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Abstrakt

Abstrakce je dulezity nastroj pro inteligentniho agenta. Pomahd mu resit
slozité 1lohy tim, Ze ignoruje nedilezité detaily. V této préaci popisi novy al-
goritmus pro hledani abstrakci, Online Partition Iteration, ktery je zalozeny
na teorii homomorfismi Markovskych rozhodovacich procesi. Muj algoritmus
dokaze vytvorit abstrakce ze zkusenosti nasbiranych agentem v prostredich

s vysokodimenzionalnimi stavy a velkym mnozstvi dostupnych akci. Také
predstavim novy pristup k prenaseni abstrakci mezi riznymi dlohami, ktery
dosahl nelpsich vysledki ve vétsiné mych experimentii. Nakonec dokazu spravnost
svého algoritmu pro hledéni abstrakeci.

Klicova slova strojové uceni, posilované uceni, abstrakce, robotickd mani-
pulace, homomorfismy Markovsych rozhodovacich procesi, deep learning



Abstract

Abstraction is an important tool for an intelligent agent. It can help the
agent act in complex environments by selecting which details are important
and which to ignore. In my thesis, I describe a novel abstraction algorithm
called Online Partition Iteration, which is based on the theory of Markov De-
cision Process homomorphisms. The algorithm can find abstractions from a
stream of collected experience in high-dimensional environments. I also intro-
duce a technique for transferring the found abstractions between tasks that
outperforms a deep Q-network baseline in the majority of my experiments.
Finally, I prove the correctness of my abstraction algorithm.

Keywords machine learning, reinforcement learning, abstraction, robotic
manipulation, markov decision process homomorphisms, deep learning
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CHAPTER 1

Introduction

Abstraction is integral to our everyday reasoning about the world. When I
plan my trip to an academic conference in Montreal, Canada, I first search for
the flight I will take, ignoring the concrete steps such as packing my luggage
and getting to the airport. It is only when the day of the travel comes that I
need to concern myself with the taxi company I will use and the time when I
should leave. At the bottom level of this imaginary hierarchy lie the precise
movements I need to perform to get in and out of a taxi or the coordination
of my fingers to open my passport at the right page for the flight attendant
to check.

People seamlessly traverse this hierarchy of abstractions, from the con-
scious act of buying a plane ticket to a subconscious motion plan. In contrast,
many robotic systems only plan their behavior in terms of elementary ac-
tions, such as moving their arm by two centimeters to the right or rotating
their wrist by ten degrees [4]. Hence, it is exceedingly difficult for robots
to perform complex manipulation tasks (e.g. packing a box in an Amazon
warehouse, assembling Ikea furniture), without the explicit programming of
abstract concepts by their designers.

In the rest of this chapter, I delve deeper into the types of abstraction
considered in this work and outline the structure of my thesis.

1.1 Abstraction and control

We can divide abstractions into two kinds: temporal and spatial. Temporal
abstraction encapsulate some sequence of movements into a single abstract
concept. For instance, we could introduce the concept "pick up a cup” to
a robot, which would encapsulate a series of torque commands required to
reach this goal. Temporal abstractions are important if we wish to plan on
a higher level than individual torque commands. Spatial abstractions, on the
other hand, group different states of the world around us into a single abstract
concept. We could introduce the concept ”cup is on the table” to our robot,
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stack of 2
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Figure 1.1: (a) an example of a simple two puck stacking task in a 4x4 grid
world environment (bottom) and its abstract representation (top). (b) UR5,
a robotic arm that may attempt to solve this task [1].

so that it can decide if the abstract action ”pick up a cup” can be executed.
This concepts holds true regardless of the position of the cup on the table.
Hence, it is a spatial abstraction.

Figure 1.1 (a) shows an example of a task that includes both temporal
and spatial abstractions. The environment the robot is interacting with is
a 4 x 4 grid world with two pucks placed in random cells. The pictures
you see in the bottom part of the figure are taken from the top of the work
space by a simulated depth camera. To make the task simpler, temporal
abstractions "pick at (x, y)” and "place at (x, y)” are introduced. For instance,
the abstraction "pick at (1, 1)” will instruct the robot to attempt to pick up
a puck in the cell (1, 1). Analogously, the abstraction ”place at (1, 1)”, which
can be executed only when the robot is holding something in its hand, executes
a series of actions to this end.

The goal of my work is to automatically find the spatial abstractions de-
picted in the top part of Figure 1.1 (a). These abstractions should group dif-
ferent states of the environment into meaningful concepts, such as "no stack,
puck in hand” for all states, in which the robot is holding a puck in its hand
and the second puck is in an arbitrary position and of an arbitrary size. Usu-
ally, abstractions are introduced to make reaching some goal easier: in this
case, the goal is to stack two pucks on top of one another. To complete this
example, Figure 1.1 (b) shows an instance of this task in the real world.

Furthermore, I aim to find these abstraction ”online”, meaning that they
are discovered based on a stream of experience collected by an agent inter-
acting with an environment, such as the robotic arm in Figure 2.1 (b). In
contrast, many previous abstraction algorithms require the full model of the
environment [5, 6], which tends to be difficult to specify. Finally, the found
abstractions should not only be useful for solving the present task, but also
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transferrable to other problems, so that the robot can reuse skills it learned
in the past.

1.2 Structure of the thesis

My thesis consists of five chapters. I review various theoretical frameworks
and state-of-the-art algorithms for finding abstractions in Chapter 2 and men-
tion several transfer learning techniques relevant to my work. I also review
Deep Learning methods used by our algorithm. I present our algorithm, On-
line Partition Iteration, in Chapter 3 and prove its correctness in Chapter 5.
Chapter 4 presents an empirical evaluation of our method.

The description of Online Partition Iteration, the proof of correctness and
our empirical evaluation were published as a full conference paper [7], which
I co-authored with professor Robert Platt.






CHAPTER 2

Abstraction in Reinforcement
Learning

I study abstraction in the context of Reinforcement Learning (RL) because it
has proven to be an useful framework for many robotic manipulation problems.
For example, the RL framework has been successfully used to find grasps in
unconstrained environments [8, 9, 10, 11], learn to manipulate tools [12] and
to solve miscellaneous manipulation tasks [13, 14]. One desirable aspect of
RL is that it considers an agent that is embodied in an environment and can
change the states of the environment with its actions. RL can model both
tasks with a set of goal states (as in traditional shortest-path problems [15])
as well as a continuous spectrum of rewards for different states. RL is also
readily extensible to cover partially-observable environments [16] and can be
augmented with actions that span more than one time step [17].

This chapter reviews the basics of Reinforcement Learning and introduces
two methods of abstraction: bisimulation and MDP homomorphisms. I also
cover transfer in the context of RL and review neural network based ap-
proaches to RL that appear in my work.

2.1 Reinforcement Learning

The Reinforcement Learning framework models an agent’s interactions with
an environment as a Markov Decision Process (MDP) [18]. An MDP is a tuple
(S, A, ®, P, R), where S is the set of states, A is the set of actions, ® C Sx A is
the state-action space (the set of available actions for each state), the transi-
tion function P : SxAx.S — [0, 1] assigns the probability of transitioning into
each state given the current state and a selected action, and R : SxA — R is
the reward function.

As an example, we can formalize the task of picking up an object with a
robotic arm as an MDP. The state could be represented as the positions and
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velocities of all the joints of the arm, perhaps together with an image taken
by a camera located next to the arm; we can choose to directly output joint
torques as actions. The transition function P, which is usually unknown, then
relates the joint torques with the changes in the position of the arm. Finally,
the function R rewards successful grasps.

