
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 7, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Mobile application Classification for iOS

 Student: Jiří Zdvomka

 Supervisor: Ing. Jakub Průša

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The purpose of this bachelor thesis is the implementation of Grades iOS mobile app for students and
teachers on FIT CTU. Students can view grades for subjects they study and receive notifications about new
grades. Teachers can manage the grades of students. The application will be available for download on the
AppStore for free.

1. Read the documentation for existing Grades API and analyse it.

2. Analyse UI/UX of the existing Android app and map it to iOS design patterns.

3. Extend the notification system to support sending notifications to iOS platform.

4. Implement the application.

5. Test the application.

References

Will be provided by the supervisor.

Bachelor’s thesis

Mobile application Classification for iOS

Jiř́ı Zdvomka

Department of Software Engineering

Supervisor: Ing. Jakub Pr̊uša

May 13, 2019

Acknowledgements

I would like to thank my supervisor Ing. Jakub Pr̊uša and his developer
team in Quanti for consulting my work and sharing valuable advice. I am
also grateful to Ing. Štěpán Plachý for helping me with the integration of
the application with the university’s services. Special thanks to my girlfriend
Simona Pohlová and my family for overall support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 13, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2019 Jǐŕı Zdvomka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zdvomka, Jǐŕı. Mobile application Classification for iOS. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

V této bakalářské práci se zabývám implementaćı mobilńı aplikace pro plat-
formu iOS, která komunikuje s existuj́ıćım klasifikačńım systémem Grades Fa-
kulty informačńıch technologíı Českého vysokého učeńı technického v Praze.
Studenti můžou v aplikaci prohĺıžet svoj́ı klasifikaci a dostávat upozorněńı
o změnách klasifikace. Učitelé můžou v aplikaci spravovat klasifikaci svých stu-
dent̊u. V práci jsem postupoval podle procesu softwarového inženýrstv́ı a vy-
tvořil analýzu, navrhl řešeńı, implementoval a otestoval aplikaci. Výsledkem
je funkčńı mobilńı aplikace, která student̊um a učitel̊um univerzity usnadńı
kalsifikačńı proces.

Kĺıčová slova mobilńı aplikace, iOS, Swift, klasifikace, vývoj software, push
notifikace

vii

Abstract

This bachelor’s thesis aims to implement a mobile application for iOS plat-
form communicating with existing student evaluation system Grades at Fac-
ulty of Information Technologies of the Czech Technical University in Prague.
The application allows students to view their evaluation and receive push
notifications about new changes in their evaluation. Teachers can manage
an evaluation of the students they teach. I proceeded by the software engi-
neering process and created an analysis, designed a solution, implemented and
tested the application. The result is working mobile application that makes
the evaluation process for students and teachers at the university faster and
more convenient.

Keywords mobile application, iOS, Swift, student evaluation, software de-
velopment, push notifications

viii

Contents

List of Listings xvii

Introduction 1

Thesis aim 3

1 Technologies & solutions 5
1.1 Development for iOS platform 5

1.1.1 Swift and XCode . 5
1.1.2 UIKit . 6

1.1.2.1 ViewControllers 6
1.1.2.2 Views and Controls 7
1.1.2.3 Building a user interface 8

1.1.3 Architecture . 8
1.1.3.1 Model View Controller 8
1.1.3.2 Model View ViewModel 9

1.2 Reactive programming . 9
1.2.1 RxSwift . 9
1.2.2 ReactiveSwift . 10

1.3 REST API . 10
1.3.1 Related terms . 10

1.4 OAuth 2.0 . 10
1.4.1 Terms . 10
1.4.2 Roles . 11
1.4.3 Authentication process 11

ix

2 Analysis 13
2.1 Existing solutions . 13

2.1.1 Grades Android mobile application 13
2.1.2 Grades web application 14

2.2 Grades REST API . 14
2.3 Authentication . 15
2.4 Notification server . 16

2.4.1 Integration with the application 16
2.5 Requirements . 17

2.5.1 Functional requirements 17
2.5.1.1 Authentication 17
2.5.1.2 Semester selection 18
2.5.1.3 List of courses 18
2.5.1.4 Course grades 18
2.5.1.5 Grades of a student 18
2.5.1.6 Grades of a student group 18
2.5.1.7 Notifications 18

2.5.2 Nonfunctional requirements 18
2.5.2.1 Operating system 18
2.5.2.2 Grades API integration 19
2.5.2.3 OAuth 2.0 . 19
2.5.2.4 Localization 19
2.5.2.5 Push notifications 19
2.5.2.6 Responsive user interface 19

2.6 Use cases . 19

3 Architecture and design 21
3.1 Architecture . 21

3.1.1 Reactive framework . 22
3.2 Design . 23

3.2.1 Scene . 23
3.2.2 Model layer . 23

3.3 User interface . 24
3.3.1 Login screen . 25
3.3.2 Course list screen . 25
3.3.3 Course detail for a student screen 26
3.3.4 Student grades screen 26

x

3.3.5 Student search screen 27
3.3.6 Group grades screen . 28
3.3.7 Settings screen . 28

4 Implementation 33
4.1 Dependency management . 33
4.2 Configuration . 33
4.3 Dependency injection . 34
4.4 Authentication . 37
4.5 Scene Coordinator . 37
4.6 ViewModel . 38
4.7 Tables . 40
4.8 Push notifications . 41

5 Testing and Continues Integration 43
5.1 Unit tests . 43
5.2 UI tests . 44
5.3 Test strategy & coverage . 46
5.4 Continues Integration . 47

Conclusion 49

Bibliography 51

A Entity class diagram 55

B Contents of enclosed CD 57

xi

List of Figures

1.1 UINavigationBar . 7
1.2 UIStackView . 8
1.3 MVC . 8
1.4 MVVM . 9
1.5 0Auth 2.0 flow . 12

2.1 Use case . 20

3.1 MVVM diagram . 22
3.2 Login screens . 25
3.3 Course list . 26
3.4 Course detail for student . 27
3.5 Student’s grades . 28
3.6 Student search . 29
3.7 Group grades . 30
3.8 Settings . 31

4.1 Environemt configuration . 34

xiii

List of Tables

5.1 Test coverage table . 47

xv

List of Listings

4.1 Dependency injection code example 36
4.2 Scene Coordinator code example 37
4.3 Binding between ViewModel and View code exmaple 39
4.4 RxDataSources code example 40
4.5 APN service notification request code example 41
5.1 Swift unit test example . 44
5.2 Swift UI test example . 45

xvii

Introduction

Today’s trend is migrating software solutions from the web to native mobile
solutions as mobile platforms allow faster and easier interaction with a user.
At the time of writing this work, there is a student evaluation web and An-
droid application at Faculty of Information Technologies at Czech Technical
University (FIT CTU) in Prague, but no mobile application for iOS platform.

My motivation is to simplify access to student evaluation at FIT CTU and
allow teachers of the university to manage their students’ evaluation in more
convenient way.

In this bachelor thesis, I design, implement and test mobile iOS application
Grades where students can view their grades of courses they study, receive
notifications and teachers can manage the evaluation for subjects they teach
either for a particular student or all students taking a test or doing a project.
The application will communicate with the existing web application Grades.

In the first chapter, I research theoretical background and technologies re-
quired for creating the application – development, architecture and program-
ming paradigm for iOS platform along with other patterns used in mobile
development. In the second chapter, I do an analysis of existing solutions and
services suitable for integration and define the application’s requirements. In
the following chapters, I apply previous principles and technologies and de-
scribe the software engineering process of the application - architecture, de-
sign, implementation and testing.

1

Introduction

Even though the application is called Classification in the title of this
thesis, in the remaining text the term Grades is used instead, because Grades
was chosen by faculty management as the official name of the application.

2

Thesis aim

The primary aim of this bachelor thesis is to implement Grades iOS mo-
bile application for students and teachers of FIT CTU in Prague integrated
with existing web application service. Students can view detailed evaluation
of courses and receive notifications about changes in it. Teachers can manage
grades of their students in multiple ways.

In the research part, the aim is to summarize specifics of development
for iOS platform and other technologies related to mobile application devel-
opment. The second goal is to do an analysis of existing solutions - web
application, Android application and notification server.

In practical part objectives are designing application requirements and user
interface, compare user interface with existing Grades Android application,
choose software architecture, extend the notification server, implement and
test the application and describe release process.

3

Chapter 1
Technologies & solutions

In this chapter I describe the theoretical background, possible solutions and
technologies used later in this work - specifics of development for iOS plat-
form, functional reactive programming paradigm, REST API and it’s usage
in mobile development and OAuth 2.0 authentication protocol.

