cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 )
Pfijmeni: Le Jméno: Anh Vu Osobni Cislo: 420346

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Studijni obor: Datové védy )
N\
Il. UDAJE K DIPLOMOVE PRACI
e N

Nazev diplomové prace:

Hledani sekundarnich struktur v primarnich strukturach nukleovych kyselin
Nazev diplomové prace anglicky:

Secondary structure search in primary nucleic acid structures

Pokyny pro vypracovani:

1. Seznamte se s funkci a strukturou ribonukleovych kyselin (RNA).

2. Provedte resersi stavajicich nastroji predikce sekundarni struktury nukleovych kyselin (princip, slozitost, dostupnost,
apod.).

3. Nastroje uvedené vyse (resp. vybraného kandidata) pouzijte pro odhad slozitosti vyhledani vyskytu motivi interniho
vaz’ebného mista pro ribozém viru hepatitidy C v transkriptomu lidské bunky.

4. Ulohu uvedenou vySe implementujte ve vhodné parametrizaci v€etné hierarchické aplikace na vybrana mista lidského
genomu.

5. Reportujte a diskutujte/pfedbézné ovérte kvalitativné usporadané nalezené kandidatni vyskyty motiva.

Seznam doporucené literatury:

Durbin, R. et al.: Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge university
press, 1998.

Mathews, D.H.: Revolutions in RNA secondary structure prediction. Journal of molecular biology, 359(3):526-532, 2006.
Churkin, A et al: Design of RNAs: comparing programs for inverse RNA folding. Briefings in bioinformatics, 19(2), 350-358,
2017.

Jméno a pracovisté vedouci(ho) diplomové prace:

doc. Ing. Jifi Kléma, Ph.D., Intelligent Data Analysis FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 23.01.2019 Termin odevzdani diplomové prace: 24.05.2019

Platnost zadani diplomové prace: 20.09.2020

doc. Ing. Jifi KIéma, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)
\\ J
lll. PREVZETI ZADANI
é Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. A
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v diplomové praci.
S Datum prevzeti zadani Podpis studenta )

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Secondary structure search in primary
nucleic acid structures

Anh Vu Le

Supervisor: doc. Jifi Kléma
May 2019



ii



Acknowledgements

I would like to thank my supervisor Mr.
Kléma for guidance and useful advice
throughout this work. I am also grate-
ful for the resources he has given me in
the final phase of the thesis. My grati-
tude also belongs to my parents, whose
support and words of encouragement has
been tremendous.

iii

Declaration

I declare that this thesis has been com-
posed solely by myself and except where
states otherwise by reference or acknowl-
edgment, the work presented is entirely
my own.

In Prague, 15. May 2019



Abstract

Structure of RNA molecules is often im-
portant for their function and regula-
tion. Discovering a particular functional
structure within a genome could then
be viewed as discovering the associated
function. Cap-independent translation
is one of those functions. It is a well
known mechanism with which viruses
seize protein production capacities of
cells. Though typical for viral RNA, cap-
independent translation is not only a do-
main of viruses - a fraction of human genes
was shown in vitro to use this mechanism
as well. Tests leading to these discover-
ies are however both time and resource
consuming. This work proposes a compu-
tational pipeline, that searches the human
genome and outputs potential IRES can-
didates. The main steps of the pipeline
involve inverse folding, BLAST and struc-
tural search. As a proof of principle, we
present findings within 5’UTR, region of
DRC3 gene that contain structural motifs,
which may exhibit transcription regula-
tory capabilities.

Keywords: HCV IRES, translation
regulation, inverse RNA folding, BLAST,
RNA structure search, human genome

Supervisor: doc. Jiri Kléma
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Abstrakt

Struktura RNA molekul je vyznamnd z
hlediska jejich funkce a regulace. Na ob-
jev konkrétni funkéni struktury v genomu
pak muze byt nahliZzeno jako na objev
funkce s ni spojené. Translace nezavisla
na 5’ Cepicky je jednou z téchto funkci. Je
to znamy mechanismus, ktery umoznuje
virtim prevzit bunééné kapacity na vyrobu
proteinu. Prestoze je to mechanismus ty-
picky zejména pro viry, neni pouze jejich
doménou - u ¢asti lidskych gent bylo ukéa-
zano in vitro, ze tento zpusob translace
také pouzivaji. Testy vedouci k témto ob-
jevam jsou vsak narocné jak na Cas, tak na
zdroje. Tato prace proto predstavuje vy-
pocetni pipeline, ve které je prohledavan
cely lidsky genom a tseky podobné IRES
viru HCV nahlaseny. Hlavnimi kroky pipe-
line je inverzni skladéani sekvenci, BLAST
and vyhledavani na zakladé struktur. Jako
overeni konceptu je predlozena oblast v
5’UTR oblasti genu DRC3, ve kterém lze
najit strukturni motivy majici potencidlné
schopnost regulovat genovou translaci.

Klicova slova: HCV IRES, inverzni
skladani RNA, BLAST, strukturni
vyhledavani RNA, lidsky genom
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allow globally. In description section
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"A or G’ respectively). The second
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Chapter 1

Introduction

Protein synthesis is an extremely important process for all living organisms.
However, any organism or cell in the multicellular body does not synthesize
all possible proteins at the same time. The actual palette of proteins in a
given cell and given time period is limited. Therefore it is not surprising that
protein synthesis is highly regulated and diverse process.

Proteins are mainly synthesized by so called cap-dependent manner in
eukaryotes and their viruses. However, other possibilities exist. One of them
is direct binding of a ribosome to an mRNA via so called internal ribosome
entry site (IRES). Many viral and cellular IRESs have been described so
far. It should be noted that all best studied IRESs are of viral origin and
that known putative cellular IRESs often exhibit much weaker activity then
their viral counterparts. Experimental demonstration of IRES function is
technically demanding and thus many of the published cellular IRESs have
been challenged by other authors.

Despite of displaying weaker activity, cellular IRESs carry out a significant
role in gene expression, as they can help manifesting important proteins,
even under conditions of reduced protein synthesis. These proteins are often
involved in cell proliferation, apoptosis, antiviral response, etc. Finding such
an IRES would bring a valuable insight into protein synthesis regulation.
Therefore new approaches for searching and validation of novel cellular IRESs
are needed.

Another motivation for this project is that many viral functional structures
can have their origin in cellular molecular machineries or conversely, could
have developed to fit into an already established cellular function. In the
world of RNA, discoveries of functional ribozymes, that are frequently used by
viruses, in many genomes including human ([70], [77]) can serve as examples.

IRES too is a structure, for which a strong analogy in viruses can be found.
In this work, Hepatitis C virus (HCV) is taken as a model - the HCV IRES
is well studied and is therefore suited as a subject of searching. A hypothesis,
that similar structure can be found within a human genome will be tested
computationally and results handed to biologists for in wvitro verification.

Identifying potential IRES-like structures will at some point require predic-
tion of RNA structure from its sequence. As the performance and accuracy
of prediction algorithms do not scale well with sequence sizes, searching for

1



1. Introduction

entire IRES structures would make the task nearly infeasible. Fortunately, the
nature of HCV IRES permits us to focus on smaller parts of the structure, as
some of those domains are more vital for IRES functioning. Primary interest
will be put on domain III, the secondary on domain II.

However, even with such a task reduction, a search based on pure RNA
structure comparison would still be extremely difficult. The goal would be
therefore to first employ faster and well established sequence based methods
to obtain partial results and already then make use of structural search. This
core idea will be developed into a pipeline, where first, a large number of
sequences having the required structure will be generated by a process called
inverse folding. Such a step enables departure from the demanding structural
search to significantly faster sequence based search. Generated sequences
will be subsequently compared with the human genome through well known
BLAST. Finally, partial results obtained form this search will be processed
by an NA2Dsearch tool to check, which of them can possibly acquire the
IRES-like structure.

Regarding the thesis structure - the content is organized into 4 blocks:

B Biological background: First, biological foundations are laid down, on
which the subsequent reasoning on the computational methodology is
built. HCV IRES structure will be described in the context of its impact
on the element’s function.

B RNA structure prediction and search: Here, a research on the existing
algorithmic solutions to RNA structure prediction and structure search
will be presented. Inverse folding tools, related to the subject, will be
included as well.

B Previous work: The task of locating IRES elements in silico has been
approached by several solutions, whose summary will be given in this
section.

® Results: A novel solution in a form of a pipeline will be proposed,
consisting of inverse folding, BLAST and structural search. Each stage
of the pipeline will be discussed separately. This section will in addition
contain benchmark on selected inverse folding programs as prior step to
building the pipeline.



Chapter 2

Biological background

DNA is known to hold information about proteins an organism can produce.
Each such protein has a gene holding instructions how to build it. These
instructions are encoded into DNA as a sequence of elementary units called
nucleotides. There are four of them - adenine, cytosine, thymine and guanine
with single-letter designations A,C,T and G. The so called "code of life" is
then written as a combination of those four letters.

B 2.1 Mechanism of protein synthesis

When a protein is needed, the information on the corresponding gene has to
be manifested. The protein is however not assembled directly from the DNA
- instead, a copy of its gene is made onto an RNA. Already then, the protein
is synthetized by a ribosome via a process called translation, when for each
RNA nucleotide triplet an corresponding amino-acid residue is added to a
growing polypeptide chain to form a compelete protein [3].

B 2.1.1 Role of mRNA structure in protein synthesis

So far, RNA was perceived as a linear sequence, whose only purpose was to
code protein building instructions. As we see later, RNA does not need to be
this simple string of nucleotides, it can be more structuraly diverse. There
excist non-coding RNAs, which can fold into complex 3D structures, which
then catalyse various bio-chemical reactions [20]. Coding, or messenger RNAs
(mRNASs) can too harbor structures with a potential to play a vital role in
translation initiation.

After an eukaryotic messegner RNA (mRNA) is transcribed, it has its ends
altered with elements increasing its stability and marking it fit for translation.
The 5’ end is treated with a so called 5’ cap and its 3’ end extended with a
sequence of adenine bases called poly(A) tail. Thanks to the 5’cap, the mRNA
is then recognized by (eukaryotic) translation initiantion factors (eIFs). The
purpose of these factors, apart from recognizing mRNAs, is to then help
assembling ribosome at the start codon.

Between mRNA’s 5’ cap and a start codon lies a region of nucleotides,
which do not code aminoacids, called 5 untranslated region (5" UTR). This
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region is in eukaryotes several hundreds bases long [48] and serves as antoher
tool for gene expression regulation. It has been found, that secondary struc-
tures within 5’UTR can effectively inhbit mRNA translation - for instance
a sufficiently stable "hairpin" structure located close to the cap can block
translation altogether (reviewed at [§]).

The untranslated regions and their structure also serves as means for viruses
to take hijack the host cell protein synthesis pathways. This will be discussed
further later.

Il 2.1.2 Other RNA functions

RNA structure can carry other roles, than the post-transcriptional regulation
in mRNAs. A structured non-coding RNA has diverse catalytical roles.
Important catalytical functions can be found just within the protein synthesis
machinery. For instance, the activity of peptidyl transferase in ribosomes,
an important enzyme in charge of adding amino acid residues to a growing
polypetide chain, is thought to be catalyzed by ribosomal RNA. Next, the
removal of non-coding regions in mRNA (splicing) before entering ribosomes,
is catalysed by an RNA /protein complex called spliceosome [20].

B 2.1.3 mRNA translation initiation

The initiation of protein synthesis plays an essential role in celluar biology.
The initiation of the translation process relies on recognition of mRNA 5’ cap
by a group of translation initiation factors [15]. The process is performed
by the joint effort of small ribosomal subunit (40S) along with several other
proteins called eukaryotic initiation factors (eIFs). These factors bind to the
5" end of an mRNA in a specific order and enable the translation to begin
[32].

B 2.2 Vviral interference with cell protein synthesis

Viruses tend to disrupt this pathway and inhibit the host’s translation initia-
tion, so that the host’s ribosomes are used for synthesis of viral proteins. They
do so in various ways - for instance influenza virus RNA carries endonucleases
that cleave the 5 cap from host cell mRNAs, effectively making the mRNA
unrecognizable by translation machinery. Some go even further and use the
cleaved 5’ caps to synthesize their own mRNAs with a process called cap
snatching. Others skip the need for 5’ cap-dependent translation using a so
called internal ribosome entry sites (IRESs) [15].

B 221 IRES

As outlined earlier, IRES is an RNA feature within its 5’UTR, enabling
cap-independent translation. The structure of IRESs allows RNA to recruit
directly 40S ribosomal subunit wihout the need for cap-recognition or even
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2.2. Viral interference with cell protein synthesis

some elFs [32]. IRES is commonly leveraged by RNA viruses, which can in
some cases take over host-cell’s protein synthesis [62].

B IRES groups

Depending on requirements for cap-independent translation (various factors
and proteins), viral IRES can be divided into four separate groups [43]. The
biological characteristics of the groups are not relevant for this work. It
suffices to discuss their differences on the level of primary and secondary
structures.

Although the IRES elements in viral RNA perform a similar function, they
vary greatly on the sequence level. This applies even for the representatives
within the same group. Taking members of group 3, the portion in which
their RNA differ can as high as 50% as in case of encephalomyocarditis virus
(EMCV) and foot-and-mouth disease virus (FMDV) picornavirus. On the
other hand, both IRES elements adapt rather similar secondary structure
and to a large extent use the same mechanism to recruit ribosomal subunits
[50][43]. The RNA structure is indeed vital for IRES to function. This can
be evidenced by so called compensatory mutations that help to preserve
structural and thus also functional features of IRESs in highly variable viruses
such as FMDV, hepatitis C (HCV) and others [38§].

The structural conservation however applies only for viruses within the
same group. For instance, well-established IRES elements, such as the IRES
of HCV virus and those of picornaviruses, which belong to different families
of RNA viruses, not only lack sequence homology, but also manifest different
structural organization. The cause is that IRES elements can differ in the
requirement of factors to assemble 48S initiation complexes [63]. This also
implies that there is no universal IRES structural motif. In fact, IRES
elements present in the genome of different families of RNA viruses even lack
overall conserved features [55].

B 2.2.2 Hepatitis C IRES

The 5’ cap-independent translation is also a mechanism employed by Hepatitis
C (HCV) virus. Its IRES directly recruits a small ribosomal subunit (40S) at
the start AUG codon wihout the need of the entire set canonical elFs. The
subset it targets includes elF2 and most importantnly eIF3 [43] [67], which
has a special function of controling access of other initiation factors [74]. The
principles driving this recruitment are given by the structure of HCV IRES.

The TRES region is formed by approximately 341 nucleotides organized
into four domains, designated as I, II, III, and IV. Each performs a distinct
function during initiation. The most intersting for our purposes is domain
I, the principal domain of HCV IRES, which interacts with both eIlF3 and
40S subunit. It consists of a multi-bulged structure organized in sub-domains
ITIa, b, ¢, d, e, and f. The key part is the junction of sub-domains abc,
playing an important role of recognizing elF3 and 40S - introduction of
mutations at the junction has been shown to be fatal for IRES efficiency
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2. Biological background

[42]. Subdomain IIIb binds eIF3, but is less critical for the ability of IRES
to form elongation-competent ribosomes [31]. Its structure near the apical
loop is also the least explored and seems rather disorderly in the absence of
stabilizing eIF3 [31][7I]. IIIb on the other hand does contain a conserved
motif - the intrahelical C186-C211 mismatch and surrounding base pairs
affect the efficiency of eIF3 binding [51]. Lastly, the functional start codon of
the HCV RNA is located at domain IV [37].
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(a) : Domain ITTabc [42) (b) : HCV IRES schema [51]

Figure 2.1: Secondary structure diagram of the HCV IRES domain IIlabc.
Nucleotides colored in cyan indicate highly conserved regions. Red nucleotides
can be neglected in our context. On the second figure, the domain III is put into
the context of the entire IRES with ribosomal proteins interaction sites denoted
in distinct colors. Note the start codon at the domain IV.

B 2.2.3 IRES in eukaryots

Cap-independent translation is not only a domain of viruses. It has been
found, that under certain stress conditions, when cap-dependent translation
is inhibited (such as during nutrient limitation or mitosis), cellular IRES-
mediated translation takes over. It should be noted, that compared to their
viral counterparts, cellular IRES elements appear to be much more diverse
in their structures and less stable in terms of the Gibbs free energy of the
folded mRNA (review in [45]). A recent study experimentally determined
that approximatelly 10% of human 5’UTRs can attract the ribosome through
IRES elements. 583 novel human IRESs have been discovered across the
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genome. [78] The IRESes unfortunately have no indication, which viral family
they resemble.