An agent selects actions based on a policy m : SxA — [0, 1], a probability
distribution over all admissible actions given a state. The policy is usually
learned, either explicitly or through the learning of a model of the environment
or values of states. Given a policy 7w, we might want to know the future rewards
we will get when we start in a certain state and act according to 7 thereafter.
This is called the state value

Un(s) = E [Z V¥ Riyran] S = 51’
k=0

where 7 is the discount factor that encourages the agent to pursue immediate
rewards. It is also convenient to define the state-action value

qr(s,a) = E lZ’Yth+k+1|5t =84 = a]-
k=0

Notice that since we output the joint torques in our example, the agent
might need to choose actions very frequently, perhaps 20 times per second as in
[10]. Hence, picking up an object according to a policy 7 might take hundreds
of time steps. A convenient temporal abstraction of such a long sequence of
actions is an option [17]. An option (I, 7, 3) is a temporally extended action:
it can be executed from the set of states I and selects primitive actions with
a policy m until it terminates. The probability of terminating in each state is
expressed by 5 : S — [0,1]. It can also be viewed as a closed-loop controller.

2.2 State abstraction

In general, the aim of state abstraction is to ignore the aspects of states
unimportant for solving the task at hand. It should reduce the computational
complexity of the reasoning of the agent, but also help it make better decisions.
If we return back to our grasping example from the previous section, vital
information about the current state include the orientation of the robotic
arm, the shape of the object and so on. On the other hand, features such as
the color of the object to be picked or a clutter in the background should be
ignored.

This process is commonly formalized as a partitioning of the state space.
Let B = {Bj, Bo, ..., By} be a partition, such that Y, B; = S and B,NB; =
(). We call B a state partition and each B; a state block. The question then
becomes which states should belong to the same state block. For instance,

6
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Algorithm 1 Partition Improvement [5]

Input: State partition B.
Output: Refined state partition B’.

procedure PARTITIONIMPROVEMENT
B'+ B
for each block B; € B do
while B contains block B; for which B’ # SPLIT(Bj, B;, B') do
B' = SPLIT(Bj,B;,B')
end while
end for
end procedure

if our task is to pick up a cup from a table, all states, where the cup is in
a particular location, should be in the same state block regardless of other
objects on the table.

One way of achieving this goal is finding state partitions that satisfy
stochastic bisimulation homogeneity, or bisimulation in short [19].

Definition 1. A state partition B = {Bj, Ba, ..., By} has the bisimulation
property with respect to an MDP M if and only if for each B;, B; € B, for
each action a € A and for each pair of states p,q € B;, ZTGB], P(p,a,r) =

Zrij P(Qa a, T) and R(p7 CL) = R(Q? (Z)-

Figure 2.1 shows an example of a bisimilar state partition for the task of
stacking two pucks in a grid world environment. The state is represented as
a depth image plus a binary variable indicating if the hand is full or empty.
There are four actions, each corresponding to "pick” or "place” (depending
on the state of the robot’s hand) in one of the four grid cells. In this domain,
the actions of picking and placing the pucks do not depend on the sizes of
the pucks. Therefore, each bisimulation block, represented as a single image
in the figure, contains many images of pucks of different sizes in the same
configuration.

The question then becomes how do we find such partitions. If we are given
a fully-specified MDP with discrete states and actions, we can apply the Parti-
tion Iteration algorithm [19, 5]. The algorithm applies Partition Improvement
(Algorithm 1) until it arrives to the coarsest bisimilar partition. Partition
Improvement iteratively splits state blocks (using the SPLIT operation) until
they all satisfy the bisimulation property with respect to each other. See [5]
for more details.

It is often the case that we do not have access to the underlying dynamics
of the MDP. One possible approach is to learn the model. In the puck stack-
ing task, we could estimate the reward and transition functions from many

7
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Bisimulation

J

o,

MDP homomorphisms

no stack,
hand empty

no stack,
puck in hand

stack of two,
hand empty

Figure 2.1: Comparison between state abstractions induced by bisimulation
and MDP homomorphisms. The fourteen images in the left panel are examples
of states from the fourteen distinct abstract states induced by bisimulation.
Abstraction based on MDP homomorphisms results in only three abstract

states (right panel).
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recorded attempts to stack the two pucks. However, the learned models of-
ten contain inaccuracies, whereas bisimulation requires transition probabilities
and expected rewards to be exactly equal. This problem has been addressed
through approximate bisimulation, which allows the dynamics of a pair of
states in the same state block to differ up to some constant € [20]. The draw-
back is that the approximate SPLIT operation has more than one solution
and finding the sequence of splits that lead to the coarsest bisimilar parti-
tion is a NP-complete problem. Hence, heuristics are needed. Approximate
bisimulation can also be turned into a distance metric between pairs of states
[21].

Bisimulation is not the sole approach to state abstraction. Li et al. relate
bisimulation to four other approaches to abstraction based on equivalence of
state values and policies [22]. It is shown that these methods are more lax
than bisimulation. Notably, Jong et al. developed a method for abstracting
away irrelevant aspects of states that do not affect optimal policies, without
needed the full model of the environment [23]. But, their approach is limited
to discrete MDPs.

2.3 MDP homomorphisms

Returning back to the example in Figure 2.1, it is evident that the number of
bisimulation blocks will grow with the size of the action space. If we make the
action grid finer, say 112x112 instead of 2x2 depicted in the figure, the num-
ber of blocks in the coarsest partition explodes to millions. Such abstraction
would be difficult to learn and is not particularly useful for our agent. The
key piece missing from bisimulation-based abstraction is the reduction of the
action space.

The following definitions build up to the concept of MDP homomorphisms:
an abstraction framework that enables us to reduce both the state and the
action space [6]. I cover this concept in much more detail than bisimulation
because MDP homomorphisms underpin my algorithm described and evalu-
ated in the next three chapters. The review of MDP homomorphisms is also
the first part of my assignment.

First, I define a partition of the state-action space ®. Intuitively, the state-
action space provides us with the set of admissible actions for each state. For
example, if our agent is holding an object in its hand, picking up a second
object with the same hand is not an admissible action. Therefore, ® C Sx A.

Definition 2. A partition of an MDP M = (S, A, ®, P, R) is a partition of ®.
Given a partition B of M, the block transition probability of M is the function
T:® x B|S — [0,1] defined by T'(s, a, [s'| is) = Xgrelsr) s P(8:a,8").

B|S

Similarly to Partition Iteration, my algorithm also iteratively splits blocks,
leading to a refinement of the partition.
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Definition 3. A partition B’ is a refinement of a partition B, B’ < B, if and
only if each block of B’ is a subset of some block of B.

Partitioning of the state-action space presents more challenges than a state
space partition. To recover an abstraction of the state space from the state-
action partition, we need to project it onto the state space.

Definition 4. Let B be a partition of Z C X XY, where X and Y are arbitrary
sets. For any =z € X, let B(x) denote the set of distinct blocks of B containing
pairs of which z is a component, that is, B(z) = {[(w,y)|s | (w,y) € Z,w =
x}. The projection of B onto X is the partition B|X of X such that for any
z,2' € X, [v]g)x = [2'] px if and only if B(x) = B(2').

An example of projection is given in Figure 3.1. Here, we have four state-
action pairs (s,a1), ..., (s,a4). The first three belong to the state-action block
b1 and the last one is a member of bs. Assuming that there are only four
actions, the state s is then projected onto the state block {by,b3}. All states
that constitute only state-action pairs in by and b3 will be projected onto this
state block.

Next, I define two desirable properties a state-action partition should have.
These properties are analogous to the bisimulation property of a state partition
(Definition 1).

Definition 5. A partition B of an MDP M = (S, A, ®, P, R) is said to be
reward respecting if (s1,a1) =p (S2,a2) implies R(s1,a1) = R(s2,a2) for all
(sl,al), (SQ,CLQ) € o.