1.1 Development for iOS platform

In this section, I characterize essential parts of development for iOS. First,
I describe programming languages and development tools of the platform.
Then continue with two major architectural patterns Model View Controller
(MVC) and Model View ViewModel (MVVM), following with explanation how
iOS apps manage the view.

1.1.1 Swift and XCode

Primary programming language for iOS and other Apple platforms used to be
Objective-C until June 2014, when the first version of Swift programming
language was released [1] and since then it has been the first choice for most
developers as Apple encourages them to use it. These two programming lan-
guages are compatible so both Objective-C and Swift can be used in an iOS
project.

Swift is object-oriented strongly typed programming language developed
under open source license. Some of the key features of it are:

• named parameters,

5

1. Technologies & solutions

• optionals,

• memory management with Automatic Reference Counting (ACC),

• removal of unnecessary semicolon symbols and parentheses in expres-
sions (not at all cases),

• low-level primitives like types, flow-control and operators,

• object-oriented features like classes, protocols and generics [2].

XCode is an integrated development environment (IDE) for Apple plat-
forms and Swift language. It provides a full set of functionalities for devel-
opment including code completion, debugging, testing or device simulators.
It is possible to even run the app directly from XCode on a physical device
connected via USB cable or network. The IDE supports building and running
apps for diverse environments like development, staging or production.

1.1.2 UIKit

Part of the Swift language is UIKit framework, which is a set of classes
providing window and view architecture for implementing a user interface
in iOS applications. It also comes with handling events like touch or other
types of input, animation support or drawing [3]. Below I describe critical
parts of the framework.

1.1.2.1 ViewControllers

ViewController is a class for managing a user interface and navigation
of an application. It contains a single root view which can itself contain other
subviews [4]. Every app must have at least one ViewController.

There are four main types of ViewControllers:

• UIViewController – basic and most used ViewController managing
a view hierarchy of the application [5]. One view controller often man-
ages one app’s screen.

• UITableViewController – “A view controller that specializes in man-
aging a table view” [6].

6

1.1. Development for iOS platform

• UINavigationController – “A container view controller that de-
fines a stack-based scheme for navigating hierarchical content” [7].

• UITabBarController – a view that displays bar with containing sub-
views at the bottom of a screen allowing navigation between them [8].

1.1.2.2 Views and Controls

For presenting visual content on a screen, there are Views. For defining inter-
action, there are Controls. Below I list a couple of these essential classes [9].

• UINavigationBar – A class displaying navigation bar at the bottom
of a screen, implementing underlying screen transition logic. Often used
in conjunction with UINavigationController [10]. It contains sub-
views for a title text, back button and the right accessory item (e.g. sub-
mit button). It can be extended with other subviews like search a text
field or easily configured to be larger with a bigger title.

Figure 1.1: Layout of items in UINavigationBar [10]

• UIView – Fundamental View class managing content for a rectangular
area on a screen [11].

• UIStackView – Handy View automatically managing autolayout and
spacing of its arranged subviews, laying them out in either row or col-
umn [12].

• UILabel – View displaying a text often describing the purpose of other
controls [14].

• UITextField – A Control, described at official Apple documentation
as “An object that displays editable text area in your interface” [15].

7

1. Technologies & solutions

Figure 1.2: UIStackView subitems layout [13]

1.1.2.3 Building a user interface

There are two ways for building a user interface from UIKit components
on the iOS platform - Interface Builder and programmatically. Interface
Builder allows a developer to design UI without any code by dragging and
dropping UIKit components from a list in the tool [16]. Programmatic app-
roach involves creating components and setting their properties and layout
in code.

1.1.3 Architecture

1.1.3.1 Model View Controller

Apple promoted architecture style on the iOS is Model-View-Controller (MVC).
The architecture has three layers for handling different application’s logic.
The Model reads and writes data to persist application state. The View dis-
plays data and sends input to the Controller. Finally, the Controller plays
a central role and is responsible for updating both model and view [17].

Figure 1.3: MVC architectural style diagram [17]

8

1.2. Reactive programming

1.1.3.2 Model View ViewModel

Model-View-ViewModel (MVVM) is a newer pattern similar to MVC. Instead
of the Controller layer, there is the ViewModel which takes care of business
logic, talks to the Model and exposes changes to the View.
ViewController classes (the Controller layer in MVC) stays, but they are part
of the View layer and their only responsibility is binding of user interface and
input [17].

Figure 1.4: MVVM architectural style diagram [17]

1.2 Reactive programming

Mobile applications do not know their input in advance, thus they need
to react to changes over time. Reactive programming paradigm solves this
problem with asynchronous data streams and propagation of change to many
parts of a software. This approach can be extended with functional paradigm
(e.g. usage of filter functions like map, filter, reduce or avoidance of mutating
data). That is called functional reactive programming (FRP) [18].

In Swift language, there are two main reactive libraries implementing
the above principle - RxSwift and ReactiveSwift. I am going to compare these
two libraries later in chapter about architecture.

1.2.1 RxSwift

In [19] the definition of RxSwift is following: “RxSwift, in its essence, simpli-
fies developing asynchronous programs by allowing your code to react to new
data and process it in a sequential, isolated manner.”

This library is Swift implementation of ReactiveX1 API which is multi-
platform FRP standard. It calls data streams observable sequences and parts
of an application, consuming these sequences, observers [20].

1http://reactivex.io

9

http://reactivex.io
http://reactivex.io

1. Technologies & solutions

1.2.2 ReactiveSwift

ReactiveSwift is Swift-only implementation of FRP and provides composable,
flexible and declarative primitives over this concept. Data streams are called
signals in the library [21].

1.3 REST API

Representational state transfer (REST) is communication standard and ar-
chitectural style in software development. In relation with mobile or web de-
velopment, REST or RESTful API is defined as an application programming
interface based on REST standard which uses HTTP protocol for communi-
cation [22].

1.3.1 Related terms

Below I list terms used in this work related to REST API.

• Endpoint – URL address of REST API on which the interface accepts
HTTP requests.

• Controller – In the context of REST API, it is a set of endpoints unifying
operations over an entity.

• CRUD – create, read, update and delete operations over a data entity.

1.4 OAuth 2.0

OAuth 2.0 is standard authentication protocol which replaces original OAuth
protocol. Its main improvement is easy implementation for client applications
(web, desktop or mobile). It gives a client application access to protected user
data from a web service without authorizing the user in the application and
entering his secured credentials [23].

1.4.1 Terms

• Protected resource - secured private data.

• Access token – string with limited validity used for accessing a protected
resource.

10

1.4. OAuth 2.0

• Refresh token – string used for obtaining a new valid access token in case
of expiration of a current one.

• Authorization grant – credential representing the resource owner’s au-
thorization, there are a few grant types – Authorization Code, Implicit,
Resource Owner Password Credentials and Client Credentials [23].

1.4.2 Roles

• Resource owner – entity, usually end user, which is an owner of a pro-
tected resource.

• Resource server – provider and host of a protected resource, usually
a web service.

• Client – an application requesting a protected resource with authoriza-
tion of a resource owner.

• Authorization server – a server providing an access token to a client
after successful authorization of a resource owner [23].

1.4.3 Authentication process

The authentication process for Authorization Code grant type is following:

1. A client requests authorization from a resource owner.

2. The client obtains authorization grant from the resource owner.

3. The client requests an access token from an authorization server with
a permission of the resource owner.

4. The authorization server authenticates the client, validates the autho-
rization grant and issues an access token.

5. The client requests resource owner’s protected resource from the resource
server signed with the obtained access token.

6. The resource server validates the access token and handles the request
in case of a valid access token. If the access token is not valid, the server
responds with an error [23].

The authentication flow is illustrated in the diagram 1.5.

11

1. Technologies & solutions

Figure 1.5: 0Auth 2.0 authentication flow diagram for Authorization Code
grant type [24]

12

Chapter 2
Analysis

In this chapter I do an analysis of existing solutions, define requirements,
use cases and analyze other services that the iOS application is going to be
integrated with - Grades REST API, the authorization server, the notification
server.

2.1 Existing solutions

2.1.1 Grades Android mobile application

Mobile application Grades for Android was implemented in diploma thesis
by Tomáš Havĺıček at CTU FIT in Prague [25]. Thus I do an analysis of his
work rather than other mobile applications focused on school grades. Both
Android and iOS applications should be unified in basic functionalities pro-
vided, usage and critical user interface (UI).

