
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 30, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Pattern matching in C11

 Student: Jan Jindráček

 Supervisor: Ing. Filip Křikava, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Pattern matching is a general mechanism found in many programming languages for checking a value
against a certain pattern.
A matching pattern can also be used to deconstruct a value into its constituent parts.
This work will study the possibility of adding such a feature to the C programming language.
Analyze the pattern matching in different programming languages and propose syntax and semantic
suitable for the C programming language.
Implement a prototype including suitable test suite and proper documentation.

References

Will be provided by the supervisor.

Acknowledgements

I wish to thank Dr. Filip Křikava for his patience in guiding me to this point.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as school work
under the provisions of Article 60(1) of the Act.

In Prague on May 16, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Jan Jindráček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jindráček, Jan. Pattern matching in C11. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Pattern matching je mechanismus který se využ́ıvá ve velkém množstv́ı pro-
gramovaćıch jazyk̊u, kde je využit jako zp̊usob jak prověřit, jestli daný výraz,
objekt, a nebo proměnná má vlastnosti nebo obsah specifikovaný daným vzo-
rem. Tato práce se zaměř́ı na to, zda-li a jak se dá taková feature přidat do
jazyku C. Budu tedy implementovat prototyp pattern matchingu do jazyku
C, včetně test̊u a dokumentace.

Kĺıčová slova MPS, mbeddr, C, jazyk, rozš́ı̌reńı, AST projekce, gramatika,
unifikace, vzory

Abstract

Pattern matching is a general mechanism found in many programming lan-
guages for checking a value against a certain pattern. A matching pattern can
also be used to deconstruct a value into its constituent parts. This work will
study the possibility of adding such a feature to the C programming language.
Analyze the pattern matching in different programming languages and propose
syntax and semantic, suitable for the C programming language. Implement a
prototype including suitable test suite and proper documentation.

Keywords MPS, mbeddr, C, language, extension, AST projection, gram-
mar, unification, patterns

Contents

Introduction 1

1 Pattern matching 3
1.1 Guard conditions and pattern matching 4
1.2 Pattern matching and Algebraic Data Types 5

2 Design 7
2.1 Pattern matching in C - overview with examples 7

2.1.1 Wildcards and variables 8
2.1.2 Case pattern literal matching 9
2.1.3 Matching of composite structures 9
2.1.4 Implicit null checks . 11
2.1.5 Guard conditions . 11
2.1.6 Examples of enumeration and ADT 13
2.1.7 Limitations . 14

2.2 Semantics of the match statement 15
2.2.1 Variable definitions inside cases 16
2.2.2 Semantics of the guard condition 16
2.2.3 Case code block . 17

2.3 Syntax for the match statement 18
2.4 Typing rules . 19

2.4.1 Type inference for pattern variables 19
2.4.2 Explicit struct types . 19

3 Implementation 21
3.1 Choosing implementation strategy 21

3.1.1 Solutions similar to mine 22
3.1.2 Language workbench . 22

3.1.2.1 Xtext . 23
3.1.2.2 MPS . 23

3.2 Mbeddr . 27
3.2.1 Graph of usage . 27

3.3 Differences between Mbeddr and C11 standard 28
3.3.1 Stronger primitive typing rules 28
3.3.2 String type . 29
3.3.3 Automatic typedef for structs 29
3.3.4 Internal and External modules 29

3.4 Unreachable code detection . 29
3.5 Testing . 30

3.5.1 Translation tests . 30
3.5.2 Performance tests . 31
3.5.3 Unit tests . 31

4 Evaluation 33
4.1 Balanced Binary Tree Insertion 33
4.2 Binary Tree Comparison . 35
4.3 Finding maximum in a list . 36
4.4 Pattern matching used in UNIX networking structures 36
4.5 Coin sorting machine . 39

Conclusion 41

Bibliography 43

A Acronyms 45

B Contents of enclosed USB drive 47

Introduction

There is a growing interest in Functional Programming (FP). As a result, we
can see mainstream languages adopting many of the FP concepts. For exam-
ple the introduction of functional interface in Java [5] or lambda expression
in C++ [6]. So far these adoptions were mainly in high-level, object-oriented
programming languages. In this thesis, I decided to implement an FP concept
in a lower-level language. Concretely, to add pattern matching into the C
programming language. The goal is to create a new switch-like statement,
match, allowing one to pattern match on C data types in a similar fashion to
Racket [7], OCaml [8] or Scala [3].

The reason why I chose C instead of, Java or C++, is that C is a smaller
language and has a simpler type system which will reduce the design and im-
plementation effort. Also, the match statement will be particularly useful for
pattern matching composite data types such are C structs or unions. It will
allow programmers to decompose these structures bringing their fields into
the current block scope and thus simplifying their access and making the code
easier to reason about.

There are multiple ways of adding such a feature into C. In this thesis
I experimented with a couple and finally chose to use JetBrains MPS [9], a
meta-programming system to design DSL and language extensions. The result
is C language with the match statement, implemented in a complete language
workbench, that comes with an editor, compiler and debugger.

1

Chapter 1
Pattern matching

Pattern matching is a mechanism which compares a data sequence against
a pattern. The pattern usually consists of literals, deconstructed arrays and
structs, tuples, variables and wildcards (A good example of variable and wild-
card patterns is here [2]). In order for a data sequence to be validated against
a pattern, the pattern must be an exact match.

In order to showcase pattern matching, I have implemented a simple coin
sorting machine in Rust and Scala. The coin sorting machine will simply
return a value of the coin inserted and, if the coin is a quarter, will print out
the name of the state in which it was minted.

Figure 1.1 shows the implementation in the Rust programming language.
In it, one can use enum keyword to define an enumeration containing different
elements. Notice that the last value of the enumeration has a String type
appended to it. Then, all that is left is to define a function which will match the
enumeration value of the coin variable to one of the four options. The function
will return a number based on the enumeration type. What is interesting is
that one can define additional behaviour based on the string appended to the
Quarter enumeration value - the state in which the quarter was minted.
enum Coin {

Penny ,
Nickel ,
Dime ,
Quarter (S t r i n g)

}

fn v a l u e i n c e n t s (co in : Coin) −> u32 {
match co in {

Coin : : Penny => 1 ,
Coin : : N i c k e l => 5 ,
Coin : : Dime => 10 ,
Coin : : Quarter (s t a t e) => {

p r i n t l n ! (” State q u a r t e r from \{ : ?\} ! ” , s t a t e) ;
25

}
}

}

Figure 1.1: Coin sorting machine in Rust.