Definition 6. A partition B of an MDP M = (S, A, ®, P, R) has the stochastic
substitution property (SSP) if for all (s1,a1), (s2,a2) € D, (s1,a1) =p (s2,a2)
implies T'(s1, a1, [s]p|s) = T'(s2, a2, [s]p|s) for all [s]p|s € B|S.

Having a partition with these properties, we can construct the quotient
MDP (I also call it the abstract MDP). The quotient MDP encapsulates the
abstraction we found by partitioning the state-action space.

Definition 7. Given a reward respecting SSP partition B of an MDP M =
(S, A, ®, P, R), the quotient MDP M /B is the MDP (S’ A’ ®' P’  R'), where
S"=B|S; A= U /Afs} where A’S}B‘S = {a/l,aé,...,a;?(s)} for each

[slB|s€S
s]B|s € S’; P is given by P'([s]f,a;, [s']f) = Tu([(s, as)]B, [s’]B|S) and R’ is
given by R'([s|p|s,a;) = R(s,a;). n(s) is the number of distinct classes of B
that contain a state-action pair with s as the state component.

B|S

The top part of Figure 1.1 (a) depicts a quotient MDP for the task of
stacking two pucks. It is obvious that each state of the quotient MDP corre-
sponds to many states in the underlying MDP. But notice that each action of
the quotient MDP also aggregates multiple elementary actions. For instance,

10
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the abstraction action "pick puck” corresponds to any of the two actions that
pick in the occupied grid cells. To decide which actions to choose in the un-
derlying MDP given the abstract MDP, we need a mapping from states to
abstract states and from actions in a particular state to abstract actions. One
set of such mappings are MDP homomorphisms.

Definition 8. An MDP homomorphism from M = (S, A, ®, P,R) to M’ =
(S, A", ®' P' R') is a tuple of surjections (f,{gs : s € S}) with h(s,a) =
(f(s),9s(a)), where f : S — S  and gs : A — A’ such that R(s,a) =
R'(f(s),9s(a)) and P(s,a, f~1(f(s")) = P'(f(s),gs(a), f(s')). We call M’
a homomorphic image of M under h.

Through the constraints on the transition and reward function, MDP ho-
momorphisms ensure that the abstract MDP captures all important dynamics
of the underlying environment. As states by the next theorem, we can recover
homomorphisms from a reward respecting SSP partition.

Theorem 1 ([6]). Let B be a reward respecting SSP partition of MDP M =
(S, A, ®, P,R). The quotient MDP M/B is a homomorphic image of M.

Computing the optimal state-action value function in the quotient MDP
usually requires fewer computations, but does it help us act in the underlying
MDP? The last theorem states that the optimal state-action value function
lifted from the minimized MDP is still optimal in the original MDP:

Theorem 2 (Optimal value equivalence, [6]). Let M' = (S’, A’ ®' P/, R') be
the homomorphic image of the MDP M = (S, A, ®, P, R) under the MDP ho-
momorphisin (s, @) = (f(5), gs(a)). Forany (5,a) € ®, Q*(s,0) = Q*(f(5), gs(a))-

2.4 Finding homomorphisms

The concept of MDP homomorphisms together with a sketch of an algorithm
for finding them were first proposed in Balaraman Ravindran’s Ph.D. thesis [6].
Ravindran’s algorithm directly follows Partition Iteration, an algorithm for
finding bisimulations. The only major difference is that the SPLIT operation
splits a state-action block (instead of a state block) with respect to a state
block. As with bisimulation, this algorithm assumes the MDP is discrete and
fully specified; the environments for my robotic manipulation tasks are neither
discrete nor is it possible to easily specify the transition probabilities.

The literature on finding homomorphisms in real-world MDPs is sparse.
One option is to learn the model of the environment and then search for ap-
proximate homomorphisms [24], which are analogous to approximate bisimu-
lation. That is, since the learned reward and transition function will always
introduce approximation error, approximate homomorphisms allow the dy-
namics of two states in the same state block to vary up to some e. A method
for finding approximate homomorphisms is described in [25].

11
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However, model learning can be difficult, especially when the states are
represented as images taken by a camera. To my knowledge, the only model-
free algorithm for finding homomorphisms was developed by Wolfe et al. [3].
They embed their algorithm inside of a decision tree—inspired by the UTree
algorithm [26]-that first splits states into state blocks and then partitions
actions for a given state block. The main difference between our approaches is
that their method operates over Controlled Decision Processes, which augment
the reward function of the standard MDP with additional supervision. This
supervision makes the task of finding homomorphisms easier. Their method
also cannot handle continuous state spaces—an important requirement for my
algorithm.

2.5 Transfer Learning

Transfer learning is a broad subfield of Machine Learning concerned with
accelerating the learning of new tasks through previously attained knowledge.
This ability is a part of human reasoning [27] and could be considered a
vital component of an intelligent agent [28]. Since my work is concerned with
transferring abstractions between Reinforcement Learning tasks, I will narrow
the focus of this section only to the relevant Reinforcement Learning literature.
See the following surveys for a full review of Transfer Learning [29, 30].

Methods for transfer between Reinforcement Learning domains vary along
many axes. Do we transfer the learned Q-values, policy, model or something
else? Do the MDPs between which we transfer knowledge vary in terms of the
reward function, transition function or both? Do we have access to some map-
ping between tasks? Taylor et al. categorized around 40 different approaches
according to these considerations and more [31].

Both the notions of bisimulation and MDP homomorphisms can be used
for transfer learning. The underlying idea is that if we learn some useful policy
74 in an MDP M 4 and we have a mapping between M4 and a new MDP Mg,
then we can act according to m4 in Mp. As a simple example, imagine that
the environment M4 contains a robotic arm and a blue cup and we train a
policy w4 to pick up the blue cup. The next day, we are given a red cup—MDP
Mp—and are tasked with picking it up with the robotic arm. Then, if we
introduce some kind of a mapping stating that a red cup is identical to a blue
cup, we can use the previously trained 7 4. The two major questions are how
do we find these mappings and what policies are worth transferring.

Castro et al. used a metric derived from lax-bisimulation [21] to transfer
skills from a small discrete MDP to a large one [32]. The metric calculates the
distance between two state-action pairs from different MDPs, which allows
for the transfer of policies. Transfer learning with MDP homomorphisms was
explored by Soni et al. and Sorg et al. [33, 34]. Both of these approaches
only involve the learning of a mapping between the states of the two MDPs,
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2.6. Deep Reinforcement Learning and Fully Convolutional Neural
Networks

assuming that the mapping of actions is given. Since the main goal of my
work is to abstract the action space and use the abstraction to transfer knowl-
edge, I cannot assume that the mapping of actions between different MDPs
is given. Finally, [35] proposed a high-level description of a system that uses
homomorphisms to create a collection of skills to apply to different problems.

2.6 Deep Reinforcement Learning and Fully
Convolutional Neural Networks

) *

() (d)

Figure 2.2: (a) and (b) are an example of semantic segmentation with fully
convolutional neural networks from [2]. Analogously, (c) is an input depth
map and (d) is a map of output Q-values from a fully convolutional deep
Q-network. The deep Q-network is trained to stack two pucks in a pseudo-
continuous environment.

I end this chapter with a review of Deep Reinforcement Learning: a re-
cent trend of merging Reinforcement Learning algorithms with deep neural
networks. Deep RL is important for my research because it is currently the
only technique that can directly map high-dimensional inputs, such as camera
images, to actions to be performed by the RL agent. An alternative (and time-
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2. ABSTRACTION IN REINFORCEMENT LEARNING

consuming) approach would be to first handcraft filters that extract relevant
information from the camera images and then fit a standard Machine Learning
algorithm (e.g. support vector machines [36]) to the curated representation.

Mnih et al. introduced the deep Q-network in their seminal Deep RL
paper [37]. Their method learns to predict the Q-values of each state-action
pair using the TD(0) update [38]

Q(S, Ar) + Q(Si, Ay) + a[Ryq1 + ymax Q(Sir1,a) — Q(Si, Ay)].

