
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 28, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Security aspects of software development in the Microsoft Azure cloud

 Student: David Mládek

 Supervisor: Ing. Tomáš Pajurek

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

Examine security aspects of software development on the Microsoft Azure platform. Identify and review
important services that the developers are exposed to. Focus on the interaction of developers with these
services, point out security-critical areas (such as managing access tokens or other secrets). Next, propose
Azure-specific solutions for the identified challenges.
Services on the infrastructure-as-a-service level (IaaS) that are not usually managed by developers but
rather by IT admins, such as virtual networks or virtual machines, are out-of-scope. Proposed solutions
should be usable for small and medium-size teams.
Essential solutions and approaches that are discussed must be accompanied with example source codes in
C# on .NET Core platform. Relevant parts of the thesis should be also accompanied with example
deployments in Azure (existing, physically deployed resources as well as in an infrastructure-as-a-code
form).

References

- Michael Howard and David E. Leblanc: 2002. Writing Secure Code (2nd ed.). Microsoft Press, Redmond, WA, USA
- Michael Howard and Steve Lipner:2006. The Security Development Lifecycle. Microsoft Press, Redmond, WA, USA
- Ritesh Modi: 2017. Azure for Architects. Packt Publishing
- Steve McConnell: 2004. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA
- Joachim Hafner: 2018. Azure strategy and implementation guide (2nd ed.). Microsoft Corporation, Redmond, WA,
USA
- Security best practices for Azure solutions. Microsoft Corporation, Redmond, WA, USA

Bachelor’s thesis

Security Aspects of Software Development
in the Microsoft Azure Cloud

David Mládek

Department of Computer Systems
Supervisor: Ing. Tomáš Pajurek

May 15, 2019

Acknowledgements

First and foremost, I would like to thank my supervisor, Ing. Tomáš Pajurek,
for all the time he invested in me and this work. I cannot imagine myself
finishing this work on time, were it not for the frequent consultations and
advice.

Furthermore, I would like to thank everyone at Datamole for giving me
opportunities to gain experience in an incredible environment, and for their
positive mindset and continuous support. They often helped me to relax and
to put everything I do in the right perspective.

That is for the most part also the case for all my friends and family,
who put up with my attitude when I started acting up due to stress from
different sources. They supported me immensely, often without even knowing.
Special thanks goes to my brother who proofread this whole thesis without
any technical background. Because of that, the English here is incomparably
better than it would have been.

Last but not least, I would like to extend my appreciation to everyone at
the faculty for the time they spend on educating the next generations. Espe-
cially to those who continue even in their free time and are easy to approach
at any time with any issue.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations sti-
pulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In ac-
cordance with Article 46(6) of the Act, I hereby grant a nonexclusive authori-
zation (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 David Mládek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mládek, David. Security Aspects of Software Development in the Microsoft
Azure Cloud. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2019.

Abstrakt

Tato práce představí aspekty vývoje v cloudu, které jsou zajímavé z hlediska
bezpečnosti. Konkrétně budou ukázány na platformě Microsoft Azure.

Některé služby provozované na Azure budou představeny se zaměřením
na jejich bezpečnostní možnosti. Mimo jiné to budou způsoby dlouhodobého
ukládání dat a autentizační služba Azure Active Directory.

V druhé polovině bude představeno několik problémů, které se mohou
vyskytnout během vývoje cloudových služeb. Mezi ně budou patřit zejména
operace se soukromými daty a ochrana přístupových bodů k internetu. Tyto
problémy budou podrobně prozkoumány a poté budou poskytnuta řešení ne-
závislá na platformě i taková, která využívají některých dalších služeb provo-
zovaných Microsoftem na Azure.

Klíčová slova cloud, Azure, bezpečnost, vývoj, aplikační tajemství, auten-
tikace, Azure Active Directory

vii

Abstract

This work reviews security-related aspects of cloud development. The Mi-
crosoft Azure platform will be used for demonstration of these aspects.

To that end, some services from Azure were investigated for the security
measures they provide. This includes storage and identity services provided
by Microsoft, as well as their respective security features.

In the second half, several problematic areas of cloud development will be
introduced. Those will be mainly handling confidential data and application
secrets, and properly securing Internet-facing endpoints in the cloud. They
will be examined closely and the thesis will provide platform-agnostic solutions
as well as solutions utilizing some services provided by Azure.

Keywords cloud, Azure, security, development, application secrets, authen-
tication, Azure Active Directory

viii

Contents

Introduction . 1

1 Microsoft Azure Overview . 3
1.1 Introduction to Cloud . 3

1.1.1 Cloud Service Types . 3
1.2 Azure Overview . 4

1.2.1 Interaction with Azure Resources 4
1.2.2 Separation of Responsibilities 8

1.3 Microsoft Azure Resources Related to Security 9
1.3.1 Azure Active Directory 10
1.3.2 Key Vault . 16
1.3.3 Azure Storage . 17
1.3.4 Azure Data Lake Storage 20
1.3.5 Azure App Service . 21
1.3.6 Managed Identity . 22

2 Cloud Development . 25
2.1 Software Development Life Cycle 25
2.2 Cloud Software Development Life Cycle 26
2.3 Security Development Lifecycle 28
2.4 DevOps in the Cloud . 29

3 Security Critical Areas . 31
3.1 Securing Data . 31
3.2 Securing Application Programming Interface (API) 32
3.3 Identity Provider . 32
3.4 Management of Secrets . 32

4 Proposed solutions . 33
4.1 Data Classification . 33

ix

4.1.1 Disposing of Data in Memory 34
4.2 Key Rotation . 35

4.2.1 Key rotation process . 36
4.2.2 Key Vault Managed Storage Access Keys 40

4.3 Secret Handling Methods . 40
4.3.1 Secrets Storage Mechanism 41
4.3.2 Secrets Resolution Time 44
4.3.3 Discussion . 46

4.4 Data Protection API . 47
4.5 Authentication and Authorization of End Users on Azure . . . 48
4.6 API Security . 49

Conclusion . 53

Bibliography . 57

A Obtaining JavaScript Object Notation (JSON) Web Token
(JWT) . 65

B Code Examples . 71
Managed Identities . 71
Secret Resolving . 72
ASP.NET Core Data Protection API 73
OAuth 2.0 Device Grant . 75
Managing Storage Access Keys with Azure Key Vault 76

C Acronyms . 79

D Contents of Enclosed SD Card 83

x

List of Figures

1.1 Example of Azure portal UI [5] . 5
1.2 Example of PowerShell usage with Azure 6
1.3 Example of usage Azure Command Line Interface (CLI) in Bourne

Again Shell (Bash) . 7
1.4 Shared responsibilities for different cloud service models [10] 9
1.5 Binary Large object (Blob) storage hierarchy. [33] 18

4.1 Key rotation activity diagram . 38

xi

Introduction

Writing secure code is often a complicated task and in many projects security
is overlooked or worked on as an afterthought. Functional requirements are
often valued more than the non-functional ones, such as security. This is true
for on-premises systems as well as cloud applications.

The development process and responsibilities have also shifted significantly
in recent years. Security teams are not the only accountable party anymore
because some of the workload has shifted more towards individual developers.
With the rise of DevOps, security competence and responsibilities have also
moved more towards the developer teams and although they do not need to
be experts by any means, they do need to have a general idea about the
implications for security when they use any pattern, service or library.

First, the Microsoft Azure platform, as well as generic cloud environment,
will be introduced to the reader. Some principles that differ from on-premise
systems will be shown. An important concept introduced there will be the
separation of responsibilities in cloud. This concept shows which party holds
what responsibilities in terms of security, based on the cloud model used (see
Section 1.1.1).

Selected services offered by Microsoft on Azure will be overviewed in terms
of usage and also in terms of security features they provide. Some of the se-
curity features are not enabled by default, and the impacts of using them will
be described. The features and services also may have some limitations that
are not apparent from the official documentation. These restrictions will be
explained where necessary. The list of the Azure services will not be com-
prehensive and only services notable for their security aspects will be shown
alongside some that are widely used and that would be useful in examples. All
of those should be well known to all developers creating production systems
on Azure.

Next, software development in the cloud environment will be examined and
standard practices described. This will include not only the development life
cycle, but also some security processes to be taken into consideration during

1

Introduction

software creation. The DevOps approach will also be briefly described as it is
prevalent in today’s cloud-based software creation.

Finally, security-critical areas that developers are frequently and regularly
exposed to will be examined, and their solutions will be provided. The prob-
lems will be briefly introduced in Chapter 3, and the respective solutions will
be shown in Chapter 4. Sections inside these two chapters may not corre-
spond to each other exactly because the problems may be defined in a more
general manner or some parts of them may be solved separately. These prob-
lems will include secure handling of sensitive data and secrets, security of
Internet-facing endpoints, and authentication.

The goal of this thesis is to point out security-related aspects of develop-
ment on the Microsoft Azure cloud. It will not go over every security aspect
of the software, but it will focus more or areas that may be different from
on-premise systems. Some topics (such as Structured Query Language (SQL)
injections) are omitted on purpose because they are already examined in depth
by other works.

2

Chapter 1
Microsoft Azure Overview

This chapter will briefly explain what cloud computing is and then introduce
Microsoft Azure. Separation of security concerns between the cloud provider
and client based on cloud service type will also be shown. Different options to
control and create Azure resources and services will be introduced, and then
several security-related resources will be overviewed. Only resources that are
important for security or that are often used by developers will be mentioned.

1.1 Introduction to Cloud

Cloud computing has been defined as “a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.” [1] A much simpler description is
that the cloud is a set of interconnected computing resources located in one
or more data centers [2].

It can be said that cloud computing is a way of obtaining virtual resources,
usually without giving the users any access or deeper knowledge of their phys-
ical location or form. They can control the resources to some extent through
configuration, but cannot change the underlying resources on their own, e. g.,
cannot reinstall an operating system on a physical machine.

One of the main differences from on-premises systems is also that the
customers will have to share the resources with each other and an application
may be moved between different physical machines, which must be addressed
during development as resilience to unforeseen shutdowns, restarts, IP address
changes, etc.

1.1.1 Cloud Service Types

There are three service models for resources on the cloud. From the lowest level
of abstraction upwards, they are Infrastructure as a Service (IaaS), Platform

3

1. Microsoft Azure Overview

as a Service (PaaS) and Software as a Service (SaaS) [1]. The distinction is
slowly being eroded with the maturing of cloud [3].

Infrastructure as a Service (IaaS) provides the customer with fundamen-
tal computing resources on which they can run arbitrary software including
applications and operating systems. This type of service is usually provided
for low-level components such as storage, virtual networks and data process-
ing. Virtual machines are probably one of the most prominent offerings on
this level. The user cannot usually change the configuration of the underlying
hardware itself.

Platform as a Service (PaaS) gives the customer access to some kind of the
runtime environment, in which applications written in a plethora of different
programming languages and frameworks can be run. The user is not able to
make changes to the underlying infrastructure but has total control over the
application and usually to some extent over the hosting environment through
configuration settings.

Software as a Service (SaaS) gives the customer access to the application
only and nothing more. It is the product of cloud software development sold
to end users. The users cannot change or communicate with the underlying
infrastructure in any way [1].

1.2 Azure Overview

The Microsoft Azure1 cloud service is a technology platform providing on-
demand cloud-based computing. It offers a vast array of services from com-
puting devices, such as virtual machines, through storage and virtual networks
to web application runtime environments and serverless computing platforms.

Microsoft Azure provides all three levels of services (IaaS, PaaS and SaaS),
and supports both Linux and Windows operating systems on virtual machines
with popular third-party software, a number of open-source and proprietary
SQL and NoSQL databases, several runtimes, container-oriented services,
tools for continuous integration, and much more [4].

Microsoft Azure has data centers all over the world in over 40 locations
with more announced.2

1.2.1 Interaction with Azure Resources

There are four main ways to interact with Azure: Azure portal, PowerShell,
Azure CLI and Azure Representational State Transfer (REST) API. The por-
tal and the REST API are the richest in features and both PowerShell and
Azure CLI use the REST API internally to communicate with Azure [4].

1Formerly known as Windows Azure.
2Complete list of locations of Microsoft Azure data centers can be found at https:

//azure.microsoft.com/en-us/global-infrastructure/locations/

4

https://azure.microsoft.com/en-us/global-infrastructure/locations/
https://azure.microsoft.com/en-us/global-infrastructure/locations/

1.2. Azure Overview

Azure Portal

The Azure portal provides a simple way to perform operations that do not
need to be automated, such as provisioning of a single virtual machine. Most
deployment operations and management processes can be done this way as
well as setting up security policies, management of costs and interaction with
Microsoft support. The portal is not sufficient if the customer needs to auto-
mate deployments or create large quantities of resources at once.3

Figure 1.1: Example of Azure portal UI [5]

3Provisioning of a large batch of resources at once can be achieved by the usage of Azure
Resource Manager Templates even through the portal.

5

1. Microsoft Azure Overview

PowerShell

PowerShell [6] is an interactive shell created by Microsoft. Its integration
with Azure [7] is done via a module offering many cmdlets4 for operations
with Azure Resource Manager (ARM). The Azure module was written as an
open-source project in .NET Standard,5 meaning it can be run in PowerShell
Core which in turn is executable not only on Windows but also on Linux
and macOS. This has not always been the case and the module used to be
available only on Microsoft Windows. It internally uses the Azure REST API
for communication with the cloud.

PowerShell Input
1 > Connect-AzAccount # Connect to Azure with a browser sign in token
2 > Get-AzResourceGroup # List all my resource groups in the current

subscription

Output
1 WARNING: To sign in, use a web browser to open the page \url{https://

microsoft.com/devicelogin} and enter the code CHLD3WR3C to
authenticate.

2
3 ResourceGroupName : mladedav-bp-tests
4 Location : westeurope
5 ProvisioningState : Succeeded
6 Tags :
7 ResourceId : /subscriptions/c02c846b-e799-4497-995d-184229394101/

resourceGroups/mladedav-bp-tests

Figure 1.2: Example of PowerShell usage with Azure

Azure CLI

Azure CLI has capabilities similar to those of the PowerShell module and also
utilizes REST API. It can be run on Windows, Linux, and macOS, which
makes it a popular choice especially for users with the need for automation
of resource management using a shell other than PowerShell. Azure CLI is
open-source and written in Python.6

4Lightweight PowerShell script that performs a single function. [8]
5Its repository can be found at https://github.com/Azure/azure-powershell
6Its repository can be found on GitHub at https://github.com/Azure/azure-cli.

6

https://github.com/Azure/azure-powershell
https://github.com/Azure/azure-cli

1.2. Azure Overview

Bash Input
1 $ az login
2 $ az group list

Output
1 Note, we have launched a browser for you to login. For old experience

with device code, use "az login --use-device-code"
2 You have logged in. Now let us find all the subscriptions to which you

have access...
3 [
4 {
5 "cloudName": "AzureCloud",
6 "id": "c02c846b-e799-4497-995d-184229394101",
7 "isDefault": true,
8 "name": "Azure for Students - mladedav",
9 "state": "Enabled",

10 "tenantId": "f345c406-5268-43b0-b19f-5862fa6833f8",
11 "user": {
12 "name": "mladedav@cvut.cz",
13 "type": "user"
14 }
15 }
16]
17 [
18 {
19 "id": "/subscriptions/c02c846b-e799-4497-995d-184229394101/

resourceGroups/mladedav-bp-tests",
20 "location": "westeurope",
21 "managedBy": null,
22 "name": "mladedav-bp-tests",
23 "properties": {
24 "provisioningState": "Succeeded"
25 },
26 "tags": null
27 }
28]

Figure 1.3: Example of usage Azure CLI in Bash

7

1. Microsoft Azure Overview

Azure REST API

Azure REST API [9] provides Create, Retrieve, Update, Delete (CRUD) ac-
cess to Azure resources via a well-known Hypertext Transfer Protocol (HTTP)
endpoint.7 The operations are protected by Azure Active Directory and an
Authorization header must be set to a bearer token received from Azure Active
Directory (AAD) for any HTTP request to be accepted.

Several languages and environments, such as .NET Core, Java, Node.js
or Python, have a Software Development Kit (SDK) for Azure that provides
programmatical access to the Azure REST API for operations on some Azure
resources.

1.2.2 Separation of Responsibilities

The following paragraphs describe which party is responsible for which part
of security in the Azure cloud. This separation is critical because the cloud
service provider cannot enforce a secure code being written, same as the user
cannot influence the physical security in any way.

Microsoft made a shared responsibility model, divided into seven layers
from physical security to data classification and accountability and further
split into four cases, on premises cloud, IaaS, PaaS and SaaS. [10]

The Cloud Service Provider (CSP) is responsible for all hardware as well
as its physical security and virtualization technology so that customers cannot
access other users’ resources even if those are present on the same physical ma-
chine. The customer’s responsibilities depend on the service, but for IaaS may
include securing the operating systems, network configuration, applications,
identity and data.

PaaS shifts more responsibilities to the CSP, namely patching the operat-
ing systems, runtimes, and network configurations.

As for SaaS, the cloud service customer should be completely abstracted
from the underlying components and is responsible only for data classification
and partly for managing the application’s end users and end-point devices. [10]

In any case, an incident response procedure should be ready even for high-
cost threats that would leverage the CSP’s vulnerabilities, i. e., hardware vul-
nerabilities. There should be clear definitions and distinction between un-
affected services; services affected, but not requiring any action; those that
would have to be limited; and those that would have to be taken offline. This
classification would of course also depend on the nature and severity of the
threat.

7All ARM operations are directed towards https://management.azure.com/.

8

https://management.azure.com/

1.3. Microsoft Azure Resources Related to Security

Figure 1.4: Shared responsibilities for different cloud service models [10]

1.3 Microsoft Azure Resources Related to Security

It is essential first to note what a “resource” means in the Azure context.
The term refers to an entity managed by Azure, e. g., an instance of a virtual
machine, virtual network, SQL database or serverless computing function [11].

Azure nowadays handles resource managagement through Azure Resource
Manager, which is an approach in which resources can be grouped into resource
groups for easier management of multiple resources. From the point of view
of Azure Resource Manager, everything in Azure is a resource [4].

Every resource must belong to a resource group, a logical construct that
lets the customer put together resources in a logical way, e. g., Azure resources
for a single application [11]. Even though a resource group has a default
location, its resources may be in any region.

A subscription is another logical construct, grouping together resource
groups. Billing information is provided for each subscription, and each sub-
scription has to have a single identity provider in the form of an Azure Active
Directory (AD) tenant.8 It can be useful to separate costs into different sub-
scriptions to compare spending between larger projects or to control spending
on resources in given areas, such as development.

8Azure AD and tenants are discussed in Section 1.3.1.

9

1. Microsoft Azure Overview

In place of the newer ARM, the old approach was Azure Service Man-
ager (ASM). There are some implementation changes such as moving from
Extensible Markup Language (XML) to JSON and also operational advance-
ments such as making the management of resources easier by implementing
Role-Based Access Control (RBAC). That means that any user or application
may be assigned a role or set of roles, which in turn are authorized to access
some resources. In Azure, those roles can be scoped to a single resource, to a
resource group, or a subscription. The most standard roles are:

1. Owner — can manage everything about the object on which the opera-
tion is being authorized;

2. Contributor — can manage everything except access to the object;

3. Reader — can view everything but cannot make any changes.

There are usually also many more roles predefined for specific Azure re-
sources (such as SQL DB Contributor for SQL servers) and customers can
define their own roles,9 when the built-in ones do not suffice.

