
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 25, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Deep Town Guild Support System

 Student: Daniel Hampl

 Supervisor: Ing. Marek Suchánek

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Based on a conceptual-model based analysis, design and implement a modular system using web services
and apps to support guild activities within the mobile game Deep Town. The system must be able to gather
and appropriately transform necessary data from the game, store it using a well-defined data model and
provide it to other services using documented and secured APIs. The system will then contain at least two
such services for a presentation of stored data:
- Web application with responsive design (for desktops as well as mobile devices) with guild search and
details, leaderboards, and other useful content.
- Discord chatbot that allows to query information directly in chat.
Substantiate your choice of used technology (libraries, frameworks, etc.). Test the system using unit and
integration tests. Document your system to allow community development of new applications for your
system. In conclusion, evaluate the benefits of your solution in comparison to similar existing solutions.

References

Will be provided by the supervisor.

Bachelor’s thesis

Deep Town Guild Support System

Daniel Hampl

Department of Software Engineering

Supervisor: Ing. Marek Suchánek

May 12, 2019

Acknowledgements

First of all, I would like to thank my supervisor Ing. Marek Suchánek, who has
been here for me, day and night, seven days a week, answering my questions
and providing me with vital information and sources, guiding me through my
work on this thesis. I would also like to thank Rockbite and especially Davit
Yeghiazaryan for granting me the means to create this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance
with Article 46(6) of the Act, I hereby grant a nonexclusive authorization
(license) to utilize this thesis, including any and all computer programs in-
corporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 12, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2019 Daniel Hampl. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Hampl, Daniel. Deep Town Guild Support System. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato bakalářská práce popisuje management gild v mobilńı hře Deep Town a
analyzuje nyněǰśı zp̊usoby sběru dat o hráč́ıch z této hry. Následně je navrhnut
efektivněǰśı zp̊usob sběru dat, který je poté využit pro tvorbu modulárńıho
systému, který sb́ırá, ukládá a dodává zmı́něná data uživatel̊um. Nakonec
je tento systém otestován pomoćı unit a integračńıch test̊u pro zajǐstěńı jeho
stability.

Kĺıčová slova DeepTown, Deep Town, Deep Town Admin Tools, DTAT,
DeepTownAdminTools, hra, data, API, mobil, Python, Discord bot

vii

Abstract

This thesis describes guild management in the mobile game Deep Town and
analyses current ways of gathering data about players from this game. Af-
terwards, a more efficient way to gather said data is designed, and it is then
used to form a modular system, which gathers, stores and provides said data
to users. In the end, the system is tested using the unit and integration tests,
thus ensuring its stability.

Keywords DeepTown, Deep Town, Deep Town Admin Tools, DTAT, Deep-
TownAdminTools, game, data, API, phone, Python, Discord bot

ix

Contents

Introduction 1
Goals . 1
Structure . 2

1 Analysis 3
1.1 Deep Town . 3
1.2 Current solutions . 4
1.3 Requirements . 5

2 Technology 7
2.1 Database . 7
2.2 Server . 8
2.3 Website . 10
2.4 Discord bot . 10

3 Design 11
3.1 Architecture . 12
3.2 Rockbite’s API . 12
3.3 Database . 14
3.4 User Interface . 16
3.5 Business logic . 20

4 Implementation 23
4.1 Main server . 23
4.2 Web server . 24
4.3 Website . 25
4.4 Discord bot . 25
4.5 Cron . 25
4.6 Security . 26

xi

5 Testing 27
5.1 Main server . 27
5.2 Web server . 27
5.3 User interface . 28

Conclusion 29

Bibliography 31

A Acronyms 33

B Contents of enclosed CD 35

xii

List of Figures

1.1 Player information . 4
1.2 Player list . 4

3.1 Architecture model . 11
3.2 Database model . 14
3.3 Home page – phone . 16
3.4 Home page – desktop . 17
3.5 Retrieving data about a player . 20
3.6 Retrieving data about a player’s donations 22

xiii

Introduction

I have been playing a mobile game called Deep Town for over two years now.
It is a game, where players mine resources, which are then used to build
an infrastructure. After a player builds a sufficient infrastructure, they can
choose to join a guild, and participate in various guild events. To participate
in these events, players need to gather a specific amount of various items, for
which is the guild rewarded.

In order to maximise the guild efficiency guild leaders need to know the pro-
cessing potential of each guild member. It is possible to view player details,
but only a single player at a time, without any way of copying the data apart
from taking a picture, or rewriting the data shown. Thus, there is no compre-
hensive way to view the entire guild’s information at once without wasting a
considerable amount of time.

Most guilds also make a periodic participation leaderboard, for which someone
needs to rewrite player nicknames and their donation score. Afterwards, it
needs to be compared with the previous time this was done, as players can
only view donations since the start of the game. Thus making it quite time-
consuming and dull job, which hardly anybody would want to do.

Over the time I spent playing this game, I became an administrator of one of
the top guilds, and I have personally met with these problems. Thus, I have
decided to choose this topic for my Bachelor thesis, and make a comprehensive
tool, allowing players to gain easier access to information like that.

Goals
The goal of this thesis is to make an easily extensible modular system, that
allows players to view information from game Deep Town. This system has
to be thoroughly tested to guarantee system integrity and ease of future de-
velopment.

1

Introduction

This system will have two options for the representation of acquired data.
The first one will be a responsive website, allowing access to necessary data
through a mobile phone or PC. The second option will be a Discord bot, as
most of the guild organisation in this game is primarily through this service
(Discord).

