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Instructions

The least trimmed squares (LTS) method is a robust version of the classical method of least squares used to
find an estimate of coefficients in the linear regression model. Computing the LTS estimate is known to be
NP-hard, and hence suboptimal probabilistic algorithms are used in practice.

1) Describe robust regression methods and give a detail description of the LTS method.
2) Survey known algorithms for computing the LTS estimate.
3) Create a generator of datasets enabling to set parameters like data size, contamination etc.
4) Implement selected algorithms use these datasets to compare their performance.
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Abstrakt

Metoda nejmenš́ıch usekaných čtverc̊u je robustńı verźı známé metody ne-
jmenš́ıch čtverc̊u, jedné ze základńıch metod regresńı analýzy, použ́ıvané k
odhadováńı koeficient̊u lineárńıho regresńıho modelu. Výpočet odhadu po-
moćı metody nejmenš́ıch usekaných čtverc̊u je znám jako NP-těžký a proto
jsou v praxi nejčastěji použ́ıvány pouze subotimálńı pravděpodobnostńı al-
goritmy. Mimo popisu těchto algoritmů navrhneme několik zp̊usob̊u jak je
zkobinovat za účelem dosažeńı lepš́ıch výsledk̊u.

Kĺıčová slova nejmenš́ı usekané čtverce, LTS odhad, linearńı regrese, ro-
bustńı statistika, nejmenš́ı čtverce, chybná pozorovańı
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Abstract

The least trimmed squares method is a robust version of the method of least
squares, which is an essential tool of regression analysis used to find an es-
timate of coefficients in the linear regression model. Computing the least
trimmed squared estimate is known to be NP-hard, hence only suboptimal
probabilistic algorithms are usually used in practice. Besides describing those
algorithms, we propose a few ways of combining those algorithms to obtain
better performance.

Keywords least trimmed squares, LTS estimate, linear regression, robust
statistics, ordinary least squares, outliers
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Introduction

Least trimmed squares (LTS) is one of the many modifications of the very
well known method of ordinary least squares (OLS). Both these methods are
tools of regression analysis, which is a group of the processes used to estimate
the dependence of variables. Specifically in the case when we try to estimate
dependence one variable on one or multiple others. The regression analysis
uses the regression models, and in the case of OLS and LTS methods, that
model is the linear regression model.

In order to OLS estimate produces reliable results, many strong assump-
tions about the data have to be fulfilled. It is assumed that data is generated
in a specific way as well as that the data does not contain measurement errors
called outliers. Those assumptions are in practice hardly fulfilled, because
outliers in the data are very common. The OLS estimate is in such cases
unreliable.

Robust statistic tries to solve problems of classical statistics methods. Its
methods are usually emulations of classical statistic methods but try to provide
reliable estimates even if data contains a large number of outliers. That means
such methods does not rely so much on assumptions which are difficult to
achieve in practice. Because the OLS method is one of the essential tools of
linear regression analysis, multiple its alternatives have been designed to fulfill
the assumptions of a robust estimator.

The idea of the LTS method is simple, but unlike the OLS method, the
exact solution is known to be NP-hard, hence only suboptimal probabilistic
algorithms are usually used in practice.

This work is divided into three chapters. In the first chapter, we introduce
theory required to understand linear regression model, OLS, and LTS. We
mention the properties of both methods and also describe the field of its
usage.

In the second chapter, we cover algorithms for calculating the OLS esti-
mate. It is necessary because most of the algorithm used to compute the LTS
estimate relies on those algorithms. Next, we describe all currently used al-
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Introduction

gorithms for calculating LTS estimate. They consist of multiple probabilistic
and also few exact ones. In this chapter, we also show that those algorithms
can be easily combined to obtain higher speed and performance. Last but not
least, we also propose several improvements to those algorithms.

In the last chapter, we describe our experimental results. At first, we cover
data generator which is used for our experiments and which can provide data
sets affected by various types of outliers. Next, we provide information about
our implementation of all algorithms from chapter two. Finally, we present
our results for specific data sets.
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Chapter 1
Least trimmed squares

In this chapter, we introduce one of the most common regression analysis
models which is known as the linear regression model. It aims to model
the relationship between one variable which is called dependent and one or
more variables which are called explanatory. The relationship is based on a
model function with parameters which are not known in advance and are to
be estimated from data. We also describe one of the most common methods
for finding those parameters in this model, namely the ordinary least squares
method. It is important to note that all vectors in this text are considered as
column vectors. On the other hand, we denote a row vector as a transposed
vector.

1.1 Linear regression model

Definition 1. The linear regression model is given by

y = xTw + ε, (1.1)

where y ∈ R is a random variable which is called dependent variable and
xT = (x1, x2, . . . , xp) is a vector of explanatory variables. Usually we call xi a
regressor. Finally ε ∈ R is a random variable called noise or error. The vector
w = (w1, w2, . . . , wp) is a vector of parameters called regression coefficients.

In regression analysis we aim to estimate the w using n measurements of
y and x. We can write this in matrix form

y = Xw + ε (1.2)

where

3



1. Least trimmed squares

y =


y1
y2
...
yn

 ,X =


x1

T

x2
T

...
xn

T

 =


x11 x12 x13 . . . x1p
x21 x22 x23 . . . x2p

...
...

... . . . ...
xn1 xn2 xn3 . . . xnp

 ,w =


w1
w2
...
wp

 , ε =


ε1
ε2
...
εn


This means that we can think of rows of matrix X as columns vectors xi
written into the row.

It is assumed that errors are independent and identically distributed so
that ε ∼ N (0, σ2).
Note 2. It is usual refer to given X and y as to data set and to yi with
corresponding xi as to ith data sample or observation.

1.1.1 Prediction with the linear regression model

The linear regression model contains the vector w of regression coefficients
which are unknown and which we need to estimate in order to be able to
use the model for predictions. Let us assume that we already have estimated
regression coefficients as ŵ. Then the predicted values of y are given by

ŷ = ŵTx. (1.3)

The true value of y is given by

y = w∗Tx+ ε (1.4)

where w∗ represents actual regression coefficients which we aim to estimate.
Because we assume linear dependence between dependent variable y and

explanatory variables x which we assume to be non-random, then what makes
y random variable is a random variable ε. Because we assume that E(ε) = 0
we can see that

E(y) = xTw + E(ε) = xTw (1.5)

so ŷ is a point estimation of the expected value of y.

Intercept

In real world situations it is not usual that E(ε) = 0. Consider this trivial
example.
Example 3. Let us consider that y represents price of the room and x repre-
sents the number of the windows in such a room. If this room does not have
windows thus x = 0 and E(ε) = 0 then y = wx+ ε equals zero. But it is very
unlikely that room without windows is free.
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1.2. Ordinary least squares

Because of that, it is very common to include one constant regressor x1 =
1. The corresponding coefficient w1 of w is called an intercept. We refer
this model as a model with an intercept. The intercept then corresponds to
expected value of y when all regressors are zero and prevent the problem from
Example 3. This means that intercept can be assumed as a shift so that it
corresponds to E(ε) = µ. With regards to this fact we can still assume that in
the model with intercept ε ∼ N (0, σ2). In this work, we consider the model
with the intercept. This means that we consider x = (x1, x2 . . . xp) where
constant x1 = 1 represents intercept.
Note 4. Sometimes in the model with an intercept, the explanatory vari-
able x is marked as x ∈ Rp+1,x = (x0, x1 . . . xp), which means that actual
observation x ∈ Rp and the intercept x0 = 1 is explicitly marked.

1.2 Ordinary least squares

We want to estimate w so that an error of the model on the whole data set
is the least possible. This error is measured by a loss function L : R2 → R,
which in case of the ordinary least squares (OLS) method is quadratic loss
function L(y, ŷ) := (y − ŷ)2. So the idea is to find ŵ so that it minimizes the
sum of squared residuals

ri(w) = yi − ŷi = yi − xiTw, i = 1, 2, . . . , n. (1.6)

This is commonly know as residual sum of squares RSS

RSS(w) =
n∑
i=1

r2
i (w) =

n∑
i=1

(yi −wTxi)2. (1.7)

Definition 5. The RSS as the function of w is an objective function for OLS

OF(OLS,X,y)(w) =
n∑
i=1

(yi −wTxi)2 = (Y −Xw)T (Y −Xw). (1.8)

The point of the minimum of this function

ŵ(OLS,X,y) = arg min
w∈Rp

OF(OLS,X,y)(w) (1.9)

is a the ordinary least squares estimate of regression coefficients.
To find the minimum of this function, we first need to find the gradient

by calculating all partial derivatives

∂OF(OLS,X,y)

∂wj
=

n∑
i=1

2(yi −wTxi)(−xij), j ∈ {1, 2, . . . , p}. (1.10)

5



1. Least trimmed squares

By this we obtain the gradient

∇OF(OLS,X,y) = −
n∑
i=1

2(yi −wTxi)xi. (1.11)

Putting gradient equal to zero we get the so called normal equations

−
n∑
i=1

2(yi −wTxi)xi = 0 (1.12)

that can be rewritten in a matrix form as

XTy −XTXw = 0. (1.13)

Let us now construct the hessian matrix using second-order partial deriva-
tives:

∂2OF(OLS,X,y)

∂wh∂wj
=

n∑
i=1

2(−xik)(−xij), h ∈ {1, 2, . . . , p}. (1.14)

We get
HOF(OLS,X,y) = 2XTX. (1.15)

We can see that hessian HOF(OLS,X,y) is always positive semi-definite be-
cause for all s ∈ Rp

sT (2XTX)s = 2(Xs)T (Xs) = 2 ‖Xs‖2 (1.16)

It is easy to prove that twice differentiable function is convex if and only
if the hessian of such function is positive semi-definite. Moreover, any local
minimum of the convex function is also the global one. Hence the solution
of (1.13) gives us the global minimum.

Assuming thatXTX is a regular matrix, its inverse exists, and the solution
can be explicitly written as

ŵ(OLS,X,y) = (XTX)−1XTy. (1.17)

Moreover, we can see that if XTX is a regular matrix, then the hes-
sian HOF(OLS,X,y) is positive definite and OF(OLS,X,y) is strictly convex and
ŵ(OLS,X,y) is the unique strict global minimum.

1.2.1 Properties of the OLS estimate

Gauss-Markov theorem [1] tells us that if particular assumptions about the
regression model are fulfilled then the OLS estimate is unbiased and efficient.
Gauss-Markov theorem states that OLS is the best linear unbiased estimator
(BLUE). Being an efficient estimate means that any other linear unbiased
estimate has the same or higher variance. The most important conditions are:

6



1.3. Robust statistics

• Expected value of errors is zero.

• Errors are independently distributed and uncorrelated thus
cov(εi, εj), i, j = 1, 2 . . . , n, i 6= j

• All errors have same finite variance. This is known as homoscedasticity.

There are also other theorems which describe properties of OLS under
specific conditions, but they are out if the scope of this work.

1.3 Robust statistics

Standard statistics methods rely on multiple assumptions and fail if those as-
sumptions are not met. The goal of the robust statistics is to produce accept-
able results even when the data are from some unconventional distributions
or if data contains outliers or errors which are not normally distributed.

Such assumptions about the OLS method are described in Section 1.2.1.
Before we explain what happens if those conditions are not met or met only
partially let us describe one of the most common reasons why assumptions
are false.

1.3.1 Outliers

We stated many assumptions that are required for the OLS method to pro-
duce a acceptable estimate of ŵ. Unfortunately, in real conditions, these
assumptions are often false so that the ordinary least squares do not guar-
antee to return reasonable results. One of the most common reasons for the
assumptions being not met are observations called outliers.

Outliers are for instance erroneous measurements such as transmission
errors or noise. Another common reason for outliers is that nowadays the
data are automatically processed by computers. Sometimes we are also given
data which are heterogeneous in the sense that they contain data from multiple
regression models. In some sense outliers are inevitable. One would say that
we should be able to eliminate them by precise examination, repair or removal
of such data. That is possible in some cases, but often the data we are dealing
with are too big and highly dimensional to check.

The robust methods are sometimes not only useful to create models that
are not being unduly affected by the presence of outliers but also capable of
identifying data which seems to be outliers.

We use terminology from [2] to describe certain types of outliers. Let us
have observation (yi,xi). If the observation is not outlying in any direction
we call it regular observation . If it is outlying in direction of the explanatory
variable xi we call it leverage point. We have two types of leverage points. If
xi is outlying but (yi,xi) follows the liner pattern we call it a good leverage

7



1. Least trimmed squares

point. If it does not follow such a pattern we call it bad leverage point. Finally
if (yi,xi) is outlying only in direction of yi, we call it a vertical outlier.

1.3.2 Measuring robustness

There are a couple of tools to measure the robustness of an estimate. One of
the most popular one is called breakdown point. Others are empirical influence
function and influence function and sensitivity curve. Here we describe only
breakdown point right now. More on robustness measures can be found in [3].
Definition 6. Let T be a statistics, x = (x1, x2, . . . , xn) be an n-element
random sample and Tn(x) value of this statistics. The breakdown point of
T at sample x is defined using sample x(k), that arose by replacing k points
from the original sample x with random values xi. Then the breakdown point
is

bdpoint(T,xn) = 1
n

minST,xn , (1.18)

where

ST,xn,D =
{
k ∈ {1, 2, . . . , n} : sup

x(k)

∥∥∥Tn(x)− Tn(x(k))
∥∥∥ =∞

}
. (1.19)

This definition is says that the breakdown point is the function of the
minimal number of observations needed to be changed so that the estimator
gives arbitrarily biased results.

Intuitively, a reasonable breakdown point should not be higher than 0.5 [4]
; if more than 50% of the data is exchanged, the model of exchanged data
should override the model of the original data.

In the case of the OLS estimator, one outlier is enough to increase the
value of ŵ(OLS,X,y) to any desired value [5] thus

bdpoint(ŵ(OLS,X,y),xn) = 1
n
. (1.20)

Figure 1.1 gives us an idea of how one outlier may change the hyperplane
given by the OLS estimator of regression coefficients.

For an increasing number of the data samples n the breakdown point of
ŵ(OLS,X,y) tends to zero. We can see that ordinary least squares estimator
is not resistant to outliers at all. Due to this fact, multiple robust estimators
alternatives to the OLS have been proposed.

1.4 Least trimmed squares

The least trimmed squares (LTS) estimator is a robust version of the OLS
estimator. In this section, we give a definition and show that its breakdown

8



1.4. Least trimmed squares

Figure 1.1: Change of the regression hyperplane given by coefficients estimated
with OLS method when one of the four observations (highlighted with red
color) starts to deviate from the linear pattern.

point is variable and can go up to the maximum possible value of breakdown
point, thus 0.5.
Definition 7. Let us have X ∈ Rn,p, y ∈ Rn,1, w ∈ Rp and h, n/2 ≤ h ≤ n.
The objective function of LTS for data X and y is

OF(LTS,h,n)(w) =
h∑
i=1

r2
i:n(w) (1.21)

where r2
i:n(w) denotes the ith smallest squared residuum at w, i.e.

r2
1:n(w) ≤ r2

2:n(w) ≤ . . . ≤ r2
n:n(w). (1.22)

Even though that objective function of LTS seems similar to the OLS
objective function, finding the minimum is far more complex because the order
of the least squared residuals depends on w. Moreover, r2

i:n(w) residuum is
not uniquely determined if more squared residuals have same value. This
makes finding the LTS estimate non-convex optimization problem and, in
fact, finding the global minimum is NP-hard [6].

