) (0.85, 0.56, 0.91)
bands (0.83, 0.65, 0.89) (0.83, 0.65, 0.89) (0.83, 0.65, 0.89)
cmc (0.66, 0.28, 0.67) (0.66, 0.28, 0.67) (0.66, 0.28, 0.67)
credit-g (0.77, 0.39, 0.79) (0.77, 0.39, 0.79) (0.77, 0.39, 0.79)
crx (0.81, 0.62, 0.88) (0.81, 0.62, 0.88) (0.81, 0.62, 0.88)
diagnosis (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
heart (0.85, 0.7, 0.9) (0.85, 0.7, 0.9) (0.85, 0.7, 0.9)
hepatitis (0.79, 0.46, 0.87) (0.79, 0.46, 0.87) (0.79, 0.46, 0.87)
horse-colic (0.82, 0.59, 0.86) (0.82, 0.59, 0.86) (0.82, 0.59, 0.86)
ilpd (0.79, 0.0, 0.74) (0.79, 0.0, 0.74) (0.79, 0.0, 0.74)
irish (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
kobe (0.99, 0.96, 1.0) (0.99, 0.96, 1.0) (0.99, 0.96, 1.0)
labor (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
post-operative (0.91, 0.0, 0.52) (0.91, 0.0, 0.52) (0.91, 0.0, 0.52)
profb (0.7, 0.33, 0.76) (0.7, 0.33, 0.76) (0.7, 0.33, 0.76)

Table 4.1: Comparison of prediction metrics, using SVM with various linear
kernels.

Each row in Tab. 4.1, C.1, and C.2 consists of comparison of the different
kernels and approaches to make a prediction on the given dataset. Each cell
consists of three values: accuracy, Cohen’s kappa, and AUC-ROC. Each model
is constructed with parameters: C = 1. Polynomial kernel has parameters:
a = 0, d = 3, RBF kernel: γ = 0.1. OHE & Numpy column shows the case
when NumPy is computing the gram matrix. OHE & libsvm column means
that, e.g., kernel=’linear’ is passed into the constructor of SVM and libsvm
is taking care of computation of the gram matrix. The heterogeneous column
states that the heterogeneous kernel is computing the gram matrix. Similar
in other tables in the appendix.

30



4.4. Grid Search & Cross Validation

4.3.2 Kernel Ridge Regression

To demonstrate the usability of the designed kernel, I provided a comparison
of various approaches to regression task. I fitted Kernel Ridge regressor with
data from “servo” dataset gathered from UCI repository [22]. I split this
dataset into the train (85%) and test (15%) set. The train set was fitted into
the regressor, and then the R2 scoring method on the test set was used. In
Tab. 4.2 I compare three approaches: pairwise kernel (the one used when, e.g.,
kernel='linear' is passed into the constructor of Kernel Ridge), NumPy’s
precomputed gram matrix and gram matrix computed by the heterogeneous
kernel. The first two are used after OHE.

In Tab. 4.2, λ is the regularization parameter used in Kernel Ridge re-
gression, a, d are parameters for polynomial kernel and γ is the parameter for
RBF kernel. Pairwise polynomial kernel is defined as K(x, y) = (γ⟨x, y⟩+a)d,
therefore I used γ = 1 for comparison.

Method λ a d γ R2
linear-hetero 1 0.612
linear-ohe-np 1 0.612
linear-ohe-pw 1 0.612
poly-hetero 1 1.0 2.0 0.871
poly-ohe-np 1 1.0 2.0 0.871
poly-ohe-pw 1 1.0 2.0 1.0 0.871
rbf-hetero 1 0.1 0.728
rbf-ohe-np 1 0.1 0.728
rbf-ohe-pw 1 0.1 0.728

Table 4.2: Comparison of the pairwise kernels, NumPy kernels after OHE,
and the heterogeneous kernel.

4.4 Grid Search & Cross Validation
In each dataset from Tab. 3.1, I provided a grid search with 5-fold cross-
validation. First of all, I divided each dataset into train/test and validation
subsets, where the validation subset contains 15% of the data. The grid search
and cross-validation was done on the train/test set, while the true results of
the model can be found after predicting the validation set.

4.4.1 SVM Classification

In Tab. 4.3a, 4.3b I show the results on the validation set, compared to the
accuracy gathered from openML rankings (Tab. 3.1). In Tab. C.4 I show

31



4. Evaluation

results from the test folds subsets (average ± std. dev.). Similar to this is
Tab. C.3, where I show results from the train subsets of the folds.

AUC-ROC metric was used as “refit” parameter for the grid search. This
means that the model, which had the best AUC-ROC from all other candidates
was chosen to classify data points from the validation set.