This system should also be well documented to allow smooth future develop-
ment. There should also be some comprehensive documentation within the
Discord bot to allow its use without any hindrance.

Structure
This thesis follows the traditional software engineering approach. In the begin-
ning, Chapter 1 will be focussing on the analysis of Deep Town itself, followed
by current solutions related to our problem as well as similar cases in other
games. Afterwards, the analysis chapter will conclude with a description of
the functional and non-functional requirements for our system.

Chapter 2 will be a follow up on the requirements, that have arisen from the
analysis, evaluating the advantages and disadvantages of different technologies
needed.

Chapter 3 will be concerning the system design starting with the system ar-
chitecture, followed by GUI and database, and concluded by the business
logic.

Chapter 4 will describe the implementation of the whole system including the
choice of frameworks and technologies based on the second chapter.

Chapter 5 will describe the testing of the whole system with unit and integra-
tion tests.

In the end, this thesis will be concluded by evaluating the completion of set
goals and listing options for future improvement, that arose during develop-
ment.

2

Chapter 1
Analysis

1.1 Deep Town
Deep Town is a mobile game, where every player acts as AI (artificial intel-
ligence), whose purpose of existence is resource gathering, construction and
replication. At the start, each player appears on a planet isolated from ev-
eryone else. Afterwards, they need to gather resources and build essential
infrastructure, in order to be able to communicate with other AIs (players).
Afterwards, they gain the ability to join or form a guild.

Each guild is a collective of up to 50 players, one of them being admin and
in most cases few moderators selected by the admin. Players in one guild
can request and donate resources to each other. That is done by one player
requesting a specific amount of resources and others within the guild can then
donate to reach the set goal. Every week there is also a guild event which
requires players to donate four types of items in order to gain experience
points and various other rewards.

Guild leaders usually want to monitor their players’ activity, which can be
done using the player information card [Figure 1.1], where total donations
and last time a player was online are listed among other things. Recently
even the last event donations were added, which saved much time to many
guild leaders, but there is still no easy way to store the displayed data, which
leads to players rewriting the displayed data to an excel sheet, in order to
have a notion about the overall player activity. What makes it even harder is
the fact, that every player’s data are displayed separately, thus when anyone
wants to copy the last event’s donations, they would have to display each
player, copy a number, and then move on to another player.

Most of the top guilds also monitor the processing capability of each member
in order to set achievable goals for each guild event and to effectively distribute
labour. That is either done by rewriting building levels of each player to some

3

1. Analysis

Figure 1.1: Player information
Figure 1.2: Player list

excel sheet or having the members fill it in, which could be an aggravating
task, as the building levels change and, the sheet needs to be updated.

1.2 Current solutions
Currently, there are two ways people are getting donation data from Deep
Town. First is rewriting the data either from a game screen directly or from
its screenshots, since it takes a considerable amount of time to rewrite it all,
and it is better to take the records at the same time for every player to ensure
data precision. That can be done either from the player information card
[Figure 1.1] or directly from the player list [Figure 1.2], where only overall
donations and names are listed. The second option is sniffing of the game
API which requires a fair bit of knowledge regarding IT thus being the less
used option among the guilds.

For gathering rest of the player data, guilds usually rewrite the data from the
game screen, either having a single person do it, or forcing every member to
fill in their data. In some cases, guilds also used sniffing the game API as the
means to gather player data, but this was less common than in the case of
gathering only donations. Most likely the reason for that is the fact, that the
game API does not show building levels while listing all players. Therefore, it
is needed to list details for each player separately.

When we take a look at data gathering in other games, for example at League
of Legends or Defense of the Ancients otherwise known as LOL or DOTA

4

1.3. Requirements

respectively, they provide a public API in order to offer their community access
to all the interesting data they store. Many sites, for example Lolskill [1] or
Dotabuff [2], run on these public APIs providing access to match history,
player information and lots of other useful data.

In the case of browser games, where there is no public API, for example,
Ikariam the data gathering can be done using JavaScript document object
model. This method was used in the Ikalogs project, where authors used a
chrome plugin to gather player’s data in order to store them in their database
and later on display on their website. [3]

1.3 Requirements
1.3.1 Functional
The system needs to offer the option to search for a guild and display its
players and their information containing their name, level and building levels.
There also has to be an option to show donations given/received over a set
period. Especially during guild events, as these donations are vital to the
organisation of every guild.

As most of the guilds organise on Discord, there has to be a Discord bot
providing access to the stored data. The same access has to be ensured even
with the website, which has to be another access point, in order to offer the
functionality to those guilds that do not organise on Discord.

1.3.2 Non-functional
Since Deep Town is a mobile game, the website needs to be responsive to
ensure good usability on mobile devices as well as desktops.

The whole system needs to be well secured to ensure server stability and
trustworthiness of the provided service. Moreover, to ensure software quality,
this system needs to be well tested, documented, and it needs to be written
following appropriate conventions.

5

Chapter 2
Technology

As part of our system, we will need a database to store data, a server to access
the database and provide data to two front end interfaces website and Discord
bot.

2.1 Database
First, let us take a look at the comparison of traditional SQL databases and
their NoSQL counterparts. This comparison will be based on an ACM arti-
cle ”Comparing NoSQL MongoDB to an SQL DB” [4], where authors base
their comparison on relatively small databases. In the aforementioned article,
authors are using probably the most widely known NoSQL database Mon-
goDB and Microsoft SQL Server Express database as a representative of SQL
databases.