Unlike standard RL algorithms, deep Q-network represents the Q-function as
a neural network trained through mini-batch gradient descent: an approach
that has next to none theoretical guarantees, is unstable and prone to over-
fitting on the portion of the state-action space, where the agent is currently
located. Through clever tricks, Mnih et al. attained human-level performance
across a test suite of 49 ATARI games, a previously insurmountable challenge
for RL algorithms. The stability problem was addressed with a target neural
network, a second neural network that predicts the Q(Si+1,a) term in the
TD(0) update, preventing the system from entering feedback loops that lead
to exploding gradients. The target network is synchronized with the main net-
work every T steps. Second, deep Q-network contains a long replay buffer so
that it can sample diverse experience at each training step—an approach that
overcomes the overfitting problem. Many improvements to the base architec-
ture have been proposed since 2015, including a more sophistical replay buffer
[39], better ways of predicting the current and target Q-values [40, 41, 42] and
a "rainbow” deep Q-network that integrates the three years of research into a
single RL agent [43].

Actor-Critic methods represent the second popular branch of Deep RL.
Instead of recovering the policy by taking the action with the maximum pre-
dicted Q-value, the Actor in the Actor-Critic framework learns to output ac-
tions directly. The Critic, which predicts state or state-actions values, usually
only assists the Actor during the training phase by providing more accurate
gradient estimates. An obvious advantage of having an Actor is that we can
predict continuous actions without much difficulties, whereas the deep Q-
network is suited for discrete action spaces. Silver et al. and Lillicrap et al.
developed Actor-Critic agents represented by neural network that can learn
a range of continuous control tasks; e.g. learning to walk in a 2D environ-
ment and controlling a car in a driving simulator. A second advantage of this
framework is that more theoretical guarantees can be derived for the Actor
neural networks. Notably, the trust-region methods [44] ensure that a sin-
gle gradient update does not ruin the Actor network, which greatly increases
the stability of the algorithm. Proximal Policy Optimization, a trust region
method, has been shown to be significantly more stable and sample efficient
than previous Actor-Critic agents. See [45] for a comprehensive review of the
Deep RL literature.
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Networks

Although my robotic manipulation problems could be parameterized by
continuous actions, a more usual approach is to overlay a fine grid over the
workspace and introduce the "pick” and ”place” actions for each cell in the
grid. Figure 2.2 (c¢) and (d) show an example of such parameterization. The
image in (c) is a 112x112 depth image and (d) represents the Q-values for
the 12544 actions in the 112x112 action grid. You can see that the (trained)
agent prefers to execute the "pick” action in the location of the two pucks
(yellow represents a higher Q-value than green). However, learning the Q-
values of so many actions is non-trivial. I commonly work with datasets that
contain 10 000 transitions (tuples of state, action, reward and the next state);
hence, some actions are not executed even once. We need an approach that
generalizes over locations in the workspace. A standard deep Q-network is not
capable of such generalization, as it predictions the Q-values of each action
using a fully-connected layer—no information about the structure of the action
space is encoded in the design.

Two recent papers solved this challenge in different ways: a fully convolu-
tional network was used in [13] to learn "push” and ”pick” actions over a fine
grid of actions, whereas [1] introduced a new type of spatial abstraction with a
local representation for each action. I focus on the former because it is easier
to integrate into my system, which uses neural networks for both classification
of state-action blocks and prediction of Q-values. Fully convolutional networks
are the go-to method for semantic segmentation (see an example in Figure 2.2
(a) and (b)) [46, 2]. Their implementation is simple, since they consist only of
a stack of convolutional layers interlaid with non-linear transformations and
possibly batch normalization [47]. The ability to generalize over locations is
the result of not having any parameters specific to a particular position in
the input image—the convolutional operation slides a small filter over the im-
age, treating each position equally. Finally, two useful improvements to fully
convolutional networks are dilated convolutions [48], a method that stretches
convolutional filters to increase the portion of the input they see, followed
by Dilated Residual Networks [49]. The latter combines the benefits of Deep
Residual Learning [50]-the ability to learn convolutional networks with tens
or hundreds of layers—with dilation to achieve state-of-the-art performance on
semantic segmentation tasks.
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CHAPTER 3

Online Partition lteration

I solve the problem of abstracting an MDP with a discrete or continuous
state-space and a discrete action space. The MDP can have an arbitrary
reward function, but I restrict the transition function to be deterministic.
This restriction simplifies my algorithm and makes it more sample-efficient
(because I do not have to estimate the transition probabilities for each state-
action pair).

This chapter starts with an overview of my abstraction process (Section
2), followed by a description of my algorithm for finding MDP homomor-
phisms (Section 3.2). I describe several augmentations to the base algorithm
that increase its robustness in Section 3.3. Finally, Section 3.4 contains the
description of my transfer learning method that leverages the learned MDP
homomorphism to speed up the learning of new tasks. The description of the
algorithm is based on our publication [7].

3.1 Abstraction

Algorithm 2 gives an overview of my abstraction process. Since I find MDP
homomorphisms from experience, I first need to collect transitions that cover
all regions of the state-action space. For simple environments, a random
exploration policy provides such experience. But, a random walk is clearly
not sufficient for more realistic environments because it rarely reaches the
goal of the task. Therefore, I use the vanilla version of a deep Q-network [37]
to collect the initial experience in bigger environments.

Subsequently, I partition the state-action space of the original MDP based
on the collected experience with my Online Partition Iteration algorithm (Al-
gorithm 3). The algorithm is described in detail in Subsection 3.2. The state-
action partition B—the output of Algorithm 3—induces a quotient, or abstract,
MDP according to Definition 7.

The quotient MDP enables both planning optimal actions for the current
task (Section 3.2) and learning new tasks faster (Section 3.4).
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Algorithm 2 Abstraction

1: procedure ABSTRACTION

2 FE < collect initial experience with an arbitrary policy 7

3 g < a classifier for state-action pairs

4: B < OnlinePartitionIteration(E, g)

5 M’ < a quotient MDP constructed from B according to Definition 7
6: end procedure

3.2 Partitioning algorithm

My online partitioning algorithm (Algorithm 3) is based on the Partition Iter-
ation algorithm from [5]. It was originally developed for stochastic bisimula-
tion based partitioning, and I adapted it to MDP homomorphisms (following
Ravindran’s sketch [6]). Algorithm 3.2 starts with a reward respecting parti-
tion obtained by separating transitions that receive distinct rewards (SplitRe-
wards). The reward respecting partition is subsequently refined with the Split
(Algorithm 5) operation until a stopping condition is met. Split(b, ¢, B) splits
a state-action block b from state-action partition B with respect to a state
block ¢ obtained by projecting the partition B onto the state space.

The projection of the state-action partition onto the state space (Algo-
rithm 4) is the most complex component of my method. I train a classifier
g, which can be an arbitrary model, to classify state-action pairs into their
corresponding state-action blocks. The training set consists of all transitions
the agent experienced, with each transition belonging to a particular state-
action block. During State Projection, g evaluates a state under a sampled
set of actions, predicting a state-action block for each action. For discrete ac-
tion spaces, the set should include all available actions. The set of predicted
state-action blocks determines which state block the state belongs to.

Figure 3.1 illustrates the projection process: a single state s is evaluated
under four actions: a1, ag, az and a4. The first three actions are classified
into the state-action block b1, whereas the last action is assigned to block bs.
Therefore, s belongs to the state block identified by the set of the predicted
state-action blocks {b1,b3}.

The output of Online Partition Iteration is a partition B of the state-action
space ®. According to Definition 7, the partition induces a quotient MDP.
Since the quotient MDP is fully defined, I can compute its optimal Q-values
with a dynamic programming method such as Value Iteration [38].

