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Abstract 
This bachelor thesis focuses on study of near-field acoustic holography methods 

and appropriate regularization technics, with following simulation of SONAH 

method in MATLAB. In this thesis, Tikhonov regularization is technics studied. Two 

ways of determination of the regularization parameter were compared: manually 

chosen value of the parameter and Morozov method. 

 

 

 

 

 

 

 

 

Abstract 
Tato bakalářská práce se zabývá rozborem metod akustické holografie v blízkém 

poli a vhodných regularizačních technik s následnou simulaci metody 

SONAH  v prostředí MATLAB. V této práci je rozebraná Tichonovova regularizační 

metoda. Jsou porovnávané dvě metody určení regularizačního parametru: ručně 

zvolena hodnota a Morozovova metoda. 
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1. Introduction 

Measurement of vibration and noise levels are one of the basic measurements of 

nonelectrical quantities. Classical method of measuring vibration using 

accelerometer possesses several faults. Difficulties with placement and fixation of 

the sensors to the source of vibration is one of them. Weight of the sensors 

influence the original behavior of measured objects in case of light thin plates 

[3],[6]. Therefore, new methods were needed. 

Near-field Acoustic Holography (NAH) is a contactless method of reconstruction 

vibration (noise) source’s quantities by measuring acoustic field in proximity to the 

source. This method appeared in 1980 and is based on theory of acoustic 

holography, which started to develop in mid 1960s [9]. Acoustic holography can 

be used for localization, identification and prediction of noise sources [7]. Due to 

taking into consideration evanescent waves, a reconstruction image with high 

resolution can be obtained by using NAH. One of the practical restrictions of NAH 

is a requirement of significant number of microphones for measurement for 

desired level of resolution. 

The thesis are focused on study of near-field acoustic holography methods and 

appropriate regularization technics. Study is based on simulation of SONAH 

(Statistically optimized NAH) method in MATLAB. In this thesis, Tikhonov 

regularization is technics studied. Two ways of determination of the regularization 

parameter were compared: manually chosen value of the parameter and Morozov 

method. 
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2. Theoretical part 

In this chapter a brief review of essential acoustic equations needed for Nearfield 

Acoustic Holography methods are presented. 

 

2.2 Basic acoustic equations 

One of the most important equations in acoustics is a acoustic wave equation. For 

a homogeneous fluid with no viscosity it defined as 

∇2𝑝 − 
1

𝑐2
𝜕2𝑝

𝜕𝑡2
= 0, (1)  

where 𝑝(𝑥, 𝑦, 𝑧, 𝑡) is an acoustic pressure function, that satisfies Eq. (1), c is a 

constant and refers to the speed of sound in the medium (at 20°C c = 343 m/s in 

air and 1481 m/s in water). 

In the frequency domain acoustic wave equation is defined as 

∇2𝑝 + 𝑘2𝑝 = 0, (2)  

also known as Helmholtz equation, where 𝑘 = 𝜔/𝑐 is the acoustic wave number 

and the frequency is 2𝜋𝑓 = 𝜔. 

In Cartesian coordinates Laplacian operator is defined as 

∇2≡
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
. 

Equation, that defines relation between acoustic pressure and acoustic velocity, is 

Euler’s equation 

𝜌0
𝜕𝑣⃗

𝜕𝑡
=  −∇⃗⃗⃗𝑝, (3)  

where 𝑣⃗ = 𝑢̇𝑖 + 𝑣̇𝑗 + 𝑤̇𝑘⃗⃗  represents the velocity vector, where 𝑢̇, 𝑣̇ 𝑎𝑛𝑑 𝑤̇  are 

components of velocity vector. 

In the frequency domain Eq. (2) becomes 

i𝜔𝜌0𝑣⃗ = 𝛻⃗⃗𝑝. (4)  

Gradient ∇⃗⃗⃗ in Cartesian coordinates is defined as 

∇⃗⃗⃗ ≡  
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘⃗⃗, 

where 𝑖,  𝑗, 𝑘⃗⃗ are unit vectors in 𝑥, 𝑦 and 𝑧 directions respectively. 
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Next let us introduce sound intensity. In time domain sound intensity is defined as 

𝐼(𝑡) = 𝑝(𝑡) 𝑣⃗ (𝑡). (5)  

Problematic places are determined by large levels of sound intensity. 