In conclusion of their research, the authors found, both databases indifferent in
speed while inserting data. While updating database data using the primary
key was much faster on the MongoDB, than the SQL database, this being
most likely due to default indexing of the primary key in MongoDB. On the
other hand, updating using non-primary keys such as string formatted name
the SQL database outperformed the NoSQL database by a similar margin. If
we take a look at more complex queries, MongoDB was much faster than its
SQL counterpart up to a point, where results could not even be displayed in
one graph.

However, while using an aggregate function (average), the SQL database out-
performed MongoDB by about 23 times. MongoDB also has other strong
sides, such as high scalability, not requiring a rigid schema as SQL databases
do and the option to be easily turned into a distributed database, but NoSQL
databases are still new and cannot compare to the support, that most SQL
databases have as SQL can still be considered an industry standard.

7

2. Technology

Let us take a look at two representatives of SQL databases. They are both
free, open-source and widely used, thus offering ample support from their
respective communities and ensuring prompt patch for any potential bugs.
The first one being a small and simple SQLite database and the second one
being rather larger and more complex PostgreSQL database. According to an
article published on DigitalOcean talking, among other things, about these
two databases [5], the SQLite database is often used for testing or as a disk
access replacement, it is quite fast but can only be accessed for writing once
at a time, which is caused by direct access to system storage. Hence it is more
suitable for smaller, less complex systems, testing and development.

On the other hand, PostgreSQL can offer multiple writing sessions at once,
thanks to the server process encompassing the data storage. It offers permis-
sion management unlike the SQLite, which is only a file on system storage.
It also offers a wide variety of data types including binary encoded JSON or
universally unique identifier. The PostgreSQL is also slightly harder to set
up and more demanding on memory, as it allocates 10MB for each request
session.

2.2 Server
In this section, I will be evaluating different programming languages, that
might be used for building a web server. Out of all of the programming
languages at my disposal, I have chosen C++, Java, Python and NodeJS as
candidates to be used in this system. I have chosen these languages mainly
for their large user base, which will most likely come in hand while resolving
any problems encountered during the implementation phase.

2.2.1 C++
Personally, I am fond of C and C++ since it allows the programmer to decide
everything for themselves. Fully understand their code, and the inner workings
of the final program, where the memory is stored, when it is cleared, how it is
cleared and the form in which it is stored. However, this might not always be
an advantage, as it can be an arduous task, to have to take care of every minor
part of your system yourself, as opposed to letting the compiler or interpreter
take care of cleaning memory and other miscellaneous matters.

According to Martin Reddy in his book API Designs for C++ [6], most web
services use scripting languages like PHP, Perl or Python, however, if we take
a look at larger scaled web services, like Facebook, C++ is used to achieve
higher performance with the use of tool called HipHop, which converts PHP
code into C++.

Thus, in conclusion, C++ is more useful, when used for larger systems, where
performance is vital, and the speed of delivery is less important.

8

2.2. Server

2.2.2 Java
Java is a higher levelled programming language if compared to C++, it still
allows the programmer to control a lot of its behaviour, but it offers the op-
tion to take care of many miscellaneous matters, for example cleaning memory
with the garbage collector. It also offers various integrated development envi-
ronments, such as Eclipse or Netbeans providing the option to autogenerate
chunks of code, and thus saving much time for the programmer using it.

On the other hand, according to L. Prechtel and his empirical comparison [7],
Java has a higher overall memory consumption and lower performance, which
is caused by it running on top of a virtual machine.

Therefore, it could be said that Java is an excellent middle ground for de-
veloping web services, but Java still lacks, if precise memory manipulation or
highest performance is needed.

2.2.3 Python
Python is a high-level programming language, offering dynamic typing, and
thus relatively easy to use and often recommended as a first programming
language to learn. According to D. Sarkar [8], Python cannot achieve the
same performance efficiency as C or C++. However, it can match up to Java
(or even outperform it) [7], especially with the use of various optimisations
Python offers.

Python also has a wide opensource community offering over 80,000 packages,
which you can freely install and use, thus offering a tool for almost anything
you might need.

On the other hand, Python also has a few vital flaws. One of them is the Global
Interpreter Lock, otherwise know as GIL, which ensures, that each instance of
Python can run only one thread at once, even on multi-core processors. That
can be resolved by running more instances of Python for example with the
use of Apache server, to manage these multiple instances.

Another flaw is the incompatibility between versions, not only 2.7.x and 3.x
but even between various 3.x Python versions, where once flawless code might
stop working after updating to a newer version of Python.

In conclusion, Python is an excellent choice for any system, where the goal
is the speed of development with reasonable performance and possible future
optimisations.

2.2.4 JavaScript
JavaScript has been according to GitHub the most used programming lan-
guage for the last five years [9], thus offering high community support and a
wide variety of packages. Using JavaScript for server-side development also

9

2. Technology

brings the benefit of having the same programming language on the front-end
as well as the back-end. [10]

Another great thing about JavaScript is the native support of JSON format-
ted data, which is one of the most widely used formats for transferring data
through web services. As such it can save time and memory while dealing
with web services.

On the other hand, unlike Python or many other interpreted languages for
that matter, JavaScript can only run a single thread in every instance at a
given time, thus needing to create multiple instances, to be able to use a
multi-core processor to its limit, such as web workers. [11]

In conclusion, JavaScript is a great tool, for developing web services offering
the option to have one team of developers with expertise in JavaScript de-
veloping both, front-end as well as back-end. It can offer fast development,
and reasonable performance, thus being a great candidate for building various
systems.