Deployments were also done sequentially in ASM, which meant it could
get very long for large projects. In ARM, resources that do not depend on
each other can be provisioned at the same time (e. g., a managed disk and a
networking interface for the same virtual machine can be created in parallel).
As the new approach is much richer and some parts of the older one are not
being supported anymore, and Service Management REST API is said to be
retired on November 1, 2019, this work will not take ASM into account in any
way besides this section.

The ARM features RBAC with Azure Active Directory authentication for
access and management of Azure resources. Another level of security is added
by the option of defining custom policies which can allow or restrict access to
or operations on some resources based on aspects such as location or software
version, even though the processes of authentication and authorization were
successful [4]. These policies can be applied either on subscription or resource
group scope. For example, a policy can state that resources in a specific
resource group can only be created in the West Europe location. Then even if
one has the Owner role in the said resource group, they cannot create resources
in locations other than the one stated in the policy.

1.3.1 Azure Active Directory

One of the pivotal parts of Azure security is Azure Active Directory, which
serves as the authentication service for the users of Azure. It provides identity
and access management in the cloud. It offers these services also to SaaS

9Example tutorials can be found in Microsoft documentation [12, 13].

10

1.3. Microsoft Azure Resources Related to Security

offerings such as Microsoft Office 365 [3] and can be used by developers to
authenticate users in their own applications.

It is split into several logical units. There is Core Store for persisting all
Directory Data, i. e., the identity and access data provided as well as all meta-
data accompanying it. Authentication services consume said data as well as
user input, perform the credentials validation checks, and implement the au-
thentication flows as well as operations on security tokens. At the same level
of abstraction reside Identity Security and Protection Services which provide
Multi-Factor Authentication (MFA) and other identity-driven protection for
interaction with the system. Lastly, Identity Services themselves include Iden-
tity and Access Management (IAM) Services — self-service password resets
and group management, dynamic group membership and other forms of user
management of Directory Data [14].

Azure Active Directory comprises of multiple tenants, where an Azure
tenant represents a single organization [15]. In Azure terminology, a tenant
is a dedicated instance of Azure AD that you own when you sign up for a
Microsoft cloud service (Azure, Office 365, etc.). Each tenant directory is
isolated from the others in the service and designed to ensure user data is not
accessible from other tenants, meaning others cannot access data in a specific
directory unless an administrator grants explicit access [3].

A security principal is an entity that can be authenticated in Azure AD. In
Azure, there are two types of security principals: user principals and service
principals.

1. User principals represent a user that may be authenticated with the
Azure AD, usually with an email and password and with possible MFA.

2. A service principal represents an application that may be authenticated
in Azure AD with its client ID, which is an arbitrarily assigned applica-
tion ID during application registration with Azure AD, and either with
a password or an assertion of identity signed with a certificate that the
application owns [16]. This flow is always non-interactive.

When an application is registered to Azure AD, a single application object
along with a service principal is created in its home tenant. This application
object then serves as the foundation for all subsequent service principals that
may be created for the application in other tenants.

Each tenant that needs to authenticate an application or user needs to have
their security principals. Therefore there may be multiple security principals
for a single entity across multiple tenants. However, there can only be one in
each tenant.

The Azure AD data is replicated for high availability and fault tolerance
purposes, both inside the primary data center based on region selected during
creation of tenant and in other geographical regions. Write operations can
be done only to the primary replica, while reads can be done from any. Any

11

1. Microsoft Azure Overview

write operation is considered successful only upon replication of the new data
to at least one geographically separated replica [17], thus ensuring consistency
and fault tolerance. In case the data center with the primary AAD data fails,
there are failover processes in place that change the designation of the primary
replica to some other functioning replica. This process takes typically only
1–2 minutes during which read operations are still serviced and only write
operations are affected [17].

The data is also secured both at rest and in transit. It is encrypted by
a symmetric cipher with hash-based message authentication10 when Direc-
tory Data is being moved between two Azure AD servers and by employing
the Transport Layer Security (TLS) protocol when communicating with the
users. The back end utilizes secret stores for storage of sensitive material
using technology that is proprietary to Microsoft [14]. There is also a disk-
level encryption employing AES-128 and Microsoft BitLocker drive encryption
technology [14].

Authentication is the process of assessing the identity of an entity. This
is often done to then make a decision to allow or deny access to or operation
on a resource. This decision is the authorization of the agent to carry out the
operation. The two processes are often very tightly coupled with authorization
following authentication, but they can also be done independently, e. g., an
agent can be authorized to perform an operation based only on presenting a
bearer token as explained later. This agent may not have been authenticated
prior to this operation in any way.

The authorization in Azure AD is based on the OAuth 2.0 [18] protocol
and its extension for providing authentication, OpenID Connect 1.0 [19], for
which some terminology from the standards must be introduced. When talking
about OAuth 2.0, there are several roles defined by the Internet Engineering
Task Force (IETF) in the proposed standard [18], which will be used in the
rest of this section:

1. Resource owner — An entity capable of granting access to a protected
resource. When the resource owner is a person, it is referred to as an
end-user;

2. Resource server — The server hosting the protected resources, capable
of accepting and responding to protected resource requests using access
tokens;

3. Client — An application making protected resource requests on behalf
of the resource owner and with its authorization. The term “client” does
not imply any particular implementation characteristics (e. g., whether
the application executes on a server, a desktop, or other devices);

10AES-256-CTS-HMAC-SHA1-96

12

1.3. Microsoft Azure Resources Related to Security

4. Authorization server — The server issuing access tokens to the client
after successfully authenticating the resource owner and obtaining au-
thorization.

The same document [18] also specifies protocol endpoints in the following
manner. The authorization process utilizes two authorization server endpoints
(HTTP resources):

1. Authorization endpoint — used by the client to obtain authorization
from the resource owner via user-agent redirection;

2. Token endpoint — used by the client to exchange an authorization grant
for an access token, typically with client authentication.

It also introduces one client endpoint:

1. Redirection endpoint — used by the authorization server to return re-
sponses containing authorization credentials to the client via the resource
owner user-agent.

Not every authorization grant type utilizes both endpoints. Extension
grant types may define additional endpoints as needed [18].

There are also several different tokens to be considered:

1. Access token —Access tokens are pieces of data used as a proof of autho-
rization to access some protected resources. The IETF also states: “In
the general case, before a client can access a protected resource, it must
first obtain an authorization grant from the resource owner and then
exchange the authorization grant for an access token. The access token
represents the grant’s scope, duration, and other attributes granted by
the authorization grant. The client accesses the protected resource by
presenting the access token to the resource server.” [20]

2. Refresh token — The IETF also defines refresh tokens: “Refresh tokens
are issued to the client by the authorization server and are used to obtain
a new access token when the current access token becomes invalid or
expires, or to obtain additional access tokens with identical or narrower
scope. [. . .] Unlike access tokens, refresh tokens are intended for use
only with authorization servers and are never sent to resource servers.
[. . .] The client may request a new access token by authenticating with
the authorization server and presenting the refresh token.” [18]

3. Identity token — Last, the authors of the OpenID Connect protocol
have this to say about the identity tokens: “The primary extension
that OpenID Connect makes to OAuth 2.0 to enable end-users to be
authenticated is the ID token data structure. The ID token is a security

13

1. Microsoft Azure Overview

token that contains claims11 about the authentication of an end-user
by an authorization server when using a client, and potentially other
requested claims. The ID token is represented as a JWT.” [19]

The advantage of using refresh tokens alongside access tokens is that ac-
cess tokens, unlike refresh tokens, are short-lived and thus provide a smaller
window for a potential attacker to take advantage of a leaked access token.
On the other hand, when a refresh token is leaked, the attacker still needs
to obtain valid client identifier and potentially password to obtain an access
token. This also allows changing the scope of access tokens, because the client
may request more restrictive permissions than the refresh token offers. This
way it can always have only the permissions it needs at the moment.

In Azure AD, authorization is done with OAuth 2.0 access tokens12 and
users are authenticated with an extension of OAuth 2.0, the OpenID Connect
protocol [19]. All of this communication happens over HTTPS to ensure
confidentiality and integrity. When a service needs to be authorized to use
dependency in the form of an Azure AD protected resource, it makes a call
to Azure AD with one of the authorization flows as defined in the OAuth 2.0
standard [18, 22].

There are several authorization flows supported in Azure AD. For daemons
and other applications that usually do not get direct interaction from users,
there is the client credential grant, where the application authenticates with
its own client identifier and client secret. The application acts under its own
identity when communicating with the server. It must also be the resource
owner or must have been authorized prior to access since there are no other
active parties involved. The requests are directed to the token endpoint,
which directly handles them and returns an access token for use with the
required resource. The application may have been granted authorization to
obtain the access token for a specific resource on behalf of a user, usually an
administrator.

The authorization code grant is different in that the client application re-
questing access to resources redirects a browser to the authorization endpoint
of Azure AD, where the user is presented with a login screen and the scope
of access the client application is requesting. If they successfully authenti-
cate against the authorization server and grants the desired authority to the
client, Azure AD returns a code to the client application, which can be then
exchanged for an access token and a refresh token from the token endpoint.
The token endpoint may also demand a client secret from the application to

11“A claim is a piece of information asserted about an entity. [. . .] [An entity is] something
that has a separate and distinct existence and that can be identified in a context. An end-
user is one example of an entity.” [19]

12The access tokens handed out by Azure AD are bearer tokens [20], which means that
anyone in possession of those is authorized to access the resource without providing any keys
and thus the tokens need to be kept secret and protected at all times including in transit.
These tokens are JWT [21] that were signed by the authorization server.

14

1.3. Microsoft Azure Resources Related to Security

ensure that the code is not misused by another party. The access token then
serves as the proof of authorization to the given resource and a refresh token
may be used to prolong the access if needed.

The implicit grant is similar, except the authorization endpoint provides
the access token directly. Because this flow is intended for single-page appli-
cations (e. g., a client-side web page written in JavaScript), there is no client
secret, since the application cannot protect it. After a user’s successful au-
thentication, the application is presented with an ID token and an access
token. Since there is no client secret, there is no way to make guarantees that
the tokens will be given only to registered clients. The application imperson-
ates the resource owner whenever the tokens are to be used. It can then use
the access token to connect to the dependencies and the ID token to acquire
tokens to different resources if need be. There are no refresh tokens, but the
application can request new tokens while in the same session, controlled by
cookies provided by the authorization server typically via iframe.

Next, in the resource owner password credentials grant the client appli-
cation sends a resource owner’s username (or another form of ID) and pass-
word directly to the token endpoint of the authorization server along with the
client’s own client password. It then receives an ID token, access token and
refresh token in the response. In this grant type, the client is impersonating
the resource owner and acts in his stead. This flow requires a high level of
trust because unlike in the others, the application requesting access handles
the user’s credentials directly.

Lastly, the device grant [23] is an extension to the OAuth 2.0 protocol. It
is intended for use with a device connected to the Internet, where it is impos-
sible to open a browser and undesirable to use the resource owner password
credentials grant The proposed standard also defines a new endpoint for use
with this protocol. The device communicates with this endpoint and is given
back, among other things, a device code, verification URI, and a unique user
code. The human operator is then asked to open a browser and navigate to
the verification URI, where they are prompted to input the user code and to
authenticate and consent to provide the application with the desired access.
During this process the device polls the token endpoint continuously with its
device code. After the user authenticates and inputs the user code that be-
longs with this device code, the device is given an access token and a refresh
token.

The access tokens in Azure AD are in the form of a JSON Web Token [21].
The tokens consist of three parts, a header, payload and signature. Each part
is Base-64 encoded, and they are delimited by a full stop. The signature algo-
rithm13 can be ascertained from the header parameter “alg” and the public key

13It is Rivest, Shamir, & Adleman (RSA) in Azure, but there are several other options
including Hash-Based Message Authentication (HMAC). [24].

15

1. Microsoft Azure Overview

for validation from the header parameter “kid” and a well-known endpoint,14

where a key with the same “kid” member can be found. The endpoint can
be found on the address in the “jwks_uri” member of the OpenID Connect
JSON configuration file,15 which should be available on a standardized URI
provided by the identity server (Azure AD).

1.3.2 Key Vault

One of the main security-related services to be used on a daily basis on Azure is
without a doubt Azure Key Vault. It serves as safe storage for various security-
critical data, such as application secrets, encryption keys and certificates. It
can also serve as version control for secrets and keys, enabling updates with no
downtime and running different versions of software even if it had for example
configuration files encrypted with a key that has been rotated and is no longer
used.

There are four types of objects in Azure Key Vault: secrets, keys, cer-
tificates, and managed storages. Secrets are arbitrary strings of data (only
limited by about 25 kB in size in Key Vault inner representation). The se-
crets can be anything from database passwords to Base64 encoded encryption
keys [25].

The keys stored in the Key Vault can be either for RSA (2048, 3072 or 4096-
bit versions) or Elliptic-curve cryptography (ECC) (with one of the P-256,
P-385, P-521 and SECP256K1 curves),16 based on what cipher, security and
performance are desired [25]. Key Vault also offers some key operations, such
as signing payloads with a key and verifying signatures. It also supports
encryption, but for symmetric ciphers only for a single block of data at the
same time. The intention there is unclear, but this makes usage of modes
that depend on last block’s ciphered text (such as Cipher Block Chaining
(CBC)) very slow, because of the roundtrip between the application and Key
Vault needed for each block of data. Cryptographic keys in Key Vaults can
also be optionally protected by a Federal Information Processing Standard
(FIPS) 140-2 level 2 validated Hardware Security Module (HSM) produced by
Thales [27] or even a FIPS 140-2 level 3 compliant HSM from Gemalto [28].

The difference between secrets is that keys serve the predefined role of a
cryptographic key, while the secrets may serve any purpose. There are also
some operations, such as signing, that require a Key to be present in the Key
Vault.

Certificates are X.509 certificates that can be created or imported into the
Key Vault. They are then managed by it, and the Key Vault may be configured
to alert the owner on certain occasions such as approaching expiration, or it

14https://login.microsoftonline.com/common/discovery/keys
15https://login.microsoftonline.com/common/.well-known/openid-configuration
16More about elliptic curves cryptography can be found at [26].

16

https://login.microsoftonline.com/common/discovery/keys
https://login.microsoftonline.com/common/.well-known/openid-configuration

1.3. Microsoft Azure Resources Related to Security

may even automatically renew it with selected authorities. The certificates
may also be stored in an HSM [25].

Finally, managed storages are references to Azure Storages, for which the
Key Vault should manage the access keys. It can rotate the keys regularly
or when requested and it gives out Shared Access Signature (SAS) tokens as
needed. Azure Storage will be reviewed in depth in Section 1.3.3 and storages
managed by a Key Vault in Section 4.2.2

To address erroneous deletion of Key Vault objects, there is also an op-
tional soft-delete feature, that separates the delete operations from actual
removal of the objects. These can be recovered in up to 90 days following the
operation invocation [29].

It also provides AAD enabled authentication with either ARM RBAC
for management of the Azure Key Vault resource,17 e. g., setting up firewall
rules, or Key Vault access policies for data access authorization, e. g., accessing
stored secrets. Although there is RBAC18 to the protected data, access policies
can be set only on the type of a resource, such as read-only access to secrets.
In that case, the authorized user can access all secrets, and there is no built-in
way to give permissions only to needed secrets.

Redundancy has been addressed by the replication of the key vault content
both within the region and to a second region, where both regions are in the
same security world [30]. There are also logging and auditing capabilities
dependent on other Azure services.

1.3.3 Azure Storage

Azure storage encompasses four basic services — Blob service, File Share ser-
vice, Table service and Queue service [3]. A single resource in Azure containing
these services is called an Azure storage account.

There are several variations of the storage account based on desired re-
dundancy:

1. Locally redundant storage — data is replicated inside a single data cen-
ter;

2. Zone-redundant storage — data is replicated in three different storage
clusters in a single region;19

17This provides access to the management plane. It can allow for a group of users to
control operational aspects of the Key Vault possibly without providing them access to the
data stored there.

18Not the same as ARM RBAC. It still uses the same roles obtained from Azure AD, but
this provides access only to the data plane, not to the management of the Key Vault itself.

19The clusters are physically separated, but they are still in the same region (e. g., the
West Europe region)

17

1. Microsoft Azure Overview

3. Geo-redundant storage — data is replicated first locally to two additional
replicas and then to a different region. Customers can read only from
the data center in the primary region;

4. Read-access geo-redundant storage — data is replicated locally and then
to a different region, but read operations can be performed from both
data centers. There is a slight delay between finishing a write operation
and the availability of data in the secondary region’s data center [31].

The Blob storage is a space for any binary objects, may it be pictures,
Hypertext Markup Language (HTML) or text files. The objects are accessi-
ble through URLs and the REST interface or any Azure SDK storage client
library.20. Each Blob is placed in a container, which in turn belongs to one
storage account. Containers cannot be placed into other containers and Blobs
cannot be placed directly in a storage account. This relationship is shown in
Figure 1.5.

Figure 1.5: Blob storage hierarchy. [33]

There are three types of Blobs. The block Blobs are intended for files
expected to be read and written sequentially (e. g., audio or text files). The
page Blobs are to be accessed in a random manner with the primary use-case
being a backing storage for a Virtual Hard Disk (VHD) used in Azure Virtual
Machine (VM). Finally, the append Blobs, which are optimized for appending
and do not support updating or deleting existing blocks of data, are primarily
used for log files.

Azure Queue provides storage for short messages (up to 64 kB), usually
serving as a communication means between two applications. Advanced mes-
saging capabilities such as publish-subscribe or deduplication are not sup-
ported. The messages must be processed within seven days after being re-
ceived [34].

Azure Table storage offers a depository for structured non-relational data.
It can hold entities of up to 1 MB in size with up to 252 custom properties
defined by the customer. NoSQL queries can be run on the storage. There

20Client libraries are available for a variety of languages, including .NET, Java, Node.js,
Python, Go, PHP, and Ruby [32]

18

1.3. Microsoft Azure Resources Related to Security

are also three system properties — a partition key, a row key, and a times-
tamp. The table may be distributed across multiple servers, but data with the
same partition key are guaranteed to be on the same physical machine. The
combination of partition and row keys must be unique across the table (the
combination forms the primary key) [35]. It is designed for queries based on
the two keys and does not scale well otherwise, especially when the partition
key is omitted [36].

Azure Files offer a managed storage accessible via the Server Message
Block (SMB) protocol. The storage can be mounted concurrently on Win-
dows, Linux, and macOS, or it can be accessed programmatically. Azure Files
support standard folder hierarchy [37]. Access to this service with Azure AD
authentication and RBAC is being worked on at the time of writing of this
thesis [38].

The data is automatically encrypted when written to Azure Storage by us-
ing Storage Service Encryption. This feature cannot be disabled, but the en-
cryption keys can be either Microsoft managed, which includes secure storage
and regular rotation, or keys provided by the user in an Azure Key Vault [39].
The cipher used is Advanced Encryption Standard (AES)-256 [40], and at the
writing of this work, only Blobs and Azure Files support custom keys [41].

User data can also be encrypted in transit between an application and
Azure by either client-side encryption, enforcement of HTTPS, or usage of
SMB 3.0 [42]. The client-side encryption is handled with the envelope tech-
nique, where the data is encrypted by a key generated for a single use, which
is then encrypted (wrapped) by an outside service, either Azure Key Vault or
by a different locally managed key service and then the data gets sent with
the wrapped key and some additional encryption metadata, such as the Ini-
tialization Vector (IV), to the storage service [43]. The used cipher is AES-256
with CBC mode [43]. It is important to note here that there are no safeguards
against overwriting encrypted data with unencrypted data or data encrypted
with different keys, potentially making the original data unreadable. Similar
problems may occur when writing metadata to Blobs because metadata is
not additive [43]. HTTPS can be enforced by enabling the Secure transfer
required option on the storage account, which will force the service to refuse
all HTTP connections to the REST API [39].