File Name C d a γ Kappa AUC Acc Ac*
bands 10 2.15E-02 0.68 0.91 0.84 0.86
cmc 10 2.15E-02 0.40 0.76 0.71 0.56
credit-g 10 1 10 0.42 0.81 0.77 0.78
crx 1 2.15E-02 0.70 0.93 0.85 0.87
diagnosis 1 1 1 1.00 1.00 1.00 1.00
heart 1 1 1 0.80 0.96 0.90 0.81
hepatitis 1 2 1 0.41 0.83 0.79 0.79
horse-colic 100 4.64E-04 0.49 0.80 0.77 0.82
ilpd 1 1 10 0.00 0.73 0.67 0.72
irish 1 1 1 1.00 1.00 1.00 1.00
labor 1 2 1 1.00 1.00 1.00 0.94
post-operative 1 1 1 0.00 0.75 0.71 0.48
profb 1000 0.40 0.78 0.73 0.76

(a) Classification results after hyperparameter tuning and cross-validation. SVM
using heterogeneous kernel.
File Name C d a γ Kappa AUC Acc Ac*
bands 464.2 3.59E-05 0.58 0.85 0.80 0.86
cmc 1 1 2 0.41 0.70 0.72 0.56
credit-g 10 2.15E-02 0.29 0.66 0.76 0.78
crx 1000 0.71 0.92 0.86 0.87
diagnosis 1 1 1 1.00 1.00 1.00 1.00
heart 1 1 1 0.75 0.95 0.88 0.81
hepatitis 1 4.64E-04 0.00 0.93 0.75 0.79
horse-colic 1 1 1 0.70 0.90 0.88 0.82
ilpd 1 10 1 0.00 0.67 0.80 0.72
irish 1 1 2 0.97 0.97 0.99 1.00
labor 0.1778 0.57 1.00 0.78 0.94
post-operative 1 1 2 0.05 0.63 0.57 0.48
profb 3.162 0.00 0.59 0.62 0.76

(b) Classification results after hyperparameter tuning and cross-validation. SVM
using default kernels, target encoded categorical features. Parameter m for additive
smoothing is always 50.

Table 4.3: Grid search and cross-validation results using (a) heterogeneous
kernels and (b) other kernels on target encoded categorical features.

In Tab. 4.3 C is the parameter for errors of the SVM; a, d are parameters

32



4.4. Grid Search & Cross Validation

(coef0, degree) of the polynomial kernel; and γ is the parameter for RBF
kernel. If only C is filled in a row, this means the linear kernel was used. If also
a, d were filled, this stands for polynomial kernel. Both C and γ parameters
mean the RBF kernel was used. The accuracy of the model on the validation
set is compared to the one gathered from OpenML rankings, as shown in the
Ac* column.

For each kernel, I used different C, for computational efficiency (no cluster
for these computations was considered). I provided the same parameters for
heterogeneous kernels and basic kernels after target encoding. Parameters for
each kernel:

• linear: C ∈ {0.01, 0.17, 3.16, 56.23, 1000}

• polynomial: C, a ∈ {1, 10}, d ∈ {1, 2}

• rbf: C ∈ {1, 10, 100, 1000}, γ ∈ {1 · 10−5, 4.64 · 10−4, 2.15 · 10−2, 1}

I looked for target encoding’s smoothing hyperparameter m with values
{50, 100, 300, 500} but found out the best models chosen after grid search
tend to be “overfitted” as explained in Sec. 2.3. Therefore the smallest value
50 was chosen as the best value for m and is set throughout the measurements
shown in Tab 4.3b.

Datasets “adult” and “kobe” were not included, because they were too
large to find the optimal hyperparameters by grid search defined above. My
machine is not that powerful to compute the gram matrix in reasonable time,
so I just provide one-fit predictions in comparison tables (4.1, C.1, C.2).

4.4.2 Kernel Ridge Regression
I also provided grid search and cross-validation on “servo” dataset. The pa-
rameters for the grid search are: λ ∈ np.logspace(-4, 4, 30) 1, parameters
for polynomial kernel: a ∈ {0, 5, 10, 15, 20, 25, 30, 35}, d ∈ {1, 2, 3}, param-
eters for RBF kernel: γ ∈ np.logspace(-4, 1, 30). For best parameter
m for target encoding I searched through {50, 300, 500, 700, 1000}. The best
value was again 50.

I was not able to obtain rankings to this dataset from OpenML, because
there is no rank for this dataset. Therefore there is no “true” R2 value to
compare with.

1https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html

33

https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html


4. Evaluation

Model Method R2 λ a d γ m

Kernel Ridge Hetero Kernel 0.891 0.0303 35 3
Kernel Ridge Target encoding 0.870 0.0045 35 3 50

Table 4.4: Results of grid search and cross-validation on regression task.

4.5 Memory Consumption
I used memory_profiler package [26], which provided results in Fig. 4.1.
I used IPython’s magic function %memit from this package. I specified the
datatype of the output gram matrix, same as a parameter in NumPy’s sum
function. I compared NumPy’s dot after pandas get_dummies on two various
sized, randomly generated categorical data (input matrices). Each measure-
ment was done in a separate python environment: after each run, I started a
new interpreter measuring different functions, and the results were put into
the graph, as shown in Fig. 4.1. Here, “inc” means the amount of memory
increased during measurement.

Figure 4.1: Memory comparison of NumPy’s dot & OHE, and heterogeneous
kernel on various input data types.