In order to act according to the quotient MDP, I need to connect it to the
original MDP in which I select actions. Given a current state s and a set of
actions admissible in s, A, I predict the state-action block of each pair (s, a;),
a; € Ag using the classifier g. Note that Online Partition Iteration trains g in
the process of refining the partition. This process of predicting state-action
block corresponds to a single step of State Projection: I determine which state
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3.3. Increasing robustness

Algorithm 3 Online Partition Iteration

Input: Experience F, classifier g.
Output: Reward respecting SSP partition B.

1: procedure ONLINEPARTITIONITERATION
2: B+ {E},B' + {}

3: B «+ Split Rewards(B)

4: while B # B’ do

5: B+ B

6: g < TrainClassifier(B,g)

7: B|S < Project(B, g)

8: for block ¢ in B|S do

9: while B contains block b for which B # Split(b,c, B) do
10: B «+ Split(b, c, B)

11: end while

12: end for

13: end while

14: end procedure

block s belongs to. Since each state in the quotient MDP corresponds to a
single state block (by Definition 7), I can map s to some state s’ in the quotient
MDP.

Given the current state s’ in the quotient MDP, I select the action with
the highest Q-value and map it back to the underlying MDP. An action in the
quotient MDP can correspond to more than one action in the underlying MDP.
For instance, an action that places a puck on the ground can be executed in
many locations, while still having the same Q-value in the context of puck
stacking. I break the ties between actions by sampling a single action in
proportion to the confidence predicted by g: g predict a state-action block
with some probability given a state-action pair.

3.3 Increasing robustness

Online Partition Iteration is sensitive to erroneous predictions by the classifier
g. Since the collected transitions tend to be highly unbalanced and the map-
ping of state-action pairs into state-action blocks can be hard to determine,
I include several augmentations that increase the robustness of my method.
Some of them are specific to a neural network classifier.

e class balancing: The sets of state-action pairs belonging to different
state-action blocks can be extremely unbalanced. Namely, the number

of transitions that are assigned a positive reward is usually low. I follow
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3.

ONLINE PARTITION ITERATION

4

&

the best practices from [51] and over-sample all minority classes so that
the number of samples for each class is equal to the size of the majority
class. I found decision trees do not require oversampling; hence, I use
this method only with a neural network.

confidence calibration: The latest improvements to neural networks,
such as batch normalization [47] and skip connections [50] (both used by
my neural network in Subsection 4.3), can cause miscalibration of the
output class probabilities [52]. I calibrate the temperate of the softmax
function applied to the output neurons using a multiclass version of Platt
scaling [53] derived in [52]. The method requires a held-out validation
set, which consists of 20% of all data in my case.

state-action block size threshold and confidence threshold: Dur-
ing State Projection, the classifier g sometimes makes mistakes in classi-
fying a state-action pair to a state-action block. Hence, the State Projec-
tion algorithm can assign a state to a wrong state block. This problems
usually manifests itself with the algorithm ”hallucinating” state blocks
that do not exist in reality (note that there are omin{|BLIAl} _ 1 pogsi-
ble state blocks, given a state-action partition B). To prevent the Split
function from over-segmenting the state-action partition due to these
phantom state blocks, I only split a state-action block if the new blocks
contain a number of samples higher than a threshold T,. Furthermore,

g(S,a1)

g(S’a2)

g(s’aS)

g(s,a,) {b1 ) b3}

Figure 3.1: Projection (Algorithm 4) of a single state s. s is evaluated under
actions a1, az, ag and a4. For each pair (s, a;), the classifier g predicts its state-
action block b;. s belongs to a state block identified by the set of state-action
blocks {b1,b3}.
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Algorithm 4 State Projection

Input: State-action partition B, classifier g.
Output: State partition B|S.

1: procedure PROJECT

2: B|S + {}

3: for block b in B do

4: for transition ¢ in b do

5: A < SampleActions(t.next_state)
6: By + {}

7 for action a in A do

8: p < g.predict(t.next_state, a)
9: Bs, +— B; U {p}

10: end for

11: Add t to B|S using Bs as the key
12: end for

13: end for

14: end procedure

I exclude all predictions with confidence lower than some threshold 7.
Confidence calibration makes it easier to select the optimal value of T.

3.4 Transferring abstract MDPs

Solving a new task from scratch requires the agent to take a random walk
before it stumbles upon a reward. The abstract MDP learned in the previous
task can guide exploration by taking the agent into a starting state close to the
goal of the task. However, how do we know which state block in the abstract
MDP is a good start for solving a new task?

If we do not have any prior information about the structure of the next
task, the agent needs to explore the starting states. To formalize this, I create
| B|S| options, each taking the agent to a particular state in the quotient MDP
from the first task. Each option is a tuple (I, 7, 5) with

e [ being the set of all starting states of the MDP for the new task,

e 7 uses the quotient MDP from the previous task to select actions that
lead to a particular state in the quotient MDP (see Subsection 3.2 for
more details) and

e (3 terminates the option when the target state is reached.
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Algorithm 5 Split

Input State-action block b, state block ¢, partition B.
Output State-action partition B’.

1: procedure SPLIT

2 by < {},b2 < {}

3 for transition ¢ in b do
4 if transition.next_state € ¢ then
5: b+~ b U {t}

6 else

7 by <+ by U {t}

8 end if

9: end for

10: B'+ B

11: if |b1] > 0 && |b2] > 0 then

12: B’ «+ (B'\ {b}) U{by, b2}

13: end if

14: end procedure

The agent learns the @-values of the options with a Monte Carlo update
[38] with a fixed « (the learning rate)-the agent prefers options that make
it reach the goal the fastest upon being executed. If the tasks are similar
enough, the agent will find an option that brings it closer to the goal of the
next task. If not, the agent can choose not to execute any option.

I use a deep Q-network to collect the initial experience in all transfer
learning experiments. While my algorithm suffers from the same scalability
issues as a deep Q-network when learning the initial task, my transfer learn-
ing method makes the learning of new tasks easier by guiding the agent’s
exploration (Table 4.1).
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CHAPTER 4

Empirical Analysis of Online
Partition lteration

Per the third part of my assignment, I evaluate Online Partition Iteration
both in toy domains and in a simulated robotic manipulation task. For the
toy domains, I implemented a grid-world-like puck stacking task (Section 4.1)
and compared my method with Wolfe and Barto in a discrete blocks world
domain from their paper [3] (Section 4.2). Next, I designed a series of simu-
lated robotic manipulation tasks much closer to the real world: a pucks world
domain, which integrates for distinct manipulation tasks, with a very fine grid
of actions similar to a parameterization used by a real robotic arm (Section
4.3).

I aim to answer the following questions with my experiments:

1. Can Online Partition Iteration find homomorphisms in environments
with continuous state spaces and high-dimensional action spaces (char-
acteristic for robotic manipulation tasks)?

2. Do options induced by quotient MDPs speed-up the learning of new
tasks?

3. How does Online Partition Iteration compare to the only previous online
approach to finding homomorphisms [3]?

The results of my comparison with Wolfe et al. and the experiments in
the pucks world domain have been published [7].

4.1 Grid world puck stacking

The first testing environment is a grid world with pucks inside some of the cells
(see the bottom part of Figure 1.1). The agent can execute a ”"pick” action in
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Figure 4.1: A diagram of the architecture of our convolutional network.
"Conv” stands for a convolutional layer. Each convolutional and fully-
connected layer is following with a ReLLU activation function.

any of the cells, which changes the environment only when the corresponding
cell is occupied. In that case, the puck is transferred into the robot’s hand
and it can then execute a "place” action in any of the cells. The state is
represented as a depth image of size (28 * C)2, where C is the number of
cells along one axis, together with the state of the robot’s hand: either full
or empty. The task is episodic and the goal is to stack a target number of
pucks on top of each other. The task terminates after 20 time steps or when
the goal is reached. Upon reaching the goal, the agent is awarded 10 reward,
other state-action pairs get 0 reward.