It should be noted that known putative cellular IRESs often display much
weaker activity then their viral counterparts and experimental demonstration
of their IRES function is technically demanding. Many of published cellular
IRESs thus have been challenged by other authors. [61]






Chapter 3

RNA structure representation and
comparison

RNA, as well as proteins, can form complex 3D structures. The basic phe-
nomenon governing the RNA structure formation is base pairing of nucleotides.
In canonical (also known as Watson-Crick) base pairing, RNA building blocks
connect with each other via hydrogen bonds. Guanine (G) pairs with cytosine
(C) and adenine (A) pairs with uracil (U]. RNA reaches its final, biologically
active 3D conformation through Van der Waals forces and in a presence of
magnesium ions [79].

B 3.1 Levels of RNA structural organization

Considering only effects of base pairing and enumerating such base-pairs, one
can capture a planar representation of RNA, its secondary structure. It is an
intermediate representation between the primary structure (solely string of
nucleotides) and the final tertiary structure.

The tertiary structure is formed by arranging secondary structure elements
in space. This process is driven by forces weaker, than the ones creating the
secondary structure. RNA folding can be therefore viewed as a hierarchical
process, in which secondary structure forms before tertiary structure [76].

Since this assumption also greatly decreases computational efforts, from
now on we will be considering only the secondary level of RNA structural
organization.

B 32 RNA secondary structure elements

In contrast to DNA, which exists in a form of two complementary nucleotide
strands bound together, RNA molecules do not have a counterpart and fold
just on themselves. This leads (on the level of secondary structure) to double
stranded helices interrupted by various single stranded regions. By comparing
RNA structures, several of repeated structural elements have been revealed
[3]. We now describe the most essential motifs.

A hairpin loop is formed when an RNA strand folds back on itself. In an
internal loop, two paired regions are separated by at least one base on each
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strand. On the contrary, a bulge has unpaired nucleotides only on one strand.
A multi-branched loop occurs when multiple double-stranded regions join via
any number of unpaired bases [79]. A figure below pictures the described
elements:

Internal Loop External Base

t‘ & Multi-loop

Bulge

Hairpin Loop “A

Figure 3.1: Secondary structure elements [I]

B 33 Secondary structure representations

The figure above is also an example of one representation of the RNA secondary
structure. It takes form of a graph with nodes representing bases and with
two kinds of edges - one denoting an adjacency of nucletides along the RNA
sequence (on the figure this edge is reduced to two circles touching each other)
and one denoting base-pairing [36].

Apart from this representation there exist less visual ones, but more suitable
for machine processing. The most used ones will be presented.

B 3.3.1 Dot-bracket and CT notation

The bracket or dot-bracket notation is the most common and most simple
representation. In this notation, RNA secondary structures are encoded as
linear strings with balanced parentheses representing the base pairs, and
dots representing unpaired positions. The simplicity comes with the usual
price, which is expressiveness - without post-processing, there is no direct
information about the structural context of a nucleotide [59]

Connectivity table (CT) notation is the second unofficial standard for
structure representation [28]. It has a form of a table, where each row holds
information about a single base in the sequence. The columns (in their
respective order) are following [2]:

1. base number (n)

2. base (one of letters A, C, G, T, U, X)

10
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3. indexn-—1
4. index n +1

5. the number of the base to which n is paired (no pairing is indicated by
7€ero)

6. base number n again

10 16 0 2 ) 1

ng 2 A 1 3 0 2

] I 3G 2 4 15 3

4 U 3 5 14 4

©—© 5 A 4 6 13 5

6 C 5 7 12 6

7 A 6 8 11 7

8 A 7 9 0 8

©—© @) ] 9 U 8 10 0 9

- 10 A 9 11 0 10

© ©), 11 U 10 12 7 11

© 12 G 11 13 6 12

17 13 U 12 14 5 13

14 A 13 15 4 14

15 C 14 16 3 15

GAGUACAAUAUGUACCG 16 C 15 17 o 16

DN - 17 G 16 0 o 17
(a) : Dot bracket notation (b) : CT notation

Figure 3.2: Comparison of the three secondary structure representations - a
visual graph, dot-bracket notation and connectivity table. All encode the same
structure. In the visual graph we can also notice different edge types.

B 3.3.2 Tree representation

RNA secondary structures can be represented as trees. A secondary structure
is converted into a tree by assigning an internal node to each base pair and a
leaf node to each unpaired base (see figure [3.3). The tree is rooted in a node,
which does not represent any base-pair, nor a single nucelotide. The virtual
root is introduced to prevent the formation of a tree forest. A forest would
not form only in rare cases, when start and end RNA bases are paired.

B Tree edit distance

A tree is transformed into another tree by a series of editing operations
(insert, delete, update) with predefined costs. These costs are also a measure
of (dis)similarity between two structures called tree edit distance. The distance
between two trees is the smallest sum of the editing costs. An interesting
side note is that for trees consisting solely of leaves (unstructured string of
nucleotides), tree editing becomes standard sequence alignment [35].
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Figure 3.3: The equivalence between a secondary structure (A) and an ordered
rooted tree (B). An internal node (black) of the tree corresponds to a base pair,
a leaf node (white) corresponds to one unpaired nucleotide, and the root node
(black square) is a virtual parent to the elements along the external loop [35].

. 3.4 Performance metrics for structure prediction
methods

B Recall and precision

The recall or sensitivity of a prediction algorithm is the percentage of base
pairs in the actual structure (or a structure considered as the ground truth)
that are also present in the predicted structure.

The precision (or sometimes called positive predictive value - PPV) is in
contrary the percentage of base pairs in the predicted structure that are in
the actual structure [16].
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Chapter 4

RNA structure search

As outlined in the biological section, structure of RNA molecules is often im-
portant for their function and regulation. Discovering a particular functional
structure within a genome could then be viewed as discovering the associated
function. Searching for structures or structural motifs can then enhance the
understanding of RNA functional and regulatory properties.

In this field the most well known program is RNAmotif [53]. It performs
structural search in primary sequences and uses its own descriptor language
to characterize the structure to be queried. Another approach is manifested in
NA2Dsearch [34], which is a CUNT’s internal tool employing similar descriptor
language as RNAmotif, but differentiates itself by performing the search in
secondary, instead of primary structures.

In essence, the named tools alone can be employed for discovering IRES-like
motifs within human genome. The later, for instance, has a sliding window
mode of working. It can scan through the entire genome to obtain hits.
Computational efforts would be however enormous - the human DNA is 3
billion base pairs long and RNA folding (a necessary step discussed later) is
O(N3) in complexity. For those reasons, presented methods will only be one
component of a solution proposed in this thesis.

B 21 RNAmotif

RNAmotif’s work-flow can be divided into three stages. In the first stage,
user defines a queried structure using program’s rich descriptor language;
global parameters, such as what base-pairs are permitted, can be also defined.
Next, the actual search within provided sequences is conducted. A currently
examined sequence is checked for compatibility with the query structure (i.e.
checked, whether any forbidden base pair is present, when the sequence is
"fit" into the structure). This step can result in multiple hits. Lastly a scoring
stage processes resulting hits, applying filters, which could not be performed
during the search (e.g. GC content requirements, structure stability), and
ranking them. This final step’s purpose is to limit the number of possible
solutions to biologically meaningful ones.

RNAmotif’s main feature is its descriptor language. Its building blocks
are symbols for single strands and helices - ss, h5 or h8 (h5 denotes the 5’
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4. RNA structure search

params
WC+=gu;
descr
h5(minlen=1,maxlen=7)
ss(seq="~GNRA%")
h5(minlen=1,maxlen=1)
ss(minlen=3,maxlen=7)
h3(minlen=1,maxlen=1)
ss(minlen=2,maxlen=2)
h3(minlen=1,maxlen=7)

(a) : RNAmotif descriptor (b) : NA2Dsearch query

Figure 4.1: The RNAmotif descriptor with two out of three sections (params
and descr; score omitted). In parameters section, GU pairing is allow globally.
In description section we can notice ss and h elements with sequence constraints
(N and R are IUPAC codes for ’any nucleotide’ and 'A or G’ respectively). The
second picture shows the NA2Dsearch query corresponding to the descriptor

strand of a helix and h3 the 3’ strand). An simple example of a structure
described by these blocks is shown in the figure above.

The language outclasses its predecessors in length and complexity of defin-
able structures. One can define, in addition to the mentioned parameters, also
nucleotide and length constraints for ss and h elements or custom scoring rules.
The rules provide some form of compensation for the apparent drawback,
that the structural search is performed on sequences.

. 4.2 NA2Dsearch

This drawback has motivated a development of NA2Dsearch, which prefers
the idea, that structures should be searched within structures. The descriptor
language is otherwise to a large extent similar. The scoring system evaluates
the hits on how much they violate the target structure represented by the
query. It introduces various penalties for extra or missing bases, base pair,
bulge openings etc. The scores are therefore most of the time negative.

The method itself has to deal with one large obstacle - it conducts searches
in structures, but verified RNA structures are not easily available. Inputs will
be often only primary structures which then forces the program to estimate
their structure computationally. It does so through a RNAsubopt[49] routine.
Since NA2Dsearch will be later incorporated to our pipeline and since, in
turn, RNA structure prediction is such a crucial step in the tool, we discuss
sequence folding in the following chapter |'.

This search tool is considerably slower, than RNAmotif. It is however
expected, given that sequences need to be folded first. On the other side,
from the user perspective, it is incomparably more convenient to work with
NA2DSearch, thanks to its GUI with drag-and-drop capabilities.

'n fact, structure prediction plays a considerable role also in the first step of the pipeline,
in inverse folding
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Chapter 5
RNA structure prediction

The RNA structure is formed by folding the chain of ribonucleotide bases
involving multiple acting forces - mainly base-base interaction through hydro-
gen bonds with addition of hydrophobic effects and electrostatic interactions
between the negatively charged phosphate groups with ions in solution.

The number of sources affecting the resultant fold makes the full structural
prediction problem extremely difficult. RNA has however shown, that it is a
reasonable approximation to focus on the secondary structure, where only
bonds between pairs of nucleotide bases are considered. The results have
been proven useful in the following tertiary structure prediction as well as
biological function of RNA [60].

In this section, works on these methods will be summarized.

The landscape of the RNA prediction approaches can be roughly divided
into three categories based on biological data available as an input. The first
category is the most straightforward one an requires only an RNA sequence to
obtain a prediction. Due to the lack of biological constraints that could direct
the prediction process, methods from this category tend to be inaccurate. The
second category has information on the structures of other potentially similar
RNAs and exploit this RNA homology data to guide the prediction process.
Finally the third and the most recent category outputs RNA structure from
a knowledge of so called structure profiling measurements. This measurement
can quickly tell, to what degree is each nucleotide part of a stem, or a loop.

B 51 Free Energy Minimization methods

In a previous chapter, interactions between RNA bases A-U and G—C forming
base-pairs, were described. Each such a pair lowers the thermodynamic free
energy of the structure (also called the Gibbs free energy). The first group
of structure prediction algorithms we are going to discuss here, then builds
on an assumption, that ribonucleotide chains favor conformations with the
minimal such free energy (and maximal stability) [47]. Since these approaches
assume the bare minimum about the resulting structure, they often serve as a
baseline for accuracy comparison with other, more informed folding methods.
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5. RNA structure prediction

B 5.1.1 From Nussinov towards minimum free energy methods

The task of finding a secondary structure can be reduced to a problem of
finding the structure with the maximum number of base pairs. Although this
criterion is too simplistic, this is in essence what almost all other complex
energy minimization and stochastic context free grammar (SCFG) approaches
to at least some degree attempt to achieve [20].

This base-pair maximization method was implemented in the early Nussinov
algorithm, a fairly straightforward dynamic programming algorithm, whose
recursion steps are visualized and formalized below:

S(i+1j-1) S(i+1j)

S(ij-1)
S(ik) S(k+14)
10— @) _1 - —
i J IBNES ik k+1 J
1. i pair 2. i unpaired 3. j unpaired 4. Bifurcation

Figure 5.1: Schema of how dynamic programming algorithm decides the optimal
structure of a sub-sequence i,j. It considers all 5 possible conformatinos of
nucleotides 4,j and chooses the one with the best score [21]

S(i+1,7—1)+1if 4,5 base pair
S(i+1,7)

S(i,j—1)

max;<k<; S(i,k) + S(k+1,7)

S(i,j) = max

The fill step is O(L?) in time. The trace-back is linear in time

Simple base pair maximization however, is a poor scoring scheme for RNA
structure prediction. An RNA more likely adopts a globally minimum energy
structure, rather than the structure with the maximum number of base pairs
[21]. Taking a hairpin as an example - increasing the number of pairing
will narrow and stretch the ending loop. This is clearly not the minimal
free energy state [56]. As we see further, even the minimum energy state
assumption is too simplistic

To adjust to this new minimum energy paradigm, the dynamic program-
ming has to be modified. The score (previously equivalent to the number of
base-pairs) now takes form of an overall free energy of a secondary structure.
The terms contributing to this score (previously ones and zeros indicat-
ing paired/not paired) then take form of independent energy increments of
different loops and base pairing interactions.

A thermodynamic model (outlined in a following section) has been de-
veloped in conjunction with the dynamic programming folding algorithms
to estimate these individual increments. With the described adjustments,
structure prediction algorithms become somewhat complex with more detailed
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5.1. Free Energy Minimization methods

recursions, that distinguish different lengths and types of loops and base pair
interactions, since each of them contribute differently to the structure’s free
energy [50].

B 5.1.2 Free energy nearest-neighbour minimization

To predict the folding free energy of a given secondary structure, an empirical
nearest-neighbor model is used. The name nearest neighbor comes from
the assumption, that the free energy change for each motif depends on its
sequence composition and only the most adjacent base-pairs. The order of the
base-pairs is also important here - e.g. CG-GC pairs will result in different
stability, than GC-CG. This is called stacking context.

The free energy change at 37°C' is denoted as AGj3; and the sample
calculation is shown below.

+

(=]

5
5

G

3.4 -

AR

D>> >D>

v

¢
g
¢é

(@l I»)

A

2.1 2.4 +54

AGS; (@ =0.5-2.1-34-24-25+54
=-4.5 kcal/mol

_)C:'3><—

i

Figure 5.2: The base-pair stacking are each favorable with various negative
increments. The helical model gives a +0.5 kcal/mol penalty for each AU or GU
pair that terminates a helix. Lastly, a +5.4 kcal/mol increment for hairpin loop
closure is an entropic penalty for constraining nucleotides in a loop [56]

The most used programs with the nearest-neighbor technique incorporated
in one way or another include Mfold [86] (currently evolved to UNAFold [54]),
RNAStructure [58] and RNAsubopt with RNAFold [35], which are the part of
the well known Vienna package.

Taken Mfold as a representative, the accuracy the MFE methods would
fall somewhere between 40 to 70% depending on the type of RNA sequence
(e.g. ribosomal or tRNA) [30]. This is useful for many purposes, but not as
reliable as we need.

Further benchmarks of the methods above did not reveal any significant
and consistent superiority of one implementation over the others. [49]

B Energy models

The thermodynamic parameters for predicting the free energy change of base
pairs and loop regions have been compiled based on empirical data (melting
experiments) and adjusted by various computational techniques such as linear
regression or comparative sequence analysis [57] (details on comparative
folding in section [5.2]).
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Up to date, two standard energy models are used - Turner’99 and Turner’04.
It is widely accepted, that Turner’04 are more accurate, even though for
some cases the ’99 one has proven to be a better choice [27]. In addition to
these two models, there is a third, distinct one. This model was assembled
by creators of a curated database of secondary structures RNA STRAND
[6]. Here the the thermodynamic parameters were determined by applying
maximum likelihood parameter estimation on a set of 2200 experimentally
verified RNA structures. With the new set of parameters a folding program
SimFold (equivalent to mfold 3.1) has achieved remarkable improvements in
prediction (8 and 10% increase in sensitivity and selectivity) in compare to
Turner’99 parameters.

B 5.1.3 Sub-optimal folding

We have seen, that determining an RNA secondary structure by free energy
minimization has its limits in accuracy. First, the principle of nearest-neighbor
independent stacking of energy increments does not completely hold - there
are experimental evidences, that stability of motifs depend also their sequence
composition (non-neighboring effects). Some dynamic algorithms at least
take into account several such motifs [57]. Furthermore not all RNAs are in
the minimum free energy equilibrium due to folding kinetics; some functional
RNAs have even bistable structures, each having a different catalytic activity.

Given all above limitations, it is clear, that the predicted lowest energy
structure does not always provide the most accurate solution and that sub-
optimal folding would bring significantly more insight to the true strucutre
[56].