Sound energy density in steady state in source-free region is [9] 

∇⃗⃗⃗  ∙ 𝐼(𝜔) = 0, (6)  

where  

𝐼(𝜔) =
1

𝑇
∫ 𝑝(𝑡) 𝑣⃗ (𝑡)d𝑡,
𝑇

0

 (7)  

or using complex variable notation 

𝐼(𝜔) =
1

2
𝑅𝑒(𝑝(𝜔) 𝑣⃗ (𝜔)∗). (8)  

𝑇 = 1/𝑓, 𝑓 is a excitation frequency. 

Eq. (6) means that in source-free region the divergence of the time average 

acoustic intensity must be 0. The divergence could be not 0 only when there are 

energy loses in medium or if there is a source in the referred area. 

 

2.3 Plane waves 

The general equation describing plane wave in the frequency domain is [9]  

𝑝(𝜔) = 𝐴(𝜔)ei(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) , (9)  

where 𝐴(𝜔) is an arbitrary constant, and  

𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2. (10)  

The general plane wave in time domain at the frequency 𝜔0  is described by 

equation [9] 

𝑝(𝑡) =  𝐴ei(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔0𝑡), (11)  

where A is an arbitrary constant and 𝑘 = 𝜔0 𝑐⁄ . 

A plane wave can be represented using condensed notation [9]: 

ei(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) = ei(𝑘⃗⃗∙𝑟), (12)  

where 𝑟 represent the position vector to the observation point in the sound field, 

and 𝑘⃗⃗ gives the direction of the wave [9]. 

The particle velocity of plane wave in the frequency domain, given by Eq. (4) and 

Eq. (9), is defined as 
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𝑣⃗(𝜔) =
1

i𝜔𝜌0
(𝑘𝑥𝑖 + 𝑘𝑦𝑗 + 𝑘𝑧 𝑘⃗⃗)𝑝(𝜔). (13)  

Since 𝑘 is a constant and 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are not independent of one another, usually 

𝑘𝑧 is chosen as dependent variable, with 𝑘𝑥 𝑎𝑛𝑑 𝑘𝑦 as independent ones, so 

               𝑘𝑧
2 = 𝑘2 −  𝑘𝑥

2 − 𝑘𝑦
2,  

𝑘𝑧 = ±√𝑘2 −  𝑘𝑥2 − 𝑘𝑦2. (14)  

When 𝑘𝑥  or 𝑘𝑦  ˃ 𝑘 , plane wave turns into evanescent wave. Then Eq. (14) 

becomes 

𝑘𝑧 = ±i√𝑘2 −  𝑘𝑥2 − 𝑘𝑦2 = ±i 𝑘𝑧
′ , (15)  

where  𝑘𝑧
′  is real, and the plane wave, turned evanescent, has the form [9] 

𝑝 =  𝐴e−𝑘𝑧
′𝑧ei(𝑘𝑥𝑥+𝑘𝑦𝑦). (16)  

This is a form of an evanescent plane wave decaying in z direction. 

From Eq. (4) the particle velocity of evanescent plane wave is 

𝑣⃗(𝜔) =
1

i𝜔𝜌0
(𝑘𝑥𝑖 + 𝑘𝑦𝑗 +  𝑘𝑧

′ 𝑘⃗⃗)𝑝(𝜔). (17)  

 

2.4 Nearfield acoustic holography  

 

2.4.1 Fourier based NAH 

The oldest method of NAH, based on measurement across a surface in separable 

coordinate system, allowing calculation to be performed by spatial discrete 

Fourier transform (DFT) or fast Fourier transform (FFT) [2].  

The pressure in source-free region can be described completely by sum of plane 

and evanescent waves [9].  

𝑝(𝑥, 𝑦, 𝑧) =∑∑𝑃(𝑘𝑥, 𝑘𝑦)

𝑘𝑦

ei(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧)

𝑘𝑥

, (18)  

where 𝑘𝑥  and 𝑘𝑦  are independent variables, 𝑘𝑧  depends on them. 𝑃(𝑘𝑥, 𝑘𝑦)  is 

multiplying coefficient, depending on two wavenumbers. 

For a general problem [9] 
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𝑝(𝑥, 𝑦, 𝑧)  =
1

4𝜋2
 ∫ d𝑘𝑥∫ d𝑘𝑦𝑃(𝑘𝑥, 𝑘𝑦) e

i(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧)
∞

−∞

∞

−∞

 (19)  

If 𝑧 = 0 Eq. (19) becomes  

𝑝(𝑥, 𝑦, 0)  =
1

4𝜋2
 ∫ d𝑘𝑥∫ d𝑘𝑦𝑃(𝑘𝑥, 𝑘𝑦) e

i(𝑘𝑥𝑥+𝑘𝑦𝑦),
∞

−∞

∞

−∞

 (20)  

and represent a pressure in the infinite plane at 𝑧 = 0.  