Android application is integrated with Grades REST API and has these
functionalities:

• login and logout through CTU authorization server,

• list of courses for a given semester,

• display grades of a student in a course,

• entry and modification of grades for a student group or particular stu-
dent,

• list of notifications and receiving of push notifications.

13

2. Analysis

The application supports the operation system Android since version 4.4
Kitkat. It is written in Kotlin programming language and uses MVVM (Model-
View-ViewModel) architectural style. It uses principles of reactive program-
ming with a help of library RxJava [25].

The user interface of the application conforms to Material Design2 principle
which is a standard on Android OS. I am going to further analyze the UI
of Android application in following chapter 3 about design where I am also
going to compare it with iOS design principles.

2.1.2 Grades web application

Apart from Android application there is Grades web application3 also inte-
grated with Grades REST API. The web application provides a richer set
of functionalities, especially for teachers. For example the REST API allows
definition of custom evaluation structure of a school course so teacher is not
restricted by predefined one. Students can do more or less the same as in
the Android application. These are some further functionalities of the web
application teachers can do:

• define course with a custom evaluation structure,

• define grade value type (number, string, boolean),

• switch on and off sending notifications about grades change to students,

• import and export data in CSV format.

2.2 Grades REST API

Web application Grades provides REST API with a set of operations over
the domain. This interface is public with university-wide authorization re-
quired. The REST API has still been developed in times of writing this work.
Documentation of the interface can be found online4 in the Grades web ap-
plication.

Note that in the context if this work, the term classification means an eval-
uation item or a group of evaluation items (e.g. exam test or homework).

2https://material.io/design
3https://grades.fit.cvut.cz
4https://grades.fit.cvut.cz/api/v1/swagger-ui.html

14

https://material.io/design
https://grades.fit.cvut.cz
https://grades.fit.cvut.cz/api/v1/swagger-ui.html
https://material.io/design
https://grades.fit.cvut.cz
https://grades.fit.cvut.cz/api/v1/swagger-ui.html

2.3. Authentication

The API is composed of many controllers form which these are important
for this work:

• Login-controller – authentication state, user information and roles.

• Semester-controller – for obtaining current semester code.

• Course-controller – information about a course.

• Classification-controller – operations with course grades.

• Student-classification-controller – information about student grades
or grades of students in a course group and possibility to edit it.

• Student-group-controller – information about a group of students.

The API is not very well designed for a client application and requires re-
quests to multiple endpoints and further nontrivial transformations of received
data. For example, to obtain list of student’s courses with their names, client
application needs to send one HTTP GET request to login-controller (to get
courses for user role student) and then additional n GET requests to course-
controller (to get name of each course) where n is number of courses from
the first request. This is suboptimal to do on a client side. A simple addition
of the name field to a response data of the first request on the server would
reduce the overall complexity of this task. Moreover, response data from
the server often contain fields logically unrelated to the entity or that can be
easily obtained from different endpoint thus increasing data bandwidth.

2.3 Authentication

Grades REST API is public but requires authorization of a user. The user
authorizes himself on the Czech Technical University authorization server5

(OAAS) through OAuth 2.0 authentication protocol.

As stated in [26], a client application needs to be registered in univer-
sity app manager6 before using the authentication service. After registration,
authorization scopes for the application must be chosen in order to work
correctly with different services using OAAS. The iOS application needs these
authorization scopes:

5https://github.com/cvut/zuul-oaas
6https://auth.fit.cvut.cz/manager/index.jsf

15

https://github.com/cvut/zuul-oaas
https://auth.fit.cvut.cz/manager/index.jsf
https://github.com/cvut/zuul-oaas
https://auth.fit.cvut.cz/manager/index.jsf

2. Analysis

• cvut:grades:user-write,

• cvut:grades:user-read,

• cvut:grades:course-restricted,

Except for scopes, the client application must also use the appropriate
authorization grant. Authorization Code is a grant type suitable for the iOS
application. With this grant type, a user is authorized through OAAS which
then provides authorization code to the client application. The client can then
request access token for making signed API calls. The complete authentication
process is described in chapter 1 Technologies and solutions.

An access token is valid for a limited amount of time. To prevent user au-
thorization request every time the access token expires, a new one can be ob-
tained with the refresh token received in athorization response. The refresh
token is valid until new access token is requested. Thanks to this mecha-
nism, a user can be kept authorized automatically until he explicitly logs out.
It also allows receiving customized push notifications, because the application
can make signed API requests on a background. When a push notification
is received on a device, the application can fetch data and then present a cus-
tomized notification to the user.

2.4 Notification server

Grades notification server is implemented in Java programming language and
uses frameworks Spring and Hibernate [25]. It is a standalone service with
public REST interface independent on Grades REST API. For sending notifi-
cations to Android platform the notification server uses Firebase Cloud Mes-
saging which is a service that allows sending cross-platform push notifications
(besides other services) [27].

2.4.1 Integration with the application

There are two options for integrating the notification server with the Grades
iOS application to receive push notifications:

• Apple Push Notification service (APN).

• Firebase Cloud Messaging service (FCM).

16

2.5. Requirements

APN is a native service for sending push notifications to iOS applications.
It does not require any advanced setup in the application. A notification
server that sends notifications to iOS platform must authenticate with APNs
using a provider certificate. To obtain the certificate, a developer must have
an Apple Developer account. If the notification server is authorized with
the certificate it can start sending notification requests with defined payload
to APNs [28]. Grades notification server would have to be extended to support
APN service.

FCM allows sending push notification both to Android and iOS platform.
These steps are required to integrate it with iOS application:

• upload provider certificate to Firebase server,

• install Firebase library to the application,

• configure the application to receive notifications,

• proccess notification payload and present it to a user.

Grades notification server would not have to be extended in case of inte-
gration with FCM, because it only sends one request to FCM that is processed
and distributed to both platforms.

I have chosen to use APN service because it is a native way on the iOS
and does not require to add any third party library. Even though it requires
extending the Grades notification server, it is still simpler way than integration
of FCM. In chapter 4, I describe how I extended the notification server.

2.5 Requirements

Functional and nonfunctional requirements’ scope of iOS application is based
on the Android application I analysed in the previous section.

2.5.1 Functional requirements

2.5.1.1 Authentication

User can log in to the applications through his account on the authorization
server of CTU in Prague. The application supports two user roles - student
and teacher. User can log out of the application.

17

2. Analysis

2.5.1.2 Semester selection

User can choose a semester from options of previous semesters and display
data for it. Semester selection stays persistent after application closing.

2.5.1.3 List of courses

User with role student can display a list of all courses he attends or attended
in particular semester. In case the user has a teacher role the list is composed
of teached courses in a particular semester. In case he has both student and
teacher role he can see all courses he attends and teaches.

2.5.1.4 Course grades

User with student role can display detail of course and see grades for that
course.

2.5.1.5 Grades of a student

User with role teacher can add or modify grades of a chosen student if he has
rights for it.

2.5.1.6 Grades of a student group

User with role teacher can add or modify grades of student’s group (class,
parallel,..) for selected classification (e.g. exam test). He can choose both
group and classification he wants to work with.

2.5.1.7 Notifications

User with student role can receive system-wide notifications about change
in his evaluation and mark them as read.

2.5.2 Nonfunctional requirements

2.5.2.1 Operating system

The application supports operating system iOS 12 and is written in program-
ming language Swift 5.

18

2.6. Use cases

2.5.2.2 Grades API integration

The application is integrated with Grades REST API over the network and uses
its resource endpoints for receiving and sending data.

2.5.2.3 OAuth 2.0

User is authorized using the OAuth 2.0 protocol through the authorization
server of the CTU.

2.5.2.4 Localization

The application is localized to Czech and English. It supports extension with
other languages. Language is based on device’s system language. Default
language is English.

2.5.2.5 Push notifications

The application receives push notification from the notification server through
Apple Push Notification service.

2.5.2.6 Responsive user interface

User interface of application is adaptable to any device’s screen size in portrait
mode. Application does not support landscape mode. It only supports iPhone
devices, not iPad.

2.6 Use cases

There are two user roles in the application - student and teacher. The use case
diagram in 2.1 shows relations between user roles and requirements. In other
words what activity can each user role do.

19

2. Analysis

Figure 2.1: Use case diagram of the iOS application

20

Chapter 3
Architecture and design

This chapter is both about software and graphic design. In the first sec-
tion of the chapter, I describe the architecture of the application and reasons
for choosing it. Then in the second section, I outline main classes and their
relationships. Finally, in the last section I compare designed user interface
with the Android application, explain choices I made and list used iOS UI
classes.