B Statistical sampling with partition function
First, McCaskill [60] introduced his partition function

Q — Z eAG37(S)/RT (52)

Sestructures

over all possible structures S of a given sequence with AG37(S) being the
energy of the structure S, R the gas constant and T" temperature.

Having the partition function, it is possible to evaluate probability of a
particular secondary structure o:

1
p(o) = éeww(fﬂ/m (5.3)

Since the number of structures increase exponentially with sequence length,
the function is partitioned for dynamic programming computation. The
partition @; ; is determined for all sub-sequences between positions ¢ and j,
starting with the shortest sequences, filling the dynamic programming table.
One can then use the partition function values and calculate a probability of
each base pair ¢, j being paired.
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This was further developed by Ding [I6], who modified the traceback
procedure from MFE algorithms to utilize the base-pair probabilities. Instead
of choosing base-pairs deterministically, base-pairs are chosen probabilistically
based on values determined previously by the partition function. The set of
predicted secondary structures is a statistically representative sample of the
complete ensemble of structures.

An ensemble centroid is introduced to help picturing the landscape of
predicted structures space. The centroid is defined as the predicted secondary
structure with the least total base-pair distance (number of base-pairs in
which two structures differ) to all the structures in the set. Authors also
distinguish individual cluster centroids.

With ensemble centroids, significant accuracy improvements have been
achieved compared to the MFE structure. The number of correctly predicted
base-pairs (selectivity) increased by 30% (the improvements in sensitivity
were marginal).

Another interesting finding regarding MFE structure and clusters - in
only 45% of sequences is the structure present in the most dominant cluster,
indicating that the MFE structure does not always represent well the ensemble
[56].

B 5.1.4 Troublesome pseudoknots

Lastly, it is worth mentioning the greatest limitation of the discussed algo-
rithms. In addition to nested stem-loop base pairing interactions, RNA can
also make nonnested base pairs a so-called RNA pseudoknot. It is formed
when bases outside a hairpin structure pair with bases within the hairpin or
internal loop [23][21].
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Figure 5.3: Stem-loop and pseudoknot comparison [75]

Pseudoknots is what the dynamic programming algorithm cannot deal with
- it has not kept track of which nucleotides are available for pseudoknot pairing
and which ones are already a part of a stem [2I]. In fact determination of
the MFE pseudoknoted structure was proven to be NP-complete [52]. There
are RNA folding algorithms that deal with pseudoknots, but each of them
has serious limitations of its own (e.g. the O(N®) scaling) [21].
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It would be therefore tempting to omit pseudoknots from consideration
as a rare structural element and focus on less constrained and faster folding
methods. However, according to the data from RNA STRAND, a carefully
curated database of secondary structures, pseudoknots occur rather commonly,
especially in longer molecules - 74% of all entries with 100 or more nucleotides
contain pseudoknots [6] . Even though the content of pseudoknoted base-pairs
is on average relatively low (<2%) [57], their presence can significantly modify
overall structure.

B 5.2 Comparative folding methods

In the previous section, obastacles limiting the accuracy of single sequence
prediction methods were outlined - folding kinetics, bistable structure, base
modifications to name few. This is why researchers, when possible, always
resort to comparative methods [29].

B 5.2.1 Multiple sequence comparative methods

This family of methods was the first one developed for purposes of secondary
structure prediction. This knowledge-based technique assumes, that homol-
ogous RNA sequences fold into similar secondary and tertiary structure,
while their primary structure can change significantly [I7]. The idea is then
to determine canonical pairs, that are common across multiple homologous
sequences.

Comparative folding can be considerably accurate, when sufficient homolo-
gous sequences are available (over 97% of predicted base-pairs in ribosomal
RNA were experimentally confirmed [30]). The greatest limitation is then
the requirement for multiple sequences, which are not always available and
which require significant insight [56].

Gardener and Giegerich [29] categorized the existing comparative methods
into three plans. Fach plan suited for different sequence conservation degrees
of underlying homologous RNAs. A graphic outline of the categorization is
shown on figure |5.4.

B Plan A: Folding of a sequence alignment

Plan A first obtains sequence alignments from standard multiple sequence
alignment tools (e.g. ClustalW). Then using this knowledge derives a consen-
sus structure, usually with the combination of MFE fold and covariation score
[29]. CM is considered one of the most accurate prediction methods, but it
requires large numbers of orthologous sequences that can be unambiguously
aligned [65]. And this the major pitfall of Plan A - multiple-alignment step
assumes highly preserved primary structure, which is often not fulfilled in
fast evolving non-coding RNA. Incorrect sequence alignments can then blur
any covariation signal. This plan is represented by RNAalifold, Pfold and
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Homologous RNA sequences
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Figure 5.4: Overview of the three main methodology classes for solving the
comparative folding task. Each class assumes a certain level of conservation in
homologous sequences, for which the structure is estimated. Plan A expects high
level of sequence conservation. Plan B expects weaker sequence conservation,
but rather well preserved secondary structure. Plan C is used when sequences
are highly variable [29].

ILM. Note, that only the most successful programs will be briefly discussed;
for descriptions of other ones please refer to the original review.

B Plan B: Simultaneous folding and alignment

This is when Plan B steps in. Here, sequence alignment and folding is
done simultaneously for a set of homologous structural RNA sequences - an
approach realized in the Sankoff algorithm. It combines sequence alignment
and Nussinov (maximal pairing) folding. The algorithm requires extreme
computational resources (O(n3™) in time, and O(n?™) in space, where n is the
sequence length and m is the number of sequences. Practical implementations
(Carnac, Foldalign) of the algorithm restrict sizes and shapes of substructures
to make the task feasible.

B Plan C: Structure alignment

Researches resort to Plan C, when no helpful level of sequence conservation
is observed. The sequence alignment step common for the previous plans can
be then skipped altogether. Instead, structures of the sequences are predicted
and directly aligned. Structure alignment is built on the property of RNA
secondary structures, which can be represented as trees (see |3.3.2)). Similarity
between two structures is measured in terms of tree edit operation of their
corresponding tree representations.

One can immediately spot a weak point of this plan. Folding tends to be
rather inaccurate and it is a question whether this step produces structures
aligning well enough to unveil the hidden consensus structure when one exists.

Representatives of this plan are RNAforester and MARNA
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5. RNA structure prediction

B Plans comparison

Gardner has compiled a test data-set to benchmark implementations of all
plans. In addition, energy minimization methods discussed earlier were
included as baseline methods. He has articulated the need for objective and
impartial testing, since authors of algorithms tend to present their work in a
slightly better light, than it actually is.

The choice of data-set sequences was aimed to truly test the limits of
bench-marked algorithms. Most of them are difficult for structure analysis,
including ribosomal RNA (shape influenced by ribosomal proteins), RNase P
(little sequence and structure conservation; pseudoknots) or transfer RNAs
(contain modified bases, which influence structure formation).
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Figure 5.5: Benchmark results for comparative folding plans. The plan’s ac-
curacy was measured in terms of an ROC plot displaying both sensitivity and
selectivity. Values for MFE methods are added for comparison [29].

RNAalifold and Pfold are clear winners. For well aligned sequences the
speed and performance of RNAalifold was excellent, reaching high scores
in both selectivity and sensitivity. RNAalifold is a implementation of an
extended version of Zuker-Steigler algorithm (see section for computing
consensus structure from RNA alignment. The algorithm is remarkably
efficient O(N - n? + n?) in time and O(n?) in memory.

Pfold, another member of Plan A, has achieved similar accuracy despite
being built on a different paradigm, than RNAalifold. The program imple-
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5.2. Comparative folding methods

ments a stochastic context free grammar (SCFG) designed to produce a prior
probability distribution of RNA structures for an RNA alignment input.

As expected, pan C did not perform well. An notable observation is
however worth mentioning - both programs from this plan perform better on
the medium similarity data than on high similarity data. The reason behind
this paradoxical statement lies in the fact these programs work with predicted
structures. If sequences are very similar, they may jointly fold into the wrong
MFE structure. With greater sequence variation then rises a chance some
structures have good predictions. This means that especially in the case
of low sequence similarity, where nothing else works, plan C has a certain
promise [29].

B 5.2.2 Template-based prediction

This family of comparative methods aims to determine an unknown structure
through an initial structure template. The template can be viewed as a
consensus structure from the previous algorithms. The only difference is, that
the consensus structure the methods in Plans A to C tried to obtain in one
way or another, is in this case assumed to be given. This allows structure
prediction with just one sequence as an input and no need for alignment. It
may seem as an improvement to previous comparative approaches. One has
to however realize, it is not structure prediction in the true sense, since the
approximate shape has to be known beforehand.

One method tries to map an input RNA into a template structure, while
keeping consistent parts and folding the inconsistent ones. The authors
summarized the procedure in a graphic chart below.

A Input data BIntermediate CD D!nconsistent E F Generated
structure (for its eciym elements De novo struc- Paste structure
generation from p05| 10N identifica- ture prediction

input data, i.e. » tion for inconsistent
the copy step, * ‘% elements
see Table SO) “Consistent =

" hairpin

Inconsxstent RNAfoId
hairpin

Template: se‘qu%nce and stru-
cture of T. f ngensis SAM |

1 1= Con3|stent u
i / hairpin Sl | I v
LY y -
S |4> [( ck\ | Gramella
Query sequence of S';g;"s'ﬁe"t {[ — forsetii
Gramella forsetii SAM | RNAduplex v SAM |

Figure 5.6: First, a pairwise alignment of the query and template sequence is
computed. The template structure is then mapped into the query sequence to
form an intermediate structure, which preserves base pairs that the alignment
maps to complementary nucleotides. All other bases are marked as unpaired.
Second, the intermediate structure is decomposed into basic structure elements:
individual hairpins and stems. Inconsistent structure elements are identified and
de novo predicted [66].

This method is not only useful for predicting RNA secondary structures,
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5. RNA structure prediction

but also for estimating an ability of sequences to adopt the investigated
structure.

B TRAVeLer

TRAVeLer is strictly speaking not a structure prediction tool. It is primarily
a visualization tool, which lays out complex secondary structures with a
guidance of a homologous structural template. It solves an issue when long,
highly structured RNAs are being poorly visualized with stems and loops
overlapping each other, making the whole representation unreadable. The
template structure then serves as a skeleton for a correct layout.

Despite being aimed for visualization, TRAVeLer can be used in secondary
structure prediction. It is useful in moments when multiple predictions of the
same sequence need to be visualized in a consistent manner to enable visual
analysis of differentially predicted regions.

To briefly outline TRAVeLer’s work flow: at the beginning, it converts the
target and template structures into their corresponding tree representations.
Secondly, tree edit distance (TED) is used to obtain mapping between the
trees. - apart from telling a score telling the dissimilarity of the input trees,
TED can generate a minimal sequence of tree edit operations (insert, update,
delete) which turn a template tree into the target one. Following those
opperations will then lead to construction of an appropriate RNA structure
layout [22].

B 53 Methods using RNA structure profiling data

RNA structure profiling is a bio-chemical measurement, which serves to
provide insights about RNA secondary structure at nucleotide resolution. This
is achieved through different reactivity of profiling reagents with nucleotides
in single-strand and double-strand conformation. Based on the measurements,
each ribonucleotide can be then assigned a quantitative degree, to which it
is single-stranded or double-stranded. Recent improvements to this method
enabled higher rate of processed RNA, providing structural profiling on
genome-wide level. On the figure below are demonstrated principles of this
improved profiling method titled Parallel Analysis of RNA Structure (PARS).

The measured single/double-stranded conformation estimates can be then
fed into constraint folding algorithms. These are folding algorithms that use
profiling data to restrict the predicted RNA structure [41]. With increasing
availability of high-throughput secondary structure profiling data, it is ever
so important to do so [65].

B SeqFold

SeqFold grasps this idea - it incorporates data from multiple profiling methods
and integrates them with existing computational approaches. For instance, it
has achieved considerable improvement to an MFE program RNAStructure
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Figure 5.7: (e-f) Raw number of reads obtained using profiling agents RNase
V1 (red bars) or RNase S1 and the resulting PARS score (blue bars) along
one inspected domain of ASH1 (e) and URE2 (f). Also shown are the known
structures of the inspected domains with nucleotides color-coded according to
their computed PARS score

predictions when folding of certain RNAs where constrained by SHAPE E|
reactivity profiling data.

The ultimate goal is to take genome-wide, noisy experimental data directly
as input without manual curation. However promising this idea is, it comes
with a significant issue. Recent analyses indicate, that even dozens of fo-
cused SHAPE experiments on individual RNAs may not generate sufficient
measurement density for such modeling strategies leading to considerable
modeling errors.

Authors propose an approach to counter this noise sensitivity of MFE
methods. They sample from the given RNA’s Boltzmann weighted ensemble
and cluster the structures. They then compare the experimental structure
preference profile (an array of single/double-strand signal values for each
nucleotide - SPP) with an SPP of sampled structures. The centroid of the
nearest cluster is then set to be the predicted structure. The proposed
framework indeed increased the prediction robustness to noise in compare
to the MFE approach. It was also highly successful in predicting ncRNA
covariance model-based structures (sensitivity/selectivity of 0.88/0.78) in
conjuction with previously mentioned PARS structure profiling method/data

[65].

'from Selective 2’-hydrozyl acylation analyzed by primer extension; biological details on
this profiling method available at [30]
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Chapter 6
RNA inverse folding

RNA inverse folding is a reverse problem to the structure prediction. So far,
the problem was to find a correct structure for a given sequence. In case of
inverse folding however, the task is to search for sequences capable of attaining
a predefined given structure. L.e. finding sequences from a structure as an
input. To be precise, the criterion is for these sequences to form the given
structure as their minimum free energy conformation. For that reason, the
majority of algorithms employ MFE folding in some step of their work flow.
Some of the programs even go as far as directly plugging in existing MFE
solvers (e.g. RNAfold). This makes them dependent and also susceptible to
thermodynamic parameters alike the single sequence folding programs [14].

B 6.1 Implementations

There are several strategies for solving the RNA inverse folding problem -
RNAinverse, RNA-SSD [7], INFO-RNA [11] or NUPACK [83] to name few.
The common approach in all of them is to start with an arbitrary compatible
sequence or seed sequence. Compatible in a sense, that it can form base-pairs
wherever the input structure requires. Being compatible however does not
mean the sequence will actually fold into the structure. Therefore, the seed
sequence is mutated in various ways to minimize an objective function (e.g. a
distance between the target structure and the structure of the tested sequence)
[25].

Named programs are not the complete list of inverse folding solutions. For
the purposes of the thesis, not all of them can be examined, but a more
narrow selection has to be made. Churkin, et al., 2017 [14] have reviewed
almost all approaches and from their results the selection will be made.
The criteria for the program choice are the following: the method has been
used in ’'wet laboraty’ experiments and it internally works with the partition
function (for reasons outlined in the section |5.1.3). From the named programs,
RNAinverse and NUPACK fit these criteria, together with RNAIFOLD, a
program differing considerably from the previous two in its approach. We
will look at each one more closely.
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6. RNA inverse folding

B RNAlnverse

Written in the 90’s, the pioneer in this field is RNAInverse [35]. The objective
function, the internal algorithm is minimizing, is the tree edit distance between
two structures - the MFE structure of the tested sequence and the target
structure.

From observations that sub-structures contribute additively to the total
energy of the structure, the program proceed to optimize small structural
elements first, which effectively reduces the number of full sequence folding.

For the optimization itself, RNAInverse introduces random mutations to
the initial sequence, accepting those reducing the objective function.

As for input, the program accepts a structure of interest in the dot-bracket
notation. User can further force certain positions to hold a fixed nucleotide
- the output sequences will then vary in all but the constrained positions.
Generated sequences can be assembled based on the MFFE criteria, on the
partition function criteria (see section 5.1.3) or based on both.

Listing 6.1: Example of RNAinverse input and output. The structure on the
first line is constrained to have a GC pair closing the stem and a left bulge to
contain only adenines. Letter N indicates no restriction on nucleotides. The
returned output follows after a newline

CCCC o CC OOl )))))IN))
gNNNaaaaNNNNNNNNNNNNNNNNNNNNNNNNNNNNc

length = 37
gGCUaaaaUCGCGCAACGCCCCCCCUUGCGGGAGGUC

B RMAIFOLD

Together with RNAInverse, RNAiFOLD [26] is another inverse folding pro-
gram, that have been used in biologically meaningful way to precede wet
laboratory’ experiments [14]. Internally however, RNAiFOLD works on a
different principle. It employs constraint programming to arrive at a target
objective - a sequence folding into a given structure.