2.3 Website
There are many options for developing a website, which is connected to some
sort of back-end server. These options are highly dependent on the technology
used on the back-end server, for example, if the server is built using Java, then
Java framework Vaadin might be useful, as it efficiently communicates with
the rest of the system.

The front-end of the system can also be made traditionally using HTML,
CSS and JavaScript, which is one of the most common approaches for small
websites. [12]

In larger projects, websites are often developed with the use of various JavaScript
frameworks, such as Angular, or React, often offering cleaner and smoother
approach.

2.4 Discord bot
When we take a look at options for developing a Discord bot, we can find
a framework of some quality, for pretty much any programming language
commonly used for development, from C++ to Pharo.

From all these options I chose JavaScript and Python frameworks, as they are
maintained up to date, thanks to wide communities both these languages have.
Both of these frameworks offer approximately the same pool of functions.
Hence, the difference between them is more about user’s preference, than
anything else. [13, 14]

10

Chapter 3
Design

After careful analysis of current solutions within Deep Town as well as other
games, I was left with two viable options. The first one was, using the pri-
vate API revealed through sniffing the game’s traffic. However, this option
was rejected after further analysis, as it leads to a ban of the account being
used.

The second viable option was to try and go through the official channels
and negotiate access to their API. After some negotiating with Rockbite (the
company developing Deep Town) decided to create new public API in support
of my project, which led to the following design.

Figure 3.1: Architecture model

11

3. Design

3.1 Architecture
The whole system will be comprised of 7 parts (as shown in Figure 3.1), the
Rockbite’s API, central server, database, web server, website, Discord bot and
a CRON script. I have decided on this layout, as it will offer easy extensibility
and interchangeability of all the system parts.

3.2 Rockbite’s API
The Rockbite’s API will be the cornerstone of this project, as it will supply
the entire system with data. As of now, it has two methods. The first one
[Listing 3.1], providing a list of guilds matching a string, and the second one
[Listing 3.2], listing guild data, including a list of players and their informa-
tion.

{
" status ": "ok",
" result ": [

{
" guild_id ": "58 a28c884c1b9c33a06c38f0 ",
" guild_name ": " DigDeep ",
"level": 0

},
{

" guild_id ": "58 ae885b134e2d6900f6aae9 ",
" guild_name ": "Deep Town",
"level": 0

},
...

],
" server_time ": "2019 -04 -06 T20:22: 39.979 Z"

}
Listing 3.1: Rockbite’s API – find guild

12

3.2. Rockbite’s API

{
" status ": "ok",
" result ": {

" guild_id ": "5919 a8e24459ba06a0cfd66d ",
" guild_name ": " Shallow and Clean",
" guild_level ": 29,
" total_donations ": 275660697.09599996 ,
" total_level ": 21062,
" average_level ": 438.7916666666667 ,
" members ": [

{
" user_id ": "100272797148346171200" ,
" user_name ": "Feo",
" donations ": 882671 ,
" received_donation ": 654362 ,
" last_event_donation ": 0,
" last_online ": "2019 -04 -04 T03:06:

01.040 Z",
"level": 459,
"depth": 1080,
" smelters_count ": 8,
" crafters_count ": 8,
" miners_count ": 25,
" oil_building_count ": 2,
" chemistry_mining_station_count ": 12,
" green_house_building_slot_count ": 8,
" chemistry_building_slot_count ": 8,
" jewellery_building_slot_count ": 8

},
{

" user_id ": "G: 800869535" ,
...

},
...

]
},
" server_time ": "2019 -04 -04 T13:01: 21.327 Z"

}
Listing 3.2: Rockbite’s API – guild by ID

13

3. Design

Figure 3.2: Database model

3.3 Database
The system database will need to be able to efficiently store all the data
provided by Rockbite’s API. It will have four tables namely guild, player,
timestamp and count. All of these tables will have an integer with name id
as a private key. A signed integer will be enough for over 11 years even even
while using Rockbite’s API up to its limit. 1

3.3.1 Guild
The guild table will include a name, rockbite id, level and timestamp.
The guild name will be a maximum of 32 characters in length. Furthermore,
it cannot be made unique, as multiple guilds in Deep Town can have the same
name.

The rockbite id will be a unique string of a maximum length of 32 characters.
It will store the id provided by Rockbite to ensure uniqueness of every guild,
which seems to be a string formatted hexadecimal 12-byte number. However,
as IDs provided by Rockbite does not seem too reliable, as in the case of

1 max integer value
max requests per day × max players in guild × days in year = max years of use

2147483647
10000 × 50 × 365 = 11.77

14

3.3. Database

a player they appear in multiple formats, thus I have decided to use string,
which can be used to store almost anything, that might appear.

For storing the information about guild level usual integer will be used. As
for the timestamp, it will store a date and time in the coordinated universal
time zone. This information will later be used to discern, which guild is being
used and thus needs to be updated.

3.3.2 Player
The player table will store information about players. It will have a foreign key,
guild id, forming a relationship of a player being a member of a guild.

The player table will also contain a player name, which multiple players can
share. This name will be stored as a string with a maximum length of 32
characters. Since the player name is not unique, we will also need to store the
id provided by Rockbite, which is provided as a string with multiple formats,
thus raising the need for new id, mentioned at the start of this section.