3.1 Architecture

I have chosen MVVM architectural style over MVC, because MVVM moves
application logic from ViewControllers to ViewModels which leads to cleaner
code in ViewControllers focused only to presenting view and interacting with
a user. This isolated logic is also easier to test.

I am going to define the user interface programmaticaly with the help
of library SnapKit7 for autolayout. Even though Interface Builder is faster
in prototyping, the custom code approach has a few advantages – customiza-
tion, performance and reusability of UI elements. Also, Interface Builder
makes it hard to collaborate on a project in a team.

ViewModels ensure all data and dependencies for ViewControllers and can
contain part of business logic. They provide the data (possibly from more
sources) and accept input through interface ViewControllers bind to.

7https://github.com/SnapKit/SnapKit

21

https://github.com/SnapKit/SnapKit
https://github.com/SnapKit/SnapKit

3. Architecture and design

Thanks to the interface and encapsulation, these two layers are independent
and replaceable (e.g. for mock classes in testing).

Model layer takes care of business logic, data transformation, networking
or persistence. It contains three sublayers:

• Data model – all entities and types in the application.

• Services – classes responsible for networking, authentication or persis-
tence.

• Repositories – encapsulate code for querying models in one place so that
it can be reused in more parts of an application [29].

Figure 3.1: Extended MVVM pattern diagram

Often in development, there are other necessary classes (e.g. extensions,
configuration, localization or setup code) that are not easily categorizable.
Therefore the pattern is rather guid helping a developer than something that
must be followed unconditionally.

3.1.1 Reactive framework

As a reactive framework, I have chosen RxSwift over ReactiveSwift because
ReactiveX is multiplatform standard with a large community thus a devel-
oper has a great amount of materials to learn from which is my priority.
On the other hand RxSwift learning curve is steep, while ReactiveSwift is not
that complex and is also better suited for Swift.

The reactive approach goes in hand with MVVM pattern. Application
layers bind to other layers reactive interfaces and provide their own. Such
reactive interface consists of observable sequences that observer can subscribe
to. This approach reduces problems with asynchronicity, error handling, data
flow and it also simplifies the codebase.

22

3.2. Design

3.2 Design

In this section, I list designed main classes and their responsibilities. I describe
some of the designed classes like Services or Repositories more in-depth while
only listing others like data model, because they are just holders of data
and do not contain any business logic.

3.2.1 Scene

Scene is an abstraction over a screen in the app and couples ViewModel
and View (UIViewController) for the screen. This abstraction allows tran-
sition flow between screens from the ViewModel layer instead of the View layer
resulting in deeper independence between these two layers. Below I list scenes
in the iOS application. Each scene has associated View and ViewModel.

• Login

• CourseList

• CourseDetailStudent

• GroupClassification

• StudentClassification

• Settings

3.2.2 Model layer

Below I list important designed classes with a description of their role. UML class
diagram of entities in the application, demonstrating relationships between
them, can be found in the attachment A.

• Data model

– Course, StudentCourse, TeacherCourse

– User – student or teacher.

– Classification – grade item.

– StudentClassification – grade item associated with a stu-
dent.

23

3. Architecture and design

– StudentGroup – a group of students or parallel.

– OverviewItem – overview of grades (e.g. total score).

– Settings – for storing settings like selected semester or language.

• Repositories

– CoursesRepository – querying of courses data.

– CourseRepository – querying of course detail data, reused in both
student course detail screen and student classification screen of
a teacher.

– CourseTeacherRepository – querying of group grades data
for a user with teacher role.

– SettingsRepository – loading, storing and persisting of user
settings.

• Services

– AuthenticationService – communication with the authenti-
cation server, authorization of user, storage of an access token,
signed requests and refreshing of an expired access token.

– HttpService – making HTTP requests to external service, has
AuthenticationService as a dependency for making signed
requests.

– GradesAPI – reactive wrapper over Grades REST API endpoints
providing clean interface.

– PushNotificationService – service for configuring and han-
dling push notifications from APN service.

3.3 User interface

In this section, I describe the application’s user interface and compare de-
signed screens with Android application’s UI. The iOS UI is designed by App-
le Human Interface Guidelines8, standard on the platform. I used Sketch
as a designing software. File with the design is availabel on the enclosed CD.

8https://developer.apple.com/design/human-interface-guidelines/ios

24

https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios

3.3. User interface

3.3.1 Login screen

The login screen is almost the same as in Android app. There is a big logo
in the top part and a login button in the bottom part.

Figure 3.2: Login screens of the iOS and Android applications

3.3.2 Course list screen

This screen is composed of a navigation bar (UINavigationBar) and a table
of courses (UITableView). The navigation bar has a title with a course name
and settings button. The table consists of two groups of courses – for student,
teacher or both in case a user has both roles. I decided not to show an icon
with course shortcut as in the Android app, but a big bold title instead.
There is no current semester displayed because a user can see it in settings.

25

3. Architecture and design

Figure 3.3: Course list screens of the iOS and Android applications

3.3.3 Course detail for a student screen

This screen consists of a navigation bar and a table with student’s grades.
There is a button for navigating back to course list screen in the top left
corner of the screen. There is information about total points earned and
final grade in the table header. Evaluation items are grouped by their type
(e.g. test, attendance, homework,..) for better transparency. The composition
of UI elements is similar to the Android app except for the grouping of table
items.

3.3.4 Student grades screen

In this screen, there is a navigation bar with a title, subtitle, back button
and save button for saving any changes in student’s grades. Under navigation

26

3.3. User interface

Figure 3.4: Course detail for student screens of the iOS and Android applica-
tions

bar, there is a control for switching group view (UISegmentedControl)
with active student view. Android app does not have this switching control,
but user navigates to this screen from the course list screen. Table header
contains a selected student’s name and total evaluation. When a user clicks
on a ”change” button he is navigated to a screen for student selection unlike
in Android app where student searching is part of the screen. Table body
contains evaluation items with text fields for changing the grades.

3.3.5 Student search screen

This screen has a text field in a navigation bar for searching students. The ta-
ble under the navigation bar displays filtered student names and usernames.

27

3. Architecture and design

Figure 3.5: Student’s grades screen of the iOS and Android application

Tapping on the table cell navigates back to the student grades screen with
a new student selected. Android app does not have this screen.

3.3.6 Group grades screen

This screen is a view of grades for a student group. It is similar to the student
grades screen. It has two filters in the table header - student group and eval-
uation item. There is a list of students for filtered selection in the table body.
Each table cell has a student’s name, username and text field with a value.

3.3.7 Settings screen

Settings screen’s navigation bar contains a title, a back button and a logout
button, unlike the Android app that has the logout button as part of a table

28

3.3. User interface

Figure 3.6: Student search screen of the iOS application

body. After logout, the login screen is presented. There are three sections
in the settings table - user info (name, email, roles), options with a semester
change and other with cells linking to info about the app and licence. There is
no option for switching notifications on/off in the iOS app because this setting
is located in system settings, which is native behaviour on iOS.

29

3. Architecture and design

Figure 3.7: Group grades of the iOS and Android application

30

3.3. User interface

Figure 3.8: Settings screens of the iOS and Android applications

31

Chapter 4
Implementation

This chapter is about the implementation of the iOS application which I im-
plemented by design and architecture described in the earlier chapter. I point
out some interesting implementation parts and decisions I made like Configu-
ration, Authentication, Dependency Injection and other. The XCode project
with all source codes and setup guide can be found either in the public GitHub
repository9 or on the enclosed CD.

4.1 Dependency management

When choosing dependency manager for managing external libraries I con-
sidered two tools - CocoaPods10 and Carthage11. These dependency manage-
ment tools are a little bit different and can be also used both at the same
project. CocoaPods are easier to use and has more libraries, but modifies
the project file structure and build all external libraries every time before
building project’s source code. Carthage, on the other hand, keeps libraries
built so it is faster in build time. Obviously, it takes more time on initializa-
tion. I chose Carthage as a dependency management tool.

4.2 Configuration

The application has two environments - Debug (development) and Release
(production) which can have a different configuration (app secret, Grades API

9https://github.com/jstorm31/grades-ios
10https://cocoapods.org/
11https://github.com/Carthage/Carthage

33

https://github.com/jstorm31/grades-ios
https://github.com/jstorm31/grades-ios
https://cocoapods.org/
https://github.com/Carthage/Carthage
https://github.com/jstorm31/grades-ios
https://cocoapods.org/
https://github.com/Carthage/Carthage

4. Implementation

URL, etc.). On iOS configuration can be put into Plist file which is basically
a dictionary. To keep the configuration of the application easy to manage I put
it into three Plist files - Common, Debug, Release. Common contains shared
configuration for all environments while Debug and Release stores environ-
ment specific configuration. There is EnvironmentConfiguration class
in the project that parses those Plist files into a Swift dictionary and merges
configuration from different files and for the current build environment. Then
I create strongly typed property for each record in the dictionary which I can
access anywhere from code. With this approach, the configuration is at one
place so adding a new property is as easy as adding it to corresponding Plist
file and creating strongly typed property in the extension of Environment-
Configuration class.