Two modes of running are available - CP (Constraint Programming) im-
plementation, that performs an exhaustive exploration of the search space
and LNS (Large Neighborhood Search) implementation, which is heuristic and
calls the CP sub-routine on smaller tasks. This method hierarchically breaks
down the structure and mutates partial solutions just as the previous group
of programs, here however the differences between iterations are greater (thus
the name "Large Neighborhood"). Due to its heuristic nature LNS cannot
prove no solution exists (as CP can), but is more suited for larger structures
as it has shorter runtimes.

For target sequences, RNA{FOLD is able to optimize against one or more
of the following criteria: MFE structure (solutions minimum free energy
structure is the target structure), minimum free energy (minimize solution’s
free energy when folded into target structure; relaxed first criteria) and
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6.1. Implementations

minimum ensemble defect (the application of partition function; more closely
described on following pages).

The program, thanks to its constraint programming design guarantees
optimal solution (within defined constraints) and can, given enough time,
prove no solution exists, in the case that none does exist. RNAiFOLD stands
out also for encompassing Andronescu’s energy model, which may provide
more accurate folding results as indicated previously in [5.1.2].

B NUPACK-design

NUPACK-design [83] works out the idea set by RNAinverse - an iterative
mutation of a candidate sequence, accelerated by hierarchical structural
decomposition to avoid full-length objective function calculation. After a
discussion on the validity of various objective functions (including the ones
involving MFE) the authors propose a so called ensemble defect minimization.
This objective function represents the average number of incorrectly paired
nucleotides over the ensemble of structures I'. The ensemble defect of a
sequence ¢ and its particular structure s is denoted as n(¢, s) and defined as:

n(¢7 3) = Zp(07 (f))d((L S) (61)
oel
where p(o, ¢) is the probability of a structure o derived from the partition
function as described in section |5.1.3 and d(o, s) is the distance between
secondary structures ¢ and s measured in the number of nucleotides paired
differently.
The program seeks to design a sequence ¢ of a length N with ensemble
defect satisfying the stop condition:

n(¢,s) <= fstop - N (6.2)

with fstop € (0,1) being the user specified value (0.01 by default).

As for general framework of the program - NUPACK starts from an
arbitrary sequence compatible with a required structure. The structure itself
is decomposed into a tree, with leafs nodes being individual sub-structures.
Sequences for those sub-structures are optimized independently by defect-
weighted sampling (positions causing the most defect has the biggest chances
of being mutated). An emerging sequence is further optimized during leaf
merging, when the sub-structures are joint together.

B Comparison

Each presented program represents a distinct philosophy in inverse sequence
generation. While RNAinverse and NUPACK are heuristic, RNAiFOLD
is exhaustively exact. NUPACK in turn differs from RNAinverse with its
ensemble defect minimization. At this point we cannot say, which one is
more suited for our application - thorough experimental comparison of the
programs will be given in the practical part of the thesis. In general however,
the upper range estimate for the sequence length that these programs are
useful for is around 150 nucleotides. [14]
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Chapter 7
BLAST

BLAST is arguably the most popular tool in computational bioinformatics.
It features similarity search in sequence databases. The strength of BLAST
comes from the fact, that this search has an exceptionally favorable trade-off
between time complexity and sensitivity. It can well approximate results of
dynamic programming methods (Needleman-Wunsch [64]) while being by an
order of magnitude faster. This is mainly thanks to its heuristic design, which
will be described below. Two versions of the algorithm will be discussed - the
original one from 1990 (BLAST90) and the refined version from 1997.

B 7.1 BLAST principles

BLAST4] does not attempt to find an optimal score as alignment methods
do - this would be too slow for database searches. Instead, it splits a query
sequence into words of fixed length and scans database for words, that score
at least T against some of them. The score between two words is calculated
using substitution matrices, e.g. BLOSUM [33]. Hits are then extended
character by character in both directions, until the score drops too much
under the best score seen so far. This way a high scoring segment pair (HSP)
is obtained. In this process, the hit extension is the most costly operation.
Some of the extension operations will be "wasted", meaning they lead to score
drop. The number of wasted extension can be reduced by tuning the score
cut-off T"and word length w values. Authors empirically found T = 17 and
w = 4 to be the best, even though different values are used today|[19].

BLAST attempts to collect all HSPs with significant enough scores. The
significance is expressed in terms of so called e-value.

B 7.1.1 E-value

Let’s have a query sequence of length m with a hit scored S against some
database. E-value of this query is then defined as the expected number of
HSPs with score at least S obtained by searching a random sequence of length
m. In other words, e-value can be understood as the number of false positives
expected from BLASTing a query of length m, having the score S. The
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7. BLAST

formula is the following:
E = Kmne >® (7.1)

where n is the database size in number of nucleotides/aminoacids and K
with A can be viewed as parameters for search space size and scoring system
[19][40].

B 7.2 Gapped two-hit BLAST

BLAST97 [5] is an evolution of BLAST90, bringing new features and faster
search. In total, three major improvements were implemented. The speed
enhancement was achieved by modifying the extension step - the most time
consuming step. In this version it will not be triggered until two words
are found in the same diagonal; the words also need to be within a certain
distance (see figure |7.1)).
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Figure 7.1: Example of the new hit extension policy. Two globins are compared.
15 hits with score at least 13 are indicated by plus signs. Additional 22 hits with
score at least 11 are indicated by dots. Of these 37 hits, only the two indicated
pairs are on the same diagonal and within distance 40 from each other. Thus
the two-hit heuristic with T = 11 triggers two extensions, in contrast to the 15
extensions invoked by the one-hit heuristic with T = 13[5].

B 7.2.1 New features

Two features added are first the ability to generate gapped alignment, and
second, incorporating of position-specific score matriz (PSSM) into the search
process. The later is only the domain of proteins and is presented only for
the sake of completeness.

Gapped alignment was already considered in the original BLAST. Authors
decided to leave it out for being an unfavorable trade-off for speed. Now, the
gap extension is allowed, however only on a limited number of HSPs, that
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exceed a moderate score Sy, > T'. Therefore, even though still time-consuming,
this limitation keeps the complexity reasonably low. Together with speed
improvements thanks to the two-hit modification, the gapped extension can
be newly effectively used.

Il PSI BLAST

Inclusion of position-specific score matrices (also profiles) was motivated
by their ability to detect weak relationships in compare to simple sequence
queries. The matrices embody both the query and the substitution matrix in
a sense, that a query of length L and a substitution matrix with dimensions
20 x 20 (aminoacids) are replaced by a PSSM of dimensions L x 20. In the
PSI BLAST (Position Specific Iterated BLAST), the first iteration constructs
such a PSSM from the candidate matches and in subsequent iterations the
algorithm compares the candidates with the PSSM from the previous iteration
[19].

B 7.3 BLAST applications

BLAST has been re-implemented in the BLAST+ suite[I2], improving us-
ability and efficiency in certain cases (optimization for long queries, extended
command line options, etc.). It further splits the program into separate
command line applications based on types of molecules of query and subject
- blastn and blastp are manifestations of the original algorithm for searches
in nucleotide and protein sequences; blastx translates a nucleotide query for
protein searches; megablast [84] optimized for closely related sequences (which
e.g. differ only by sequencing errors). In compare to blastn this application
can use larger word size, for which it is by an order of magnitude faster.
For the purposes of this work, the standard blastn will be used.

. 7.4 BLAST databases

Sequences are always searched against some database. The database can
be one of pre-formatted options such as nucleotide collection (nt), or can
be set up by the user from his/hers own set of sequences. Pre-formatted
BLAST databases govern records from archival and annotation projects such
as GenBank (database joining several sequencing projects)[10] or RefSeq (non-
redundant, curated RNAs sequences; shares some sources with GenBank)[69].
Individual databases can be further dedicated to a particular sequence type
(protein, RNA, genomic) or/and to particular organisms (human, mouse,
viral, etc.). Apart from the general nt database, examples can be extended
to other__genomic (genomic records of lower eukaryotes) or refseq protein
(protein sequences from RefSeq project). The complete list available at
https://www.ncbi.nlm.nih.gov/books/NBK62345/|
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Chapter 8

Previous work

Several attempts were made in this area to computationally locate unknown
IRES-like elements. Each of them took different approaches utilizing various
machine learning and statistical techniques (e.g. support vector machines or
logistic regression). Four methods will be summarized in following pages.

B 8.0.1 Search using inverse folding

Previously, an RNA inverse folding program RNAiFold was presented (section
6.1). The creators then put their program to the test. They believed, that
since the sequence conservation of IRES elements is low and at the same
time its functional dependence on the structural conservation is high, it is
worth generating a large number of possible IRES sequences and checking,
whether some occur in nature. The picornavirus IRES was chosen as a model,
specifically its sub-domain III, an essential region driving IRES activity.

Given the viral IRES domain structure, over 100 000 sequences were gener-
ated. The sequences were constrained to contain conserved C-rich and RAAA
motifs (IUPAC code R standing for base A or G). The structure and sequence
constraints used as input to RNAiFold were the following:

Listing 8.1: Picornavirus IRES domain structure and nucleotide constraints on
generated inverse sequences

et et ) CCCCCeCeCCC. . 233333)33))) CCCCCnnnn IDDDDDDDY.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNRAAANNNNNNNNNNNNNNNNAACCCCANNNNNNNNN

To reduce search time, the sequences were clustered via a greedy algorithm
and random representative of each cluster was BLASTed. Afterwards, the
obtained BLAST results were filtered by keywords (hits containing words like
ribosome, transcription, kinase, etc.) and location (5’'UTR, beginning of the
coding region). From the final 6 candidates, a coding region of Drosophila
melanogaster (see figure 8.1)) was identified as the most fit for experimental
testing to confirm or reject the possibility of the region harboring an IRES-like
subdomain structure. The in vitro tests showed weak, but possitive internal
initiation of translation, indicating the subdomain could be present [I§].
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> Drosophila melanogaster TBP-associated factor 6 NM_079437.4

ctcttttgggtgtgtgcacactggecgageagetcggegattattatttgtttatttgtaaaaacctgggaaatg;,agtggaaaaccgtcg
aaaccgagcagceccctccageageatgetgtacggetccageatctcggeggagtccatgaaggtgatcgeggagageatcggagtsg
gctecectgteggatgacgecgecaaggaactageggaggatgtgtccatcaagetgaagaggattgtacaggatgeggecaagtteat
gaaccacgccaageggcagaagetctcagtgegggacatcgacatgteccttaaggtgcgaaatgtggagecgeagtacggtttcgta
gccaaggacttcattccattccgettcgeatctggeggaggacgggagetgeacticaccgaggacaaggaaatcgacctaggagaaa
tcacatccaccaactctgtaaaaattcccctggatctcaccctgegeteceattggtttgtigtggagggagtgcaacccactgtgeeeg
aaaaccccecctccgctctcgaaggattcccagttactggactcggtcaatccagttattaagatg,gatcaaggcctaaacaaagatge
ggcaggcaaacccaccaccggeaagatacacaagcetgaaaaacgtggagaccattcatgtcaagceaactggecacgcacgagttgtc
cgtggagcagcagttgtactacaaggagatcaccgaggegtgegtgggatctgatgageegeggegeggggaagegcetgeagteget
gggatccgatcctgg cctgcacgaaﬁcttc cccgc-tgca ccttcattgeccgagggagttaaggtcaatgtggticagaacaac
ttggcgttgcttatttacctcatgegeatggttcgtgegctictggataatecttcgetgtttctggagaaataccteccacgaactgatacce

Figure 8.1: Region in Drosophila’s genome likely to harbor an IRES-like sub-
structure. The sequence retrieved with RNA inverse folding is indicated in italics;
motifs conserved with the IRES subdomain are indicated in bold letters. The
region encompassing the IRES-like motif is colored in violet while the control
downstream region is indicated in light green [18].

B Remarks

Authors have built a pipeline, where they focused on the RNA structure
of the searched domain, while leveraging the speed of sequence searching
methods. They part in this aspect from other solutions, which rely on some
form of a sliding window, that would make genome-wide scans extremely
time consuming (one such example will be also presented in this section).

On the other hand, the use of the inverse folding program RNA{FOLD
might not be the fittest. Recall, that the program is build on constraint
programming and can search for all solutions or prove none exists. The
method’s nature however shows to be rather prohibitive in diversity landscape
of sequences it generates. As seen from the sample of outputted inverse
sequences (figure , the program has a clear bias towards GC base pairs
and A unpaired nucleotides.

The issue is addressed by program’s settings, in which the number of
consecutive nucleotides and GC-content ratio in resultant sequences may be
adjusted. This however does not remove the bias, just shifts it somewhere else.
For instance, when the maximum number of consecutive As were restricted
to 3, the program steadily replaced every fourth consecutive A with an U
(see figure 8.3)).

As we can see, the sequences appear highly artificial, however they might
perfectly fold into the target structure. Trying to fine-tune program’s param-
eters to make sequences look more 'natural’ is a doubtful way of solving this
issue, not speaking of the vague definition of the word ’'natural’.

Even though the idea behind this approach is reasonable, the discussed
flaws limits its exact use for the purposes of this work.
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CCCC COCCCC e+ COCCCCCCC (OO 1)) e NN CCCCMNIND)
GGGGAAGGGGGGAAAACCCCCCGGGGGGGCGEAAGGAGCGGGAAAAAAAAAAAAAACCCGCACCAAAACCGCCCCCCCAGEGGAACCCCCCCC
GGGGUAGGGGGGAAAACCCCCCGGGGGGGCGGAAGGAGCGGGAAAAAAAAAAAAAACCCGCACCAAAACCGCCCCCCCAGGGGAACCCCCCCC
GGGGAAGGGGGGAAAACCCCCCGGGGGGGCGGAAGGAGCGGGAAAAAAAAAAAAAACCCGCACCAAAACCGCCCCCCCACGGGAACCCGCCCC
GGGGUAGGGGGGAAAACCCCCCGGGGGGGCGGAAGGAGCGGGAAAAAAAAAAAAAACCCGCACCAAAACCGCCCCCCCACGGGAACCCGCCCC
GCGGAAGGGGGGAAAACCCCCCGGGGGGGCGGAAGGAGCGGGAAAAAAAAAAAAAACCCGCACCAAAACCGCCCCCCCACGGGAACCCGCCGE

(a) : Structure of the HCV domain Illabc as an input to RNAIFOLD. A sample
of returned inverse sequences follow. Notice all unpaired nucleotides in all
sequences are marked as As. Also notice the domination of GC pairs and low
U-content in general.
CCGGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGLLGG
GGCGGCCAAAAAAGGCGCGUGGCGGGGAAMAACCCCGCCGLGCCCGCCAACCCCAGGCGGLGCE
GACGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGCGUC
CACGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGCGUG
GCCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGEGGCGGE
CCCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGECCGLCAACCCCAGGCGGCGGG
ACCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGEGGCGGU
UCCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGCGGA

GUCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGCGAC
CUCGGCCAAAAAAGGCGCGUGGCGGGGAAAAACCCCGCCGCGCCCGCCAACCCCAGGCGGCGAG

(b) : Published [I8] sample of sequences used for IRES
searching. The same issue may be visible here as well.
If wasn’t for the C-rich motif constraint at the end of
the sequence, there would be As too.

Figure 8.2: Bias of RNAIFOLD towards GC pairs and A single nucleotides.

CCCC - CCCOCC w2200 CCCCCCCCCC (G OO0 v 1))))2))++.3)3))))) - ((((-.))))))))
AGAGAAGCGGGGAAAUCCCCGCGGCGGCGGEGAAGGAGGGCGAAAUAAAUAAAUAACGCCCACCAAAUCCCCGCCGCCAAGGGUACCCUCUUU
UGAGAAGCGGGGAAAUCCCCGCGGCGGCGEGGAAGGAGGGCGAAAUAAAUAAAUAACGCCCACCAAAUCCCCGCCGCCAAGGGAACCCUCUUA
UGAGAAGCGGGGAAAUCCCCGCGGCGGCGEGGAAGGAGGGCGAAAUAAAUAAAUAACGCCCACCAAAUCCCCGCCGCCAAGGGUACCCUCUUA
AGAGAAGCGGGGAAAUCCCCGCGGCGGCGGGGAAGGAGGGCGAAAUAAAUAAAUAACGCCCACCAAAUCCCCGCCGCCAUGGGAACCCACUUU
AGAGUAGCGGGGAAAUCCCCGCGGCGGCGGEGAAGGAGGGCGAAAUAAAUAAAUAACGCCCACCAAAUCCCCGCCGCCAUGGGAACCCACUUU

Figure 8.3: New bias of RNAiFOLD when the maximum number of consecutive
As is set to 3 and the maximum GC-content set to 60%.