Rest of the information provided by the Rockbite’s API will be stored as shown
in [Figure 3.2], the player level, depth, last events donations and levels of
various buildings as an integer type and the information about players last
online status as a timestamp in the UTC timezone.

3.3.3 Donations
To be able to store information about donations over a period we need to know
total donations at the start and the and of said period. Each guild also has
between 1 and 50 players. Thus I have decided to split the date and donation
values of each player. Therefore being able to store the information about
donations without wasting space.

The timestamp will have the aforementioned id, guild id and date. The
guild id will be a foreign key, specifying the relationship between timestamp
and guild, thus describing, which guild the concrete set of donations belongs
to, and allowing faster querying. The date parameter will be the usual times-
tamp in the UTC timezone storing the time, at which the donation snapshot
was taken.

The count table will store each player’s donation values at the given time.
These values will be stored as big integers, as some the players have reached the
limit of integer in this regard. This table will also have two foreign keys. The
first one being the timestamp id, which will form a relationship between the
count of a specific player and a timestamp. The second foreign key being the
player id, describing a relationship between the count and a player.

15

3. Design

Figure 3.3: Home page – phone

3.4 User Interface
There will be two user interfaces. The first one is a responsive website for
mobile devices as well as desktop computers with high resolution, providing
access through a web browser. The second one is a Discord chatbot, which of-
fers interaction and access to necessary data through the Discord client.

3.4.1 Website
Instead of wireframes, I have decided to create a prototype for the website
and afterwards fill it with data using the public API, thus attached pictures
were taken from the beta version of this new system.

All pages on this website will share the same navbar. With a click on the logo
or Home link, the user will be redirected to the home page. In case of click on
the about section, the user will be sent to a page with short introduction and
disclaimer required by Rockbite, stating, that this is not an official project of
theirs. The Discord bot link will lead to a page, where users can invite the
DTAT (Deep Town Admin Tools) Discord bot to their Discord server.

16

3.4. User Interface

Figure 3.4: Home page – desktop

The source link will be pointing to the DTAT organisation on GitHub, where
users can post issues or extend the system with their content. The guilds
link will lead to the page, where all guilds within the system database will be
listed. In case, that said user already visited one or more guilds on the current
device the navigation bar will also include a last visited section, which will
show a list of up to 8 guilds, to allow the user easier access.

Upon entering the homepage, the user focus will be moved to the search bar
in the centre of the screen, which will allow the user to instantly search for
their desired guild with either press of the search button or the enter key on
users keyboard. The user can either decide to enter a string matching a guild
or search without entering any. In the former case, guilds will be filtered, to
match the said string and in the latter case, all guilds will be displayed in the
list.

Once the user arrives at the guilds page, there will be a table of guilds with
their names and level. The user can decide to list 10, 25, 50 or 100 rows at any
given time and to search using name or level. This table can also be sorted
in either descending or ascending order using both level and name. Once the
user found their desired guild, they can access its detailed information with a
click at the table row, which will redirect them to the guild page.

On the guild page, a secondary navigation bar appears. It will include options,
to redirect to the donation page or export guild data to a CSV format, as some
users still want to keep their guild’s data in excel sheet for various purposes.
Under the secondary navigation bar will be a guild name followed with a list
of columns allowing to toggle said columns in order to allow better viewability
and followed by a table with guild data. This table also has the option to
change the number of results shown and to search the table contents using
any of the displayed rows.

17

3. Design

If the user decides to enter the donations page, there will be two tables dis-
played with a single row each containing a list of timestamps. There, the user
will get the option to select one row from each table, and afterwards click
at the count donations button. Afterwards, another table will be created at
the bottom of the page. In this table, the name of each player and donations
donated and received will be listed.

3.4.2 Discord bot
The Discord bot will have two main commands, every command will start
with an exclamation mark, in order to faster discern, which message is meant
for the bot.

The first main command being ”!guild” or ”!gld” for faster use. This com-
mand can be used either alone or followed by a guild name (”!guild any guild
name”). If a guild name is included, it will list only guilds matching this
name. Otherwise, it will list all the guilds within the system database. Since
Discord limits every message’s length to 2000 characters, these lists will need
to be split into parts. In the case of the guild list, each part will have 20 guilds
and allow for switching between parts with sending n or p to go to the next
or previous part respectively.

Once the user finds their guild, they can send the number the guild has been
assigned, which will in turn print a list of attributes which can be displayed
and ask the user to list those, the ones to be displayed. The user will then
send a message with numbers separated by a space, the first number signifying
the column to be used for sorting and the rest of the numbers marking the
columns to be displayed. Finally, the bot will send back one or more messages
listing the guild data requested. This list might be split into parts depending
on its length.

The second main command will list donations donated and received. It as two
options ”!received” and ”!donations”. The donations command will return a
list of donations sorted by donations given, and the received command will
return the same list, just sorted using the received donations.

The received command also has a short version to it (”!rec”), and not unlike
the guild command, it can be followed by a guild name or used alone. Once
invoked, it will list guilds in parts of up to 20 elements. After the user chooses
one of these by sending a message with its number, the bot will respond with
a list of timestamps offering the user to choose one. Once the user chooses
and sends the required number, he will be given another option to select
a timestamp. Afterwards, the bot will send the donations over the period
defined by those two timestamps.

18

3.4. User Interface

The donations command works the same way as the received command. The
only difference is that the results are sorted by donations donated instead of
received. Not unlike the received command it also has a shortened version
”!don” in order to make it faster to use.

