
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 6, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Software module for skill based search of students

 Student: Adam Jankovec

 Supervisor: doc. Ing. Pavel Kordík, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Explore methodologies of evaluating and searching for students based on their study results.
Analyze the Grades application used at FIT CTU.
Collect requirements, design, implement and test a system enabling a skill-based search of students based
on their results in Grades.
Apply methods of Software Engineering during the design and implementation of the system providing
features for manual defining of own skill set, evaluation of skill sets and adding references.
Test functionality and usability and discuss ways of extending the system.

References

Will be provided by the supervisor.

Bachelor’s thesis

System for a skill-based search of students

Adam Jankovec

Department of Software Engineering
Supervisor: doc. Ing. Pavel Kord́ık, Ph.D.

May 6, 2019

Acknowledgements

First of all, I would like to thank my supervisor doc. Ing. Pavel Kord́ık, Ph.D.,
and Ing. Stanislav Kuznetsov for investing their time into our sessions. Many
thanks to Ing. Elǐska Šestáková and everyone from 341b, namely: Ing. Václav
Blažej, Ing. Štěpán Plachý, Bc. Tung Anh Vu, and Tomáš Vopat, for their
reviews, advice, and support. Thanks to everyone who gave valuable feedback
during the process of collecting requirements and also to testers, whose effort
will result in improvement of the system. Last but not least, thanks to my
family and my girlfriend for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as school work
under the provisions of Article 60(1) of the Act.

In Prague on May 6, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Adam Jankovec. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jankovec, Adam. System for a skill-based search of students. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Tato práce se zaměřuje na vytvořeńı webové aplikace pro vyhledáváńı student̊u
podle dovednost́ı, která generuje student̊um dovednosti ze známek, sesb́ıraných
během studia na Fakultě informačńıch technologíı Českého vysokého učeńı
technického v Praze. Výsledkem práce je koncept, přinášej́ıćı možnost filtrovat
studenty podle jejich množiny dovednost́ı, který mohou firmy a učitelé využ́ıt
při vyhledáváńı kandidát̊u pro svá zadáńı.

Kĺıčová slova webová aplikace, vyhledáváńı podle dovednost́ı, dovednost,
známka

Abstract

This thesis focuses on the development process of a web application for a
skill-based search of students, which generates student skill sets from grades,
collected during students’ study at Faculty of Information Technology at Czech
Technical University in Prague. The result is a proof of concept, which brings
a possibility to filter students based on their skill set, which can be used by
companies and teachers to search for candidates for their assignments.

Keywords web application, skill-based search, skill, grade

vii

Contents

Citation of this thesis . vi

Introduction 1

1 Background & State of the art 3
1.1 Skill mining . 3
1.2 Grades portal . 4
1.3 Related existing solutions . 5

1.3.1 LinkedIn . 5
1.3.2 Candidate Search . 6
1.3.3 Cooperation with Industry portal 7
1.3.4 Summary . 8

2 Preliminaries 9
2.1 Technology stack . 9
2.2 Database design process . 13
2.3 Choice of server-side architecture 14
2.4 Building a web application with Angular 14

2.4.1 Material Design . 15

3 Analysis 17
3.1 Requirements engineering . 17

3.1.1 Concept . 18
3.1.1.1 Profile page . 18
3.1.1.2 Search page . 20

3.1.2 Collecting feedback and requirements 21
3.1.2.1 Companies . 21
3.1.2.2 Teachers . 22
3.1.2.3 Students . 24

3.1.3 Summary of requirements 24
3.1.3.1 Functional requirements 24

ix

3.1.3.2 Nonfunctional requirements 26
3.2 Use case modelling . 26

3.2.1 Actors . 26
3.2.2 Main use cases . 26

4 Architecture 31
4.1 Client-server architecture . 31
4.2 Server-side architecture . 32

4.2.1 Architecture description 32
4.2.2 Code structure . 34

4.3 Client-side structure . 36

5 Design 37
5.1 Profile . 37

5.1.1 Sections . 39
5.2 Skill points calculation . 43
5.3 Searching for profiles . 44

5.3.1 Search by name . 45
5.3.2 Advanced search . 45

5.4 Database model . 47

6 Implementation 49
6.1 Requirements . 49
6.2 Server-side development . 49

6.2.1 Getting data from Grades 50
6.3 REST API . 50
6.4 Security . 51

6.4.1 Authorization . 51
6.4.2 User roles . 51

6.5 Client-side development . 52
6.5.1 Resolving CORS policy violation 53

7 Testing 55
7.1 Automated testing . 55
7.2 Static code analysis . 57

7.2.1 SonarQube . 57
7.3 Usability testing . 58

7.3.1 Test script for companies 59
7.3.2 Test script for teachers 59
7.3.3 Test script for students 61
7.3.4 Changes proposed by participants 62

7.4 Acceptance testing . 64

8 Ideas for extensions 67

x

Conclusion 69

Bibliography 71

A Acronyms 75

B Screenshots of the result 77

C REST API definitions 85

D Contents of enclosed DVD drive 89

xi

List of Figures

1.1 Process of skill mining . 4
1.2 Example of user’s skill activity on Stack Overflow 6
1.3 Example of an assignment published in SSP 7

2.1 Material Design example . 15

3.1 Profile page concept . 19
3.2 Search page concept . 20
3.3 Use case diagram . 27

4.1 Deployment diagram . 31
4.2 Layered architecture . 33
4.3 Module dependencies . 35

5.1 Profile prototype from teacher’s perspective 38
5.2 Detail of Introduction section . 39
5.3 Detail of Study Information section 39
5.4 Detail of Study results section . 39
5.5 Detail of Interests section . 40
5.6 Detail of Status section . 40
5.7 Detail of Contacts section . 40
5.8 Detail of Projects section . 41
5.9 Detail of Professional experience section 41
5.10 Detail of References section . 41
5.11 Detail of Subjective proficiency section 42
5.12 Detail of Skill cloud section . 43
5.13 Sequence diagram of processing grades into skill points 44
5.14 Search page prototype . 45
5.15 Database model . 48

6.1 Authorization flow . 52

xiii

6.2 Proxy configuration . 53
6.3 Request translation via Proxy . 53

7.1 Example of testing database transaction with DbUnit 56
7.2 Example of dataset consumed by DbUnit 56
7.3 Example of mocking an external data source 56
7.4 Final report generated by SonarQube 58
7.5 Graphs of participants’ opinions about the user interface 64
7.6 Profile page . 66

B.1 Login page . 77
B.2 Authorization page . 78
B.3 Profile page . 79
B.4 Edit subjective proficiency page . 80
B.5 Edit reference dialog detail . 81
B.6 Search bar with autocomplete detail 81
B.7 Search page without parameters 82
B.8 Skill cloud for browsing most used skills 82
B.9 Search page with parameters and results 83
B.10 Settings page . 83

xiv

List of Tables

3.1 Functional requirements realisation 30

6.1 REST endpoints implemented in Grades 50

7.1 Test coverage of the Data Layer . 57
7.2 Task completion of companies . 59
7.3 Task completion of teachers . 60
7.4 Task completion of students . 62
7.5 Changes proposed by participants 62

xv

Introduction

The task of searching for relevant candidates for jobs in the field of information
technology is becoming more difficult with the constantly growing demand.
With the lack of people in the IT (Information Technology) industry, many
companies are reaching out to students in their early years of college, wanting
to raise their future employees, to ensure a steady flow of fresh graduates. For
students of FIT (Faculty of Information Technology) CTU (Czech Technical
University in Prague), who are not looking for employment just yet, there
are contracts for one-time work offered by the companies. In addition to
companies, teachers are also publishing interesting assignments for school
projects or theses. Students gain experience and a corresponding amount
of money as a reward for working out these contracts, but the majority of
these assignments will go unnoticed, and students are missing an opportunity
to gain experience while working on exciting projects.

Both the teachers and the companies are searching for one thing – students
with a particular skill set, who are willing to collaborate. Instead of letting
students browse hundreds of assignments aimlessly, the approach could be
reversed by recommending the assignments to students according to their
profiles. Student profiles would comprise of preferences and student’s own
skill set, which would be generated using educational data (grades), related to
the student’s study. The profiles would be used to search for candidates, who
are relevant for published assignments. The system could lead to an increase
in work experience of students and has the potential for attracting new faculty
partners and change the way faculties and companies cooperate.

The main aim of the thesis is to create a system that allows a skill-based
search of students. The system should be connected to the Grades application,
running at FIT CTU, to process student’s grades and generate skill points from
them. Among the goals are also the following: collecting requirements on the
system, designing the system and implementing its core parts, testing the
functionality and usability of the solution appropriately, suggesting possible
ways of extending the system.

1

Introduction

This thesis consists of eight chapters. The first chapter describes the back-
ground to skills and analyses related state-of-the-art solutions. The second
chapter (Preliminaries) explains used technologies, introduces requirements
for database design, selects appropriate server-side architecture, and describes
modern client-side development. The third chapter (Analysis) concerns the
process of gathering requirements, creating a concept of the system and use-
case modelling. The fourth chapter (Architecture) focuses on the realisation
of non-functional requirements and describes the structure of the client and
the server. The fifth chapter (Design) is about the realisation of functional
requirements, as well as, creating and explaining a prototype of the system.
The sixth chapter (Implementation) describes the steps taken to overcome
obstacles, which were encountered during development. The seventh chapter
(Testing) focuses on automated testing, usability testing, quality assurance,
and acceptance testing. The eighth chapter (Ideas for extensions) discusses
possible ways of extending and improving the system.

2

Chapter 1
Background & State of the art

This chapter describes the process of skill mining and its use in the affiliated
systems (Grades, Cooperation with Industry). It also dedicates a section to
the analysis of the state-of-the-art solutions for a skill-based search of people.

1.1 Skill mining

“Educational data mining is an emerging discipline, concerned with developing
methods for exploring the unique and increasingly large-scale data that come
from educational settings and using those methods to better understand stu-
dents, and the settings which they learn in.” [1]

The process of converting educational data (grades) into skills is a problem,
which has already been adressed by Ing. Stanislav Kuznetsov in his doctoral
study [2], where the author mentions, that “Universities cannot use their
educational data efficiently because the data are often not utilized due to confi-
dentiality and security reasons.” By transforming the confidential data (grades,
courses) to a non-confidential format (skills), the data can be utilized to
generate profiles of students and lecturers. [2, p. 14]

Skill mining, as shown in Figure 1.1, consists of “extracting accreditation
materials from a data warehouse, these materials are then automatically classi-
fied into a set of keywords, acronyms, and text. Text mining is performed next,
thanks to which we will obtain ’proposed skills’. Additionally, we created a
website to collect information from teachers, where each teacher shall indicate
what skills belong to a subject based on the ’proposed skills’”. [2, p. 14–15]

The skill mining algorithm brought mixed results. It managed to catch
many useful skills, but the result still contains a significant amount of noise.
Generated skills were inserted into the database of the Grades portal [3] with
a resulting number of approximately 50 000 skills. These “proposed” skills
will be used for debugging during development and for a final presentation
of the thesis, but they should be replaced with a more accurate set before
deployment of the system.

3

1. Background & State of the art

Figure 1.1: Process of skill mining. Source: [4]

1.2 Grades portal

Grades [3] (also known as Klasifikace) is a portal for managing courses and
evaluating students. The portal is currently used at FIT CTU as one of
the two main evaluation systems and has an increasing number of supporters
among teachers as well as students. Ing. Zdeněk Balák developed a prototype
of the system as a part of his master thesis during the summer semester of
2017/2018 [5]. From then the Evolution team1 continued the development
of the system by contributing with several major releases, each refining and
tweaking the system to the users’ needs. The last major release was support of
external applications, which allows other school systems such as ProgTest2 [6]
to write points to students’ evaluations via secured REST (Representational
State Transfer) endpoints.

The core functionality of the system is creating course definitions (tests,
exams, homework, . . .) evaluating students using several evaluation views
with “course evaluation”, “detailed course evaluation”, “student evaluation”.
To improve teachers’ comfort, Grades offers features such as expressions,
which automatically calculate definition values.1 Users can submit issues and
suggestions via GitLab Issues3, and by having a light-weight, faculty-specific
solution, Evolution team can tailor the system to match users’ needs.

1A team of developers from 341b at FIT CTU, currently consisting of the members:
Ing. Václav Blažej, Adam Jankovec, Ing. Štěpán Plachý, Tomáš Vopat, Bc. Tung Anh Vu.

2A task evaluation system, used at FIT CTU.
3https://gitlab.fit.cvut.cz/evolution-team/classification-issues/issues/

4

https://gitlab.fit.cvut.cz/evolution-team/classification-issues/issues/

1.3. Related existing solutions

Grades already contains basic support for adding skills to courses. Course
editors can create new skills and assign existing skills to courses with a certain
weight ranging from 1 to 100 percent. The selected weight is directly propor-
tional to the importance of skill in course. For a more detailed distribution of
skills, editors can also assign skills to course’s definitions.