Figure 4.1: Configuration management diagram

4.3 Dependency injection

One of the most challenging problems in application development is dealing
with dependencies. I needed some of the classes to have only one instance and
to share the instance between other classes. I didn’t want to use singleton

34

https://matteomanferdini.com/swift-singleton/
https://matteomanferdini.com/swift-singleton/
https://matteomanferdini.com/swift-singleton/

4.3. Dependency injection

pattern12, so I used following neat pattern which could be best explained with
comments in the code example 4.1.

12https://matteomanferdini.com/swift-singleton/

35

https://matteomanferdini.com/swift-singleton/
https://matteomanferdini.com/swift-singleton/
https://matteomanferdini.com/swift-singleton/
https://matteomanferdini.com/swift-singleton/

4. Implementation

1 // A dependency
2 c l a s s Authent i ca t i onSe rv i c e {
3 // . . .
4 }
5 // Protoco l say ing that c l a s s implementing the p r o t o c o l
6 // must have authServ i ce property
7 p r o t o c o l HasAuthent i cat ionServ ice {
8 var authServ i ce : Authent i ca t i onSe rv i c e { get }
9 }

10 // AppDependency c l a s s ho lds a l l other dependenc ies in the p r o j e c t
11 // and i s only s i n g l e t o n c l a s s
12 c l a s s AppDependency {
13 // Proh ib i t i n i t i a l i z a t i o n
14 p r i v a t e i n i t () {}
15

16 // Property f o r a c c e s s i n g only one i n s t a n c e o f the c l a s s
17 s t a t i c l e t shared = AppDependency ()
18

19 // lazy s to r ed app dependenc ies − i n s t a n t i a t e d on f i r s t use
20 l a zy var authServ i ce : Authent i ca t i onSe rv i c e =

Authent i ca t i onSe rv i c e ()
21 // . . .
22 }
23 // AppDependency implements HasAuthent i cat ionServ ice p r o t o c o l
24 // −> i t has authServ i ce property o f cor re spond ing type
25 extens i on AppDependency : HasAuthent i cat ionServ ice {}
26 // Class that has Authent i ca t inoSe rv i c e dependency
27 c l a s s LoginViewModel {
28 // This ensure s only Authent i ca t i onSe rv i c e i s taken from

AppDependency c l a s s
29 // Other dependenc ies could be chained with & charac t e r
30 t y p e a l i a s Dependencies = HasAuthent i cat ionServ ice
31 p r i v a t e l e t dependenc ies : Dependencies
32

33 i n i t (dependenc ies : Dependencies) {
34 s e l f . dependenc ies = dependenc ies
35 }
36 // . . .
37 }
38 // I n s t a n t i a t i o n o f LoginViewModel with AppDependency shared

i n s t a n c e
39 l e t loginVM = LoginViewModel (dependenc ies : AppDependency . shared)

Listing 4.1: Dependency injection code example

36

4.4. Authentication

4.4 Authentication

For OAuth 2.0 authentication I used OAuthSwift13 library. This library helps
with authentication flow, storing and refreshing access token and making auth-
orized HTTP requests. It only needs to know a few things like URL add-
ress of the authentication server or application’s secret before starting the
authentication. When a user clicks Login button the OAuthSwift library the
authentication process by opening Safari browser with URL of OAAS. After
user’s successful authentication, the server redirects him back to the app-
lication. The library than saves an access token and authentication is com-
plete. I made a wrapper class AuthenticationService around this library
to make the authentication interface more friendly and reactive.

4.5 Scene Coordinator

I described what Scene is in previous chapter. In the example, 4.2 I demon-
strate the implementation of SceneCoordinator without implementational
details. This implementation of SceneCoordinator was originally pre-
sented in [30].

1 // Enumeration o f s c ene s with a s s o c i a t e d view models
2 enum Scene {
3 case l o g i n (LoginViewModel)
4 case c o u r s e L i s t (CoursesViewModel)
5 // . . .
6 }
7

8 // Extension with func t i on r e tu rn ing UIViewControl ler f o r each
sc r e en

9 extens i on Scene {
10 func v i ewCont ro l l e r () −> UIViewControl ler {
11 switch s e l f {
12 case l e t . l o g i n (viewModel) :
13 var loginVC = LoginViewContro l ler ()
14 loginVC . bindViewModel (to : viewModel)
15 re turn loginVC
16

17 case l e t . c o u r s e L i s t (viewModel) :
18 var courseListVC = CourseL i s tViewContro l l e r ()

13https://github.com/OAuthSwift/OAuthSwift

37

https://github.com/OAuthSwift/OAuthSwift
https://github.com/OAuthSwift/OAuthSwift

4. Implementation

19 l e t navContro l l e r = UINav igat ionContro l l e r (
rootViewContro l l e r : courseListVC)

20 courseListVC . bindViewModel (to : viewModel)
21 re turn navContro l l e r
22 // . . .
23 }
24 }
25

26 // D i f f e r e n t types o f t r a n s i t i o n
27 enum SceneTransit ionType {
28 case root // make view c o n t r o l l e r the root view c o n t r o l l e r
29 case push // push view c o n t r o l l e r to nav igat i on stack
30 case modal // pre sent view c o n t r o l l e r modally
31 }
32

33 // Protoco l f o r SceneCoordinator with methods f o r managing the
scene f low

34 p r o t o c o l SceneCoordinatorType {
35 // Trans i t i on to another sceen
36 func t r a n s i t i o n (to scene : Scene ,
37 type : SceneTransit ionType) −> Completable
38 // Pop cur rent sceen
39 func pop (animated : Bool) −> Completable
40 }
41

42 // Usage
43 l e t coo rd ina to r = SceneCoordinator ()
44 // Set root scene
45 coo rd ina to r . t r a n s i t i o n (to : Scene . l o g i n (LoginViewModel ()) ,
46 type : . root)
47 // Push new scene to nav igat i on stack
48 coo rd ina to r . t r a n s i t i o n (to : Scene . c o u r s e L i s t (CoursesViewModel ()) ,
49 type : . push)
50 // Pop from nav iagt i on stack
51 coo rd ina to r . pop ()

Listing 4.2: Scene Coordinator code example

4.6 ViewModel

I described ViewModel application layer in the chapter 3 Architecture.
Here I want to demonstrate the relationship between the ViewModel and
View layer. In the listing 4.3 CourseListViewModel provides RxSwift

38

4.6. ViewModel

interface and CourseListViewController binds it to adequate UI views
and controls. Notice the bindOutput() function in CourseListView-

Model which triggers the reactive chain.

1 c l a s s CourseListViewModel : BaseViewModel {
2 // ViewModel ’ s output , ViewContro l l e r bind to these p r o p e r t i e s
3 l e t cour s e s = BehaviorRelay<CoursesByRoles >(va lue :

CoursesByRoles (student : [] , t eacher : []))
4 l e t cour s e sEr ro r = BehaviorSubject<Error ?>(va lue : n i l)
5 // I n i t i a l i z a t i o n , other p r o p e r t i e s . . .
6

7 // Tr igge r s b inding o f output
8 func bindOutput () {
9 // Bus iness l o g i c f o r g e t t i n g cour s e s

10 // from CourseRepository and binding the output
11 // . . .
12 }
13 // Other p r i v a t e he lpe r methods . . .
14 }
15

16 // Binding to ViewModel ’ s output in UIViewControl ler
17 c l a s s CourseL i s tViewContro l l e r {
18 var viewModel : CourseListViewModel !
19 // . . .
20 // Bind ViewModel ’ s output when view did appear
21 o v e r r i d e func viewDidAppear (animated : Bool) {
22 super . viewDidAppear (animated)
23 viewModel . bindOutput ()
24 }
25 // Binding to ViewModel ’ s i n t e r f a c e
26 func bindViewModel () {
27 // Bind data to UITableView to d i s p l a y i t
28 viewModel . c ou r s e s . a sDr iver (onErrorJustReturn : [])
29 . d r i v e (tableView . rx . i tems (dataSource : dataSource))
30 . d i sposed (by : bag)
31

32 // Bind e r r o r s u b s c r i p t i o n to Error UIView
33 viewModel . cour s e sEr ro r . asDr iver (onErrorJustReturn : n i l)
34 . d r i v e (view . rx . errorMessage)
35 . d i sposed (by : bag)
36 }
37 }

Listing 4.3: Binding between ViewModel and View code exmaple

39

4. Implementation

4.7 Tables

I used RxDataSources14 library for managing data source of UITableViews
in the project. The library simplifies UITableView data source setup, helps
with the binding of RxSwift data sequences to a UITableView and allows
easy definition of table sections and polymorphic items. The library supports
both static and dynamic data source [31]. In listing 4.4 I present an exam-
ple of UITableView data source setup with the library. To actually dis-
play data in the UITableView, UIViewController must bind to View-
Model’s interface and connect it with UITableView through RxSwift exten-
sion on UITableView (demonstrated in the previous example).