3

Figure 1.2 shows the second example of the implementation of coin sorting
machine. Here, I have used an object called Demo - inside it, there is one
main function and several Coin classes defined. These classes serve as an
enumeration, similar to previous example. Then, three variables are defined
with different subclasses extending the Coin class. The match expression then
determines which numeric value will be printed by println function. Similarly
to the Rust example, the last case, Quarter will print out a name of the state
in which it was minted.
object Demo {

def main (args : Array [S t r i n g]) {
va l penny = new Penny ()
va l n i c k e l = new N i c k e l ()
va l q u a r t e r = new Quarter (” Washington ”)

for (co in <− L i s t (penny , n i c k e l , q u a r t e r)) {
va l amount = co i n match {

case Penny () => 1
case N i c k e l () => 5
case Dime () => 10
case Quarter (name) => {

p r i n t l n (name)
25

}
}
p r i n t l n (amount)

}
}
sealed t r a i t Coin
case class Penny () extends Coin
case class N i c k e l () extends Coin
case class Dime () extends Coin
case class Quarter (name : S t r i n g) extends Coin

}

Figure 1.2: Coin sorting machine in Scala

1.1 Guard conditions and pattern matching

A guard conditions is a condition which is appended to a pattern inside a
pattern matching mechanism. This condition is evaluated only after the main
pattern passes - if it fails, the case will not be evaluated as valid and another
case might be run instead. Figure 1.3 shows an example of how a guard
condition can be added to a pattern matching case in Rust. The function in
the example will only print a "SQUARE!" when it’s width and height are equal.

4

enum Geometry {
Rectangle (u32 , u32) , // width and h e i g h t
T r i a n g l e (u32 , u32 , u32) // s i d e s

}

fn typeofshape (g : Geometry) {
match g {

Geometry : : Rectangle (x , y) i f x == y => p r i n t l n ! (”SQUARE!\n”)
Geometry : : Rectangle (x , y) i f x != y => p r i n t l n ! (”RECTANGLE!\n”)
Geometry : : T r i a n g l e (a , b , c) => p r i n t l n ! (”TRIANGLE!\n”)

}

Figure 1.3: Determining the shape of an object in Rust

1.2 Pattern matching and Algebraic Data Types

An Algebraic Data Type (ADT) is a composite data structure containing two
or more different types within itself. There are two main types of Algebraic
Data Type (ADTs) - products and sums. An ADT which combines a recursive
sum type of product types is called a general ADT.

The key difference is that with an ADT sum, one can perform something
called ”exhaustiveness checking”. What this means is that a compiler or an
interpreter can alert a programmer that there is an option possible within the
data structure which they have not accounted for. A good example of this
would be an enumeration, or a boolean type - since there is a limited number
of options for both.

Product type, conversely, has no limit of possible options. An example
of a product type would be a structure containing a string. Since a string
has no finite length, there is an infinite number of different possible product
structures.

An example of a general ADT is a class structure with inheritance, with
the parent class having a string attribute. The class system contains a limited
number of options - a sum type. While the string attribute does not - therefore
it would be a product type. Figure 1.4 shows an example of pattern matching
being done on a general ADT. The integer values inside the Rgb enumeraiton
value are a product type, while the enumerations themselves are a sum type.
This example is written in Rust and it simply prints out a text into the console
dependent on the sum part of the hybrid type in the match expression.

5

enum Color {
Rgb(i32, i32, i32),
Hsv(i32, i32, i32)

}
enum Message {

Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(Color),

}

fn main() {
let msg = Message::ChangeColor(Color::Hsv(0, 160, 255));
match msg {

Message::ChangeColor(Color::Rgb(r, g, b)) => {
println!(

"Change the color to red {}, green {}, and blue {}",
r,
g,
b

)
},
Message::ChangeColor(Color::Hsv(h, s, v)) => {

println!(
"Change the color to hue {}, saturation {}, and value {}",
h,
s,
v

)
}
_ => ()

}
}

Figure 1.4: Breaking down ADTs using match in Rust. Source: [4]

Other examples of a general ADT are list or tree structures - one can
define an enumeration of a list item and nil. The list item sum type would
contain another list and a value (product type). A tree structure could be
a leaf, tree and nil, with a tree and a list containing a product. One can
also define a recursive ADT, where the sums can be numeric operations and
product being numbers - in this way, the general ADT would be a data type
representing a numeric expression. An example is shown in Figure 2.5.

6

Chapter 2
Design

In this chapter I will discuss a design of a pattern matching functionality in C.
Furthermore, I will describe the semantics and syntax of the match statement,
as they relate to its translation to plain C. Most of its syntax is either rooted
directly in plain C, or was inspired by languages like Rust and Scala. This
was done for familiarity reasons. Programmers are more likely to be able to
work with concepts which they already know either from C, or from other
languages.

2.1 Pattern matching in C - overview with
examples

The match statement used for pattern matching in my solution has two key
parts: an expression to evaluate and a list of cases. The cases can contain
three concepts overall, a case pattern to match, an guard condition (Figure
1.3 shows an example of the guard condition) similar to an if statement, and
a code block at the end.

If the matched expression gets validated by a case, the cases code block
will be executed. The precise details of the execution are in 2.2.3.

The statements will be executed if the matched expression matches a
pattern inside the case. Cases in a match are disjunct, meaning one expression
cannot be matched by multiple cases. In case an expression could be matched
by several cases, it will only be matched by the first one. There are six distinct
concepts which can be used in a case pattern: wildcards, variables, literals
and strings, enumerations, structs and unions. In the following subsections, I
will present examples of the different pattern cases including how the match
statement is translated into regular C code.

7

2.1.1 Wildcards and variables

Wildcard (the underscore character inside the Figure 2.1) means that any
value put inside the match statement will be regarded as valid. Variable
(example shown in figure 2.2) also validates any value inside the match, but
that value can also be used inside the case statement list.

int compare = 5 ;
match (compare) {

case : {
p r i n t f (”Number !\n”) ;

}
}

int compare = 5 ;
{

int matchMe = compare ;
int onePassedMatch = 0 ;
i f (true && ! onePassedMatch) {

onePassedMatch = 1 ;
{

p r i n t f (”Number !\n”) ;
}

}
}

Figure 2.1: Translation of wildcard into C code

int compare = 5 ;
match (compare) {

case x : {
p r i n t f (”%d\n” , x) ;

}
}

int compare = 5 ;
{

int matchMe = compare ;
int onePassedMatch = 0 ;
i f (true && ! onePassedMatch) {

int x = matchMe ;
onePassedMatch = 1 ;
{

p r i n t f (”%d\n” , x) ;
}

}
}

Figure 2.2: Translation of variable case pattern into C code

8

2.1.2 Case pattern literal matching

One can match literals and strings in C to the expression inside the match
statement. These literals have to be of the same type as the matched
expression (Example of literal matching in figure 2.3).

int compare = 1 ;
match (compare) {

case 1 : {
return 1 ;

}
}

int compare = 1 ;
{

int matchMe = compare ;
int onePassedMatch = 0 ;
i f (1 == matchMe && !

onePassedMatch) {
onePassedMatch = 1 ;
{

return 1 ;
}

}
}

Figure 2.3: Literal comparison inside a match statement

2.1.3 Matching of composite structures

Composite structures, structs and unions in C, have been added in order to
facilitate pattern matching of complex data structures - Example is provided
in figure 2.5. Pointers to structs and unions are also considered valid, however,
it is not possible to compare multiple pointers, such as int ** ptr inside case
pattern. Multiple pointer were not added into pattern matching since there
was no discernible use for them.

typedef struct l i s t l i s t t ;
struct l i s t t {

int value ;
l i s t t ∗ l i s t ;

} ;

Figure 2.4: List used in examples of pattern matching

9

void matchNext (l i s t t ∗ xs) {
match (xs) {

case l i s t t ∗ { 5 , next } : {
p r i n t f (”Found f i v e !\n”) ;
matchNext (next) ;