1.3 Related existing solutions

The idea of searching for people by their skills already has dozens of available
solutions. This section examines the most relevant sites for searching job
candidates and analyses their strengths and weaknesses.

1.3.1 LinkedIn

LinkedIn [7] is the biggest social network for professionals in the world, with
over 546 million members from 200 countries. It was founded in 2002 and as
a result of LinkedIn’s success, Microsoft finished its acquisition in December
2016. [8] It is a place for anybody who is interested in seeking a job or is
recruiting someone else for a job.

Users can create a profile and specify many important details about them-
selves. They can set a profile photo, motto, education, work experience, skills,
certificates and languages. Users can also add other users into their network,
and these connections can endorse their skills and give them references. Users
can message each other and add posts on their “wall”, which can be rated and
responded to by other users.

The filter has two options. The first option is to search for people and the
basic version provides the following parameters: connections level, connections
of a particular user, location, current companies, past companies, industries,
profile language, and schools. The second option is to search for jobs with these
parameters: date posted, job type, company, industry, job function, experience
level, title. These filters are missing a vital parameter – skills. LinkedIn profits
on its membership fees. Basic accounts have all the functionalities required
to create a profile and connect with people. On the other hand, premium
recruiters have access to more detailed filtering with extra parameters such
as the mentioned skills, which is a smart move from LinkedIn because it is a
powerful feature recruiters are willing to pay for.

One of the strongest points of LinkedIn is that its fanbase is enormous,
so the chances of finding relevant candidates are quite high. However, the
main issue of LinkedIn is that with its growing number of members, a lot
of spam began to appear. Recruiters sometimes just copy and paste their
proposals without even checking if the profile is relevant for the job. Another
problem is that a significant number of accounts is inactive or not looking
for employment. This can be a major turnoff for both the recruiters and the
candidates, who waste their effort while having to endure these problems.

5

1. Background & State of the art

Another issue is related to skill endorsements, where anyone can endorse
other people’s skills without any guarantee. This degrades the endorsements’
value and recruiters may stop paying attention to it. This fact will be taken
into account, and only teachers will be able to endorse students’ skills.

1.3.2 Candidate Search

Candidate Search [9] is a solution developed by Stack Overflow to help in
search for developer candidates. It is built around an idea of resume being a
thing of a past and offers a way of analysing Stack Overflow profiles, which
can tell much more than just a simple resume.

“Stack Overflow is visited by over 50 million people every month – and is
the largest, most trusted online developer community for developers to learn,
share their knowledge, and build their careers. Professional and aspiring
programmers visit Stack Overflow each month to help solve coding problems,
develop new skills, and find job opportunities.” [10]

Users can not define their skills, but they have an option to set job
preferences through “techs they would like to work” with, “techs they would
prefer not to work with”, roles with experience level and job type. To replace
subjectively defined skills, user’s knowledge is measured in activity with the
skill. All questions and answers related to a certain topic can receive upvotes,
downvotes, and even badges. User’s understanding of a topic can then be
measured using the number of points earned on related posts, as depicted in
Figure 1.2. Rating user’s knowledge of the topic by the amount of activity is
a brilliant approach, the only problem could arise if the user decides to pursue
a different path and would like to distance himself from the previous skills.
This way he would still get connected to the old field of IT.

Candidate Search is a great solution and offers lots of things for inspiration.
The fact that it is built solely for the purpose of aiming at IT industry
candidates, gives it a significant advantage over more generalized solutions.

Figure 1.2: Example of user’s skill activity on Stack Overflow. [screenshot
was captured by the author]

6

1.3. Related existing solutions

Figure 1.3: Example of an assignment published in SSP. [screenshot was
captured by the author]

1.3.3 Cooperation with Industry portal

Cooperation with Industry [11] (also known as SSP or Spolupráce s Pr̊umyslem)
is a portal for connecting industry partners, teachers and students.

Industry partners can publish assignments as shown in Figure 1.3. These
assignments contain a detailed description, estimated number of hours to
complete, amount of money as a reward and a required set of skills. Teachers
validate the assignment and students can then apply for it either as individuals
or as a team. Students can also gain points in school, by submitting their
solution as a semestral project in related courses.

SSP is one of the older projects developed by the Evolution team, but
unlike Grades, it is built on a LifeRay DXP (Digital Experience Platform) [12]
technology. Liferay is a platform for building portals, intranets and websites,
which are both scalable and responsive. Although LifeRay provides fine, pre-
written solutions, the Evolution team considers SSP to be an old, monolithic
project, written with old coding habits and will probably be replaced in the
future by a more light-weight solution.

SSP was the first to introduce processing of grades into skills, but the
process was never automated. Data had to be manually exported out of KOS
(KOmponenta Student)4 [13] and imported into SSP for processing (discussed
in Section 1.1) and generating skills of students. There is also no possibility of
searching for students by the requested skills, which is why a skill-based search
is a topic this thesis focuses on. Although the search could be implemented

4Study information system used by CTU.

7

1. Background & State of the art

into SSP, it was decided that the existing code is not going to be extended
with this new feature because the old code no longer complies with the current
standards of the Evolution team. Therefore, a new solution is going to be built
using the latest technologies.

1.3.4 Summary

Solutions, mentioned in the previous sections, proved to be inappropriate to
be used for searching among students. It is critical to be able to restrict
people’s access to students accounts via roles, which none of the solutions
provide. It is also required to be able to restrict giving skill endorsements
only on the teacher role, which would secure the value of endorsements and
not degrade it. Another missing requirement is to set the size weight of skills.
All of them were either same value or divided into “top” and “other”, which
is not sufficient. The last problem is the inability to manually set a skill set
generated from grades of students.

The reasons mentioned above lead to the decision of having a custom
made light-weight system, which would allow the faculty to have its network
of profiles. All mentioned downsides will be taken into account during design
to make sure to learn from their weaknesses. Their strengths, however, will
serve as an inspiration for improving the new solution.

8

Chapter 2
Preliminaries

This chapter focuses on the technology stack used by Grades and discusses the
differences in versions, of both Grades and the new system. It also describes
the database design process, choice of server architecture and development of
application with Angular.

2.1 Technology stack

This section describes the technology stack used in Grades. Since the Evolution
team will continue in development of both Grades and Skills, both systems
should be built on similar technology stacks for easy maintenance, but versions
may vary.

Java – Programming language suitable for larger enterprise projects. At the
time of implementation, Java 11 was the latest version. Java 12 was
released in March 2019 [14], and migrating to it would require only a
small effort, but Java 11 remains the main choice because it offers long
term support [15].

Maven – Tool for building and managing Java-based projects. Based on
the concept of a project object model (POM), Maven can manage a
project’s build, reporting and documentation and dependencies. Project
dependencies can be maintained in the module’s POM file, where the
developer has to specify groupId, artifactId, and version to identify the
requested dependency.

ORM – Object-Relational Mapping is used when there is an effort to map
objects on database tables. In the application, real-world objects are
represented as classes, and in a relational database, an entity class is
represented as a table, with rows representing a class’s instance. The
main goal of ORM is synchronization between the objects, used in the

9

2. Preliminaries

application, and their representation in the database system to ensure
data persistence.

JPA – “The Java Persistence API is the Java API for the management
of persistence and object/relational mapping in Java EE and Java SE
environments.” [16] JPA is merely a specification. It is a set of rules,
which are to be followed when implementing a solution.
An entity is a persistence domain object, which represents an entity table
in a relational database and each instance corresponds to a row in a table.
According to [17] “an entity class must follow these requirements:

• The class must be annotated with the javax.persistence.Entity.
• The class must have a public or protected, no-argument constructor.

The class may have other constructors.
• The class must not be declared final. No methods or persistent

instance variables must be declared final.
• If an entity instance be passed by value as a detached object, such as

through a session bean’s remote business interface, the class must
implement the Serializable interface.
• Entities may extend both entity and non-entity classes, and non-

entity classes may extend entity classes.
• Persistent instance variables must be declared private, protected,

or package-private, and can only be accessed directly by the entity
class’s methods.”

Entity relations can have multiplicities, and these multiplicities can be
either unidirectional (only one has reference to the other) or bidirectional
(both have reference to the other). There are four types of multiplicities:

One-to-one – Instance of one class has reference to an instance of
another class.

One-to-many – Instance of one class has references to many instances
of another class.

Many-to-one – Many instances of a class have reference to one instance
of another class.

Many-to-many – Many instances of one class have references to many
instances of another class.

Hibernate – Hibernate is an implementation of JPA. Mapping of classes
to database tables (ORM) can be done using either XML (Extensible
Markup Language) or Java Annotations. “Hibernate uses a power-
ful HQL (Hibernate Query Language) that is similar in appearance to
SQL (Structured Query Language). Compared with SQL, however, HQL

10

2.1. Technology stack

is fully object-oriented and understands notions like inheritance, poly-
morphism and association.” [18] Hibernate is also database independent
and handles the adaption to a new database. Therefore, the developer
can use the same code across multiple databases.
Hibernate also provides an entity validator, which allows to express and
validate application constrains. Restrictions can be applied using either
XML configuration, or Java Annotations (e.g., @NotNull, @Max(255)).

PostgreSQL – Open source object-relational database system that uses and
extends the SQL language. According to developer survey carried out in
2019 [19], PostgreSQL turned out to be the second most used relational
database system among the developers.
PostgreSQL databases can be managed via pgAdmin which is a database
administration and development platform. It provides database opera-
tions such as “create”, “backup”, and “restore” from backup.

Spring Framework – Open source framework, which provides a compre-
hensive programming and configuration model for modern Java-based
enterprise applications. Spring’s infrastructural support allows the deve-
lopers to focus on the application-level business logic. [20]
Spring is also labelled as an IoC (Inversion of Control) container. This
means that it adopts a programming principle called Inversion of Control
and is, therefore, responsible for managing object lifecycles: creating
these objects, calling their initialization methods, and configuring these
objects by wiring them together via dependency injection.
Spring is modular by design. It consists of about 20 modules, which can
be easily imported into any Java project. “These modules are grouped
into Core Container, Data Access/Integration, Web, AOP (Aspect Orien-
ted Programming), Instrumentation, Messaging, and Test.” [21]

Spring Boot – An extension of the Spring Framework, which helps eliminate
boilerplate configurations to speed up the development process. It allows
the developer to focus on developing business logic, rather than wasting
time with project configuration.
Spring Boot is modularized, and required modules can be added into
a project as Maven dependencies by importing “spring-boot-starter”
modules, which contain all that is required for certain functionality, for
example, connecting a database or setting up REST controllers.

REST – REpresentational State Transfer, is an architectural style for pro-
viding standards between computer systems on the web, and making
it easier for systems to communicate with each other using familiar
constructs such as HTTP (Hypertext Transfer Protocol) status codes.

11

2. Preliminaries

RESTful systems are distinguished by a separate client and server. [22]
The representation of the state can be serialized into many formats such
as XML, HTML, YAML, but JSON (JavaScript Object Notation) is
currently the most widely adopted format.

REST is created as an HTTP abstraction and adopts HTTP principles,
but abstracts its technical details. It is the leading programming model
for creating Web APIs. In addition, a system, which complies with the
principles of REST is called RESTful, and to manipulate resources, it
uses the following set of HTTP methods:

GET – Request a resource without modifying it.
POST – Create a resource.
PUT – Create or edit a resource. This method is idempotent5 and

previous resource is always overwritten by the new one.
DELETE – Delete a resource.
PATCH – Edit a resource. Only the fields which are in the new object

will be overwritten by the old ones.

OAuth 2.0 – “OAuth 2.0 is the industry-standard protocol for authorization.
OAuth 2.0 supersedes the work done on the original OAuth protocol
created in 2006. OAuth 2.0 focuses on client developer simplicity while
providing specific authorization flows for web applications, desktop appli-
cations, mobile phones, and living room devices.” [23]

“The Authorization Code grant type is used by confidential and public
clients to exchange an authorization code for an access token. After
the user returns to the client via the redirect URL (Uniform Resource
Locator), the application will get the authorization code from the URL
and use it to request an access token.” [24]

TypeScript – It is a “typed superset of Javascript that compiles to plain
Javascript”. [25] One of the main benefits of static typing is that IDEs
(Integrated Development Environment) can spot common errors during
coding, which results in a more efficient development. For a large
JavaScript project, adopting TypeScript might result in more robust
software, while still being deployable where a regular JavaScript appli-
cation would run.

Angular – Open source web application framework, which was released by
Google and is also known as “Angular 2+”. Angular provides a command
line interface called Angular CLI, which can be used to create projects,
generate components, and deal with testing and deployment.

5It can be called repeatedly and will always return same response.