There are two kinds of storage access, one is for the management plane,
the other for the data plane. Management plane controls the storage account,
e. g., setting keys for Storage Service Encryption (SSE) or management of
storage account keys. Data plane concerns itself only with the data, e. g.,
access to Blobs or tables stored in the storage account.

There are two 512-bit keys encoded in Base64 to any storage account that
can be used for data operations and creation of SAS tokens for delegated
access (discussed later in this subsection). These keys can be revoked and
regenerated at any time by the customer. More information on the subject of
Azure storage key rotation and regeneration can be found in later chapters.

19

1. Microsoft Azure Overview

Because the storage access keys can only provide full access to the whole
account, they are not always an optimal means for authorization to the storage
services and objects. Although they are technically easy to revoke, having
to distribute new keys to every application using the storage too often is
not desirable. Shared Access Signatures can be created to delegate access to
chosen objects in Azure Storage with enumerated operations permissions for
a specific amount of time. The access can be as granular as a single Blob or
specific table entities. Usage of the SAS token can also be restricted by time,
IP address range or HTTPS may be enforced with them.

When creating a SAS token, one first needs to make a string-to-sign con-
taining all the parameters in a given order in Unicode Transformation Format
— 8-bit (UTF-8) encoding. This string is then signed with HMAC-Secure
Hash Algorithm (SHA)256 with one of the storage keys and then encoded in
Base-64 [44, 45]. This key then can be used, along with all of the parameters
that were used during the signing, in a URL when accessing the objects it is
intended for.

A SAS token can also be linked to a stored access policy, which provides
more control over the signatures that have been handed out. There is no way
to revoke a SAS token after its issue other than revoking the key with which
the token was signed or by means of stored access policies. When a SAS token
is bound to a policy, it works only if the policy still exists and permits the
requested access. One can thus revoke access of some SAS tokens by only
changing or deleting a stored access policy without the need to change the
storage keys.

1.3.4 Azure Data Lake Storage

Azure Data Lake Storage Gen1, formerly known as Azure Data Lake Store,
is a storage service optimized for big data analytics implementing Hadoop
Distributed File System (HDFS) [46] and its HTTP REST API called Web-
HDFS [47]. Therefore it can be used by many well-known tools in the Hadoop
and Spark ecosystems. It can store arbitrary file types including structured
(relational) as well as unstructured data. Files can be as large as petabytes
in size, but it is advised for performance reasons to use sizes of 256 MB up to
a suggested average size of 2 GB [48].

Data Lake Storage supports hierarchical containers, which can be thought
of as folders and files. Unlike the Blob storage containers, in Data Lake Storage
folders can contain more folders.

The storage is encrypted at rest, and there is local redundancy21 in case
the storage servers fail. The encryption algorithm used is AES-256. There are
several keys in use with the asymmetric Master Encryption Key, that can be
managed by the user, protecting the symmetric Data Encryption Key, from

21Local redundancy here has the same meaning as when talking about storage accounts.
See the section about Azure storage accounts for more details.

20

1.3. Microsoft Azure Resources Related to Security

which Block Encryption Keys are derived for individual data blocks. Only
the Data Encryption Key is stored in Data Lake Storage with the Master
Encryption Key stored in Key Vault.

This storage service also supports Portable Operating System Interface
(POSIX) compliant Access Control List (ACL) permissions, which can be
assigned to principals and groups in Azure AD. Identity can be verified either
interactively with the end user’s Azure credentials or non-interactively with
the application’s identity in Azure AD (service principal).

The next generation data lake service, Azure Data Lake Storage Gen2,
which integrates the features of the first generation and Blob storage, provid-
ing access to some of the storage account’s benefits, such as Secure Storage
Encryption and SAS tokens, and also offering hierarchical namespace folders
and Azure AD based ACL.

1.3.5 Azure App Service

Azure App Service is a PaaS offering that offers complete runtime environment
for web applications, REST APIs or mobile back ends. The environments are
handled by Azure, meaning that the developers do not need to e. g., update
the operating system or manage scale-out and load balancers. A public IP
address is also provided, as is an option to buy a custom domain and a Secure
Sockets Layer (SSL) certificate for higher pricing tiers22 of the service.

The base operating system can be either Windows or Linux. Supported
languages, frameworks, and runtimes include ASP.NET, ASP.NET Core, Java,
Ruby, Node.js, PHP, Python and Docker.

Patches to the OS are applied monthly, aligning with Patch Tuesday sched-
ule. [49] High priority security updates are handled on a case-by-case basis.
Language runtimes are updated regularly based on the specific technology’s
releases. Patch versions (e. g., bug fixes) update the runtime without keeping
the older versions and migrating the application to the new version automat-
ically,23 while major or minor version updates are installed side by side and it
is up to the customer to migrate the application to the new version.

All updates are run so that one region in each regional pair24 [50] is kept
online at all times. The updates are also run outside of the data center’s local
business hours. Machines that currently do not have running applications
on them are updated first with subsequent migration of running applications

22There are six tiers: Free, Shared, Basic, Standard, Premium and Isolated. They differ
in price, resources allocated, and additional options.

23With the exceptions of Node.js, where it is installed side by side, and Python, where
new patch versions can be installed manually.

24Regional pairs are set up in a way that each datacenter in the pair is in the same
geography, but still at least 300 miles apart. They are designed in a way that using both
regions in a pair should minimize chances of downtime of services and accelerate their restart
after catastrophic events.

21

1. Microsoft Azure Overview

to those servers and updates to the newly freed machines. This approach
minimizes downtime25 for any running applications.

Authentication of end users can be configured in App service to use Azure
AD login as well as other well-known identity providers such as Google or
Facebook. Developers then do not have to use a third-party library or even
have to implement the communication with the OAuth services themselves.
After the configuration, Azure App service handles all incoming HTTP re-
quests and injects identity information into request headers. [51]

1.3.6 Managed Identity

One of the most essential security-related benefits of Azure Resource Man-
ager is RBAC, which is also extended to cloud applications accessing other
resources and services registered in Azure AD. In many cases, it is necessary to
access an Azure resource from another, e. g., a web application in Azure App
Service accessing an SQL database inside Azure. Usually, a developer would
create a database user for the application and put the credentials in some kind
of configuration file or a secrets storage. Managed identities make Azure AD
handle the authentication, and then ARM handles the authorization to the
end service or to ARM itself.

For this reason, some Azure resources can be assigned an identity that can
be used for authentication purposes during communication with AAD and
other resources. This feature is called Managed Identities for Azure and has
been formerly known as Managed Service Identity (MSI).

This approach has been introduced so that there is no need to store pass-
words and other secrets in code or even have the need to access static creden-
tials in runtime,26 clearing up credentials from the codebase. It is important
to note that this feature was announced in its original MSI form in September
2017 and so it is not available for all resources yet.27

There are two types of managed identities differing by assignment of the
identity to services or resources and its life cycle. In both cases, a service
principal is created in Azure AD and is used to authenticate the application
and obtain an access token to the resource. For more information on ser-
vice principals, see Section 1.3.1 about Azure Active Directory earlier in this
chapter.

In the first case, it is the system-assigned managed identity, which is cre-
ated in the Azure AD and enabled directly on an Azure resource that sup-
ports managed identities. In this case Azure provisions the credentials onto
the managed identity resource and the identity’s life cycle is directly tied to

25The application has to be restarted after the update, but this approach along with the
fact that it is happening during the off hours minimizes the impact on end users.

26The application still needs the OAuth tokens, but those are created when needed with
a set expiration date and time.

27The complete list of supported services can be found at [52].

22

1.3. Microsoft Azure Resources Related to Security

the resource itself (i. e., it is deleted when the resource for which it provides
the identity is deleted).

The other option is user-assigned managed identity, where the customer
creates a ‘Managed Identity’ resource and then assigns it to a resource that
may have other dependencies, such as a function app or a virtual machine [53].

One service can only have one system-assigned identity, but it can also
have multiple user-assigned identities where it is allowed access based on under
which identity the service authenticates against Azure AD.

A service can ask Azure AD through Azure Instance Metadata Service
(AIMS)28 using REST API for access tokens to some other given service un-
der its protection, including Azure Resource Manager for operations with
resources. AIMS then request an access token from Azure AD, providing the
client identifier and certificate of the service principal. The call contains a
service principal client identifier and a certificate of the calling service and a
JSON Web Token is returned. This token is then sent with the call to the
dependency [53].

28The endpoint is a well-known non-routable IP address 169.254.169.254 accessible only
from within a VM inside Azure [53]

23

Chapter 2
Cloud Development

This chapter will introduce the software development life cycle and its models
and then show some models optimized for cloud development. Security de-
velopment life cycle will be covered next, and finally, the DevOps approach
will be introduced. This chapter is necessary to understand better what the
developer will be responsible for. The responsibilities, of course, depend on
the Software Development Life Cycle (SDLC) model chosen as well as many
other factors such as company culture.

2.1 Software Development Life Cycle
The software development life cycle is an abstraction over the phases in which
an application or a system is constructed from the analysis until deployment,
production or even deprecation. There are many different methodologies with
different strengths, weaknesses and use-cases. Some are more rigid, such as
the Waterfall model, while others are much more flexible, for example, the
Agile method. However, all of them share the same basic stages: planning
and requirement analysis; designing project architecture; development and
implementation; testing; and deployment and maintenance. [54]

To start with, the most traditional one is the Waterfall model, a linear
model where each of the basic respective parts is completely separated from
all the others, and each is started only after the one before has finished. It is
effortless to understand and is easy to manage, but the tradeoff is that when
a mistake occurs in one of the earlier stages, there is no process to fix it and
all of the next stages need to find workarounds or other ways to cope with the
flaws. [55]

Another one, the V model, is directly built on the Waterfall model. It adds
a phase of testing to each level of higher abstraction, namely unit, integra-
tion, system, and user acceptance testing. This method suffers from similar
fallbacks as the Waterfall model — that there is no flexibility in the process
as each layer must be done in turn. On the other hand, it is very much a

25

2. Cloud Development

test-driven development and thus most foreseeable problems are caught, and
bugs are fixed before moving out to production. [55]

A different approach to the two already introduced methods is the Iterative
Model, where the development process is done in small parts, and effectively
all of the stages of the development process are applied to smaller problems
from which the final system is composed of. All of the requirements are added
to the product one after the other. Therefore there is no need for all of
the requirements to be known at the initial phase, and can be thought of or
desired at one of the later iterations. If there is any foreseen need to adapt,
it is generally advisable to use some form of an iterative methodology over a
linear approach. There is a threat though in that it is not as strictly separated
into phases, which could mean unforeseen delays or wasting of resources on
repeating some of the processes. Also, management is non-trivial compared
to the linear methods. [55]

The last model introduced here will be the Agile Model, where there are
many much shorter iterations commonly called sprints. After each sprint,
there is a working software product, and the written functionalities in each
iteration are high-quality code that is integrated into the final product and
is built upon by the next sprints. There are many different approaches to
agile development such as extreme programming, scrum, clear crystal, and
others. It is extremely adaptable both to new technologies and to changing
requirements because the customer is part of the development process through
the whole life cycle and therefore there can be a lot of input from them. On
the other hand, it is extremely hard to manage and generally unsustainable for
large teams and too complicated projects. Although the incremental design
produces working applications very frequently, the time between releases did
not typically change in comparison to the linear models such as Waterfall. [56]

2.2 Cloud Software Development Life Cycle

There have been several attempts to propose a software development life cycle
for cloud applications or discuss the importance of such processes. Although
the processes are generally similar, there are usually slight differences to fully
leverage the potential of cloud-based services. The process itself can be built
on any SDLC as described earlier [57].

Zack and Kommalapati propose that a SaaS Development Lifecycle con-
sists of the Envisioning, Platform Evaluation, Planning, Subscribing, Develop-
ing, and Operations phases, where the first, third, and fifth are also explicitly
present in the standard SDLC while the other three usually are implicit [58].

In the Envisioning phase, the leadership discusses and chooses ideal busi-
ness opportunities to act upon. In the cloud environment, special care should
be placed on some of the aspects of the platform such as readiness for scalabil-
ity and different approaches to reachability. It is at this time that the critical

26

2.2. Cloud Software Development Life Cycle

decisions as to whether some existing solutions should be reused, bought, or
created. This concerns each individual component of the final service, e. g.,
some authentication service may be reused while frontend may be created
from the ground up.

Second is the Platform Evaluation phase, which is implicitly present even
in normal SDLCs, but in the cloud environment, there are decisions to be
made about what cloud provider to use and services to be used. The process
must include as complete information as possible about the different options
and their capabilities and prices. Another part of this phase is the definition
of the conceptual technical architecture and plans for the proof of concepts for
each of the shortlisted cloud vendors. The SDLC for the development process
should be selected here. The choice should be made whether the process should
be linear or iterative with the latter being the generally preferred option for
most use-cases, especially on cloud.

Next up is the Planning phase during which the standard high-level de-
velopment process starts and plans are made to define delivery deadlines and
other important milestones. This part is dependent upon the organizational
culture, type of service and chosen development model. Among others, the
project schedule, feature requirements and design specifications are created
similarly as they would have been during the traditional software development
life cycle. The Planning phase is also the first phase which may be repeated
multiple times during the creation of the application based on whether the
chosen style of SDLC is linear or iterative.

Another slightly more different part of the cycle is called Subscribing,
during which the required cloud services of the application are investigated and
chosen with optimal pricing and computational power. The chosen sizes are
production quality. IT administrators also begin planning operational needs
for each of the chosen services, which also directly influences the selection
process. Communication with the cloud provider is most important and active
during this part because selecting the ideal level of subscription and resources
is usually made much easier by the provider’s customer support. Guidelines
for the management of disaster recovery, backups and others are also created
at this time.

Finally, there is the Development process itself in the next phase. This
phase is almost identical to that of the normal SDLC with the only differ-
ence being the platform for which the product is being developed. Another
important part is, of course, the creation of documentation, both user and
programming, to accompany the code, the final application, and its parts.
This is also one of the phases, which will usually be undergone several times,
once per SDLC iteration. Other critical procedures are testing, integrating
with other APIs and integration with the customer support processes.

The last phase, Operations, is at first sight also similar to the already
known SDLCs, but the cloud environment brings several changes. The sys-
tem administrators do not have direct access to the servers and as such their

27

2. Cloud Development

position is somewhat different. The operations are also built on the knowledge
gained during the platform evaluation, subscription and development phases,
and the procedures are thus tightly coupled. The development and operations
on the cloud then very naturally move to the DevOps approach,29 where the
two groups cooperate much more. In this phase, the deployment process must
be finalized, catastrophic events scenarios tested and operations procedures
made ready for production.

2.3 Security Development Lifecycle

A way to ensure that security is not an afterthought, but rather an actively
developed and essential part of an application, is the Security Development
Lifecycle. There are different approaches to ensure security during the devel-
opment process [59]. It is vital for the application safety to clearly define and
follow some guidelines for secure development and security testing, as well as
to have incident response processes in place in case of a security breach.

One such document is Microsoft Security Development Lifecycle (SDL),
which is a process to be implemented into a company’s own SDLC to heighten
the security of products and to actively work on threat mitigation during the
whole application life cycle. Its goal is to lower the number of vulnerabilities
through a set of practices to be followed.

Some of the key points made in the Microsoft SDL are described here.
The first focus is to provide training and education on security issues to all
parties involved in the development and roll-out processes. It also puts a high
value on precise definitions of security and design requirements, and a system
of measurement for these goals. Another part is choosing the right tools and
standards, both for cryptography and security-related procedures, as well as
for other purposes. This is tightly coupled with mitigating the risks arising
from using third-party software, which may introduce vulnerabilities into the
dependent applications as well [60].

All software should also be extensively tested, passing all static analysis,
dynamic analysis as well as penetration tests. Static analysis should be run
regularly during development, dynamic analysis as often as possible, ideally
during all builds, but this may not be feasible because of longer test times. It
should still be tested regularly and if not during the build, then at least after
builds to get relevant security information as soon as possible. Penetration
tests should also be run to ensure safety against dedicated cyber attacks [60].

Every company should take security into consideration during all phases
of the development cycle, and the ideal process for a given company or project
should be found, but that is outside the scope of this work.

29More discussed in Section 2.4.

28

2.4. DevOps in the Cloud

2.4 DevOps in the Cloud

It is almost impossible to completely characterize the DevOps approach be-
cause there has never been any form of manifesto or definition and it seems
there is no intention to do so [61]. However, there have been many attempts
to define the term [62, 63].

What most descriptions of the term have in common are efforts to bridge
the gap between developers and IT operations through clearer communication
and collaboration. There are some other common factors, such as approaches
to automate as much as possible, deploying often (even multiple times in
a day), close monitoring, or microservices-oriented cloud development, but
these are only enablers or the reason to look into DevOps. However, they
are sometimes still crucial parts of DevOps, without which it usually cannot
properly work and which are often thought of as the first thing when talking
about DevOps. It is stressed by some authors that DevOps is primarily about
the culture and not about the tools [64].

It was initially created to reduce the number of clashes between developers
and IT operations, where one did not understand the other and often did not
consider the other party when making decisions. An example for such clashes
was finger-pointing when a server had gone down, instead of trying to fix the
issues as well as change the process that may had led to the failure. One of
the pivotal presentations on the theme was Flickr’s 10+ Deploys per Day [65],
where the problem was illustrated along with one of the first real-life examples
of cooperation of this kind.

DevOps promotes inter-team cooperation with a mindset of people walking
in each others’ shoes. Developers are partly responsible for the monitoring of
their applications because they have a better idea what the logs mean and
what would have been possible reasons for any failures. They have greater
responsibility for the code that is being run and that makes them more aware
of the situations when something may go wrong. So they often make more
meticulous fail-safes into the code and communicate better with the operations
how to employ them.

This builds trust on the operations’ side, which strives for the stability of
services, is more open to faster release of the new features. They may also
be more involved in the development process and give their expertise more
often when decisions about the implementation are made. Through this close
cooperation, some responsibilities are redistributed, and the strict separation
of developers and operations disappears further.

In smaller teams, this may even create a single team, where both devel-
opment and operations are shared responsibility, but each member usually
retains their main expertise to some extent and is more devoted to that area.

DevOps is also often coupled with a high degree of automation of deploy-
ments, and infrastructure and configuration changes. This can boost reliability
because less time is spent on those and therefore more resources are available if

29

2. Cloud Development

something needs fixing. Furthermore, all the steps of the change are implicitly
documented in the scripts.

Infrastructure is provisioned in an Infrastructure as a Code manner, highly
simplifying the process and making it extremely easy to replicate. Configura-
tion of virtual machines and runtime environments is preferred to be done in
the same way. This is highly dependent on cloud and virtualization technolo-
gies.

The changes that development in the cloud brings often result in an ideal
environment for DevOps. A large part of operations’ work is moved to cloud
configuration, in some instances even moved to the responsibilities of a CSP,
e. g., patching of OS in PaaS models. It is also easier to keep the different
environments closer together, which means the developers may have a much
better understanding of the system as a whole than the operations engineers.
Cloud also promotes and usually provides many tools for a high degree of
automation of all parts of deployment.