4.6 Runtime On Random Data
In this section I provide a runtime comparison on random generated, categor-
ical data. In Fig. 4.2, I compare naive heterogeneous kernel, dot product &
OHE, and heterogeneous kernel. Each runtime measurement is done at least
30 times, then the average of all the measurements (for the same parame-

34



4.6. Runtime On Random Data

ters) is plotted on the graph. All measurements were done on a machine with
specifications shown in Lis. 6.

In Fig. 4.2 we can see, that this naive implementation would not scale on
large datasets (even though it is working correctly). For the naive heteroge-
neous kernel, it takes much longer time to compute the gram matrix, even for
a small number of samples. This graph has a logarithmic y-axis.

50 100 150 200 250 300
Number of samples

10 2

10 1

100

101

Ru
nt

im
e 

(in
 se

c)

Categorical matrices with 10 categories in 10 features

naive_hetero_kernel(x, y)
linear_kernel(ohe(x), ohe(y)
hetero_kernel(x, y)

Figure 4.2: Runtime comparison of naive heterogeneous kernel, heterogeneous
kernel and NumPy’s dot product after OHE on data with a various number
of samples.

In Fig. 4.3 we can see that with the rising number of samples, the hetero-
geneous kernel works faster. The categorical data are of higher cardinality.

In Fig. 4.4 we can see, how the rising number of categorical features also
makes computing of dot product after OHE slower than the heterogeneous
kernel. Even the cardinality is relatively small.

In Fig. 4.5 we can see, how rising cardinality affects the runtime of dot
product and OHE. This is the edge-case measurement, because the number of
categorical features is one. We can see that with higher number of samples,
the intersection of the two compared methods is moving to smaller number of
categories in the feature.

35



4. Evaluation

300 400 500 600 700 800 900 1000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ru
nt

im
e 

(in
 se

c)
Categorical matrices with 50 categories in 5 features

hetero_kernel(x, y)
linear_kernel(ohe(x), ohe(y)

Figure 4.3: Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with a various number of samples.

0 5 10 15 20 25 30
Number of features

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e 

(in
 se

c)

Categorical matrices with 1000 samples, 10 categories
hetero_kernel(x, y)
linear_kernel(ohe(x), ohe(y)

Figure 4.4: Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with a various number of features.

36



4.6. Runtime On Random Data

0 10 20 30 40 50 60
Number of categories (cardinality)

0

1

2

3

4

5

Ru
nt

im
e 

(in
 se

c)

Categorical matrices of 4000 & 2000 samples in 1 feature
2K hetero_kernel(x, y)
2K linear_kernel(ohe(x), ohe(y)
4K hetero_kernel(x, y)
4K linear_kernel(ohe(x), ohe(y)

Figure 4.5: Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with various cardinality in each feature.

37



4. Evaluation

4.7 Runtime On Real Datasets

In Fig. 4.6, C.2, C.3 I show runtime comparison (with symmetrical logarithmic
y-axis) of various approaches to real datasets with mixed data, mentioned in
Tab. 3.1. I split each dataset into train and test set (85% and 15%) and
trained SVM with various kernel functions.

I fitted each dataset ten times and measured the time. Then I took the
average from the measurements and plotted it. OHE & libsvm means I put
kernel='linear' into the SVM and fitted with train set after OHE. OHE
dot means I used NumPy’s dot product as a kernel function and fitted with
data after OHE. Hetero linear means I used (linear) heterogeneous kernel for
the measurements. This description of Fig. 4.6 is similar for Fig. C.2, C.3 (in
appendix).

ba
nd

s

cm
c

cr
ed

it-
g

cr
x

di
ag

no
sis

he
ar

t

he
pa

tit
is

ho
rs

e-
co

lic ilp
d

iri
sh

la
bo

r

po
st

-o
pe

ra
tiv

e

pr
of

b

0

10 2

10 1

100

Ru
nt

im
e 

(s
)

Runtime comparison on linear kernels
ohe-libsvm-linear
ohe-dot
hetero-linear

Figure 4.6: Runtime comparison on real datasets, comparing the runtime of
linear kernels.

Fig. 4.7 is a comparison of all types of kernels, but on bigger datasets. It
is more clear to show the runtime of these datasets separately. Other graphs
are more comprehensive and clean.

38



4.8. Discussion

ad
ul

t

ko
be

0
101

102

Ru
nt

im
e(

s)

256 224

80

28

89

21

0

377

0

57

0

39

245

595

106

44

84

32

Runtime comparison on big datasets

ohe-libsvm-linear
ohe-dot
hetero-linear

ohe-libsvm-poly
ohe-poly
hetero-poly

ohe-libsvm-rbf
ohe-rbf-kernel
hetero-rbf

Figure 4.7: Runtime comparison on bigger real datasets.

I needed to interrupt the polynomial kernel run, when computing gram
matrix for “adult” dataset. It took almost four hours, and no output for no
polynomial kernel was given. Therefore there are missing bars in Fig. 4.7.

4.8 Discussion
Heterogeneous kernel gives the same output grammatrix, as if one-hot-encoding
was applied on given data. This equivalence is demonstrated in unit tests, in
attached CD. This kernel can be used for classification (e.g., SVM), as we can
see in Tab. 4.1, C.1, C.2, and other tasks (e.g. regression with kernel ridge),
shown in Tab. 4.2.