I 8.0.2 IRESPred:Prediction of cellular and viral Internal
Ribosome Entry Site

In this approach a support vector machine (SVM) classifier is built to decide,
whether a sequence can harbor an IRES. The main biological set of features
used in classification is computationally predicted reactivity of 5’UTR regions
with 27 small sub-unit ribosomal proteins (SSRPs). 8 additional features were
included, such as number of upstream AUGs or number of various structural
elements (hairpin loops, external loops, etc.), totaling them to 35.

As for a training data set, authors extracted 114 sequences from the IRESite
database [62], containing experimentally validated IRES elements. These
were the positive examples. Negative examples were assumed to be 5’UTR
sequences of housekeeping genes and viral/cellular coding sequences chosen
by random.

Multiple SVMs were trained on sampled training sets (96 true positives,
96 true negative) and tested (set of 93 TP and TN). The best one was then
implemented in the IRESPred web server. Reported accuracy metrics were
75% in both sensitivity and specificity [44].
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This tool couldn’t be validated and the claims verified as at the time
of completion of the thesis, all instances of the server were inaccessible or
removed.

Bl 8.0.3 IRESfinder:ldentifying RNA internal ribosome entry
site in eukaryotic cell using framed k-mer features

The most recent tool for discovering novel IRES elements. The authors
mention the discussed IRESPred, criticizing it for using too small data sets
for the purpose of training and testing. They overcome this issue using a
newly published set of 583 human IRESs and their motifs [7§]. The approach
to the task of identifying IRES-like regions is build on k-mers of length 1-5.
19 k-mer motifs were selected to calculate features, which were then used to
train a logit model. For training and testing, a selection of the 583 IRESs
was extracted, specifically those sequences, which lie entirely within 5’UTR.
Authors argue, that different nucleotide frequencies between 5’UTR and
coding regions would impair the classification performance.

The reported accuracy and precision of IRESfinder on a testing dataset
are respectively 65% and 73.08% [85]. We tested the program on random
human gene sequences, which were fragmented by a sliding window. From 533
fragments of length 180 (comparable to the length of the 583 human IRES
sequences the program was trained on) IRESfinder output showed doubtful
results indicating 404 fragments are IRES-like. Even thought authors stated
the program is suited only for 5’UTRs, these results cast a shadow on the
credibility of the tool.

B 8.0.4 IRSS (2009) and VIPS (2013) IRES secondary
structure prediction and searching systems in silico

Even though structure prediction programs are available, none of them is
suitable to predict the IRES element. To build a specialized tool for this task,
a group of researches has first set up an IRES search system (IRSS) and later
its improved version a Viral IRES prediction system (VIPS). Both combine
two RNA structure prediction methods - MFE folding and consequently
secondary structure comparison (alignment). VIPS is then extended by
pseudoknot support.

B IRSS

The procedure of IRES searching consist of a sliding window, that moves
along the examined sequence and a so called R metric, that is calculated for
each such window fragment. R is defined as a ratio between the fragment
alignment score (ALEN) and the distance score of its predicted structure
towards the structure of one of the "golden standard" IRESs. An R threshold
is set to discriminate between IRES-like and non-IRES-like sequences. As
for golden standard IRESs, the of Pestivirus and HCV were implanted into
IRSS.
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Figure 8.4: Workflow of the IRSS and VIPS search systems. A primary sequence
is fragmented by a sliding window and folded. Predicted structures are compared
with known TRESs and an R score for each window is calculated. Windows
containing a potential IRES should manifest a significantly higher score, than
the rest of the sequence. The worklow is identical for IRSS and VIPS apart from
highlighted items, which are only a part of VIPS. In IRSS, only a single IRES is
chosen as the standart one and pseudoknot score is not included [39]

The accuracy was as high as 72.3%, tested on 152 UTRs of HCV and
Pestivirae taken from the UTRdb |'| database [S1]

Thttp://utrdb.ba.itb.cnr.it/
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B vipPS

To improve the accuracy of the IRSS, the authors extended its capabilities by
considering pseudoknots in prediction. This is a crucial enhancement, since
only IRES Group 1 (see section [2.2.1)) contains three essential pseudoknots in
its structure [43].

The scoring metric was modified to take into account (apart from the R
score) a pseudoknot value returned by pknotsRG program. To determine
the metric’s cut-off threshold, individual scores were calculated for a positive
group (known IRESs from IRESite and Rfam) and a negative group (viral
coding sequences). Based on these R and pseudoknot values, the threshold
was estimated by linear discriminant analysis.

The VIPS has higher accuracy than IRSS even when only R score is
considered (77% - 92% depending on the IRES group). Authors contribute
this improvement to more competent standard IRES elements, that serve as
comparison models. When pseudoknot values are added to evaluation, the
accuracy rises for IRES groups 1 and 4 (containing the most pseudoknots) to
80.41% and 98.53%. It is worth noting, that VIPS has near-perfect specificity,
but sensitivity can be as low as 64%.

Tested on human cellular 5’"UTR database, VIPS was able to find potential
IRES candidates only for groups 1 and 4. The system labeled 6% of all
5UTRs (42 768) as candidates. From those candidates, 21% and 25% of
them were verified as IRES elements based on IRESite data [39].

B Remarks

In the context of previous two methods, the presented procedures recognize
the need to shift focus from primary to secondary structure when searching
for IRESs. It does so in a straightforward manner - by folding a sequence
and comparing the fold with proved IRESs. The limitation however lies in
the sliding window, which on one hand provides a very thorough scan and
is reasonable for shorter sequences, on the other hand makes genome-wide
searches in-feasible.

Regarding the test results on human 5’UTRs - they show lower accuracy
of cellular IRESs prediction than the one of viral IRESs. The number may
be however higher - by the time of publication, over 500 novel cellular IRES
elements uncovered by Weingarten et. al [78] were not yet known. Perhaps
some of the false positives were in fact not false at all. It would be interesting
to evaluate the results again, see how many true positives were wrongly
labeled. These particular results were however not published. They also
cannot be reproduced, due to the VIPS server being down (as well as the
IRSS one). Authors did provide the corresponding Perl scripts, they are
however incomplete, missing essential configuration and template files.

Lastly, in the context of our goal of locating HCV IRES-like elements, it
might be worth noting, that VIPS has not predicted any cellular 5’UTR
sequence to be of IRES group 2, which the HCV one belongs to.

40



Chapter 9

Results

B a1 Approach principle - pipeline

The approach this thesis takes in solving this task is a modification of the
one presented by Dotu, et al.[18]. There the authors dealt with similar task
of detecting novel IRES elements. They built a pipeline consisted of inverse
folding, greedy clustering of generated sequences, BLAST and finally keyword
and biological signal filters on hits.

The method presented here preserves the two key steps of the pipeline
- inverse folding and BLAST search, the remaining parts will be however
different. The clustering step will be modified to be more complex, than
the simple greedy approach. The keyword and biological signals filters will
be dropped altogether, since we do not require the domain to be functional
and active. Instead, those filters will be replaced by a post-processing step,
in which hit regions obtained form BLAST will be folded and checked for
similarity with the domain IIlabc of HCV. Furthermore, an appropriate
inverse folding program/algorithm will be selected by benchmarking existing
solutions. The one used by Dotu, et al. was their own creation and chosen
apriori with no justification.

Pipeline

Inverse Sequence NA2Dsearch
folding clustering

* Inverse folding programs ~ « Reduce the number of « BLAST against « Search in sub-optimal
comparison and sequences to BLAST by human_mRNA and folds of candidates for
benchmarking either clustering based on human_genomic HCV domain structure

phylogenetic trees databases

» Generating a large pool of  or based on SVM * Multiple levels of
inverse sequences suiting  prediction of hits « Filter candidates by e-  relaxations of the queried
the HCV domain Iltabc value structure

structure

Figure 9.1: Summary of the pipeline

The schema shows the progression of the proposed pipeline together with
details on what steps will be made at each stage. The pipeline should in
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ideal case serve a funnel, where at the beginning it accepts a large number of
inverse sequences and with each consequent step (clustering, BLAST e-value
cut-off), the number decreases until at the very end, a handful of candidates
is outputted. For instance, the e-value attribute of BLAST hits is suitable
for funneling - it allows sorting of candidates by priority, by which we can
regulate the number of sequences sent to the next step for further evaluation.

On following pages we will be dealing with each of the four step separately.
However, before describing the pipeline itself, we need to choose an inverse
folding tool.

B 92 Inverse program selection

Inverse folding is the very first step of the search process. Choosing an
appropriate inverse folding program can therefore mean the difference be-
tween discovering a hit and loosing it. The candidates here are RNAinverse,
RNAiFOLD and NUPACK-design.

While comparing available inverse solutions, we will have two metrics in
mind. One metric is measuring the quality of sequences they produce - how
close to the target structure do the sequences fold. For the second metric - not
only the structure faithfulness is important, but the nucleotide composition
of inverse sequences is as well. Later on we will see, that one method can be
extremely biased towards certain nucleotides and sequence patterns, which
in turn puts unwanted restrictions on the diversity of candidate sequences.
Those restrictions are not backed by any domain knowledge, and besides, we
naturally want the sequences to be as diverse as possible.

B 9.2.1 Evaluating structure faithfulness of inverse sequences

In this section, folded inverse sequences will be examined on how consistently
the generated sequences fold to the desired structure. Since however the true
structure of a given inverse sequence is unknown, we will have to rely on
predicted structures as a means of comparison.

The comparison itself was conducted first by basic tree edit distance mea-
surements and then more thoroughly using template matching with the
NA2Dsearch tool. Results for this selection criteria shown below.

B Tree edit distance

The first glimpse on the structure faithfulness is given by the tree edit
distance. This metric tells the number of edit operations needed to transform
one structure to another when both are represented as trees.

To see, what numbers we can expect, we first fold and examine the original
HCV domain Illabc sequence in this fashion. The reason for that comes from
the inherent flaw of structure prediction - "correct" sequences (sequences,
which actually folds to the target structure) are often misfolded and are
assigned structures different from the true one. To at least estimate this
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discrepancy, the examined HCV sequence was folded by the structure pre-
diction program RNAStructure. The prediction was compared with the true
structure to see, how big can the error of folding a "correct" sequence be.

(a) : True structure

(b) : Predicted structure

Figure 9.2: Comparison of the true and predicted domain IIlabc structures.
Sequence was folded by RNAStructure, folding with Vienna’s RNA Fold would
produce the exact same structure. The MFE structure of RNAsubopt would
differ in bases A30T69, which would be unpaired.

As seen from the figure [9.2] the predicted structure is rather similar to
the original one. To have the differences quantified, the tree edit distance
(TED) between the true and predicted structures was measured to be 20.
Taking this value to the context of inverse sequences - if the TED of a folded
sequence is around 20, though non-zero, the sequence might still fold into the
desired structure.

Each of the programs was tasked to generate 300 sequences (command
line parameters available at the end of section). These were then folded and
compared with the original structure in terms of TED. A histogram of TED
values was plotted to get a glimpse on the quality distribution of inverse
sequences. The results are shown on figure 9.14.

There we see, that RNAinverse, though written two decades ago, performed
fairly well with the average TED to the target structure of 26.4 4+ 19.06.
RNAiFOLD cut this value almost in half, having an average TED of 14.8+8.02.
Both RNAinverse and RNAiFOLD were run in the partition function mode.
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Figure 9.6: Tree edit distance histograms of folded inverse sequences gener-
ated from programs RNAinverse, RNAiFOLD and NUPACK. 300 sequences
were assembled for each program. The average TEDs are 26.4, 14.8 and 4.6
respectively

NUPACK surprisingly managed to get almost all its sequences to fold into
the same structure with only 4.64 + 2.14 TED. The folded structures differed
from the target one just at one pair of nucleotides - CG bases at positions 83
and 86 were supposed to be paired. E]

B NA2Dsearch

Tree edit distance of folded inverse sequences does tell something about quality
of those sequences. First of all however, TED is just a number and one TED
value can embody a large set of diverse structural changes. Second, only the
MFE structures were compared and other conformations neglected. For those
reasons, each set of 300 sequences was examined in the NA2Dsearch tool.
NA2Dsearch is a program that takes a secondary structure and searches an
underlying sequence database for candidates, whose sub-optimal folds might
match the target structure. It is an extremely exhaustive search (one sequence
can result in hundreds of folds), but this ensures no potential candidates
are missed. The search for the domain Illabc within inverse sequences is
summarized in table9.1 with the query structure shown in figure There we

L This error is however understandable - this pairing is made possible only by a non-
standard conformation of the remaining nucleotides in the loop [42]. When this CG pair is
forced, energy calculation programs would assign an infinite positive contribution to the
structure energy.
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can confirm the previous results - RNAinverse produces the most inaccurate
sequences (3 sequences missed in compare to none missed in case of the
other two methods) and with numerous possible conformations (hundred
times more folds, than other two methods). NUPACK and RNAiFOLD both
performed similarly well.

\ | 12-14-16

4-5-6

1-2-3 ||| 3-a-5

3-4-5

o 1] e1011

5-6-7

Figure 9.7: Search query structure. The number triplet at each structural
element denotes minimal, optimal and mazimal number of nt/bp respectively.
These constraints allow tolerance of +1nt/bp in shorter and +2nt/bp in longer
elements

This tool will be used once again later on and will be described more in
details.

B 9.2.2 Evaluating nucleotide distribution of inverse sequences

Next, we explore the sampling capabilities of the three methods. To evaluate,
how diverse set of inverse sequences they can produce, the sequences were
visualized by the multiple sequence alignment tool ClustalX [46]. There
(see figure 9.8)), one can immediately spot high level of regularities among
the sequences produced by RNAIFOLD. Some regions were even conserved
across all 300 sequences, which shows non-uniformly sampled candidates. The
remaining two programs have their conservation levels uniformly low across
all nucleotide position.
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searched structures hits missed sequences
RNAinverse < 10° 11196 3/300
RNA(FOLD < 20000 5421 0/300
NUPACK < 10000 4133 0/300

Table 9.1: Search for domain ITlabc within 300 inverse sequences using
NA2Dsearch. The columns show total number of examined structures within the
energy increment AAG = 4kcal/mol, the number of matched structures and the
number of sequences with no sub-optimal fold matching the target.

B Repeated runs influence

A question might also be, whether sequences from multiple program executions
differ in any way. In other words, whether different runs of inverse programs
sample different sequence-structure sub-spaces, or the same one. And if yes,
to what degree? This might have crucial consequences - having big differences
between runs would mean the sequences are being sampled unevenly.

One way of quantitative determination and visualization of the generated
sequences landscape is through phylogenetic trees. The original purpose of
phylogenetic trees is to depict evolutionary relationships among organisms
- their genetic information is compared using multiple sequence alignment
(MSA) and then the tree (often referred to as "tree of life") is constructed by
joining the most similar sequences or clusters of sequences.

For purposes of this work, we will not study the evolutionary relationship
of the inverse sequences, we just need the hierarchical clustering feature the
tree is providing. In this test, 300 sequences were generated in batches of
20-30 (RNAinverse, RNAiFOLD), or designed one-by-one in case of NUPACK,
which doesn’t support batch generation. Corresponding trees are assembled
via ClustalW [46] phylogeny.

From the figure[9.9| we can recognize, that RNA{FOLD sequences belonging
to the same run form distinct clusters. This is an undesirable characteristic,
since it indicates a different sequence-structure sub-space is sampled each
time the program is executed. It is possible, that given enough time, the
algorithm would explore the entire space. From the practical standpoint
however, we cannot rely on such assumption.

The remaining two methods have their output across the runs more evenly
distributed and also individual sequences more distant from each other. Note
however that having such uniform distribution of sequences doesn’t necessarily
mean that it is the true distribution - it is just an indication, that the space
the samples are drawn from is large enough to appear uniform in the context
of a small sized sample.

B 9.2.3 Comparing inverse folding solutions

Implementations discussed in the inverse folding section were examined on
how quality sequences they produce. As mentioned in the theoretical part
6.1, the presented candidates were pre-selected based on the following criteria:
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(a) : RNA{FOLD

(b) : NUPACK

Figure 9.8: Visualization of the sequences composition in ClustalX. RNAiFOLD
sequences manifest strong conservation indicated by the star marks on first line,
that mark positions with identities. The conservation is also noticeable from the
bottom graph indicating the degree of conservation of each column (high score
for well-conserved columns and vice versa). Other two programs have this graph
almost perfectly smooth (data shown only for NUPACK)

the ability to generate inverse sequences based on partition function and
whether or not they have had an experience in 'wet laboratory’ experiments.
These criteria yielded inverse programs RNAInverse (the first implementa-
tion), RNAIFOLD (featuring constraint programming) and NUPACK-design
(optimized for ensemble defect).