}
case l i s t t ∗ { , next } : {

matchNext (next) ;
}
case l i s t t ∗ { , NULL } : {

p r i n t f (” Last !\n”) ;
}

}
}

void matchNext (l i s t t ∗xs)
{
{

int onePassedMatch = 0 ;
l i s t t ∗ matchMe = xs ;
i f (matchMe != NULL
&& matchMe−>value == 5
&& matchMe != NULL
&& true
&& ! onePassedMatch) {

l i s t t ∗next = matchMe−> l i s t ;
onePassedMatch = 1 ;
{

p r i n t f (”Found f i v e !\n”) ;
matchNext (next) ;

}
}
i f (true
&& matchMe != NULL
&& true
&& ! onePassedMatch) {

l i s t t ∗next = matchMe−> l i s t ;
onePassedMatch = 1 ;
{

matchNext (next) ;
}

}
i f (true
&& matchMe != NULL
&& matchMe−> l i s t == 0
&& true
&& ! onePassedMatch) {

onePassedMatch = 1 ;
{

p r i n t f (” Last !\n”) ;
}

}
}

}

Figure 2.5: Match statement, pattern matching inside a list (For the list
definition, see figure 2.4)

10

2.1.4 Implicit null checks

Since the match statement case patterns can work with pointers to structures
and unions, there is always a possibility that the matched expression will
resolve into a structure with some of its members being a null pointer. The
case patterns have been designed in such a way that prevents an accidental
runtime error by creating implicit null checks.

These null checks will be created automatically, based on whether the
match expression is a pointer. Also, null checks will be created in case of
struct comparison, when the struct itself contains a pointer. This however,
does not mean that a null pointer comparison is not possible - the null checks
are created only when a comparison would result in segmentation fault if not
checked properly.

An example of an implicit null check can be found above - matchMe !=
NULL has been generated to that the access to matchMe->value will not cause
an error in case matchMe happens to be null.

2.1.5 Guard conditions

The guard condition (example provided in figure 2.6) appended to a case
pattern adds an additional check before a case pattern gets matched. If it
fails, the matched expression will not be validated by its case. The matched
expression will possibly be matched by another case after. It can contain the
variables defined in the case pattern. The guard condition will only be run if
the case pattern is already matched as true. The code inside the condition
can contain function calls, literals and everything else one can put into a
regular if statement. The implicit null checks are not placed here.

11

void d i v s (l i s t t ∗ xs , l i s t t ∗∗
r e s u l t , int mod) {

match (xs) {
case l i s t t ∗ { number , next }

i f number % mod == 0 : {
l i s t ∗ another = (((l i s t ∗) (

mal loc (s i z e o f [l i s t])))) ;
another−> l i s t = NULL;
another−>value = number ;
(∗ r e s u l t)−> l i s t = another ;
∗ r e s u l t = another ;
d i v s (next , r e s u l t , mod) ;

}
case l i s t t ∗ { , next } : {

d i v s (next , r e s u l t , mod) ;
}

}
}

void d i v s (l i s t t ∗xs , l i s t t ∗∗
r e s u l t , int mod)

{
{

int onePassedMatch = 0 ;
l i s t t ∗ matchMe = xs ;
i f (matchMe != NULL
&& matchMe != NULL
&& true
&& ! onePassedMatch) {

int number = matchMe−>value ;
l i s t t ∗next = matchMe−> l i s t ;
i f (number % mod == 0) {

onePassedMatch = 1 ;
{

l i s t t ∗ another = (((
l i s t t ∗) ((mal loc (
s i z e o f (l i s t t)))))) ;

another−> l i s t = NULL;
another−>value = number ;
(∗ r e s u l t)−> l i s t = another ;
∗ r e s u l t = another ;
d i v s (next , r e s u l t , mod) ;

}
}

}
i f (true
&& matchMe != NULL
&& true
&& ! onePassedMatch) {

l i s t t ∗next = matchMe−> l i s t ;
onePassedMatch = true ;
{

d i v s (next , r e s u l t , mod) ;
}

}
}

}

Figure 2.6: Struct pattern matching with a guard condition - list structure in
the example can be found in figure 2.4

12

2.1.6 Examples of enumeration and ADT

Algebraic data types (Example in figure 2.8) can be expressed by using an
enumeration to determine a type of a union containing the ADT types. Both
the union and the enumeration are wrapped inside a struct. Here is an
example of how pattern matching works inside the match statement.

typedef enum type t y p e t ;
enum type {

Add ,
Multiply ,
Value

} ;

typedef struct value v a l u e t ;
struct value {

int va l ;
} ;

typedef union expr data e x p r d a t a t ;
union expr data {

m u l t i p l y t ∗mult ip ly ;
add t ∗ a d d i t i o n ;
v a l u e t value ;

} ;

typedef struct expr e x p r t ;
struct expr {

t y p e t type ;
e x p r d a t a t o p e r a t i o n ;

} ;

typedef struct mult ip ly m u l t i p l y t ;
struct mult ip ly {

e x p r t l e f t ;
e x p r t r i g h t ;

} ;

typedef struct add add t ;
struct add {

e x p r t l e f t ;
e x p r t r i g h t ;

} ;

Figure 2.7: ADT defined by unions and structs

13

int e v a l (expr e) {
match (e) {

case expr { Add , expr data { ,
add ∗ { x , y } } } : {

return e v a l (x) + e v a l (y) ;
}
case expr { Multiply , expr data

{ mult ip ly ∗ { x , y } } }
: {

return e v a l (x) ∗ e v a l (y) ;
}
case expr { Value , expr data {

, , va lue { x } } } : {
return x ;

}
}
return 0 ;

}

int e v a l (e x p r t e)
{
{

int onePassedMatch = 0 ;
e x p r t matchMe = e ;
i f (matchMe . type == 0
&& true
&& matchMe . o p e r a t i o n . a d d i t i o n

!= NULL
&& matchMe . o p e r a t i o n . a d d i t i o n

!= NULL
&& true
&& ! onePassedMatch) {

e x p r t x = matchMe . o p e r a t i o n .
addit ion−> l e f t ;

e x p r t y = matchMe . o p e r a t i o n .
addit ion−>r i g h t ;

onePassedMatch = 1 ;
{

return e v a l (x) + e v a l (y) ;
}

}
i f (matchMe . type == 1
&& matchMe . o p e r a t i o n . mult ip ly

!= NULL
&& matchMe . o p e r a t i o n . mult ip ly

!= NULL
&& true
&& ! onePassedMatch) {

e x p r t x = matchMe . o p e r a t i o n .
mult iply−> l e f t ;

e x p r t y = matchMe . o p e r a t i o n .
mult iply−>r i g h t ;

onePassedMatch = 1 ;
{

return e v a l (x) ∗ e v a l (y) ;
}

}
i f (matchMe . type == 2
&& true
&& true
&& true
&& ! onePassedMatch) {

int x = matchMe . o p e r a t i o n .
va lue . va l ;

onePassedMatch = 1 ;
{

return x ;
}

}
}
return 0 ;

}

Figure 2.8: Pattern matching an expression in the form of ADT - for the
structures used in this example, see figure 2.7

2.1.7 Limitations

One cannot use any dynamic expressions, such as function calls, numeric op-
erations (1 + 2) or array access cannot be used inside a case pattern. This is
not allowed in order to ensure that the case pattern stays pure - always having
the same result to the same set of data.