As we can see from the results in Tab. 4.3, 4.4 it depends, which approach
of treating the categorical features (OHE or target-encoding) is the best. The
metrics are sometimes better after target encoding, sometimes worse. So
again, it is always good to try each approach before choosing the best model
for given task. For some of the datasets the kappa is zero not because it is an
error in computation, but because they are difficult datasets. I was not able
to train such a model, which would generalize better on these datasets.

The proposed method saves almost double amount of memory, when work-
ing on greater amount of categorical features with high cardinality. We can
see the increment in Fig. 4.1. The saved amount of memory is significant,
if given dataset contains both continuous and categorical features. The data
type of gram matrix also affects memory requirements. Particularly whenever
we need double typed gram matrix (e.g.: because of double typed numeri-

39



4. Evaluation

cal features), memory requirements of the proposed method are significantly
lower than if we used OHE.

Designed kernel scales well on randomly generated categorical data. With
rising number of samples containing a few features of high cardinality, the
runtime is almost four times smaller, as we can see in Fig. 4.3. In Fig. 4.4
we can notice almost exponential runtime, when applying OHE for the dot
product, while the heterogeneous kernel tends to have linear runtime. This
can be seen even on one thousand samples. In general, higher cardinality (30
and more) means better performance, comparing to OHE and dot product.
Smaller cardinality can be simply treated with OHE, as we can see in Fig.
4.5, where OHE dot kernel tends to be linear with rising cardinality, while
heterogeneous kernel stays in constant time. The heterogeneous kernel is in-
variant to cardinality in terms of runtime. If we are given a dataset containing
at least one feature with minimum cardinality 50, we can expect savings on
runtime. This saving is almost 5 times less than OHE on 1000 samples, as
seen in Fig. 4.3.

In runtime measure on the real datasets, we can see that in some cases,
classical OHE and linear kernel outperform the heterogeneous kernel in run-
time. It can be caused by the fact, that the heterogeneous kernel is designed
to work mainly with mixed data containing high cardinality categorical fea-
tures. In some datasets, there are only a few categories or a small number of
categorical features. This fact can be seen in Fig. 4.5 on the measurements
with small amount of categories or in Fig. 4.4 on measurements with small
amount of categorical features. For example, heterogeneous kernel applied
on cmc, credit-g, and crx datasets are acting worse in terms of runtime (see
Fig. 4.6). If we look on Tab. 3.2, we can see, that the sum of categories
throughout these datasets is not very high. Therefore I assume, this approach
is not suitable for these types of datasets. On “kobe” dataset, containing
high cardinality features, the heterogeneous kernel saved almost ten seconds
of computation, see Fig. 4.7. What is surprising, that libsvm is not acting
well in comparison to either NumPy’s approach, or heterogeneous kernel. It
may be caused by better memory handling of NumPy, which may use BLAS2

packages. It provides subroutines and subprograms written in Fortran or C,
working differently on different machines/distributions/processors/etc. [27]

If using this kernel in practice, we can check if given dataset contains at
least one categorical feature with cardinality at least 30. If so, we better use
the heterogeneous kernel, if not, OHE is sufficient. Pandas DataFrame can
tell us very fast, how many unique values are in each feature, therefore this
“test” is very fast.

2https://docs.scipy.org/doc/scipy/reference/linalg.blas.html

40

https://docs.scipy.org/doc/scipy/reference/linalg.blas.html


Conclusion

In this thesis, I introduced kernel models used for pattern recognition, such as
support vector machine and kernel ridge regression. Various kernels commonly
used were introduced. I described preprocessing methods such as scaling, one-
hot-encoding, and target encoding.

Then I described in detail the whole process of creating the heterogeneous
kernel, its implementation, and usability not only as a linear kernel but also
polynomial and RBF.

Afterward, I provided evidence that the designed kernel can mimic one-
hot-encoding and dot product, the same as Euclidean distances on categorical
data. Heterogeneous kernel works the same is if you first provide OHE and
then apply dot kernel or Euclidean distances (for RBF). We saw that target
encoding is not always suitable when looking for the best model; we need to
try each approach to choose the best. I also showed that this kernel is suitable
not only for classification (SVM) but also for regression (Kernel Ridge).

The memory consumption is decreased, when there is a need for a kernel
working with mixed data. We saw how the memory increased almost two times
when working with high cardinality features. This kernel can decrease the
runtime while working with high cardinality features. This can be significant
if the dataset is larger. The heterogeneous kernel was able to cut down almost
ten seconds of computation on larger dataset .

The heterogeneous kernel is prepared for mixed data (categorical & nu-
merical). If the cardinality of a categorical feature is higher, this kernel stays
invariant to the cardinality, in terms of runtime. It can work with missing
values in categorical features because it treats it as another categorical value
(similar to OHE).