1.4.1 Discrete objective function

The LTS objective function from Definition 7 is not differentiable and not
convex, so we are unable to use the same approach as with the OLS objective
function. Let us transform this objective function to a discrete version which
is easier to use by algorithms to minimize it.

Let us assume for now that we know the vector ŵ(LTS,h,n) of estimated
regression coefficients minimizing the LTS objective function. Let π be the
permutation of n̂ = {1, 2, . . . , n} such that

ri:n(ŵ(LTS,h,n)) = rπ(j)(ŵ(LTS,h,n)), j ∈ n̂. (1.23)

9



1. Least trimmed squares

Put
Q(n,h) =

{
m ∈ Rn | mi ∈ {0, 1}, i ∈ n̂,

n∑
i=1

mi = h

}
, (1.24)

which is simply the set of all vectors m ∈ Rn which contain h ones and
n − h zeros. Let m(LTS) ∈ Q(n,h) such that m(LTS)

j = 1 when π(j) ≤ h and
m

(LTS)
j = 0 otherwise. Then

ŵ(LTS,h,n) = arg min
w∈Rp

h∑
i=1

r2
i:n(w) = arg min

w∈Rp

n∑
i=1

m
(LTS)
i r2

i (w). (1.25)

This means that if we know the vector mLTS than we can compute the LTS
estimate as the OLS estimate withX and Y multiplied by the diagonal matrix
MLTS = diag(m(LTS)):

ŵ(LTS,h,n) = (XTMLTSX)−1XTMLTSy. (1.26)

In other words, finding the minimum of the LTS objective function can be
done by finding the OLS estimates (1.26) for all vectors m ∈ Q(n,h). Thus, as
described in [7],

min
w∈Rp

OF(LTS,h,n)(w) = min
w∈Rp

h∑
i=1

r2
i:n(w) (1.27)

= min
w∈Rp,m∈Q(n,h)

n∑
i=1

mir
2
i (w) (1.28)

= min
m∈Q(n,h)

(
min
w∈Rp

OF(OLS,MX,My)(w)
)

(1.29)

= min
m∈Q(n,h)

(
min
w∈Rp

‖My −MXw‖2
)
. (1.30)

Substituting w with the OLS estimate as in (1.25) we get the discrete
objective function with domain m ∈ Q(n,h)

OFLTS
D (m) =

∥∥∥My −MX(XTMX)−1XTMy
∥∥∥2
. (1.31)

Minimizing this OF could by done straightforwardly by iterating over the
Q(n,h) set. Unfortunately, this set has cardinality equal to

(n
h

)
, which is huge,

so this approach is infeasible for bigger data sets. Multiple algorithms were
proposed to overcome this problem. Majority of them are probabilistic algo-
rithms, but besides those, some exact algorithms were proposed.

Finally, let us point out some fact about the number h of non-trimmed
residuals and how it makes least trimmed squares robust. The LTS reaches
maximum breakdown point 0.5 at h = [(n/2] + [(p + 1)/2] [5]. This means

10



1.4. Least trimmed squares

that up to 50% of the data can be outliers. In practice, the portion of outliers
is usually lower; if an upper bound on the percentage of outliers is known, h
should be set to match this percentage.
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Chapter 2
Algorithms

In the previous chapter, we have covered the theoretical background required
to implement algorithms that are presented in this chapter. We have intro-
duced the discrete version of the LTS objective function whose minimum is
equivalent to the continuous one. Finding the minimum of this function re-
quires to find the particular h-element subset and then calculate the estimate
of the corresponding regression coefficients w. To achieve this, we need to
examine all h-element subsets. The exhaustive approach fails due to the ex-
ponential size of Q(n,h).

2.0.1 First attempts

First known algorithms were based on iterative removal data samples whose
residuum had the highest value based on the OLS estimate on the whole
dataset. Such attempts are known to be flawed [8] because the initial OLS fit
can be already profoundly affected by outliers and the algorithm may remove
data samples which represent the actual model.

Other algorithms were based purely on a random approach. One such
algorithm is the Random solution algorithm [9] which randomly selects k h-
element subsets and subsequently compute the OLS estimate on each of them
and chooses the estimate with a minimum value of the objective function.
Such approach is straightforward, but the probability of selecting at least one
h-element out of k subsets which does not contain outliers thus has a chance of
producing good result tends to zero for an increasing number of data samples
n as we describe in detail in Section 2.2.2.

Another very similar algorithm called Resampling algorithm introduced
in [10]. It selects vectors from Q(n,p+1) instead of Q(n,h). This minor tweak
has a higher chance to succeed. Mainly because the probability of selecting
k h-element subsets of size p+ 1 gives the nonzero probability of selecting at
least one h-element subset not containing outliers (see Section 2.2.2 for more
details). Besides that, the number of vectors in this set is significantly lower
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2. Algorithms

than in Q(n,h) (at least if h is conservatively chosen so that h = [(n/2] + [(p+
1)/2]).

2.0.2 Strong and weak necessary conditions

Generating all possible h-element subsets is computationally exhaustive and
relying on randomly selecting “good” h-element subsets does not lead to re-
liable results. So what are our options? In [11] two criteria called a weak
necessary condition and a strong necessary condition are introduced. They
state necessary properties which some h-element subset must satisfy to be a
subset which leads to the global optimum of the LTS objective function. Let us
introduce those two necessary conditions. For that, it is convenient not only
to label a h-element subset of non-trimmed observations but also the com-
plementary subset of trimmed observations. We refer to this complementary
subset as to trimmed subset.
Definition 8. A h-element subset corresponding to m ∈ Q(n,h) satisfies the
strong necessary condition if for any vector mswap which differs from m only
by swapping one 1 with one 0, we get OFLTS

D (m) ≤ OFLTS
D (mswap). In words,

the value of the discrete LTS objective function cannot be reduced by swapping
one non-trimmed observation with one trimmed observation.

Based on this fact an algorithm can be created. We’ll discuss it in detail
in Section 2.3.
Definition 9. An h-element subset corresponding to m ∈ Q(n,h) satisfies
the weak necessary condition if r2

i (ŵ(OLS,MX,My)) for all trimmed obser-
vation is greater or equal to the greatest non-trimmed squared residuum
r2
j (ŵ(OLS,MX,My)).

Again, based on this criteria an algorithm can be created. Interesting
consequence which we use later gives us the following lemma.
Lemma 10. The strong necessary condition is not satisfied unless the weak
necessary condition is satisfied. Thus, if a strong condition is satisfied then
weak is too.

Proof. Let us assume that we have some ŵ(OLS,MX,My) with m ∈ Q(n,h)

for which the strong necessary condition is satisfied, but the weak necessary
condition is not. That means there exists xi with yi from the non-trimmed
subset and xj and yj from the trimmed subset such that

r2
j (ŵ(OLS,MX,My)) < r2

i (ŵ(OLS,MX,My)).

Thus

OFLTS
D (m) > OFLTS

D (m) + r2
j (ŵ(OLS,MX,My))− r2

i (ŵ(OLS,MX,My)) (2.1)
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Now we need to show that mswap vector that is created by swapping jth ob-
servation from the trimmed subset with ith observation from the non-trimmed
subset leads to

OFLTS
D (m) + r2

j (ŵ(OLS,MX,My))− r2
i (ŵ(OLS,MX,My)) ≥ OFLTS

D (mswap).
(2.2)

That is true because the value of OFLTS
D (mswap) is the minimum on the given

subset of observations. That is, of course, a contradiction with our assumption
which says that the strong necessary condition is satisfied.

2.1 Computing OLS

In this section, we describe a few of many methods that can be used to obtain
ŵ(OLS,X,y). Those methods are parts of the algorithms used to calculate the
LTS estimate.

In the following algorithms, we describe its time complexity. Because the
matrix multiplication is the fundamental part of all the following algorithms,
it is, therefore, appropriate to mention a few facts about the time complexity
of the matrix multiplication.

There are multiple algorithms for the multiplication of n×n matrices, for
example:

• Naive algorithm; its time complexity is O(n3).

• Strassen algorithm; its time complexity is O(n2.8074) [12].

• Coppersmith-Winograd; its time complexity is O(n2.375477) [13]

In practice, however, the naive algorithm is usually used. Even though
some of those algorithms have been efficiently implemented and are known to
be numerically stable (primarily variations of Strassen algorithm), their error
bound is weaker than in the case of the naive algorithm [14]. For this reason,
they are not used even when they might improve performance.

Moreover, currently widely used linear algebra software libraries such as
LAPACK uses Basic Linear Algebra Subprograms (BLAS) low-level routines
which implement naive matrix-matrix multiplication [15].

For that reason we assume in this work that the matrix multiplication is
O(n3). For not square matrices A ∈ Rm×n,B ∈ Rn×p it is then O(mnp).

2.1.1 Computation using a matrix inversion

Calculating the OLS estimate using the matrix inversion can be done as fol-
lows:

1. Compute A = XTX and B = Xy.
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2. Find the inversion of A.

3. Multiply A−1B.

Observation 11. Time complexity of computing the OLS estimate on X ∈
Rn×p and y ∈ Rn×1 using the matrix inversion is O(p2n) .

Proof. First, we compute the A = XTX and B = XTy. That gives us
O(p2n + pn). Next, we compute inversion C = A−1 which gives us O(p3).
Finally, we compute ŵ(OLS,X,y) = CB which is O(p2). Altogether, we get
O(p2n+ pn+ p3 + p2); p2n and p3 asymptotically dominates over the rest so

O(p2n+ pn+ p3 + p2) ∼ O(p2n+ p3). (2.3)

Moreover, if we assume that n ≥ p, we get O(p2n+ p3) ∼ O(p2n).

2.1.2 Computation using the Cholesky decomposition

Let A ∈ Rn×n be a symmetric positive definite matrix. Then it is possible to
find lower triangular matrix L so that

A = LLT (2.4)

We call this decomposition Cholesky factorization (sometimes also Cholesky
decomposition)

If we look at our problem of finding a solution of

XTXw = XTy, (2.5)

we can easily rewrite it as
Zw = b (2.6)

where Z = XTX is a symmetric positive definite matrix and b = XTy.
Because Z can be factorized as LLT the solution can be found easily by
substitution

Ld = b (2.7)
LTw = d, (2.8)

where d and w can be obtained by forward and backward substitution. Solu-
tion of w then represents ŵ(OLS,X,y) estimate.

So the algorithm for solving OLS using Cholesky factorization goes as
follows:

1. Compute XTX and XTy.

2. Compute Cholesky factorization Z = LLT where Z = XTX.
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2.1. Computing OLS

3. Solve lower triangular system Ld = b where b = XTy for d using
forward substitution.

4. Solve upper triangular system LTw = d for w.

Observation 12. The time complexity of solving OLS using Cholesky fac-
torization is O(p2n)

Proof. First step requires two matrix multiplication XTX which is O(np2)
and XTy which is O(np). Second step represents computing Cholesky fac-
torization. This can be done in O(1

3p
3) [16]. In the third and fourth step, we

are solving triangular linear systems; both of them require O(1
2p

2).
Putting all the steps together we get

O(np2 + np+ 1
3p

3 + p2) (2.9)

and because we assume n ≥ p then the multiplication XTX asymptotically
dominates over the rest so we get O(p2n).

Computing the OLS estimate using the Cholesky factorization is more
numerically stable than using matrix inversion and the time complexity is
asymptotically similar.

2.1.3 Computation using the QR decomposition

Let us now look on a similar method of computing the OLS estimate which
does not require multiplying XTX.

Let A ∈ Rn×n be square matrix. Then exists matrices Q and R so that

A = QR, (2.10)

whereQ ∈ Rn×n is an orthogonal matrix andR ∈ Rn×n is an upper triangular
matrix. This decomposition is known as QR decomposition.

If matrix A ∈ Rm×n is not square, then decomposition can be found as

A = QR = Q

[
R1
0

]
=
[
Q1 Q2

] [R1
0

]
= Q1R1 (2.11)

Where Q ∈ Rm×m is an orthogonal matrix, R1 ∈ Rn×n is upper an triangular
matrix, 0 ∈ R(m−n)×n is a zero matrix and Q1 ∈ Rn×n and Q2 ∈ R(m−n)×n

are matrices with orthogonal columns.
Given a QR decomposition of X

X = QR (2.12)

we get
XTX = (QR)TQR = RTQTQR (2.13)

17
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and because Q is orthogonal, QTQ = I and so

XTX = RTR. (2.14)

Because X ∈ Rn×p is not a square matrix then R =
[
R1
0

]
and

XTX = R1
TR1, (2.15)

where RT1 is a lower triangular matrix.
Solution to

XTXw = XTy (2.16)

is then given by
R1

TR1w = R1
TQ1

Ty. (2.17)

If we assumeX have full column rank,R1 must be invertible and this equation
can be simplified to

R1w = b1 (2.18)

where b1 = Q1
Ty. Because R1 is upper an triangular matrix, finding the is

trivial using the backward substitution. Resulting w is then the OLS estimate
ŵ(OLS,X,y).
Note 13. We can see that Cholesky factorization XTX = LLT is closely
connected to the QR decomposition X = Q1R1. Indeed, putting

L = RT1 (2.19)

we can get Cholesky decomposition directly from the QR decomposition.
The algorithm for solving the OLS using QR decomposition can go as

follows:

1. Calculate a QR decomposition X = QRT = Q1R1
T .

2. Calculate b1 = Q1
Ty.

3. Solve upper triangular system R1w = b1.

The QR factorization can be calculated in multiple ways. The most basic
method is applying the Gram-Schmidt process to columns of the matrix X.
This approach is not numerically stable so in practice it is not used as much
as two following methods: Householder transformations and Givens rotations.
The time complexity of both algorithms is similar. QR decomposition of a
matrix X ∈ Rn×p is [17]

O(2p2n− 2
3p

3) ∼ O(p2n). (2.20)
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2.1. Computing OLS

On the other hand, using Givens rotation for QR decomposition of the same
matrix is

O(3np2 − p3) ∼ O(p2n). (2.21)

Although Householder transformations are about 50% faster, both have
asymptotically equal time complexity. Moreover Givens rotations are more
numerically stable. We speak about Givens rotations in detail in Section 2.1.3
where we also make proof of the (2.21). Moreover, Givens rotations and are
suitable for sparse matrices. We use this property of Givens rotations in
Section 2.4.4.

For now, let us look at the time complexity of solving the OLS using
Householder transformations.
Observation 14. The time complexity of finding the OLS estimate using
the QR decomposition by Householder transformations is O(2p2n − 2

3p
3) ∼

O(p2n).