12

2.2. Database design process

Angular’s component based-architecture promotes high quality, encap-
sulated, reusable code, which is also unit-test friendly and maintainable,
due to easy decoupling and replacing of components. It also utilizes
hierarchical dependency injection to improve performance.

Although Angular is based on TypeScript, AngularJS (a predecessor of
Angular) is based on JavaScript. Grades client is written in AngularJS,
and since AngularJS and Angular are vastly different, a goal was set to
have versions of both Grades and Skills systems up-to-date. Therefore,
at the time of writing this thesis, a complete rewrite of the Grades client
into the newest Angular 7 is underway.

2.2 Database design process

“The relational data model, which organizes data in tables of rows and columns,
predominates in database management tools. Today there are other data mo-
dels, including NoSQL and NewSQL, but RDBMSs (Relational database ma-
nagement system) remain dominant for storing and managing data.” [26] Data
model needs to be relational due to the fact, that PostgreSQL is a relational
database and is a part of the technology stack.

According to [27], “Designing an efficient, useful database is a matter of
following the proper process, including these phases: requirements analysis,
organizing data into tables, specifying primary keys and analyzing relation-
ships, normalizing to standardize the tables.”

“Normalization is the process of efficiently organizing data in a database.
There are two goals of the normalization process: eliminating redundant data
(for example, storing the same data in more than one table) and ensuring data
dependencies make sense (only storing related data in a table). Both of these
are worthy goals, as they reduce the amount of space a database consumes and
ensure that data is logically stored.” [28]

“The database community has developed a series of guidelines for ensuring
that databases are normalized. These are referred to as normal forms and
are numbered from one (the lowest form of normalization, referred to as first
normal form or 1NF) through five (fifth normal form or 5NF).” In most
designs, there are only three normal forms. [28] According to [29, slide 156,
translated by the author], the first three forms can be described as follows:

1NF – Attributes are atomic (no structured, multi-value attributes).

2NF – All non-key attributes depend on the whole key (no partial dependency
on the key).

3NF – All non-key attributes depend on the key directly (no transitive de-
pendency on the key).

13

2. Preliminaries

2.3 Choice of server-side architecture

During the process of deciding which architecture is suitable for the Server, the
emphasis was put on ease of development and good testability. The analysis
conducted in [30, Appendix A] shows, that Layered architecture (also known
as N-tier) is the most appropriate for such case, although it has its downsides,
such as lower performance and scalability.

“Components within the layered architecture pattern are organized into
horizontal layers, each layer performing a specific role within the application
(e.g., presentation logic or business logic). Although the layered architecture
pattern does not specify the number and types of layers that must exist in the
pattern, most layered architectures consist of four standard layers: presenta-
tion, business, persistence, and database.” [30, Chapter 1]

“Each layer of the layered architecture pattern has a specific role and
responsibility within the application. For example, a presentation layer would
be responsible for handling all user interface and browser communication logic,
whereas a business layer would be responsible for executing specific business
rules associated with the request. Each layer in the architecture forms an
abstraction around the work that needs to be done to satisfy a particular
business request. For example, the presentation layer doesn’t need to know or
worry about how to get customer data; it only needs to display that information
on a screen in particular format. Similarly, the business layer doesn’t need to
be concerned about how to format customer data for display on a screen or
even where the customer data is coming from; it only needs to get the data from
the persistence layer, perform business logic against the data (e.g., calculate
values or aggregate data), and pass that information up to the presentation
layer.” [30, Chapter 1]

2.4 Building a web application with Angular

“The basic building blocks of an Angular application are NgModules, which
provide a compilation context for components. NgModules collect related code
into functional sets; an Angular app is defined by a set of NgModules. An app
always has at least a root module that enables bootstrapping, and typically has
many more feature modules.” [31]

“Components define views, which are sets of screen elements that Angular
can choose among and modify according to program logic and data, while also
utilizing services, which provide specific functionality not directly related to
views. Service providers can be injected into components as dependencies,
making code modular, reusable, and efficient.” [31]

To make sure not to reinvent the wheel again, there are projects, which
provide sets of already written components for developers to reuse. Angular
Material is an open-source project for developing a range of components, which

14

2.4. Building a web application with Angular

implement common interaction patterns according to the Material Design
specification. The project provides a set of reusable, tested components, with
support of accessibility.

2.4.1 Material Design

“Material is an adaptable system of guidelines, components, and tools that
support the best practices of user interface design. Backed by open-source code,
Material streamlines collaboration between designers and developers, and helps
teams quickly build beautiful products.” [32]

“Material Design emerged as Google’s brainchild in mid-2014 (. . .) the
goal is to deliver high-quality output consistently across platforms, giving users
control over clearly indicated, pleasant-looking components that behave like
real-world objects. Material Design involves applying basic, natural laws from
the physical world, principally concerning lighting and motion.” [33]

“The idea is that by mimicking the physical world, users’ cognitive loads
are reduced through careful attention to layout, visual language and pattern
library, maximizing predictability and eliminating ambiguity.” [33]

Figure 2.1: Android application showing interactive elements according to
Material Design. Source: [34]

15

Chapter 3
Analysis

This chapter focuses in detail on the process of collecting requirements. First,
a set of requirements is collected from the supervisor’s idea of the system.
The initial concept is designed and then taken to collect more requirements
from the interested parties. A thoroughly described summary of requirements
is followed by use case modelling.

3.1 Requirements engineering

It took several sessions to capture supervisor’ notion of the system. The idea
is as follows. Students are going to have their own profiles, which will contain
references received from teachers, their own subjectively defined skill sets,
and generated skill sets. The system will be collecting educational data from
Grades, in the form of students’ grades. These grades will be used to generate
skill sets, which represent knowledge student should be familiar with. Finally,
the system will provide an option to search for students based on their skill
set, which will be available to students, teachers, and external partners of FIT
CTU (now referred to as companies). Initial set of requirements, gathered
from the sessions, was documented as follows:

• parameterized search of students,

• skill endorsement,

• references,

• subjective skills,

• generated skill sets.

17

3. Analysis

3.1.1 Concept

The plan was to create a concept, which could then be presented to all the
interested parties. The created concept consists only of a simple profile page
and search page. It does not depict the website’s layout.

3.1.1.1 Profile page

The concept of the profile page, illustrated in Figure 3.1, includes all the
required features and also some experimental features, which were added as
an attempt to make the profile more interesting. The profile is divided into
these sections:

Chart of interests – Should reflect the student’s field of interest. It can be
either student’s level of knowledge, or level of interest. Basic idea is to
split the chart into several sections, each representing one field of IT,
and to let the students choose the levels themselves.

Personal information – General information about student’s field of study,
year and programme.

Contacts and links – Contact information and links to student’s projects
on sites such as GitLab or GitHub.

Skills match – Detailed description of matched and unmatched skills based
on search parameters. Match is represented in percentages.

References – Personal references received from teachers, which were given
for collaboration on projects, extra activity, above-average results, etc.

Endorsed skills – Teachers have an option of endorsing student’s skills.
Endorsements can also contain optional comment, about the reason
behind endorsement. Endorsement should be only given to those who
proved their knowledge of the topic, or the best ones of class and not to
everyone who passes some test.

Skill chart – Multilevel pie chart represents generated skill set. Inner circles
are higher level skills (more abstract). Skills become more specific with
each outer level. Levels contain bigger and smaller nodes. The bigger
the node, the more a student is familiar with the topic. Each parent
node’s size is a sum of children values.

18

3.1. Requirements engineering

Figure 3.1: Profile page concept

19

3. Analysis

Figure 3.2: Search page concept

3.1.1.2 Search page

Concept of the search page shown in Figure 3.2 is divided into filter section
and results section. Users have an option to filter by the following parameters:

Level & Year – Level and year of study,

Study Results – Range of weighted study mean,

Field – Field of study (e.g., Software Engineering, Hardware, . . .),

Skills – Set of skills.

After the filtering is done, a list of matched profile previews appears and
each preview contains:

Study information – Field of study,

Skills – Most rated skills by the amount of skill points and endorsements,

Match – Percentual match of skills.

20

3.1. Requirements engineering

3.1.2 Collecting feedback and requirements

Due to the fact that there are three groups of users (students, teachers,
companies), the process of collecting requirements is divided into three parts.
Each part describes the suggestions given by the group’s representatives.

Since the process of introducing the participants to the system could
be a complicated matter, a qualitative approach was chosen instead of the
quantitative. By selecting the qualitative approach, it was possible to have
a more in-depth conversation about the system, and all the questions, parti-
cipants had, were answered immediately. A substantial amount of time was
invested as some conversations were lasting even longer than an hour. However,
the participants’ ideas lead to a considerable improvement of the concept.

Participants were introduced to the issue of not being able to filter students
by some criteria. Then a possible solution was presented using printed copies
of the profile and the search page concepts. Contents of the search page,
illustrated in Figure 3.2, were described first, followed by the search results
and a detailed description of the profile page and its sections, depicted in
Figure 3.1. After presenting the concept, participants were asked the following
questions:

• “Are there any functionalities you would like to add?“,

• “Are there any functionalities you don’t find relevant?“,

• “Would you use the system, if there was the option?“.

3.1.2.1 Companies

Collecting requirements from companies occurred during the faculty career
fair COFit, which took place on 24. October 2018. Since lots of potential users
were present on that day, it was an ideal opportunity to receive feedback.
Among the companies were: Greyson, Attacama, eMan, Etnetera, Gemalto,
OKSystem, Quanti, Datamole. Companies are listed only to illustrate the
participant pool size and their names will not be listed in the answers. Out of
nine companies, eight were impressed with the idea, and six would probably
use the system.

Functionalities to add

• Availability status

Description: “Filtering profiles is pointless if the student has no interest
in collaboration. Student should have an option to specify types of
collaboration such as full-time or part-time.”

Response: Section “Availability status” indicating students’ interests
will be added.

21

3. Analysis

• Professional experience

Description: “Student’s knowledge would gain more weight, if there
was a way to see what he had learned from practice. Student should
have an option to add his professional experience with positions and
specify the job description and projects he participated on.”

Response: Section “Professional experience” will be added as an option
for students to specify their job positions and their description.

• Searching for senior position candidates

Description: “The system should be able to search people for senior
positions in some way. Alternatively, stick to the profiles of people
who have already graduated.”

Response: Interest in senior positions will be recorded as a low priority
feature request and will not be implemented in the proof of concept.

Irrelevant functionalities

• References

Description: “It is not essential for us, that someone from the school
gave the student a positive comment. We do not know the people
who grant them, and we will check the students ourselves.“

Response: Since only one company has identified the references as
irrelevant, they will not be removed from the system.

3.1.2.2 Teachers

Teachers were approached during October and November 2018. Department
heads were approached first, followed by several teachers belonging under the
departments. In addition to collecting requirements, the goal was to expand
the awareness of the system. Furthermore, it was necessary to ensure the
timely allocation of skills to subjects in Grades, from which points could be
generated for students. Reactions on the system were mostly positive.

Functionalities to add

• Availability status

Description: “A student should have an option for binary switching
between I want / don’t want to be reached out to.”

Response: The availability status has already been mentioned in the
suggestions of the companies. Therefore, it is resolved.

22

3.1. Requirements engineering

• Subcategories of study fields

Description: “It would be more convenient to be able to filter by some
subcategories of fields, which would more closely specify focus if we
are not looking for specific technologies.“

Response: Filtering by study field subcategories will be recorded as
a low priority feature request and will not be implemented in the
proof of concept.

• Higher skill points reward for bachelor/master thesis

Description: “Students working on a bachelor/master thesis in specific
technologies usually leave with more knowledge than after comple-
ting a course with a given technology. They should, therefore,
receive a corresponding evaluation.“

Response: The work has a corresponding higher number of credits.
Thus, the number of credits will increase the amount of skill points
generated for the thesis.

• Ability to browse student profiles

Description: “Students should also be available for the overview itself.
They should be visible even if they are not interested in work.“

Response: The system will allow setting profile visibility. Search bar
for searching by name will be added.

• Modify the percentage matching system

Description: “Allow adding weight to searched skills, for example,
search by a set of skills with 1/2 C++, 1/4 Java and 1/4 Javascript.
This would allow to emphasize which skills are more important.
Students should also have an option to specify what skills are
important to them, to filter out those with active interest in the
topic.

Response: Adding weight to searched skills would add more complexity
to filtering and could discourage new users. The search without
weight will be retained. The student’s own interest by the interest
in the study field and subjective proficiency.

Irrelevant functionalities

Teachers found no functionality irrelevant.

23

3. Analysis

3.1.2.3 Students

Students’ reactions were mixed. The system was not rated negatively; some
only questioned its use and teacher activity. Seven out of thirteen students
would use the profile.

Functionalities to add

• Choosing your own skills

Description: “Data that the student selects can be more relevant than
the system-generated data. I’m not going to list Java as my skill if
I want to work in C++.“

Response Section “Subjective proficiency” with the ability to define
own skills will be added.