The programs were first examined in terms of how well do the sequences
fold with respect to the target structure. Here, NUPACK achieved the
best results, followed by RNAIFOLD - both had no sequence missed in the
NA2Dsearch search and low average TED towards the target. The closeness
of folded sequences towards the target structure is however not all. Even
though RNAIFOLD performed better than RNAinverse in this regard, the
sequences it outputs suffered from severe undesirable traits such as high

47



9. Results

003

(a) : RNAIFOLD phylogenetic tree

004

(b) : NUPACK phylogenetic tree

Figure 9.9: Inverse sequences from multiple program runs clustered into phyloge-
netic trees. RNAIFOLD sequences formed a tree with distinct clusters highlighted
in different colors. The clusters hold only sequences from one program run, in-
dicating high dependence on the initial proto-sequence. Furthermore, different
energy parameters were tested - green/blue clusters represent Andronescu’s set;
orange/yellow clusters are populated with sequences generated with Turner 99’
set. NUPACK sequences are in contrary all distant from each other. The same
goes for RNAinverse (data not shown for the tree is very similar). The trees are
drawn by FigTree
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Listing 9.1: Command line argument for examined programs from which the
300 inverse sequences were generated. Inputs to each program are separated with
a blank line. Fp argument of RNAinverse tells the algorithm to use partition
function. In case of RNAIFOLD the partition function is set by -MinimizeEnsDef
"1". Arguments -maxGCcont, -consA, -consC restricts the corresponding nu-
cleotides to reduce RNAiFOLD’s bias toward them. Andronescu07 energy model
was used, heuristic LNS (Large Neighborhood Search) was turned off to search
exhaustively. NUPACK accepts input structure and sequence constraints from
a file (the first argument; the content matching the input to RNAinverse), the
latest energy parameters available (Turner99) were used, allowed ensemble defect
was set to 3% to allow more variation, than the default 1%

RNAinverse -R300 Fp

CCCC . CCCCCC. .. 02220) CCCCCCCCCC. . CC Ot )3))).))
cee2)D222020)) . (03 ))

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

RNAiFold2 -RNAscdstr " ((CC..CCCCCC...))))))
G I G (O G G G )3)))0) .. ..)))))00)))
LCCCC.0))))))))™ -MAXsol 300 -RNAlibrary "Vienna" -
EnergyModel "2007" -MFEstructure "O0" -MinimizeEnsDef "1" -
maxGCcont "60" -consA "4" -consC "4" -LNS "O"

nupack3.0.6\bin\design domainIIIabc_struct.fa -material rnal999
-fstop 0.03

conservation and bias towards As and GCs (section [8.0.1)) making it unusable
for this work.

RNAinverse, despite being less accurate, is still faithful enough to have
only a small portion of sequences missed (3 out of 300). It is however a
reasonable trade-of for its speed, being able to generate one sequence in 1s.

NUPACK produces the most accurate and at the same time well distributed
sequences. At the same time though, it is the slowest approach with 3s needed
for one sequence. Depending on the application and its emphasis on time-
accuracy trade-of, both NUPACK and RNAinverse are reasonable choices. In
this work the emphasis will be on accuracy and the source of inverse sequences
will be NUPACK.

B o3 Step 1: inverse sequences generation

At this point the inverse folding program is chosen and we may proceed to
generate a pool of inverse sequences as the first step of the pipeline. Next
step will be to cluster them and then BLAST the cluster representatives.

All inverse folding programs (including the chosen NUPACK) support
nucleotide constraints, which are there to fix certain bases and preserve
required sequence motifs. This option will be however left unused and
sequences generated without restrictions. It does not mean there are no
conserved bases in HCV IRES, our goal is only to keep the search as general
as possible, focusing solely on the structure itself.
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NUPACK settings were the following: energy model Turner99 (the most
recent supported) and the ensemble defect stop condition 0.03. The value for
ensemble defect, which can be understood as allowing 3% of nucleotides to
be paired differently, then in the probable correct structure, may seem small,
but it still allows generating of 100 000 unique inverse sequences. Command
line arguments are the same as in the benchmarking part and can be seen in
the listing 9.1, The target structure definition in dot-bracket notation was:

(CCCCCCCCC MM CCCCCCC i D) INNNN)-(((()))))

B oa Step 2: inverse sequence clustering

The next step in the solution would be to BLAST the inverse sequences.
BLAST is however a costly operation, especially on larger databases, and is
the main bottleneck of the proposed procedure. Naturally, finding a way to
reduce the number of sequences to BLAST, while loosing only a small chance
of discovering hits, would mean a significant boost to the pipeline.

Clustering is the most appropriate candidate for this task. The idea is to
generate a large set of inverse sequences, cluster them a BLAST only the
representatives of the clusters. The hypothesis here is that the members of
the same cluster would produce similar BLAST hits, thus being redundant.
One can therefore omit them from further evaluation, selecting only a suitable
centroid for such purposes and that all without a significant loss of BLAST
hits. With the idea set, two questions remain to solve - how to cluster the
sequences and how to choose cluster representatives?

Bl 9.4.1 Phylogenetic tree cutting

Main component for solving the first question has been already outlined
in the previous section on inverse program choosing - a phylogenetic tree.
Phylogenetic trees are a natural choice for the clustering step for one reason -
as a hierarchical method, it enables variation on clusters granularity without
the need of running the clustering again. A dendogram can be simply cut at
different distances from the root to obtain different number of clusters. In
our setting, this is a convenient property, since it allows for easier trade-offs
between cluster quality and computational effort (better clusters - more
BLASTing).

The trees discussed in this section look just the same as the one on the
figure 9.9, only with denser branching. From its structure one can already say,
that clusters originated from tree cutting will have have for a long portion of
the tree roughly the same size of 1-2. Then at around 30% of the tree, the
number of members will sharply rise - this is the area, where the tree will be
most probably cut.
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Figure 9.10: Relationship between the number of clusters with more than one
element (blue) and the portion of phylogenetic tree (the depth), where the cut
is made. The orange line shows the total number of clusters, including single-
element ones. For this graph, a sample of 3200 unique sequences was generated,
aligned by ClustalOmega with default parameters. The tree was build using
neighbor-joining algorithm in ClustalX.

B 9.4.2 Clustering results

To explore the proposed clustering approach, over 3000 sequences were gen-
erated, aligned and organized into a phylogenetic tree, which was then in
turn cut at various spots to obtain clusters. Properties to look at are then
following: first the clusters are examined on how their sizes and number
change with respect to where a cut is made on a tree. Next, the influence of
choosing an MSA method on clustering results is explored. And lastly and
most importantly we test, whether members of clusters produce the same (or
at least similar set of) BLAST hits. l.e. whether it is even meaningful to
perform this clustering step.

Il Influence of tree cut location on number and size of clusters

The plot shows the relationship between the number of clusters with
at least two elements and the portion of phylogenetic tree, where the cut is
made. Judging from where the blue curve detaches from the x-axis, we can
conclude, that up to the half of the tree, there are only single-element clusters.
This indicates sequences are in general very far from each other. In some
cases, the cut has to be made near the root (0.2), in order for a sequence to
be part of any cluster.
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Figure 9.14: Number of clusters w.r.t. the cut position for alignment methods
MUSCLE, ClustalOmega(3 iterations) and MAFT. MAFT and ClustalO differ
in a way that they have no sharp breaking point, from which the clustering
explodes. This however seem to have no effect on examined metrics - they
neither do partition sequences more similarly, nor their cluster members have
more similar BLAST hits.

B Different alignment methods - different clusters

Preceding to the phylogenetic tree construction, clustered sequences need to
be aligned by an MSA method. Popular tools nowadays for handling large
data sets include MUSCLE, Clustal Omega and MAFT. Due to the number
of sequences and the heuristic nature of MSA | the alignments differ greatly.
And with different alignment, also subsequently derived trees and clusters
are different. The difference between MSA methods is best quantified via a
comparison of the corresponding clusters they produce. A simple metric for
such comparison is Rand score, which tells to which degree the two clustering
methods agree on partitioning of examples - i.e. it takes into account how
many examples assigned into the same cluster by one method are grouped
together also in the second method (with 1 being full agreement, and 0 the
opposite).

Testing on the 3200 sample set, the Rand score between cluster derived
from different MSA methods are nearly zero (if the tree is not cut near the
root). This indicates almost completely dissimilar partitioning of sequences
to clusters derived from various MSA programs. The score is this low even
when comparing clusters from the same MSA program, just with different
parameters. Furthermore, this difference in clustering results will be only

52
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MUSCLE  MAFT ClustalO  ClustalO (3iter.)
MUSCLE * 3.7-107% 11.7-1073 2.2.1073
MAFT * * 3.1-1073 0.2-1073
ClustalO * * * 9.1-1073
ClustalO (3iter) * * * *

Table 9.2: Pairwise adjusted Rand scores for clustering derived from 3 MSA
tools. ClustalOmega is present twice, once with default parameters and once
with arguments for repeated iterations. Trees were cut at 0.3 portion of their
depth, were the number of non-single-element clusters is expected to be the
highest (see figure 9.10). The score is the highest for ClustalO and MUSCLE
alignments, even though still nearly zero.

greater with larger set of sequences.

One can argue, that cutting the tree further from root would result in
fewer, but more "tightly packed" clusters of less distant members, and that
those clusters might be more similar across MSA methods. This is however
not the case - the scores remained close to zero, which suggest, there are no
universally close sequences in the set.

B Evaluating the relevancy of the clustering step with BLAST

The reason, why the clustering step was proposed, is due to considerable
computational effort BLASTing requires on larger databases. Thus, reducing
the number of queries while maintaining the amount of collected hits is highly
desirable. The assumption behind this idea of clustering inverse sequences is
that the clusters can be well represented by a prototype sequence, which when
BLASTed would give similar results as BLASTing other cluster members.
The question is, whether any partitioning of the inverse sequences can achieve
such a property.

To evaluate the relevancy of the clustering step, members of clusters
were BLASTed against human mRNA /prot database and obtained set hits
examined. If our assumption is true, the results set would contain many
redundant hits, as the clustered sequences give similar results. The score
telling how similar BLAST results are within a cluster, is defined as:

no. of unique hits . .
score — {1 — o oFhits total if hits total > 0 (9.1)

This simple metric assigns number close to 1 to clusters having high
similarity of hits and 0 to those, whose hits are highly heterogeneous. Whether
the hits are the same or not can be put many ways - the most strict setting
would require hits to have the same accession and (more or less) the same
location. It however turned out, that to make a conclusion on this question,
it is enough to consider hits to be equal just for having the same accession.
Even with such simplistic assumption, the scores were zero for almost all
clusters, regardless of the point, where the tree was cut and regardless of
the MSA method. In other words, even clusters obtained by cutting the
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BLAST hit accessions total/unique | score
None
cluster 1 =\ 001007503, NR_ 134502, 10710 0
NR_ 027400, XR_ 002957158,
XR_ 001747940, XM 011520304,
NM_ 001365135, NM_ 001318088,
NM_ 000543, NM_ 001318087
None

cluster 2 IR 034705, XM_ 017023562, 6/6 0
XM 017023107, XM 024450223,
XM 024450222, NM_ 181718
XM_ 017028198

XM_ 011536032, XR._ 001747198,
XM 005252591, XM_ 017016625,
XM 005252588, XM 011519659,

XM 006717502

cluster 3

8/8 0

Table 9.3: Clustering evaluation output sample (3 clusters shown). Each row
contains a set of BLAST hits of a cluster member (here all clusters have 2
members). Note, that the hits are often redundant - the accession are often
only different transcript variants of the same gene. For instance the first cluster
consists solely of transcript variants of the SMPDI gene (in fact the hit matches
a short genetic variation (SNP) rs786204733 likely linked with Niemann-Pick
disease). The number of unique hit sequences is then usually lower

tree far from the root, which should contain the most similar members, have
completely heterogeneous hits. A listing below shows a sample of an output
from the examination of clusters. BLAST hits with e-value below 1 were
collected from the human mRNA database.

From the results above, which show even the smallest clusters produce
heterogeneous hits, lead to a conclusion, that clustering is not a relevant step
in this setting. Sequences are in general too far from each other to cluster and
find a meaningful cluster representative. Great distances are also apparent
from the chart [9.10.

Apart from all clusters having a score of 0, we can notice that from the
pair of cluster members, one member is often behind all hits of the ensemble.
This observation is another argument against clustering. Choosing a wrong
representative would potentially result in loosing all hits of a given cluster.

B o5 Predicting existence of BLAST hits with SVM

Clustering was shown to be ineffective in reducing the number of BLAST
queries - the sequences were simply too dissimilar. Even though this method
failed, it provided potential ground for a different approach. From clusters
evaluation above (9.3) we can make an interesting observation - a substantial
number of inverse sequences does not produce any BLAST hits (e-value < 1)

o4



9.5. Predicting existence of BLAST hits with SVM

- indeed, when 28000 sequences were BLASTed against the mRNA database,
approximately half of them did not yield any result [°.

This has motivated another view to the problem - instead of looking at the
sequences as a set of multiple clusters, they can be viewed as a set of binary
classes - one which does produce hits and one which does not. If we could
effectively recognize to which class a sequence belongs, a significant portion
of BLAST queries would not need to be even made since they would most
probably not provide any results.

B 9.5.1 Support vector machines

Types of classifiers, that are are well-suited for two-class classification are
support vector machines (SVMs). They accept examples labeled with +1/ —1
denoting the two classes, where the examples themselves are numeric vectors
(can be viewed as features or attributes of an example; in computational
biology the vectors can for instance take form of micro-array measurements).
The classifier attempts to find a boundary between positive and negative
examples, which it then uses to separate unseen examples. The boundary is
a line in case of 2-element feature vectors, in multidimensional spaces it is a
hyperplane (n — 1-dimensional sub-space of a n-dimensional one).

B Decision boundary

To which space (positive/negative) an example vector belongs, is given by a
dot product with a boundary weight vector. In a 2D intuition, a boundary
line diagonal to the axes would be represented as a weight vector (—1,1).
Mathematically, for an M-dimensional feature vector x and weight vector w

M
is the operation denoted as: (x,w) = Y z;w;. Continuing the 2D example,

points laying exactly on the boundar;f line would have this dot product
with the weight vector equal to 0, points laying above the boundary value
greater than zero and points below boundary line value less than zero (figure
9.15). This holds in general spaces as well and by this key, unseen examples
are classified. The boundary can be further shifted by a bias; the previous
expression for the vector "score" is then generalized to (x,w) + b

B Large margin classification

Let’s assume examples can be separated by a boundary and that there exists
a hyperplane capable of correctly classifying all examples. It would be wrong
to expect such hyperplane to be the only one fitting this criteria. In fact,
there are multiple of them and the question is, which one is optimal.

Since the boundary is formed during training of an SVM, thus not all data
points has been seen, it is reasonable to require the boundary to have as much
margin towards examples of the separated classes as possible - this criteria

2later we will see, that even with e-vale threshold 3, the portion of sequences not yielding
any hits would be still around 40%
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wix, +5>0
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Figure 9.15: Principles of SVMs. The goal is to find a decision boundary
separating two classes of examples. The boundary is represented by a weight
vector w. Data point vectors are assigned a class based on the dot-product with
w (positive or negative). Though one can find multiple separating hyperplanes
(the figure shows two possibilities), the optimal boundary is considered to be the
one with the largest margin (second graph) [82].

should ensure greater robustness during testing (figure 9.15). Finding the
boundary then turns into an optimization problem of finding the classifier
with maximum margin among all classifiers that correctly classify all the
input examples. The problem is defined as follows:

1
minf||w\|2
w,b 2

subject to : y;((x5,w) +b) > 1fori=1,...,n

To constraint ensures, that all examples are correctly classified (requiring
the score and the label to be both positive or both negative) and the mini-
mization term ensures the maximum margin (derivation leading to this term
is non-trivial and is out of the section’s scope).