Proof. In the first step, we calculate a QR decomposition. Householder trans-
formations can be done in O(2np2 − 2

3p
3). The second step consists of the

matrix multiplication Q1
Ty which is O(np). In the last step we solve upper

triangular linear system which is O(1
2p

2). Putting all steps together we get

O(2np2 − 2
3p

3 + np+ 1
2p

2) (2.22)

We can see that p2n asymptotically dominates (this is the same as in the case
of Givens rotations).

The QR decomposition is considered as a standard way of computing OLS
estimate because of its high numerical stability. Let us mention that a little
slower, but a more stable method of computing the OLS estimate exists, and
that is the one using the singular value decomposition (SVD). On the other
hand, the QR decomposition is sufficiently stable for most cases so describing
SVD decomposition is out of the scope of this work.

Givens Rotation

In this section, we describe Givens rotations in detail. Let us note that this
theory is extensively used in Section 2.4.4 where we also show how to update
QR decomposition when adding or deleting a from the matrix X.

As described in [18], we compute the QR factorization of A ∈ Rm×n so
that we apply an orthogonal transformation using a matrix QT as

QTA = R (2.23)
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where Q is a product of orthogonal matrices. These matrices have the
following matrix as sub-matrix:

Qϕ =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
(2.24)

This matrix is indeed orthogonal since

QϕQ
T
ϕ = QT

ϕQϕ = I. (2.25)

Moreover, if we multiply this orthogonal matrix with some vector x ∈ R2,
as a result Qx we get a vector of the same length as x which is rotated
clockwise by the angle ϕ. When we say that vector has the same length
we mean that L2 norm of such vector stays the same. This is an important
property of all orthogonal matrices (operations that preserve L2 norm are
known as unitary transformations). Let us verify this claim. Let us have an
orthogonal matrix Q ∈ Rm×m and any vector x ∈ Rm then

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xT Ix = xTx = ‖x‖2 . (2.26)

So as we said, the idea is to create a series of orthogonal matrices which
gradually rotates two-element column sub-vectors ofA, so that we obtain zeros
under diagonal. One such method - Givens rotation uses Givens matrices that
erase one element under diagonal at a time.

The example of (2.24) is not random. Let us look at the orthogonal matrix
Qϕ one more time and let us multiply this matrix with some vector.

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
a
b

]
=
[
r
z

]
. (2.27)

To obtain the zeroing effect, we need to rotate this vector so that it is
parallel to (1, 0)T . So we only need to find ϕ so that cos(ϕ)a + sin(ϕ)b = r.
As we know, rotation with Qϕ preserves L2 norm. Hence if we want z = 0,
then r must be equal to L2 norm of the vector (a, b)T i.e. r =

√
a2 + b2. This

leads to the solution

cos(ϕ) = a√
a2 + b2

(2.28)

and

sin(ϕ) = b√
a2 + b2

. (2.29)
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In practice, the algorithm of computing cos(ϕ) and sin(ϕ) is slightly dif-
ferent because we want to prevent arithmetic overflow. This algorithm is
described by the following pseudocode:

Algorithm 1: Rotate
Input: a, b
Output: cos, sin

1 sin← ∅;
2 cos← ∅;
3 if b == 0 then
4 sin← 0;
5 cos← 1;
6 else if abs(b) ≥ abs(a) then
7 cotg ← a

b ;
8 sin← 1√

1+(cotg)2 ;

9 cos← sin cotg;
10 else
11 tan← b

b ;
12 cos← 1√

1+(tan)2 ;

13 sin← cos tan;
14 end
15 return cos , sin;

We can scale the same idea to higher dimensions. Let us denote matrix
Qϕ(i, j) ∈ Rm×m defined as

Qϕ(i, j) =



i j

1 . . . 0 . . . 0 . . . 0
... . . . ...

...
...

i 0 . . . c . . . s . . . 0
...

... . . . ...
...

j 0 . . . −s . . . c . . . 0
...

...
... . . . ...

0 . . . 0 . . . 0 . . . 1



where c = cos(ϕ) and s = sin(ϕ) for some ϕ. That means this matrix is
orthogonal. Now if we have some column vector x ∈ Rm×1 and we calculate
c and s by (2.28) and (2.29) for a := xi and b := xj . Finally if we multiply
Qϕ(i, j)x = p we can see that p is the same vector as x except for pi and pj
so that:
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Qϕ(i, j)x = Qϕ(i, j)



x1
...
xi
...
xj
...
xm


= p =



x1
...
r
...
0
...
xm


where r =

√
x2
i + x2

j . If we have matrix A ∈ Rn×p instead of only one column
x, it works the same way. We need to create matrix Qϕ(i, j) for each aij
under the diagonal in order to create upper triangular matrix. Usually we are
zeroing columns so that we start with a12 and continue with a13 . . . a1n . Then
we start with the second column with element a23 and so on. That means we
need to create in total e = p2−p

2 + np − p2 matrices Qϕ(i, j). We can denote
this sequence of matrices as Qϕ1 ,Qϕ2 , . . .Qϕe

. The QR decomposition then
looks like

Qϕe
. . .Qϕ2Qϕ1A = R (2.30)

where Qϕe
. . .Qϕ2Qϕ1 is actually QT and Q is obtained by

Q = QT ϕ1Q
T
ϕ2 . . .Q

T
ϕe
. (2.31)

We can see that for the each non-zero under diagonal element of the matrix
A, we need one additional matrix Qϕi

, and with such matrix, we are multiply
only two rows. Moreover, the rows are getting shorter after each finished
column. Hence the total number of operations is at most

n∑
i=1

p∑
j=i+1

6(n− i+ 1) ≈ 6np2 − 3np2 − 3p3 + 2p3 = 3np2 − p3. (2.32)

2.2 FAST-LTS

In this section, we introduce the FAST-LTS algorithm from [19]. It is, as well
as other algorithms we introduce an iterative algorithm. We discuss all main
components of the algorithm starting with its core idea called a concentration
step which authors call a C-step.

2.2.1 C-step

We show that from an existing LTS estimate ŵ we can construct a new LTS
estimate ŵnew so that value the objective function at ŵnew is less or equal to
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the value at ŵ. Based on this property, the algorithm creates a sequence of
LTS estimates leading to better results.

Theorem 15. Consider X ∈ Rn×p and y ∈ Rn×1. Let us also have w0 =
(m(0)

1 , . . . ,m
(0)
n ) ∈ Rp and m0 ∈ Q(n,h). Let us put L0 =

n∑
i=1

m
(0)
i r2

i (w0). Let
π : n̂→ n̂ be permutation of n̂ such that

|rπ(1)(w0)| ≤ . . . ≤ |rπ(n)(w0)| (2.33)

and mark m1 ∈ Q(n,h) such that m(1)
i = 1 for i ∈ {π(1) , π(2) , ...π(h)} and

m
(1)
i = 0 otherwise. This means that m1 corresponds to h-element subset

with smallest squared residuals r2
i (w0).

Finally let w1 be the least squares fit on the m1 h-element subset of
observations and L1 =

n∑
i=1

m
(1)
i r2

i (w1), then

L1 ≤ L0. (2.34)

Proof. Because m1 represents h observations with the smallest squared resid-
uals r2

i (w0) at point w0 , then
n∑
i=1

m
(1)
i r2

i (w0) ≤
n∑
i=1

m
(0)
i r2

i (w0) = L0. When
we take into account that the OLS estimate minimizes the sum of squared
residuals for the m1 subset of observations, then

L1 =
n∑
i=1

m
(1)
i r2

i (w1) ≤
n∑
i=1

m
(1)
i r2

i (w0). (2.35)

Together we get

L1 =
n∑
i=1

m
(1)
i r2

i (w1) ≤
n∑
i=1

m
(1)
i r2

i (w0) ≤
n∑
i=1

m
(0)
i r2

i (w0) = L0 (2.36)

Based on the previous theorem, using some h-element subset mold with
corresponding ŵ(OLS,MoldX,Moldy) we can constructmnew with corresponding
ŵ(OLS,MnewX,Mnewy) such that Lnew ≤ Lold.

Applying the theorem repetitively leads to the iterative sequence of L1 ≤
L2 ≤ . . .. One step, called the C-step, of this process is described by the
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following pseudocode.
Algorithm 2: C-step

Input: dataset consiting of X ∈ Rn×p and y ∈ Rn×1, ŵold ∈ Rp×1

Output: ŵnew, mnew

1 R← ∅;
2 for i← 1 to n do
3 R← R ∪ {|yi − ŵoldxiT |};
4 end
5 mnew ← select set of h smallest absolute residuals from R;
6 ŵnew ← OLS fit the on mnew subset;
7 return ŵnew ,mnew;

C-step algorithm is visualized in Figure 2.1 where we start with the h-
element subset m1 and corresponding ŵ1 OLS fit on the m1 subset and L1 =
OFLTS

D (m1). By sorting absolute the residuals and selecting h smallest we
obtain m2 h-element subset. Its value OF(OLS,M2X,M2y)(ŵ1) is highlighted
with red dot. Finally we calculate OLS fit on m2 and obtain ŵ2 estimate.

ŵ2 ŵ1

OF(OLS,M1X,M1y)(w)

(1)

OF(OLS,M2X,M2y)(w)

(3) (2)

w

L

Figure 2.1: Illustration of the C-step algorithm. (1) represents the value of
OF(OLS,M1X,M1y)(ŵ1) (which is equal to the value OFLTS

D (m1) ). (2) rep-
resents the value of OF(OLS,M2X,M2y)(ŵ1) and (3) represents the value of
OF(OLS,M2X,M2y)(ŵ2) (which is equal to the value OFLTS

D (m2)).

Observation 16. The time complexity of the C-step 2 algorithm is asymp-
totically similar to the time complexity of the computation of the OLS fit,
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2.2. FAST-LTS

namely O(p2n).

Proof. In the C-step we must compute n absolute residuals. Computation of
one absolute residual consists of matrix multiplication of shapes 1×p and p×1
that gives us O(p). Hence, the time of computing n residuals is O(np). Next,
we must select a set of h smallest residuals which can be done in O(n) using
a modification of the QuickSelect algorithm [20]. Finally, we must compute
the ŵnew OLS estimate on an h-element subset of the data. Because h is
proportional to n, we can say that this is O(p2n+ p3) which is asymptotically
dominant over the previous steps which are O(np + n). Because we assume
n ≥ p, we get O(p2n+ p3) ∼ O(p2n).

As we stated above, repeating C-step leads to a sequence of ŵ1, ŵ2 . . . on
subsetsm1,m2 . . . with corresponding sum of squared residuals L1 ≥ L2 ≥ . . .
One could ask if this sequence converges, so that Li == Li+1. Answer to this
question is presented by the following theorem.
Theorem 17. The sequence of the estimates ŵ1, ŵ2 . . . obtained by the C-
step becomes constant after at most k =

(n
h

)
, i.e. ŵk = ˆwk+1.

Proof. ŵi is uniquely given by an h-element subset mi ∈ Q(n,h) and since
Q(n,h) is finite, namely its size is

(n
h

)
, the sequence becomes constant at the

latest after this number of steps.

The theorem gives us a clue to create algorithm described by the following
pseudocode.

Algorithm 3: Repeat-C-step
Input: dataset consiting of X ∈ Rn×p and y ∈ Rn×1, ŵold ∈ Rp×1 ,m0
Output: ŵfinal, mfinal

1 ŵnew ← ∅;
2 mnew ← ∅;
3 Lnew ←∞;
4 while True do
5 Lold ← OFLTS

D (ŵold);
6 ŵnew , mnew ← C-step(X ,y , ŵold);
7 Lnew ← OFLTS

D (ŵnew);
8 if Lold == Lnew then
9 break

10 end
11 ŵold ← ŵnew
12 end
13 return ŵnew, mnew;

It is important to note that although the maximum number of steps of
this algorithm is

(n
h

)
, in practice, it is most often under 20 steps as can be

seen on Figure 2.2.
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Figure 2.2: Value of the residual sum of squares (normalized) based on the
number of the step of C-step algorithm for 100 different starting subsets.
Dataset D3 was used with configuration n = 500, p = 20 and 30% of the the
outliers (see Section 3 for more details about the dataset).

Now we can describe the final algorithm from [19]: Choose a lot of initial
subsets m1 and for each of them apply the Repeat-C-step algorithm. From
all resulting subsets with the corresponding ŵ estimates choose the one with
the least value of OFLTS

D (ŵ).
Before we can construct final the algorithm, we must decide how to choose

the initial subset m1 and how many of them means “a lot”.

2.2.2 Choosing an initial m1 subset

It is important to note, that when we choose m1 subset such that it contains
outliers, then iteration of C-steps usually does not converge to a good results,
so we should focus on methods with non zero probability of selecting m1 such
that it does not contain outliers. There are many possibilities of how to create
an initial m1 subset. Let us start with the most trivial one.

Random selection

Most basic way of creating the m1 subset is simply to choose random m1 ∈
Q(n,h). The following observation shows that it is not the best way.
Observation 18. Assume that the n-element dataset contains outliers whose
number is proportional to ε/n with ε > 0. Let m11 , . . . ,m1k ,m1i ∈ Q(n,h)
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2.2. FAST-LTS

be k randomly selected h-element subset of data. Then the probability that
at least one of these h-element subsets does not contain an outlier tends to 0
as n goes to infinity.

Proof. It follows from observation above and the fact that h > n/2 that

P (one random data sample not an outliers) = (1− ε)
P (one random h element subset without outliers) = (1− ε)h

P (one subset with at least one outlier) = 1− (1− ε)h

P (k subsets with at least one outlier in each) = (1− (1− ε)h)k

P (k subsets with at least one subset without outliers) = 1− (1− (1− ε)h)k

Because n→∞, then (1− ε)h → 0, 1− (1− ε)h → 1, (1− (1− ε)h)k → 1, and
1− (1− (1− ε)h)k → 0

That means that we should consider other options for selecting initial m1
subset. Authors of the algorithm came with the following solution.

P-subset selection

Let us choose a vector c ∈ Q(n,p) and compute the rank of the matrix XC =
CX, where C = diag(c). If rank(XC) < p add randomly selected rows
of X to XC without repetition until rank(XC) = p. Next let us denote
ŵ0 = OFLTS

D (c). Let π : n̂→ n̂ be the permutation of n̂ such that |rπ(1)(c)| ≤
. . . ≤ |rπ(n)(c)|.

Finally, let m1 ∈ Q(n,h) be initial h-element subset such that m(1)
i = 1 for

i ∈ {π(1) , π(2) , ...π(h)} and m
(1)
i = 0 otherwise.

Observation 19. Assume that the n-element dataset contains outliers whose
number is proportional to ε/n with ε > 0. Let c11 , . . . , c1k , c1i ∈ Q(n,p) be
k randomly selected p-element subset of data. Then the probability that at
least one of these p-element subsets does not contain an outlier tends to

1− (1− (1− ε)h)k > 0. (2.37)

Proof. Similarly as in previous observation.

The last missing piece of the algorithm is determining the number k of
initial subsets m1, which maximize the probability to at least one of them
leads to a sequence of estimates ending up in the global minimum. Simply
put, the more, the better. So before we answer this question accurately, let
us discuss some key observations about the algorithm.
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2.2.3 Speed-up of the algorithm

In this section, we describe essential observations which help us to formulate
the final algorithm. In two subsections we describe how to optimize the current
algorithm.