Irrelevant functionalities

Students found no functionality irrelevant.

3.1.3 Summary of requirements

After reaching out to all of the participating groups, the list of all selected
functional requirements was sorted by priority of individual requirements,
followed by a list of non-functional requirements.

3.1.3.1 Functional requirements

• F1 – Profile filtering

Priority: high
Description: The system will allow filtering of profiles by parameters.

Parameters of filtering will be skills, study year and programme,
availability status, interest in the study field, and professional expe-
rience. Only the profiles visible to the user, based on his roles,
appear in the filter results.

• F2 – Generating skills from grades

Priority: high
Description: The system will collect data from Grades during schedu-

led intervals and convert them into skill points.

• F3 – Skill endorsements

Priority: high

24

3.1. Requirements engineering

Description: The system will record students’ skills endorsements. It
will allow both adding and revoking of endorsements, which can be
done only by teachers.

• F4 – References

Priority: high
Description: The system will record students’ references. It will allow

adding, editing, and removing references, which can be done only
by teachers.

• F5 – Subjective proficiency

Priority: high
Description: The system will record students’ subjective proficiency.

It will allow adding, editing, and removing of proficiency. Only
students can set it to themselves.

• F6 – Profile visibility

Priority: high
Description: The system will record profile visibility to allow students

to show their profile only to a specific group of users by role. Only
students can set visibility to themselves. The student’s profile will
be hidden to all groups by default and student has to change this
setting explicitly to become visible for filtering.

• F7 – Searching profiles by name

Priority: high
Description: System will allow to search for profiles by name. Only

the profiles visible to the user, based on his roles, appear in the
search results.

• F8 – Roles

Priority: high
Description: The system will record user roles. There will be three

types of roles: student, teacher, company.

• F9 – Professional experience

Priority: medium
Description: The system will record professional experience. It will

allow adding, editing, and removing of experience. Only students
can set it to themselves.

25

3. Analysis

• F10 – Interest in the study field

Priority: medium
Description: The system will record student’s interest in the study

fields. Students will receive a fixed amount of points, they can
distribute among all study fields taught at FIT CTU The more
points they assign to a field, the more they are interested in it.

• F11 – Availability status

Priority: medium
Description: The system will record students’ availability status and

collaboration types. Among the types of collaboration will be, for
example, master thesis, school project, part-time etc. Availability
status is automatically set to available/unavailable based on the
requested collaboration. If the student only wishes to be visible,
but not receive any offers, then having status unavailable with the
profile set to visible is the solution.

3.1.3.2 Nonfunctional requirements

• N1 – Technology stack similar to Grades

Priority: high
Description: As the Skills system will be developed by the Evolution

team in the future, it is required to use technology stack similar
to the stack of Grades. Used technologies will be in their latest
versions to provide the longest possible support. Therefore versions
may vary.

3.2 Use case modelling

This section focuses on the actors and the use case modelling.

3.2.1 Actors

Student A studying person, who is responsible for managing their profile.

Teacher A person, employed at the school, who is responsible for giving
references and giving skill endorsements.

Company An external person, who is authorized to search among students.

3.2.2 Main use cases

Main use cases and their actors are shown in Figure 3.3. Table 3.1 shows that
all functional requirements are covered by use cases.

26

3.2. Use case modelling

UC3 - Skill
endorsement

UC5 - Set profile
visibility

UC2 - Profile setup

UC1 - Skill based
search of students

UC4 - Reference
student

Student

Teacher

Company

System

UC6 - Search
profile by name

<<include>>

<<include>>

Figure 3.3: Use case diagram

27

3. Analysis

UC1 – Skill based search of students

Description: Allows searching for students based on specified criteria.

Actors: Any.

Steps:
1. The use case starts when a logged in user wants to search for

students by criteria.
2. The user selects the filtering criteria.
3. The user presses the search button.
4. The system displays a list of matching results.

UC2 – Profile setup

Description: It allows students to customize their profile to reflect current
skills and interests.

Actors: Student

Steps:
1. The use case starts when the logged in user wants to edit the

information on his profile.
2. The user selects the option to edit the desired section.
3. The user makes the changes.
4. The user presses the save changes button.
5. The system displays the edited profile.

UC3 – Skill endorsement

Description: Allows teachers to add or revoke an endorsement of student’s
skill.

Actors: Teacher

Steps:
1. Include UC6 – Search profile by name.
2. The user presses the endorse a skill button.
3. The system displays a window with the option to add a comment.
4. The user presses the save button.
5. The system stores the endorsement.

28

3.2. Use case modelling

UC4 – Manage reference

Description: Allows teachers to add or remove a student’s reference.

Actors: Teacher

Steps:
1. Include UC6 – Search profile by name.
2. The user presses the add reference button.
3. The system displays a window with a required field to fill in the

reference.
4. The user fills in the field.
5. The user presses the save button.
6. The system stores the reference.

UC5 – Set profile visibility

Description: Allows students to show or hide their profile.

Actors: Student

Steps:
1. The use case starts when the logged in user wants to change the

profile visibility.
2. The user navigates to the settings page.
3. The user changes the visibility for a certain role by pressing the

toggle button.
4. The user presses the save button.
5. The system stores the settings.

UC6 – Search profile by name

Description: Allows user to search for profiles by name.

Actors: Any.

Steps:
1. The use case starts when a logged-in user wants to search for a

profile by name.
2. The user enters the student’s name into the search field on the main

bar.
3. The system offers a list of profiles with a matching name.
4. The user presses the list item.
5. The system navigates the user to the selected profile.

29

3. Analysis

U
C

1
–

Sk
ill

ba
se

d
se

ar
ch

of
st

ud
en

ts

U
C

2
–

Pr
ofi

le
se

tu
p

U
C

3
–

Sk
ill

en
do

rs
em

en
t

U
C

4
–

M
an

ag
e

re
fe

re
nc

e

U
C

5
–

Se
t

pr
ofi

le
vi

sib
ili

ty

U
C

6
–

Se
ar

ch
pr

ofi
le

by
na

m
e

F1 – Profile filtering
F2 – Generating skills from grades
F3 – Skill endorsements
F4 – References
F5 – Subjective proficiency
F6 – Profile visibility
F7 – Searching profiles by name
F8 – Roles
F9 – Professional experience
F10 – Interests
F11 – Availability status

Table 3.1: Functional requirements realisation

30

Chapter 4
Architecture

The chapter focuses on realising non-functional requirements. It describes the
division into a client and a server and describes each side.

4.1 Client-server architecture

Inspired by the design of Grades, system will make use of the Client-server
architecture as shown in Figure 4.1, where all the data manipulation is handled
by the server side (from now referred to as the Server) and data presentation is
handled by the client side (from now referred to as the Client). This approach
ensures that possible mistake, done during development of the Client, has no
chance of promoting to the Server, due to separate development.

Skills

KOSApi

Grades

Auth

HTTP

HTTP

HTTP

ClientServer HTTP

<<WebServer>>

<<SpringBoot>> <<Angular>>

PostgreSQLHTTP

<<DatabaseServer>>

<<Database>>

Figure 4.1: Deployment diagram

31

4. Architecture

All communication will be provided through the REST interface (HTTP).
To receive data for generating skill points, Server has to communicate with
Grades (discussed in Section 5.2 and Section 6.2.1). KOSApi will provide
user’s information and roles (discussed in Section 6.4.2). Authorization is
done via the FIT Authorization server (discussed in Section 6.4).

4.2 Server-side architecture

As was already mentioned in Section 2.3, Layered architecture is the most
fitting for this project. The following sections describe division into layers
and code structure.

4.2.1 Architecture description

The Server is divided into four layers: Web, Service, Data, Database. Each
layer has its own responsibilities. Furthermore, in Figure 4.2, each layer is
labelled closed, which is based on the Open-closed layer principle. In the case
of a closed Service layer, this means that any requests received on the Web
layer must pass through the Service layer to reach the Data layer. The reason
for this solution is the concept of layers of isolation which means that changes
to one layer generally do not impact or affect components in other layers.

Web Layer

Web layer contains REST controllers with HTTP endpoints. These endpoints
define the Server’s API (Application programming interface). User input can
be received through URL parameters or a DTO (Data Transfer Object). Once
a request is received, input validation is done by Spring to keep input sanitized.
After input validation, privilege check is run to verify that the user is allowed
to use the requested endpoint. A validated request is then delegated to the
Service layer for further processing.

All data flowing in and out of REST controllers are deserialized and
serialized into JSON by Spring automatically. Exception handling is also
one of the responsibilities that spring can handle. All delegated operations
can throw exceptions and for such cases an ExceptionHandler is set up to
convert exceptions into proper HTTP response codes and messages.

Service Layer

Service layer contains what is called a business logic of the application. Such
logic holds system specific restrictions such as only a person with the role
Teacher can give reference to a profile. This layer also manages operations in
a transaction-like manner, which means that either all operations of a service

32

4.2. Server-side architecture

Request

Web Layer

Service Layer

Data Layer

Database Layer

Closed

Closed

Closed

Closed

Controller Controller

Service Service

DAO DAO

Figure 4.2: Layered architecture. Source: [35, edited by the author]

method succeed or every change is rolled back. A transaction is especially
useful for a method calling multiple data layer methods.

Since all data is already sanitized from the Web layer, no input validation
needs to be done, but if a service method is expected to return something other
than void, then it is Service layer’s responsibility to convert processed data to
a DTO. DTO pattern can be used to hide entity column names to prevent
SQL attacks but more than that it is widely used to return data matching a
specific use case. If all a method requests is a person’s username, then giving
away other attributes such as a person’s age would be redundant.

Data Layer

Data layer provides simplified access to data stored in a persistent storage.
Once a data source is configured via Spring @Configuration an EntityManager
bean is available to manage and search entities in the relational database,
and each of Data layer’s public method represents one database transaction.
Spring allows switching between configurations by assigning a specific profile
to each configuration. Registered profiles are: “test” for testing, “dev” for

33

4. Architecture

development and “prod” for production. Setting up configuration this way
allows to quickly switch between databases when necessary.

Since databases are not the only source of data, sources like Grades and
KOSApi are in a separate package. Each package contains domain models of
the corresponding domain and DAO interfaces for data manipulation. Package
distribution is following:

internal – Manages data of internal databases.

external – Manages data of external sources, e.g., Grades.

Database Layer

Contains configurable data sources for data persistence. Three PostgreSQL
data sources are used:

DB – Database containing all internal data.

DW – Data warehouse, which contains precalculated data for faster queries.

Test – Database used for testing.

4.2.2 Code structure

The code is structured into modules, which are coupled together with module
dependencies, as shown in Figure 4.3. Open-closed layer principle is enforced
through maven dependency management, which allows disabling of transitive
dependencies. Modules’ purposes are following:

skills-web – Represents Web layer.

skills-service – Represents Service layer.

skills-data – Represents Data layer.

skills-comms – Contains classes shared across all server modules (e.g., DTOs,
exceptions, enums, . . .).

skills-boot – Contains main class for starting Spring Framework, which wires
all layers together.

skills-ui – Client application.

34

4.2. Server-side architecture

HTTP

Client

Server

Databases

skills-service

skills-web

skills-data

skills-ui

skills-boot skills-comms

DB DW Test

Figure 4.3: Module dependencies 35

4. Architecture

4.3 Client-side structure

For easier navigation through the Angular project, files are grouped into
folders based on their purpose. The following is a code structure of the
skills-ui module:

views – Each view represents one screen page.

services – Services define logic, perform HTTP requests or share data.

resolvers – Resolvers call services to fetch data from server. Attaching a
resolver to a page blocks the page. from displaying until data is ready.

components – Small reusable elements, which can be combined together to
build a view.

models – Classes, enums, DTOs.

dialogs – Components displayed as modal dialogs.

36

Chapter 5
Design

This chapter focuses on the realization of functional requirements. Screen
prototypes will be introduced along with a description of the skill points
calculation process and the search algorithm. Last section describes design
of database model.

5.1 Profile

Profile layout is designed in a simple two-column layout with a wide block of
skills at the bottom as can be seen in Figure 5.1.

Profile sections went through several changes during the design process.
A major change occurred in the generated skill set section, where the initial
multilevel pie chart had been replaced with a skill cloud because there are no
data yet to support the skill hierarchy required for the pie chart. Multilevel
pie chart still stands as a proposed feature to improve readability of the skill
set, but working on a structure supporting this hierarchy, would exceed the
thesis’ scope. To make a profile more interesting for the users, new sections
are introduced, such as “Professional experience” and “Status”, as requested
by the potential users.

To reflect what fields and technologies is a student interested in, sections
“Subjective proficiency” and “Interests” were added. This decision is justified
by the fact that most people are looking for students with a great interest in
the respective field and ability to learn, not necessarily students with a certain
level of skill.