In practice, not all examples can be classified correctly and usually it is
even not desired to avoid overfitting. The optimization constraint is therefore
relaxed by introduction of slack variables &, that allow some examples fall
into the margin or to be misclassified: y;((x;,w)+b) >1—¢ fori=1,...,n.
To prevent the overuse of slack variables, the variables are added to the
minimization term:

N S &
min 7 [|wl| +Ci§&-
subject to : y;((xj,w) +b) >1—¢ for £ >0andi=1,....,n

The constant C' > 0 is a regularization term, that can either magnify or
diminish the penalty for slack, affecting the resultant margin. Large values
forces a narrow, more prohibitive margin, while small values allow wider
margin with more errors. SVMs with slack enabled are called soft margin
SVMs as opposed to hard margin SVMs, which do not permit misclassfication.
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9.5. Predicting existence of BLAST hits with SVM

B Similarity kernels

So far, data points were linearly separable, meaning, that there existed a
hyperplane, that could perfectly separate examples of the two classes. Such
an assumption is convenient, but not always true (in 2D, an example of
non-linear data could look like an "island" of positive data points surrounded
by a "sea" of negative ones). Fortunately, SVMs can be extended to generate
non-linear boundaries and separate even such cases. Data points vectors are
in this scenario transformed into a new space with higher dimensionality,
where they can be linearly separated using the same principles as before.
The dot-product operation then modifies from (x, w) to (¢(x), ¢p(w)), where
¢ is the transformation function, that "lifts" vectors to a space with higher
dimension.

Dot-product in the transformed space and the transformation itself however
greatly increase computational costs. Fortunately, both operations can be
circumvented by so called kernel functions, which output the transformed
dot-product using only vectors and operations in the original space. Kernel
function k(x,x’) is defined as:

k(x,x') = (¢(x), ¢(x))

Kernels can be understood as a measure of similarity between two vectors in
transformed space. They alone are sufficient to find the weight vector defining
the separating hyperplane. The exact method is again out of the scope - it
is however worth noting, that the weight vector can be then expressed as
combination of certain vectors near the separation line, which are then called
support vectors (hence the name of this approach).

B Weighted degree kernel

There are numerous kernel functions, each suited for different classes of
problems. Polynomial kernels and Gaussian kernels belong among the most
known ones. In case of computational biology, spectrum kernel and from it
derived weighted degree kernel are the ones frequently used. Both are able
to express the similarity between two sequences and were used for instance
in splice site recognition [9]. The spectrum kernel in essence decomposes
sequences into substrings (and their occurrences) and compares them on this
level. Formally, with X and x’ being compared sequences:

k;lspectrurn(i7 g) — <q)?pectrum (i), (I)lspectrum(;»

where ®;(X) maps a given sequence to a vector, whose elements are counts of
occurrences of all possible substrings of length [. In case of dimers (I = 2),
the vector would hold 16 features, with trimers 64 features, etc.

Spectrum kernel however does not operate with one crucial information
- the location of motifs within the sequence. This is why weighted degree
(WD) kernels have been developed. Internally they make use of spectrum
kernels, and apart from substring occurrences, they also take into account
their position:
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D L—d+1

kP x) =Y Z BakP " ™ (R as X 4a))
d=1 I[I=1

where (4 is a weighting for different substring lengths, D is the maximum
considered substring length (refered to as kernel size) and X[,;4q) is a substring
of sequence X of length d at position {.

For its properties, the WD kernel will be applied to our task of predicting,
whether a sequence has BLAST hits, or not.

B 9.5.2 Results

In the pursue for the best performing SVM, optimal values need to be found
for two hyperparameters - regularization parameter C' defining the tolerance
for misclassification (or also the "width" of the decision boundary), and
kernel size of the WD kernel. The misclassification cost C' can split into two
parameters, each for negative and positive class (e.g. Chpeg, Cpos) in case of
unbalanced data [9]. Here however, we have roughly the same number of
positive and negative examples and the parameter can be kept as one value.

Estimation of the two hyperparameters was done through grid search. In
this type of search, ranges of C' and kernel size values are combined into pairs
and for each such pair an SVM is built and evaluated. The pair yielding the
best performing SVM is then considered to be the optimal set of parameters.
In this case the value ranges were [0.1, 1,10, 100] for C' and [4, 11, ..., 20] for
kernel degree. Each parameter combination was evaluated by 5-fold cross-
validation. Examples were formed by 28000 sequences as features and +1/—1
indications, whether a sequence has BLASTs hit or not as labels.

As a result, the pair C' = 1,kernel degree = 6 reached by a negligible
margin better accuracy (60,9%), than the rest of the pairs. The validation
accuracy was is in fact this low across all parameter combinations (see figure
9.17)).

Figure shows nearly constant validation accuracy and therefore that no
trained model (regardless of its kernel degree and training accuracy) is able
to classify correctly unseen examples. This suggests, that it is not possible to
predict the existence of hits, given sequence, since there is no relationship
between them. Indeed, with 22400 training examples (0.8 of total examples),
the number of support vectors was > 20000. I.e. almost all examples were
necessary to form a decision boundary, meaning there was virtually no room
for generalization. In a sense, this method was an attempt to describe an
entire BLAST database with incomparably smaller set of support vectors,
which would be a surprise, if it was possible.

One might consider tweaks such as "cloning" examples (sequences) with
multiple BLAST hits to corresponding number of copies in order to amplify
their contribution during classifier learning (e.g. a sequence producing 4 hits
would result in 4 examples, instead of one). Such modification would however
not bring any improvement for our case for the previously stated reasons.
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Grid search

Accuracy

Figure 9.16: Grid search results. We can see clear divergence of training and
testing accuracy - the training one surpasses 90% while the cross-validation
accuracy stays around 60% and forms a flat plateau. Next, there is a sharp
improvement on training accuracy with transition from C = 0.1 (logarithmic
scale) to C'= 1. With higher C training accuracy further rises, while the testing
one slightly drops - a sign of overfitting

As for technical documentation, the SVM solver used was LIBSVM[L3]
wrapped in Shogun|[73] ML toolbox. The WD kernel implementation came
from the same package.

B 9.6 Step 3: BLAST

Returning back to the pipeline, the previous results lead us to a conclusion,
that no significant reduction of inverse sequences by clustering is not applicable.
The sequences will have to BLASTed as they are. BLAST+ [12] version 2.8.1

was used.

B 9.6.1 Choice of a sequence database

For our application, there are two databases to choose from - one containing
only genomic transcripts (human mRNA /Prot databaseﬂ) and one holding
the full genome (human genomitﬁ) . The former is considerably smaller and
contains only RefSeq RNA sequences, while the later holds entire human
chromosomes from both RefSeq and GenBank.

3accessible from [ftp://ftp.ncbi.nlm.nih. gov/blast/db/l
4accessbile from |ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot
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Figure 9.17: A cut of the grid search plot at C' =1 (or 0 on logarithmic scale).
The training accuracy rises with kernel degree, which is no surprise. The testing
one stays the same regardless of the degree For completeness, the area under the
ROC curve is on average around 62%. Almost exact results can be achieved also
with half of the training set size

The choice of database to search has tremendous effect on computational
efforts. For instance, considering only the human mRNA database would
reduce the search space 100 folds in compare to the entire human genomic
database (5 - 108 nt vs 6.4 - 101 nt). The search time is reduced roughly by
the same magnitude.

The different database sizes have also an effect on the interpretation of
a hit’s e-value. In larger amount of sequences it is easier to get a hit just
by chance, thus making it harder to obtain a significantly low e-value (see
e-value definition in [7.1.1). Indeed, when BLASTing a sequence against the
mRNA database, a hit with a score 0.6 was found. When BLASTing the
same sequence against the full genomic database, the same hit was obtained,
this time however with e-value of 6.

B 9.6.2 Searching and filtering

Inverse sequences were BLASTed against both named databases. The e-value
threshold was set to 3, allowing hits with rather low similarity. Not all of them
can be further examined though - obtained results will have to be filtered
and this permissive e-value gives us large enough pool to choose from.

The secondary e-value threshold on BLAST hits was set to 0.5 in case of
the mRNA database and 0.5 in case of the genomic database. By pushing
candidates with sufficiently small e-value further through the pipeline we
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hope to save folding and structure comparison operation only to sequences,
that are meaningful enough.

B o7 Step 4: post-processing hits

At the post-processing step, the chosen BLAST hits are folded and checked
for a potential match with the desired structure. Now, the set of candidate
sequences is small enough to allow exhaustive search over all sub-optimal
structures (within given energy range). By this, the chance for a false negative
is minimized.

For this procedure to work, we need the hit sequences to have comparable
length (equal or longer) with the original domain IIlabe. The length of hits
is however hardly ever the same as the length of the query (i.e. hits obtained
from BLAST are shorter, than the examined domain). Therefore, before
folding, chosen BLAST hits are extended to have the required length, as
illustrated below:

query (inverse sequence) —=TCTATTTTTCTAGCATGGACATGTTGAGCCCCCGCTGGACGCCCCCTC

e g”ﬁ;q‘é%’gz j)— BAGGACATCTGTCCAGGGTGGCACATGGACATGTTGAGCCCCCGCTGRACGCCCTGCTGECCTGG

candidate

sequence — GTCCAGGGTGGCACATGGACATGTTGAGCCCCCGCTGGACGCCCTGCT

Figure 9.18: Extraction of candidates from BLAST hits. The green regions
are hits between the query and subject sequences. The region in the subject
sequence is extended to match the length of the query. This yields the final
candidate sequence

It is worth noting, that number of extracted candidate sequences is not
equal to the number of BLAST hits. As discussed earlier, the hits can be
redundant due to multiple transcript variants of the same gene. On average,
extracted regions make up only 25% of the original number of BLAST hits.

B 9.7.1 NA2Dsearch search

The search for the domain within extracted candidate regions is carried out
by NA2Dsearch. The program first folds the regions by a RNAsubopt routine.
Each candidate sequence then results in multiple structures and by this, we
seek to overcome the insufficient reliability of folding methods. Candidate
regions turn into candidate structures, which are in turn checked for structure
similarity with the query structure. Checking itself is through acceptance of a
nondeterministic finite state automata, which has been built upon descriptors
of the searched structure.

At this stage not only the exact structure of the domain is searched, but
also other, relaxed versions. These versions will have more loose requirements
on structural elements, allowing some variation in structure of the folded
candidates to be tolerated. After all, expecting to find the precise structure
of the domain would be rather optimistic assumption. For this, the program
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allows query structures to contain so called variable nodes (variable stem/-
variable loop), which can match a structural motif of arbitrary length and
composition. The variable nodes are here utilized to make the query more
flexible.

Below, the relaxed queries are presented, starting from the least relaxed
one. Green motifs denote variable parts of a query. Grey parts match the
query used to benchmark inverse folding programs (see 9.2.1) and represent
the true domain structure.

The relaxation is made in accordance with the findings presented in the
biological chapter [2| - bottom Illabc junction is vital for IRES function
and needs to be preserved; similar importance is given to the intrahelical
mismatched pair above the central internal loop (only the first query, as we
realize it might be too strict of a constraint and therefore omitted in the
second one). The remaining stem and apical loop are relaxed and allowed to
be variable, as the structure of this part is functionally more permissive - the
stem is replaced by a variable node and the loop is relaxed in terms of wider
length range (5 to 16, with 14 being ideal length).
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(a) : Minimal query able to detect  (b) : Upper stem of sub-domain IITb
domain ITlabc from sequence (S1) relaxed (mismatch omitted) (S2)

Figure 9.19: Following queries were assembled to be searched in candidate
regions extracted from BLAST hits. Each query represents a different level of
domain structure relaxation

The first query is the closest to the true structure, which is able to detect the
domain Illabc from its sequence. I.e. when the domain sequence is searched
with its true structure as a query, no hit would be found. This is because
RNAsubopt will always assign nucleotide pairs G176A223 and A179U220 as
unpaired (see apendix figure |A.1)). Hence the lower stem relaxation to cover
this error .
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9.7. Step 4: post-processing hits

B 9.7.2 NA2Dsearch results - human mRNA sequences

The exact domain Illabc was not found within neither mRNA, nor human
genomic database candidates. This was an expected outcome.

As for the relaxed structures, S1 did not yield any hits as well. The
mismatched nucleotide pair added before the variable hairpin seems to be
a too strict requirement. The query S2 applied on the mRNA candidates
matched 5 sequences with 18 sub-optimal structures satisfying the query
requirements. The best structures from the 5 candidates can be seen in figure
9.20/ and are summarized in the table [10.1l

Focusing on the table, probably the most important are the last three
columns telling the length of the matched sequence/structure, the tree edit
distance and NA2Dsearch score telling how much the hit violates the optimal
structure (the closer to zero the better). First, we can notice, that TEDs are
rather similar across all hits. Looking at the structures however, we can spot
eminent differences between them as well as different levels of similarity with
the domain Illabc. Even though TED can express dissimilarities between
structures, as a metric of closeness to the target it is too general (comparing
two arbitrary structures) and thus insufficient for our purposes.

NA2Dsearch score is in this regard a better indicator. It is not suited for
comparison of two arbitrary structures, but rather an ideal structure with
a candidate one. In the evaluation, it takes into account optimal structural
motifs of the target together with a degree to what the candidate structure
violates them. Indeed, from the table we see more distinct values. In this
regard, regions for genes DRC3, LMNB2 and CORO2B stand out, as their
score is the closest to zero. The first two are also the most promising from the
perspective of matched lengths - both have almost entire sequence matched
with the query. At this point however, we can witness the drawback of using
a variable node in the search query. The LMNB2 candidate structure has
an extra internal loop with a hairpin in domain I1Ib region (figure 9.20(b)),
heavy violations to the domain structure, which are however not penalized.
Thus, despite of the high score, LMNB2 is removed from further evaluation.

RNA accession gene name s. nt 5°UTR e-value mlen TED NA2D

XM__024450962 DRC3 (X5) 10 yes

XM 024450965 DRC3 (X9) 194 yes 0.01727 89/93 34 -17
XM_ 011524020 DRC3 (X4) 198  yes

NM__032737 LMNB2 967 10 0.2104 88/93 38 17
NM_001190457  CORO2B (X3) I yes 0.2104 70/93 37 13
XR_ 001739336 non-coding 1953 N/A 0.2104 82/93 25 34
XM_017006507  CNTN3 (X2)  -521 mno 0.2104 64/93 38 54

Table 9.4: Summary of hits combining results from BLAST and NAZ2Dsearch.
The database of origin is human mRNA. Column s. nt denotes starting nucleotide
position of the hit within the record (negative value indicates reverse/comple-
mentary strand). 5’UTR column indicates, whether the hit lies within RNA’s
untranslated region, mlen shows the matched length with query, TED shows
tree edit distance towards the actual structure and NA2D is the NA2Dsearch
score. First three hits are grouped as they have the same hit sequence
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Figure 9.20: Hits obtained from searching the S2 query in candidate sequences

from human mRNA database.

The 18 structures, that matched the query,

originate from 5 distinct sequences. The best structure for each sequence is
shown along with its NCBI accession. The red part of the structure matches the
query descriptor. All sequences/structures have the same length.
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9.7. Step 4: post-processing hits

DRC3 gene region remains as the best candidate with the highest e-value,
match length and the second highest NA2D score with no significant violations
introduced by the variable part of the query. The hit almost perfectly
preserves the structure of the bottom multi-loop (corresponding to the IIlabc
junction) so critical for IRES activity. Only the right hairpin (domain IIlc)
is mismatched, having unpaired A-G bases. Continuing upwards to the stem
(beginning of domain IIIb), we see, that it is shorter by 4 base pairs from
ideal. The follow-up internal loop is shorter by 1nt on its left side. The rest
of the structure, corresponding to the variable node of the query, could have
been arbitrary. We however see, that the upper stem has almost ideal length
of 8 base-pairs (9 in the hit). Final part of the hit is more structured than
the actual domain, having an extra left bulge and internal loop (as opposed
to a single hairpin loop). This region is however more structured as well
in the case of the folded true domain (see figure |A.1)) and can be a folding
discrepancy.

B 9.7.3 NA2Dsearch results - human genomic sequences

Also in case of candidates from human genomic database, only query S2
(figure 9.19) yielded results. 36 structures matched the query, this time having
only 2 sequences as sources. Such a configuration indicates the overall shape
of the structures are energetically stable enough to form multiple structural
variations matching the query.

rec. accession gene name s. nt 5UTR e-value mlen TED NA2D
NC_ 000022 LARGE1 (i) -34791821 no 0.514  87/93 25 -29
CM000263 EP400 (rci) -132080532 no 0.147  71/93 34 -50

Table 9.5: Summary of hits combining results from BLAST and NAZ2Dsearch.
The accessions code for chromosomes 22 and 12 respectively. The gene names were
derived from the hit locations within the chromosomes. 7 and rci abbreviations
stand from intronic and reverse-complement intronic regions respectively. These
results originate from the human genomic database and were obtained from
searching sub-optimal structures of BLAST hits with e-value < 1.

From the table we can again notice the last three columns. The first hit is
superior in the matched length and TED, but lacks in NA2D score. Looking
at the figure [9.21] is however evident, that despite the NA2D score, the first
candidate resembles domain III far more, than the second one. The heavy
penalty is a result of missing both single stranded regions at the bottom multi-
loop. Even it seems as a small discrepancy, these nucleotides are conserved
and are part of the functionally vital part of the domain.