14

Another limitation of my work, is that a C array cannot be used inside
a pattern. This feature was not added because of time constraints and for
the lack of an implicit length of an array. This could be amended by creating
another case pattern in order to match the first several elements of any array.

There is also a limitation on the scope of any variable defined with the
variable case pattern - such variable can only be used inside a guard condition,
or inside the code block appended to the case. This limitation in scope was
done in order to create a code which is overall cleaner and easier to reason
about.

Last limitation of my project is, that due time constraints, control of
match case content similarities was not implemented. What this means is
that one can define two of the same cases without it raising an error. This
could have been fixed by expanding unreachable code detection - Section 2.5.

2.2 Semantics of the match statement

In this section, the semantics of the match statement will be explained in
terms of the C statements, code blocks, variables and expressions to which
the match statement is being translated to.

The match statement is translated to C as a code block, containing a def-
inition of two variables - onePassedMatch and matchMe. The type of matchMe
is decided based on the type of the expression being matched and its value is
always the same as the matched expression. The type of onePassedMatch is
an integer and its value is zero.

Next, in the code block, there is a series of if conditions. Each of those if
conditions represents one case. The expressions inside the ifs are connected
by &&. The expressions are derived from a case pattern inside the case. Here
is how the derivation looks:

Pattern name Pattern Translated expression
Wildcard true
Variable Valid C variable name true
Literal Valid C literal matchMe == literal
Enumeration C enumeration matchMe == enum
String C string strcmp(matchMe, str) == false

One can also insert two more case patterns inside any case (examples -
Fig: 2.5) - struct case pattern and union case pattern. The struct and union
case patterns have a more complex translation pattern. Inside each of the
struct or union case pattern is a type of the struct/union, or a pointer type
of struct or a union. Then there is a list of other case patterns.

15

My solution during the translation process creates an access path from
the matchMe variable through the struct/union case patterns in order to access
the literal/enumeration/string case pattern inside the embedded union/struct
patterns. The necessary null checks for the access path are created as well.
Then, those access paths are used to create boolean expressions similarly to
those mentioned in the table above.

2.2.1 Variable definitions inside cases

Inside the if statements, created by the case translation, there can be a
series of variables defined thanks to the variable case pattern (example of
multiple variable case patterns in figure 2.9). The type of these variables is
dependent upon the variable case pattern. In case the variable case pattern
is used as such: case X {...}, where X stands for the variable name, the
type of the variable will be defined by the type of the matched expression. If,
however, the variable is used inside the struct pattern, it will be defined thusly:

typedef struct e e t ;
typedef struct e2 e 2 t ;

struct e {
int a ;
char∗ b ;
char c ;
e 2 t e2 ;

}

struct e2 {
int ab ;
int cd ;

}

match(var) {
// type of var i s e t
case e t {x , y , , e 2 t {a , b}} : {

//Type of x i s int ,
//Type of y i s char ∗ ,
//The wi ldcard i s t y p e l e s s ,
//Type of a i s int ,
//Type of b i s i n t

}
}

Figure 2.9: An example of how a variable case pattern can be used.

2.2.2 Semantics of the guard condition

Since my solution supports guard conditions for case patterns (Explanation
provided in subsection 2.1.5), this subsection will offer a semantic description
of this concept - it will be translated into an if condition after the variables
from the variable case pattern have been defined. Therefore, this condition
can contain references to the variables mentioned previously.

16

2.2.3 Case code block

In order to facilitate pattern matching, the match cases needs a code block
to run in case of a pattern match being successful. This code block will be
executed only, and only after:

1. every null check inside the case pattern condition passes,

2. every case pattern expression inside the above condition is resolved as
true,

3. no other case code block has been run (variable onePassedMatch was
0),

4. all variables from variable case pattern has been defined,

5. if added, the optional condition must be resolved as true,

6. variable onePassedMatch has been set to 1

If any of the conditions (1-3) were not met, the remaining steps (3-6)
will not be executed and the next match case will be evaluated against the
matched expression.

17

2.3 Syntax for the match statement

This section will cover the breakdown of the new syntax which I have added to
plain C, in order for the reader to have a easier way to reason about the match
statement. The complete match statement syntax can be found in figure 2.10.

match: ’match’ ’(’ expression ’)’ ’{’
(’case’ pattern (’if’ condition)? ’:’ ’{’
(statement)*
’}’)+
’}’
pattern : struct_pattern
| literal_pattern
| variable_pattern
| wildcard_pattern
| union_pattern
struct_pattern : type pointer? ’{’ (pattern ’,’)* pattern ’}’
union_pattern : type pointer? ’{’ (pattern ’,’)* pattern ’}’
literal_pattern : character | string | integer | float | enumeration
variable_pattern : Valid C variable name
wildcard_pattern : ’_’
type : Valid C type
pointer : ’*’
character : Valid C character
string: Valid C string
integer: Valid C integer
float: Valid C float
statement: Valid C statement
expression: Valid C expression
condition: Valid C expression

Figure 2.10: Pattern matching grammar in Extended Backus-Naur Form
(EBNF)

18

2.4 Typing rules

Since C is a typed language, my solution needs to be able to perform type
checks of the programmers code in order to ensure that the match statement
can be correctly translated into a C code.

2.4.1 Type inference for pattern variables

Variables in the case pattern match have their types derived from the expres-
sion in the match statement. This was done so that whenever one uses such
variable inside the code block or guard condition appended to the case, the
typing rules will ensure the validity of its use. An example of this is show in
figure 2.11.

typedef struct l i s t l i s t t ;
struct l i s t {

int value ;
l i s t t ∗ l i s t ;

} ;

void matchNext (l i s t t ∗ xs) {
match (xs) {

case l i s t t ∗ { 5 , next } : {
p r i n t f (” found f i v e !\n”) ;
// The type of next i s l i s t t ∗
matchNext (next) ;

}
case l i s t t ∗ { , NULL } : {

p r i n t f (” Last element !\n”) ;
}

}
}

Figure 2.11: Case pattern variable typing rules

2.4.2 Explicit struct types

When a case pattern match contains a struct, the type has to be explicitly
written during the struct pattern definition, with the possibility of using a *
to signify that the expected match expression is a pointer - for an example,
see figure 2.12.

The same logic applies when a struct pattern match contains multiple
structs within it. Also, one does not need to define all attributes of the
struct/union in a case pattern - an incomplete definition is just as valid.

19

typedef struct l i s t l i s t t ;
struct l i s t {

int value ;
l i s t t ∗ l i s t ;

} ;

typedef struct a d d i t i o n a d d i t i o n t ;
struct a d d i t i o n {

int a ;
int b ;

} ;

void matchNext (l i s t t ∗ xs) {
match (xs) {

case l i s t t ∗ { 5 , next } : {
p r i n t f (” found f i v e !\n”) ;
matchNext (next) ;

}
case l i s t t ∗ { , NULL } : {

p r i n t f (” Last element !\n”) ;
}
case a d d i t i o n t { } : {

// This w i l l cause an error s ince
// the type a d d i t i o n t i s not l i s t t ∗

}
}

}

Figure 2.12: Necessary explicit typing for structs

20

Chapter 3
Implementation

This chapter is dedicated to the details of how the match statement was
implemented, which tools were used in order to achieve the goal of this thesis
and their advantages and disadvantages, compared to different approaches to
similar tasks.