41





Bibliography

[1] Corinna, C.; Vladimir, V. Support-Vector Networks. Machine Learn-
ing, volume 20, no. 3, 1995: pp. 273–297, ISSN 08856125, doi:
10.1007/BF00994018, arXiv:1011.1669v3. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/19549084

[2] John Shawe-Taylor; Nello Cristianini. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press 2004, 2004, ISBN 9780521813976, 195–
211, 289–297 pp.

[3] Halford, M. Target Encoding Done The Right Way. 2018. Available
from: https://maxhalford.github.io/blog/target-encoding-done-
the-right-way/

[4] Pedregosa Fabian; Michel, V.; et al. Scikit-learn: Machine Learning in
Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre
Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu
Perrot. Journal of Machine Learning Research, volume 12, 2011: pp.
2825–2830, ISSN 15324435, doi:10.1007/s13398-014-0173-7.2, 1201.0490.
Available from: http://scikit-learn.sourceforge.net.

[5] Villegas García, M. A. An investigation into new kernels for categorical
variables. Dissertation thesis, Universitat Politecnica de Catalunya, 2013.
Available from: http://upcommons.upc.edu/pfc/handle/2099.1/17172

[6] An, S.; Liu, W.; et al. Face Recognition Using Kernel Ridge Regression.
In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
jun 2007, ISSN 1063-6919, pp. 1–7, doi:10.1109/CVPR.2007.383105.

[7] Kennard, R. W.; Hoerl, A. E. Ridge regression: Bi-
ased estimation for nonorthogonal problems. Technomet-
rics, volume 12, no. 1, 1970: pp. 55–67. Available from:

43

arXiv:1011.1669v3
http://www.ncbi.nlm.nih.gov/pubmed/19549084
http://www.ncbi.nlm.nih.gov/pubmed/19549084
https://maxhalford.github.io/blog/target-encoding-done-the-right-way/
https://maxhalford.github.io/blog/target-encoding-done-the-right-way/
1201.0490
http://scikit-learn.sourceforge.net.
http://upcommons.upc.edu/pfc/handle/2099.1/17172


Bibliography

http://internet.math.arizona.edu/hzhang/math574m/Read/
RidgeRegressionBiasedEstimationForNonorthogonalProblems.pdf

[8] Vašata, D. MI-ADM lecture 6 handout. 2019. Available from:
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-
06-en-handout.pdf

[9] Hofmann, T.; Schölkopf, B.; et al. Kernel methods in machine learn-
ing. Annals of Statistics, volume 36, no. 3, 2008: pp. 1171–1220, ISSN
00905364, doi:10.1214/009053607000000677.

[10] Vašata, D. MI-ADM lecture 8 handout. 2019. Available from:
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-
08-en-handout.pdf

[11] Olšák, P. Lineární algebra, 2007. Available from: http:
//petr.olsak.net/ftp/olsak/linal/linal.pdf

[12] Genton, M. G.; Cristianini, N.; et al. Classes of kernels for machine
learning: a statistics perspective. Journal of Machine Learning Re-
search, volume 2, no. 2, 2001: pp. 299–312. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.7887

[13] Dorogush, A. V.; Ershov, V.; et al. CatBoost: gradient boosting with
categorical features support. 2018: pp. 1–7, 1810.11363. Available from:
http://arxiv.org/abs/1810.11363

[14] Micci-Barreca, D. A preprocessing scheme for high-cardinality categori-
cal attributes in classification and prediction problems. ACM SIGKDD
Explorations Newsletter, volume 3, no. 1, 2007: p. 27, ISSN 19310145,
doi:10.1145/507533.507538.

[15] Jukes, E. Encyclopedia of Machine Learning and Data Mining (2nd edi-
tion), volume 32. New York, NY, USA: Springer Science+Business Me-
dia, 2018, ISBN 9781489976857, 3–4 pp., doi:10.1007/978-1-4899-7687-1,
0005074v1.

[16] Garavaglia Susan, S. A. A Smart Guide To Dummy Variables. 2016. Avail-
able from: https://stats.idre.ucla.edu/wp-content/uploads/2016/
02/p046.pdf

[17] Duff, I. S.; Erisman, A. M.; et al. Direct methods for sparse matrices.
Oxford University Press, 2017.

[18] McKinney, W. Data Structures for Statistical Computing in Python.
In Proceedings of the 9th Python in Science Conference. Proceedings
of the 9th Python in Science Conference, volume 1697900, 2010: pp.

44

http://internet.math.arizona.edu/hzhang/math574m/Read/RidgeRegressionBiasedEstimationForNonorthogonalProblems.pdf
http://internet.math.arizona.edu/hzhang/math574m/Read/RidgeRegressionBiasedEstimationForNonorthogonalProblems.pdf
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-06-en-handout.pdf
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-06-en-handout.pdf
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-08-en-handout.pdf
https://courses.fit.cvut.cz/MI-ADM/lectures/files/MI-ADM-08-en-handout.pdf
http://petr.olsak.net/ftp/olsak/linal/linal.pdf
http://petr.olsak.net/ftp/olsak/linal/linal.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.7887
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.7887
1810.11363
http://arxiv.org/abs/1810.11363
0005074v1
https://stats.idre.ucla.edu/wp-content/uploads/2016/02/p046.pdf
https://stats.idre.ucla.edu/wp-content/uploads/2016/02/p046.pdf