Selective iteration

The most computationally demanding part of one C-step is computation of
the OLS fit for the subset mi and then the calculation of n absolute residuals.
As we stated above, convergence is usually achieved under 20 steps. So for
fast algorithm run, we would like to repeat C-step as little as possible and at
the same time do not lose the performance of the algorithm.

Since the convergence of the Repeat-C-step algorithm is very fast, it turns
out that we can distinguish between starts that leads to good solutions and
those which does not after few C-steps iterations. Based on empiric obser-
vation, we can distinguish good or bad solution already after two or three
iterations of C-steps based on the values OFLTS

D (ŵ3) and OFLTS
D (ŵ4) respec-

tively (see Figure 2.2).
So even though authors do not specify the size of k explicitly, they propose

that after a few C-steps we can choose (say 10) best solutions among all m1
starting subsets and continue with iterating the C-steps only using the best
solutions. Authors refer to this process as to the selective iteration.

Nested extension

C-step computation is usually very fast for small n. It gets slow for very
high n, say n > 103, because we need to compute the OLS estimate for the
mi subset of size h which proportional to n and then calculate n absolute
residuals.

Authors came up with a solution they call a nested extension. Let k be
number initial subsets m1. The we can describe the nested extension as
follows.

• If n is greater than a given limit l, we create subset L of data |L| = l, and
divide this subset into s disjoint sets P1, P2, . . . , Ps , |Pi| = l

s , Pi ∩ Pj =
∅ ,
⋃s
i=1 Pi = L.

• For every Pi we set the number of starts kPi = k
l .

• Next in every Pi we create kPi number of initial mPi1
subsets and apply

C-steps few times for each of them.

• Choose 10 best results from each subsets and merge them together. We
get family of sets Fmerged containing 10 best mPi3

subsets from each Pi.
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• On each subset from Fmerged family of subsets we again apply 2 C-steps
twice and then choose 10 best results.

• Finally we use these 10 best subsets and apply Repeat-C-step algorithm.

• As a result we choose the best of those 10 results.

2.2.4 Putting all together

We have described all major parts of the algorithm FAST-LTS. One last thing
we need to mention is that even though C-steps iteration usually converges
under 20 steps, it is appropriate to introduce two parameters imax and r
which limits the number of C-steps iterations in some rare cases when conver-
gence is too slow. Parameter imax denotes the maximum number of iterations
in the final Repeat-C-step iteration. Parameter r denotes the threshold for
the stopping criterion because of the rounding errors we use |OFLTS

D (ŵi) −
OFLTS

D (ŵi+1)| ≤ r instead of OFLTS
D (ŵi) = OFLTS

D (ŵi+1) .

2.3 Feasible solution

In this section we introduce the Feasible solution algorithm (FSA) from [8].
It is based on the strong necessary condition described at Definition 8. The
basic idea can be described as follows.

Let us consider that we have some m ∈ Q(n,h), let us denote Om =
{i ∈ {1, 2, . . . , n};wi = 1} and Zm = {j ∈ {1, 2, . . . , n};wj = 0} the sets of
indices of 0s and 1s in vector m. We can think about it as indices of non-
trimmed observations in the h-element subset and trimmed n−h observations
respectively. Let m(i,j) be a vector which is constructed by swapping ith and
jth element m where i ∈ Om and j ∈ Zm. Such vector corresponds to the
vector mswap from Definition 8.

With this in mind, put

∆S(m)
i,j = OFLTS

D (m(i,j))−OFLTS
D (m), (2.38)

to express a change of the LTS objective function by swapping one obser-
vation from the non-trimmed subset with another from the trimmed subset.
To calculate this we can obviously first calculate the OFLTS

D (m), then the
OFLTS

D (m(i,j)) and finally subtract both results. Although it is an option, it
it computationally exhaustive. So the question is whether there is an easier
way of calculating ∆S(m)

i,j . The answer is positive and we describe it now.
Let M = diag(m), M (i,j) = diag(m(i,j)) and ZM = (XTMX). For now

let us assume that we also have computed ZM−1 and ŵ = ZM
−1XTMy. We
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now want to calculate ∆S(m)
i,j . Let r(m) = Y −Xŵ be the vector of residuals

and dr,s = xrZM
−1xs, then by equation introduced in [21] we get

∆S(m)
i,j =

(r(m)
j )2(1− di,i)− (r(m)

i )2(1 + dj,j) + 2r(m)
i r

(m)
j dj,j

(1− di,i)(1 + dj,j) + d2
i,j

. (2.39)

Let us now describe the core of the FSA. It is similar to the FAST-LTS
algorithm in terms of iterative refinement of a h-element subset. Let us assume
that we have some vector m ∈ Q(n,h). No we compute ∆S(m)

i,j for all i ∈ Om
and j ∈ Zm. This may lead to several different outcomes:

1. all S(m)
i,j are non-negative,

2. one S(m)
i,j is negative,

3. multiple S(m)
i,j are negative.

In the first case, all the OFLTS
D (m(i,j)) are greater or the same as the

OFLTS
D (m), so none swap will lead to an improvement. That also means that

strong necessary condition is satisfied and the algorithm ends.
In the second and the third case, the strong necessary condition is not

satisfied, and we can make the swap decreasing the objective function. In the
second case, it is easy which one to choose because we have only one. In the
third case, we have a couple of options again:

1. use the first swap that leads to the improvement,

2. from all possible swaps choose one that has highest improvement value
OFLTS

D (m(i,j)),

3. use the first swap that has improvement higher than some given thresh-
old.

In practice, the third option is the winner, because it gives parameter
which can be used to affect number if iterations of the algorithm. On the
other hand, none of the options improve the time complexity of the algorithm,
so from now on let us assume that we use the case number two. So if there are
some negative S(m)

i,j , we choose the one with the least value, make the swap
and repeat the process.

The algorithm ends when there is no possible improvement, i.e., when all
S

(m)
i,j are non-negative. The number of iterations needed till algorithm stops

is usually quite low, but for practical usage, it is still convenient to use some
parameter imax to bound the number of swaps without finding an h-element
subset satisfying the strong necessary condition. One step of this algorithm,
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called optimal swap additive algorithm (OSAA), is described by the following
pseudocode.

Algorithm 4: OSAA
Input: ZM−1 ∈ Rp×p, r(m) ∈ Rn×1, Om, Zm, X ∈ Rn×p
Output: iswap, jswap, S

1 S ← 0;
2 iswap ← ∅;
3 jswap ← ∅;
4 for mi ∈ Om do
5 for mj ∈ Zm do
6 r

(m)
i = r

(m)
mi ;

7 r
(m)
j = r

(m)
mj ;

8 di,i = xmiZM
−1xTmi

;
9 di,j = xmiZM

−1xTmj
;

10 dj,j = xmjZM
−1xTmj

;
11 Stmp = calculate ∆S(m)

i,j by (2.39);
12 if Stmp < S then
13 S ← Stmp;
14 iswap ← mi;
15 jswap ← mj ;
16 end
17 end
18 end
19 return iswap, jswap, S;

Observation 20. The time complexity of the OSAA 4 is O(n2p2)

Proof. All di,i and dj,j can be calculated before the for loops; we need co
multiply vector ∈ Rp with matrix from Rp×p and vector from Rp that is
O(p2). For all di,i this have to be done h times and for dj,j n − h times. So
all together it is O(np2). The two main loops go through all pairs; thus it is
O(n2) and di,j , which can be calculated in O(p2), must be calculated inside
the loops each time.

If we put everything together we get O(np2 + n2p2) ∼ O(n2p2).

One run of this iteration process leads to sort of a local optimum, i.e., to
a h-element subset satisfying the strong necessary condition. In [8] they refer
to this set as to the feasible set. As a process is not guaranteed to find the
global minimum, the algorithm needs to be run multiple times say, t times.
The h-element subset corresponding to the solution with the smallest value of
the objective function is chosen as the final solution.

The problem of finding the initial h-element subset m was already dis-
cussed when describing the FAST-LTS algorithm. More importantly, an h-
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element subset satisfying the weak necessary condition do not need to sat-
isfy the strong necessary condition, so passing such a h-element subset as
input to this algorithm is another option which we discuss in Section 2.5. We
now describe the FSA using a pseudocode; we assume that we have function
generate intial subset that generates h-element subsets.

Algorithm 5: FSA
Input: X ∈ Rn×p,y ∈ Rn×1, imax, t
Output: ŵfinal, mfinal

1 ŵfinal ← ∅;
2 mfinal ← ∅;
3 RSSmin ←∞;
4 for k ← 0 to t do
5 m← generate intial subset() ; // e.g. random m ∈ Q(n,h)

6 l← 0;
7 while True do
8 M ← diag(m);
9 ZM = (XTMX);

10 ZM
−1 ← inversion of ZM ;

11 ŵ ← OFLTS
D (m);

12 r(m) ← Y −Xŵ;
13 i, j, Si,j = OSAA( ZM−1, r(m), Om, Zm, X);
14 if Si,j ≥ 0 or l ≥ imax then
15 RSSnew ← OF(OLS,MX,My);
16 if RSSnew < RSSmin then
17 RSSmin ← RSSnew;
18 mfinal ←m;
19 ŵfinal ← ŵ;
20 end
21 break;
22 end
23 else
24 m←m(i,j);
25 l← l + 1;
26 end
27 end
28 end
29 return ŵfinal , mfinal;

Observation 21. In the main loop, beside running OSAA whose time com-
plexity is O(n2p2), we need to recalculate ŵ using the matrix inversion with
time complexity O(p2n) (see Observation 11). The main loop of the FSA
runs up to imax iterations for each start t. So the time complexity of whole
algorithm is O(imaxt(n2p2 + p2n)). Because imax is usually quite low, we can
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see that the FSA time complexity is dominated by the OSAA.

In this section, we have described the FSA algorithm. In the next section,
we introduce a very similar algorithm having better numerical stability and
performance.

2.4 OEA, MOEA, MMEA

In the FSA, we assumed that after each cycle of OSAA we need to recalculate
the inversion of XTMX together with ŵ. In this section, we introduce a
different approach described in [5]. Moreover, these ideas lead not only to
speeding up the FSA but also to construction of other algorithms.

In Section 2.3 we have introduced additive formula (2.39) which value is
OFLTS

D (m(i,j)) − OFLTS
D (m). Let us now try to obtain a similar formula but

with focus on how the individual elements in our current algorithm changes,
namely the inversion iofXTMX and ŵ. We also split the process of swapping
ith and jth elements into the insertion of jth and removal of ith element.

2.4.1 Multiplicative formula

Let us denoteZ = XTX and letA = (Xy) stand for the matrixX containing
target variables and Z̃ = ATA, then

Z̃ =
[
Z XTy
yTX yTy

]
. (2.40)

Notice that Z is a symmetric square matrix from Rp×p, we also assume that
Z is regular. XTy is p dimensional column vector, yTX is p dimensional row
vector and yTy is a scalar. The OLS estimate ŵ is then given by

ŵ(OLS,X,y) = Z−1XTy (2.41)

and the RSS(ŵ) by

RSS(ŵ) = yTy − yTXŵ. (2.42)

Let us show that the RSS(ŵ) can be expressed as the fraction of deter-
minants det(Z̃) and det(Z) (using determinant rule for block matrices) so
that
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RSS(ŵ) = det(Z̃)
det(Z) (2.43)

=
det

(
Z XTy
yTX yTy

)
det (M)

=
det(Z) det

(
yTy − yTXZ−1y

)
det (Z)

= yTy − yTXŵ.

If we assume that RSS(ŵ) > 0, then Z̃−1 can be expressed as

Z̃
−1 =


Z−1 + ŵŵ

RSS(ŵ) − ŵT

RSS(ŵ)

− ŵT

RSS(ŵ)
1

RSS(ŵ)

 . (2.44)

For the following equations it is important to notice that for any two row
vectors ci = (xi, yi) and cj = (xj , yj) from Rp+1 it holds that

ciZ̃
−1
cTi = (yi − xiŵ)2

RSS(ŵ) + xiZ−1xTi (2.45)

and
cjZ̃

−1
cTj = (yj − xjŵ)(yi − xiŵ)

RSS(ŵ) + xjZ−1xTj . (2.46)

Including the observation

Using the formulas above, let us express how the determinant det(Z) and the
inverse of the Z−1 changes when an observation ci = (xi, yi) is added to the
matrix A. First let us notice that if we add this row to A, then Z changes as


x11 x12 . . . x1n xi1
x21 x22 . . . x2n xi2

...
...

... . . . ...
xp1 xp2 . . . xpn xip




x11 x12 . . . x1p
x21 x22 . . . x2p

...
... . . . ...

xn1 xn2 . . . xnp
xi1 xi2 . . . xip

 = XTX+xTi xi = Z+xTi xi,

(2.47)
so the determinant with appended row changes as

det(Z + xTi xi) = det(Z)(1 + xiZ−1xTi ). (2.48)
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Finally the inversionZ−1 can be obtained using Sherman-Morrison formula [22]
so that

(Z + xTi xi)
−1 = Z−1 −

Z−1xTi xiZ
−1

1 + xiZ−1xTi
. (2.49)

It is now convenient to denote

b = −1
(1 + xiZ−1xTi )

(2.50)

and
u = Z−1xTi . (2.51)

Then (2.49) can be written as

(Z + xTi xi)
−1 = Z−1 + buuT . (2.52)

Now, using the same idea as in (2.47) the updated ŵ, which we denote as
ŵ, is

ŵ = (Z−1 + buuT )(XTy + yix
T
i ). (2.53)

This can be simplified so that we get 1

ŵ = ŵ − (yi − xiŵ)bu. (2.54)

Last but not least, we want to express the updated RSS(ŵ). This can be
done easily from (2.43) and (2.48) as

RSS(ŵ) = RSS(ŵ) + (yi − xiŵ)2

(1 + xiZ−1xTi )
. (2.55)

It is convenient to mark

γ+(ci) = (yi − xiŵ)2

(1 + xiZ−1xTi )
, (2.56)

so that
RSS(ŵ) = RSS(ŵ) + γ+(ci) (2.57)

We can see that γ+(ci) measures how RSS(ŵ) increases after we extend the
data set with observation ci, thus γ+(ci) ≥ 0.

1In [5] is a typing error in this formula so that ŵ = ŵ+ (yi − xiŵ)bu is used instead of
ŵ = ŵ − (yi − xiŵ)bu
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Excluding the observation

Because we want to express both increment and decrement change in our
dataset, let us now focus on how RSS(ŵ), Z−1 and ŵ changes after we
exclude one observation.