37

5. Design

Figure 5.1: Profile prototype from teacher’s perspective

38

5.1. Profile

5.1.1 Sections

Introduction

This section (shown in Figure 5.2) contains a profile photo and a student’s full
name. A student can also add a brief description of his goals and motivation.

Figure 5.2: Detail of Introduction section

Study Information

This section (shown in Figure 5.3) provides basic information about user’s
study such as study field (e.g., Software Engineering), year, and programme
(e.g., Bachelor). Data is available from KOSApi.

Figure 5.3: Detail of Study Information section

Study results

This section (shown in Figure 5.4) provides a weighted mean of student’s
results. Data is available from Grades’ API.

Figure 5.4: Detail of Study results section

39

5. Design

Interests

This section (shown in Figure 5.5) targets students’ interests with a field,
where they can fill out their dream job. Students also receive a limited amount
of points to distribute among all IT (Information Technology) fields. The
higher the amount of points field receives, the more student is interested. A
maximum amount of points to assign to one field is 5.

Figure 5.5: Detail of Interests section

Status

Students can set types of collaboration they are interested in. There are
several types of collaboration such as bachelor thesis, master thesis, part-time
employment, semester assignment, etc. Section is shown in Figure 5.6.

Figure 5.6: Detail of Status section

Contacts

This section (shown in Figure 5.7) allows students to enter means of communi-
cation, through which they are available to discuss collaboration.

Figure 5.7: Detail of Contacts section

40

5.1. Profile

Projects

This section (shown in Figure 5.8) allows students to provide links to their
projects on sites such as GitLab, GitHub, etc.

Figure 5.8: Detail of Projects section

Professional experience

This section (shown in Figure 5.9) allows students to enter their professional
experience. Each experience contains job position, company name, dates
“since” and “until”, description, and skills. Listed skills will provide an
opportunity to refine the filtering of profiles by skills.

Figure 5.9: Detail of Professional experience section

References

This section (shown in Figure 5.10) contains references received from teachers.
Teachers have an option to add multiple references, as well as edit and delete
their references. Each reference contains author photo, name, and comment.

Figure 5.10: Detail of References section

41

5. Design

Subjective proficiency

This section (shown in Figure 5.11) allows students to define their strengths.
Proficiency consists of three lists: specializations, main skills, other skills.
Proficiency helps refine filtering profiles by skills. Having a visible, empty
specialization field could also motivate students to choose an area they could
specialize in.

Teachers can endorse these fields, with an optional comment to specify
the reason behind the endorsement. The button to the left indicates that
a teacher can either give or revoke given endorsement. Icons to the right
indicate how many endorsements were given, and clicking the icon opens a
list of endorsement authors and comments.

Figure 5.11: Detail of Subjective proficiency section

Skill cloud

This section (shown in Figure 5.12) shows all student’s skills generated from
Grades. Each skill has a certain size based on the number of points student
collected for that skill. To ensure readability, sizes are normalized to a fixed
range of font sizes.

42

5.2. Skill points calculation

Figure 5.12: Detail of Skill cloud section. Source: [36]

5.2 Skill points calculation

Generating skill points uses data collected from Grades. Each task, test,
and course student completes, already has assigned skills and weight. After
designing the endpoints and DTOs for exporting data from Grades, processing
was designed next.

The whole process depicted in Figure 5.13 begins with fetching of all
courses with defined skills. Since collected data is expected to grow with time,
measures have to be applied to account for such expectation. Not fetching
data all at once, but only instance by instance, significantly reduces memory
impact on the system. Courses contain defined skills and instances’ semester
codes. Each semester code, paired with course code, is then used to fetch its
course instance. All instance’s evaluations are processed into skill points with
the following evaluation.

points = creditsCount · skillWeightCoefficient · evaluationPercentile

creditsCount Number of credits gained for completing a course. This means
that students gain more skill points from harder courses.

skillWeightCoefficient Skill weight is defined by teachers in Grades to put
more emphasis on main taught skills rather than the supplementary
skills. Coefficient ranges from 0 to 1.

evaluationPercentile Course difficulty can change over time. One semester,
there can be 50% failure rate, the other only 20% rate. Calculating
points by evaluation percentile and not by evaluation value takes these
differences into account and allows for a fair points distribution among
all semesters. Percentile ranges from 0 to 1.

43

5. Design

:Grades
Dao

GradesApi
:SkillPoints

Dao

:Grades
Processing

Service

:Calculation
Util

Scheduled
task

Loop

[for each course in courses]

Loop

[for each semesterCode in course.instances]

/courses

courses

recalculate
SkillPoints()

getAllCoursesWithSkills()

courses

instance

getCourseInstance(courseCode, semesterCode)

/courses-
/course-code-
/instances-
/semester-code

instance

calculateSkillPoints
(course, instance)

skillPoints

saveSkillPoints
(skillPoints)

Figure 5.13: Sequence diagram of processing grades into skill points

All calculated points are then persisted in batches via SkillPointsDao.
Scheduler, managed by Spring, automatically triggers the process of recalcu-
lating skill points every 24 hours, followed by a global skill points calculation.

Global skill points calculation consists of creating a sum of points for
each skill across all students. Sums are stored in DW (data warehouse)
database, prepared for a fast retrieval during global skill cloud setup when
using advanced search shown in Figure B.8.

5.3 Searching for profiles

One can access the user’s profile either through the search bar or the filter
page. Both ways still respect visibility settings of profiles so they will appear
in the search results only with the owners’ consent.

44

5.3. Searching for profiles

Figure 5.14: Search page prototype

5.3.1 Search by name

The search bar is a text input field equipped with an auto-complete function.
It is placed at the top bar, as illustrated in Figure 5.14. Whenever a user enters
text, auto-complete is triggered, and a request is sent to the Server. The text is
compared with the full names of people in a case-insensitive manner. Results
appear in a dropdown list with clickable links to profiles.

5.3.2 Advanced search

Search parameters

Search parameters are depicted in the prototype shown in Figure 5.14, and
consist of two types of parameters: “fixed” and “flexible”. Filtering based
on fixed parameters will filter out any non-matching profiles, unlike flexible
parameters, which only decrease the match percentage of a non-matching
profile. Parameters to filter by are following:

• Flexible parameters

Skills Skills, which were generated or manually added by students as
subjective proficiency.

Study field Enrolled fields, taught at FIT CTU, such as Security, Data
Science, etc. This field was moved to flexible parameters since
students at FIT CTU are allowed to study without having their
field selected.

45

5. Design

• Fixed parameters

Programme & Year Ranged slider for year of study and checkboxes
for active study (e.g., bachelor, master).

Study mean Ranged slider of acceptable weighted study mean ranging
from 1.0 to 2.5.

Endorsements & References Ranged slider representing number of
endorsements and references helps filtering out non-active profiles.

Professional experience Ranged slider representing amount of profe-
ssional experience allows to specifically filter experienced students

Status Allows binary swapping between “available” and “unavailable”
to filter out profiles open for cooperation.

Collaboration type Checkboxes with collaboration types (e.g., master
thesis, full-time, any, . . .).

Search algorithm

Implementing a sophisticated search algorithm would exceed the thesis’ scope,
so only naive skill-based filtering is designed and implemented to provide basic
support for the Proof of Concept.

Algorithm 1 Profile evaluation
Require: a set of profileSkills to evaluate, a set of requestedSkills to filter
Ensure: a pair of (match, points)

1: matchingSkills← intersect(requestedSkills, profileSkills)
2: match← |matchingSkills| / |requestedSkills| · 100
3: points← 0
4: for all skill ∈ matchingSkills do
5: points← points + skill.points
6: end for

After gathering profiles which are visible to the user, each profile is then
evaluated as illustrated in Algorithm 1, which shows the calculation of match
and sum of matching skills. All evaluated profiles are then sorted in descending
order first by match then by points to ensure that search favours profiles with
higher a sum of points when matching skill sets are found.

Before returning the results, final check is ran to find if any results match
the requested skills. If the match value of the person with the highest match
equals to zero, it means that no profile is relevant for the query and a message
appears to the user telling that no results were found.

46

5.4. Database model

Listing search results

Search results appear in a vertical list as illustrated in Figure 5.14. Navigation
to a profile is available through clickable avatar, name or “see profile” button.

Each list item contains profile preview, which provides a subset of profile
information to let the user decide whether the profile is relevant to his request.
The preview contains general information such as full name, field of study,
programme and year of study. Under the general information are user’s
specializations and main skills followed by current employment labelled as
“Works as” and possible dream position labelled as “Wants to do” underlined
with availability status. Match relevance is displayed in percentage supplied
by a number of endorsements and references to inform about profile activity.

5.4 Database model

During the database design process (also discussed in Section 2.2), only the
features that were selected for implementation were included. Adding features,
which could be discarded in the future, would only add redundant complexity,
apart from that, the design will be used by the Grades team as a documentation
of the implemented solution. Proposed profile extensions are independent of
each other, therefore extending the design is possible by simply connecting
new tables without affecting the existing tables.

To create a database schema mapped from the Server, two approaches
were considered. The first was making a database create script, and then
mapping tables to Java classes with ORM. The second was creating Java
classes annotated as entities and specifying restrictions with annotations, and
then through the ORM letting Hibernate generate the schema. For the sake
of simplicity, the latter approach was chosen. However, the approach with a
create script is more suitable for database versioning and should be adopted
when the project is handed over to the Evolution team.

Schema generated with Hibernate, illustrated in Figure 5.15, conforms the
3NF and comprises of the following tables:

Person Represents users of the system and contains their personal informa-
tion such as their name and username.

Skill Represents a skill and contains its name.

PersonSkill Association table decomposed from an M to N relationship bet-
ween Person and Skill. Contains skill points calculated from grades.

Endorsement Represents skill endorsement and contains its date of submi-
ssion, author, and comment.

47

5. Design

Person

id (PK)

email

first_name

full_name

last_name

personal_number

username

PersonSkill

id (PK)

skill_points

person_id (FK)

skill_id (FK)

Skill

id (PK)

name

SubjectiveProficiency

person_skill_id (PK,FK)

group_type

index

Endorsement

id (PK)

comment

date

author_id (FK)

person_skill_id (FK)

Role

person_id (PK, FK)

role (PK)

Settings

person_id (PK, FK)

Visibility

person_id (PK, FK)

role (PK)

Reference

id (PK)

comment

date

source_id (FK)

target_id (FK)

0..*

1
1 1

0..*

1
0..1

1

0..*

1

1 0..*

1

0..*

0..* 1

Figure 5.15: Database model

SubjectiveProficiency Represents subjective proficiency with group type
enum value (Specialization, Main, Other) and index, which specifies the
order of skills in the list.

Reference Represents reference and contains the author as the source and
the receiver as the target, date of submission and comment.

Role Represents user’s roles and contains a role field with enum value (Tea-
cher, Student, Company). Presence of the row means the user has the
specified role.

Settings Represents user’s settings.

Visibility Represents user’s profile visibility and contains a role field with
enum value same as Role table which allows for easy database queries
to seek visible profiles based on user’s roles. Presence of the row means
the user is visible to the specified role.

48

Chapter 6
Implementation

This chapter contains a summary of the requirements chosen for the imple-
mentation of the Proof of Concept. It describes the process of implementation
of the Client and the Server, and steps taken to overcome obstacles that were
encountered during development. The Security section dives into authorization
using industry-standard protocol OAuth 2.0.

6.1 Requirements

Among the requirements, chosen for the implementation part of the thesis,
are only those with the highest priority, which are as follows:

• F1 – Profile filtering,

• F2 – Generating skills from grades,

• F3 – Skill endorsements,

• F4 – References,

• F5 – Subjective proficiency,

• F6 – Profile visibility,

• F7 – Searching profiles by name,

• F8 – Roles.

6.2 Server-side development

Setting up a project with Spring Boot requires minimal effort due to the
provided auto-configuration, which is available through Spring-Boot-Starter
dependencies. However, setting up this project proved to be quite demanding,

49

6. Implementation

method name URI
GET getAllCourses ’/courses’
GET getInstance ’/courses/course-code/instances/semester-code’
GET getAllSkills ’/skills’
GET getUserInfo ’/users/username/info’
GET getUserRoles ’/users/username/roles’

Table 6.1: REST endpoints implemented in Grades

because a multi-module project with limited visibility for each module creates
lots of inconveniences because it requires a deeper knowledge of how Spring’s
configuration and lookup works. Development faced many challenges with
unsatisfied dependencies for dependency injection, because of module visibility,
but after carefully re-reading Spring documentation, all the issues were resolved
and the resulting project could pose a solid foundation for the future projects.

6.2.1 Getting data from Grades

Grades, as an external source of data, has its place on the Data layer in package
external, with an assigned component named GradesDao. There were two
possible ways to handle the data source. One by mocking the GradesDao
object, which would take some time to simulate the usual flow of data, that
would be received. The other by implementing the endpoints right into the
source code of Grades. Even though altering Grades’ code would be out
of scope, author is one of the developers with access to Grades and its data.
Preparing Grades’ code for the upcoming changes would also push this project
closer to deployment, therefore, the decision was made to alter the source code
of Grades.