1 c l a s s CourseL i s tViewContro l l e r {
2 // Conf igure data source by s t a t i c func t i on from extens i on
3 p r i v a t e l e t dataSource = CourseLi s tViewContro l l e r . dataSource ()
4 // . . .
5 }
6

7 extens i on CourseL i s tViewContro l l e r {
8 s t a t i c func dataSource () −> RxTableViewSectionedReloadDataSource

<CourseGroup> {
9 re turn RxTableViewSectionedReloadDataSource<CourseGroup>(

10 // Ce l l c o n f i g u r a t i o n
11 // Mult ip l e c e l l types could be used here
12 c o n f i g u r e C e l l : { , tableView , indexPath , item in
13 l e t c e l l = tableView . dequeueReusableCel l (
14 w i t h I d e n t i f i e r : type (o f : item) . reuseId ,
15 f o r : indexPath
16)
17 item . c o n f i g u r e (c e l l : c e l l)
18 re turn c e l l
19 } ,
20 // Set header f o r each s e c t i o n
21 t i t l e F o r H e a d e r I n S e c t i o n : { dataSource , index in
22 dataSource . sect ionMode l s [index] . header
23 }
24)
25 }
26 }

Listing 4.4: RxDataSources code example

14https://github.com/RxSwiftCommunity/RxDataSources

40

https://github.com/RxSwiftCommunity/RxDataSources
https://github.com/RxSwiftCommunity/RxDataSources

4.8. Push notifications

4.8 Push notifications

To make push notifications work on the server side, I extended the notifi-
cation server. Sending requests to Apple Push Notification service requires
the following:

• authenticate the notification server with Apple provider certificate,

• implement the sendNotificationAPNs method to send a notificaiton
request.

With the help of open source Java APNs15 library, I could implement
it with no cost, because the library provides easy to use interface and the
notification payload was already provided by the notification server. In listing
4.5 I present a method for sending the request to APNs written in Java. First
I filter only target device tokens of iOS type, then build a notification payload
from notificationId and notificationType and finally send it to APN
service.

1 p r i v a t e void sendNoti f icat ionAPNs (
2 N o t i f i c a t i on R e q u e s t n o t i f i c a t i o n R e q u e s t ,
3 List <TokenEntity> r ece ive rTokens
4) {
5 // Get d e v i c e s tokens
6 List <Str ing > tokens = rece ive rTokens . stream ()
7 . map(tokenEntity −> tokenEntity . getToken ())
8 . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;
9 // Build n o t i f i c a t i o n payload

10 St r ing payload = APNS. newPayload ()
11 . badge (1)
12 . l o c a l i z e d T i t l e K e y (” n o t i f i c a t i o n . t i t l e ”)
13 . l o ca l i z edKey (” n o t i f i c a t i o n . ” + n o t i f i c a t i o n R e q u e s t .

getType ())
14 . customField (” n o t i f i c a t i o n I d ” , n o t i f i c a t i o n R e q u e s t .

g e t N o t i d f i c a t i o n I d ())
15 . bu i ld () ;
16 // Send the n o t i f i c a t i o n
17 apnsServ i ce . push (tokens , payload) ;
18 }

Listing 4.5: APN service notification request code example
15https://github.com/notnoop/java-apns

41

https://github.com/notnoop/java-apns
https://github.com/notnoop/java-apns

4. Implementation

On the client side, I had to implement UNUserNotificationCenter-
Delegate protocol and call method registerUserForNotifications()
of UIApplication class to make push notifications work. Additionally,
in PushNotificationService class, I implemented methods for request-
ing access to receive push notifications from a user and for redirecting to right
screen in the application.

42

Chapter 5
Testing and Continues

Integration

In this chapter, I present two types of automated tests on iOS platform - unit
and UI tests. Then I explain my strategy used for testing the application
and present test coverage. Finally, I describe Continues Integration process.

5.1 Unit tests

These are types of tests that test classes and methods (units of an application)
in isolation from other parts of the application. They verify methods produce
correct output from given input and conditions. In Swift, there is XCTest
class that helps with creating tests and provides a rich set of asserting func-
tions [32]. XCTTestCase is a test class for testing methods of an applica-
tion class. It provides setup() and teardown() methods for setting and
of a test environment [33].

For testing asynchronous tasks implemented in RxSwift framework, I use
two additional testing frameworks - RxBlocking16 and RxTest17. Both have
a slightly different use case. RxBlocking is useful when an input of a method
using observable sequences is uncontrolled (e.g. provided by other class). It
can block the tested observable sequence until it emits an element or termi-
nates. An output of the sequence can then be asserted. On the other hand,
RxTest is good for providing custom input to a tested method and inspecting

16https://github.com/ReactiveX/RxSwift/tree/master/RxBlocking
17https://github.com/ReactiveX/RxSwift/tree/master/RxTest

43

https://github.com/ReactiveX/RxSwift/tree/master/RxBlocking
https://github.com/ReactiveX/RxSwift/tree/master/RxTest
https://github.com/ReactiveX/RxSwift/tree/master/RxBlocking
https://github.com/ReactiveX/RxSwift/tree/master/RxTest

5. Testing and Continues Integration

the exact result [34]. With the framework you can even assert the exact time
of element emission.

Tested classes often depend on other classes (dependencies). With Swift
protocols (similar to Java interface) any class that conforms to a protocol can
be replaced with a different implementation. To control dependencies of the
tested class, I replace a dependency with mocked implementation (e.g. I create
GradesAPIMock class to emit custom data as input into the tested class).

In listing 5.1 I demonstrate how Swift unit test can look like on real unit
test from the application. The test asserts filtering of ViewModel data source
returns the right amount of items. Note that property viewModel.search-
Text is an observable sequence that binds filtered data to dataSource.

1 func t e s t S t u d e n t F i l t e r () {
2 l e t dataSource = viewModel . dataSource . subscribeOn (s chedu l e r)
3

4 // Search
5 viewModel . searchText . onNext (”ond”)
6 var r e s u l t = try ! dataSource . toBlock ing (timeout : 2) . f i r s t ()
7 XCTAssertEqual (r e s u l t ! [0] . i tems . count , 1)
8

9 // Reset search
10 viewModel . searchText . onNext (””)
11 r e s u l t = try ! dataSource . toBlock ing (timeout : 2) . f i r s t ()
12 XCTAssertEqual (r e s u l t ! [0] . i tems . count , 2)
13 }

Listing 5.1: Swift unit test example

5.2 UI tests

Another type of tests on iOS platforms are User Interface tests. Compared
to unit tests, they do not test isolated part of an application, but complete flow
and interaction with a user interface from end to end. One disadvantage of UI
tests is a slower execution speed because an application must run on a simula-
tor during testing as it was used by a user. XCTest framework provides many
useful classes for User Interface testing. One of them is XCUIElementQuery
that locates UI elements within an app for testing. These queries return

44

5.2. UI tests

XCUIElement instances which are representations of tested elements [35].

UI tests can be defined in two ways. Either programmatically create in-
stances of XCUIElement by their identifiers and then assert or use XCode
UI test recording feature - XCode runs an application, a developer creates
flow (tapping buttons, filling forms,..) and the IDE automatically creates
XCUIElement instances developer interacted with. The second way is conve-
nient, because a developer does not have to write boilerplate code manually.
It is a good practise though to first record test case and then update it man-
ually to keep the code clean.

To control network requests in UI tests, I used framework Swifter18, which
creates tiny HTTP server within tested app and stubs network request (does
not let the request through and replies with custom defined response). Swifter
also works without any additional configuration in Continues Integration pipe-
line. With this, UI tests are independent on outer services. In listing 5.2,
Id̃emonstrate how such simple UI test case looks like.