As human genomic database contains only large shotgun sequences, the
information on what gene the hit lays in needs to be extracted from sequence
viewers. The first hit is within intronic region of LARGE1 gene, while the
second lays in the reverse-complement to the intronic region of EP400 gene
(supplementary figures).
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from human genomic database. 36 structures were matched, originating from 2
distinct sequences. Blue letters in the scheme indicate conserved nucleotides.

B 9.7.4 Searching for domain Il in the vicinity of the hit

The presence of one particular domain, however preserved, is not sufficient
to determine a functional IRES element [24]. Therefore, to elevate the hit
significance, we look around the hit region for other potential IRES sub-
domains. In this case we will be looking for domain II as it interacts with 40S
subunit as well (see schema 2.1). Assuming the obtained candidates are truly
a domain Illabc structure, the domain II would start approximately 100nts
upstream and would span over 70nts. Taking the DRC3 hit as an example,
whose supposed domain III begins at nt 198 at the DRC3 transcript, we
would be interested in its region bounded by nts 98-168. The search area is
further extended to nts 70-180 to explore wider surroundings of the suspect
region. As the regions of interest are larger than the domain, they will not be
folded in their full length, as it has been in the case of domain Illabc search,
but instead would be scanned using a sliding window of the domain II size.

A query corresponding to the domain structure is assembled according to
the domain II structure. Individual stems and loops are allowed to be £1-2
bases longer/shorter. No variable node is used.

A domain II-like structure was indeed found as seen from figure [9.22. The
hit spans over nucleotides 115-167 of the DRC3 gene (the expected region was
98-168). The hit therefore not only resembles the domain II, but is located
where the domain could be expected. The only issue with the candidate
might be lower thermodynamic stability - the one of the MFE structure is
-19.9 while the candidate’s one is -17.6 kcal/mol (for comparison, the MFE
structure of the domain II sequence matches its true structure).

Applying the search on the remaining 3 human mRNA candidates (CORO2B
candidate was excluded as the hit starts at nt 1 and has no upstream region)
and 2 human genomic candidates, no hits were obtained even when the folding
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9.8. Biological details on the DRC3 hit

1]
6CC m
& &

[

al

ronOOcCO
cconNen

oF»
(2]
>
“Beo®
-:}m

A
¢ f
G
C G 100 i
g ‘f
St : 4,
ug” — ::
@ GC == &
¢s : .
A p ; i
u - seeo0e0® o
o { 7 jeesoedl,
A \ - .
I R
L ?

Figure 9.22: Domain II schema, corresponding structural query and hit respec-
tively. Blue nucleotides represent conserved regions. The query was set up to
allow small variations (1-2nt) in individual structural elements.

energy range was extended by additional 0.5kcal/mol ﬂ The fact, that a
domain II-like structure is present in the DRC3 candidate and simultaneously
is absent in the remaining candidates, further boosts the significance of the
initial domain IIlabc hit.

B 9.8 Biological details on the DRC3 hit

The best hit in figure [9.20(a) has its sequence contained not in a single,
but in multiple RefSeq records - in particular RNAs with accession numbers
XM_011524020.2 XM_ 024450962.1 and XM_ 024450965.1. All these records,
being only different transcript variants, belong to the DRC3 gene, which
codes a protein dynein regulatory compler subunit 3. Its coding region starts
at nt position 444-448 (depending on the variant), meaning all the results are
located within the gene’s 5’'UTR (see table . This gives the hit greater
importance, as it indicates the region might have potential transcription
regulatory function. The XM prefix of records indicates they fall under
predicted mRNAs. That makes the hit position (from which it gains its
significance) not entirely confirmed. On the other hand, verification of some
parts exists in a form of EST evidences (expressed sequence tags - short
sub-sequences of sequenced cDNA).

Lastly, the sequence of the DRC3 hit together with the inverse sequence
leading to its discovery can be viewed on figure

5In fact, the were no hits even for further relaxed version of domain II containing 2
variable nodes (query figure in |A.3)
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Figure 9.23: The sequence of the DRC3 gene hit was folded within AAG =
Skeal/mol, 3750 structures were obtained. The graph shows energy distributions
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. 0.9 Discussion

A few similar attempts have been made to use inverse folding and BLAST for
discoveries of novel IRES or riboswitch elements [I8][72]. All of them were
motivated by the need to circumvent searches based on a sliding window,
which restricts the search domain to a few genes, and achieve genome wide
scans. These scans however comes with obstacles of their own. The major
one is an issue with a huge number of potential candidates, either in a
form of inverse sequences or subsequent BLAST hits. Each of the methods
dealt with the issue in their own way. Either by pre-processing, when the
generation of inverse sequences is heavily controlled [72] (to BLAST only the
most promising candidates). Or by post-processing, relying on filters and
biological indicators applied on hits [I8]. Our method took the later path,
with unsuccessful attempt for incorporating the first path as well.

The distinction from previous methods is in the strong emphasis on the
secondary structure, while completely neglecting the primary one. Inverse
sequences are not constrained and hits are processed by an exhaustive struc-
tural search. It does not mean our approach is more correct. Perhaps more
general, as no sequence motifs are forced into inverse sequences, but at the
same time less targeted.

Due to the nature of the task, the method proposed here is not a classical
machine learning approach in a sense of training and testing phases. Therefore,
it is not possible determine metrics such as selectivity and sensitivity. The only
validation, able to confirm or reject the findings, is biological in wet laboratory.
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9.9. Discussion

From computational perspective, the validation has a form of evaluating
structural similarity, thermodynamic stability of candidate structures and
various biological signals (e.g. position within 5’UTR, conservation of vital
elements, etc.). And with these tools in hands, our findings in the DRC3
gene seem certainly promising.
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Chapter 10

Materials and methods

In this chapter, more details will be given on the methodology of this work.
Technical information omitted from the result chapter will be presented as
well.

The HCV sequence (genotype 1) used in the work was obtained from the
Virus Pathogen Database (ViPR) [68]. Except for a handful of nucleotides,
the IRES sequence matches the one published by Khawaja, et al. [42]

The infrastructure for the pipeline is implemented in Python 3.6 together
with BioPython framework for easier manipulation with RNA/DNA sequences
as well as phylogenetic trees. Key components of the source are covered
by unittests. The pipeline integrates other command line tools such as
NUPACK-design for inverse folding, Vienna package programs for various
utility functionality (e.g. RNAdistance for tree edit distance, RNAsubopt for
folding) and BLAST+ applications (mainly blastn for searching).

B 10.0.1 |Inverse folding step

The inverse step was straightforward, consisting only of invoking NUPACK
with desired parameters. Among them, the most important is the structure of
the domain IIlabe (the rest of them was shown in the section|9.3). Generating
of 102 000 sequences took over 100h to complete. The computation was
performed on a desktop computer with an Intel Core i7-8700 3.2GHz processor
and 46GB RAM.

B 10.0.2 BLAST step

Next comes the BLAST search. As the most costly operation, we want to
perform the search only once - create a large pool hits, which would be then
only filtered and processed. For that reason, it is convenient to have BLAST
results saved into a persistent database. This step also allows us to pause the
search and resume it any time, as the partial results are safely stored.

We made use of the BioSql|'| database schema, a native extension to the
BioPython framework. Only part of the schema was used. On the other
hand, the database model needed to be extended by custom classes to suit

Laccessible from https://biopython.org/wiki/BioSQL

71


https://biopython.org/wiki/BioSQL

10. Materials and methods

the purposes of the pipeline. The full schema is shown below. As for the

database itself, a standard MySQL 8.0 was used.

biodatabase

PK

biodatabase_id

name

inverseconstraint

PK

constraint_id

constraint_def

candidateseq
bioentry Q——— PK, FK bioentry_id
Extends

PK bioentry_id -— FK constraint_id
FK biodatabase_id ! sequence

name

name blasthit

accession PK blasthit_id

identifier FK inverse_id | bioentry (bicentry_id)

description hit_def

align_length

biosequence query_start

PK bioentry_id

query_end

version hit_accession

length sbjct_start

alphabet shjct_end
query

shict

seq

expect

score
identities
percent_match
no_gaps

blast_db

Figure 10.1: Database schema used in the pipeline. Blue classes are native
BioSql models (only relevant attributes included) and together represent an
RNA/DNA record. The fields carry basic information like accession numbers
or the sequence itself. Grey models are custom extensions where candidateseq
represent an inverse sequence, which has been generated by an inverseconstraint
and could produce a blasthit. The blasthit record then holds information on the
positions of the hit (query and sbjct starts and ends), its significance (ezxpect,
score) and more. Fields are the mixture of VARCHARSs and numeric types,
which are not shown for the sake of readability.

From 102 000 sequences searched against the human mRNA database,
around 40% did not yield any result, even with a highly permissive e-value
threshold of 32, The rest yielded 560 000 hits, from which 116 000 had unique
subject sequences. The whole search took 13.7h to complete. Such a low
execution time (in compare to the inverse phase) is however due to reduced
size of the database. When full human genomic was searched, the time
required was not less, than 300h. Regarding the human genomic database,
over 150 000 hits were found originated from over 6500 inverse sequences
(6.5% of all sequences). The lower number of hits in compare to human mRNA
can be addressed to the e-value threshold. The threshold of 3 in a smaller
database allows for much more hits, than the same threshold in a bigger one.

Zthis level of significance was inspired by a similar method 18]
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10. Materials and methods

Nevertheless, the set threshold is still sufficiently high even for databases of
the human genomic size as the widely accepted significance values are all
below zero.

B 10.0.3 NA2Dsearch step

Structural search with NA2Dsearch was conducted on a selection of BLAST
hits filtered by their e-value. The hit sequences were elongated to match
the domain length and by this, a list of candidate regions was assembled.
The candidates were all folded within AAG = 5kcal/mol and checked for
similarity with queried domain. This part was completed in 1-2 hours.

database e-value candidates searched hits unique time
human mRNA 0.5 11 877 76.6mil 18 5 98m
human genomic 1 5 126 39.8mil 36 2  58m

Table 10.1: Overview of the NA2Dsearch run. The first column represents
e-value cut-off for BLAST hits to filter out insignificant ones. The number of
resultant candidates is under the second column. Folding them gives number
of structures searched (searched), from which only a handful match the query
(column hits). Many of the structures originate from the same sequence, as
indicated by the last column unique.

For this final stage, human involvement is necessary. Unless a very strict
and unambiguous query is compiled, the set of hits needs to be curated. As
seen from the results, no scoring (neither TED, nor NA2Dsearch one) is an
accurate measure of hit quality, in case variable nodes are introduced into a

query.

73



74



Chapter 11

Conclusion

Numerous RNA structures carry an important role in gene expression. The
goal of this thesis was to propose a procedure for searching of such structures in
human genome. Model structure chosen to show working of the procedure was
HCV IRES domain Illabc - a structure known to attract crucial translation
initiation factors.

A pipeline for discovering IRES-like structural motifs was proposed. Due to
an enormous search space, an emphasis was put on feasibility of the task. For
that, the search was partially moved from structural to sequential domain. The
keystones the workflow were inverse folding, BLAST of inverse sequences and
structural search in folded candidates. We refrained from an intermediate step
of clustering/filtering inverse sequences, as no relevant reduction of sequences
could have been achieved. Inverse folding was conducted by NUPACK-
design program, that has been selected from three candidates after thorough
evaluation. Over 100 000 sequences were generated and searched by BLAST
against two databases - human mRNA and larger human genomic. Obtained
hits with significant level of e-value were then given to the NA2Dsearch tool
searched again (this time structurally) for a match with the target domain
1Iabc.

Several candidates matched the relaxed version of the domain structure.
The most significant one matched almost entirely with the structural query.
The origin of the corresponding sequence was the DRC3 gene. The hit
significance is further supported by its location within the 5’UTR region
together with a nearby presence of domain II-like structure, which suggests
its potential regulatory abilities. Verification of such hypothesis is given to
the biologists.

The results shown the pipeline is able to detect structural features in human
genome sequences. The method, with regard to the magnitude of the task,
cannot be exhaustive and finding a significant hit is therefore not guaranteed.
Nevertheless, the pipeline provides an approach, that gives an approximate
solution to a complex task, for which currently no tools exist.
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11. Conclusion

. 11.1 Contributions

® Rigid biological foundations compiled from relevant sources to ensure
biologically correct results

® Comprehensive summary of RNA structure prediction methods

® Review and benchmarks of selected inverse folding methods on quality
of generated sequences

B Review of all existing solutions to the task of identifying potential IRES
elements.

® Computational pipeline combining inverse folding, sequence search and
structural prediction to solve the above task. The pipeline can be used
to search other types of functional elements as well.

B Discovery of an area within DRC3 5’UTR region containing both HCV
domain Illabc and domain II-like structures. The hit needs to be and
will be validated in laboratory.

. 11.2 Future work

This pipeline is only a proof of concept demonstrated on a single structure.
Many steps can be optimized or done differently. We present several possible
improvements.

B 11.2.1 |Inverse folding step

Only in inverse folding there are few - one can constrain the sequences,
forcing conserved nucleotide motifs; or in contrary prevent certain nucleotide
patterns. Applying these features would make inverse folding more targeted
with reduced number of possible sequences. The decision on whether (and
what) constraints to use should be left to the expertise of biologists.

Regarding the number of possible inverse sequences - over 100 000 have
been generated. The question is, what part of all possible inverse sequences
this set makes up? An answer to this question is not straightforward. We
know the general working of NUPACK - the steps are however probabilistic
and involve a great deal of sampling. Without closer examination of the
algorithm, a knowledgeable estimate cannot be given. Knowing such a metric
could greatly influence the overall strategy of the pipeline.

Bl 11.2.2 BLAST step

E-value is the main indicator of significance of BLAST hits. We used this value
in our pipeline to choose candidates for structural evaluation. As mentioned
in the result section however, this metric turns out to be (at least for our
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Figure 11.1: Domains IT and ITTabc according to[42] with corresponding struc-
tures found in DRC3 gene.

purposes) a rather inadequate criterion as low e-values do not guarantee
better chances for a structural match. Filtering solely by this metric might
be too simplistic. On the other hand, joining it with other structurally-aware
indicators can provide more precise estimates on significance. For instance
matching a short, but highly structured part of a query (e.g. a hairpin with
a bulge) can be more valuable, than matching a long, but unstructured part
(e.g. a loop or only a 3’ half of a stem).

B 11.2.3 Transformation to a publicly available tool

Further development would naturally lead to an web application available
for public use. As in many biological tools, a user would submit a searched
structure with search parameters (number of inverse sequences, e-value cut-
off, etc.) and the server would notify him about the result. In this case
however, the process would be semi-automatic. The NA2Dserach step, with
the convenient GUI, would a user conduct on his/her own, defining the set of
various (relaxed) structural queries. The minimal viable product would entail
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11. Conclusion

integration of NA2Dsearch with the pipeline on at least some basic level and
exposing its user interface to a web application.
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Appendix A
Additional figures
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Figure A.1: Example of a folded domain IIT abc by RNAsubopt. Notice the
mismatched pairs G176A223 and A179U220 in the beginning of the domain I1Ib
stem. Also the apical loop is always replaced by more structured elements.

Geecn/ BEGRGEAGAGEETEECEEAGGABET/ 1GTGCGCAACGTAAGATCGTGGTA

GTTGCTCAATTTTAAGTCCTCCAGGCCGAGGCCGGGL

AGACCTECEAGCTGAGECTCCEBBABGAGEECCAGGGACAGATAGTGCCCGACGTA

ACTCTTTCCTGTGACCTTTTTCTCGGAGAACGCCGGC

Figure A.2: HCV domain Illabc inverse sequence leading to the DRC3 hit and
the DRC3 hit itself. The highlighted region was matched by BLAST.
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A. Additional figures

Figure A.3: Relaxed version of a query structure used to locate a potential
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Figure A.4: Regions in chromosomes 12 and 22, where hits of domain IIlabc
structure are located (human genomic database). Regions are highlighted in

blue and green markers and both lay on the reverse complement
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Appendix B

Supplementary data and documentation

. B.1 Documentation

The installation steps are described in the README file of this project
accessible on GitHub https://github.com/lequyanh/hcvsearch

. B.2 Content of the CD

® The thesis itself
8 Supplementary data

HCV sequence, domain IIlabc structure and folds
Results of NA2Dsearch searches for domains Illabc and I

various miscellaneous data (samples of RNAIFOLD sequences, test-
ing inputs and outputs of IRESfinder, etc.)

B Project source code
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