This Discord bot will also have the necessary ”!help” command, which will
list all the commands available or detailed information if followed by another
command (”!help guild”) without the usual prefix. There should also be mis-
cellaneous commands, like ”!web” which will return a link to the website, as
some users might prefer that option over the chatbot interface.

19

3. Design

3.5 Business logic

Figure 3.5: Retrieving data about a player

Main two features of this system are to display donations [Figure 3.6] and
player [Figure 3.5] information. To display donations, the user first needs to
choose a guild. This guild can either be already in the database or not yet
loaded. In the case of the guild already being in the system database, it can
be found either in the list of all guilds or searched by its name, which will
show a list of guilds matching the name provided, from which the user can
choose and move on to the next step.

20

3.5. Business logic

However, if the guild is not yet in the system database, it first needs to be
loaded. That is done with the use of the first API method provided by Rock-
bite [Listing 3.1]. Using this API method, we will gain the basic information
about a few guilds matching the provided name, add them to the system
database, if they are not already there, and list them for the user to choose
one.

After the user displays the list of guilds, they can either choose to select one
and continue further or ask for an update, which will load guilds from the
Rockbite’s API. This manual update is here for the cases when guilds with a
certain name are already loaded in the database, but the user created a new
guild with the same name and needs to load it to the system database.

After selecting a guild, the user will get to select two dates, including ”now”.
If the user selects an interval delimited by now, it will update all guild data
including current donation values for all players within the selected guild. In
the case of the interval being selected from the past dates, the already saved
values will be used, and no update will occur. Afterwards, donations over the
selected period will be counted and returned for the player to see.

The second main feature is relatively similar to the first one described above. A
guild first needs to be selected by using the same process. Afterwards, once the
guild was selected, the database will be checked, if the guild has necessary data
loaded, or only the basic information about the guild is present. In the former
case, the guild data will be listed. In the latter case, the information will first
need to be requested through the Rockbite’s API, saved to the database, and
afterwards served to the user.

In order, to be able to provide data about donations over past periods, this
system will need to keep all guilds, whose donations or data has been listed
within last month updated.

21

3. Design

Figure 3.6: Retrieving data about a player’s donations

22

Chapter 4
Implementation

After evaluating different technologies, I have decided to use Python for de-
veloping most of the DTAT system. The reason for this choice is mainly the
inconsistency in the API created by Rockbite. Where, in some cases, infor-
mation appears in different formats (integer, string). As such I have decided
to use a dynamically typed programming language, to avoid any issues with
formats provided by the API.

Moreover, Python enforces its indentation and thus offering a stable code
style, which will be helpful in future development. In addition to that, I’m
more experienced with Python than with JavaScript, which also helped with
the selection process.

4.1 Main server
For the main server, I have decided to use Python 3.7, as it is currently
the latest stable version. After settling on Python, I chose the Flask[15]
framework. It does not have as many features, like Django[16]. However,
I wouldn’t have any use for most of these.

Thus, Flask was a perfect choice for me, as it gives me full control over the
entire application. Moreover, it has minimal complexity and therefore is easily
understood and extended, which will be vital in future development. It also
has a large community and excellent documentation with all the necessary
examples.

The SQLAlchemy integration for flask also offers an easily settable database
connection to any SQL database you might want to use without any changes
in code. Thus everyone, who would wish to run this system can choose their
SQL database. I have chosen SQLite for testing and development, as it is easy
to set up and PostgreSQL for the production deployment.

23

4. Implementation

It is also possible to connect Flask to the MongoDB using the MongoAlchemy
Flask extension[17], which is very similar to SQLAlchemy[18]. However, I have
decided to stick with SQL databases for this project, as the MongoAlchemy
Flask extension[19] has open and unanswered issues from a couple of years
ago. Thus not being the most reliable framework.

For gathering data from the Rockbite’s API, I chose the Requests framework,
as it has quite detailed documentation and is quite easy to understand and
use. However, when using it on my personal computer, i ran into an issue,
where every request using URL took approximately 5 seconds longer than
when done with IP address directly. It appears to be a known issue, and for
some reason, it did not occur at the production server. Thus I decided to stick
with the Requests framework instead of the urlib3, which allows a more direct
approach but doesn’t have as many options.

To ensure modularity of the main server, it is split into models, services and
API methods. API methods are bundled into blueprint modules and after-
wards imported into the Flask application. Thanks to this layout, it is possible
to add a new API method, disable or modify a current one with relative ease
and without any changes to other parts of the server.

Moreover, API methods are here only as an interface, and all business logic is
within services. These services can be imported through the entire server, and
are bundled according to their usage, thus offering the option to reuse already
written code and therefore being in accordance with the DRY (Do not Repeat
Yourself) principle.

The last part of this server are the models, defining the data structure of
the main server as well as defining database layout. These models can be
easily modified with the option to immediately update the database to the
new layout using the Flask migrations module.

4.2 Web server
The web server, same as the main server, is written in Python 3.7 and uses
the Flask framework. It has two main functions acting as a proxy server
for the main servers public methods and to serve web pages for the DTAT
website.

To request data from the main server, the Requests library is used for the
aforementioned reasons. The URL for access to the main server is provided
through a config file. Hence it is possible to easily change the port and URL
of the main server.

24

4.3. Website

4.3 Website
The website is written using HTML, CSS and Bootstrap. I chose these tech-
nologies because I’m new to website development, and I decided to learn the
basics, before starting with advanced frameworks, such as Django, or Re-
act.