Comparing Eq. (19) to a definition of inverse Fourier transform, is clear that the 

complex amplitude 𝑃(𝑘𝑥, 𝑘𝑦) can be defined as 

 𝑃(𝑘𝑥, 𝑘𝑦) = ∫ d𝑥∫ d𝑦 𝑝(𝑥, 𝑦, 0) e−i(𝑘𝑥𝑥+𝑘𝑦𝑦)
∞

−∞

∞

−∞

. (21)  

𝑃(𝑘𝑥, 𝑘𝑦) is called the angular spectrum [9]. 

After determination of the angular spectrum, we can determinate the pressure 

field in 3D space using Eq. (19). 

The general expression to extrapolate the angular spectrum in the plane 𝑧′ to the 

plane 𝑧 is [9] 

𝑃(𝑘𝑥, 𝑘𝑦, 𝑧) = 𝑃(𝑘𝑥, 𝑘𝑦, 𝑧′)e
i𝑘𝑧(𝑧−𝑧′) , (22)  

with the assumption, that 

𝑃(𝑘𝑥, 𝑘𝑦) = 𝑃(𝑘𝑥, 𝑘𝑦, 0). (23)  

Using Eq. (4) we can calculate three angular spectrum components of the velocity 

vector 

𝑈̇(𝑘𝑥, 𝑘𝑦, 𝑧)𝑖 + 𝑉̇(𝑘𝑥, 𝑘𝑦, 𝑧)𝑗 + 𝑊̇(𝑘𝑥, 𝑘𝑦, 𝑧)𝑘⃗⃗

=
1

𝜌0𝑐𝑘
(𝑘𝑥𝑖 + 𝑘𝑦𝑗 + 𝑘𝑧 𝑘⃗⃗)𝑃(𝑘𝑥, 𝑘𝑦, 𝑧), 

(24)  

where 𝑊̇(𝑘𝑥 , 𝑘𝑦, 𝑧) is a two-dimensional Fourier transform of a velocity vector’s 

component 𝑤̇(𝑥, 𝑦, 𝑧) 

𝑊̇(𝑘𝑥, 𝑘𝑦, 𝑧) = ℱ𝑥ℱ𝑦[𝑤̇(𝑥, 𝑦, 𝑧)] . (25)  

Analogically with 𝑈̇(𝑘𝑥, 𝑘𝑦, 𝑧) 𝑎𝑛𝑑 𝑉̇(𝑘𝑥, 𝑘𝑦, 𝑧). 

Using Eq. (24) and Eq. (22) we can relate the velocity to the pressure in a different 

plane [9] 

𝑈̇(𝑘𝑥, 𝑘𝑦 , 𝑧)𝑖 + 𝑉̇(𝑘𝑥, 𝑘𝑦, 𝑧)𝑗 + 𝑊̇(𝑘𝑥, 𝑘𝑦, 𝑧)𝑘⃗⃗

=
1

𝜌0𝑐𝑘
(𝑘𝑥𝑖 + 𝑘𝑦𝑗 + 𝑘𝑧 𝑘⃗⃗)𝑃(𝑘𝑥, 𝑘𝑦, 𝑧′)𝑒

i𝑘𝑧(𝑧−𝑧′). 
(26)  

Then the normal component of velocity is 
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𝑊̇(𝑘𝑥, 𝑘𝑦, 𝑧) =
𝑘𝑧
𝜌0𝑐𝑘

𝑃(𝑘𝑥, 𝑘𝑦, 𝑧′)𝑒
i𝑘𝑧(𝑧−𝑧′).  (27)  

Eq. (27) relates the angular spectrum components of normal velocity in one plane 

to the components of pressure in a different plane [9]. 