Let us assume that we have already included one observation ci in our
dataset and mark Z = Z +xixTi . If we exclude one observation cj = (xj , yj)
from already updated matrix A, then the determinant det(Z) changes as

det(Z − xTj xj) = det(Z)(1− xjZ
−1
xTj ) (2.58)

and the inversion changes (again, according to Sherman-Morrison formula) as

(Z − xTj xj)
−1 = Z

−1 +
Z
−1
xTj xjZ

−1

1− xjZ
−1
xTj

. (2.59)

Once again, it is convenient to denote

b = −1
(1xjZ

−1
xTj )

, b ∈ R, (2.60)

and
u = Z

−1
xTj ,u ∈ Rp×1, (2.61)

so that we can write

(Z + xTj xj)
−1 = Z−1 − buuT . (2.62)

Using the same approach as before we can express the up-dated estimate
denoted as ŵ:

ŵ = +ŵ(yj − xjŵ)bu. (2.63)

The updated RSS(ŵ) can be expressed using (2.43) and (2.48) and (2.62)
as

RSS(ŵ) = RSS(ŵ)− (yj − xjŵ)2

(1− xjZ
−1
xTj )

. (2.64)

Putting

γ−(cj) = (yj − xjŵ)2

(1− xjZ
−1
xTj )

, (2.65)

we get
RSS(ŵ) = RSS(ŵ)− γ−(cj). (2.66)
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Swapping two observations

Let us now express the equation for including and excluding observation at
once. First, notice that from (2.62) we can express

xjZ
−1
xTj = xjZ

−1xTj −
(xiZ−1xTj )2

1 + xiZ−1xTi )
, (2.67)

and get

det(Z + xTi xi − x
T
j xj) = (2.68)

det(Z)(1 + xiZ−1xTi −xjZ
−1xTj + (xiZ−1xTj )2 − xiZ−1xTi xjZ

−1xTj ).

Finally, we can express the RSS(ŵ) as

RSS(ŵ) = RSS(ŵ)ρ(ci, cj), (2.69)

where

ρ(ci, cj) =
(1 + xiZ−1xTi +

e2
j

RSS(ŵ))(1− xjZ−1xTj −
e2
i

RSS(ŵ)) + (xiZ−1xTj + eiej
RSS(ŵ))2

1 + xiZ−1xTi − xjZ
−1xTj + (xiZ−1xTj )2 − xiZ−1xTi xjZ

−1xTj
,

(2.70)
where ei = yi − xiŵ and ej = yj − xjŵ.

We can see that this formula is similar to (2.39) but here ρ(ci, cj) repre-
sents multiplicative increment. Moreover if 0 < ρ(ci, cj) < 1 then the swap
leads to improvement in terms of the value of the objective function.

We are now able to modify the FSA so that we do not need to recompute
ŵ and inversion (XTX)−1 but only to update it. The authors of [5] call this
algorithm optimal exchange algorithm (OEA).

2.4.2 The OEA and its properties

We can apply the previous section to the FSA. The sets Om and Zm (see
Section 2.3) contain indices of observations to be excluded and included within
the swap.

In terms of the FSA, as described in Algorithm 5, we first need to change
the OSAA. There are only minor tweaks. First, we need to pass one more
argument RSS(ŵ). Second, we want to find the minimal ρ(ci, cj) calculated
by (2.70) so that 0 < ρ(ci, cj) < 1. Other parts of the algorithm remain
unchanged as well as the time complexity.

This algorithm returns ρ(ci, cj), and indices iswap ∈ Om and jswap ∈ Zm
of observations we want to swap. With those in hand, we can update the
RSS(ŵ) by (2.69), Z−1

M by (2.52) and (2.62) and finally update ŵ by (2.54)
and (2.63).
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As we said, the time complexity of modified OSAA is O(n2p2). Thus there
is no asymptotic improvement.

When an RSS(ŵ) improvement is found i.e., when 0 < ρ(ci, cj) < 1, then
we update RSS(ŵ). Next we update inversion by (2.52) which is O(4p2)
and by (2.62) which is also O(4p2). Finally we need to update ŵ by (2.54)
and (2.63) which are both O(p2 + p).

Time complexity of updating all the quantities is O(8p2+2p2+p) ∼ O(p2).
That is quite an improvement if we compare it to time complexity O(p2n) of
updating those quantities in the FSA (see Observation 21).

Now it seems it actually does not matter if we use additive formula (2.39)
with the stopping criterion ∆S(m)

i,j ≥ 0 – thus unmodified OSAA or multi-
plicative formula (2.70) with the stopping criterion ρ(ci, cj) ≥ 1.

However, the advantage of the multiplicative formula (2.70) is that we
can use the following bounding condition to improve the performance of the
modified OSAA.

Bounding condition improvement

The ρ(ci, cj) is expressed as a fraction with the numerator

(1+xiZ−1xTi +
e2
j

RSS(ŵ))(1−xjZ−1xTj −
e2
i

RSS(ŵ))+(xiZ−1xTj + eiej
RSS(ŵ))2.

(2.71)
Since ( eiej

RSS(ŵ))2 ≥ 0, then whole numerator is greater or equal to

(1 + xiZ−1xTi +
e2
j

RSS(ŵ))(1− xjZ−1xTj −
e2
i

RSS(ŵ)). (2.72)

On the other hand, we can see that denominator is

1 + xiZ−1xTi − xjZ
−1xTj + (xiZ−1xTj )2 − xiZ−1xTi xjZ

−1xTj , (2.73)

and because (xiZ−1xTj )2 and xiZ−1xTi xjZ
−1xTj are actually inner products

of xi and xj (Z−1 is positive definite) thus

(xiZ−1xTj )2 ≤ xiZ−1xTi xj (2.74)

using the Cauchy-Schwarz inequality. This means that the denominator is less
or equal to

1 + xiZ−1xTi − xjZ
−1xTj . (2.75)
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Given that we can denote ρb(ci, cj) as

ρb(ci, cj) =
(1 + xiZ−1xTi +

e2
j

RSS(ŵ))(1− xjZ−1xTj −
e2
i

RSS(ŵ))

1 + xiZ−1xTi − xjZ
−1xTj

≤ ρ(ci, cj).

(2.76)
The actual speed improvement is then given by that we do not need to

compute xiZ−1xTj in each of h(n− h) pairs swap comparison. This quantity
cannot be computed outside the for loop; thus it is the reason for such a high
time complexity. The modified OSAA can be further modified as follows.

First we set ρmin := 1, then for each pair we only compute ρb(ci, cj)
and if it is greater than or equal to ρmin, we can continue to the next pair
without computing ρ(ci, cj). It is very useful because all quantities necessary
for calculating ρb(ci, cj) can be precalculated outside of the loop.

If ρb(ci, cj) is less that ρmin, we actually compute ρ(ci, cj) and set ρmin :=
ρ(ci, cj).

This means that in the double loop whose time complexity is O(n2) we
do not always need to calculate ρ(ci, cj) with time complexity O(n2). This
does not improve the asymptotic time complexity, but as we will see later, can
improve the speed of the algorithm.

Finally, let us note that in [5] the authors call this algorithm with bounding
condition as modified optimal exchange algorithm (MOEA).

2.4.3 Minimum-maximum exchange algorithm

The minimum-maximum exchange algorithm (MMEA) is very similar to the
OEA. The main difference is the greediness of this algorithm: algorithm does
not find the optimal swap, but rather first find the cj whose inclusion increases
the RSS(ŵ) as less as possible. Next, it finds cj such that excluding this
observation lead to the maximum decrease of the RSS(ŵ).

The minimum increase can be found by calculating γ+(ci) using (2.56) for
each trimmed observation in Zm.

Next, this observation is included, so we get h+1 untrimmed observations.
We update Z−1

M to ZM
−1 by (2.52) and ŵ to ŵ using (2.54).

Then we can find maximum γ−(cj) by (2.65) among Om ∩ {i}.
Next, we can update ZM

−1 to the ZM
−1

by (2.62) and ŵ to ŵ by (2.63).
Finally, we can update RSS(ŵ) to RSS(ŵ) by (2.57) and (2.66). We can

repeat this process until γ−(cj) > γ+(ci).
Observation 22. One step of the algorithm MMEA has time complexity
O(p2n). So the whole algorithm has time complexity O(tlp2n) where t and l
are given parameters bounding the number of iterations.
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Proof. Because we do not iterate through all pairs but only over n−h trimmed
and h+ 1 non-trimmed observations, the loops takes only O(n) time. Within
the loops we are computing γ−(cj) and γ+(ci) which both takes O(p2) time.
Outside the loops, all the quantities we are updating take O(p2) time. That
means the one loop of the whole algorithm takes O(p2n) steps. As in the case
of the FSA, if we introduce parameters t and l, then the time complexity of
the algorithm is O(tlp2n)

2.4.4 Different method of computation of the inversion

In the last section we introduced a way of calculating the OEA so that we
update ŵ and inversion (XTX)−1. This, however, requires to compute inver-
sion at the start of the algorithm (this is also the case for the FSA, MOEA
and MMEA. As we know, calculating inversion directly is not practical due to
low numerical stability. In practice, we usually use QR decomposition. In this
section, we describe how we can modify the OEA to use the QR decomposition
(the same idea can also be applied to the FSA, MOEA and the MMEA).

Let us start by describing how we can update the QR factorization, which
is a critical part of this modified computation. Assume that we have QR
decomposition of X, and we need to exchange ith observation from Om with
jth observation from Zm. We can simulate this by inserting jth row and
consequently deleting ith row from the QR decomposition.

QR insert

First, let us discuss how to update QR decomposition when a row xj is in-
serted. If we add a row to A as the last row, our decomposition looks like

R = QA(+) =



× · · · · · · · · · ×
0 × · · · · · · ×
... 0 . . . · · ·

...
...

... 0 . . . ...
...

...
... 0 ×

...
...

...
... 0

...
...

...
...

...
× · · · · · · · · · ×


, (2.77)

where R denotes the matrix R with the added row and Q ∈ Rp+1,p+1 denotes
the matrix created from Q by adding one row and one column with zeros and
putting Qn+1,n+1 = 1 .

To updateR to upper triangular matrixR(+), we need to create additional
orthogonal Givens matrices Qe+1 . . .Qe+p zeroing the last row of R. Then
the upper triangular matrix R(+) equals Qe+p . . .Qe+2Qe+1R.
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2.4. OEA, MOEA, MMEA

Updated matrix Q denoted as Q(+) is updated in the same manner:
Q(+) = QQTeQ

T
e+1 . . .Q

T
e+p. Note that if we do not want to have inserted

row xj as the last but as (say kth) row, then in terms of QR decomposition,
we only need to move (last) xj row to the kth position. In other words, we
create a permutation matrix P so that

PQ(+) =

A(1 : k − 1, 1 : p)
xj

A(1 : k + 1, 1 : p),

 (2.78)

where A(a : b, 1 : p) denotes rows of matrix A from a to b. We can describe
the whole process by the following pseudocode.

Algorithm 6: QR insert
Input: Q ∈ Rn,n,R ∈ Rn,p,xj ∈ Rp, k
Output: Q(+) ∈ Rn+1,n+1,R(+) ∈ Rn+1,p

1 R(+) ← R with appended last row by xj ;
2 Q(+) ← Q with appended last row and last column by zeors;
3 Q(+)

n+1,n+1 ← 1 ; // i.e. Q(+) now has 1 on the diagonal

4 for i← n to p do
5 Q(i, n+ 1)← create Givens matrixQ(i, n+ 1) ∈ Rn+1,n+1;
6 R(+) ← Q(i, n+ 1)R(+);
7 Q(+) ← Q(+)QT (i, n+ 1);
8 end
9 for i← n+ 1 to k do

10 Q(+) ← Q(+)where we swap the i row with the i− 1 row
11 end
12 return Q(+) , R(+);

Observation 23. Computing R(+) is O(p2) and computing Q(+) is O(np).

Proof. We have to loop over p Givens matrices. We do not need to create
those matrices, because by multiplying R(+) or Q(+) with the matrix Q(i, j)
only two rows are affected. That means we can simulate this matrix multipli-
cation only by iterating over those matrices and multiplying the corresponding
elements by cos(ϕ) and sin(ϕ) adequately. In case of R(+) we are iterating p
times over p nonzero rows of R(+) thus p rows. That gives us time complexity
of O(p2). In the case of Q(+) we are iterating p times over columns of Q(+)

and that gives us time complexity of O(np).

Note 24. This process can also be done in the case when we are using an
economic version of matrices R and Q thus matrices R1 and Q1 (see (2.11)).
In such a case Q1 ∈ Rp,p thus then updating Q1 to Q1

(+) is only O(p2).
Note 25. The matrix R can be updated to R(+) without the presence of
matrix Q. We use this observation in the algorithm described in Section 2.6.

41



2. Algorithms

QR delete

When we extract the row xi from matrix A we can use the following trick [18].
First, we move such row as the first row of the matrix A by creating create
permutation matrix P so that

PA =

 xi
A(1 : i− 1, 1 : p)
A(1 : i+ 1, 1 : p)

 =
[
xi
A(−)

]
= PQR, (2.79)

where A(a : b, 1 : p) means rows of matrix A from a to b. Hence we only need
to introduce zeros in the first row q1 (except for q11) of the matrix Q. We
can do this by n− 1 matrices Q(i, j) ∈ Rn,n so that

Q(1, 2) . . .Q(n− 1, n)qT1 =

1
0
...

 (2.80)

To propagate the change into R we update R so that

Q(1, 2) . . .Q(n− 1, n)R =
[
v

R(−)

]
. (2.81)

The result is then

PA = (PQQT (n− 1, n) . . .QT (1, 2))(Q(1, 2) . . .Q(n− 1, n)R)

=
[
1 0
0 Q(−)

] [
×
R−

]
, (2.82)

and
A(−) = Q(−)R(−). (2.83)

Observation 26. The time complexity of QR delete is O(n2).

Proof. We need to create n− 1 Givens matrices and with each multiply Q(−)

and R(−). As we stated in Observation 23, this can be done in O(n) for each
matrix. So together we get O(n2).

Note 27. In case of the QR delete, it is not possible to use the economic
version of matrices.

Calculation of OEA using QR decomposition

Given all the required theory above, let us describe the computation. Let us
start with (2.70). Here we need inversion to calculate xiZ−1xTi , xjZ−1xTj
and xiZ−1xTj . But this can also be done without inversion, only using the:

xiZ
−1xTi = vTv ⇐⇒ xi(RTR)−1xTi = vTv (2.84)
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where v can be obtained by solving the lower triangular linear system

RTv = xi
T . (2.85)

The same can be done with xjZ−1xTj . Last but not least we need to solve
xiZ

−1xTj . We have

xiZ
−1xTj = xju ⇐⇒ xi(RTR)−1xTj = xj

Tu, (2.86)

where the column vector u is defined by (2.51). We can see that

u = Z−1xTi ⇐⇒ (RTR)−1xTi = u (2.87)
where u can be obtained by solving the upper triangular linear system

Ru = v, (2.88)

where v is solution of (2.85).
We can see that time complexity of all these calculations is the same as in

the case of calculating with inversion thus O(p2).
Indeed, in the case of the inversion, we are multiplying quantities such as

xiZ
−1xTi which can be done in O(p2). In the case of decomposition, we solve

this problem by solving the triangular linear system of p equations. This can
also be done in O(p2).