3.1 Choosing implementation strategy

In order to start extending the C language, I needed to choose a specific way
of extending a programming language. There were several options available:

• Directly changing the pre-processor (in the sense of Objective-C [12] or
early C++ [13])

• Custom compiler (writing an extension in GCC or LLVM compilation
pipeline)

• Using a language workbench (such as Xtext [18], MPS, Silver [16],
Spoofax [14] or Metaedit+ [15])

Extending a language at the compiler level has its advantages - mainly not
restricting the user to a certain Integrated Development Environment (IDE).
The main disadvantage of this route is that it does not provide the user with a
compatible debugger, nor with a compatible editor. Both of those would need
to be developed separately. What this means is creating a custom highlighting
syntax plugin for an IDE which supports C syntax in order for a user to be
able to work with the extension, creating a compatible debugger and a plu-
gin to fix semantic navigation for such IDE to support the language extension.

21

3.1.1 Solutions similar to mine

Another solution, created in AbleC [17], is extending the C syntax in order to
be able to resolve ADTs [10] with pattern matching. This solution was made
specifically to be used in conjunction with union-like constructs - datatypes.

A datatype contains information about which of its subtypes was defined.
A match statement, defined in the AbleC solution, has an expression and a
number of cases. The match statement then uses information about which
type was defined in order to determine which case will be run.

3.1.2 Language workbench

Language workbench is a software tool, which is used to design Domain Spe-
cific Language (DSL) or to extend an existing language. It then produces an
IDE, with which one can write, run and debug said language. This IDE will
have semantic highlighting and syntax control. It will also be able to step-by-
step debug the created language. This means that if one were to write a Java
extension, it would be possible to debug the created language as if one was
debugging regular Java code in another IDE. Also, in case of a compilation
error, one will be able to see the error directly in the created language.

There are, however, two noticeable disadvantages of implementing a lan-
guage extension in a workbench. The first disadvantage is that the program-
mer who will be using the extension will not be able to choose their own IDE.
The second disadvantage is that language workbenches consume a noticeably
higher portion of computation power than a compiler extension.

Since language workbench noticeably eases the implementation effort
compared to the other ways of extending languages, I have chosen to im-
plement my solution in it. There were two different language workbenches
that were tried.

22

3.1.2.1 Xtext

The first language workbench that was tried for this solution was Eclipse
Xtext. In Xtext, one designs the syntax for a DSL or a language extension in
a similar way to EBNF, with which one creates parsing rules. The translation
into a runnable code from a language extension of DSL is achieved by Xtext
consuming the programmers code by using the parsing rules. Then, one can
run another embedded Eclipse editor, in which one can use custom highlighting
and run/debug the application created. This solution was abandoned in favor
of MPS. There were several advantages of using MPS instead of Xtext:

• Xtext does not have support for header files or linker on the level of the
newly created language

• Type and scope control

• Xtext is a code parser - meaning one needs to reason about ambiguous
references

3.1.2.2 MPS

The language workbench chosen in order to implement the language extension
was Jetbrains MPS. MPS is a projectional editor. This means that one does
not work with a textual version of code. Rather, MPS uses it’s autocomplete
feature to help one to create an Abstract Syntax Tree (AST). This tree syntax
is used both to design a language and to run it. The main advantage of this
approach is that one does not need to worry about ambiguous concepts and
text parsing. Each node in the AST tree has several ways with which it can
be manipulated:

• Concepts - the syntax item inside a tree (More on concepts: Fig: 3.2)

• Editors - how will the syntax look

• Behavior - Utility methods which can be used by others

• Constraints - in what scope can a concept appear

• Typesystem - defining the types and type checks

• TextGen - a lambda-like language used for text generation

• DataFlow - a lambda-like language used to determine unreachable nodes

• Generator - main plan of how to translate the root nodes

23

In order to show in-depth the MPS language workbench there is a screen-
shot of the IDE provided below. The screenshot shown in figure 3.1 showcases
the code example of the match statement, the Mbeddr modules and the node
inspector. The match statement shown on the picture below is not actually
text - as it was mentioned above, this is merely a projection of an AST created
by autocomplete.

This approach however, has a couple of disadvantages - mainly that it
somewhat restricts the programmers ability to freely rewrite code, as one
needs to rely upon the autocomplete feature in order to be able to create the
AST.

The node inspector serves as a way for a programmer to look up which
type of node is currently being rewritten. The node inspector is mainly useful
for debugging added concepts.

Figure 3.1: Screenshot of MPS Language workbench

24

Legend:

• Mbeddr C AST tree with match statement (Red)

• Language concepts (Blue)

• List of Mbeddr C internal/external modules (more on modules in 3.3.4)
(Green)

• Inspector of AST nodes (Yellow)

Another screenshot shown in figure 3.2 shows how the node definition
looks like. The concept in question is the match statement. Every node in
MPS has three important categories: properties, children and references. The
properties are values with primitive data types (including a string) which
can be filled by a programmer. The children nodes are those that will be
initialized after the creation of the parent node. Finally, the reference nodes
- MPS allows for a node to be referenced by another - this is used when one
needs to create concepts like variable and function references. Also, each
node can inherit from another node and implement more than one interface
(inheritance is especially important for Behaviour - see subsection: 3.1.2.2).

Figure 3.2: Screenshot of MPS Concept node editor

25

Legend:

• Definition of MPS concept, with children (other concepts) (Red)

• Other aspects of the MPS concept, such as UI Editor and typing rules
(Blue)

The last screenshot in figure 3.3 is of the MPS debugger. Currently,
there is a breakpoint set on the match statement itself. Here we can see
a great advantage of the MPS language workbench - it has a support for
integrating the new language concepts into its debugging UI. The MPS
debugging menu is otherwise standard - breakpoints and watches are very
similar to other comparable IDE.

Figure 3.3: Screenshot of MPS debugger

Legend:

• Debugger of a custom language, hitting a breakpoint (Yellow)

• Debugger menu with standard options (Run, Continue, defined vari-
ables) (Green)

26

3.2 Mbeddr

Since the language primarily supported by MPS is Java, I needed a way to
add C syntax into it without having to implement it myself in order to reduce
implementation effort and because of time constraints. I have chosen to import
the Mbeddr Development language package (devkit) [11].

It contains an improved version of C syntax (see section 3.3 for more
details), preprocessor and build tools, custom reporting and error messaging.
The devkit is read-only, so my solution is extending (inheriting from) and using
(as a child concept) Mbeddr concepts. Mbeddr also automatically creates a
makefile and supports it’s own version of header files.

Another advantage of using Mbeddr is that it already has support for in-
fering scopes of variables. My solution does not need to have scope constraints
implemented within itself (except for the implicitly defined variables). This is
especially useful for dealing with variables defined/used inside the statement
lists appended to match cases.