The Rayleigh’s second integral relates the spatial pressure in one plane to the 

spatial pressure in another plane, with 𝑧 ≥ 𝑧′, [9] 

𝑝(𝑥, 𝑦, 𝑧)  =  − 
1

2𝜋
 ∫ ∫ 𝑝(𝑥′, 𝑦′, 𝑧′) 

𝜕

𝜕𝑧′

∞

−∞

∞

−∞

[
ei𝑘|𝑟−𝑟′|

|𝑟 − 𝑟′|
] d𝑥′d𝑦′, (28)  

where 𝑟 = (𝑥, 𝑦, 𝑧) ,  𝑟⃗⃗⃗′ = (𝑥′, 𝑦′, 𝑧′), and 

|𝑟 − 𝑟′| = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 

The Rayleigh’s first integral relates the spatial pressure in one plane to the normal 

component of the velocity in another plane, with 𝑧 ≥ 𝑧′,  

𝑝(𝑥, 𝑦, 𝑧) = −
 i𝜌0𝑐𝑘

2𝜋
 ∫ ∫ 𝑤̇(𝑥′, 𝑦′, 𝑧′) 

𝜕

𝜕𝑧′

∞

−∞

∞

−∞

[
ei𝑘|𝑟−𝑟′|

|𝑟 − 𝑟′|
] d𝑥′d𝑦′. (29)  

Both Rayleigh’s integrals provide means to compute the radiation into half space 

𝑧 ≥ 𝑧′ using the information of the pressure on a surface 𝑧 = 𝑧′, Eq. (28), or the 

normal velocity on a plane 𝑧 = 𝑧′, Eq. (29) and provide solution only for a forward 

problem. In other words, they can only provide the pressure radiated from the 

sources [9]. For inverse problems solution is provided by NAH. 

The mathematics behind NAH is summarized in the single statement [9] 

𝑤̇(𝑥, 𝑦, 𝑧ℎ) = ℱ𝑥
−1ℱ𝑦

−1[ℱ𝑥ℱ𝑦[𝑝(𝑥, 𝑦, 𝑧ℎ)]𝐺(𝑘𝑥, 𝑘𝑦 , 𝑧𝑠 − 𝑧ℎ)], (30)  

where 𝑧 = 𝑧𝑠  is a surface of the vibration source, 𝑧 = 𝑧ℎ is a measurement plane, 

and 𝑧𝑠 ≤ 𝑧ℎ.  

𝐺 is called the velocity propagator and is defined as  

𝐺(𝑘𝑥, 𝑘𝑦, 𝑧 − 𝑧ℎ) ≡
𝑘𝑧
𝜌0𝑐𝑘

ei𝑘𝑧(𝑧−𝑧ℎ).  (31)  

Using the convolution theorem, Eq. (30) can be rewritten as [9] 

𝑤̇(𝑥, 𝑦, 𝑧𝑠) =  𝑝(𝑥, 𝑦, 𝑧ℎ) ∗∗ 𝑔𝑣
−1(𝑥, 𝑦, 𝑧𝑠 − 𝑧ℎ), (32)  

where symbol ∗∗  represent a two-dimensional convolution, and 𝑔𝑣
−1(𝑥, 𝑦, 𝑧𝑠 −

𝑧ℎ) is the inverse velocity propagator defined as [9] 

𝑔𝑣
−1(𝑥, 𝑦, 𝑧𝑠 − 𝑧ℎ) ≡ ℱ𝑥

−1ℱ𝑦
−1[𝐺(𝑘𝑥, 𝑘𝑦 , 𝑧𝑠 − 𝑧ℎ)]

= ℱ𝑥
−1ℱ𝑦

−1 [
𝑘𝑧
𝜌0𝑐𝑘

ei𝑘𝑧(𝑧−𝑧ℎ)] 
(33)  
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Because NAH solves the inverse problem, the mathematical solution must be 

unique and stable. And therefore Eq. (30) must be approached with caution.  

DFT and FFT are needed for discretization of the holography equation, for any 

practical measurement. 

The final holography equation would be [9] 

𝑤̃̇𝐷(𝑥, 𝑦, 𝑧𝑠) = ∑ 𝑝𝐷(𝑥 − 𝐿𝑥, 𝑦 − 𝐿𝑦, 𝑧ℎ) ∗∗ ℱ𝑥
−1ℱ𝑦

−1[𝐺]

∞

𝑝,𝑞=−∞

, (34)  

where 𝑝𝐷  is a sampled version of the measured pressure 𝑝 over the measured 

aperture and is zero outside of it and must be dense enough to avoid aliasing [9], 

𝐿𝑥 𝑎𝑛𝑑 𝐿𝑦 are dimensions of the aperture. 