Bibliography

50–56. Available from: http://conference.scipy.org/proceedings/
scipy2010/pdfs/proceedings.pdf

[19] Asaithambi, S. Why, How and When to Scale your Features. 2017.
Available from: https://medium.com/greyatom/why-how-and-when-
to-scale-your-features-4b30ab09db5e

[20] Rashka, S. About Feature Scaling and Normalization. 2014.
Available from: https://sebastianraschka.com/Articles/
2014{_}about{_}feature{_}scaling.html

[21] Oliphant, T. NumPy: A guide to NumPy. USA: Trelgol Publishing. Avail-
able from: http://www.numpy.org/

[22] Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available
from: http://archive.ics.uci.edu/ml

[23] Vanschoren, J.; van Rijn, J. N.; et al. OpenML: Networked Science in
Machine Learning. SIGKDD Explorations, volume 15, no. 2, 2013: pp. 49–
60, doi:10.1145/2641190.2641198. Available from: http://doi.acm.org/
10.1145/2641190.2641198

[24] Chih-Wei Hsu Chih-Jen Lin. A Comparison of Methods for Multi-
class Support Vector Machines. IEEE Transactions on Neural Net-
works, 2002: pp. 1–11, doi:10.1109/72.991427. Available from: https:
//www.csie.ntu.edu.tw/{~}cjlin/papers/multisvm.pdf

[25] Nagelkerke, N. J. D. A Note on a General Definition of the Coefficient of
Determination Miscellanea A note on a general definition of the coefficient
of determination. Biometrika, volume 78, no. 3, 2008: pp. 691–692, ISSN
00063444, doi:10.1093/biomet/78.3.691.

[26] Pedregosa, F.; Gervais, P. Memory Profiler, Python’s package index.
2018. Available from: https://pypi.org/project/memory-profiler/

[27] Beuckelmann, M. Boosting numpy: Why BLAS Matters. 2017. Avail-
able from: https://markus-beuckelmann.de/blog/boosting-numpy-
blas.html

[28] Chih-Chung, C.; Chih-Jen, L. LIBSVM – A Library for Support Vec-
tor Machines. 2018. Available from: https://www.csie.ntu.edu.tw/
{~}cjlin/libsvm/

45

http://conference.scipy.org/proceedings/scipy2010/pdfs/proceedings.pdf
http://conference.scipy.org/proceedings/scipy2010/pdfs/proceedings.pdf
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
https://sebastianraschka.com/Articles/2014{_}about{_}feature{_}scaling.html
https://sebastianraschka.com/Articles/2014{_}about{_}feature{_}scaling.html
http://www.numpy.org/
http://archive.ics.uci.edu/ml
http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
https://www.csie.ntu.edu.tw/{~}cjlin/papers/multisvm.pdf
https://www.csie.ntu.edu.tw/{~}cjlin/papers/multisvm.pdf
https://pypi.org/project/memory-profiler/
https://markus-beuckelmann.de/blog/boosting-numpy-blas.html
https://markus-beuckelmann.de/blog/boosting-numpy-blas.html
https://www.csie.ntu.edu.tw/{~}cjlin/libsvm/
https://www.csie.ntu.edu.tw/{~}cjlin/libsvm/




Appendix A
Acronyms

SVM Support Vector Machine

RBF Radial Basis Function

OHE One-Hot-Encoding

AUC Area Under Curve

ROC Receiver Operating Characteristics

np NumPy [21]

libsvm A Library for Support Vector Machines [28]

47





Appendix B
Notation

In this chapter, I want to introduce notation for every kind of variables, vec-
tors, or statements, to preserve consistency throughout this thesis.

In general, matrices are bold uppercase (e.g., A, B), vectors are bold
(mathematical) lowercase (e.g., x, w), and scalars are lowercase Greek let-
ters or cursive Latin letters. Sets are denoted as uppercase italic letters (e.g.,
X, S). Number sets are denoted as double bold. E.g., R means a set of real
numbers.

When writing numbers, I use a dot (.) as decimal separator. If the number
is too small, I use E to denote powers of 10 (e.g. 1.23E-4 = 1.23 × 10−4).

Dot product is denoted as ⟨·, ·⟩, or as matrix multiplication (e.g. xT y),
where xT means transposition of x.

49





Appendix C
Details Of Evaluation

Each row in Tab. 4.1, C.1, C.2 contains tuples with three values: accuracy,
Cohen’s kappa, and AUC-ROC (Sec. 4.4). OHE & NumPy is NumPy [21] dot
product. OHE & libsvm is when “linear” is passed as a kernel into constructor
of SVM, therefore libsvm is responsible for the kernel matrix. Similar in other
tables (polynomial and RBF).

For polynomial kernel the task of prediction on “adult” dataset took too
long, so I interrupted it. This is why there is missing row in Tab. C.1. It is
explained as well in Sec. 4.7.