My solution also does not need to create a generator, since it does not add
any root nodes to the project. The generator which my solution uses has been
fully provided by mbeddr extension (more on generators in the subsubsection
3.1.2.2).

Since MPS offers standard run and debug modes, mbeddr concepts con-
tain a custom support for this as well. Both the match statement and its
cases contain support for mbeddr debugging systems. One can go through
the statement lists inside a case in a similar way one would go through while
statement list.

3.2.1 Graph of usage

In order to showcase how the different elements mentioned in the implemen-
tation chapter work together, the graph of usage in figure 3.4 was created.
In this graph, the yellow color is for the user, while the green is for a file
or program which directly assists the user in creating and manipulating the
AST and in generating the C code. Red color has been chosen to represent
the three debugger levels which together with the MPS IDE work together to
allow the user to debug their newly created language. Blue squares are short
descriptions of important steps.

This graph also shows the the sections of the translation process, where a
custom defined concept can enter and change the behaviour and results. ”My
Solution” + ”Mbeddr C” are these changes - they change the MPS on-screen
editor UI, they are a part of the build process and finally, MPS uses them in
order to allow one to correctly debug the code.
For a reference on the internal and external modules shown in the graph, see
subsection 3.3.4.

27

Figure 3.4: Workflow of MPS Language workbench

3.3 Differences between Mbeddr and C11 standard

Mbeddr extension has several important differences from the C11 standard.
Since my solution heavily relies on Mbeddr C syntax, these changes have
affected my solution as well. This means that some constructs, while valid in
C11, will not be compatible with the match statement. This is however not
entirely a disadvantage, as Mbeddr offers several improvement over the C11
standard. In the subsections below, there will be a brief overview of those
differences and improvements.

3.3.1 Stronger primitive typing rules

Mbeddr has its own Boolean type - what this means is that any expression
used inside an if statement must resolve to a Boolean type. Also, any integer
inside Mbeddr C has to have byte size specification. This means that int type
does not exist. Instead, one has to use int32 or other sized types. Here is an
example of how these typing rules affect the match statement:

28

boolean i s Z e r o (int number) {
match (number) {

case f a l s e : {
// This w i l l cause an error
return true ;

}
case 0 : {

// This w i l l not
return true ;

}
}
return f a l s e ;

}

Figure 3.5: Example of bad typing in Mbeddr

3.3.2 String type

In Mbeddr, one can use the string type instead of char * pointer type. This
means that my solution considers any string to be a literal. This does not,
however, mean that one can use, as it is common in higher-level languages,
the ”+” sign for concatenation.

3.3.3 Automatic typedef for structs

When one creates a struct in Mbeddr, they do not need to add a typedef in
order to shorten the type definition syntax. Mbeddr does this by itself - this
affects how one needs to define a struct type in the match statement as well.

3.3.4 Internal and External modules

In Mbeddr, there are modules, as opposed to standard C .c files. These
modules can either be internal (code supplied by a programmer) or external
(header-like modules in order to import .h and .c files from standard C). Any
module can be imported into an internal module - this will allow one to run
methods and use structs from the other module inside.

Mbeddr C contains a keyword for the functions, enumeration, structs
and unions which can be used in another module on import. The keyword
is exported. This keyword does not appear in external modules, as Mbeddr
assumes that everything defined inside the external module will be used in
other modules.

3.4 Unreachable code detection

Inside any list of statements inside C code, there are situations where one
can write code in such a way, where there is no chance of reaching certain
statements. These situations can be bothersome, since they increase code
complexity and a chance of error. Here are some examples of how these
situations can arise:

29

• if statement with false boolean inside the condition

• else statement, where the connected if contains true boolean

• while statement with false boolean

• while statement with true boolean, where there are statements after
the while

• for statement, similar to while

• do { } while() statements and similar

• Two or more return statements in a row

Therefore, MPS offers a way of detecting these situations by letting a
language designer create a dataflow ”language” (mentioned in 3.1.2.2). It
allows one to check whether a particular statement can be run.

Mbeddr uses dataflows in order to determine whether the Mbeddr C code
created by the programmer is valid from this point of view as well. My solution
then cooperates with Mbeddr and MPS in order to integrate itself with the
dataflow of the surrounding code.

What this means is that match statement is from the dataflow MPS point
of view merely a series of ifs in a row. There is however, one exception to
this principle - wildcard case pattern. If one were to define a wildcard case
pattern, it would get treated as if (true) { }. For the limitations in my
implementation of unreachable code detection for the match statement, please
see the section 2.1.7.

3.5 Testing

In order to reduce the probability of bugs occurring in the match statement
and its cases, I have added a series of tests which one can run from the MPS
language workbench.

3.5.1 Translation tests

Translation tests contain a set of functions inside of which is the match state-
ment. The tests are passed, if the functions and match statements are trans-
lated without an error by MPS with the Mbeddr devkit(translation to C fin-
ishes without any errors).

30

3.5.2 Performance tests

In order to measure performance of an algorithm written with the use of a
match statement and an algorithm which was written using ordinary C, four
performance tests were created. These tests are designed to be used to perform
a performance analysis.

The first pair of tests is focused on searching through a 10000000 items
long linked list in order to find a certain pattern and return how many times
this pattern has been found. The second test focuses on how long it would
take to parse through an ADT. This ADT has a form of binary tree, 22 layers
deep. Each of those pairs contain one test with the match statement and one
test without.

3.5.3 Unit tests

There are currently 4 unit tests appended to my solution. These tests are in
place to reduce the probability of runtime errors and unexpected behaviour.
These tests check for algorithm results and whether or not are all the necessary
null checks in place.

31

Chapter 4
Evaluation

My solution will be evaluated on qualitative basis by comparing the readabil-
ity of code with and without the match statement on several chosen examples.
The comparison is there to show how much easier can one reason about a par-
ticular problem, when one can add a higher level of abstraction. Performance
evaluation was not done. The reason for this are time constraints.

4.1 Balanced Binary Tree Insertion

This example (see figure 4.2) is about creating a balanced binary tree, where
each left node is empty or less than the parent nodes value and every right
node is either empty or has a value greater than it’s parent.

33

enum l i s t T y p e {
n i l ;
t r e e ;

}

// This value w i l l always be 0 − i t i s a p l a c e h o l d e r
struct n i l {

i n t 3 2 value ;
} ;

struct node {
t r e e ∗ l e f t ;
t r e e ∗ r i g h t ;
i n t 3 2 value ;
char∗ p r i n t ;

} ;

union typeofTree {
node t r e e ;
n i l n i l ;

} ;

struct t r e e {
l i s t T y p e type ;
typeofTree treeTypes ;

} ;

Figure 4.1: ADT for balanced binary tree used in examples of pattern match-
ing
void i n s e r t (i n t 3 2 value , roo t ∗ t r e e) {

match (∗ t r e e) {
case ro ot { n i l } : {

ro ot newLeaf = c r e a t e T r e e (value) ;
∗ t r e e = newLeaf ;