The inverse propagator operates on an infinite plane of replicated measurements, 

not just an actual one. The replicated measurements outside the actual one are 

reconstructed in the same way as the actual measurement aperture by 

convolution with the inverse propagator, but this measurements contribute less 

to the velocity in the reconstructed aperture because they are further from it. 

Since the left side of Eq. (34) is periodic, the reconstructed sources also form an 

infinite grid of replicated apertures, called replicated sources [9]. 

The simplest way to reduce the errors due to replicated measurements is to add 

zeros outside the actual measurement, to at least double the size of the measured 

aperture. The improvement is obtained through the increased distance between 

the replicated pressure measurement and the corresponding reduction in their 

influence in the reconstruction over the real source[9]. 

The use of DFT allows NAH to proceed data very fast but appears a side-effect in 

form of a spatial windowing effect, unless the measurement fully covers the area 

with high sound pressure. In some cases this requirement cannot be fulfilled, and 

in many cases the necessary size becomes prohibitively large [2]. 

 

2.4.2 Statistically optimized NAH (SONAH) 

SONAH was developed to overcome limitations of Fourier based NAH [2]. 

Prediction of particle velocity and acoustic pressure directly in time domain allows 

to avoid using Fourier transform [1]. 
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SOHAN use a local model of the sound field in terms of elementary wave functions 

and perform fit of the elementary wave model (EWM) to the measured sound field 

data [2]. 

The matrix SONAH formulation is 

𝐁𝐚 = 𝐩, (35)  

where 

𝐁 = {ψ𝒏(𝒓𝑖)} =

{
 

 
ψ𝟏(𝒓1) ψ𝟐(𝒓1)

ψ𝟏(𝒓𝟐) ψ𝟐(𝒓𝟐)
⋯ ψ𝑵(𝒓1)

ψ𝑵(𝒓2)

⋮
ψ𝟏(𝒓𝐼) ψ𝟐(𝒓𝐼)

⋱ ⋮
⋯ ψ𝑵(𝒓𝐼)}

 

 
,  (36)  

𝐁 is a matrix of values of wavefunctions ψ at the measurements positions 𝒓𝑖, i=1, 

2, …, 𝐼, in a source-free area. 

𝐩 = {𝑝(𝒓𝑖)} = {

𝑝(𝒓1)

𝑝(𝒓2)
⋮

𝑝(𝒓𝐼)

}, (37)  

is a vector of measured pressures. 

𝐚 = {𝑎𝑛} = {

𝑎1
𝑎2
⋮
𝑎𝑁

}, (38)  

is a vector of the complex expansion coefficients. 

Because of the ill-posed nature of the inverse problem, regularization is needed. 

General SONAH formulation of estimated sound pressure 𝑝(𝒓) , including 

regularization[2]: 

𝑝(𝒓) = 𝒂̃𝑇𝜶(𝒓) = 𝒑𝑇[(𝐁𝐁𝐻 + 𝜀𝐈)−1]𝑇𝐁∗𝜶(𝒓) = 

=𝒑𝑇[(𝐁𝐁𝐻 + 𝜀𝐈)𝑇]−1𝐁∗𝜶(𝒓) = 

= 𝒑𝑇[𝐀𝐻𝐀 + 𝜀𝐈]−1𝐀𝐻𝜶(𝒓) = 𝐩𝑇𝐜(𝐫). 

(39)  

Where 𝐀 = 𝐁𝑇 , and 𝒂̃ is a coefficient vector estimated from the measurement. 

𝐈  is a unit diagonal matrix of appropriate dimensions, 𝜀  is a regularization 

parameter.  

Symbols 𝑇 representing transpose of a matrix or a vector, symbol 𝐻 represents 

Hermitian transpose and symbol ∗ represents complex conjugate. 



 

11 
 

Matrix 𝑨𝐻𝑨  can be perceived as matrix of cross correlations between the 

measurement points in the domain of the elementary wave functions and can be 

defined as [2] 

[𝑨𝐻𝑨]𝑖𝑗 =∑ψ𝑛
∗ (r𝑖)ψ𝑛(𝑟𝑗)

𝑛

. (40)  

Vector 𝐀𝐻𝜶(𝒓) then contains the cross correlations between the measurement 

points and the estimation position and can be defined as [2] 

[𝐀𝐻𝜶(𝒓)]𝑖 = ∑ ψ𝑛
∗ (r𝑖)ψ𝑛(𝑟)𝑛 . (41)  

Then the estimated particle velocity in a 𝜒 direction is [2] 

𝑢̃𝜒(𝒓) = −
1

𝑖𝜔𝜌0

𝜕𝑝(𝒓)

𝜕𝜒
 (42)  

Here 𝜔 is the angular frequency, 𝜌0 is the density of the medium. 