Dataset Name OHE & NumPy OHE & libsvm Heterogeneous
adult
bands (0.81, 0.61, 0.9) (0.81, 0.61, 0.9) (0.81, 0.61, 0.9)
cmc (0.62, 0.21, 0.61) (0.62, 0.21, 0.61) (0.62, 0.21, 0.61)
credit-g (0.75, 0.35, 0.7) (0.75, 0.35, 0.7) (0.75, 0.35, 0.7)
crx (0.79, 0.58, 0.84) (0.79, 0.58, 0.84) (0.79, 0.58, 0.84)
diagnosis (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
heart (0.72, 0.44, 0.8) (0.72, 0.44, 0.8) (0.72, 0.44, 0.8)
hepatitis (0.82, 0.54, 0.89) (0.82, 0.54, 0.89) (0.82, 0.54, 0.89)
horse-colic (0.86, 0.67, 0.9) (0.86, 0.67, 0.9) (0.86, 0.67, 0.9)
ilpd (0.66, 0.11, 0.68) (0.66, 0.11, 0.68) (0.66, 0.11, 0.68)
irish (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
kobe (0.99, 0.95, 1.0) (0.99, 0.95, 1.0) (0.99, 0.95, 1.0)
labor (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
post-operative (0.7, -0.14, 0.52) (0.7, -0.14, 0.52) (0.7, -0.14, 0.52)
profb (0.65, 0.25, 0.67) (0.65, 0.25, 0.67) (0.65, 0.25, 0.67)

Table C.1: Comparison of prediction metrics, using SVM with various poly-
nomial kernels.

51



C. Details Of Evaluation

Dataset Name OHE & NumPy OHE & libsvm Heterogeneous
adult (0.85, 0.57, 0.9) (0.85, 0.57, 0.9) (0.85, 0.57, 0.9)
bands (0.76, 0.49, 0.88) (0.76, 0.49, 0.88) (0.76, 0.49, 0.88)
cmc (0.69, 0.36, 0.72) (0.69, 0.36, 0.72) (0.69, 0.36, 0.72)
credit-g (0.78, 0.36, 0.79) (0.78, 0.36, 0.79) (0.78, 0.36, 0.79)
crx (0.83, 0.67, 0.91) (0.83, 0.67, 0.91) (0.83, 0.67, 0.91)
diagnosis (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
heart (0.84, 0.67, 0.9) (0.84, 0.67, 0.9) (0.84, 0.67, 0.9)
hepatitis (0.82, 0.48, 0.9) (0.82, 0.48, 0.9) (0.82, 0.48, 0.9)
horse-colic (0.88, 0.71, 0.9) (0.88, 0.71, 0.9) (0.88, 0.71, 0.9)
ilpd (0.79, 0.0, 0.74) (0.79, 0.0, 0.74) (0.79, 0.0, 0.74)
irish (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
kobe (0.99, 0.95, 1.0) (0.99, 0.95, 1.0) (0.99, 0.95, 1.0)
labor (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)
post-operative (0.91, 0.0, 0.52) (0.91, 0.0, 0.52) (0.91, 0.0, 0.52)
profb (0.67, 0.15, 0.75) (0.67, 0.15, 0.75) (0.67, 0.15, 0.75)

Table C.2: Comparison of prediction metrics, using SVM with various RBF
kernels.

C.1 Details Of Grid Search
In Tab. C.3, C.4 I provide details of cross validation and grid search using
SVM with parameters described in Sec. 4.4

File Name Accuracy Kappa AUC-ROC
bands 0.91 ± 0.00 0.79 ± 0.01 0.96 ± 0.00
cmc 0.73 ± 0.01 0.42 ± 0.01 0.79 ± 0.01
credit-g 0.85 ± 0.01 0.56 ± 0.02 0.89 ± 0.01
crx 0.88 ± 0.00 0.75 ± 0.01 0.96 ± 0.00
diagnosis 0.94 ± 0.00 0.85 ± 0.00 1.00 ± 0.00
heart 0.88 ± 0.01 0.74 ± 0.01 0.95 ± 0.00
hepatitis 0.94 ± 0.01 0.75 ± 0.03 0.97 ± 0.01
horse-colic 0.92 ± 0.00 0.81 ± 0.01 0.97 ± 0.00
ilpd 0.77 ± 0.00 0.20 ± 0.01 0.80 ± 0.01
irish 0.94 ± 0.00 0.87 ± 0.00 0.99 ± 0.00
labor 0.92 ± 0.01 0.79 ± 0.01 1.00 ± 0.00
post-operative 0.81 ± 0.02 0.31 ± 0.06 0.80 ± 0.03
profb 0.83 ± 0.00 0.55 ± 0.01 0.90 ± 0.01

Table C.3: Train folds results. Each column stands for the mean ± standard
deviation of the given metric on all train folds.