}
case ro ot { t ree , treeTypes { t r e e { l e f t , r i g h t , va l } } }
i f value < va l : {

i n s e r t (value , l e f t) ;
}
case ro ot { t ree , treeTypes { t r e e { l e f t , r i g h t , va l } } }
i f value < va l : {

i n s e r t (value , r i g h t) ;
}

}
}

void inser tOrd (i n t 3 2 value , ro ot ∗ t r e e) {
ro ot treeCont = ∗ t r e e ;
i f (treeCont . type == n i l) {

ro ot newLeaf = c r e a t e T r e e (value) ;
∗ t r e e = newLeaf ;

} else i f (treeCont . type == t r e e) {
i f (va lue < treeCont . treeTypes . t r e e . va lue) {

inser tOrd (value , treeCont . treeTypes . t r e e . l e f t) ;
} else i f (va lue > treeCont . treeTypes . t r e e . va lue) {

inser tOrd (value , treeCont . treeTypes . t r e e . r i g h t) ;
}

}
}

Figure 4.2: Comparison between balanced binary tree insertion in Mbeddr C
with and without the match statement. For a look on what the structures
used here are, see figure 4.1

34

4.2 Binary Tree Comparison

In this example, I wish to showcase the ability of pattern matching with the
match statement to simplify comparing values in a binary tree. In figure 4.3
is an example of a binary tree comparison.

boolean compareTrees (t r e e ∗ expected , t r e e ∗ r e s u l t) {
toCompare comp = {

expectedTree = expected ,
r e s u l t T r e e = r e s u l t

} ;
match (comp) {

case toCompare { t r e e ∗ { n i l } , t r e e ∗ { n i l } } : {
return true ;

}
case toCompare { t r e e ∗ { t ree , typeofTree { node { l e f t 1 , r ight1 ,

value1 } } } , t r e e ∗ { t ree , typeofTree { node { l e f t 2 , r ight2 ,
value2 } } } } : {

return value1 == value2 && compareTrees (l e f t 1 , l e f t 2) && compareTrees (
r ight1 , r i g h t 2) ;

}
}

return f a l s e ;
}

boolean compareTreesOrd (t r e e ∗ expected , t r e e ∗ r e s u l t) {
i f (expected−>type == n i l && r e s u l t−>type == n i l) {

return true ;
}
i f (expected−>treeTypes . t r e e . va lue == r e s u l t−>treeTypes . t r e e . va lue) {

return compareTreesOrd (expected−>treeTypes . t r e e . l e f t , r e s u l t−>treeTypes .
t r e e . l e f t) && compareTreesOrd (expected−>treeTypes . t r e e . r i g h t , r e s u l t
−>treeTypes . t r e e . r i g h t) ;

}
return f a l s e ;

}

Figure 4.3: Binary tree comparison in Mbeddr with and without match - the
structures used are listed in figure 4.1

35

4.3 Finding maximum in a list

The example (figure 4.4) in this section is a simple function which finds out
the largest integer in a linked list.

i n t 3 2 findMaxOrd (l i s t ∗ numbers , i n t 3 2 c a r r y) {
i f (numbers == NULL) {

return c a r r y ;
}
i f (c a r r y > numbers−>value) {

return findMaxOrd (numbers−>l i s t , c a r r y) ;
}
return findMaxOrd (numbers−>l i s t , numbers−>value) ;

}

i n t 3 2 findMax (l i s t ∗ numbers , i n t 3 2 c a r r y) {
match (numbers) {

case l i s t ∗ { num, next } i f c a r r y < num : {
return findMax (next , num) ;

}
case l i s t ∗ { , next } : {

return findMax (next , c a r r y) ;
}

}
return c a r r y ;

}

Figure 4.4: List search comparison between a solution with the match state-
ment and without - linked list definition is in figure 2.4

4.4 Pattern matching used in UNIX networking
structures

The purpose of this set of examples is to showcase how a pattern matching
structure in C might simplify how one might be able to use the C structures
used for networking in UNIX [19].

In the example provided in figure 4.6, we get a list of servents (server
descriptors), from which we have to choose the ones that both operate with
the POP protocol and have an UDP type of connection and then return the
port number of the first one found.

36

struct s e r v e n t L i s t {
s e r v e n t s e r v e n t ;
s e r v e n t L i s t ∗ next ;

} ;

struct s e r v e n t {
char∗ s name ; // Server name
char∗ s a l i a s e s ; // Server a l i a s e s
i n t 3 2 s p o r t ; // server port
char∗ s p r o t o ; //Type of connection

} ;

Figure 4.5: Servent data structure

i n t 3 2 findPOPWithUDPPort (s e r v e n t L i s t ∗ xs) {
match (xs) {

case s e r v e n t L i s t ∗ { s e r v e n t { ”POP” , , port , ”UDP” } } : {
return port ;

}
case s e r v e n t L i s t ∗ { , next } : {

return findPOPWithUDPPort (next) ;
}

}
return −1;

}

i n t 3 2 findPOPWithUDPPordOrd (s e r v e n t L i s t ∗ xs) {
while (xs != NULL) {

i f (xs−>s e r v e n t . s name != NULL
&& strcmp (xs−>s e r v e n t . s name , ”POP”) == f a l s e
&& xs−>s e r v e n t . s p r o t o != NULL
&& strcmp (xs−>s e r v e n t . s proto , ”UDP”) == f a l s e) {

return xs−>s e r v e n t . s p o r t ;
}
xs = xs−>next ;

}
return −1;

}

Figure 4.6: Servent searching algorithms - for the servent struct, see figure 4.5

37

In the second example, shown in figure 4.8, the match statement is being used
in order to deconstruct socket information and select all 32-bit IP addresses,
where the socket is an internet socket and the port number is between 0 and
1023 (system ports).

struct s o c k e t L i s t {
s o c k a d d r i n s o c k e t ;
s o c k e t L i s t ∗ next ;

} ;

struct i n a d d r {
uint64 s addr ;

} ;

struct s o c k a d d r i n {
i n t 8 s i n f a m i l y ; //Type of connection
uint8 s i n p o r t ; // Port number
i n a d d r s i n a d d r ; //IP address s t r u c t
char s i n z e r o ; //Not used

} ;

struct i p L i s t {
uint64 addr ; //IP address
i p L i s t ∗ next ;

} ;

Figure 4.7: Socket data structure

void g e t S y s I n e t S o c k e t s (s o c k e t L i s t ∗ xs , i p L i s t ∗∗ head , i p L i s t ∗∗ t a i l) {
match (xs) {

case s o c k e t L i s t ∗ { s o c k a d d r i n { fam , port , i n a d d r { ip } } , next }
i f fam == AF INET && port < 1024 : {

cons (head , t a i l , ip) ;
g e t S y s I n e t S o c k e t s (next , head , t a i l) ;

}
case s o c k e t L i s t ∗ { , next } : {

g e t S y s I n e t S o c k e t s (next , head , t a i l) ;
}

}
}

void getSysInetSocketsOrd (s o c k e t L i s t ∗ xs , i p L i s t ∗∗ head , i p L i s t ∗∗ t a i l) {
i f (xs == NULL) {

return ;
}
i f (xs−>s o c k e t . s i n f a m i l y == AF INET
&& xs−>s o c k e t . s i n p o r t < 1024) {

cons (head , t a i l , xs−>s o c k e t . s i n p o r t) ;
}
getSysInetSocketsOrd (xs−>next , head , t a i l) ;