 

2.4.3 Helmholtz equation least-squares method (HELS) 

When using HELS method, the reconstruction of the acoustic field is done by 

directly solved the Helmholtz equation, Eq. (2). The acoustic pressure is expanded 

in terms of a set of independent functions 𝜓∗, that are generated by the Gram-

Schmidt orthonormalization with respect to the solution of the Helmholtz 

equation on the actual vibrating plane [8]. The coefficients of these functions are 

determined by requiring form of the solution to satisfy the boundary conditions of 

the measurement [8]. 

The solution of the Helmholtz equations, with respect to boundary conditions, can 

be approximated by a linear combination of the functions 𝜓∗ 

𝑝∗ = 𝜌𝑐∑𝐶𝑖𝜓𝑖
∗

𝑁

𝑖=1

. (43)  

Where 𝜌 is the density of the medium, 𝑐 is the speed of sound in the medium, 𝐶𝑖 

are the coefficients. 

After determination of 𝐶𝑖, the acoustic pressure can be approximated anywhere 

using Eq. (43) [8]. 

Suppose that an 𝑁 -term expansion used in Eq. (43) and 𝑀 measurements is taken 

(𝑁 ≤ 𝑀), than 
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{
 
 

 
 
𝜓11
∗

𝜓21
∗

⋮
𝜓1𝑁
∗

⋮
𝜓𝑀1
∗

𝜓12
∗

𝜓22
∗

⋮
𝜓2𝑁
∗

⋮
𝜓𝑀2
∗

⋯

⋱

⋱
⋯

𝜓1𝑁
∗

𝜓2𝑁
∗

⋮
𝜓3𝑁
∗

⋮
𝜓𝑀𝑁
∗ }
 
 

 
 

{

𝐶1
𝐶2
⋮
𝐶𝑁

} =

{
 
 

 
 
𝑝01
𝑝02
⋮
𝑝0𝑁
⋮
𝑝0𝑀}

 
 

 
 

 (44)  

If the measured quantities 𝑝0  are exact, then the approximated solution 𝑝∗ 

converges to the true value as 𝑁 → ∞ [8]. 

The coefficients 𝐶𝑖 can be solved [8] 

𝐂 =
1

𝜌𝑐
𝓣𝜇𝐩0, (45)  

where 𝓣 is a transformation matrix, and 𝓣𝜇  is pseudoinverse transformation 

matrix and define as [8] 

𝓣𝜇 = ([𝜓𝑚𝑛
∗ ]𝑇[𝜓𝑚𝑛

∗ ])−1[𝜓𝑚𝑛
∗ ]𝑇 , (46)  

where [𝜓𝑚𝑛
∗ ] represent a matrix of the same form as a matrix of 𝜓∗ in Eq. (44). 

 

2.5 Regularization 

Due to existence of the evanescent waves in near-field, that decay at various rates, 

the inverse problems are usually ill-posed. Regularization provides a technics to 

overcome the ill-posedness [10]. 

 

2.5.1 Tikhonov regularization 

Tikhonov regularization is one of the most used regularization technics. 

In the Tikhonov regularization method we have to minimize, with respect to 𝑤̇ for 

a fixed parameter α, the general Tikhonov function 𝐽𝛼 given by [10] 

𝐽𝛼(𝑤̇
𝛿) = ‖𝐇𝑤̇𝛿 − 𝑝𝛿‖

2
+ 𝛼‖𝐋𝑤̇𝛿‖

2
, (47)  

where ‖. ‖ represent the L2 norm, usually 𝐋 = 𝐈, where 𝐈 is a unit diagonal matrix 

of needed size, 𝑝𝛿 is the pressure data with noise, 𝐇 is a spatial transfer function 

with the dimension 𝑀 ×𝑀 , which directly relates the pressure vector to the 

velocity vector. The 𝛼‖𝐋𝑤̇𝛿‖
2
 is so called penalty term, in this case it prevents the 

amplitude of the reconstructed normal velocity from growing without a limit 

during the minimalization [10]. 