When optimal exchange of ci and cj is found, then we need to update
the RSS(ŵ) which can be done in the same way as in (2.69). Updating
ŵ to ŵ by (2.54) requires u which in this case we calculate using (2.88)
and b which requires xjZ−1xTj . This can be done in the same manner as
in (2.84). Analogous operations can be used to update ŵ to ŵ by means
of (2.63). Only thing we need to realize is that we can express (2.67) as
xjZ

−1
xTj = xiZ

−1xTi + b(uxj2).
On the other hand, we cannot use equation (2.52) and (2.62) for updating

the inversion because we do not have one. So we need to update our QR
decomposition somehow. We have describe algorithms for updating the QR
decomposition in Section 2.4.4.

This approach is slower than updating inversion directly. On the other
hand, this solution is numerically stable. Updating inversion can be done
in O(p2) while QR insert is O(np) and time complexity and QR delete even
O(n2).
Note 28. Because the time complexity of the QR delete is O(n2), it is to
be considered if instead of recycling QR decomposition is not worth it to
recalculate it from scratch which takes O(p2n) (see (2.20)).

Finally let us consider the matrix Z̃ from (2.40) which we used for deriva-
tion of our equations. Employing the Observation 2.19 we get for A = (X,y)

Z̃ =
[
Z XTy
yTX yTy

]
=
[
RT 0
φT r

] [
R φ
0 r

]
(2.89)
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where

R̃ =
[
R φ
0 r

]
= Q̃TA (2.90)

is matrix from QR factorization of A. Next, we can realize that R is the
matrix R which we can obtain by QR factorization of X. Moreover φ ∈ Rp×1

is column vector which is actually equal to

φ = QTy (2.91)

where Q is matrix Q from the QR factorization of X. Due to this fact ŵ is
the solution of upper triangular linear system

Rŵ = φ (2.92)

Finally r ∈ R is scalar such that

r2 = yTy − yTXŵ = RSS(ŵ) (2.93)

Remark 29. We can see that all the quantities we use in the algorithm can
be obtained from matrix R̃.

We have described both versions of calculation the algorithm OEA. As we
already stated, it is easy to apply this approach also on the FSA, MOEA, and
MMEA. Using the inversion Z−1 is slightly faster, but numerically less stable.
Asymptotically both approaches provide the same performance. Finally, we
have also shown that using the matrix R̃ is useful because it contains all the
necessary quantities for the algorithms.

2.5 Combined algorithm

In this section, we shortly describe how we can utilize Lemma 10 saying that
the strong necessary condition is not satisfied unless the weak necessary con-
dition is satisfied.

THe algorithm FAST-LTS outputs h-element subset satisfying the weak
necessary condition. One step of this algorithm has time complexity O(p2n)
(see Observation 16). The number of iterations of this step is quite low and
moreover usually limited by parameter.

On the other hand, algorithms for finding strong necessary condition FSA,
OEA and MOEA have time complexity of one step O(p2n2) (we now do not
take into account greedy version MMEA, because we have no proof that it
finds h-element subset satisfying the strong necessary condition).

We can use this in our favor so that we can find an h-element subset satis-
fying weak necessary condition by the FAST-LTS algorithm and consequently
use this h element subset as an input to some of the algorithms which find
h-element subset satisfying the strong necessary condition.
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Let us consider the combination of the FAST-LTS and the MOEA. We
have two options of how to proceed: z

1. Run the FAST-LTS algorithm and use its output as the h-element subset
input to the MOEA.

2. Get the output h-element subset of the FAST-LTS algorithm an then
perform one step of the MOEA and use the result as the input to the
FAST-LTS. Then repeat these steps of these two algorithms till conver-
gence.

On the large data sets, where even one step of the MOEA is too exhausting,
we can use the greedy MMEA which time complexity is lower than in the case
of MOEA.

In Chapter 3 we show the experimental results of various combinations of
these algorithms.

2.6 BAB algorithm

In this section, we describe the algorithm from [5]. Let us note that very
similar algorithm can also be found in [23].

Unlike previous algorithms, this one is exact, meaning that it is guaran-
teed to fit the exact LTS estimate. As we discussed in Section 1.4.1, there is a
exhaustive exact algorithm calculating the OLS fit on all of the

(n
h

)
h-element

subsets. For larger data sets this approach is computationally prohibitive.
This version of the exact algorithm is based on the branch and bound de-
sign paradigm; thus it tries to avoid exhaustive computation on all h-element
subsets.

First, let us describe how the combination tree is built. Let us denote
subset of indexes Jk = (j1, j2, . . . , jk) ⊂ {1, 2, . . . , n}. Then we can mark XJk

and YJk the matrices created from X and Y by removing all rows that are
not indexed by Jk. We can see that the number of such subsets is given by(n
k

)
.
Let us now consider the tree such that at level k is

(n
k

)
nodes representing all

Jk subsets. The depth of the tree is h, so this tree has
(n
h

)
leaves representing

all h-element subset indices. An example of such a tree we can be seen in
Figure 2.3.

In the case of the exhaustive approach, we can then traverse the tree
starting in the root using the left to right (LTR) preorder traversal, and in
each node, we can calculate the OLS fit on XJk and YJk . This approach is
exhaustive, so let us now describe how we can get better efficiency.

The main improvement is done by skipping parts of the tree (subtree
pruning) according to the following. Moreover, at some point of the traversal
we encounter nodes from which we cannot get into the depth h and hence
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∅

1

1,2

1,2,3 1,2,4

1,3

1,3,4

1,4

2

2,3

2,3,4

2, 4

3

3,4

4

Figure 2.3: The tree consisting of all 3-element subsets for n = 4. The leaves
with blue border color represents 3-element subsets of {1, 2, 3, 4}.

these nodes can also be skipped. In Figure 2.3 these nodes are highlighted
with red border color.

If at any step (at any node) of the tree traversal we calculate the OFLTS
D (mk)

(where mki
= 1 when ki ∈ Jk and mki

= 0 otherwise) and we find out that
this value is higher than the minimal value OFLTS

D (mh) found so far for some
h-element subset mh, then we can discard all subsets which contain Jk. That
means we can trim all descendants of the node which represents Jk subset in
the tree.

We can describe the algorithm as follows:

1. Set RSS∗ = inf, m∗ = ∅, w∗ = ∅,

2. for each node in LTR preorder traversal calculate OFLTS
D (mk).

3. If OFLTS
D (mk) > RSS∗, skip all siblings of this node in the traversal.

4. If OFLTS
D (mk) < RSS∗ and k = h, then set RSS∗ = OFLTS

D (mk), m∗
so that mki

= 1 when ki ∈ Jk and mki
= 0 otherwise, and also set

w∗ = ŵ(OLS,MkX,Mky).

5. When the traversal is finished, return m∗ and ŵ∗

Note that during the traversal of the tree, we only need to know the path
back to the root. Thus the whole tree does not have to be held in the memory.
Remark 30. If we calculated OFLTS

D (mk), than we do not need to calculate
OFLTS

D (mk+1) from the scratch. In Section 2.4 we have described the way of
how to update it when a row is added using the matrix inversion any we can
apply it here. In Section 2.4.4 we described the way of doing this using the
QR decomposition which is another option.

Moreover, we have described that if rows are not removed but only in-
serted, then the matrix Q do not have to be present and only the matrix R
can be updated. We can use this in our favor because we can keep all the
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decompositions on the path from the root in the memory so we update the
decomposition only when inserting the rows to the matrix X. If we use matrix
Z̃ and R̃ we can (see Remark 29 ) calculate all the quantities required for the
update only using the matrix R̃. This means that both versions of updating
are possible and both can be done in O(p2).

2.6.1 Improvements

Because the tree is pruned based on the smallest value RSS∗, it would be
convenient if we were able to obtain small value RSS∗ early in the traversal.
We can obtain this value by calculating an approximative LTS estimate. This
can be done using any probabilistic algorithm described in the previous sec-
tions of this chapter. An ideal candidate may be some combined algorithm
described in Section 2.5. When we find such small value, it is then also con-
venient to permutate the observations based on its absolute residuals for this
LTS estimate in the decreasing order. That means that during the traversal
first h-element subset we encounter represents the best known solution given
by the approximative algorithm.

Another improvement can be made using the following sorting rule: If we
are at the level k ( we assume that k > p ) in the node Jk and this node has
s siblings indexed as s1 . . . ss, then we can change the order of those siblings
first by calculating partial increment (2.56) for each sibling and consequently
ordered them in the descending order from left to right. This means we visit
siblings with a lowest partial increment first. Trimming can then be done in
the same manner. Moreover, if we calculate RSS for one of those siblings,and
if RSS > RSS∗, then we can on the top of trimming all siblings of this
sibling trim also all brothers left to this sibling. That means we can trim the
parent node Jk because all of his siblings have already been explored or can
be trimmed.

2.7 BSA algorithm

In this section, we present another exact algorithm called BSA introduced
in [24]. It uses a little different approach than the previous algorithms.

2.7.1 Domain of OF-LTS

We have introduced two versions of OF-LTS. First one is OF(LTS,h,n)(w) with
the domain Rp and the second one is the discrete version OFLTS

D (m) with the
domainQ(n,h). We also know that minw∈Rp OF(LTS,h,n)(w) = minm∈Q(n,h) OFLTS

D (m)
(see (1.27)). Let us now consider the non-discrete version and introduce some
its features.
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Definition 31. Let Z ⊂ Rp ×Q(n,h) be an relation defined as

(w,m) ∈ Z ⇔
h∑
i=1

r2
i:n(w) =

n∑
i=1

mir
2
i (w). (2.94)

Z is not a mapping. To show this, we can take a simple example: assume
that w is a vector of regression coefficients such that r2

h:n(w) = r2
h+1:n(w).

Then for this w we have two different vectors m that are in the relation with
it.

For that reason, let us define U ⊂ Rp the largest set where Z is a mapping.
Next we define H = Rp \ U as the complement of U .

Let us now describe some properties that can help us to decide whether
w is in U or in H.
Lemma 32. It holds that w ∈ U ,w if and only if r2

h:n(w) < r2
h+1:n(w)

Proof. As shown in the example above, if r2
i (w) = r2

h:n(w) = r2
h+1:n(w) =

r2
j (w), i, j ∈ {1, 2, . . . , n} are distinct, then (w,m1) ∈ Z and (w,m2) ∈ Z

where m1 has ones at indices of h smallest residuals and m2 has ones at the
same indices except for swapping ith one with jth zero.

Corollary 33. It holds that

H = {w ∈ Rp|r2
h:n(w) = r2

h+1:n(w)}. (2.95)

That means that for each w ∈ H there are two different (xi, yi) and (xj , yj)
so that

(yi − xiw)2 = r2
i (w) = r2

h:n(w) = r2
h+1:n(w) = r2

j (w) = (yj − xjw)2. (2.96)

We can see that

(yi − xiw)2 = (yj − xjw)2 ⇐⇒ yi ± yj + (xi ± xj)w = 0 (2.97)

Assumption 34. For X ∈ Rn×p let as assume that for all i, j,∈ {1, 2 . . . , n}
if i 6= j then xi 6= ±xj and ‖xi‖ 6= 0.

If Assumption 34 is fulfilled, then yi ± yj + (xi ± xj)w = 0 represents a
hyperplane.

It is easy to show that the set U is open and Lebesgue measure of H is 0.
Moreover, H splits Rp into finite number of k open disjoint subsets of U .
Definition 35. Let us define the set of k sets U (set) = {Ui}ki=1 so that all
Ui are open and connected sets, Ui and Uj are mutually disjoint such that
∪ki=1Ui = U and ∪ki=1∂Ui = H.

We define neighbor sets Ui, Uj , i 6= j as the sets whose borders are not
disjoint. We also define M (min) as the set of k vectors m ∈ Q(n,h) by

M (min) = {m|m = Z(w) for some w ∈ Ui}.

Note that we have Z(w) = Z(w′) for all w,w′ ∈ Ui.
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We say that the matrix X ∈ Rn×p has h-full rank if for all m ∈ Q(n,h) the
matrix MX has rank p where M = diag(m).
Theorem 36. If the matrix X has h-full rank, then for every local minima of
the OF-LTS at point w0 satisfying the weak necessary condition, there exists
a vector m ∈ Q(n,h) such that (w0,m) ∈ Z.

Proof can be found in [24, Theorem 7].

2.7.2 One-dimensional version of the algorithm

Based on the Theorem 36 we can see that

min
m∈Q(n,h)

OF(OLS,MX,My)(w) = min
m∈M(min)

OF(OLS,MX,My)(w), (2.98)

where M = diag(m), mi = diag(m). Set M (min) is very useful because
we can iterate only through this set and not through whole Q(n,h). Hence
minimizing objective function OFLTS

D (m) (1.31) can be reformulated as

min
m∈Q(n,h)

OFLTS
D (m) = min

m∈M(min)
OFLTS

D (m). (2.99)

That means if we can find all m ∈ M (min) then minimizing OFLTS
D would be

easy. How can we find all the elements of M (min) set?
For now, let us assume that we know all the elements of H. Because for

each m ∈M (min) there exists at least one w ∈ H such that (w,m) ∈ Z, then
for a given w ∈ H we can find all m by the following algorithm.
Algorithm 37 (Find all m in relation Z with a given w).

1. Calculate all squared residuals r2
i (w) for i ∈ {1, . . . , n}.

2. Sort the residuals so that r2
ik

(w) = r2
k:n(w).

3. If r2
ih

(w) < r2
ih+1

(w) there is a unique m in relation with w, namely m
where mi = 1⇔ r2

i (w) ≤ r2
ih

(w). Return this m.

4. Find the greatest index l such that r2
il

(w) < r2
ih

(w).

5. Find the greatest index t such that r2
ih

(w) = r2
it(w).

6. Create all vectors m by combining first l unique indices i1, . . . , il with
all combinations of (h− l)-element subsets of indices il+1, . . . it. Number
of this vector is given by

(t−l
h−l
)
.

Finally we need to find all the elements of H. As we know, for all the
elements w ∈ H it holds that r2

h:n(w) = r2
h+1:n(w). So, if we find all w that

are solutions of such an equation, then we are done. The problem is that
the residuals are sorted. To overcome this issue we define the following set of
suitable candidates for the desired w.
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If w ∈ H, then there exists i, j, i 6= j, so that r2
i (w) = r2

j (w). We define
the set H containing w satisfying this necessary condition, as

H = {w ∈ Rp|r2
i (w) = r2

j (w), i 6= j}. (2.100)

Finding all elements of H requires solving
(n

2
)

equations of type r2
i (w) =

r2
j (w). Moreover, because these equations are quadratic, we can have up to

two solutions for each equation.
So the idea of the whole algorithm is to find all elements of H (by solving

the quadratic equations), consequently finding which of them are elements of
H (by ordering squared residuals and checking if r2

h:n(w) = r2
h+1:n(w)) and

finally for each w ∈ H find subsets m that are in relation Z with it. All of
those m vectors form the M (min) set. Finally we can use m ∈ M (min) for
minimizing OFLTS

D (m) in terms of (2.99). The author calls this algorithm
Border Scanning Algorithm (BSA).
Algorithm 38 (BSA for the p = 1).