As for the smaller frameworks, I have used the DataTables[20] framework for
managing tables, as it offers all the features needed and is relatively simple
to use. Another framework I have used was Moment, which was used for
formatting and sorting timestamps.

4.4 Discord bot
To create the Discord bot, I have used Python, to keep as much of the system
in one language. However, it uses Python 3.6, because of the discord.py library,
which is not yet updated for newer Python versions.

The Discord bot also uses the Requests framework for accessing the main
server’s API. With minor modifications, it can also be connected to the public
API provided by the web server from any machine, thus offering the option
for self-hosting a modified version of the Discord bot.

One of the problems, I have met with during the bot development, was the
2000 character limit for each message. Because of this limit, it is impossible
to print an entire table at once. Therefore I have created a function, that
accepts a starting text, an array of arrays with data that should be printed,
formatting function and two optional parameters, list of visible columns and
list of columns with a set width. Afterwards, the function finds an appropriate
width for each column not marked as fixed and marked as visible, and prints
the table formatted data in one or more messages.

4.5 Cron
To offer up-to-date data to all users, there is a need for periodic updates.
Thus, I have decided, to provide daily updates for all active guilds2, at the
same time, as the weekly event starts and ends. Moreover, any user can request
an update for the selected guild at any given time. This is only limited by up
to one update per ten minutes, which is necessary, to provide services to all
users, and not waste away the entire request limit on one guild.

These updates can be carried in two ways. First is the private API method,
which updates all active guilds. However, due to the possibility of a failed
update, which could occur in a case, when the main server is offline or is
having some issues, I have decided to implement the second option.

2guild, that has been viewed in last month

25

4. Implementation

The second option is Flask command, which can be accessed through com-
mand prompt, and will start its own session. Therefore, it is independent on
the main server, which will ensure smooth update regardless of any problems
with the rest of the system.

4.6 Security
To ensure the system security, the main server will be deployed as a local
server, without the option to be accessed from outside. Afterwards, the web
server will act as a proxy server relaying public methods for use by the website
or any other tools developed by a third party. Moreover, the web server will
be a local server as well, and Nginx will provide proxy between outside word
and the web server. Using this method, it will be possible to limit the request
frequency for each user, thus offering services for everyone, even with the use
of a low spec server.

The Discord bot will be hosted on the same server, thus being able to access
the local server. In case of the Discord bot being hosted on another machine
a VPN can be used, or it can be connected to the public API. This option
offers everyone to modify their version of the Discord bot and host it on their
machine without the need for hosting the rest of the system.

I have decided on this approach, as it is fast to set up, there is no need for
any tokens or login, which would lead to storing user information, and thus
issues with GDPR (General Data Protection Regulation) would arise. This
way I managed to avoid all these problems and the system security is still
intact.

26

Chapter 5
Testing

In this chapter, I will be describing the testing of different parts of the DTAT
system.

5.1 Main server
The main server was tested with, both, unit and integration tests, with the
help of Python packages Mock[21] and Pytest[22]. I have chosen the mock
package because of their comprehensive guide, which described all the features
I needed and was easier to understand, than for example the Monkeypatch[23]
module.

As for the Pytest package, I have decided to use it because it offers many
built-in fixtures as well as the option to create custom fixtures with relative
ease. It also automatically collects all tests and delivers needed fixtures to
those functions, that require them. Moreover, the Pytest package is also
recommended for testing in the flask documentation[15].

During the testing one issue occurred with the Mock package. I was trying to
mock objects imported from a file, which contained a function with the same
name as the said file, and the function was then imported to a module above.
Because of this setup, I was unable to specify a correct path for mocking those
objects, because the file was covered with the same name function contained
in the said module. This issue was resolved by renaming files, which matched
the description above.

5.2 Web server
The Web server was tested only briefly through manual testing because it
only works as a proxy server and for serving website content. Moreover, for
all those features, mostly third-party software was used, and business logic is
minimal. Thus the need for complex testing did not arise.

27

5. Testing

5.3 User interface
Both user interfaces website and Discord bot were tested during the beta
stage of development by a selected group of users. These users then noted
bugs they found together with suggestions for future updates, of which some
were implemented, such as the option to export data to CSV format.

In addition to that, selected parts of the Discord bot were also tested through
the unit tests with the use of Pytest and Mock.

28

Conclusion

In the conclusion of this thesis, all the aims set were successfully met, and
the DTAT (Deep Town Admin Tools) system was implemented and deployed
for use by the general public. After careful consideration, Python was used
to write most of this system, as well as various Python frameworks, such as
Flask, SQLAlchemy or Requests.

To ensure the stability of this system, it was tested with integration and
unit tests. Moreover, to ensure the ease of future development of the DTAT
system, it was also documented, as well as written in accordance with the
PEP8 convention.

As a part of this system, there are two interfaces created. One is a Discord
bot allowing data access to any data required within a Discord client. This
option also allows any player to directly print the required data into a selected
Discord channel in the form of a leaderboard.

Another interface, which this system offers is a website, which allows more
graphical interface, which is easier to use for some users. Furthermore, this
website is responsive, thus offering comfortable access from mobile devices, as
well as desktops.

This new system also significantly shortens the time needed for retrieving
data about players and their donations, and also offers easier access to such
data.

In the future, I would like to further extend this system with an event planner,
which would show the most effective options to set up production with given
parameters like stocks and building levels.