Support for skills was already implemented in Grades, so the only thing
left to code was mapping the data to the requested DTOs and coding a REST
API to share data with the Server. There were still a few changes, which had
to be done to the Grades’ database, in order to get the required data. Coding
this support set the project back by one week, which was a good trade-off
for a stable connection to the source of data, used during the implementation
phase. Implemented endpoints can be seen in Figure 6.1.

6.3 REST API

The Client communicates with the Server via REST API, which is defined by
the Server. Each endpoint represents one use case and has specific parameters
and response codes. All methods serialize data into JSON format, and their
descriptions are provided in Appendix C.

50

6.4. Security

Requests by unauthorized users receive response with status code 401
(Unauthorized). Requesting resource with insufficient privileges returns status
code 403 (Forbidden). Erroneous requests (e.g., non-existent resources) result
either in 400 (Bad request) or 404 (Not Found).

6.4 Security

Data security is one of the critical parts of the system. To ensure consistency
with the Grades project, security measures mimic those used in Grades, which
comprise of the OAuth 2.0 protocol and the FIT authorization server.

6.4.1 Authorization

Authorization of users is done through the FIT authorization server. One
has to register an application in the authorization server manager [37] before
sending authorization requests.

Spring provides a module called Spring Security which requires minor
configuration for setting up authorization. Client-id and client-secret,
received from the manager, are pasted into a server configuration file, and
Spring Security handles automatically the creation of a ’/login’ endpoint
which, when triggered, starts the whole process of authorization.

Whenever an unauthorized user requests a resource, the Client asks the
Server if the user is authorized. Authorized users will be granted permission
to access the requested resource. Otherwise, the user is redirected to login
page to start the authorization process illustrated in Figure 6.1.

6.4.2 User roles

There are three types of roles: student, teacher, company. Students and
teachers are fetched from Grades, unlike companies, whose accounts are fetched
from KOSApi. Since roles of users may change anytime, user roles are refreshed
on every user sign in, to reflect the changes of roles immediately.

Role privileges and purposes were previously described in Section 3.2.1.
Another purpose of these roles is to allow students to decide who can access
their profile. A profile is hidden to everyone by default and student has to
manually change the setting to allow access (as shown in Appendix B.10).
This prevents an accidental display of user’s information without the user’s
consent, while allowing to select which roles can access user’s profile.

To enforce user privileges, each REST endpoint is secured through a
Service layer component SecurityService, which provides methods to check
user’s privilege.

51

6. Implementation

User Server Auth serverClient

Alternative

User is logged in

[Else]

requested URL

press login

 present login page

/login-check

isUserLoggedIn

redirect to login page

/skills-login?requestedURL

302 redirect /login

302 redirect /oauth/authorize

present login form

enter credentials

302 redirect /login

/ouath/token

access_token

302 redirect skills-login?requestedURL

302 redirect requestedURL

requested URL

request URL

Spring stores requestUrl
 through endpoint

Spring proceeds
with stored request

Figure 6.1: Authorization flow

6.5 Client-side development

Since AngularJS (used in Grades) and Angular 7 are vastly different, the initial
setup had to be completely redone. Even though all screens were captured in
detail by the prototype, final implementation still differs in details like colour
and font sizes, but layout remains the same.

Since UI (User Interface) responsiveness was taken into account during
prototyping, coding the responsive UI was straightforward. However, having a
majority of components pre-written with Angular Material caused some minor
setbacks, because of a lack of flexibility when altering the CSS. These setbacks
were balanced by the fact, that writing these components from scratch would
delay the project by at least two months even if the final design was at disposal.

52

6.5. Client-side development

6.5.1 Resolving CORS policy violation

A problem occurred during an attempt to fetch data from the Server to the
Client. It was caused by the browser, which was blocking any request, due
to CORS (Cross-origin resource sharing) policy violation. The violation is
triggered whenever a client requests a resource from another domain; in this
case, the Client and the Server were running on different ports of localhost,
which occurs only in development environment. In production environment,
where client and server are deployed to the same domain, CORS violation is
no longer triggered.

Two solutions were available to resolve this issue. One by adding a “Access-
Control-Allow-Origin” header to each request, which automatically allows
anyone from anywhere to ask for a resource and thus sacrificing the ability to
specify which domain can access the Server’s resources. The other option was
to add a proxy to redirect requests from the Client, which leads to keeping
the ability to specify, who can access the resource. Since Angular already has
built-in support for such proxy, it was decided to choose the latter option.

The code example in Figure 6.2 shows how easy it is to setup such proxy
with Angular. Any request prefixed by “/api” will be prefixed by the contents
of the target attribute. Figure 6.3 illustrates how proxy translates the requests.

{
"/api": {

" target ": "http :// localhost :9002/ ",
" changeOrigin ": true ,

}
}

Figure 6.2: Proxy configuration

Angular App
(static files)

Proxy
/api/* ->

localhost:9002/api/
API

http://localhost:9002/api/skills
Angular App

(static files)
/api/skills

*.index.html
*.css
*.js
...

Browser Client Server

Figure 6.3: Request translation via Proxy. Source: [38, edited by the author]

53

Chapter 7
Testing

This chapter describes the measures, which were applied to reveal any existing
bugs and mitigate the chances of introducing new bugs in future development.
It also describes usability testing and acceptance testing.

7.1 Automated testing

Separation of each layer into its reserved module allows each layer to have its
own set of tests. Mocking is used to isolate the tests from other layers. Thanks
to the Open-closed principle (discussed in Section 4.2), each layer requires
only mocking of the layer underneath, for example, testing the Service layer
requires only mocks of the Data layer. This is one of the strongest points of
the Layered architecture.

The Server is mostly a CRUD (Create Read Update Delete) application,
so most methods contain little to no business logic, and testing them would
have a low change of finding any major bugs, therefore, only the critical parts
of the system were identified for testing. Perfecting the whole Data layer and
its handling of internal and external sources will stand as a good foundation
for future development. Data layer testing is done with DbUnit, which is
a JUnit extension targeted at database-driven projects. DbUnit can set the
database into a known state between test runs to avoid scenarios, where one
test case corrupts the database and causes subsequent tests to fail. Database
data is loaded from XML datasets, which are verified after the manipulation,
to match an expected dataset of values. [39]

Figure 7.1 illustrates an example of a Data layer test. This specific example
tests a removal of existing skill from the database. @DatabaseSetup annota-
tion, with a dataset depicted in Figure 7.2, is used before a test to form the
database into a required state. After a test execution, @ExpectedDatabase
annotation asserts whether the required dataset matches the current database
state or not.

55

7. Testing

@Test
@Transactional
@DatabaseSetup (" dataset / SkillDao / deleteSkillPre .xml")
@ExpectedDatabase (

value = " dataset / SkillDao / deleteSkillPost .xml",
assertionMode = DatabaseAssertionMode . NON_STRICT_UNORDERED

)
public void deleteSkillById () {

Long idOfExistingSkill = 1L;
skillDao . deleteSkill (idOfExistingSkill);

}

Figure 7.1: Example of testing database transaction with DbUnit

<?xml version ="1.0" encoding ="UTF -8"?>
<dataset >

<Person id="1" username =" person1 "/>
<Person id="2" username =" person2 "/>
<Skill id="1" name="Java"/>
<Skill id="2" name=" Spring "/>
<Person_skill id="1" person_id ="1" skill_id ="2"

skill_points ="30"/>
<Person_skill id="2" person_id ="1" skill_id ="1"

skill_points ="20"/>
<Person_skill id="3" person_id ="2" skill_id ="1"

skill_points ="20"/>
</dataset >

Figure 7.2: Example of dataset consumed by DbUnit

...
@Test(expected = GradesApiUnavailableException .class)
public void givenCallToGetUserInfo

_whenGradesOffline
_thenThrowGradesApiUnavailableException () {

...
mockServer . expect (requestTo (url))

. andRespond ((response) -> {
throw new ResourceAccessException (...);

});

gradesDao . getUserInfo (...);
}

Figure 7.3: Example of mocking an external data source

56

7.2. Static code analysis

Testing of external data sources is done via mocks. After manual check
of the Grades’ API behaviour for each type of request, mocks were written
for these scenarios to make sure that Server reacts accordingly. Example of
mocking the Grades’ API, shown in Figure 7.3, tests a scenario, where the API
is offline, and the system is expected to throw an exception named Grades-
ApiUnavailableException, which is consumed by the ExceptionHandler.

Summarized code coverage measured with IntelliJIDEA IDE can be seen
in Figure 7.1. Low method coverage is caused by untested getters and setters
of the domain models.

Class Method Line
82 % 65 % 79 %

Table 7.1: Test coverage of the Data Layer

7.2 Static code analysis

“Static code analysis is a method of debugging by examining source code before
a program is run. It’s done by analyzing a set of code against a set of coding
rules. This type of analysis addresses weaknesses in source code that might
lead to vulnerabilities.” [40]

Static code analyzer checks the code as work is being done on the build
and does “in-depth analysis of where there might be potential problems in the
code.” [40] “The principal advantage of static analysis is the fact that it can
reveal errors that do not manifest themselves until a disaster occurs weeks,
months, or even years after release.” [41]

7.2.1 SonarQube

“SonarQube is an open source platform to perform automatic reviews with
static analysis of code to detect bugs, code smells and security vulnerabilities
on 25+ programming languages including Java, C#, JavaScript, TypeScript,
C/C++.” [42]

“SonarQube provides the capability to not only show health of an application
but also to highlight issues newly introduced. With a Quality Gate in place,
you can fix the leak and therefore improve code quality systematically.” [43]
Report can be generated by a maven plugin which is run by the command
“mvn clean verify sonar:sonar” from the parent project folder.

A report, generated by SonarQube, is shown in Figure 7.4. The example
shows that SonarQube evaluated all categories with “A” and detecked zero
duplicated blocks. Code coverage is low because testing the whole system
would take an excessive amount of time, which was already invested in the
development of such a big project and would exceed scope of bachelor thesis.

57

7. Testing

Figure 7.4: Final report generated by SonarQube

7.3 Usability testing

Usability testing refers to testing of the product with representative users. The
test consists of a set of tasks, which participants try to complete while being
monitored. Participants are often encouraged to comment on their thoughts.
The goal is to collect feedback on the product and identify possible weak spots
in the UI design, which could lead to confusion of the users. [44]

The process of testing is divided into three test scripts. Each script
is specifically designed for its intended group of users, which are students,
teachers and companies. Each group has different tasks to complete, based on
their privileges in the system. Tasks are then evaluated either as “success”,
“success with difficulty” or “failure”. Participants are encouraged to share their
thoughts during the testing process and also to give ideas for improvements.

Scripts share the following attributes:

Default state: Search page with logged in user

Goal state: All tasks done

Introduction: We are going to test a system for skill based search of students.
You will be given a set of tasks, try to speak your thoughts and steps
out loud. Any suggestions regarding the system improvement would be
appreciated.

58

7.3. Usability testing

7.3.1 Test script for companies

Tasks:
1. Add ’java’ as one of the skills to filter by.
2. Select one random skill from the Skill cloud as one of the skills to

filter by.
3. Apply filter to search for results.
4. Navigate to one of the result’s profiles.
5. See who gave endorsement to a skill named ’elasticsearch’.
6. Navigate to a profile named ’Adam Jankovec’.

Results: As can be seen in Table 7.2, task 1 was the only problematic part
of the script. The obstacle was caused by an input field for entering
a skill name to filter by, which did not appear as an input field to
some participants. This problem can be resolved by adding a fitting
placeholder as was suggested by one of the participants. The suggestion
is documented in Table 7.5.

tasks/companies company 1 company 2 company 3 company 4
task 1 ! !
task 2
task 3
task 4
task 5
task 6

Table 7.2: Task completion of companies

Success
! Success with difficulty
x Failure

7.3.2 Test script for teachers

Tasks:
1. Add ’java’ as one of the skills to filter by.
2. Select one random skill from the Skill cloud as one of the skills to

filter by.
3. Apply filter to search for results.
4. Navigate to one of the result’s profiles.
5. Add a reference to the profile with the text ’test’.

59

7. Testing

6. Edit the previous reference to text ’test2’.

7. Delete the reference.

8. Endorse the skill named ’elasticsearch’.

9. See who else gave an endorsement to the previously endorsed skill.

10. Revoke the endorsement of skill named ’elasticsearch’.

11. Navigate to a profile named ’Adam Jankovec’.

Results: Table 7.3 shows task 1 was problematic for most teachers. The
teachers noted that the skill input field is hard to spot and instead, they
tried to use the search bar for searching by name. This problem has
already been adressed in the previous section of testing with companies.