Because DevOps is very tightly coupled with fast delivery, it often leads
teams to overlook or disregard some security aspects. However, this approach
also provides them with the tools to fix them very fast once identified. [66] This
is the reason that some companies try to integrate security into DevOps more,
creating what is commonly known as DevSecOps. However, some authors
suggest that DevOps should already contain more teams and does not need
extending the name with more company branches [62].

DevOps also generally promotes security as a responsibility of everyone,
not just a dedicated group of security engineers. Developers need to under-
stand the risks and vulnerabilities they may have introduced during develop-
ment. This is not to say they should become experts on the topic, it again only
promotes clearer communication as well as the shift of some responsibilities.

30

Chapter 3
Security Critical Areas

Several problems that the developers may encounter during development for
cloud will be briefly introduced here. This section serves solely as an intro-
duction to the solutions in Chapter 4.

This work does not focus on general security aspects of development and
does not intend to list all the areas that the developers must be mindful of.
Whenever an application is being developed, care should be taken to ensure
its security and some general guidelines are presented in different works such
as Writing Secure Code [67]. The platform, language and framework should
always be taken into consideration because they usually have different best
practices and security issues.

This work will only focus on cloud or Azure specific issues that developers
may encounter when creating cloud-ready applications.

3.1 Securing Data
Correctly handling data in all possible scenarios is not an easy task, but it
should be one of the developers’ priorities concerning security. There are
problems with correctly assessing the data and how much effort and resources
should be put into storing and securing it, as well as obtaining all the relevant
information about the options available. Section 4.1 will focus on handling
different types of data, while Section 1.3.3 and Section 1.3.2 have introduced
some of the possible storage options for data on Azure.

However, it is essential to not only be aware of the options available but
also when to use them. There may be some situations where either the data
is not worth the additional work of developers to use different encryption
schemes than for example the ones already present on Azure storage. In other
cases, time may be of the essence and not only calls to outside services such as
Azure Key Vault are out of the question, but even encryption of streamed data
may prove to introduce a significant overhead. In the most basic example, a
HSM complying with some standards may be too expensive to operate and as

31

3. Security Critical Areas

such should only be used when necessary. For these reasons, there must be a
process in place to accurately assess the desired protection.

3.2 Securing API
If microservice architecture is employed, as is now very popular on the cloud,
different security measures may be employed for each service. However, very
high priority should be placed on securing the API, which will ideally serve as
the only point of entry for all requests. This significantly reduces the attack
surface because more developer time may be allocated on securing the API
rather than on securing other services more than necessary. The API may
also run in several instances to ensure reliability even when one instance may
stop working. Also, some Azure resources may provide additional safety and
performance measures such as load balancing or Distributed Denial of Service
(DDoS) attack recognition and prevention.

3.3 Identity Provider
Authentication schemes should be decided upon early in the development pro-
cess, and usage of some identity providers or lack thereof provides some specific
advantages and difficulties. Section 4.5 will introduce some of the properties
of federating identity services to an external service. It will also touch on the
relation of authentication and authorization if they are separated in different
services.

Protocols that the Azure Active Directory uses for authentication and
authorization of services were described at length in Section 1.3.1.

3.4 Management of Secrets
Secrets are crucial assets used very often, but there is the ever-present risk
of their disclosure. Through them, an attacker may obtain direct access to
sensitive data in persistent storage or other information that could seriously
endanger the business.

In Section 4.3 different ways to access secrets by an application will be
overviewed and discussed. It will be examined based on where the secrets are
persisted and how are they made accessible to the application, as well as when
this process occurs.

Section 4.2 will also describe a possible process to change secrets such
as keys periodically with no service downtime and ensuring security of the
secrets. This process will assume two interchangeable keys. This situation is
not uncommon on Microsoft Azure, where access to the data plane of several
resources is controlled by exactly two keys.

32

Chapter 4
Proposed solutions

4.1 Data Classification

All data should be classified and handled based on the value it provides for
the business, its volume, and the structure, e. g., although telemetry data is
usually not disclosed to third-parties, it is to be handled differently than an
Azure Storage account access key which may protect data of all customers. It
will be commonly in the development team’s scope to determine what data
is considered critical and how it is going to be stored. Storing some sensitive
information may be consulted with information security engineers or lawyers,
because it may be subject to security standards or low (e. g., credit card in-
formation).

It may not be worth the additional effort to store some data using the
highest security standards. A risk assessment model, such as Damage, Re-
producibility, Exploitability, Affected, Discoverability (DREAD), should be
used to make a fully informed decision about the extent to which resources
will be spent on the security. For example, anonymized usage data of an ap-
plication may not pose a seriously large risk to a company, but it may still
be preferable not to disclose such information. On the other hand, payment
information needs special attention when handled or persisted for later use
and the resources that would have been spent on securing the former may be
used on the latter.

The data should also be handled differently based on who the owner is.
For example, keys to access storage account owned by the company itself
can be cached in the application’s memory for later use, unlike passwords or
access tokens belonging to users. Generally, secrets that the party running
the application is only consuming should be discarded as soon as possible.

This section will introduce and differentiate between secrets and sensitive
data. Although both of these are confidential, there is a difference in its nature
and therefore also in its usage. Secrets do not have any obvious meaning
assigned to them and instead provide access to some other service or add

33

4. Proposed solutions

some security to the system. Examples include credentials to databases, SSL
certificates, or WiFi passwords. On the other hand, sensitive information holds
meaning by itself and is usually protected to some extent. Phone numbers and
other personal information, or email conversations are examples of sensitive
information. In most cases, authentication or some secret is required to access
this sensitive information.

Passwords are also secrets, but there must be a distinction between secrets
that the company operating the software owns or is authorized to store and
use, and between third-party secrets. User passwords and other secrets not
actively used by the software should never be stored in any form that makes
them retrievable, including encryption. Outputs of hash functions run over
these secrets may be stored for authentication reasons.

We will focus more on the secrets that the software in question is actively
using, not the ones it is consuming from users and other services.

Because of the secret’s nature, they do not provide business value by them-
selves and as such are used only in communication during authentication, or
confidentiality, integrity and authenticity purposes. If a secret is used to access
storage or some data, it should be usually separated from the actual usage
of the data. In this case, the secret is only the means to obtain the data,
while developers creating business logic concerning said data are not access-
ing the secrets. The usage of those secrets should be handled by the runtime,
framework, or infrastructure part of the codebase. Similarly, the secret may
be used only to send information securely. Here also the usage of the secret
is to be separated from business logic, and in some cases, it can also become
the responsibility of the framework or platform to locate and use the secrets.

On the other hand, sensitive information should be considered as having
no meaning on levels other than business. That is not to say that they are
not to be checked for validity or be formatted based on the content, but the
data itself should not be interpreted, but rather only transported.

There are several options for data storage on Azure, as shown in Sec-
tion 1.3. Preferred storage for secrets would be Azure Key Vault, which may
also be used when an HSM is needed for compliance. It provides version con-
trol and auditing options as well as access control, although not on the scope
of individual secrets. This is of course not scalable for large quantities of
data, and structured data cannot be stored there at all. In most cases, Azure
storage or SQL databases would suffice, and there is no compelling security
reason to pick one over the other. That may be decided purely on the usage
needs in this scenario.

4.1.1 Disposing of Data in Memory

Another factor is whether the data is to be persisted or only used once or
for a very brief period. Special care should be taken to dispose of critical

34

4.2. Key Rotation

information after its usage and not to keep it in memory for longer than
necessary, if the language and runtime provide this ability.

It is essential to know how the runtime handles data structures that we
might want to not store in memory for prolonged periods of time. This must
be managed manually in some languages such as C, where the developer must
zero out the memory and then potentially release it. However, some languages
do not provide this kind of control and manage the memory themselves, often
in a non-deterministic manner and without any guarantees.

For example, strings in C# are immutable objects with no way to be
scheduled for garbage collection by the developer. [68] That means that any
secrets stored in the memory may reside there indefinitely.

There has been an improvement on that with the introduction of class Se-
cureString, which implements the IDisposable interface and thus has a method
to be disposed of immediately.

It, however, does not solve the problem that the contents of the string are
unencrypted in memory. It was supposed to use the host operating system’s
API to encrypt the data and have it in plain text only when it is needed. That
would limit the time the secret data is accessible in memory, but it would still
be there. Furthermore, this API is not available on non-Windows platforms,
and the contents of SecureString are not encrypted there. [68]

For these reasons, it is advised not to use SecureString in new code [68].
The recommendation put forth by Microsoft also suggests that it is better
to avoid credentials and instead use certificates and other means for authen-
tication [69]. SecureStrings, however, still may be used to control that the
memory content is cleared and disposed of when requested. When a devel-
oper decides to use it for this reason, he should be also aware where the data
came from and what is he going to do with it. For example, if he gets a pass-
word as a string from user input and then computes and compares its hash
against stored value, there is already one copy of the password in memory and
creating another SecureString would not achieve much. Reason of any usage
should be explained in comments for future reference so that the intention is
not misunderstood.

4.2 Key Rotation

It is important to keep access to persisted data as restricted as possible to
impede data leaks.

Access keys to Azure Storage accounts and other resources with authoriza-
tion via static tokens should be kept confidential at all times. Since they may
provide total access to and control over all the data in the given resource, its
disclosure could have catastrophic consequences.

When applicable, one should prefer to use SAS tokens, because they pro-
vide more granular control about what data can be accessed and what opera-

35

4. Proposed solutions

tions may be performed on it. Using delegated access also enables usage of the
Valet Key pattern [70]. The only other approach to handle access to the data
without providing others with keys would be using a service that would fetch
and store the data on others’ behalf. That may, however, be very expensive in
terms of bandwidth and computational resources. If further supported, even
more control over access can be achieved by connecting a SAS token with a
stored access policy, which puts another set of restrictions on the usage of the
SAS token, but is evaluated at the time of access. Unlike the SAS tokens,
which cannot be changed once signed, the access policy can be modified and
through its deletion or alternation the tokens can be revoked or made more
restrictive.

Due to the SAS tokens being signed with one of the access keys, there is
no avoiding the keys’ usage. Therefore they need to be protected and kept
confidential.

Some Azure services such as Azure Storage have two access keys that can
be used interchangeably. Ideally, there should be only one key in use at the
same time, except during rotation as stated later here. [39]

Rotation of keys in this work will mean the act of changing the key that is
actively used to access the protected resource. This may involve more than a
single key. The old key is usually revoked during this process but may also be
valid after the rotation. Regeneration of a key will mean the act of changing
the value of a single key to a different value. The old key is always revoked
during this process.

One way to enhance the security of access keys is to rotate them both on
a regular basis and when a security breach incident occurs. [39] There should
be a policy in place on how to regenerate and rotate keys so that there is not
an application that ends up with an old nonfunctioning key that would render
the application unable to connect to the service. One option to make this
process much easier is to centralize the keys by putting the ones currently in
use into Azure Key Vault as a secret and letting only authorized applications
to access them there. [39]

Developers must expect that rotations of keys will occur and they should
make the applications ready for these events. The most important thing is
not having hard-coded access keys in the source code. Ideally, the application
can react appropriately to the change of secrets. Some strategies to achieve
this are shown in Section 4.3. Before the application fails, it should first check
for a new value of the secret and only if it has not changed or it is still not
working should it exit with response or status code signalling failure.

4.2.1 Key rotation process

Key rotations should have minimal influence on the end-users. In Figure 4.1
there is one possibility of the process of rotating the keys for a resource that
has two keys providing the same level access as described by Microsoft [39].

36

4.2. Key Rotation

If the applications utilizing the keys were made ready for key rotations dur-
ing development (the keys propagate to the application without the need for
restarting any of the services), there will be no downtime of the applications.

To fully explain Figure 4.1, a textual representation follows. If there are
keys Key1 and Key2, with Key1 being the actively used one, the rotation
would proceed as follows:

1. Key2 is regenerated as to ensure that no party could have had prior
access to it;

2. All appearances of Key1 in configuration files and source code30 are to
be replaced with Key2 ;

3. The applications are tested and restarted or deployed, if needed for the
changes to take effect. There may be some time needed between the
regeneration of the key and its propagation to the services31 and the
applications should not be made to use the new key before such interval
passes;

4. Key1 is regenerated so that no application that was not explicitly given
the new key can access the protected resource. At this point only Key2
should be actively used. Any attackers in possession of the old key or
applications that were not given the new Key2 should not be able to
connect to the protected resource. [39]

Next rotation would look the same, but with the keys’ roles reversed.
It is vital to correctly assess the extent to which the rotation may disrupt

the operation of different services. It will of course influence all services di-
rectly operating with the rotated keys, but also for example all services that
have obtained a SAS token, because those had become invalid when the key
used for signing was revoked.

There may be some time during the rotation when both keys are being
actively used because only some of the applications have already migrated to
the new key.

One way to make this process much simpler is by centralizing the keys in a
single place such as a Key Vault and letting the dependent applications access
them there. In this case, there is only one place where a change of a key must
occur, and testing may be less rigorous, especially from the second rotation
onward.

This process has modelled mainly the situation of a scheduled rotation
when there is no specific reason to believe that an information disclosure event
occurred. In case of such a breach, the process may change to proceed faster.

30It should be noted here that having the keys in source code is a sign of bad design and
should not happen.

31For example, it may take up to ten minutes in Azure storage. [39]

37

4. Proposed solutions

Key	Rotation	Activity	Diagram

Regenerate
Key2

Restart	or
redeploy
applications

Change	secret
values	in

management
systems

Regenerate
Key1

Applications
contain secrets

[no]

[yes]

Ten minutes for the
changes to propagate

Management
systems contain

secrets

[no]

[yes]

Change	secret
values	in
applications

Figure 4.1: Key rotation activity diagram

38

4.2. Key Rotation

Based on the value and confidentiality of the data at risk, and the importance
of the services accessing it, if a key or a SAS token was leaked, there must
be a decision made whether data security or service availability should take
higher priority.

If the data is of low value, the process may commence as it would have if
it were scheduled for this time. This would speed up the rotation schedule,
but it would not disrupt the operations in any other way.

In case the data is valued more, service uptime is critical for business, the
first key regeneration may be skipped. This would make the applications use
a key that was never in use but may have the same value from the time of
the last rotation. It may be reasonable to assume its confidentiality, but it is
better to use a fresh key, especially if the rotation occurred as a consequence
of information disclosure incident. For this reason, it is advisable to have one
more standard rotation after the sped up one.

To further lower the time data is exposed, the key may be changed only
for selected services that are critical for the business. The other services will
then become unavailable.

If the data in question is critical, both of the keys may be regenerated
at earliest available time. This may incur a more extended period of service
unavailability for all services in question (because they need to access the
storage, but they do not have valid access keys), but the data leakage is
stopped as fast as possible.

In all events, there must follow a thorough investigation as to how the
incident started and how the access key or SAS token was leaked. That comes
hand in hand with monitoring and logging operations of services such as Azure
Storage and Azure Key Vault.

This whole process, of course, works for any resources or services that
have at least two valid keys with the same function. The case with one key
only depends on the development and operations team and how fast they can
change all the occurrences of the key after it is regenerated. This process
could not be done differently for the lack of any intermediate period between
the revocation of the old key and introduction of the new one. The cases
with three or more keys are trivial to transform to the problem with only
two keys by discarding the others. Another option for more secrets is to have
multiple pairs of keys, that would be used for different scenarios, e. g., one pair
for the development team, one pair for reading services and another pair for
writing services. This could prove beneficial if there is an incident with one
key because it does not disrupt the others in any way. Another much harder
to manage option would be only to have one inactive key with which any other
key may be rotated if needed. This means that the inactive key would be at
any given time the last key that was rotated out. This would be harder to
manage because there is no easy and clear way to identify what key is used
where.

39

4. Proposed solutions

4.2.2 Key Vault Managed Storage Access Keys

Azure Key Vault can also rotate the storage keys automatically without any
outside intervention after initial setup.

Key Vaults must be first permitted to manage access keys to storage ac-
counts.32 Then a storage account can be added to a Key Vault as a managed
storage account. The Key Vault can be configured to either rotate the keys
periodically or only when requested.

The Key Vault never gives out the storage access keys (although they can
still be found in the storage account if need be), but instead issues SAS tokens
based on prior definitions.

There are some limitations put on Key Vault managed storages. There
should always be only one managing Key Vault for any given storage ac-
count. [71, 72] That, along the fact that Azure Key Vault cannot have access
policies set for specific secrets as stated in Section 1.3.2, means, that the
principle of least privilege cannot be implemented. For example, when one
application needs a SAS token to read table entries, and another one needs to
add entries into tables, although there can be two different SAS definitions in
the Key Vault, both applications will be given either token when requested.
This provides some safety when one of the tokens is disclosed because the
attacker can only access some part of the storage as set in the SAS token, but
if the application is also made to request a token with different privileges, the
Key Vault will provide it, even though the application should not need it.

If a Key Vault is managing the keys, there should also not be direct regen-
eration requests on the storage account, but those should instead be directed
towards the Key Vault.

Experiments have also shown that Key Vaults do not use the key rotation
scheme as described earlier, but instead only change one of the two keys during
each rotation. This would suggest that it relies on the assumption that the
keys have not been compromised. This ensures that the SAS tokens that
would have expired after the next key rotation are not revoked in the event
of key rotation, meaning that there is no need to reacquire SAS tokens in the
event of key rotation.

4.3 Secret Handling Methods

One of the most important aspects of the development of secure applications
on cloud is handling secrets. It is in the nature of cloud-based distributed
resources that most services will have many dependencies against which they
need to prove authorization. In the simplest approach, which is still widely
used, it may be implemented by a pre-shared secret. Such secret may be used

32Azure Key Vaults are pre-registered in all non-government clouds with ApplicationId
cfa8b339-82a2-471a-a3c9-0fc0be7a4093. [71, 72]

40

4.3. Secret Handling Methods

as a password to an SQL database or credentials in some OAuth access grant
flow.

Secrets here will refer only to pre-shared secrets or private keys and other
data essential for authentication or authorization. There may be much more
sensitive data, such as payment information, but that is handled differently, as
discussed in Section 4.1, and is secured in the same way, as it would have been
in an on-premise system. General sensitive data usually has to be fetched when
needed, because there is a much larger quantity of it than an application can
store in its memory and it may change more often than for example a database
password. On the other hand, there are several different access scenarios for
secrets access, each with its advantages, drawbacks and limitations.

4.3.1 Secrets Storage Mechanism

The first point of view from which this issue can be explored is the system that
persists and provides the secrets. The issue is not only how well the system
is protected, but also how hard it is to update the secrets and who can access
them. To be able to automatize some processes such as key rotations without
disrupting the system (see Section 4.2), it should be possible to update the
secrets at any time, even when the service is running. Limiting authorization
to accessing and changing the secrets is also essential because it limits threats
of unauthorized disclosure, both malicious and accidental.

Plain Text Secrets in Configuration Files

The most basic and insecure way of handling secrets is having them in plain
text in configuration files. This is very dangerous because such secrets are
often saved in version control systems, either on purpose or by mistake. Such
practice should be disallowed, and the developers are encouraged to research
and use different methods, so that the secrets are visible only to people and
applications that need them. Anyone with access to the source code or con-
figuration files may have direct access to those secrets, and through them to
any service they should be protecting.

Such secrets are not protected at all, and the only advantages are the
simplicity of the solution and the fact that the secret is transferred only when
the application is deployed. On the other hand, that also means that if one of
the secrets needs to change, the application needs to be restarted to reload the
configuration files. There is the threat that if the configuration file is leaked,
all secrets are disclosed.