1 func t e s t C o u r s e L i s t () {
2 // Login to a p p l i c a t i o n
3 app . buttons [” Login ”] . tap ()
4 // After log in , course l i s t s c r e en i s presented
5

6 // Get XCUIElements with de f ined t e x t s
7 l e t j s C e l l = app . s t a t i c T e x t s [”BI−PJS . 1 ”]
8 l e t i o s C e l l = app . s t a t i c T e x t s [”MI−IOS”]
9

10 // Wait f o r 5 s to a s s e r t those e lements are pre sent on sc r e en
11 l e t e x i s t s = NSPredicate (format : ” e x i s t s == true ”)
12 expec ta t i on (f o r : e x i s t s , evaluatedWith : j s C e l l , handler : n i l)
13 expec ta t i on (f o r : e x i s t s , evaluatedWith : i o s C e l l , handler : n i l)
14 waitForExpectat ions (timeout : 5 , handler : n i l)
15 XCTAssert (j s C e l l . e x i s t s)
16 XCTAssert (i o s C e l l . e x i s t s)
17 }

Listing 5.2: Swift UI test example

18https://github.com/httpswift/swifter

45

https://github.com/httpswift/swifter
https://github.com/httpswift/swifter

5. Testing and Continues Integration

This is the flow of the test:

1. XCTest runs the application on a simulator and sets up test environ-
ment.

2. The first screen of the application is presented when Login button is tapped
and course list screen is presented (this is application logic).

3. The application makes an HTTP API request to fetch courses and
Swifter HTTP server stubs the response.

4. The test case waits a maximum of 5 seconds to assert that course data
are displayed on the screen of the simulator. Otherwise the test fails.

Video file named UI test example.mp4 of this example test execution
can be found on the enclosed CD.

5.3 Test strategy & coverage

Thanks to a separation of concept and layered MVVM architecture, most
of the application’s business logic is distributed between ViewModel and Model
(mainly Repository) layer. I trust native (e.g. UIKit) and external (e.g. Rx-
Swift) frameworks that they are tested and work. Thus my strategy for auto-
mated unit testing was to test ViewModels, Repositories and utility functions.
With this approach, I maximized relative coverage of the code, because most
of bugs are contained in the business logic code, and minimized the amount
of written and maintained tests as they can become obsolete over time.

I tested user interaction and user interface in automated UI tests where
I validated the main application flow:

• login,

• display list of courses,

• display course detail for students,

• change current semester,

• edit grades of a student group,

46

5.4. Continues Integration

• edit grades of a student.

In table 5.1 I present test coverage of the application’s code, which was
taken from XCode test coverage reports. The reports are availabel on the
enclosed CD. The overall test coverage 73,8 % is a satisfactory result.

Name Coverage
Tests total 78,3 %
Unit tests 34,9 %
Unit tests ViewModels 74,57 %
Unit tests Repositories 86,28 %
UI tests 72,6 %

Table 5.1: Test coverage table

Apart from automated testing, I tested the application manually both
on a simulator and a physical device, because not everything can be tested
automatically. I also had to manually test push notifications and integration
with the notification server. Thanks to this test strategy I had found many
bugs I could fix and the application was validated for release.

5.4 Continues Integration

“Continuous Integration (CI) is a development practice that requires devel-
opers to integrate code into a shared repository several times a day. Each
check-in is then verified by an automated build, allowing teams to detect prob-
lems early” [36].

In the development of the application, I used GIT versioning system and
hosted the application code in public GitHub19 repository under Apache 2.020

license. For Continues Integration, I used Travis21 tool that is free and can be
easily integrated with GitHub. CI pipeline is a sequence of operations done
on a CI server and typically includes building of a project and testing, but can
be also extended by deploying and releasing the project (then we are talking
about Continues Delivery). My CI pipeline consists of the following tasks.

1. Cloning GitHub repository and installing external dependencies.
19https://github.com/jstorm31/grades-ios
20https://www.apache.org/licenses/LICENSE-2.0
21https://travis-ci.org/

47

https://github.com/jstorm31/grades-ios
https://www.apache.org/licenses/LICENSE-2.0
https://travis-ci.org/
https://github.com/jstorm31/grades-ios
https://www.apache.org/licenses/LICENSE-2.0
https://travis-ci.org/

5. Testing and Continues Integration

2. Building the project.

3. Running unit tests.

4. Running UI tests.

In Travis one run of a pipeline is called a build. My builds are automati-
cally triggered on merge requests before merging a feature or a bugfix branch
into the master branch.

48

Conclusion

The goal of this thesis was to analyse, design, implement and test student eval-
uation management mobile iOS application for students and teachers of FIT
CTU in Prague.

I proceeded by software engineering process and implemented the appli-
cation integrated with existing web service where students can view detailed
evaluation for courses in any semester (past or current), receive system push
notifications about new changes and teachers can easily manage evaluation
either for a student or a group of students. The application has a clean and
intuitive user interface following iOS design guidelines. The integration with
Grades web service was sometimes challenging, but I successfully connected
it with the mobile application. I tested the application both with automated
and manual tests. The result is working application satisfying all defined
requirements. I hope it will be widely used at the university.

In chapters of this work, I described in detail the software engineering pro-
cess of the application which can also serve as a manual for someone wanting
to extend the application with other functionalities. One such possible ex-
tension could be grade definition section for teacher similar as in the web ap-
plication. Teachers can define the structure of grade items (semesteral tests,
exam tests, attendance) or use templates of pre-generated ones. Another,
more technical extension, would be to implement data caching. Now data are
fetched from the network. Storing them on locale device’s storage and present-
ing immediately while new data are downloaded from network would result
in better user experience. The application could also be extended to iPad and
Apple Watch devices.

49

Bibliography

[1] Inc.”, A. Swift Has Reached 1.0. [online], September 2014, [cit. 2019-
03-23]. Available from: https://developer.apple.com/swift/

blog/?id=14

[2] Apple Inc. Swift. [online], 2019, [cit. 2019-03-23]. Available from: https:
//developer.apple.com/swift

[3] Apple Inc. UIKit framework. [online], 2019, [cit. 2019-03-23]. Available
from: https://developer.apple.com/documentation/uikit

[4] Apple Inc. View Controllers. [online], 2019, [cit. 2019-03-23]. Available
from: https://developer.apple.com/documentation/uikit/

view_controllers

[5] Apple Inc. UIViewController. [online], 2019, [cit. 2019-03-23]. Available
from: https://developer.apple.com/documentation/uikit/

uiviewcontroller

[6] Apple Inc. UITableViewController. [online], 2019, [cit. 2019-03-23].
Available from: https://developer.apple.com/documentation/

uikit/uitableviewcontroller

[7] Apple Inc. UINavigationController. [online], 2019, [cit. 2019-03-23].
Available from: https://developer.apple.com/documentation/

uikit/uinavigationcontroller

51

https://developer.apple.com/swift/blog/?id=14
https://developer.apple.com/swift/blog/?id=14
https://developer.apple.com/swift
https://developer.apple.com/swift
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit/view_controllers
https://developer.apple.com/documentation/uikit/view_controllers
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uitableviewcontroller
https://developer.apple.com/documentation/uikit/uitableviewcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller

Bibliography

[8] Apple Inc. UITabBarController. [online], 2019, [cit. 2019-03-23]. Available
from: https://developer.apple.com/documentation/uikit/

uitabbarcontroller

[9] Apple Inc. Views and Controls. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

views_and_controls

[10] Apple Inc. UINavigationBar. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

uinavigationbar

[11] Apple Inc. UIView. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

uiview

[12] Apple Inc. UIStackView. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

uistackview

[13] Apple Inc. UIStackView subitems positioning. [online],
2019, [cit. 2019-03-24]. Available from: https://docs-

assets.developer.apple.com/published/82128953f6/

uistack_hero_2x_04e50947-5aa0-4403-825b-

26ba4c1662bd.png

[14] Apple Inc. UILabel. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

uilabel

[15] Apple Inc. UITextfield. [online], 2019, [cit. 2019-03-24]. Available
from: https://developer.apple.com/documentation/uikit/

uitextfield

[16] Apple Inc. Interface Builder editor. [online], 2019, [cit. 2019-03-24]. Avail-
able from: https://developer.apple.com/xcode/interface-

builder

[17] Pillet, F.; Bontognali, J.; et al. RxSwift - Reactive programming with
Swift. Razeware LLC., 2017, 574 - 575 pp. Available from: https://