1. Set RSSmin =∞,mmin = ∅,wmin = ∅.

2. For each combination of two observations (xi, yi) and (xj , yj):

3. solve r2
i (w) = r2

j (w) for w and denote the two solutions as w1 and w2.

4. For w1 and w2 (if w1 is equal to w2, then only for w1):

5. calculate all squared residuals r2
i (wj) for i ∈ {1, . . . , n}.

6. Sort the residuals.

7. If r2
ih

(wj) = r2
ih+1

(wj) find allm in relation withwj using Algorithm 37.

8. For each subset m:

9. if OFLTS
D (m) < RSSmin, set RSSmin = OFLTS

D (m),mmin = m and
wmin = wj .

10. Return mmin and wmin

2.7.3 Multidimensional BSA

If we would like to scale the algorithm into the higher dimension p > 1, we
have to face one major complication. The algorithm finds all elements of H
and H but if p > 1, then H is union of hyperplanes and so contain an infinite
number of points.

Therefore the author of BSA proposes to find a finite subset Hp of H that
satisfies following condition

∀m ∈M (min)∃w ∈ Hp : (w,m) ∈ Z (2.101)
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2.7. BSA algorithm

and also finite set Hp, so that Hp ⊂ Hp ⊂ H. It is proven in [24] the set Hp
can be defined as the set of solutions of p quadratic equations r2

i (w) = r2
j (w)

r2
i1(w) = r2

i2(w) (2.102)
r2
i2(w) = r2

i3(w)
...

...
r2
ip(w) = r2

ip+1(w)

where i1, i2 . . . ip+1 is (p+ 1)-element subset of {1, 2, . . . n}.
Let ◦ ∈ {+,−} be either the operation + or −. The system of quadratic

equations (2.102) is equivalent to 2p linear systems

(xi1 ◦1 xi2)Tw = yi1 ◦1 yi2 (2.103)
...

...
(xip ◦p xip+1)Tw = yip ◦p yip+1 ,

where ◦i represents ether the addition or subtraction. The set Hp with the
property (2.101) can be define as the set of elements of Hp such that r2

i1(w) =
r2
h:n(w) = r2

h+1:n(w).
The multidimensional version of the algorithm is indeed very similar to

the one dimensional one. We basically just solve greater amount of bigger
linear system to find all the elements of Hp. In terms of Algorithm 38 the
difference is in the step 2 where we choose combinations of p+ 1 observations
instead of two. Consequently in step 3 we construct 2p systems of p linear
equations instead of only two. This means that the total number of vectors
elements of Hp can be up to

( n
p+1
)
2p. Algorithm 37 works the same way for

the multidimensional version of the algorithm. This algorithm can produce
up to

( p
[p/2]

)
vectors m for each vector w. That means in the worst case we

have to calculate ŵ(OLS,MX,My) up to
( n
p+1
)( p

[p/2]
)
2p times. We can already

see that this algorithm is not suitable for higher dimensional observations.

2.7.4 Speed ups and modifications

Author proposed modification of the algorithm called BSABAB. This modi-
fication tries to utilize the branch and bound paradigm described in the Sec-
tion 2.6. This can be done only at a smaller scale in step 4 of Algorithm 37. If
the sum of l smallest unique squared residuals is larger than currently obtained
RSSmin then we can skip up to

( p
[p/2]

)
calculations of the OLS.

This idea can be pushed further in the similar way as was described in the
Section 2.6. We propose to use some approximative algorithm which solution
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can be used to set the RSSmin in advance and let the algorithm cut as much
as possible “branches”.

Another possibility of modifying the algorithm is to instead of using all
(p + 1)-element subsets in the step 2 of the multidimensional version of the
Algorithm 38 use only limited amount of randomly chosen (p + 1)-element
subsets. We refer to this modification as to the Random border scanning
algorithm (RBSA).
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Chapter 3
Experiments

In this chapter we introduce experiments and their results for our implemen-
tation of all algorithms described in the previous chapter. In order to test the
performance of algorithms we have implemented data set generator providing
artificial data sets with various properties.

3.1 Data set generator

When we want to generate n observations without outliers that satisfies linear
regression model we can do it as follows:
Algorithm 39 (Generate clean data).

1. Generate regression coefficients w = (w1, . . . , wp) at random and set a
possible σ2.

2. Generate random explanatory variables xi.

3. Generate random noise εi ∼ N (0, σ2).

4. Compute dependent variable yi = wTxi + εi.

5. Repeat steps 2–4 n times.

As a result we obtain a data set stored in the matrix X and vector y.
Regression coefficients can be set to arbitrary values. All xi should be gener-
ated independently but to avoid huge numbers we generate all xi from some
normal distribution.

Another thing that needs to be considered is the intercept. In this work
we assumed that our data already include intercept, so in that case w1 is
equal to intercept and all xi1 should be equal to 1. Note that the same
result can be obtained by generating data without intercept and with εi ∼
N (µ, σ2) for some µ ∈ R. We can then extend matrix X by adding the first
column that contains only 1s. This approach is very common and software
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for estimating regression coefficients usually allows to set parameter which
determines if intercept should be used; if so, the column of 1s is added. For
that reason we generate our data sets using this approach. That means we
generate εi ∼ N (µ, σ2) and column of 1s is included only in case we set
parameter for using intercept when fitting the data set.

3.1.1 Generating outliers

As we have already described in Section 1.3.1, we distinguish different types
of the outliers: vertical outliers and two types of leverage points — good
leverage points and bad leverage points. Those types of outliers are visualized
in Figure 3.1. We can see that good leverage points are not deemed as an
outliers here, even if they are distant observations, because they follow the
linear pattern.

Vertical outliers

Regular observations

Good leverage points

Bad leverage pointsx

y

Figure 3.1: Different types of outliers.

Moreover, the data set can contain multiple observations that satisfies
linear regression model but with different regression coefficients. That means
such data set can contain data from multiple different models.

To generate the vertical outliers we only need to modify step 3 of Algo-
rithm 39. We have multiple options:

• Generate εi from N (µ, σ2) but use different parameter µ and σ2.

• Generate εi from some heavy tailed or asymmetrical distribution like
Log-normal or exponential distribution.

• Combine both above so that we randomly choose distribution and ran-
domly generate parameters for such distribution.

The last option is the most versatile so we use it in our data generator.
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3.2. Data sets

Because we generate xi from the normal distribution, we can generate
leverage points just by changing parameter µ of this distribution. If we con-
sequently generate εi from the same distribution with the same parameters
as for the regular observations, we obtain good leverage points. On the other
hand if we generate εi as described above, we obtain bad leverage points.

If we want to generate outliers that correspond to the different model we
can just choose the regression coefficients w differently. It is also possible to
use different parameters of normal distribution for generating xi and param-
eters for generating εi. Theoretically, we are able to introduce outliers even
into this model, but when this model is an “outlier” by itself relative to the
original model, it is not needed. By this approach are able to generate the
observations from arbitrary number of different models, but for the sake of
the simplicity we use only one different model in our data sets.

3.2 Data sets

We have implemented random data set generator as described in the previous
section with the following parameters:

• n and p for setting the number of the generated observations and the
dimension of the explanatory variables,

• outlier ratio for setting proportion of the outliers in the data set. This
include vertical outliers, bad leverage points and also outliers from the
second model,

• leverage ratio is proportion of the explanatory variables that are gen-
erated as leverage points,

• µx, σ2
x are the parameters of the normal distribution for generating non

outlying xi,

• µxo , σ
2
xo

are the parameters of the normal distribution for generating
outlying xi (leverage points),

• µε, σ2
ε are the parameters of the normal distribution for generating non

outlying errors εi,

• µεo , σ
2
εo

are the parameters of the distribution for generating outlying
errors εi,

• distribεo is the distribution from which outlying errors are generated —
options are normal distribution, log-normal distribution and exponen-
tial distribution (when exponential distribution is chosen, then only σ2

εo

parameter is used),
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• 2m ratio is the proportion from the outliers which are generated from
the second model,

• µxM2 , σ
2
xM2 and µεM2 , σ

2
εM2 are the parameters for normal distributions

for generating xi and εi, respectively, from the second model.

We used this generator to generate three data sets D1, D2 and D3 which
differ by the types of the outliers they contain:

• D1 contains outliers which are not from the second model: vertical
outliers, bad leverage points and good leverage points (2m ratio = 0)

• D2 contains only outliers from the second model (2m ratio = 1),

• D3 contain outliers of all described types. (2m ratio = 0.4).

All three data sets are set to contain 20% leverage points (leverage ratio =
0.2) and non outlying xi are generated from N (0, 10) (thus µx = 0, σ2

x =
10). Other parameters are independently randomly generated from uniform
distribution so that:

• µxo ∼ U(20, 60), σ2
xo
∼ U(10, 20),

• µε ∼ U(0, 10), σ2
ε ∼ U(1, 5),

• µεo ∼ U(−50, 50), σ2
εo
∼ U(50, 200),

• µxM2 ∼ U(−30, 30), σ2
xM2 ∼ U(10, 20),

• µεM2 ∼ U(−10, 10), σ2
εM2 ∼ U(1, 5),

• distribεo is uniformly randomly set to normal, log-normal or exponential
distribution

Finally, parameters n, p and outlier ratio are set separately for each particular
experiment. Implemented data generator provides not only matrix X and
vector y but also their subsets which does not contain outliers. This is useful,
because it gives us the ability to compare appropriative solution to the original
model.

3.3 Implementation of the algorithms

We have implemented all described algorithms, moreover, because algorithms
for computing the feasible solution could be implemented both by calculating
inversion and by calculating QR decomposition, we have implemented both
version of those algorithms. Here is the list of all the implemented algorithm
with their acronyms we use for labeling them:
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FAST-LTS (Section 2.2 with all described improvements),

FSA-I (Section 2.3),

FSA-QR (FSA using theory from Section 2.4),

MOEA-I (Section 2.4 it is the improved version of OEA),

MOEA-QR (MOEA using theory from Section 2.4.4),

MMEA-I (Section 2.4.3),

MMEA-QR (MMEA using theory from Section 2.4.4),

BAB (Section 2.6),

BSA (the implementation of improved BAB (BSABAB) from Section 2.7),

FAST-LTS-MMEA-I (combination of algorithms from Section 2.5),

FAST-LTS-MOEA-I (other combination of algorithm from Section 2.5),

FSA-QR-BAB (BAB with sorting speedup as described in Section 2.6),

FSA-QR-BSA (BSABAB using our idea from Section 2.7),

RBSA (probabilistic BSA using our idea from Section 2.7),

RANDOM (random resampling algorithm outlined in section Section 2.0.1).

These algorithms were first implemented in Python using the NumPy pack-
age [25]. To seed up the algorithms,we have implemented all the algorithms
in C++ using the Eigen library [26] for matrix manipulation. Since it is very
popular today to use Python for data processing and manipulation, we have
used pybind11 library [27], that exposes C++ types for Python and vice versa
and written Python wrappers around the C++ implementation.

Moreover pybind11 allows to bind Eigen types directly to the NumPy
types (because both libraries are LAPACK compatible), so that it is possible
to share pointers to the matrices between Eigen and NumPy and hence the
data does not have to be copied when transferring between Python an C++.

Therefore the data generator, all tests and experiments are implemented
in Python; the C++ code is called only within the Python wrappers. It is
also appropriate to mention that the interface of the algorithms was created
with regards to the popular scikit-learn package [28]; the interface is almost
identical, so all of the classes implementing the algorithms can be used in the
same manner as classes from the scikit-learn linear regression module.
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3.4 Results

In the two previous sections we have described our experimental setup. Here
we report the results of our experiments.

3.4.1 The strong necessary condition algorithms

Here we present the results of multiple simulations where we compared speed
and accuracy of the algorithm finding subsets satisfying the strong necessary
condition. For each combination of parameters n, p and outlier ratio (out)
we generated data sets D1, D2 and D3 100 times (each time new data sets
were generated) and run all algorithms on those data sets. Value of h was
conservatively chosen so that h = [(n/2]+[(p+1)/2]. For all the runs we used
the intercept, hence the value of p represents the dimension of x including
intercept. All algorithms were set to run at most for 50 steps and each of
them is starting from 1 randomly selected h-element subset. 2 The results
are given in Appendix A in Tables A.1, A.2 and A.3 for data sets D1, D2 and
D3, respectively. Beside CPU time, we also measured the cosine similarity
and L2 norm of the resulting estimate and the regression coefficients given by
the original model which does not contain outliers. For n > 500, cells for the
FSA-I and FSA-QR are empty, these algorithms were too slow and it would
take weeks to finish all simulations. In Figure 3.2 are given box plots showing
cosine similarity and L2 norms of the results.

As expected, the algorithms using the QR decomposition provide slightly
better results. Moreover, the best results are given by the FSA-QR. On the
other hand, both FSA-I and FSA-QR are much slower because they does not
use bounding condition as in the case of MOEA-I and MOEA-QR. We can also
see that MMEA-QR provides very similar results to the MOEA-QR. So in the
case of algorithms finding strong necessary condition we would recommend
using the FSA-QR for small data sets and for large ones the MMEA-QR.

3.4.2 Algorithms for finding the exact solution

Here we provide results of the algorithms finding the exact solution. For
the improved versions of the BAB and BSA algorithms, which are able to
incorporate pre-computed results, we decided to use the estimate given by the
FSA-QR. This algorithm, as observed in previous section, provides the best
results. FSA-QR is quite slow compared to the MOEA and MMEA variations,
but because the exact algorithms have much higher time complexity (thus can
be used only on very small data sets), this slowing down is insignificant with
respect to the total time complexity.

2This was done primarily because the computation was exhaustive due to the large
number of parameter combinations. In experiments we describe later, number of the starting
subsets is higher.
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Figure 3.2: Similarity of the solutions given by the algorithms finding h-
element subsets satisfying strong necessary condition compared to the OLS
solution on the subset of the data set that does not contain outliers. On the
left are two box plots for all algorithms. Since the visualization is influenced
by the scale of MMEA-I and MOEA-I box plots, we provide also two graphs
without these two algorithms on the right.

The setup for the simulations was the same as in the previous section, but
we only compare speed this time because all of the algorithms provide the
exact solution.

The results are given in Appendix A in Tables A.4, A.5 and A.6 for data
sets D1, D2 and D3 respectively.

Interesting observation is given by the Figure 3.3 depicting where is the
average time of the calculation improved by the FSA-QR-BAB instead of
the BAB and the FSA-QR-BSA instead of the BSA. Whereas FSA-QR-BAB
improves the time of the computation significantly, the FSA-QR-BSA does
not leads to any time improvement at all.