An even more naive approach is to have the secrets in the source code.
Although that might be a viable solution for one-time personal projects and
the most basic proofs of concept, this solution is not sustainable. The secrets
are not centralized, so it is harder to find them, and some may even figure in
multiple places. When changed, the applications need to be even rebuilt and

41

4. Proposed solutions

redeployed for the changes to take effect. What is even more critical is that
the secrets are saved in version control systems and anyone who has access to
the code for any reason, also has direct access to all the secrets, same as with
secrets in configuration files.

Encrypted Secrets in Configuration Files

A more secure approach is encrypting the secrets or the whole configuration
files using utilities such as git-crypt. Because the configuration files are en-
crypted, only people and applications with the decryption key may access
the secrets. It is then safe to commit such configuration to a version control
system.

However, this approach only transforms the problem of sharing the original
set of secrets into sharing the decryption key for the configuration, which is
just a different secret. Not only do all the developers working on a given
application need to be given the decryption key as well as having it updated
if it is changed, but the execution environment that will build the application
in the cloud needs it too. This new decryption key must be input manually,
or other means to share this secret must be used.

This can be improved by having several files with different decryption keys
for each environment. This way developers do not have access to production
secrets, and unauthorized users with access to source code cannot use even
development or testing environment secrets.

Another problem may arise if the configuration mixes general settings for
the application with environment-specific secrets. Then either all configu-
ration files must be changed individually at the same time to use the same
settings, or the general options must be split from the secrets. This would
create multiple configuration files, which may be harder to manage.

Also, some secrets may have to be duplicated if they are needed by multiple
applications with different configuration files.

Environment Variables

A somewhat different approach is to put the secrets directly into a runtime en-
vironment (e. g., Azure App service) directly via environment variables. This
can also be achieved either manually, which would certainly not be recom-
mended, or as a part of the deployment process. In any case, the secrets are
generally not shared with developers, except for people with access to the
running instances or deployment pipelines if that is where the environment
variables are set. The deployment process may usually be much more re-
strictive than source code for the application, therefore giving access to fewer
people.

If the environment variables were set automatically during start or deploy-
ment by a process on the cloud resource, there would have to be a configuration

42

4.3. Secret Handling Methods

script accessible by this process. This is then almost precisely the same case as
if there were a configuration file read by the application. The main difference
between the two is which process accesses the secrets and when this is hap-
pening. Here it would be the parent process (or another ancestor), that would
set the environment and pass the configuration variables to the application.
In the case of regular configuration files accessed by the running application,
the parent processes do not access the secrets at all.

Therefore there are now multiple processes operating with the secrets and
most of the drawbacks of configuration files would remain, because there would
have been a way to configure the environment variables automatically. The
main advantage would be that people responsible for deployment, rather than
developers, would have access to the secrets, which may be a smaller group.

Furthermore, on Linux, the environment variables are always tied to the
running process. Although .NET Core supports persistent environment vari-
ables for users and the local machine through the use of registry keys on
Windows, Azure Web App does not let the running application change these.
Therefore even on the Windows platform are all relevant environment vari-
ables process-specific. Experiments have also shown that Azure restarts the
App Service every time an environment variable is changed. This can dis-
rupt the operation as well as induce some downtime when the application is
starting up.

Secrets Management Systems

Secrets can also be centralized in a configuration management system or a
secrets management system, such as Azure Key Vault. This way the secrets
are completely split from the code and it offers much higher agility when
changing the secrets, because the application may be written to expect and
react to events when the secrets change, mitigating the need for restarts in
these scenarios. Responsibility is also split with clear borders, where one
developer may be responsible for the management system itself (i. e., the se-
crets at rests), while a group of developers creating the application accessing
those secrets need to worry themselves only with handling the secrets during
runtime.

These systems also offer a way to version secrets without putting them in
a version control system such as git. It also allows multiple applications to
access the same secrets if need be, meaning it is centralized and if the secret
changes, it needs to be changed only in the management system. Furthermore,
it allows for logging of accessing and changing the secrets, which may be
invaluable information in security breach situations.

The applications know only a URI, where the secret is supposed to reside.
They have to be authorized to access the desired secret in the management
system and then they can retrieve and use it.

43

4. Proposed solutions

This solution can also be described as a mere transformation of the orig-
inal problem into a problem of obtaining credentials for safe authentication
against the secrets management system, but this feature has been implemented
in Azure by employing managed identities as discussed in Section 1.3.6. Us-
age of managed identities also makes a clear separation of concerns between
the developers and the cloud service provider. The developers are directly re-
sponsible for safely storing and disposing of the secrets in memory, including
disabling caching for high-value secrets, while the CSP handles storage and
accessibility of the credentials. The application is still responsible for making
all the calls to acquire the Azure AD tokens to access the Key Vault, but may
do so with the use of an official SDK if it is available for the given program-
ming language. When the call is serviced by the underlying virtual machine,
the credentials for Azure AD are injected, and thus the application cannot
leak them by mistake.

Additional security can also be achieved by managing access to the secrets
management system based on IP addresses or restricted to a VPN that con-
tains the management system. Then even in case of credentials being leaked,
the secrets may still be safe if the attacker cannot use or pretend to be us-
ing an authorized IP address, the connection will have been refused and the
secrets are not leaked.

This approach enables some more options to be explored, specifically when
the secrets are to be resolved. One may resolve the URI during deployment,
startup of the application or during runtime, where there are also different
options as to for how long the secrets are cached or if they are to be disposed
of immediately after use.

4.3.2 Secrets Resolution Time

The other issue is when the resolution occurs. The previous section showed
that not all storage options offer much freedom as to when the secrets are
retrieved. However, it is crucial to be able to periodically change values of
the secrets without disrupting the service operations. Because of that, this
section will mostly focus on the case when a secrets management system is
employed.

Secrets Resolved During Deployment

In case the secrets are resolved during deployment, there are usually steps in
the build pipeline, where the management system is queried for the secrets,
which are then injected into configuration files. Because of that, this approach
shares some of its strengths and weaknesses with storing the secrets in unen-
crypted configuration files, while tackling the largest weakness of the exposure
of the secrets.

44

4.3. Secret Handling Methods

The only system having to access the management system is the one where
the software is built. There must be a way to programmatically access the se-
crets, e. g., via a REST endpoint and the system must be able to communicate
with it including providing authentication credentials or authorization tokens.
The applications using these secrets do not have to have any knowledge of
these processes or how to communicate with the management system.

This certainly simplifies management of access policies because only the
deployment process must access the secrets, but it comes at the price of agility
when the secrets have to be changed. If any secret is rotated, the application
must be wholly redeployed, possibly making the service unavailable for some
time. Because of this, the approach is very impractical, especially if the secrets
change on a regular basis.

Secrets Resolved During Bootstrap-time

Another option is to resolve the secrets on application start-up. This usually
separates the secrets from the main configuration, and programmatical access
to the the management system must be available in the form of an SDK or
an implementation must be made for each language, in which an application
that needs to access the secrets is written.

Developers also need to solve the issue of storing the secrets indefinitely
while preventing the risk of exposing them through, for example memory
dumps. Purging the memory is almost impossible in managed languages such
as Java and C# as briefly discussed in Section 4.1.1

Because the application only needs to be restarted, it is faster and easier to
make it use new secrets when needed, but it is still rather slow and straining
the virtual machine’s resources too much. There may still be a time when the
service is unavailable during the restart if multiple instances are not running
at the same time.

Because the communication with the secrets management system has to
be already implemented in the application, it can serve as a starting point for
developing more advanced solutions. For example, the secrets may be loaded
during bootstrap-time and then requested again later using the same routines
if the secret is being rejected by the resources where it should work as an
authorization token.

Secrets Resolved Just-in-time

The most agile way to handle changes of secrets is to acquire them only when
needed and dispose of them when used. This approach makes the possibility
that a secret is no longer valid very small. It does not completely eliminate
it though, and retry policies still need to be implemented for critical services,
which have to have as high availability as possible. With this method, the
problem of safely caching the secrets is not relevant because they are not

45

4. Proposed solutions

cached for later use at all. However, the developers should still take care to
signal the compiler or runtime to not use hardware cache for the secrets, as
with any other method.

On the other hand, if the service is for example a back-end application
servicing hundreds of requests every second, it can strain not only the secrets
management system, but also the network. It may also introduce an increase
in execution time and lower the service’s availability because a call has to be
made to the management system as its dependency for each request to the
service. Also, in this case, the communication with the secrets management
system must be fully supported by all the applications requiring it, but greater
emphasis should be put on optimization of those calls if possible (e. g., by
ensuring that the dependency and the management system are in the same
data center), since it is often used during normal operations, not only during
start-up, and because it is to be called much more often.

This approach can be very well extended to store the secrets safely in
memory for some time if the secret is expected to be reused soon. That way
some of the disadvantages are tackled while still being reasonably agile with
secrets changes. On the other hand, ways to store the secrets securely and
dispose of them after a given time-out are further challenges for development
possibly introducing some vulnerabilities to the code, which may dissuade
some teams from fully implementing it for regular use. A short introduction
to this topic can be found in Section 4.1.1.

4.3.3 Discussion

It is undoubtedly advisable to store secrets securely and not use a standard
version control system for such tasks. The management system used should
support authentication of applications through Azure AD or another identity
provider, otherwise some other method for accessing the secret to authenticate
against the management system must be available beforehand.

Strategy for resolving secrets is dependent on the nature of the secrets
as well as the application accessing them. If the secrets are static and may
change exceptionally rarely or never, they can be saved into the application
during deployment or during start-up. This also provides superior availability
because it does not introduce any dependencies in runtime. If the secrets have
a high value and storing them for prolonged periods of time in memory is not
desirable, one can query them when needed and dispose of them right after use.
For more standard secrets, such as access keys that may be regularly rotated
but excessive querying is undesirable, a combination of the given solutions
may be the most appropriate solution. The secrets are then queried only
when needed, but they are stored in memory for later use. There must be
systems in place that clear these secrets after given time as well as routines
to try to acquire new values of secrets, that were changed between usages.

46

4.4. Data Protection API

4.4 Data Protection API
Multiple instances of the same application may need some data to operate
and they either need to negotiate the creation of the state or must be able to
share and use some other instance’s state. They may run simultaneously and
some may also be stopped automatically when the load lessens, so the state
should not be dependent on a single running instance and should be instead
persisted in some external system.33 Data protection API in ASP.NET Core
is an interesting example of how a state of the application may be needed to be
preserved explicitly in shared storage when running in the cloud environment.

It is made to encrypt data while automatically handling the key ring and
key rotation. The keys that the Data Protection API uses for encryption
are usually saved on the machine running the application and in the case of
Windows, the keys are also protected by the operating system’s Data Pro-
tection API [74]. That is an entirely different system and because it is not
system independent, portable applications written in .NET Core should not
assume it will provide any protection. The ASP.NET Core Data Protection
API also uses purpose strings, which serve to identify whether the given opera-
tion should be permitted, or the application is trying to decrypt data that was
encrypted by some other application deriving its keys from the same entropic
material. This, however, does not secure the keys themselves in any way, and
if an application may execute any code, it can obtain the master keying mate-
rial and through it derive the other subkeys. It serves only to separate usage
in different contexts, e. g., the string can be based on a username and then
any user other than the one, on whose behalf the data was encrypted.

It is made to work out-of-the-box on standard systems, but some prob-
lems may surface when moved to the cloud. The problem is that the creation
of the keys is dependent on an output of a Pseudorandom Number Genera-
tor (PRNG). Therefore, if the application is being run on multiple machines
at once, these will not be able to access each other’s keys and there is an
extremely high probability that they will generate different keys.

For example, if the application would create bearer tokens, it would work
as intended as long as the application minting the tokens was also the one
checking them later. If one application creates a token and another one vali-
dates it, it will be unable to decrypt it properly.

This problem occurs because the application is not stateless, but the state
does not propagate between its instances. Although the developer does not
explicitly generate or save any keys, they need to understand the components
they are using and what it means for the system as a whole.

In the example of the Data Protection API, there is also already a solution
ready to be used with the Data Protection API having configuration options

33There may be patterns used for electing a leader instance, which would provide the
necessary keys, but since the state must be both shared and persisted in this case, it would
not solve the problem on its own. More on this can be found at [73].

47

4. Proposed solutions

to store the keys in Azure Blob storage. However, because the ASP.NET
Data Protection API depends on Windows Data Protection Application Pro-
gramming Interface (DPAPI) for encryption of the persisted keys, the keys
are stored in plaintext when the storage location is changed or the application
does not run on Windows. This too can be solved with an already existing
solution, where the keys for encryption stored in a Blob storage are themselves
encrypted by a key in Azure Key Vault. The reason that the Key Vault is
not used for storage of the encryption keys is that they have to conform to a
given structure and hold some metadata and because the keys are not deleted
after expiration, so it may use a lot of space in the Key Vault.

4.5 Authentication and Authorization of End
Users on Azure

Most applications must be able to correctly assess the identity of users to be
able to authorize them properly. Authentication is the process of assessing
the identity of an entity, while authorization is the decision wether an au-
thenticated entity may access a resource or request an operation. While au-
thorization cannot be very well delegated, authentication may be performed
by an external identity provider such as Azure AD or social media identity
providers. This would immensely simplify development, user administration,
and in most cases also enhance the user experience.

Authorization is usually implemented as a set of rules which are looked up
and then access is either allowed or denied. If the identity provider is out of
our control and we cannot receive user’s roles in the token, user’s roles must
be saved internally.

On the other hand, authentication involves handling user credentials and
storing their information, which may prove very difficult to do securely and
in compliance with all laws and best practices. Using outside providers may
limit the need to store personal information and prevents the mishandling
of credentials because they may never be obtained. However, some personal
information may still be needed as some providers only provide a unique iden-
tifier, while the application may need much more information about the user.
The usage of external identity providers does not create a safe application by
itself because great care should also be taken to misuse received authorization
tokens, but these have much shorter lifetime than standard users’ passwords
and can be revoked and regenrated without requiring user interaction.

It can also benefit the users, who do not need to create and remember a new
password or reuse an old one. They may also be signed in with a single click if
they already used the given identity provider in recent time. This significantly
improves user experience and also protects the user’s credentials, because their
information is stored only at the identity provider’s server. Users are also more
likely to handle their passwords securely if they do not have multiple complex

48

4.6. API Security

passwords but instead a single or very small number of passwords. That limits
the number of places where an attacker may obtain the user’s credentials.

Federating identity34 also simplifies user management in the way that
many features related to authentication may not be implemented and instead
consumed from the outside service. For example, resetting passwords may be
difficult because the user needs to obtain a token for the operation, but stan-
dard communication may be unreliable (the token may end up in the SPAM
folder), as well as not secure. Furthermore, some advanced features such as
MFA may be very hard to implement correctly and reliably. Furthermore, if
standards concerning credentials storage change, the changes will be imple-
mented upstream at the identity provider with much smaller changes left to
the developers using the service.

Integration with multiple identity providers is also a possibility. For ex-
ample, an application can then serve users from two different companies, each
implementing their own identity services.

Even if it is not desirable to federate authentication to some external
provider, it can be worthwile to invest the resources needed to create a private
identity provider. Usage of any such service clearly separates authentication
code from the applications. This solution may also be reused multiple times,
and provide single sign-on capabilities.

4.6 API Security

Securing the API should be one of the top priorities, but that will not ensure
that it will work flawlessly and that there will be no vulnerabilities. Developers
should create other services with this in mind and balance the complexity of
input validation and layered security. The API should sanitize all user input
and then make calls to other resources with a low probability of invalid format.
However, services operating with high-value data should take further measures
to ensure safety even if the API can be breached, such as limiting the inbound
traffic to a VPN where the service resides, or even only to the IP address of
the API.

All servers and ports except for the API may be made inaccessible from
the outside Internet and instead be only available from a VPN in the cloud.
For example, all back-end servers may be serviced through the API and refuse
all connections from other sources. This would shift any potential attacker’s
attention either to the API, the virtual network itself, or to gaining access
through other means, such as social engineering.

34Federated identity [75] is a pattern, where multiple identities of a user are linked to-
gether. The participating identity services need to have some trust relationship (it may
be only one-way). This is similar to Single Sign-On (SSO), where only authentication is
federated.

49

4. Proposed solutions

Of course, there may be a situation, where one of the back-end services
is required to be accessible to some other service that may not be inside the
VPN. In that case, a decision should be made if the service can also be made
accessible through the API and if this additional work is worth it. In some
scenarios it may be best to move this one service out of the VPN, worsening
its security, but ensuring that there is only one open endpoint in the network.

There are several things to do to secure an API properly. The intended
users should be identified first, and the service should be made accessible only
to them, if applicable. If the service is, for example, an internal company
accounting system, a firewall can be configured to only allow access from the
company’s internal network. Also, there should be robust authentication in
place.

At all user-facing endpoints, all input and requests must be validated and
potentially sanitized. As the API is now the central point entry, it becomes
the main defense perimeter. Special care should be taken to prevent buffer-
overflows, SQL injection, cross-site scripting, and other possible vulnerabili-
ties. This is similar to the Gatekeeper pattern [76], where the public endpoint
only validates and sanitizes requests and then passes them to some internal
trusted service. In this case, the Gatekeeper cannot access other services such
as storage on its own, and no service other than the gatekeeper may make
requests to the trusted service.

When paired with some other Azure services (Azure DDoS Protection,
Application Gateway, Load Balancer, etc.), this approach may for example
prevent some DDoS attacks, and ensure load balancing and failover in criti-
cal situations. This means that the developers do not need to make custom
code for redirections or failover procedures, enabling them to focus their work
elsewhere.

Many Azure resources such as Azure Storage, Azure Key Vault, or Azure
App service may be put inside a VPN, but are instead accessible from the
Internet by default. If all the relevant resources are in a virtual private network
and it is reasonable to assume the security of the outside-facing endpoints,
the communication inside the network may not be encrypted. This decision
should not be taken lightly. The security of the VPN must ensure that there
would not be any malicious party inside the network. There are no guarantees
about the confidentiality, integrity or authenticity of the messages when using
HTTP and therefore there must be high trust between the services in the
network. On the other hand, it may be very challenging to properly configure
all the certificates to be used in the private network. The decision to do so
must be well-documented, and reasons to believe that the network will not be
compromised should be provided. It should also be taken into consideration
that the service may evolve later and this decision can add to the technological
debt.

Another part is data security in transit. All the APIs should enforce se-
cure protocols and refuse any connections via unencrypted channels. This is

50

4.6. API Security

especially vital if the exchange may include credentials or personal or confi-
dential information. If that is not the case and for example only static content
is being served by the API or web page, it is still inadvisable to use insecure
connections, since the communication may be changed by a man-in-the-middle
attack. This may lead to providing false information to the end users or even
create a threat of phishing some information from users.

The Azure App Service can either handle the certificates and secure com-
munication automatically, or it can be provided with the certificate by the
developer. Azure always provides a certificate when the application does not
use a custom domain, but that is not a viable solution for most businesses for
reasons of brand recognizability and user experience.

On the other hand, a company may already own a certificate and wish
to use that certificate in Azure without buying another one from Microsoft.
The first option is to use HTTPS implemented by the framework. This is
usually simple in code, but the certificate must be provided to the applications
directly. It can be either uploaded to Azure Portal and loaded directly into
the application (only with App Service with tier Basic or higher running on
Windows), or it can be uploaded as a file [77]. Because a certificate is in its
nature a secret, it is not advisable to have it as a file along with the source
code, as was discussed in Section 4.3. A better option is to have them in
Azure Key Vault and access the certificate there. This is again similar to
the case with secrets and provides the same benefits and drawbacks, except
that the certificates are usually loaded during application start-up and never
reloaded. Therefore, the service must be restarted when a certificate changes.
This scenario should not occur too often.