store.raywenderlich.com/products/rxswift

52

https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/views_and_controls
https://developer.apple.com/documentation/uikit/views_and_controls
https://developer.apple.com/documentation/uikit/uinavigationbar
https://developer.apple.com/documentation/uikit/uinavigationbar
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/documentation/uikit/uistackview
https://developer.apple.com/documentation/uikit/uistackview
https://docs-assets.developer.apple.com/published/82128953f6/uistack_hero_2x_04e50947-5aa0-4403-825b-26ba4c1662bd.png
https://docs-assets.developer.apple.com/published/82128953f6/uistack_hero_2x_04e50947-5aa0-4403-825b-26ba4c1662bd.png
https://docs-assets.developer.apple.com/published/82128953f6/uistack_hero_2x_04e50947-5aa0-4403-825b-26ba4c1662bd.png
https://docs-assets.developer.apple.com/published/82128953f6/uistack_hero_2x_04e50947-5aa0-4403-825b-26ba4c1662bd.png
https://developer.apple.com/documentation/uikit/uilabel
https://developer.apple.com/documentation/uikit/uilabel
https://developer.apple.com/documentation/uikit/uitextfield
https://developer.apple.com/documentation/uikit/uitextfield
https://developer.apple.com/xcode/interface-builder
https://developer.apple.com/xcode/interface-builder
https://store.raywenderlich.com/products/rxswift
https://store.raywenderlich.com/products/rxswift

Bibliography

[18] Singh, N. A quick introduction to Functional Reactive Program-
ming (FRP). [online], March 2018, [cit. 2019-03-28]. Available
from: https://medium.freecodecamp.org/functional-

reactive-programming-frp-imperative-vs-declarative-

vs-reactive-style-84878272c77f

[19] Pillet, F.; Bontognali, J.; et al. RxSwift - Reactive programming
with Swift. Razeware LLC., 2017, 18 pp. Available from: https://

store.raywenderlich.com/products/rxswift

[20] ReactiveX - asynchronous programming API with observable streams.
[online], [cit. 2019-03-28]. Available from: http://reactivex.io

[21] ReactiveSwift - streams of values over time. [online], [cit. 2019-
03-28]. Available from: https://github.com/ReactiveCocoa/

ReactiveSwift

[22] Rouse, M. RESTful API. [online], March 2019, [cit. 2019-02-17]. Avail-
able from: https://searchmicroservices.techtarget.com/

definition/RESTful-API

[23] D. Hardt, Microsoft. The OAuth 2.0 Authorization Framework. [on-
line], October 2012, [cit. 2019-02-17]. Available from: https://

tools.ietf.org/html/rfc6749

[24] Digital Ocean, L. OAuth 2.0 flow diagram. [online], 2019, [cit. 2019-03-24].
Available from: https://assets.digitalocean.com/articles/

oauth/abstract_flow.png

[25] Havĺıček, T. Mobilńı Aplikace - Klasifikace. Master’s thesis, Czech Tech-
nical University in Prague, Faculty of Information Technology, May 2018.
Available from: https://alfresco.fit.cvut.cz/share/proxy/

alfresco/api/node/content/workspace/SpacesStore/

9f21f9bb-3ad3-4a51-b38e-c9127bbda5f2

[26] Jir̊utka, J. OAuth 2.0. [online], January 2017, [cit. 2019-03-4]. Available
from: https://rozvoj.fit.cvut.cz/Main/oauth2

[27] Inc., G. Firebase Cloud Messaging. [online], [cit. 2019-03-8]. Available
from: https://firebase.google.com/docs/cloud-messaging

53

https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
https://store.raywenderlich.com/products/rxswift
https://store.raywenderlich.com/products/rxswift
http://reactivex.io
https://github.com/ReactiveCocoa/ReactiveSwift
https://github.com/ReactiveCocoa/ReactiveSwift
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://searchmicroservices.techtarget.com/definition/RESTful-API
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://assets.digitalocean.com/articles/oauth/abstract_flow.png
https://assets.digitalocean.com/articles/oauth/abstract_flow.png
https://alfresco.fit.cvut.cz/share/proxy/alfresco/api/node/content/workspace/SpacesStore/9f21f9bb-3ad3-4a51-b38e-c9127bbda5f2
https://alfresco.fit.cvut.cz/share/proxy/alfresco/api/node/content/workspace/SpacesStore/9f21f9bb-3ad3-4a51-b38e-c9127bbda5f2
https://alfresco.fit.cvut.cz/share/proxy/alfresco/api/node/content/workspace/SpacesStore/9f21f9bb-3ad3-4a51-b38e-c9127bbda5f2
https://rozvoj.fit.cvut.cz/Main/oauth2
https://firebase.google.com/docs/cloud-messaging

Bibliography

[28] Apple Inc. Apple Push Notification service. [online], June 2018, [cit. 2019-
05-01]. Available from: https://developer.apple.com/library/

archive/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/APNSOverview.html

[29] Repository Design Pattern in Swift. [online], September 2017, [cit. 2019-
03-18]. Available from: https://medium.com/@frederikjacques/

repository-design-pattern-in-swift-952061485aa

[30] Pillet, F.; Bontognali, J.; et al. RxSwift - Reactive programming with
Swift. Razeware LLC., 2017, 616 - 625 pp. Available from: https://

store.raywenderlich.com/products/rxswift

[31] Table and Collection view data sources. [online], 2019, [cit. 2019-
04-10]. Available from: https://github.com/RxSwiftCommunity/

RxDataSources

[32] Apple Inc. XCTest. [online], June 2018, [cit. 2019-05-01]. Available from:
https://developer.apple.com/documentation/xctest

[33] Apple Inc. XCTestCase. [online], June 2019, [cit. 2019-05-01]. Available
from: https://developer.apple.com/documentation/xctest/

xctestcase

[34] Todorov, M. Testing with RxBlocking, part 1. [online], December
2017, [cit. 2019-05-01]. Available from: http://rx-marin.com/post/

rxblocking-part1/

[35] Apple Inc. User Interface Tests. [online], 2019, [cit. 2019-05-02]. Available
from: https://developer.apple.com/documentation/xctest/

user_interface_tests

[36] ThoughtWorks, Inc. Continues Integration. [online], 2019, [cit.
2019-05-03]. Available from: https://www.thoughtworks.com/

continuous-integration

54

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://medium.com/@frederikjacques/repository-design-pattern-in-swift-952061485aa
https://medium.com/@frederikjacques/repository-design-pattern-in-swift-952061485aa
https://store.raywenderlich.com/products/rxswift
https://store.raywenderlich.com/products/rxswift
https://github.com/RxSwiftCommunity/RxDataSources
https://github.com/RxSwiftCommunity/RxDataSources
https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest/xctestcase
https://developer.apple.com/documentation/xctest/xctestcase
http://rx-marin.com/post/rxblocking-part1/
http://rx-marin.com/post/rxblocking-part1/
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration

Appendix A
Entity class diagram

55

Appendix B
Contents of enclosed CD

readme.md........................the file with CD contents description
design...................................the directory with design files
build....................................the directory with executables
src..the directory of source codes

grades-ios.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

test..test reports and video
reports......................................XCode test report files

text..the thesis text directory
thesis.pdf..........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

57

	List of Listings
	Introduction
	Thesis aim
	Technologies & solutions
	Development for iOS platform
	Swift and XCode
	UIKit
	ViewControllers
	Views and Controls
	Building a user interface

	Architecture
	Model View Controller
	Model View ViewModel

	Reactive programming
	RxSwift
	ReactiveSwift

	REST API
	Related terms

	OAuth 2.0
	Terms
	Roles
	Authentication process

	Analysis
	Existing solutions
	Grades Android mobile application
	Grades web application

	Grades REST API
	Authentication
	Notification server
	Integration with the application

	Requirements
	Functional requirements
	Authentication
	Semester selection
	List of courses
	Course grades
	Grades of a student
	Grades of a student group
	Notifications

	Nonfunctional requirements
	Operating system
	Grades API integration
	OAuth 2.0
	Localization
	Push notifications
	Responsive user interface

	Use cases

	Architecture and design
	Architecture
	Reactive framework

	Design
	Scene
	Model layer

	User interface
	Login screen
	Course list screen
	Course detail for a student screen
	Student grades screen
	Student search screen
	Group grades screen
	Settings screen

	Implementation
	Dependency management
	Configuration
	Dependency injection
	Authentication
	Scene Coordinator
	ViewModel
	Tables
	Push notifications

	Testing and Continues Integration
	Unit tests
	UI tests
	Test strategy & coverage
	Continues Integration

	Conclusion
	Bibliography
	Entity class diagram
	Contents of enclosed CD