}

Figure 4.8: Socket searching algorithms. For the structures in this example,
see figure 4.7

38

4.5 Coin sorting machine

The last example (see figure: 4.10) will be a coin sorting machine (for an ex-
ample of implementation in Rust and Scala see: chap:matching). The machine
will simply take in coins and return their numeric value. In case of the coin
being a quarter, the machine will print out the name of the state which has
minted that quarter.

enum CoinType {
Penny ;
N i c k e l ;
Dime ;
Quarter ;

}

struct Quarter {
s t r i n g s t a t e ;

} ;

struct Coin {
CoinType type ;
Quarter∗ q u a r t e r ;

} ;

Figure 4.9: Structures used for coin sorting

i n t 3 2 c o i n S o r t e r (Coin c o in) {
match (co in) {

case Coin { Penny } : {
return 1 ;

}
case Coin { N i c k e l } : {

return 5 ;
}
case Coin { Dime } : {

return 1 0 ;
}
case Coin { Quarter , Quarter ∗

{ s t a t e } } : {
p r i n t f (” Quarter was made in %s

\n” , s t a t e) ;
return 2 5 ;

}
case : {

return −1;
}

}
}

i n t 3 2 co inSorterOrd (Coin co in) {
i f (co in . type == Penny) {

return 1 ;
}
i f (co in . type == N i c k e l) {

return 5 ;
}
i f (co in . type == Dime) {

return 1 0 ;
}
i f (co in . type == Quarter) {

p r i n t f (” Quarter was made in %s \
n” , co i n . quarter−>s t a t e) ;

return 2 5 ;
}
return −1;

}

Figure 4.10: A coin sorting machine, written with the match statement - to
see the structures used, see figure: 4.9

39

Conclusion

In this thesis I extended the C programming language with a pattern match-
ing concept known from functional programming. It allows for a cleaner,
more manageable code, fewer errors and a higher degree of abstraction.

The extension was implemented using MPS and mbeddr which together
provide a framework for adding extension to the C programming language.
The advantage of using MPS is that MPS gives you custom highlighting,
custom semantic navigation and debugging support.

Overall, this thesis has shown a useful direction for further research
and development. Extensions of mainstream languages to include concepts
from functional or logical programming are often well rewarded in increases
of effectivity of the programmer and cleaner code.

41

Bibliography

[1] Matsakis, N. D.; Klock II, F. S. The rust language. In ACM SIGAda Ada
Letters, volume 34, ACM, 2014, pp. 103–104.

[2] Klabnik, S.; Nichols, C. The Rust Programming Language. No Starch
Press, 2018.

[3] Odersky, M.; Altherr, P.; et al. The Scala language specification. 2004.

[4] Rust online documentation. https://doc.rust-lang.org/book/ch18-
03-pattern-syntax.html, accessed: 2019-05-14.

[5] Subramaniam, V. Functional programming in Java: harnessing the power
of Java 8 Lambda expressions. Pragmatic Bookshelf, 2014.

[6] Järvi, J.; Freeman, J. C++ lambda expressions and closures, volume 75.
Elsevier, 2010, 762–772 pp.

[7] Felleisen, M.; Findler, R. B.; et al. The racket manifesto. In 1st Summit on
Advances in Programming Languages (SNAPL 2015), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[8] Yallop, J. Practical generic programming in OCaml. In Proceedings of the
2007 workshop on Workshop on ML, ACM, 2007, pp. 83–94.

[9] Voelter, M.; Pech, V. Language modularity with the MPS language work-
bench. 2012, 1449–1450 pp.

[10] Hartel, P. H.; Muller, H. L. Simple algebraic data types for C. Software:
practice and experience, volume 42, no. 2, 2012: pp. 191–210.

[11] Voelter, M.; Ratiu, D.; et al. mbeddr: an extensible C-based programming
language and IDE for embedded systems. 2012, 121–140 pp.

43

https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html

[12] Stallman, R. M.; Weinberg, Z. The C preprocessor. Free Software Foun-
dation, 1987.

[13] Stroustrup, B. The Design and Evolution of C++. Addison-Wesley Pro-
fessional, 1994.

[14] Kats, L. C.; Visser, E. The spoofax language workbench: rules for declar-
ative specification of languages and IDEs. ACM sigplan notices, vol-
ume 45, no. 10, 2010: pp. 444–463.

[15] Kelly, S.; Lyytinen, K.; et al. Metaedit+ a fully configurable multi-user
and multi-tool case and came environment. In International Conference
on Advanced Information Systems Engineering, Springer, 1996, pp. 1–21.

[16] Van Wyk, E.; Bodin, D.; et al. Silver: An extensible attribute grammar
system. Science of Computer Programming, volume 75, no. 1-2, 2010: pp.
39–54.

[17] Kaminski, T.; Kramer, L.; et al. Reliable and automatic composition
of language extensions to C: the ableC extensible language framework.
Proceedings of the ACM on Programming Languages, volume 1, no. OOP-
SLA, 2017: p. 98.

[18] Eysholdt, M.; Behrens, H. Xtext: implement your language faster than
the quick and dirty way. 2010, 307–309 pp.

[19] Coffield, D.; Shepherd, D. Tutorial guide to Unix sockets for network
communications. Computer Communications, volume 10, no. 1, 1987: pp.
21–29.

44

Appendix A
Acronyms

ADT Algebraic Data Type.

ADTs Algebraic Data Type.

AST Abstract Syntax Tree.

devkit Development language package.

DSL Domain Specific Language.

EBNF Extended Backus-Naur Form.

FP Functional Programming.

IDE Integrated Development Environment.

45

Appendix B
Contents of enclosed USB drive

readme.txt..........................USB drive file contents description
MPS-mbeddr-2018.3.5.........Directory with MPS editor with Mbeddr

bin...MPS executables
mps.sh.......................................Script to run MPS

Scenario.............................Directory containing my solution
ScenarioLang..Directory containing language concepts for the match
statement
Documentation.............Directory with LATEX thesis source codes

text .. Directory with thesis text
thesis.pdf...........................the thesis text in PDF format

47

	Introduction
	Pattern matching
	Guard conditions and pattern matching
	Pattern matching and Algebraic Data Types

	Design
	Pattern matching in C - overview with examples
	Wildcards and variables
	Case pattern literal matching
	Matching of composite structures
	Implicit null checks
	Guard conditions
	Examples of enumeration and ADT
	Limitations

	Semantics of the match statement
	Variable definitions inside cases
	Semantics of the guard condition
	Case code block

	Syntax for the match statement
	Typing rules
	Type inference for pattern variables
	Explicit struct types

	Implementation
	Choosing implementation strategy
	Solutions similar to mine
	Language workbench
	Xtext
	MPS

	Mbeddr
	Graph of usage

	Differences between Mbeddr and C11 standard
	Stronger primitive typing rules
	String type
	Automatic typedef for structs
	Internal and External modules

	Unreachable code detection
	Testing
	Translation tests
	Performance tests
	Unit tests

	Evaluation
	Balanced Binary Tree Insertion
	Binary Tree Comparison
	Finding maximum in a list
	Pattern matching used in UNIX networking structures
	Coin sorting machine

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB drive