Another option is to use SSL termination, where an upstream service han-
dles the secure communication with clients and then relays the messages un-
encrypted to the intended recipient. This approach assumes that the channel
between the SSL termination service and the backend server is entirely safe
and there are no eavesdropping agents. We can make these assumptions for
example with Azure VPN. Uploading and setting up the rules for redirection
and SSL termination can be done with Azure Application Gateway [78] via
several tools including Azure CLI and PowerShell. Application Gateway can
also work with certificates stored in Azure Key Vault, again providing more
straightforward control over them and the ability to use the certificates in
multiple services with a single centralized point of configuration.

TLS can also be used for mutual authentication. Then only clients with
valid certificates can use the service, and all other attempts to connect are
rejected. This type of authentication is currently supported only at the App
Service level and it cannot yet be done in upstream services on Azure, such
as Application Gateway. This also works only over HTTPS, so if such level
of security is desired, it is advisable to completely disable HTTP except for
some specific use-cases where it cannot be replaced with the secure protocol.

51

Conclusion

This work has introduced some basic notions of cloud computing and specif-
ically its use in the Microsoft Azure cloud. It then focused on the security
aspects of development there.

One of the notable contributions of this work may be the introduction
to some of the Azure services and their security-related capabilities, because
much of the information is scattered across multiple documentation pages and
some of it may be even missing there and must be instead found out using
experiments or by reading the source code. The security features, especially of
the Azure Storage and Azure Key Vault, were examined and several principles
are commonly found in multiple other Azure services. Some limitations were
also found and explained. The reader should now be able to make an informed
decision as to what kind of service they want to use based on their specific
needs.

Some essential security chellanges during development process were iden-
tified and different solutions introduced and explained. Namely operations for
secure and appropriate data use and storage were described at length. This
topic was tightly coupled with the information obtained in Section 1.3, where
the Azure services were introduced and their properties explained.

The work then built on this information to provide fundamental differ-
ences between different categories of data based on some properties of the
data. Different approaches to handle secrets and other sensitive or confiden-
tial information were described. There was also a brief introduction to some
aspects the developer or other people responsible for the data security should
pay attention to to accurately assess the amount of resources to be spent on
the security of different kinds of data.

Related to this is the handling of secrets in the application on the source
code level. This topic was examined in two aspects, from the viewpoint of
accessing the secrets, and rotating them. In the first case, there was a com-
prehensive list of solutions shown, and their different advantages and problems
explained. The solutions were split first by the system that provides them to

53

Conclusion

the application and then by the time when the secrets are accessed. This
thesis has argued that for most applications a centralized secrets management
system is the best solution because of it is clearly separated both from version
control systems for source code and is not dependent deployment procedures.
The time of secret resolution (fetching it from the secrets management system)
is even more dependent on the given application and its use of the secrets,
and therefore it is impossible to pick an ideal process for the general case.

Some features specific to .NET Core and ASP.NET Core for handling
data were introduced in Section 4.1.1 and Section 4.4. These were also used
to illustrate some problems with handling data specific to each language or
framework, which the developer must understand. They should also be able
to enforce some non-trivial behaviour, such as disposing of sensitive data from
memory.

The other part of handling secrets was their rotation, i. e., the process
of changing the currently used secret usually including the revocation of the
old one, as shown on the example of rotating two interchangeable access keys
in Section 4.2. This process was described in depth with possibilities for
customization based on different number of keys.

The management of Azure Storage access keys using Azure Key Vault was
also introduced. There were some limitations in its implementation found,
such as not revoking both keys during the rotation as proposed to have better
guarantees about the safety of the keys.

Authentication in Azure was also described at length, specifically in Sec-
tion 1.3.1 about Azure Active Directory and Section 4.5 about the usage of
identity providers and the possibility to use an external one, and what that
would bring. The most important part of the former in this context is the
review of Azure AD capabilities and protocols used, namely the OAuth 2.0
protocol.

The problem of securing APIs was also addressed, with discussion of why
it may be preferred to focus more on security of this service and possibly
even invest more resources into it than the other services’ individual security.
This needs to be evaluated on project-to-project basis. There were mentions of
some Azure services, that can potentially be used to provide enhanced security
against threats such as a DDoS attack. Different possible scenarios for using
a secure channel on an Azure Web App based API were also reviewed and
discussed.

Future works in this field could build on the Chapter 1 by reviewing addi-
tional Azure resources, may it be Azure SQL Servers and other storage options,
or even services on different levels of abstraction, such as Azure Virtual Net-
works or Virtual Machines, and on the other side management and monitoring
tools such as Azure Security Center or Application Insights. Services securing
an API such as Azure Application Gateway and Azure Front Door can also be
compared, because some of the features they provide are similar and therefore
it may be hard to choose the right service for a given scenario. Azure Active

54

Directory is also very broad topic and it could be examined much more closely
with concrete examples of protocol communication. A service could also be
created to handle rotation of keys and handing out SAS tokens, not just for
Azure Storage, but also for other services such as Event Hub.

55

Bibliography

[1] Mell, P.; Grance, T. The NIST Definition of Cloud Computing. National Institute
of Standards and Technology. Special Publication 800-145, [online], September
2011, [cit. 2019-02-18]. Available from: https://csrc.nist.gov/publications/
detail/sp/800-145/final

[2] Narumoto, M.; et al. Moving Applications ot the Cloud. Microsoft Corporation,
second edition, June 2012.

[3] Collier, M.; Shahan, R. Azure Essentials. Microsoft Press, 2015, ISBN 978-0-
7356-9722-5.

[4] Modi, R. Azure for Architects. Packt Publishing, October 2017, ISBN 978-1-
78839-739-1.

[5] Microsoft. Azure Portal. [online], [cit. 2019-04-17]. Available from:
portal.azure.com

[6] Aiello, J.; et al. PowerShell. In: docs.microsoft.com, [online], 2018-08-
27, [cit. 2019-04-19]. Available from: https://docs.microsoft.com/en-gb/
powershell/scripting/overview?view=powershell-6

[7] Tramer, S.; et al. Overview of Azure PowerShell. In: docs.microsoft.com, [online],
2019-01-10, [cit. 2019-04-19]. Available from: https://docs.microsoft.com/en-
gb/powershell/azure/overview?view=azps-1.7.0

[8] Aiello, J.; et al. Cmdlet Overview. In: docs.microsoft.com, [online], 2016-
09-13, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-gb/
powershell/developer/cmdlet/cmdlet-overview

[9] Lamos, B.; et al. Azure REST API Reference. In: docs.microsoft.com, [online],
2019-03-26, [cit. 2019-04-19]. Available from: https://docs.microsoft.com/en-
gb/rest/api/azure/

[10] Simorjay, F. Shared Responsibilities for Cloud Computing. Second edition, April
2017.

[11] Taylor, P.; et al. Resource access management in Azure. In:
docs.microsoft.com, [online], 2019-02-11, [cit. 2019-04-13]. Available from:

57

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
portal.azure.com
https://docs.microsoft.com/en-gb/powershell/scripting/overview?view=powershell-6
https://docs.microsoft.com/en-gb/powershell/scripting/overview?view=powershell-6
https://docs.microsoft.com/en-gb/powershell/azure/overview?view=azps-1.7.0
https://docs.microsoft.com/en-gb/powershell/azure/overview?view=azps-1.7.0
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/cmdlet-overview
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/cmdlet-overview
https://docs.microsoft.com/en-gb/rest/api/azure/
https://docs.microsoft.com/en-gb/rest/api/azure/

Bibliography

https://docs.microsoft.com/en-gb/azure/architecture/cloud-adoption/
getting-started/azure-resource-access

[12] Lyon, R.; et al. Tutorial: Create a custom role for Azure resources using Azure
PowerShell. In: docs.microsoft.com, [online], 2019-02-20, [cit. 2019-04-19]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/role-based-access-
control/tutorial-custom-role-powershell

[13] Lyon, R. Tutorial: Create a custom role for Azure resources using Azure
CLI. In: docs.microsoft.com, [online], 2019-02-20, [cit. 2019-04-19]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/role-based-access-
control/tutorial-custom-role-cli

[14] Drumea, A.; Simons, A.; et al. Azure Active Directory Data Security Consider-
ations. First edition, January 2019.

[15] Ross, E.; et al. What is Azure Active Directory? In: docs.microsoft.com, [online],
2018-11-13, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/azure/active-directory/fundamentals/active-directory-whatis

[16] de Guzman, C.; et al. Certificate credentials for application authentica-
tion. In: docs.microsoft.com, [online], 2018-07-24, [cit. 2019-04-13]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/active-directory/
develop/active-directory-certificate-credentials

[17] Ross, E.; et al. What is the Azure Active Directory architecture?
In: docs.microsoft.com, [online], 2019-08-23, [cit. 2019-04-13]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/active-directory/
fundamentals/active-directory-architecture

[18] The OAuth 2.0 Authorization Framework. Request for Comments: 6749, [online],
October 2012, [cit. 2019-04-14]. Available from: https://tools.ietf.org/html/
rfc6749

[19] Sakimura, N.; Bradley, J.; et al. OpenID Connect Core 1.0 incorporating errata
set 1. [online], [cit. 2019-04-14]. Available from: https://openid.net/specs/
openid-connect-core-1_0.html

[20] Jones, M.; Hardt, D. The OAuth 2.0 Authorization Framework: Bearer Token
Usage. Request for Comments: 6750, [online], October 2012, [cit. 2019-04-14].
Available from: https://tools.ietf.org/html/rfc6750

[21] Jones, M.; Bradley, J.; et al. JSON Web Token (JWT). Request for Com-
ments: 7519, [online], May 2015, [cit. 2019-04-14]. Available from: https:
//tools.ietf.org/html/rfc7519

[22] de Guzman, C.; et al. Microsoft identity platform protocols. In:
docs.microsoft.com, [online], 2019-04-11, [cit. 2019-04-13]. Available from:
https://docs.microsoft.com/en-gb/azure/active-directory/develop/
active-directory-v2-protocols

[23] Denniss, M.; Bradley, D.; et al. OAuth 2.0 Device Authorization Grant. Internet-
Draft, expires on 2019-09-12, [online], March 2019, [cit. 2019-04-23]. Available
from: https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15

58

https://docs.microsoft.com/en-gb/azure/architecture/cloud-adoption/getting-started/azure-resource-access
https://docs.microsoft.com/en-gb/azure/architecture/cloud-adoption/getting-started/azure-resource-access
https://docs.microsoft.com/en-gb/azure/role-based-access-control/tutorial-custom-role-powershell
https://docs.microsoft.com/en-gb/azure/role-based-access-control/tutorial-custom-role-powershell
https://docs.microsoft.com/en-gb/azure/role-based-access-control/tutorial-custom-role-cli
https://docs.microsoft.com/en-gb/azure/role-based-access-control/tutorial-custom-role-cli
https://docs.microsoft.com/en-gb/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-gb/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-certificate-credentials
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-certificate-credentials
https://docs.microsoft.com/en-gb/azure/active-directory/fundamentals/active-directory-architecture
https://docs.microsoft.com/en-gb/azure/active-directory/fundamentals/active-directory-architecture
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-v2-protocols
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-v2-protocols
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-15

Bibliography

[24] Jones, M. JSON Web Algorithms (JWA). Request for Comments: 7518, [online],
May 2015, [cit. 2019-04-14]. Available from: https://tools.ietf.org/html/
rfc7518

[25] Baldwin, M.; et al. About keys, secrets, and certificates. In:
docs.microsoft.com, [online], 2019-01-07, [cit. 2019-04-13]. Available from:
https://docs.microsoft.com/en-gb/azure/key-vault/about-keys-
secrets-and-certificates

[26] Shemanske, T. R. Modern cryptography and elliptic curves: a beginner’s guide,
volume 83. Providence, Rhode Island: American Mathematical Society, 2017,
ISBN 1470435829;9781470435820;.

[27] Neira, B.; et al. What is Azure Key Vault? In: docs.microsoft.com, [online], 2019-
01-07, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-gb/
azure/key-vault/key-vault-overview

[28] Neira, B.; et al. What is Azure Dedicated HSM? In: docs.microsoft.com, [online],
2018-12-07, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/azure/dedicated-hsm/overview

[29] Baldwin, M.; et al. Azure Key Vault soft-delete overview. In: docs.microsoft.com,
[online], 2019-03-19, [cit. 2019-04-13]. Available from: https://
docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-soft-delete

[30] Neira, B.; et al. Azure Key Vault availability and redundancy. In:
docs.microsoft.com, [online], 2019-01-07, [cit. 2019-04-13]. Available
from: https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-
disaster-recovery-guidance

[31] King, J.; et al. Geo-redundant storage (GRS): Cross-regional replication for
Azure Storage. In: docs.microsoft.com, [online], 2018-10-20, [cit. 2019-04-13].
Available from: https://docs.microsoft.com/en-gb/azure/storage/common/
storage-redundancy-grs

[32] Myers, T.; et al. What is Azure Blob storage? In: docs.microsoft.com, [online],
2018-11-19, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/azure/storage/blobs/storage-blobs-overview

[33] Myers, T.; et al. Introduction to Azure Blob storage. In: docs.microsoft.com,
[online], 2019-01-03, [cit. 2019-04-13]. Available from: https:
//docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-
introduction

[34] Myers, T. What are Azure Queues? In: docs.microsoft.com, [online], 2019-02-06,
[cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-gb/azure/
storage/queues/storage-queues-introduction

[35] Gunda, S.; et al. Introduction to Table storage in Azure. In:
docs.microsoft.com, [online], 2018-04-23, [cit. 2019-04-13]. Available from:
https://docs.microsoft.com/en-gb/azure/storage/tables/table-
storage-overview

59

https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc7518
https://docs.microsoft.com/en-gb/azure/key-vault/about-keys-secrets-and-certificates
https://docs.microsoft.com/en-gb/azure/key-vault/about-keys-secrets-and-certificates
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-gb/azure/dedicated-hsm/overview
https://docs.microsoft.com/en-gb/azure/dedicated-hsm/overview
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-soft-delete
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-soft-delete
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-disaster-recovery-guidance
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-disaster-recovery-guidance
https://docs.microsoft.com/en-gb/azure/storage/common/storage-redundancy-grs
https://docs.microsoft.com/en-gb/azure/storage/common/storage-redundancy-grs
https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-gb/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-gb/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/en-gb/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/en-gb/azure/storage/tables/table-storage-overview
https://docs.microsoft.com/en-gb/azure/storage/tables/table-storage-overview

Bibliography

[36] McGee, M.; et al. Design for querying. In: docs.microsoft.com, [online], 2018-
04-23, [cit. 2019-04-19]. Available from: https://docs.microsoft.com/en-us/
azure/storage/tables/table-storage-design-for-query

[37] Shah, R.; et al. What is Azure Files? In: docs.microsoft.com, [online], 2018-
07-19, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-gb/
azure/storage/files/storage-files-introduction

[38] Myers, T.; et al. Overview of Azure Active Directory authentication over SMB
for Azure Files (preview). In: docs.microsoft.com, [online], 2018-09-19, [cit. 2019-
04-13]. Available from: https://docs.microsoft.com/en-gb/azure/storage/
files/storage-files-active-directory-overview

[39] Myers, T.; et al. Azure Storage security guide. In: docs.microsoft.com, [online],
2019-03-21, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/azure/storage/common/storage-security-guide

[40] Kasarabada, L.; et al. Azure Storage Service Encryption for data
at rest. In: docs.microsoft.com, [online], 2018-08-01, [cit. 2019-04-13].
Available from: https://docs.microsoft.com/en-gb/azure/storage/common/
storage-service-encryption

[41] Kasarabada, L.; et al. Storage Service Encryption using customer-managed keys
in Azure Key Vault. In: docs.microsoft.com, [online], 2018-10-11, [cit. 2019-
04-13]. Available from: https://docs.microsoft.com/en-gb/azure/storage/
common/storage-service-encryption-customer-managed-keys

[42] Lanfear, T.; et al. Azure Storage security overview. In: docs.microsoft.com,
[online], 2019-02-01, [cit. 2019-04-13]. Available from: https://
docs.microsoft.com/en-gb/azure/security/security-storage-overview

[43] Myers, T.; et al. Client-Side Encryption and Azure Key Vault for Microsoft
Azure Storage. In: docs.microsoft.com, [online], 2017-10-20, [cit. 2019-04-13].
Available from: https://docs.microsoft.com/en-gb/azure/storage/common/
storage-client-side-encryption

[44] Shahan, R.; et al. Constructing an Account SAS. In: docs.microsoft.com, [online],
2018-03-21, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/rest/api/storageservices/constructing-an-account-sas

[45] Myers, T.; et al. Constructing a Service SAS. In: docs.microsoft.com, [online],
2018-03-21, [cit. 2019-04-13]. Available from: https://docs.microsoft.com/en-
gb/rest/api/storageservices/constructing-a-service-sas

[46] Borthakur, D. HDFS Architecture Guide. The Apache Software Foundation.
[online], [cit. 2019-04-14]. Available from: https://hadoop.apache.org/docs/
r1.2.1/hdfs_design.html

[47] Foundation, T. A. S. WebHDFS REST API. The Apache Software Foundation.
[online], [cit. 2019-04-14]. Available from: https://hadoop.apache.org/docs/
r1.0.4/webhdfs.html

60

https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-design-for-query
https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-design-for-query
https://docs.microsoft.com/en-gb/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-gb/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-gb/azure/storage/files/storage-files-active-directory-overview
https://docs.microsoft.com/en-gb/azure/storage/files/storage-files-active-directory-overview
https://docs.microsoft.com/en-gb/azure/storage/common/storage-security-guide
https://docs.microsoft.com/en-gb/azure/storage/common/storage-security-guide
https://docs.microsoft.com/en-gb/azure/storage/common/storage-service-encryption
https://docs.microsoft.com/en-gb/azure/storage/common/storage-service-encryption
https://docs.microsoft.com/en-gb/azure/storage/common/storage-service-encryption-customer-managed-keys
https://docs.microsoft.com/en-gb/azure/storage/common/storage-service-encryption-customer-managed-keys
https://docs.microsoft.com/en-gb/azure/security/security-storage-overview
https://docs.microsoft.com/en-gb/azure/security/security-storage-overview
https://docs.microsoft.com/en-gb/azure/storage/common/storage-client-side-encryption
https://docs.microsoft.com/en-gb/azure/storage/common/storage-client-side-encryption
https://docs.microsoft.com/en-gb/rest/api/storageservices/constructing-an-account-sas
https://docs.microsoft.com/en-gb/rest/api/storageservices/constructing-an-account-sas
https://docs.microsoft.com/en-gb/rest/api/storageservices/constructing-a-service-sas
https://docs.microsoft.com/en-gb/rest/api/storageservices/constructing-a-service-sas
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html
https://hadoop.apache.org/docs/r1.0.4/webhdfs.html

Bibliography

[48] Sheth, S.; et al. Best practices for using Azure Data Lake Storage Gen1.
In: docs.microsoft.com, [online], 2018-06-27, [cit. 2019-04-13]. Available
from: https://docs.microsoft.com/en-gb/azure/data-lake-store/data-
lake-store-best-practices

[49] Lin, C. OS and runtime patching in Azure App Service. In: docs.microsoft.com,
[online], 2018-02-02, [cit. 2019-04-13].