The convolutional network described in Figure 4.1 was used as the classifier
g. The agent collected experience with a deep Q-network [37] of the same
structure as g, except for the number of output neurons. The number of
state-action blocks was limited to 10: the purpose of the limit was mostly to
speed-up faulty experiments, but an over-segmented partition can still perform
well in some cases. Confidence thresholding (Section 3.3) was not used. The
replay buffers of the partitioning algorithm and the deep Q-network were both
limited to 10000 transitions—it sufficed for the purpose of finding a reward
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4.1. Grid world puck stacking

respecting SSP partition. The learning rate of the convolutional network was
set to 0.001, the batch size to 32 and the weight decay for all layers to 0.0001.
The early stopping constant T was set to 1000 steps. The deep Q-network
settings were as follows: 0.0001 learning rate and update the target network
every 100 steps; for the exploration, I linearly decayed the value of € from 1.0
to 0.1 for 5000 steps. The batch size was set to 32.

I first test my algorithm on a sequence of two tasks, where getting to the
goal of the first task helps the agent reach the goal of the second task. Specif-
ically, the first task is stacking two pucks in a 4x4 grid world environment
and the second task requires the agent to stack three pucks in an arbitrary
location. Both of the tasks run for 1000 episodes. I compare my method,
which first executes the option that brings the agent to the goal of the first
task and then acts using a deep Q-network, with two baselines:

e baseline: A vanilla deep Q-network. I reset its weights and replay buffer
after the end of each task so that it does not retain any information from
the previous task it solved.

e baseline, weight sharing: The same as the above, but I do not reset
its weights. When a new task starts, it goes to the goal state of the
previous tasks and explores from there.

My agent augmented with the goal option reaches a similar cumulative
reward to the baseline with weight sharing (Figure 4.2). T expected this result
because creating an abstract MDP of the whole environment does not bring
any more benefits than simply knowing how to get to the goal state of the
previous task.

To show the benefit of the abstract MDP, I created a sequence of tasks
in which reaching the goal of the first task does not help: the first task is
stacking three pucks and the second task is making two stacks of height two.
Upon the completion of the first task, my agent is augmented with options for
reaching all state blocks of the abstract MDP. The agent learns the Q-value
of the options with a Monte Carlo update [38] with the learning rate « set to
0.1. The baselines are the same as in the previous experiment.

Figure 4.4 shows that my agent learns to select the correct option that
brings it closer to the goal of the second task, reaching a significantly higher
cumulative reward than both of the baselines. An unexpected result is that
the baseline with weight sharing performs better than the other even when
reaching the goal of the first task is not as beneficial. I hypothesize that
the deep Q-network can learn the second policy easier due to all convolutional
layers being pre-trained to spot the pucks from the first task—pre-training con-
volutional network has been shown to help in tasks such as image classification
[54].
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Cumulative reward

Cumulative reward

Figure 4.2: Cumulative rewards for two transfer learning experiment in a 4x4
puck stacking environment. (a) In the first 1000 episodes, the agent learns
the initial task: stacking two pucks. Subsequently, the agent tries to learn a
second, harder, task: stacking three pucks. (b) In the first 1500 episode, the
agent learns the initial task: stacking three pucks. The second task requires
the agent to make two stacks of two pucks. The results were averaged over 20
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4.2. Discrete blocks world

4.2 Discrete blocks world

Next, I compare Online Partition Iteration with the decision tree method
from [3] in their blocks world environment. The environment consists of three
blocks that can be placed in four positions. The blocks can be stacked on top
of one another, and the goal is to place a particular block, called the focus
block, in a goal position and height. With four positions and three blocks, 12
tasks of increasing difficulty can be generated. The agent is penalized with -1
reward for each action that does not lead to the goal; reaching the goal state
results in 100 reward. Unlike the puck stacking tasks, the state of the blocks
world is represented as discrete positions of all the blocks.

Although a neural network can learn to solve this task, a decision tree
trains two orders of magnitude faster and often reaches better performance. 1
used a decision tree from the scikit-learn package [55] with the default settings
as the classifier g. All modifications from Section 3.3 specific to a neural
network were omitted: class balancing and confidence thresholding. I also
disabled the state-action block size threshold because the number of unique
transitions generated by this environment is low and the decision tree does not
make many mistakes. Despite the decision tree reaching high accuracy, I set
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30

= N N
« o o
s L s

Average reward per time step
s

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time Step (x 3000)

Figure 4.3: Comparison with Wolfe et al. [3] in the Blocks World environment.
The horizontal line marks the highest mean reward per time step reached by
Wolfe et al. We averaged our results over 100 runs with different goals.
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4. EMPIRICAL ANALYSIS OF ONLINE PARTITION ITERATION

a limit of 100 state-action blocks to avoid creating thousands of state-action
pairs if the algorithm fails. The abstract MDP was recreated every 3000 time
steps and the task terminated after 15000 time steps.

Figure 4.3 compares the decision tree version of my algorithm with the
results reported in [3]. There are several differences between my experiment
and the algorithm in [3]: Wolfe and Barto’s algorithm works with a Con-
trolled Markov Process (CMP), an MDP augmented with an output function
that provides richer supervision than the reward function. Therefore, their
algorithm can start segmenting state-action blocks before it even observes the
goal state. CMPs also allow an easy transfer of the learned partitions from
one task to another; my algorithm solve each task separately. On the other
hand, each action in Wolfe’s version of the task has a 0.2 chance of failure, but
I omit this detail to satisfy the assumptions of my algorithm. Even though
each version of the task is easier in some ways are harder in others, I believe
the comparison with the only previous algorithm that solves the same problem
is valuable.

4.3 Continuous pucks world

Finally, I designed the pucks world domain (Figure 4.4) to approximate real-
world robotic manipulation tasks. The state is represented by a 112x112
depth image and each pixel in the image is an admissible action. Hence,
12544 actions can be executed in each state. Environments with such a high
branching factor favor homomorphisms, as they can automatically group ac-
tions into a handful of classes (e.g. "pick puck” and ”do nothing”) for each
state. If an action corresponding to a pixel inside of a puck is selected, the
puck is transported into the agent’s hand. In the same way, the agent can
stack pucks on top of each other or place them on the ground. Corner cases
such as placing a puck outside of the environment or making a stack of pucks
that would collapse are not allowed. The agent gets a reward of 0 for visit-
ing each non-goal state and a reward of 10 for reaching the goal states. The
environment terminates when the goal is reached or after 20 time steps. I
implemented four distinct types of tasks: stacking pucks in a single location,
making two stacks of pucks, arranging pucks into a connected component and
building stairs from pucks. The goal states of the tasks are depicted in Figure
4.4. T can instantiate each task type with a different number of pucks, making
the space of possible tasks and their combinations even bigger.