The solution, 𝑤̇𝛼,𝛿, for the minimalization of Eq. (47), is given by[10]: 
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𝑤̇𝛿 = 𝑤̇𝛼,𝛿 = 𝐑𝜶𝑝
𝛿 , (48)  

Where 𝐑𝜶 is a regularized inverse of 𝐇,  

𝐑𝜶 = (𝜶𝐋
𝐻𝐋 + 𝐇𝐻𝐇)−𝟏𝐇𝐻 = (𝜶𝐈 + 𝐇𝐻𝐇)−𝟏𝐇𝐻, 𝒇𝒐𝒓 𝜶 > 𝟎. (49)  

For determination of parameter 𝜶 could be used several methods.  

First, for the sake of mentioning, coefficient 𝜶  can be chosen manually. The 

disadvantage of this method is, that the form of the reconstructed sound field is 

very sensitive to 𝜶, and could differ dramatically with different values of 𝜶. 

Next one, the Morozov discrepancy principle. This is a simple method for finding 

the regularization parameter when is known the variance of the noise 𝜎2. 

The Morozov discrepancy principle states that the solution for Eq. (47) must satisfy 

the equation [10]: 

‖𝐇𝑤̇𝛼,𝛿 − 𝑝𝛿‖
2
= 𝛿, 𝛿 = √𝑀𝜎. (50)  

or  

𝑝𝛼,𝛿 ≡ 𝐇𝑤̇𝛼,𝛿 = 𝐇𝐑𝜶𝑝
𝛿 . (51)  

We vary the 𝜶, and thus 𝐑𝜶, in Eq. (49), until the predicted pressure differs from 

the measured pressure by just the noise [10]. 

 

2.5.2 Landweber iteration 

Using this technic, we have [10] 

𝑤̇ = (𝐼 − 𝛽𝐇𝐻𝐇)𝑤̇ + 𝛽𝐇𝐻𝑝, (52)  

where 𝛽 is a positive number to be determined.  

The iteration procedure is set up by using the right side to compute the left side 

starting with the first iteration of 𝑤̇0 = 0 [10]. Than  

𝑤̇𝑚 = (𝐼 − 𝛽𝐇𝐻𝐇)𝑤̇𝑚−1 + 𝛽𝐇𝐻𝑝, 𝑚 = 1, 2, . .. (53)  

For convergence, 𝛽 must be chosen less than 1 |𝜆𝑚𝑎𝑥|
2⁄  
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3. Practical part 

In this part of the thesis the simulation of the SONAH method is described and 

discussed and two methods of determination of the regularization parameter are 

compared. 

 

 

3.2 Simulation description 

The simulations were realized in MATLAB, therefore the description of the 

simulation steps is presented in the form of MATLAB code. The first step in trying 

to recreate sound field in forward and inverse directions is to define the source(s) 

of sound. 

In this simulation the tree sources on different coordinates were chosen: 

 

%%source's positions 
% source 1 
x1=0.4; 
y1=0.2; 
  
%source 2 
x2=0.8; 
y2=0.55; 
  
%source 3 
x3=0.5; 
y3=0.65; 
 

For the source the same characteristics were used: 

f=1000; %Hz frequency 
A1=1; %amplitude 
w=2*pi*f; % angular speed 
lambda=c/f; %m wave length 
k0=w/c; %wave number 
 

Than the basic properties of the surrounding medium were defined: 

c=343; %m/s speed of sound in air 
pref=2*10^-5; %Pa  
p0=1.275; %kg/m3 air density 
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Finally the aperture size with the coordinates of the measured points was set: 

%aperture 
x=linspace(1,0,40); 
y=linspace(1,0,40); 
 

If it was the actual measurement, then in these points the microphones for the 

sound pressure measurements would be placed. 

Then for each source we determine the matrix of the distances from the source to 

the measured point: 

%distance matrix, source plane 
for m=1:length(y) 
    for n=1:length(x) 
        r1source(m,n)=sqrt((x(n)-x1)^2+(y(m)-y1)^2);  
        r2source(m,n)=sqrt((x(n)-x2)^2+(y(m)-y2)^2); 
        r3source(m,n)=sqrt((x(n)-x3)^2+(y(m)-y3)^2); 
    end     
end 
 

The same principle for the distance matrix for the measurement plane and the 

reconstruction plane is used, with respect to the 𝑧  coordinate. For the 

measurement plane it is 𝜆/3 and for the reconstruction plane it is 2𝜆/3. 