[50] Wiselman, R.; et al. Business continuity and disaster recovery (BCDR):
Azure Paired Regions. In: docs.microsoft.com, [online], 2018-12-23, [cit. 2019-
04-13]. Available from: https://docs.microsoft.com/en-gb/azure/best-
practices-availability-paired-regions

[51] Lin, C.; et al. Authentication and authorization in Azure App Ser-
vice. In: docs.microsoft.com, [online], [cit. 2019-04-13]. Available from:
https://docs.microsoft.com/en-gb/azure/app-service/overview-
authentication-authorization

[52] Vilcinskas, M.; et al. Services that support managed identities for Azure re-
sources. In: docs.microsoft.com, [online], 2018-11-28, [cit. 2019-04-13]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/active-directory/
managed-identities-azure-resources/services-support-msi

[53] Vilcinskas, M.; et al. What is managed identities for Azure resources?
In: docs.microsoft.com, [online], 2018-10-23, [cit. 2019-04-13]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/active-directory/
managed-identities-azure-resources/overview

[54] Barjtya, S.; Sharma, A.; et al. A detailed study of Software Development
Life Cycle (SDLC) Models. International Journal Of Engineering And Com-
puter Science, volume 6, July 2017: pp. 22097 – 22100, ISSN 2319-7242, doi:
10.18535/ijecs/v6i7.32.

[55] SDLC Models Explained: Agile, Waterfall, V-Shaped, Iterative, Spiral. [online],
[cit. 2019-04-14]. Available from: https://existek.com/blog/sdlc-models/

[56] Hafner, J.; Schwingel, S.; et al. Azure strategy and implementation
guide. Microsoft Corporation, second edition, 2018. Available from:
https://azure.microsoft.com/en-us/resources/azure-strategy-and-
implementation-guide/en-us/

[57] Jagli, D. S. CloudSDLC: Cloud Software Development Life Cycle. International
Journal of Computer Applications, volume 168, June 2017: pp. 6 – 10, doi:
10.5120/ijca2017914468.

[58] Zack, W. H.; Kommalapati, H. The SaaS Development Lifecycle. [online],
[cit. 2019-04-14]. Available from: https://www.infoq.com/articles/SaaS-
Lifecycle

[59] Mohammed, N. M.; Niazi, M.; et al. Exploring software security approaches
in software development lifecycle: A systematic mapping study. Computer
Standards & Interfaces, volume 50, 2017: pp. 107 – 115, ISSN 0920-5489,
doi:10.1016/j.csi.2016.10.001. Available from: http://www.sciencedirect.com/
science/article/pii/S0920548916301155

61

https://docs.microsoft.com/en-gb/azure/data-lake-store/data-lake-store-best-practices
https://docs.microsoft.com/en-gb/azure/data-lake-store/data-lake-store-best-practices
https://docs.microsoft.com/en-gb/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-gb/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-gb/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-gb/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-gb/azure/active-directory/managed-identities-azure-resources/services-support-msi
https://docs.microsoft.com/en-gb/azure/active-directory/managed-identities-azure-resources/services-support-msi
https://docs.microsoft.com/en-gb/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-gb/azure/active-directory/managed-identities-azure-resources/overview
https://existek.com/blog/sdlc-models/
https://azure.microsoft.com/en-us/resources/azure-strategy-and-implementation-guide/en-us/
https://azure.microsoft.com/en-us/resources/azure-strategy-and-implementation-guide/en-us/
https://www.infoq.com/articles/SaaS-Lifecycle
https://www.infoq.com/articles/SaaS-Lifecycle
http://www.sciencedirect.com/science/article/pii/S0920548916301155
http://www.sciencedirect.com/science/article/pii/S0920548916301155

Bibliography

[60] Microsoft. Microsoft Security Development Lifecycle Practices. [online],
2019, [cit. 2019-04-13]. Available from: https://www.microsoft.com/en-us/
securityengineering/sdl/practices

[61] Little, C. Why Is There No DevOps Manifesto? In: DevOps.com Where the
World Meets DevOps, [online], 2016-05-06, [cit. 2019-03-25]. Available from:
https://devops.com/no-devops-manifesto/

[62] Dyck, A.; Penners, R.; et al. Towards Definitions for Release Engineering and
DevOps. 2015 IEEE/ACM 3rd International Workshop on Release Engineering,
May 2015, ISSN 15378417, doi:10.1109/releng.2015.10.

[63] Jabbari, R.; bin Ali, N.; et al. What is DevOps? A Systematic Map-
ping Study on Definitions and Practices. XP ’16 Workshops, May 2016, doi:
10.1145/2962695.2962707.

[64] Hüttermann, M. DevOps for Developers. Apress, 2012.

[65] Allspaw, J.; Hammond, P. 10+ Deploys per Day. O’Reilly, Velocity Conference.
Dev & ops cooperation at Flickr, [video of presentation], 2009. Available from:
https://www.youtube.com/watch?v=LdOe18KhtT4

[66] Mansfield-Devine, S. DevOps: finding room for security. Network Security,
volume 2018, no. 7, 2018: pp. 15 – 20, ISSN 1353-4858, doi:10.1016/S1353-
4858(18)30070-9. Available from: http://www.sciencedirect.com/science/
article/pii/S1353485818300709

[67] Howard, M.; Leblanc, D. E. Writing Secure Code. Redmond, Washington, USA:
Microsoft Press, second edition, 2002, ISBN 0735617228.

[68] SecureString Class. [online], [cit. 2019-04-20]. Available
from: https://docs.microsoft.com/en-us/dotnet/api/
system.security.securestring?view=netcore-2.2

[69] Wenzel, M.; Landwerth, I. DE0001: SecureString shouldn’t be
used. In: github.com, [online], 2018-02-16, [cit. 2019-04-20]. Avail-
able from: https://docs.microsoft.com/en-us/dotnet/api/
system.security.securestring?view=netcore-2.2

[70] Narumoto, M.; et al. Valet Key pattern. In: docs.microsoft.com, [online], 2017-
06-23, [cit. 2019-05-09]. Available from: https://docs.microsoft.com/en-gb/
azure/architecture/patterns/valet-key

[71] Yerramilli, P. Azure Key Vault managed storage account - CLI. In:
docs.microsoft.com, [online], 2019-03-01, [cit. 2019-04-13]. Available from:
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-
storage-keys

[72] Baldwin, M.; et al. Azure Key Vault managed storage account - Pow-
erShell. In: docs.microsoft.com, [online], 2019-03-01, [cit. 2019-04-13].
Available from: https://docs.microsoft.com/en-gb/azure/key-vault/key-
vault-overview-storage-keys-powershell

62

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://devops.com/no-devops-manifesto/
https://www.youtube.com/watch?v=LdOe18KhtT4
http://www.sciencedirect.com/science/article/pii/S1353485818300709
http://www.sciencedirect.com/science/article/pii/S1353485818300709
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=netcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=netcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=netcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?view=netcore-2.2
https://docs.microsoft.com/en-gb/azure/architecture/patterns/valet-key
https://docs.microsoft.com/en-gb/azure/architecture/patterns/valet-key
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-storage-keys
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-ovw-storage-keys
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-overview-storage-keys-powershell
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-overview-storage-keys-powershell

Bibliography

[73] Narumoto, M.; et al. Leader Election pattern. In: docs.microsoft.com, [online],
2017-06-23, [cit. 2019-05-09]. Available from: https://docs.microsoft.com/en-
gb/azure/architecture/patterns/leader-election

[74] Kennedy, J.; et al. CNG DPAPI. In: docs.microsoft.com, [online], 2018-05-
31, [cit. 2019-05-06]. Available from: https://docs.microsoft.com/en-gb/
windows/desktop/seccng/cng-dpapi

[75] Narumoto, M.; et al. Federated Identity pattern. In: docs.microsoft.com, [online],
2017-06-23, [cit. 2019-05-09]. Available from: https://docs.microsoft.com/en-
gb/azure/architecture/patterns/federated-identity

[76] Narumoto, M.; et al. Gatekeeper pattern. In: docs.microsoft.com, [online], 2017-
06-23, [cit. 2019-05-09]. Available from: https://docs.microsoft.com/en-gb/
azure/architecture/patterns/gatekeeper

[77] Lin, C.; et al. Use an SSL certificate in your application code in Azure App
Service. In: docs.microsoft.com, [online], 2018-12-01, [cit. 2019-05-06]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/app-service/app-
service-web-ssl-cert-load

[78] Lin, C.; et al. What is Azure Application Gateway? In: docs.microsoft.com,
[online], 2018-04-30, [cit. 2019-05-06]. Available from: https://
docs.microsoft.com/en-gb/azure/application-gateway/overview

[79] Jones, M. JSON Web Key (JWK). Request for Comments: 7517, [online], May
2015, [cit. 2019-04-14]. Available from: https://tools.ietf.org/html/rfc7517

[80] Jones, M.; Bradley, J.; et al. JSON Web Signature (JWS). Request for Com-
ments: 7515, [online], May 2015, [cit. 2019-04-23]. Available from: https:
//tools.ietf.org/html/rfc7515

[81] Baldwin, M.; et al. Service-to-service authentication to Azure Key Vault us-
ing .NET. In: docs.microsoft.com, [online], 2019-05-03, [cit. 2019-05-15]. Avail-
able from: https://docs.microsoft.com/en-gb/azure/key-vault/service-
to-service-authentication

63

https://docs.microsoft.com/en-gb/azure/architecture/patterns/leader-election
https://docs.microsoft.com/en-gb/azure/architecture/patterns/leader-election
https://docs.microsoft.com/en-gb/windows/desktop/seccng/cng-dpapi
https://docs.microsoft.com/en-gb/windows/desktop/seccng/cng-dpapi
https://docs.microsoft.com/en-gb/azure/architecture/patterns/federated-identity
https://docs.microsoft.com/en-gb/azure/architecture/patterns/federated-identity
https://docs.microsoft.com/en-gb/azure/architecture/patterns/gatekeeper
https://docs.microsoft.com/en-gb/azure/architecture/patterns/gatekeeper
https://docs.microsoft.com/en-gb/azure/app-service/app-service-web-ssl-cert-load
https://docs.microsoft.com/en-gb/azure/app-service/app-service-web-ssl-cert-load
https://docs.microsoft.com/en-gb/azure/application-gateway/overview
https://docs.microsoft.com/en-gb/azure/application-gateway/overview
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://docs.microsoft.com/en-gb/azure/key-vault/service-to-service-authentication
https://docs.microsoft.com/en-gb/azure/key-vault/service-to-service-authentication

Appendix A
Obtaining JWT

This is an example of how to manually obtain and verify an access token for
a virtual machine form Azure AD. The process to obtain a token on behalf of
the VM to access Azure Resource Manager will be shown.

A prerequisite is a running virtual machine in Azure with a managed
identity. In this example Ubuntu 18.04-LTS will be used but the same can
be accomplished on machines with different OS with substitution of some
commands (e. g., curl for Bash and Invoke-RestMethod for PowerShell).

The reader is encouraged to experiment along with the text, as some mem-
bers in several JSON objects may be omitted. The sequence “[...]” shall
denote omissions of members in JSON objects or lines in strings representing
binary data. JSON strings may also be split over multiple lines to fit the page
without any indication.

Obtaining the token can be done with a call to a well-known IP address
169.254.169.254,35 where AIMS resides. AIMS will make the necessary com-
munication with Azure AD and also provide the client ID and certificate to
authenticate the virtual machine.

GET /metadata/identity/oauth2/token?
api-version=2018-02-01&
resource=https://management.azure.com/

Metadata: true

Azure AD will respond with a JSON similar to the following one:

{
"access_token": "<See below>",
"client_id": "298026b7-6d04-4fdb-94a6-52fa42fd0547",
"expires_in": "28800",
"expires_on": "1552698432",

35It is a non-routable address and can be accessed only from within a VM in Azure.

65

A. Obtaining JWT

"ext_expires_in": "28800",
"not_before": "1552669332",
"resource": "https://management.azure.com/",
"token_type": "Bearer"

}

The most important part there is the access token, which is shown next.
It is important to note that there are three parts separated by a single dot in
each case (line breaks are here only for illustration purposes). The three parts
separated by dots are the header, payload and signature respectively. Parts
of the token are omitted to be more consise. There are twelve and four lines
omitted from the payload and signature respectively.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik4tbEMwbi05REFM
cXdodUhZbkhRNjNHZUNYYyIsImtpZCI6Ik4tbEMwbi05REFMcXdodUhZbkhR
NjNHZUNYYyJ9
.
eyJhdWQiOiJodHRwczovL21hbmFnZW1lbnQuYXp1cmUuY29tLyIsImlzcyI6
[...]
b21wdXRlL3ZpcnR1YWxNYWNoaW5lcy9tbGFkZWRhdi1icC12bSJ9
.
tPWr7OKWL0YwDPV3NNHvDxCEK_tWXWp5l9BFhIs-naGcBae5PcfElG4StTwL
[...]
woimhq0l7dQCI6Q62m1peTte--Aa-4q7nIZg-lFEGw

Each part can is encoded in Base64 and the header and payload can be
decoded to these two JSON objects:

{
"typ": "JWT",
"alg": "RS256",
"x5t": "N-lC0n-9DALqwhuHYnHQ63GeCXc",
"kid": "N-lC0n-9DALqwhuHYnHQ63GeCXc"

}

{
"aud": "https://management.azure.com/",
"iss": "https://sts.windows.net/

f345c406-5268-43b0-b19f-5862fa6833f8/",
"iat": 1552669332,
"nbf": 1552669332,
"exp": 1552698432,

[...]
"ver": "1.0",
"xms_mirid": "/subscriptions/

66

c02c846b-e799-4497-995d-184229394101/
resourcegroups/mladedav-bp-tests/
providers/Microsoft.Compute/
virtualMachines/mladedav-bp-vm"

}

To verify the integrity and authenticity of the token, a call must be made
to the authorization server for Azure AD to obtain the certificate of the key
that signed the JWT. It resides at https://login.microsoftonline.com/.
As per OpenID Connect documentation, the configuration document must be
at accessible at an address obtained by concatenating the URL of the OpenID
issuer location and /.well-known/openid-configuration. For Azure AD
there is an issuer for each tenant, e. g., the issuer for the CTU tenant issuer re-
sides at https://login.microsoftonline.com/f345c406-5268-43b0-b19f-
5862fa6833f8/. If we then make a call there, we receive the configuration
JSON, where in the member “jwks_uri” we can find the URI, which identifies
the location of the certificates to verify the signature.

At this address we can find an array of JSON Web Key (JWK) struc-
tures [79] from which we can either extract the X.509 certificate or in case of
RSA the public key directly.36

GET /f345c406-5268-43b0-b19f-5862fa6833f8/
.well-known/openid-configuration

{
"authorization_endpoint": "https://login.microsoftonline.com/

f345c406-5268-43b0-b19f-5862fa6833f8/
oauth2/authorize",

"token_endpoint": "https://login.microsoftonline.com/
f345c406-5268-43b0-b19f-5862fa6833f8/
oauth2/token",

"token_endpoint_auth_methods_supported": [
"client_secret_post",
"private_key_jwt",
"client_secret_basic"

],
"jwks_uri": "https://login.microsoftonline.com/

common/discovery/keys",
[...]

"id_token_signing_alg_values_supported": [
"RS256"

],
36The member “e” denotes exponent and “n” modulus. In both cases the numbers are

Base64 encoded.

67

https://login.microsoftonline.com/
/.well-known/openid-configuration
https://login.microsoftonline.com/f345c406-5268-43b0-b19f-5862fa6833f8/
https://login.microsoftonline.com/f345c406-5268-43b0-b19f-5862fa6833f8/

A. Obtaining JWT

[...]
"end_session_endpoint": "https://login.microsoftonline.com/

f345c406-5268-43b0-b19f-5862fa6833f8/
oauth2/logout",

"response_types_supported": [
"code",
"id_token",
"code id_token",
"token id_token",
"token"

],
[...]
}

We can then follow to the URI in the “jwks_uri” member, i. e., https:
//login.microsoftonline.com/common/discovery/keys. There we find all
the keys currently in use.

{
"keys": [

{
"kty": "RSA",
"use": "sig",
"kid": "N-lC0n-9DALqwhuHYnHQ63GeCXc",
"x5t": "N-lC0n-9DALqwhuHYnHQ63GeCXc",
"n": "t3J1hnS4aRZaZGq5JUw1iKsHynCUV9lMBe2MDArXGeQlN-w8

Xw9vU6InqmPVvJsUVyUkKE0jzn4dYLcwbTuttQ0hmN-lzNfG
ol04KKMIVdtTs1P0wo_-VyJ88EuWM3lvDxyTw1PLim14UJ18
56zdp2_kZLOSy-B46K96ENJ8b2yCP_VHRTd3GgNTrx-xeU66
WJdlon6SSkxI85KIAzOR4vxrl2XZZx_DkVcsAHa8KXQRkbMw
82F2SHAbgJTv8qjSHR_WXjoGs3Wgds9UUqgNDXSK6qTjoG53
zj8-faRkK0Px4wRD9rVXt-pPcGaul3TEkUVhpe8SyrLWETFe
xJesSQ",

"e": "AQAB",
"x5c": [

"MIIDBTCCAe2gAwIBAgIQP8sUV4hf2ZxPfw5DB0O9CjANBgkqhki
G9w0BAQsFADAtMSswKQYDVQQDEyJhY2NvdW50cy5hY2Nlc3Njb25
0cm9sLndpbmRvd3MubmV0MB4XDTE5MDIwMTAwMDAwMFoXDTIxMDI
wMTAwMDAwMFowLTErMCkGA1UEAxMiYWNjb3VudHMuYWNjZXNzY29
udHJvbC53aW5kb3dzLm5ldDCCASIwDQYJKoZIhvcNAQEBBQADggE
PADCCAQoCggEBALdydYZ0uGkWWmRquSVMNYirB8pwlFfZTAXtjAw
K1xnkJTfsPF8Pb1OiJ6pj1bybFFclJChNI85+HWC3MG07rbUNIZj
fpczXxqJdOCijCFXbU7NT9MKP/lcifPBLljN5bw8ck8NTy4pteFC
dfOes3adv5GSzksvgeOivehDSfG9sgj/1R0U3dxoDU68fsXlOuli

68

https://login.microsoftonline.com/common/discovery/keys
https://login.microsoftonline.com/common/discovery/keys

XZaJ+kkpMSPOSiAMzkeL8a5dl2Wcfw5FXLAB2vCl0EZGzMPNhdkh
wG4CU7/Ko0h0f1l46BrN1oHbPVFKoDQ10iuqk46Bud84/Pn2kZCt
D8eMEQ/a1V7fqT3Bmrpd0xJFFYaXvEsqy1hExXsSXrEkCAwEAAaM
hMB8wHQYDVR0OBBYEFH5JQzlFI3FE9VxkkUbFT9XQDxifMA0GCSq
GSIb3DQEBCwUAA4IBAQCb7re2PWF5ictaUCi4Ki2AWE6fGbmVRUd
f0GkI06KdHWSiOgkPdB7Oka1Fv/j4GCs/ezHa1+oAx8uU96GECBB
EMnCYPqkjmNKdLYkIUrcwEe9qz12MOCKJkCuYsDdLUqv+e4wHssb
AnJn2+L13UmfAb6FM1VTaKIQtPs4yZsdhnk4M+Ee2EpcvgwOl2na
+m58ovspieEyI6II/TolzwP9NWbvHw5VlF0IYttQprjmQU3tQ2E6
j3HpZ31B0nrnFWglUB7lEC+0mkyJUGzovNECsr+BIEMhTlCp2/rb
ruCCbZBppYAlbWlTFwXA8TqfE4DNATYgm90ObQANcTnHJeRV1"

]
},
{

"kty": "RSA",
"use": "sig",
"kid": "HBxl9mAe6gxavCkcoOU2THsDNa0",
"x5t": "HBxl9mAe6gxavCkcoOU2THsDNa0",
"n": "0afCaiPd_xl_ewZGfOkxKwYPfI4Efu0COfzajK_gnviWk7w3

[...]
fZr4MQ",

"e": "AQAB",
"x5c": [

"MIIDBTCCAe2gAwIBAgIQWcq84CdVhKVEcKbZdMOMGjANBgkqhki
[...]

ynYmkl89MleOfKIojhrGRxryZG2nRjD9u/kZbPJ8e3JE9px67"
]

},
{

"kty": "RSA",
"use": "sig",
"kid": "M6pX7RHoraLsprfJeRCjSxuURhc",
"x5t": "M6pX7RHoraLsprfJeRCjSxuURhc",
"n": "xHScZMPo8FifoDcrgncWQ7mGJtiKhrsho0-uFPXg-OdnRKYu

[...]
oftfpWr3hFRdpxrwuoQEO4QQ",
"e": "AQAB",
"x5c": [

"MIIC8TCCAdmgAwIBAgIQfEWlTVc1uINEc9RBi6qHMjANBgkqhki
[...]

wP6cOzgZpjdPMwaVt5432GA=="
]

}
]

69

A. Obtaining JWT

}

We find the correct key by matching the kid member in the header of the
access token obtained at the beginning. In our case it is the first key. We can
take the appropriate x5c member and decode it as a X.509 certificate.