29

Bibliography

[1] Lolskill. http://www.lolskill.net, accessed on 2019-04-04.

[2] Dotabuff. https://www.dotabuff.com, accessed on 2019-04-04.

[3] ZigFreeD. Ikalogs. https://ikalogs.ru, 2012, accessed on 2019-03-04.

[4] Parker, Z.; Poe, S.; et al. Comparing NoSQL MongoDB to an SQL
DB. In Proceedings of the 51st ACM Southeast Conference, ACMSE ’13,
New York, NY, USA: ACM, 2013, ISBN 978-1-4503-1901-0, pp. 5:1–
5:6, doi:10.1145/2498328.2500047. Available from: http://doi.acm.org/
10.1145/2498328.2500047

[5] ostezer; Drake, M. SQLite vs MySQL vs PostgreSQL: A
Comparison Of Relational Database Management Systems.
https://www.digitalocean.com/community/tutorials/sqlite-
vs-mysql-vs-postgresql-a-comparison-of-relational-database-
management-systems, March 2019, accessed on 2019-04-04.

[6] Reddy, M. API Design for C++. Elsevier, 2011, 8 pp.

[7] Prechelt, L. An empirical comparison of seven programming languages.
Computer, volume 33, no. 10, October 2000: pp. 23–29, ISSN 0018-9162,
doi:10.1109/2.876288.

[8] Sarkar, D. Text analytics with Python: a practical real-world approach to
gaining actionable insights from your data. Apress, [2016], 55-59 pp.

[9] Github. https://octoverse.github.com/projects#languages, 2019,
accessed on 2019-04-04.

31

http://www.lolskill.net
https://www.dotabuff.com
https://ikalogs.ru
http://doi.acm.org/10.1145/2498328.2500047
http://doi.acm.org/10.1145/2498328.2500047
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://octoverse.github.com/projects#languages

Bibliography

[10] Dayley, B.; Dayley, B.; et al. Node.js, MongoDB and Angular web devel-
opment. Addison-Wesley, second edition, [2017], ISBN 0134655532.

[11] Peng, M. Multithreading Javascript. https://medium.com/
techtrument/multithreading-javascript-46156179cf9a, September
2017, accessed on 2019-04-04.

[12] Robbins, J. Learning Web Design: A Beginner’s Guide to HTML,
CSS, JavaScript, and Web Graphics. O’Reilly Media, 2012, ISBN
9781449337551. Available from: https://books.google.cz/books?id=
A-tltyafYmEC

[13] Rapptz. discord.py. https://discordpy.readthedocs.io/en/latest/,
2019, accessed on 2019-04-04.

[14] discord.js. discord.js. https://discord.js.org, 2018, accessed on 2019-
04-04.

[15] Flask. http://flask.pocoo.org, accessed on 2019-04-04.

[16] Django. https://www.djangoproject.com, accessed on 2019-04-04.

[17] Flask MongoAlchemy. https://pythonhosted.org/Flask-
MongoAlchemy/, accessed on 2019-04-04.

[18] SQLAlchemy. https://www.sqlalchemy.org, accessed on 2019-04-04.

[19] Flask-MongoAlchemy. https://github.com/cobrateam/flask-
mongoalchemy/issues, accessed on 2019-04-04.

[20] DataTables. https://datatables.net, accessed on 2019-04-04.

[21] Mock. https://docs.python.org/3/library/unittest.mock.html, ac-
cessed on 2019-04-04.

[22] Pytest. https://docs.pytest.org/en/latest/, accessed on 2019-04-04.

[23] Monkeypatch. https://docs.pytest.org/en/latest/
reference.html#monkeypatch, accessed on 2019-04-04.

32

https://medium.com/techtrument/multithreading-javascript-46156179cf9a
https://medium.com/techtrument/multithreading-javascript-46156179cf9a
https://books.google.cz/books?id=A-tltyafYmEC
https://books.google.cz/books?id=A-tltyafYmEC
https://discordpy.readthedocs.io/en/latest/
https://discord.js.org
http://flask.pocoo.org
https://www.djangoproject.com
https://pythonhosted.org/Flask-MongoAlchemy/
https://pythonhosted.org/Flask-MongoAlchemy/
https://www.sqlalchemy.org
https://github.com/cobrateam/flask-mongoalchemy/issues
https://github.com/cobrateam/flask-mongoalchemy/issues
https://datatables.net
https://docs.python.org/3/library/unittest.mock.html
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/reference.html#monkeypatch
https://docs.pytest.org/en/latest/reference.html#monkeypatch

Appendix A
Acronyms

DTAT Deep Town Admin Tools

API Application Programming Interface

CSV Comma Separated Values

SQL Structured Query Language

GDPR General Data Protection Regulation

UI User Interface

ACM Association for Computing Machinery

33

Appendix B
Contents of enclosed CD

readme.md....................... the file with CD’s contents description
main-server..........the directory containing main server source codes
web-server..the directory containing web server & website source codes
discord-bot..........the directory containing Discord bot source codes
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
source......................................the thesis source codes

API .. API endpoints

35

	Introduction
	Goals
	Structure

	Analysis
	Deep Town
	Current solutions
	Requirements

	Technology
	Database
	Server
	Website
	Discord bot

	Design
	Architecture
	Rockbite's API
	Database
	User Interface
	Business logic

	Implementation
	Main server
	Web server
	Website
	Discord bot
	Cron
	Security

	Testing
	Main server
	Web server
	User interface

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