To gather the initial experience for partitioning, I use a shallow fully-
convolutional version of the deep Q-network. My implementation is based
on the OpenAl baselines [56] with the standard techniques: separate target
network with a weight update every 100 time steps and a prioritized replay
buffer [39] that holds the last 10 000 transitions. The network consists of
five convolutional layers with the following settings (number of filters, filter
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4.3. Continuous pucks world

Task Options Baseline Baseline,
share weights
2 puck stack to 3 puck 2558 + 910 5335 £ 1540 10174 £ 5855
stack
3 puck stack to 2 and 2382 + 432 - 3512 + 518
2 puck stack
2 puck stack to stairs 2444 + 487 4061 4+ 1382 4958 4+ 3514
from 3 pucks
3 puck stack to stairs 1952 £+ 606 4061 4 1382 5303 £ 3609
from 3 pucks
2 puck stack to 3 puck 2781 + 605 3394 + 999 6641 + 5582
component
stairs from 3 pucks to 3947 + 873 5335 + 1540 6563 + 4299
3 puck stack
stairs from 3 pucks to 5552 + 3778 - 5008 + 1998
2 and 2 puck stacks
stairs from 3 pucks to 3996 4+ 2693 3394 4+ 999 4856 + 3600
3 puck component
3 puck component to 3 3729 + 742 5335 + 1540 8540 + 4908
puck stack
3 puck component to 3310 £+ 627 4061 + 1382 2918 + 328
stairs from 3 pucks

Table 4.1: Transfer experiments in the pucks world domain. We measure
the number of time steps before the agent reached the goal in at least 80% of
episodes over a window of 50 episodes and report the mean and standard devi-
ation over 10 trials. Unreported scores mean that the agent never reached this
target. The column labeled Options represents our transfer learning method
(Subsection 3.4), Baseline is deep Q-network described in Subsection 4.3 that
does not retain any information from the initial task and Baseline, share
weights copies the trained weights of the network from initial task to the
transfer task. The bolded scores correspond to a statistically significant result
for a Welch’s t-test with P < 0.1.
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(a) (b) () (d)

Figure 4.4: The goal states of the four types of tasks in our continuous pucks
world domain. a) the task of stacking three pucks on top of one another, b)
making two stacks of two pucks, c¢) arranging three pucks into a connected
component, d) building stairs from three pucks.

sizes, strides): (32, 8, 4), (64, 8, 2), (64, 3, 1), (32, 1, 1), (2, 1, 1). The
ReLU activation function is applied to the output of each layer except for the
last one. The last layer predicts two maps of Q-values with the resolution
14x14 (for 112x112 inputs)-the two maps correspond to the two possible
hand states: "hand full” and “hand empty”. The appropriate map is selected
based on the state of the hand, and bilinear upsampling is applied to get a
112x112 map of Q-values, one for each action. I trained the network with a
Momentum optimizer with the learning rate set to 0.0001 and momentum to
0.9, batch size was set to 32. The agent interacted with the environment for
15000 episodes with an e-greedy exploration policy; € was linearly annealed
from 1.0 to 0.1 for 40000 time steps.

Online Partition Iteration requires a second neural network—the classifier
g. My initial experiments showed that the predictions of the architecture
described above lack in resolution. Therefore, I chose a deeper architecture:
the DRN-C-26 version of Dilated Residual Networks [49]. T observed that the
depth of the network is more important than the width (the number of filters
in each layer) for my classification task. Capping the number of filters at 32
(the original architecture goes up to 512 filters in the last layers) produces
results indistinguishable from the original network. DRN-C-26 decreases the
resolution of the feature maps in three places using strided convolutions, I
downsample only twice to keep the resolution high. I train the network for
1500 steps during every iteration of Online Partition Iteration. The learning
rate for the Momentum optimizer started at 0.1 and was divided by 10 at
steps 500 and 1000, momentum was set to 0.9. The batch size was set to 64
and the weight decay to 0.0001.

Figure 4.5 reports the results of a grid search over state-action block size
thresholds and classification confidence thresholds described in Subsection 3.3.
Online Partition Iteration can create a near-optimal partition for the three
pucks stacking task. On the other hand, my algorithm is less effective in the
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Figure 4.5: Grid searches over state-action block size thresholds and prediction
confidence thresholds (described in Subsection 3.3). The y-axis represents the
average per-episode reward (the maximum is 10) obtained by planning in
the quotient MDP induced by the resulting partition. Stack, component and
stairs represent the three puck world tasks shown in Figure 4.4. We report
the means and standard deviations over 20 runs with different random seeds.

IN

w

component arrangement and stairs building tasks. These two tasks are more
challenging in terms of abstraction because the individual state-action blocks
are not as clearly distinguishable as in puck stacking.

Next, I investigate if the options induced by the found partitions transfer
to new tasks (Table 4.1). For puck stacking, a deep Q-network augmented
with options from the previous tasks significantly outperforms both of our
baselines. ”"Baseline” is a vanilla deep Q-network that does not retain any in-
formation from the initial task, whereas "Baseline, share weights” remembers
the learned weights from the first task. Options are superior to the weights
sharing baseline because they can take the agent to any desirable state, not
just the goal. For instance, the 2 and 2 puck stacking task benefits from the
option "make a stack of two pucks”; hence, options enable faster learning than
weight sharing. I would also like to highlight one failure mode of the weight
sharing baseline: the agent can sometimes get stuck repeatedly reaching the
goal of the initial task without going any further. This behavior is exemplified
in the transfer experiment from 2 puck stacking to 3 puck stacking. Here, the
weight sharing agent continually places two pucks on top of one another, then
lifts the top puck and places it back, which leads to slower learning than in
the no-transfer baseline. Options do not suffer from this problem.

As reported in Figure 4.5, the learned partitions for the stairs building
and component arrangement tasks underperform compared to puck stacking.
Regardless, I observed a speed-up compared to the no-transfer baseline in
all experiments except for the transfer from stairs from 3 pucks to 3 puck
component. Options also outperform weight sharing in 3 out of 5 experiments
with the non-optimal partitions, albeit not significantly.
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4.4 Discussion

I return to the questions posited at the beginning of this section. Online
Partition Iteration can find the right partition of the state-action space as long
as the individual state-action blocks are clearly identifiable. For tasks with
more complex classification boundaries, the partitions found are suboptimal,
but still useful. I showed that options speed-up learning and outperform
the baselines in the majority of the transfer experiments. My algorithm also
outperformed the only previous method of the same kind [3] in terms of finding
a consistent partition.

The main drawback of Online Partition Iteration is that is it highly influ-
enced by the accuracy of the classifier g. During state projection, it takes only
one incorrectly classified action (out of 12544 actions used in my pucks world
experiments) for the state block classification to be erroneous. Confidence
thresholding helps in the task of stacking pucks (Figure 4.2b), as it can filter
out most of the errors. However, trained classifiers for the other two tasks,
arranging components and building stairs, often produce incorrect predictions
with a high confidence.

Moreover, the errors during state projection get amplified as the parti-
tioning progresses. Note that the dataset of state-action pairs (inputs) and
state-action blocks (classes) is created based on the previous state partition,
which is predicted by the classifier. In other words, the version of the classifier
g at step t generates the classes that will be used for its training at step t+1. A
classifier trained on noisy labels is bound to make even more errors at the next
iteration. In particular, I observed that the error rate grows exponentially in
the number of steps required to partition the state-action space.

In these cases, the partitioning algorithm often stops because of the limit
on the number of state-action blocks (10 for the pucks domain). That is why
the performance for the component arrangement and stairs building tasks is
not sensitive to the state-action block size threshold (Figure 4.2a). Neverthe-
less, these noisy partitions also help with transfer learning, as shown in Table
4.1.

32



CHAPTER 5

Proof of Correctness of Online
Partition lteration

I prove the correctness of Online Partition Iteration with a 1-nearest-neighbor
classifier that has access to an infinite stream of experience. The proofs follow
the theoretical analysis of bisimulation by Givan et al. [5], as there any many
parallels between algorithms for finding bisimulations and homomorphisms.

The first lemma and corollary ensure that Partition Iteration over the
state-action space ® finds reward respecting SSP partitions.

Lemma 1. Given a reward respecting partition B of an MDP M = (S, A, ®, P, R)
and (s1,a1), (s2,a2) € ® such that T'(s1,a1,[s'|gs) # T(s2,az,[s']pg) for
some s’ € S, (s1,a1) and (s2,a2) are not in the same block of any reward
respecting SSP partition refining B.