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

3f:cb:14:57:88:5f:d9:9c:4f:7f:0e:43:07:43:bd:0a
Signature Algorithm: sha256WithRSAEncryption

Issuer: CN=accounts.accesscontrol.windows.net
Validity

Not Before: Feb 1 00:00:00 2019 GMT
Not After : Feb 1 00:00:00 2021 GMT

Subject: CN=accounts.accesscontrol.windows.net
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:b7:72:75:86:74:b8:69:16:5a:64:6a:b9:25:4c:
[...]

c4:91:45:61:a5:ef:12:ca:b2:d6:11:31:5e:c4:97:
ac:49

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Subject Key Identifier:
7E:49:43:39:45:23:71:44:F5:5C:
64:91:46:C5:4F:D5:D0:0F:18:9F

Signature Algorithm: sha256WithRSAEncryption
9b:ee:b7:b6:3d:61:79:89:cb:5a:50:28:b8:2a:2d:80:58:4e:

[...]
c9:79:15:75

We can see that it is a self-signed certificate. We can then use the certificate
to check for validity of the original access token. That can be done either online
on a site such as https://jwt.io or manually, as further described in [80].

70

https://jwt.io

Appendix B
Code Examples

Managed Identities

This example application lists all secrets and their values currently present in
a given Key Vault.

Authorization on Azure is proven by presenting an access token. When
a developer wants to obtain these tokens in C# code, the easiest way is
with an AzureServiceTokenProvider. This class deduces the environment
it runs in and choses an appropriate method to communicate with Azure
AD. It first tries the AIMS endpoint similarly as in Appendix A. If this does
not work, AzureServiceTokenProvider can asses that the application is not
running in Azure and proceeds to try to communicate with Azure AD on
behalf of the developer. It first tries to use App Authentication extension
for Visual Studio, then the Azure CLI. This behaviour can be overrident by
specifying a connection string in the constructor, or providing it through the
AzureServicesAuthConnectionString environment variable [81].

A KeyVaultClient is then instantiated. It performs all the necessary cryp-
tographic and vault operations against Azure Key Vault. It needs an authen-
tication callback, which can be build with the AzureServiceTokenProvider
or created by the developer.

1 var azureServiceTokenProvider = new AzureServiceTokenProvider();
2 var keyVault = new KeyVaultClient(
3 new KeyVaultClient.AuthenticationCallback(
4 azureServiceTokenProvider.KeyVaultTokenCallback
5)
6);

It is then very easy to access the secrets in Azure Key Vault, based on
the Key Vault URI and the secret name. Accessing other Key Vault objects
would be similar.

71

B. Code Examples

1 var secretBundle = await keyVault.GetSecretAsync(keyVaultUri,
secretName);

2 var secretValue = secretBundle.Value;

It is also important to note, that the Azure App Service must be given
a managed identity and access to the Key Vault’s secrets. This can be done
for example via PowerShell. The same access policies must be also set for
developers, if the same Key Vault instance is to be used for development and
testing.

1 # Create a web app.
2 New-AzWebApp ‘
3 -ResourceGroupName $ResourceGroup ‘
4 -AppServicePlan $WebAppName ‘
5 -Name $WebAppName ‘
6 -Location $Location
7
8 # Use system-assigned managed identity
9 Set-AzWebApp ‘

10 -ResourceGroupName $ResourceGroup ‘
11 -Name $WebAppName ‘
12 -AssignIdentity $true
13
14 # Get objectId
15 $ServicePrincipal = Get-AzADServicePrincipal ‘
16 -DisplayName $WebAppName
17
18 # Set policy to access the Key Vault
19 Set-AzKeyVaultAccessPolicy ‘
20 -ResourceGroupName $ResourceGroup ‘
21 -VaultName $KeyVault ‘
22 -ObjectId $ServicePrincipal.Id ‘
23 -PermissionsToSecrets list,get

Secret Resolving

This application shows four secrets obtained in four different scenarios.
This example illustrates different strategies of accessing secrets. All this

information is only complementary to the information in Section 4.3.
First, configuration secret is loaded from the appsettings.json into the

SecureOptions class, which will be passed through dependency injection to
any class or method requiring the configuration it contains.

72

ASP.NET Core Data Protection API

The deployment secret is passed in the same manner, but it was not man-
ually inserted into the configuration file. It was added during the deployment
by the deploy.ps1 PowerShell script. Both this and the configuration secret
can be changed only by recompiling and redeploying the application.

Next there are the bootstrap and just-in-time secrets, which are both
fetched from Azure Key Vault. The difference between those is the time
of resolution. The secrets are obtained in the same manner as in the last
example with managed identities.

While the bootstrap secret is fetched in a PostConfigure callback and
saved to the same class as the other secrets fetched during startup, the just-
in-time secret is fetched when requested by the user. This has consequence
that while the former is static until the application is restarted, the latter can
be changed at any time and fetched by refreshing the page.

ASP.NET Core Data Protection API

This application saves user’s input using the Data Protection API and shows
all the saved data to the user in both encrypted and unencrypted form.

The keys to Data Protection API must be saved in a shared location
accessible by all instances of the service. In Azure, they can be saved in
a Blob, ideally limiting the read and write access to only the applicatoin.
To enhance their security further, the keys (specifically the master keying
material containing the entropy) may be protected with an Azure Key Vault.
These operations are requested in code at the time of registration of the Data
Protection API to the services to be later injected.

1 services.AddDataProtection()
2 .PersistKeysToAzureBlobStorage(blob)
3 .ProtectKeysWithAzureKeyVault(keyVault, keyIdentifier);

We have seen in the first example how to obtain a KeyVaultClient in-
stance to be passed to the ProtectKeysWithAzureKeyVault method. The
other parameter is the full identifier of the key, including version and can be
found in the Azure Portal or inquired using PowerShell.

Giving access to the Blob can be done in one of several ways. Either a
SAS token can be provided or access can be granted through instances already
provided with means for authentication. In all cases it is important to think
about the possibility that the storage account keys may be rotated, rendering
these classes unable to access the Blob with the keys. The same applies to
the SAS tokens, because they are valid only as long as the key used for their
signing is.

Because of these issues, the code uses managed identity for Blob stor-
age, which is in public preview at the time of writing this thesis. First,

73

B. Code Examples

we use an AzureServiceTokenProvider instance to obtain a token for ac-
cessing the storage. Then a TokenCredential instance is constructed with
the obtained token,37 a callback for token renewal,38 and the frequency at
which new tokens should be acquired. This class can then be used to create
StorageCredentials, which along with a URI specifying the Blob can be in
turn used for constructing a CloudBlockBlob. This is the Blob that is then
used to store the encrypted keys.

1 const string StorageResource = "https://storage.azure.com/";
2 AppAuthenticationResult authResult = await azureServiceTokenProvider
3 .GetAuthenticationResultAsync(StorageResource);
4
5 TimeSpan frequency = authResult.ExpiresOn - DateTimeOffset.UtcNow;
6 TokenCredential tokenCredential = new TokenCredential(
7 authResult.Token,
8 TokenRenewerAsync,
9 azureServiceTokenProvider,

10 frequency);
11
12 StorageCredentials storageCredentials = new StorageCredentials(

tokenCredential);
13 CloudBlockBlob blob = new CloudBlockBlob(new Uri(blobName),

storageCredentials);

After this initial configuration, the other classes and methods can request
the IDataProtectionProvider interface through dependency injection. They
can then create a IDataProtector with a purpose string, which can then be
used to protect and unprotect data.

1 IDataProtector protector = provider.CreateProtector("index");
2 string encryptedText = protector.Protect(plaintext);
3 string decryptedText = protector.Unprotect(encryptedText);

The minimal example application uses an in-memory database and only
stores only the encrypted text. It is decrypted every time the page is requested
for viewing.

The application must also be given access to the wrap and unwrap op-
erations on keys in Key Vault, as well as read and write access to the Blob
containing the keys.

37In the example code, it is acquired through the callback function mentioned next.
38The callback is passed current state as an argument. The same state class is also passed

to the TokenCredential constructor.

74

OAuth 2.0 Device Grant

OAuth 2.0 Device Grant

This application obtains an access token from Azure AD.
This is a console application and is not supposed to be run in the cloud.

It instead obtains an access token from Azure AD using the device grant.
First we need to create a class representing the application. This class

needs to know the ApplicationId obtained during application registration in
Azure AD and TenantId of the application’s home tenant.

1 // The TenantId can be found in the Azure Portal
2 string tenantId = "ffbc9686-2bf6-496f-acf8-f5a61907ffc2";
3 // The ApplicationId can be obtained in the Azure Portal
4 string clientId = "dde72f2b-ed50-4d64-8339-50cedc4b94fe";
5 IPublicClientApplication app = PublicClientApplicationBuilder
6 .Create(clientId)
7 .WithAuthority(AzureCloudInstance.AzurePublic, tenantId)
8 .Build();

Then tokens based on desired scopes should be first looked up in cache and
if there is one that would have been sufficient for the desired access, it will
be used. In our scenario this can never happen, but the code is still present
for educational purposes. First we obtain a list of all users whose tokens are
in the cache and then inquire about present tokens for each of them. In real
scenario we would not do it this way, because we could misuse other user’s
cached tokens easily. There is also an overload that accepts username as a
parameter to specify whose token we are looking for. If there is no sufficient
token available in the cache for given scopes and account, an exception will
be thrown to indicate the result.

1 var accounts = await app.GetAccountsAsync();
2 foreach (var account in accounts)
3 {
4 try
5 {
6 result = await app.AcquireTokenSilent(scopes, account)
7 .ExecuteAsync();
8 }
9 catch (MsalUiRequiredException)

10 {
11 // This indicates that there is not a token present in cache
12 }
13 }

Finally, we can try to acquire the token. We must provide the desired
scopes as well as a callback function, which will provide the user with infor-

75

B. Code Examples

mation about how to authenticate, namely the verification uri and user code
to enter there. Then the library polls the token endpoint asynchronously until
the user successfully authenticates and the token is obtained, or the protocol
times out.

1 result = await app.AcquireTokenWithDeviceCode(scopes,
2 deviceCodeCallback =>
3 {
4 Console.WriteLine(deviceCodeCallback.Message);
5 return Task.FromResult(0);
6 }).ExecuteAsync();

The example code also includes an example with a resource owner password
credentials grant, but it is for educational purposes only. It should not be used,
because the application should not handle user’s credentials directly and other
flows are generally a better choice. This flow also cannot be used for Microsoft
Accounts, but only for company or education accounts.

In both cases, the accounts must be registered in the tenant, whose Ten-
antId is provided in the code.

Managing Storage Access Keys with Azure Key
Vault

This example is infrastructure-as-a-code in PowerShell script form. It config-
ures a Key Vault to manage an Azure storage account’s and regenerate them
periodically. It also issues SAS tokens.

A thing to note is the static ApplicationId of Key Vault. All Azure Key
Vaults in tenants in the public cloud share this ApliccationId (it is different
in government clouds).

First the resource group, Azure Key Vault and Azure storage account are
provisioned. Then Azure Key Vault application is granted the role of “Storage
Account Key Operator Service Role”, letting it read and regenerate keys, but
nothing else. This also indirectly provides access to the data, because the keys
can be used for data operations in the storage account.

1 New-AzRoleAssignment ‘
2 -ApplicationId ’cfa8b339-82a2-471a-a3c9-0fc0be7a4093’ ‘
3 -RoleDefinitionName ’Storage Account Key Operator Service Role’ ‘
4 -Scope $storageAccount.Id

Then the Azure storage account an Key Vault may be connected so that
the Key Vault can regenerate the keys based on a regular basis as set by the

76

Managing Storage Access Keys with Azure Key Vault

last parameter. It can also be omitted and the Key Vault will then regenerate
keys only when requested.

1 Add-AzKeyVaultManagedStorageAccount ‘
2 -VaultName $KeyVaultName ‘
3 -AccountName $StorageAccountName ‘
4 -AccountResourceId $storageAccount.Id ‘
5 -ActiveKeyName "key1" ‘
6 -RegenerationPeriod $RegenerationPeriod

A template SAS token must be then created and provided to the Key Vault.
All the tokens handed out by the Key Vault will be based on this template,
although some fields are incurred from the parameters, such as services and
permissions. We can then obtain new SAS tokens from the Key Vault as if
they were standard secrets.

1 $storageContext = New-AzStorageContext ‘
2 -StorageAccountName $storageAccount.StorageAccountName ‘
3 -Protocol Https ‘
4 -StorageAccountKey Key1
5 $start = [System.DateTime]::Now.AddDays(-1)
6 $end = [System.DateTime]::Now.AddMonths(1)
7 $templateSas = New-AzStorageAccountSasToken ‘
8 -Service blob,file,Table,Queue ‘
9 -ResourceType Service,Container,Object ‘

10 -Permission "racwdlup" ‘
11 -Protocol HttpsOnly ‘
12 -StartTime $start ‘
13 -ExpiryTime $end ‘
14 -Context $storageContext
15
16 $sasDefinition = Set-AzKeyVaultManagedStorageSasDefinition ‘
17 -AccountName $storageAccount.StorageAccountName ‘
18 -VaultName $keyVault.VaultName ‘
19 -Name $SasDefinitionName ‘
20 -TemplateUri $templateSas ‘
21 -SasType ’account’ ‘
22 -ValidityPeriod $SasValidityPeriod
23
24 Get-AzKeyVaultSecret ‘
25 -VaultName $keyVault.VaultName ‘
26 -Name $sasDefinition.Sid.Substring($sasDefinition.Sid.LastIndexOf

(’/’)+1)

77

Appendix C
Acronyms

AAD Azure Active Directory.

ACL Access Control List.

AD Active Directory.

AES Advanced Encryption Standard.

AIMS Azure Instance Metadata Service.

API Application Programming Interface.

ARM Azure Resource Manager.

ASM Azure Service Manager.

Bash Bourne Again Shell.

Blob Binary Large object.

CBC Cipher Block Chaining.

CLI Command Line Interface.

CRUD Create, Retrieve, Update, Delete.

CSP Cloud Service Provider.

CTS Ciphertext Stealing.

DDoS Distributed Denial of Service.

DPAPI Data Protection Application Programming Interface.

DREAD Damage, Reproducibility, Exploitability, Affected, Discoverability.

79

Acronyms

ECC Elliptic-curve cryptography.

FIPS Federal Information Processing Standard.

GB Gigabyte.

HDFS Hadoop Distributed File System.

HMAC Hash-Based Message Authentication.

HSM Hardware Security Module.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IaaS Infrastructure as a Service.

IAM Identity and Access Management.

ID Identifier.

IETF Internet Engineering Task Force.

IP Internet Protocol.

IT Information Technology.

IV Initialization Vector.

JSON JavaScript Object Notation.

JWK JSON Web Key.

JWT JSON Web Token.

kB Kilobyte.

LTS Long Term Support.

MB Megabyte.

MFA Multi-Factor Authentication.

MSI Managed Service Identity.

OS Operating System.

80

Acronyms

PaaS Platform as a Service.

POSIX Portable Operating System Interface.

PRNG Pseudorandom Number Generator.

RBAC Role-Based Access Control.

REST Representational State Transfer.

RSA Rivest, Shamir, & Adleman.

SaaS Software as a Service.

SAS Shared Access Signature.

SD Secure Digital.

SDK Software Development Kit.

SDL Security Development Lifecycle.

SDLC Software Development Life Cycle.

SHA Secure Hash Algorithm.

SMB Server Message Block.

SQL Structured Query Language.

SSE Storage Service Encryption.

SSL Secure Sockets Layer.

SSO Single Sign-On.

TLS Transport Layer Security.

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

UTF-8 Unicode Transformation Format — 8-bit.

VHD Virtual Hard Disk.

VM Virtual Machine.

VPN Virtual Private Network.

XML Extensible Markup Language.

81

Appendix D
Contents of Enclosed SD Card

readme.txtThe file with SD card contents description
src..................................The directory with all source code

examples................The directory with source code of examples
examples.txt...........The file with examples usage instructions
managed-identities...................Using managed identities

key-vault-browser...............ASP.NET Core source code
deploy.ps1......PowerShell script used to deploy the example

secret-resolving...................SSecret resolution strategies
secret-resolver.................ASP.NET Core source code
deploy.ps1......PowerShell script used to deploy the example

data-protection...........ASP.NET Core Data Protection API
data-protection.................ASP.NET Core source code
deploy.ps1......PowerShell script used to deploy the example

oauth................The example of the OAuth 2.0 Device grant
key-vault-managed-storage.Key Vault managed storage account

keyvault-sas.ps1The infrastructure-as-a-code
thesis............The directory with LATEX source code of the thesis

text ...The thesis text directory
thesis.pdf..........................The thesis text in PDF format

83

	Introduction
	Microsoft Azure Overview
	Introduction to Cloud
	Cloud Service Types

	Azure Overview
	Interaction with Azure Resources
	Separation of Responsibilities

	Microsoft Azure Resources Related to Security
	Azure Active Directory
	Key Vault
	Azure Storage
	Azure Data Lake Storage
	Azure App Service
	Managed Identity

	Cloud Development
	Software Development Life Cycle
	Cloud Software Development Life Cycle
	Security Development Lifecycle
	DevOps in the Cloud

	Security Critical Areas
	Securing Data
	Securing API
	Identity Provider
	Management of Secrets

	Proposed solutions
	Data Classification
	Disposing of Data in Memory

	Key Rotation
	Key rotation process
	Key Vault Managed Storage Access Keys

	Secret Handling Methods
	Secrets Storage Mechanism
	Secrets Resolution Time
	Discussion

	Data Protection API
	Authentication and Authorization of End Users on Azure
	API Security

	Conclusion
	Bibliography
	Obtaining JWT
	Code Examples
	Managed Identities
	Secret Resolving
	ASP.NET Core Data Protection API
	OAuth 2.0 Device Grant
	Managing Storage Access Keys with Azure Key Vault

	Acronyms
	Contents of Enclosed SD Card