In addition, Teacher 1 noted that adding a trash can as an option to
delete reference would be nice, but also noted, that deleting via the edit
window is also intuitive. Teacher 2 also mentioned that having a trash
can icon to delete the reference would be better because the option to
delete it was not expected.

tasks/teachers teacher 1 teacher 2 teacher 3
task 1 ! !
task 2
task 3
task 4
task 5
task 6
task 7
task 8
task 9
task 10
task 11

Table 7.3: Task completion of teachers

Success
! Success with difficulty
x Failure

60

7.3. Usability testing

7.3.3 Test script for students

Tasks:

1. Navigate to your profile.

2. Check what skills were generated for you.

3. Find how many points does your biggest skill have.

4. Navigate to edit subjective proficiency page.

5. Add a random skill.

6. Move the skill to your main skills.

7. Add another random skill.

8. Delete the main skill.

9. Save your new profiency.

10. Navigate to the search page.

11. Add ’java’ as one of the skills to filter by.

12. Select one random skill from the Skill cloud as one of the skills to
filter by.

13. Apply filter to search for results.

14. Navigate to one of the result’s profiles.

15. See who gave endorsement to a skill named ’elasticsearch’.

16. Navigate to a profile named ’Adam Jankovec’.

17. Navigate to your settings.

18. Set your profile visibility to be visible only by teachers.

19. Save your settings.

Results: Table 7.4 shows that task 6 (Rearranging of subjective proficiency)
was problematic for most users, since the row-locking mechanism does
not seem intuitive. Student 2 proposed a solution, which was documented
in Table 7.5. Other tasks were completed without any obstacles.

61

7. Testing

tasks/students student 1 student 2 student 3 student 4 student 5
task 1
task 2
task 3
task 4
task 5
task 6 ! ! ! !
task 7
task 8
task 9
task 10
task 11
task 12
task 13
task 14
task 15
task 16
task 17
task 18
task 19

Table 7.4: Task completion of students

Success
! Success with difficulty
x Failure

7.3.4 Changes proposed by participants

During testing, some more active participants gave suggestions on how to
improve the user interface. Their suggestions are documented in Table 7.5.

Table 7.5: Changes proposed by participants
Proposed change Reason Priority
Replace lockable drag-and-drop
field of subjective proficiency with a
three-dot icon suggesting a dragable
field.

It is more intuitive and
common for material
design.

high

Add a placeholder to the skill
name input field, in parameters for
filtering, with text ’Type skill name’.

It is not clear that
the element is an input
field.

high

62

7.3. Usability testing

Proposed change Reason Priority
Change positioning of elements
section of filtering by skills.

Current positioning of
elements is odd and a
little confusing, it hides
the skill name input
field.

high

Add a placeholder ’search by name’
to the search bar.

It is not clear what is
the expected input.

high

Highlight current page in menu. Menu item is only
slightly visible and it is
not clear which page is
currently visited.

medium

Add a ’trash can’ icon to delete
reference, next to ’edit’ icon.

It is not clear that users
can delete a reference.

medium

Change the style of endorsing skills
and viewing endorsements. Big
blue button with thumb appears like
action for listing endorsements.

It is not clear which
actions endorses the
skills.

medium

’Apply filter’ button should also be
at the bottom of the screen.

Last action the user
performs, should be
the application of filter.
Therefore, it is logical
to put it last, not first.

low

Search should show results
continuously with each change
to the search parameters, not only
after application of the filter.

It is a more common
behaviour.

low

Rename the filtering from ’search
parameters’ to ’filter parameters’.

Consistence with the
rest of the page.

low

Add the option to select more skills
in the skill cloud at once and then
confirm via ’confirm’ button.

Quicker skill selection. low

Instead of global skill cloud for
everyone, show personalized cloud
with skills that the teacher, who
is browsing the system, teaches in
his/her courses.

Teachers of hardware
have no intention to
search people with skills
not related to hardware.

low

Visibility settings could have the
visible/hidden options surrounding
the toggle button.

It would be clearer what
the user is switching
between.

low

63

7. Testing

Figure 7.5: Graphs of participants’ opinions about the user interface

Summary of the results

There were 12 test subjects in total: 4 company representatives, 3 teachers,
and 5 students. The participants concluded that the user interface is pleasant
and intuitive. This was partly due to the fact, that the design is in accordance
with Material Design, which is commonly used in many modern applications,
therefore, participants were seeing elements they are already familiar with.
Although the testing uncovered a few problematic areas, the graphs, shown in
Figure 7.5, illustrate that the overall satisfaction with the UI is very positive.

7.4 Acceptance testing

“Acceptance testing, in the engineering and software industries, is a functional
trial performed on a product before it is put on the market or delivered, to
decide whether the specifications or contract have been met.” [45] “Usually,
Black Box Testing method is used in Acceptance Testing. Testing does not
normally follow a strict procedure and is not scripted but is rather ad-hoc.” [46]

Testing was done on the latest version of the system which is shown in
Figure 7.6 with an example of a current state of the profile page. More
screenshots can be seen in Appendix B. The result was thoroughly tested
with the supervisor to check if the agreed requirements were met, using the
following checklist, which summarizes each functionality and its acceptance.

• UC1 – Skill based search of students

Description: Profiles contain generated skill sets. Users can choose a
set of skills and system finds profiles with the highest match.

Result: Accepted

64

7.4. Acceptance testing

• UC2 – Profile setup

Description: Students can add, remove, and change order of their
subjective proficiency.

Result: Accepted

• UC3 – Skill endorsement

Description: Teachers can endorse and also revoke endorsements of
skills with an option to add a comment.

Result: Accepted

• UC4 – Manage reference

Description: Teachers can give references to students. They can also
edit or remove given references.

Result: Accepted

• UC5 – Set profile visibility

Description: Students can set the visibility of their profile to each role.
Visibility applies properly during a search, and hidden profiles do
not appear in the results.

Result: Accepted

• UC6 – Search profile by name

Description: Users can search profiles by name. Autocomplete function
is present.

Result: Accepted

Summary of the results

The solution was accepted at all points of testing. All goals, which were
initially set for implementation, were met. The assignment is, therefore,
considered as successfully fulfilled.

65

7. Testing

Figure 7.6: Profile page66

Chapter 8
Ideas for extensions

This chapter discusses possible ways of extending and improving the system.

Search engine

A core feature of the system, the search engine, should receive a major upgrade.
An improved solution would allow filtering based on all of the parameters,
listed in the Design chapter. The ordering of the results by the highest match
should also favour those with more references, relevant endorsements, etc. The
engine should be easily extendable with a new set of parameters. A teacher
from BI-VWM6, who is knowledgeable of the field, recommended using the
Spearman’s rank correlation coefficient as a good starting point. Ing. Stanislav
Kuznetsov proposed Elasticsearch [47] as another possible solution.

Skills structure

Another improvement could be creating a system, which would hold all the
skills and support their management and versioning. Skills could be connected
to other skills, with multiple types of connections. Such connections could
represent skill similarity or hierarchy (superiority and subordination). Having
a skill hierarchy would allow determining how knowledgeable a person is in
some branch of industry.

Possible use case could be a user searching for a programmer, who is
experienced with Kotlin7. If the system does not contain anyone who would
match the request, the system could deduce Java as a skill similar to Kotlin
and recommend Java programmers as candidates with suitable foundation for
learning the requested skill.

6Searching Web and Multimedia Databases is a course taught at FIT CTU.
7A programming language.

67

8. Ideas for extensions

Mapping jobs on skills

Support for mapping of courses on skills already exists in Grades. Mapping
jobs on skills would make the task of searching for skilled people much easier.
Instead of having to list all the required skills one by one, it could be possible
to simply select “Java developer” as the only search parameter and get a list
of people with a skill set similar to the one defined for such role.

This mapping would be a cornerstone to a much bigger feature. Students,
during the event of deciding what courses to enroll, could select a position
they would like to be prepared for. Selecting “Senior Java developer” as a
dream position would first get a set of skills required for such position and
then recommend courses, which provide the required knowledge.

68

Conclusion

The main aim of this thesis was to create a new light-weight system for
a skill based search of students, while going through all stages of software
development with respect to the methods of Software Engineering. Among the
goals were: generating skill sets of students from educational data; allowing
students to set their subjectively defined skill sets and letting teachers endorse
these skills; allowing teachers to give references to students.

All thesis goals were met. Requirements of the target users were collected
and documented. The system was successfully designed, implemented and
tested and contains regression tests to mitigate the chances of introducing
bugs in future development. To ensure safe manipulation with sensitive data,
the system is secured with the industry standard protocol OAuth 2.0 using
the authorization server of FIT CTU.

The user interface was designed according to a set of guidelines developed
by Google, and successfully tested with participants from all the interested
parties. Participants’ suggestions were documented and will be used for the
improvement of the UI.

The result is a new proof of concept, which consists of a responsive client
(written with Angular), which communicates via REST API with a secured
server (written in Java). The system is already integrated with existing
systems running at FIT CTU, and the implementation was done using tech-
nologies in their latest versions, guaranteeing long-term support.

Implementing the whole system would exceed the scope of bachelor thesis,
so further development will be undertaken by the Grades’ development team,
to make the system ready for deployment. Skill-based search of students will
be used for recommending relevant students to assignments from both the
teachers and the companies. The result could lead to an increase in work
experience of students and also has a potential for attracting new faculty
partners and possibly change the way faculties and companies cooperate.

69

Bibliography

[1] International Educational Data Mining Society. Educational Data
Mining. [Online]. 2011. url: http://educationaldatamining.org/
(visited on 04/04/2019).

[2] Kuznetsov, S. Ontologies and Recommender Systems in Educational
Data Mining. Doctoral study report. Prague: Faculty of Information
Technology, Czech Technical University in Prague. 2015. (visited on
04/01/2019).

[3] Faculty of Information Technology, Czech Technical University in Prague.
Klasifikace. [Software]. 2018. url: https://grades.fit.cvut.cz.

[4] Data preprocessing, text mining and Ontology generating process.
Kuznetsov, S. Ontologies and Recommender Systems in Educational
Data Mining. [Figure]. Doctoral study report. Prague: Faculty of Informa-
tion Technology, Czech Technical University in Prague. 2015. (visited on
04/01/2019). [Path: List of figures, Figure 3-1].

[5] Balák, Z. Portál pro podporu studia a klasifikace student̊u. Master thesis.
Prague: Faculty of Information Technology, Czech Technical University
in Prague. 2017. (visited on 04/01/2019).

[6] Faculty of Information Technology, Czech Technical University in Prague.
ProgTest. [Software]. url: https://progtest.fit.cvut.cz/.

[7] Microsoft. LinkedIn. [Software]. May 2003. url: https://www.linkedi
n.com (visited on 04/05/2019).

[8] Linkedin Corporation. About LinkedIn. [Online]. c©2010. url: https:
//about.linkedin.com (visited on 04/02/2019).

[9] Stack Overflow. Candidate Search. [Software]. c©2017. url: https://w
ww.stackoverflowbusiness.com/talent/platform/source/candida
te-search (visited on 04/05/2019).

71

http://educationaldatamining.org/
https://grades.fit.cvut.cz
https://progtest.fit.cvut.cz/
https://www.linkedin.com
https://www.linkedin.com
https://about.linkedin.com
https://about.linkedin.com
https://www.stackoverflowbusiness.com/talent/platform/source/candidate-search
https://www.stackoverflowbusiness.com/talent/platform/source/candidate-search
https://www.stackoverflowbusiness.com/talent/platform/source/candidate-search

Bibliography

[10] Stack Overflow. About Stack Overflow. [Online]. c©2017. url: https
: / / www . stackoverflowbusiness . com / talent / about (visited on
04/02/2019).

[11] Faculty of Information Technology, Czech Technical University in Prague.
Spolupráce s Pr̊umyslem. [Software]. c©2014. url: https://is.fit.cv
ut.cz/group/ssp (visited on 04/05/2019).

[12] Liferay Inc. Liferay Digital Experience Platform. [Software]. c©2019.
url: https://www.liferay.com/products/dxp (visited on 04/05/2019).

[13] Czech Technical University in Prague. KOmponenta Student. [Software].
url: https://kos.cvut.cz (visited on 04/05/2019).

[14] Oracle. JDK 12. [Online]. Mar. 2019. url: https://openjdk.java.ne
t/projects/jdk/12/ (visited on 04/02/2019).

[15] Colebourne, S. Should you adopt Java 12 or stick on Java 11? [Online].
Oct. 2018. url: https://blog.joda.org/2018/10/adopt-java-12-o
r-stick-on-11.html (visited on 04/02/2019).

[16] Java Community Process. JSR 338: Java Persistence 2.2. [Online]. Mar.
2019. url: https://jcp.org/en/jsr/detail?id=338 (visited on
04/02/2019).