We can observe from the results that BSA (as well as FSA-QR-BSA) is, as
expected, sensitive to increasing the parameter p. On the other hand, when
p stays low, BSA outperforms both BAB and FSA-QR-BAB. We have ran
10 simulations for higher values of n for each dataset D1, D2 and D3 for
algorithm BSA, while preserving value of p = 2. In this simulation we have
not used intercept. Resulting average, minimum and maximum CPU times
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Figure 3.3: For various combinations of parameters n and p we calculated
average multiplicative improvement of the CPU time for running FSA-QR-
BAB and FSA-QR-BSA instead of BAB and BSA.

are given in Table 3.1. For the data sets D2 and D3 the simulation was not
performed for n = 400, so the respective cells are empty.

out D1 D2 D3
n out h avg min max avg min max avg min max
100 0.10 51 5.499 5.213 6.860 5.206 5.150 5.273 5.215 5.166 5.342

0.30 51 5.598 5.125 6.852 5.345 5.129 6.707 5.198 5.142 5.309
0.45 51 5.978 5.161 6.902 5.347 5.099 6.724 5.425 5.164 6.989

200 0.10 101 81.172 80.042 81.582 81.280 80.816 81.575 82.678 81.153 93.849
0.30 101 80.992 80.416 81.396 82.482 80.789 94.172 81.250 80.008 81.921
0.45 101 81.101 80.660 82.054 81.165 80.836 81.496 81.332 81.088 81.631

300 0.10 151 422.982 421.551 423.973 425.611 422.521 466.379 423.312 422.593 424.112
0.30 151 426.895 421.704 465.063 423.236 421.937 424.155 427.746 422.930 466.564
0.45 151 427.169 421.060 467.341 427.391 421.636 466.195 423.404 422.699 424.172

400 0.10 201 1390.836 1378.586 1483.780 − − − − − −
0.30 201 1389.465 1373.600 1483.066 − − − − − −
0.45 201 1380.151 1373.839 1383.228 − − − − − −

Table 3.1: Average, minimum and maximum CPU times of computation time
for BSA for p = 2 and various combinations of parameters n and out for each
dataset.

3.4.3 FAST-LTS and combinations of the algorithms

In this section we present the results of the FAST-LTS algorithm compared to
the MOEA-QR and MMEA-QR because, as described in Section 3.4.1, these
algorithms seems to be very fast while providing reliable results. We also
run simulations on the combinations of those two algorithms as described in
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Section 2.5. All algorithms were set to start from 50 randomly chosen subsets
for each simulation and maximum number of inner cycles was set to 40. We
ran simulations 100 times for each combination of the parameters n, p and
out for each data set. The results are given in Appendix A in Tables A.7,
A.8 and A.9 for data sets D1, D2 and D3 respectively. Beside measuring the
cosine similarity and L2 norm, we also provide the number of the inner cycles
for each algorithms. We can see, that providing solution from the FAST-LTS
to the MOEA-QR and MMEA-QR significantly reduce those numbers.

In Table 3.2 we can see that approximately in 30 % of cases MOEA-QR and
MMEA-QR were able to improve the solution of the FAST-LTS in all three
data sets. That means in those cases FAST-LTS algorithm have provided
solutions that satisfied weak necessary condition but not the strong one.

D1 D2 D3
FAST-LTS-MMEA-QR 30.33 % 34.00 % 33.00 %
FAST-LTS-MOEA-QR 30.33 % 35.33 % 33.33 %

Table 3.2: Percentage of the h-elements subsets provided by FAST-LTS which
did not satisfied strong necessary condition, and the MMEA-QR and MOEA-
QR were able to improve them.

Let us note, that it would be interesting to exhaustively enumerate data
sets and count number of h-element subsets which satisfies the weak and
strong necessary conditions and, similarly, enumerate the “domains” of each
such h-element subsets in terms how many h-elements subsets leads to the
particular h-element subset satisfying the weak or strong necessary condition,
respectively.

3.4.4 Random algorithm and RBSA

In Section 2.7 we proposed the probabilistic version of BSA. We compare it
to the Random solution algorithm (RANDOM) described in Section 2.0.1 and
also to the FAST-LTS and MMEA-QR algorithms which were observed to
provide efficient solutions in previous sections. In this experiments we set
RANDOM and RBSA algorithm to start from 1000 randomly chosen (p+ 1)-
element subsets. FSA-LTS was set to start from 100 p-element subsets and
MMEA-QR from 100 h-element subsets. Both algorithms were set to the
maximum of 50 inner cycles. For each combination of the parameters n, p
and out we ran 10 simulations. This was repeated for all three data sets.
The results are given in Appendix A in Tables A.10, A.11 and A.12 for data
sets D1, D2 and D3, respectively, and include average CPU times, cosine
similarity and L2 norm in the same way as above.

In Figure 3.4 box plots describing the quality of the solution are given.
The L2 norm of the RBSA estimate is in average less, the cosine similarity is
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Figure 3.4: Cosine similarity and L2 norm for multiple algorithms. Random
algorithms are outperformed by the algorithms finding the weak and strong
necessary conditions.

worse. Moreover we can clearly see that MMEA-QR and FAST-LTS provide
much more reliable results (even in shorter CPU times).

There are many other possibilities for other experiments than what is pro-
vided in this chapter, especially the experiments suggested in the Section 3.4.3
for exploring domains of h-element subsets satisfying the weak and strong nec-
essary conditions. These experiments are out of the scope of this work, because
already provided simulations were quite exhaustive due to the lot of possible
variations of the algorithms.
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Conclusion

We have surveyed, implemented, and described multiple exact and probabilis-
tic algorithms for calculating the LTS estimate. Those algorithms have been
proposed across the last few decades. Most recently proposed algorithms are
just a few years old. This means that research in the field of LTS algorithms
is still ongoing.

Although the exact algorithms have polynomial time complexity, we showed
that currently used probabilistic algorithm provide sufficiently fast solutions
which, even though that may not be exact, are good enough. Even though it
was proven that the exact solution could not be obtained faster than in poly-
nomial time, we showed that the currently used algorithms could be combined
to obtain better results.

Algorithms for calculating the LTS estimate are still the open topic for
further research. One of the possible research direction is to study the pos-
sibility of combining the exact algorithms with probabilistic ones. As our
experimental results suggest, we could come up with probabilistic algorithms
which provide even better performance.

63





Bibliography

[1] McCullagh, P. Generalized linear models. Routledge, 2018.

[2] Rousseeuw, P.; C. van Zomeren, B. Unmasking Multivariate Outliers
and Leverage Points. Journal of The American Statistical Association - J
AMER STATIST ASSN, volume 85, 06 1990: pp. 633–639, doi:10.1080/
01621459.1990.10474920.

[3] Hampel, F. R.; Ronchetti, E. M.; et al. Robust statistics. Wiley Online
Library, 1986.

[4] Massart, D. L.; Kaufman, L.; et al. Least median of squares: a robust
method for outlier and model error detection in regression and calibration.
Analytica Chimica Acta, volume 187, 1986: pp. 171–179.
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A. Results of the experiments
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Table A.1: Results of simulations for algorithms finding h-element subsets
satisfying the strong necessary condition for the data set D1 for various con-
figurations of the parameters n, p and out. Results include average time and
cosine similarity and L2 norm.
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Table A.2: Results of simulations for algorithms finding h-element subsets
satisfying the strong necessary condition for the data set D2 for various con-
figurations of the parameters n, p and out. Results include average time and
cosine similarity and L2 norm.
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A. Results of the experiments
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Table A.3: Results of simulations for algorithms finding h-element subsets
satisfying the strong necessary condition for the data set D3 for various con-
figurations of the parameters n, p and out. Results include average time and
cosine similarity and L2 norm.

72



al
g

B
A

B
B

SA
EX

A
C

T
FS

A
-Q

R
-B

A
B

FS
A

-Q
R

-B
SA

n
p

ou
t

h
av

g
m

in
m

ax
av

g
m

in
m

ax
av

g
m

in
m

ax
av

g
m

in
m

ax
av

g
m

in
m

ax
15

5
0.

10
10

0.
00

3
0.

00
2

0.
00

5
2.

36
2

1.
87

3
2.

94
4

0.
00

8
0.

00
7

0.
01

4
0.

00
2

0.
00

1
0.

00
4

2.
36

3
1.

81
1

3.
35

8
0.

30
10

0.
00

2
0.

00
2

0.
00

3
2.

06
3

1.
77

7
2.

47
6

0.
00

8
0.

00
7

0.
00

8
0.

00
2

0.
00

1
0.

00
3

2.
06

1
1.

77
3

2.
48

6
0.

45
10

0.
00

3
0.

00
2

0.
00

5
2.

04
0

1.
78

1
2.

42
5

0.
00

7
0.

00
7

0.
00

8
0.

00
2

0.
00

1
0.

00
4

2.
04

5
1.

78
2

2.
43

8
20

4
0.

10
12

0.
01

7
0.

01
2

0.
03

4
1.

83
9

1.
74

4
1.

99
4

0.
28

3
0.

27
8

0.
30

6
0.

00
9

0.
00

4
0.

01
9

1.
83

8
1.

76
4

1.
99

4
0.

30
12

0.
01

6
0.

01
2

0.
02

5
1.

86
8

1.
74

0
2.

04
0

0.
29

0
0.

27
2

0.
32

7
0.

00
7

0.
00

4
0.

02
0

1.
86

6
1.

73
2

2.
03

2
0.

45
12

0.
01

4
0.

01
1

0.
02

7
1.

85
5

1.
75

1
2.

01
9

0.
28

9
0.

27
2

0.
30

7
0.

00
7

0.
00

3
0.

01
6

1.
85

1
1.

74
3

1.
99

5
5

0.
10

13
0.

02
2

0.
01

8
0.

03
6

13
.8

14
12

.8
08

15
.6

74
0.

20
4

0.
19

4
0.

21
7

0.
01

0
0.

00
5

0.
02

2
13

.7
66

12
.6

76
15

.6
80

0.
30

13
0.

02
1

0.
01

7
0.

03
3

13
.4

41
12

.5
64

14
.5

44
0.

20
4

0.
19

4
0.

23
8

0.
00

9
0.

00
4

0.
01

7
13

.3
89

12
.5

93
14

.4
20

0.
45

13
0.

02
0

0.
01

7
0.

03
0

13
.5

77
12

.6
51

14
.6

64
0.

20
6

0.
19

3
0.

23
4

0.
00

9
0.

00
5

0.
02

0
13

.5
25

12
.6

10
14

.6
26

25
4

0.
10

15
0.

20
8

0.
09

9
0.

56
3

7.
70

6
5.

99
6

14
.4

64
9.

81
4

7.
24

2
16

.8
72

0.
06

6
0.

01
1

0.
35

0
7.

68
9

5.
98

6
14

.8
61

0.
30

15
0.

18
0

0.
09

6
0.

43
7

7.
73

7
5.

97
4

9.
68

1
9.

49
1

7.
31

4
11

.4
06

0.
04

7
0.

00
9

0.
27

7
7.

73
4

5.
88

2
9.

63
3

0.
45

15
0.

19
6

0.
14

3
0.

40
0

9.
09

7
8.

95
0

9.
40

2
11

.2
13

11
.0

81
11

.3
24

0.
04

9
0.

01
3

0.
13

9
9.

07
6

8.
83

1
9.

42
1

30
3

0.
10

17
1.

70
9

0.
80

6
3.

70
0

1.
48

5
1.

43
7

2.
43

3
36

8.
80

1
36

6.
07

7
37

5.
88

5
0.

42
7

0.
06

7
1.

50
0

1.
48

9
1.

43
7

2.
43

2
0.

30
17

1.
18

9
0.

74
3

2.
17

6
1.

49
4

1.
47

8
1.

51
8

−
−

−
0.

30
5

0.
13

5
0.

72
2

1.
49

5
1.

47
2

1.
53

1
0.

45
17

1.
06

4
0.

73
1

2.
92

9
1.

49
1

1.
47

2
1.

53
6

−
−

−
0.

19
0

0.
04

0
0.

52
3

1.
48

7
1.

47
1

1.
50

8
4

0.
10

17
1.

73
3

0.
85

8
3.

44
0

24
.2

21
24

.0
09

24
.6

45
−

−
−

0.
38

9
0.

11
7

1.
06

3
24

.0
83

23
.9

32
24

.2
28

0.
30

17
1.

11
0

0.
51

9
1.

84
0

24
.1

31
23

.8
17

24
.3

88
−

−
−

0.
20

2
0.

08
6

0.
37

0
24

.1
33

23
.8

75
24

.3
92

0.
45

17
0.

90
8

0.
71

7
1.

54
5

24
.1

07
23

.7
50

24
.2

65
−

−
−

0.
38

4
0.

06
7

0.
94

8
24

.1
09

23
.7

82
24

.4
21

40
3

0.
10

22
10

3.
89

1
58

.4
53

18
3.

98
8

9.
98

6
8.

38
6

11
.5

80
−

−
−

16
.8

39
2.

72
3

43
.7

47
9.

99
9

8.
38

6
11

.6
17

0.
30

22
78

.4
15

42
.5

44
11

8.
60

3
8.

39
7

8.
31

6
8.

44
5

−
−

−
6.

61
5

0.
86

4
26

.2
32

8.
40

2
8.

37
7

8.
43

4
0.

45
22

37
.4

35
22

.9
98

66
.8

74
8.

40
4

8.
33

8
8.

44
2

−
−

−
10

.8
09

0.
27

3
55

.8
71

8.
40

9
8.

34
0

8.
45

4

Table A.4: Average, minimum and maximum CPU times of simulations for ex-
act algorithms for the data set D1 for various configurations of the parameters
n, p and out.
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A. Results of the experiments
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Table A.5: Average, minimum and maximum CPU times of simulations for ex-
act algorithms for the data set D2 for various configurations of the parameters
n, p and out.
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Table A.6: Average, minimum and maximum CPU times of simulations for ex-
act algorithms for the data set D3 for various configurations of the parameters
n, p and out.
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Table A.7: Results of simulations for combination of FAST-LTS with MOEA-
QR and MMEA-QR versus their versions which are not combined, all for the
data set D1. Results include average cosine similarity, L2 norm and number of
inner cycles of the algorithms. In case of the combined versions, inner cycles
represents only cycles of the second algorithm MOEA-QR or MMEA-QR.
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Table A.8: Results of simulations for combination of FAST-LTS with MOEA-
QR and MMEA-QR versus their versions which are not combined, all for the
data set D2. Results include average cosine similarity, L2 norm and number of
inner cycles of the algorithms. In case of the combined versions, inner cycles
represents only cycles of the second algorithm MOEA-QR or MMEA-QR.
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Table A.9: Results of simulations for combination of FAST-LTS with MOEA-
QR and MMEA-QR versus their versions which are not combined, all for the
data set D3. Results include average cosine similarity, L2 norm and number of
inner cycles of the algorithms. In case of the combined versions, inner cycles
represents only cycles of the second algorithm MOEA-QR or MMEA-QR.
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Table A.10: Average CPU time, cosine similarity and L2 norm of simulations
for RANDOM and RBSA compared to FAST-LTS and MMEA-QR for the
data set D1.
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Table A.11: Average CPU time, cosine similarity and L2 norm of simulations
for RANDOM and RBSA compared to FAST-LTS and MMEA-QR for the
data set D2.
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Table A.12: Average CPU time, cosine similarity and L2 norm of simulations
for RANDOM and RBSA compared to FAST-LTS and MMEA-QR for the
data set D3.
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

lts.........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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