52



C.2. Runtime

File Name Accuracy Kappa AUC-ROC
bands 0.73 ± 0.02 0.39 ± 0.05 0.83 ± 0.02
cmc 0.66 ± 0.02 0.26 ± 0.04 0.70 ± 0.03
credit-g 0.72 ± 0.02 0.21 ± 0.05 0.74 ± 0.04
crx 0.78 ± 0.02 0.55 ± 0.05 0.89 ± 0.02
diagnosis 0.94 ± 0.01 0.85 ± 0.01 1.00 ± 0.00
heart 0.75 ± 0.04 0.46 ± 0.08 0.86 ± 0.03
hepatitis 0.81 ± 0.06 0.28 ± 0.18 0.81 ± 0.09
horse-colic 0.78 ± 0.03 0.47 ± 0.07 0.86 ± 0.04
ilpd 0.72 ± 0.01 0.06 ± 0.03 0.70 ± 0.04
irish 0.93 ± 0.01 0.86 ± 0.02 0.99 ± 0.01
labor 0.84 ± 0.06 0.56 ± 0.12 0.99 ± 0.02
post-operative 0.70 ± 0.04 -0.02 ± 0.08 0.49 ± 0.13
profb 0.69 ± 0.02 0.19 ± 0.04 0.71 ± 0.03

Table C.4: Test fold results. Each column stands for the mean ± standard
deviation of the given metric on test folds.

C.2 Runtime
In this section, I provide more runtime measurements. Fig. C.1 is an extension
to Fig. 4.5, where only one categorical feature was provided. Fig. C.2, C.3
show comparison of heterogeneous kernel working on real datasets, but as
polynomial and RBF kernel.

0 20 40 60 80 100
Number of categories (cardinality)

0

1

2

3

4

Ru
nt

im
e 

(in
 se

c)

Categorical matrices of 1000 samples in 5 features
hetero_kernel(x, y)
linear_kernel(ohe(x), ohe(y)

Figure C.1: Runtime comparison of the heterogeneous kernel and linear kernel
(dot product) after OHE on data with higher cardinality in each feature.

53



C. Details Of Evaluation

ba
nd

s

cm
c

cr
ed

it-
g

cr
x

di
ag

no
sis

he
ar

t

he
pa

tit
is

ho
rs

e-
co

lic ilp
d

iri
sh

la
bo

r

po
st

-o
pe

ra
tiv

e

pr
of

b

0

10 2

10 1

100

Ru
nt

im
e 

(s
)

Runtime comparison on polynomial kernels
ohe-libsvm-poly
ohe-poly
hetero-poly

Figure C.2: Runtime comparison on real datasets, comparing the runtime of
polynomial kernels.

ba
nd

s

cm
c

cr
ed

it-
g

cr
x

di
ag

no
sis

he
ar

t

he
pa

tit
is

ho
rs

e-
co

lic ilp
d

iri
sh

la
bo

r

po
st

-o
pe

ra
tiv

e

pr
of

b

0

10 2

10 1

100

Ru
nt

im
e 

(s
)

Runtime comparison on RBF kernels
ohe-libsvm-rbf
ohe-rbf-kernel
hetero-rbf

Figure C.3: Runtime comparison on real datasets, comparing the runtime of
RBF kernels

54



C.3. Specifications

C.3 Specifications
The hardware and software specifications of the machine, where time and
memory measurements were done. Shown in Lis. 6.

Hardware Overview:
Model Name: MacBook Pro
Model Identifier: MacBookPro14,1
Processor Name: Intel Core i7
Processor Speed: 2,5 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 4 MB
Memory: 16 GB
Boot ROM Version: 190.0.0.0.0
SMC Version (system): 2.43f6
Serial Number (system): C02V70MHJ9K9
Hardware UUID: 0BEF40BF-97E7-5089-8C02-BBB835651879

Listing 6: Hardware specifications of the machine where all measurements
were done.

55





Appendix D
Contents of enclosed CD

README.md..............................file with CD contents description
IMPLEMENTATION......................directory with the implementation

src..........................................directory of source codes
data.........................................directory of used datsets
notebooks............................directory of Jupyter Notebooks
requirements.txt......dependencies for Python 3.6 implementation

THESIS......................directory of LATEX source codes of the thesis
BP_Fabo_Samuel_2018.pdf................ thesis text in PDF format
chapters..........................directory with .tex files – chapters
images....................................directory with .pdf images
tables.....................................directory with .csv tables
BACHELOR.bib..........................BibTex file with bibliography

57


	Introduction
	Goals
	Kernel Models
	The Maximal Margin Classifier
	Ridge Regression
	Kernels
	Suppor Vector Machine (SVM)
	Kernel Ridge Regression
	Existing Kernels
	Multi-kernel

	Data Preprocessing
	Categorical Features
	One-Hot Encoding (OHE)
	Target Encoding
	Feature Scaling

	Method And Data Description
	Analysis
	OHE Representation
	Naive Heterogeneous kernel
	Categorical Kernel
	Categorical Euclidean Distances
	Heterogeneous kernel
	Data Description

	Evaluation
	Accuracy, Cohen's Kappa, AUC-ROC, R2
	Measurements Description
	Kernel Comparison
	Grid Search & Cross Validation
	Memory Consumption
	Runtime On Random Data
	Runtime On Real Datasets
	Discussion

	Conclusion
	Bibliography
	Acronyms
	Notation
	Details Of Evaluation
	Details Of Grid Search
	Runtime
	Specifications

	Contents of enclosed CD