[17] Oracle. Java EE 5 Tutorial. [Online]. c©2010. url: https://docs.or
acle.com/javaee/5/tutorial/doc/bnbqa.html#bnbqb (visited on
04/03/2019).

[18] Red Hat Middleware, LLC. Java EE 5 Tutorial. [Online]. c©2004. url:
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html
/queryhql.html (visited on 04/03/2019).

[19] Stack Overflow. Developer Survey Results 2019. [Online]. 2019. url:
https : / / insights . stackoverflow . com / survey / 2019 (visited on
04/03/2019).

[20] Pivotal. Spring Framework. [Online]. Mar. 2019. url: https://spring
.io/projects/spring-framework (visited on 04/02/2019).

[21] community. Overview of Spring Framework. [Online]. June 2017. url:
https://docs.spring.io/spring/docs/5.0.0.RC2/spring-framewo
rk-reference/overview.html (visited on 04/03/2019).

[22] Rouse, M. REST (REpresentational State Transfer). [Online]. Dec. 2017.
url: https://searchmicroservices.techtarget.com/definition/R
EST-representational-state-transfer (visited on 04/02/2019).

[23] Parecki, A. and collective. OAuth 2.0. [Online]. Feb. 2019. url: https:
//oauth.net/2/ (visited on 04/02/2019).

[24] Parecki, A. and collective. OAuth 2.0 Authorization Code Grant. [Online].
Aug. 2018. url: https://oauth.net/2/grant-types/authorization
-code/ (visited on 04/02/2019).

72

https://www.stackoverflowbusiness.com/talent/about
https://www.stackoverflowbusiness.com/talent/about
https://is.fit.cvut.cz/group/ssp
https://is.fit.cvut.cz/group/ssp
https://www.liferay.com/products/dxp
https://kos.cvut.cz
https://openjdk.java.net/projects/jdk/12/
https://openjdk.java.net/projects/jdk/12/
https://blog.joda.org/2018/10/adopt-java-12-or-stick-on-11.html
https://blog.joda.org/2018/10/adopt-java-12-or-stick-on-11.html
https://jcp.org/en/jsr/detail?id=338
https://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html#bnbqb
https://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html#bnbqb
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
https://insights.stackoverflow.com/survey/2019
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/overview.html
https://docs.spring.io/spring/docs/5.0.0.RC2/spring-framework-reference/overview.html
https://searchmicroservices.techtarget.com/definition/REST-representational-state-transfer
https://searchmicroservices.techtarget.com/definition/REST-representational-state-transfer
https://oauth.net/2/
https://oauth.net/2/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/

Bibliography

[25] community. Typescript. [Online]. Mar. 2019. url: https://www.types
criptlang.org/ (visited on 04/02/2019).

[26] ostezer and Drake, M. SQLite vs MySQL vs PostgreSQL: A Comparison
Of Relational Database Management Systems. [Online]. Mar. 2019. url:
https://www.digitalocean.com/community/tutorials/sqlite-vs-
mysql-vs-postgresql-a-comparison-of-relational-database-ma
nagement-systems (visited on 04/02/2019).

[27] Lucid Software Inc. Database Structure and Design Tutorial. [Online].
2019. url: https://www.lucidchart.com/pages/database-diagram
/database-design (visited on 04/02/2019).

[28] Chapple, M. Database Normalization Basics. [Online]. Jan. 2019. url:
https://www.lifewire.com/database-normalization-basics-1019
735 (visited on 04/02/2019).

[29] Valenta, M. Normalizace a normálńı formy. [Online]. Aug. 2018. url:
https://courses.fit.cvut.cz/BI-DBS/materials/slides/pres-l
es08-normalizace.pdf (visited on 04/02/2019). [File accessible after
signing in to the CTU network].

[30] Richards, M. Software Architecture Patterns. O’Reilly Media, Inc., Feb.
2015. isbn: 9781491971437. url: https://www.oreilly.com/librar
y/view/software-architecture-patterns/9781491971437/ (visited
on 04/02/2019).

[31] Angular Team at Google and community. Architecture overview –
Angular.io. [Online]. c©2010-2019. url: https://angular.io/guide/a
rchitecture (visited on 04/02/2019).

[32] Google. Material Design. [Online]. url: https://material.io/devel
op/ (visited on 04/02/2019).

[33] Interaction Design Foundation. Material Design. [Online]. url: https:
//www.interaction-design.org/literature/topics/material-des
ign (visited on 04/02/2019).

[34] Totie and collective. Material Design. [Online]. Mar. 2018. url: http
s://commons.wikimedia.org/wiki/File:Material_Design.svg
(visited on 04/02/2019).

[35] Richards, M. Layered architecture pattern. [Online]. Feb. 2015. url: http
s://www.oreilly.com/library/view/software-architecture-patt
erns/9781491971437/ch01.html#idp782544 (visited on 04/02/2019).
[Path: Chapter 1, Figure 1-1].

[36] The App Assembly. Word Cloud Visualisations for Splunk. [Online].
2016. url: https://theappassembly.com/word-cloud/ (visited on
04/02/2019).

73

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.lucidchart.com/pages/database-diagram/database-design
https://www.lucidchart.com/pages/database-diagram/database-design
https://www.lifewire.com/database-normalization-basics-1019735
https://www.lifewire.com/database-normalization-basics-1019735
https://courses.fit.cvut.cz/BI-DBS/materials/slides/pres-les08-normalizace.pdf
https://courses.fit.cvut.cz/BI-DBS/materials/slides/pres-les08-normalizace.pdf
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://material.io/develop/
https://material.io/develop/
https://www.interaction-design.org/literature/topics/material-design
https://www.interaction-design.org/literature/topics/material-design
https://www.interaction-design.org/literature/topics/material-design
https://commons.wikimedia.org/wiki/File:Material_Design.svg
https://commons.wikimedia.org/wiki/File:Material_Design.svg
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html#idp782544
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html#idp782544
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html#idp782544
https://theappassembly.com/word-cloud/

Bibliography

[37] Faculty of Information Technology, Czech Technical University in Prague.
Apps Manager. [Software]. c©2014. url: https://auth.fit.cvut.cz
/manager (visited on 04/05/2019).

[38] Strumpflohner, J. Local Angular CLI dev server with active proxy. [Online].
Nov. 2016. url: https://juristr.com/blog/2016/11/configure-pr
oxy-api-angular-cli/ (visited on 04/02/2019).

[39] DbUnit Team and contributors. About DbUnit. [Online]. Nov. 2018. url:
http://dbunit.sourceforge.net/ (visited on 04/02/2019).

[40] Bellairs, R. What Is Static Code Analysis? [Online]. June 2018. url:
https://www.perforce.com/blog/qac/what-static-code-analysis
(visited on 04/02/2019).

[41] Rouse, M. static code analysis. [Online]. Nov. 2006. url: https://sea
rchwindevelopment.techtarget.com/definition/static-analysis
(visited on 04/02/2019).

[42] community. About SonarQube. [Online]. c©2008-2019. url: https://ww
w.sonarqube.org/about/ (visited on 04/02/2019).

[43] community. SonarQube. [Online]. c©2008-2019. url: https://www.son
arqube.org/ (visited on 04/02/2019).

[44] U.S. Dept. of Health and Human Services. Usability Testing. [Online].
2006. url: https://www.usability.gov/how-to-and-tools/method
s/usability-testing.html (visited on 04/02/2019).

[45] Kenton, W. Acceptance Testing. [Online]. Apr. 2018. url: https://ww
w.investopedia.com/terms/a/acceptance-testing.asp (visited on
04/04/2019).

[46] Software Testing Fundamentals. Acceptance Testing. [Online]. Copyleft
2019. url: http://softwaretestingfundamentals.com/acceptance
-testing/ (visited on 04/04/2019).

[47] Elasticsearch B.V. Elasticsearch. [Software]. c©2019. url: https://www
.elastic.co/products/elasticsearch (visited on 04/05/2019).

74

https://auth.fit.cvut.cz/manager
https://auth.fit.cvut.cz/manager
https://juristr.com/blog/2016/11/configure-proxy-api-angular-cli/
https://juristr.com/blog/2016/11/configure-proxy-api-angular-cli/
http://dbunit.sourceforge.net/
https://www.perforce.com/blog/qac/what-static-code-analysis
https://searchwindevelopment.techtarget.com/definition/static-analysis
https://searchwindevelopment.techtarget.com/definition/static-analysis
https://www.sonarqube.org/about/
https://www.sonarqube.org/about/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.investopedia.com/terms/a/acceptance-testing.asp
https://www.investopedia.com/terms/a/acceptance-testing.asp
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

Appendix A
Acronyms

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CRUD Create Read Update Delete

CTU Czech Technical University in Prague

DAO Data Access Object

DTO Data Transfer Object

DW Data Warehouse

DXP Digital Experience Platform

FIT Faculty of Information Technology

FK Foreign Key

HTTP Hypertext Transfer Protocol

HQL Hibernate Query Language

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

KOS KOmponenta Student

LTS Long Term Support

NF Normal Form

ORM Object-Relational Mapping

75

A. Acronyms

PK Primary Key

REST REpresentational State Transfer

SSP Spolupráce S Pr̊umyslem

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

URI Uniform Resource Identifier

XML Extensible Markup Language

76

Appendix B
Screenshots of the result

Figure B.1: Login page

77

B. Screenshots of the result

Figure B.2: Authorization page

78

Figure B.3: Profile page 79

B. Screenshots of the result

Figure B.4: Edit subjective proficiency page

80

Figure B.5: Edit reference dialog detail

Figure B.6: Search bar with autocomplete detail

81

B. Screenshots of the result

Figure B.7: Search page without parameters

Figure B.8: Skill cloud for browsing most used skills

82

Figure B.9: Search page with parameters and results

Figure B.10: Settings page

83

Appendix C
REST API definitions

Endorsement controller

users/{username}/skills/{skill-id}/endorsements

• Method – PUT

• Description – Endorse user’s skills

users/{username}/skills/{skill-id}/endorsements

• Method – GET

• Description – Get endorsements of user’s skills

endorsements/{endorsement-id}

• Method – DELETE

• Description – Delete endorsement

User controller

users/{username}/info

• Method – GET

• Description – Get information about specific user

user-info

• Method – GET

• Description – Get information about logged in user

85

C. REST API definitions

user-roles

• Method – GET

• Description – Get roles of logged in user

users/{name}/autocomplete

• Method – GET

• Description – Get list of users, whose names match the query

Reference controller

users/{username}/references

• Method – POST

• Description – Add reference to the user

users/{username}/references

• Method – GET

• Description – Get user’s references

references/{reference-id}

• Method – PUT

• Description – Update reference

Search controller

search

• Method – GET

• Description – Get profiles matching the parameters

Settings controller

settings

• Method – GET

• Description – Get settings of logged in user

86

settings

• Method – PUT

• Description – Update settings of logged in user

Skill controller

skills/{name}/autocomplete

• Method – PUT

• Description – Get list of skills, whose names match the query

SkillPoints controller

users/{username}/skill-points

• Method – GET

• Description – Get user’s generated skills with points

skill-points

• Method – GET

• Description – Get global skills with points

SubjectiveProficiency controller

users/{username}/proficiency

• Method – GET

• Description – Get user’s subjective proficiency

skill-points

• Method – PUT

• Description – Set user’s subjective proficiency

87

Appendix D
Contents of enclosed DVD drive

readme.txt the file with DVD drive contents description
exe the directory with executables
src.......................................the directory of source codes

impl...................................implementation source codes
thesis..............the directory of LATEX source codes of the thesis
attachments the directory of attachments for project setup

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

89

	Citation of this thesis
	Introduction
	Background 38 State of the art
	Skill mining
	Grades portal
	Related existing solutions
	LinkedIn
	Candidate Search
	Cooperation with Industry portal
	Summary

	Preliminaries
	Technology stack
	Database design process
	Choice of server-side architecture
	Building a web application with Angular
	Material Design

	Analysis
	Requirements engineering
	Concept
	Profile page
	Search page

	Collecting feedback and requirements
	Companies
	Teachers
	Students

	Summary of requirements
	Functional requirements
	Nonfunctional requirements

	Use case modelling
	Actors
	Main use cases

	Architecture
	Client-server architecture
	Server-side architecture
	Architecture description
	Code structure

	Client-side structure

	Design
	Profile
	Sections

	Skill points calculation
	Searching for profiles
	Search by name
	Advanced search

	Database model

	Implementation
	Requirements
	Server-side development
	Getting data from Grades

	REST API
	Security
	Authorization
	User roles

	Client-side development
	Resolving CORS policy violation

	Testing
	Automated testing
	Static code analysis
	SonarQube

	Usability testing
	Test script for companies
	Test script for teachers
	Test script for students
	Changes proposed by participants

	Acceptance testing

	Ideas for extensions
	Conclusion
	Bibliography
	Acronyms
	Screenshots of the result
	REST API definitions
	Contents of enclosed DVD drive