Proof. Following the proof of Lemma 8.1 from [5]: proof by contradiction.
Let B’ be a reward respecting SSP partition that is a refinement of
B. Let s € S, (s1,a1),(s2,a2) € b € B such that T(s1,a1,[s']ps) #
T'(s2,a,[s'|g|s). Define B’ such that (s1,a1), (s2,az) are in the same block and
[s'lB|s = Ule[s’i]qu. Because B’ is a reward respecting SSP partition, for
each state block [s"]p|g € B'[S, T(s1,a1,[s"]p|s) = T(s2,a2,[s"]g|s). Then,
T(Slvalv[SI]B\S) = Zlging(Shah[S/i]B'\S) = Zlging(‘S?an?[S/i]B’\S) =
T(s2,az2,[s'|g|s). This contradicts T'(s1, a1, [s']gs) # T(s2, a2, [s']p|s)-
O

Corollary 1. Let B be a reward respecting partition of an MDP M =
(S,A,®,P,R), b a block in B and ¢ a union of blocks from B|S. Every
reward respecting SSP partition over ® that refines B is a refinement of the
partition Split(b,c, B).

Proof. Following the proof of Corollary 8.2 from [5].
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5. PROOF OF CORRECTNESS OF ONLINE PARTITION ITERATION

Let ¢ = UiZ1[si] B, [si]B|s € BIS. Let B’ be a reward respecting SSP par-
tition that refines B. Split(b, ¢, B) will only split state-action pairs (s1, a1), (s2, a2)
if T'(s1,a1,c) # T(sa,a9,c). But if T'(s1,a1,c) # T(s2,az,c), then there must
be some k such that T'(s1,a1,cr) # T(s2,a2,cr) because for any (s,a) € P,
T(s,a,¢) = > 1<men L(s,a,cn). Therefore, we can conclude by Lemma 1 that

[(s1,a1)]Br # [(s2,02)] B
O

The versions of Partition Iteration from [5] and [6] partition a fully-defined
MDP. I designed my algorithm for the more realistic case, where only a stream
of experience is available. This change makes the algorithm different only
during State Projection (Algorithm 4). In the next lemma, I prove that the
output of State Projection converges to a state partition as the number of
experienced transitions goes to infinity.

Lemma 2. Let M = (S, A, ®,P,R) be an MDP with a finite A, a finite
or infinite S, a state-action space ® that is a separable metric space and
a deterministic P defined such that each state-action pair is visited with a
probability greater than zero. Let SampleAction(s) = As,Vs € S (Algorithm
4, line 5). Let t1, to, ... be i.i.d. random variables that represent observed
transitions, g a 1 nearest neighbor classifier that classifies state-action pairs
into state-action blocks and let (s,a), the nearest neighbor to (s,a) from a
set of n transitions X,, = {t1,%2,...,t,}. Let B, be a state-action partition
over X, and S, = Ucx, t-next_state. Let (B,|S,) be a state partition
obtained by the State Projection algorithm with g taking neighbors from X,,.
(Bn|Sn)" — Byn|Sn as n — oo with probability one.

Proof. B,|Sy is obtained by projecting B,, onto S,. In this process, S, is
divided into blocks based on B(s) = {[(s/,a)]p,|(s',a) € ®,s = s}, the set
of distinct blocks containing pairs of which s is a component, s € S,,. Given
SampleAction(s) = As,Vs € Sy, line 8 in Algorithm 4 predicts a b € B for
each (s',a) € ®, such that s = s’. By the Convergence of the Nearest Neighbor
Lemma [57], (s,a), converges to (s,a) with probability one. The rest of the
Algorithm 4 exactly follows the projection procedure (Definition 3), therefore,
(Bn|Sn) — By|S, with probability one.

O

Finally, I prove the correctness of my algorithm given an infinite stream of
i.i.d. experience. While the i.i.d. assumption does not usually hold in Rein-
forcement Learning, the Deep Reinforcement Learning literature often lever-
ages the experience buffer [37] to ensure the training data is diverse enough.
My algorithm also contains a large experience buffer to collect the data needed
to run Online Partition Iteration.

Theorem 3 (Correctness). Let M = (S, A, ®, P, R) be an MDP with a finite
A, a finite or infinite S, a state-action space ® that is a separable metric
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space and a deterministic P defined such that each state-action pair is visited
with a probability greater than zero. Let SampleAction(s) = As, Vs € S
(Algorithm 4, line 5). Let t1, ta, ... be i.i.d. random variables that represent
observed transitions, g a 1 nearest neighbor classifier that classifies state-action
pairs into state-action blocks. As the number of observed t; goes to infinity,
Algorithm 3 computes a reward respecting SSP partition over the observed
state-action pairs with probability one.

Proof. Loosely following the proof of Theorem 8 from [5].

Let B be a partition over the observed state-action pairs, S the set of
observed states and (B—S)’ the result of StateProjection(B,g) (Algorithm 4).

Algorithm 3 first splits the initial partition such that a block is created for
each set of transitions with a distinct reward (line 2). Therefore, Algorithm 3
refines a reward respecting partition from line 2 onward.

Algorithm 1 terminates with B when B = Split(b, [s]p|s), B) for all b €
B, [sl(psy € (BI|S). Split(b,[s](p|sy,B) will split any block b containing
(s1,a1), (82, az) for which T'(s1, a1, [s](p|s)) # T(s2, a2, [s](B|sy). According to
Lemma 2, (B|S) — B|S as N — oo with probability one. Consequently, any
partition returned by Algorithm 3 must be a reward respecting SSP partition.

Since Algorithm 3 first creates a reward respecting partition, and each
step only refines the partition by applying Split, we can conclude by Corol-
lary 1 that each partition encountered, including the resulting partition, must

contain a reward respecting SSP partition.
O

35






Conclusion

The aim of my work was to create a novel abstraction algorithm that could
find MDP homomorphisms ”online” (i.e. from a stream of experience). I fully
completed this task, both in analyzing the theoretical basis of abstraction and
state-of-the-art abstraction methods, as well as in developing a new algorithm
called Online Partition Iteration that satisfies all stated requirements. I rig-
orously tested this algorithm in three different environments—puck stacking in
a grid world, placing a block in a target position, and various arrangement
tasks in a continuous pucks world—and proved its correctness under certain as-
sumptions. My algorithm also outperformed the only previous online method
for finding MDP homomorphisms [58].

As T discussed in Section 4.4, choosing the right state-action classifier g was
a major challenge because my partitioning algorithm is highly susceptible to
errors made by the classifier. I addressed this problem by choosing the correct
architecture and training settings for g, but also by changing the partitioning
algorithm itself to be more robust. In particular, I implemented a balancing
procedure to make sure g pays equal attention to all classes and thresholded
the confidence of the classifier. Modern neural networks tend to severely
overestimate or underestimate their confidence; hence, I included a simple
confidence calibration algorithm [52] to make sure the confidence predicted by
g are meaningful.

A promising direction of future work is learning the abstract MDP in a sin-
gle training run of a neural network. This approach would prevent the errors
made by the classifier from growing exponentially with each step of Partition
Improvement (see Section 4.4). One approach could be learning a model of
the environment while imposing some kind of a compression constraint on
the latent representation of the model (e.g. [59]). That is, the model would
be incentivized to use as few states and as few actions as possible to encode
the dynamics of the environment. This constraint matches the goal of my
algorithm: find an abstract MDP as compact as possible that encodes all the
important dynamics of the original MDP.
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APPENDIX A

RL Reinforcement Learning

Deep RL Deep Reinforcement Learning
MDP Markov Decision Process

CMP Controlled Markov Process

SSP Stochastic Substitution Property

DRN Deep Residual Network
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APPENDIX B

Contents of enclosed CD

readme.tXbt . ovviniiin i the file with CD contents description
Ethesis PAf the thesis text in PDF format
< ol o the directory of source codes
tthesis .............. the directory of IXTEX source codes of the thesis
abstraction..........oevvuin... the directory of the implementation

| README.md............. instructions regarding the implementation
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