The measurement plane is the plane where the actual measurement have been 

held. So simulated data on the measurement plane would be referred as the actual 

measurement data. The reconstruction plane is the plane, where the forward 

problem have been reconstructed, meaning radiation from the source to given 

distance. And the source plane is the plane where the sound sources have been 

located. In following text, these planes would be referred as measurement plane, 

reconstruction plane and source plane respectively. 

For the evaluation and comparison purposes we determine the “true” sound 

pressure on all three planes. 

%sount pressure on measured plane 
p1meas=(A1.*exp(-j*k0.*r1meas))./r1meas; %pressure from source 1 
p2meas=(A1.*exp(-j*k0.*r2meas))./r2meas; %preassure from source 2 
p3meas=(A1.*exp(-j*k0.*r3meas))./r3meas; %pressure from source 3 
Pm=p1meas+p2meas+p3meas; %total pressure from all three sourcec 
pmeas=abs(p1meas+p2meas+p3meas); %total abs pressure without 
noise, abs 
Lmeas=20*log10((pmeas)/pref); %pressure level without noise 
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Similar calculations were done on other two planes. 

Then we add a tree levels of white gaussian noise with selected variance and 

mean=0 to the measured pressure. First noise with the variance of the minimum 

value from all measured pressures, second noise with variance of the 10 times of 

this minimum value, and third noise with variance of the 20 times of this minimum 

value. 

%noise definition 
pmin=min(min(pmeas)); %determination of minimal pressure value 
s1=pmin*1; %sqrt noise variance level 1 
s2=pmin*10; %sqrt noise variance level 2 
s3=pmin*20; %sqrt noise variance level 3 
 

Consequently, the simulated pressure with the noise calculate: 

pmeas_noise1=Pm + s1*randn(size(Pm)); %prassure on measured plane 
with noise1 
Lmeas_noise1=20*log10(abs(pmeas_noise1)/pref); %pressure level on 
measured plane with noise1 
pmeas_noise2=Pm + s2*randn(size(Pm)); %prassure on measured plane 
with noise2 
Lmeas_noise2=20*log10(abs(pmeas_noise2)/pref); %pressure level on 
measured plane with noise2 
pmeas_noise3=Pm + s3*randn(size(Pm)); %prassure on measured plane 
with noise3 
Lmeas_noise3=20*log10(abs(pmeas_noise3)/pref); %pressure level on 
measured plane with noise3 
 
Similar calculations are done on the other two planes. 

These calculated sound pressure levels on the source plane and the reconstruction 

plane are used as the reference. 

Now we will reconstruct the sound pressure on two planes, the source plane and 

the reconstruction plane, using simulated data only from the measurement plane, 

with the exception of the matrix 𝐁, that is a matrix of elementary wave function 

values, that in this simulation can be substituted by the matrixes of the sound 

pressure functions without noise. 

We will use the same measured data for both problems. 

For the pressure on the source plane, the solution of the inverse problem is:  

Bsource=(p1source+p2source+p3source); %matrix of Elementary Wave 
Functions for source plane 
Asource=Bsource.'; 
C=conj(Bsource); 
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for ii=1:length(x)      
       cross_source=(C(ii).*Bsource);  
end 
 
prsource=abs((Pm.')*inv((Asource')*Asource+eps_source0*eye(length(x))*
cross_source); % without noise 
prsource_noise1=abs((pmeas_noise1.')*inv((Asource')*Asource+ 
eps_source1*eye(length(x)))*cross_source); % with noise 1 
prsource_noise2=abs((pmeas_noise2.')*inv((Asource')*Asource+ 
eps_source2*eye(length(x)))*cross_source); % with noise 2 
prsource_noise3=abs((pmeas_noise3.')*inv((Asource')*Asource+ 
eps_source3*eye(length(x)))*cross_source); % with noise 3 
 
And for the reconstructed plane, the solution of the forward problem can be 

realized as: 

Brec=p1rec+p2rec+p3rec; %matrix of Elementary Wave Functions for 
reconstructed plane 
Arec=Brec.'; 
D=conj(Brec); 
for ii=1:length(x)   
        crossrec=(D(ii).*Brec);    
end 
 
prrec=abs((Pm.')*inv((Arec')*Arec+eps_rec0*eye(length(x),length(y)))* 
crossrec); %without noise 
prrec_noise1=abs((pmeas_noise1.')*inv((Arec')*Arec+ 
eps_rec1*eye(length(x)))*crossrec); % with noise 1 
prrec_noise2=abs((pmeas_noise2.')*inv((Arec')*Arec+ 
eps_rec2*eye(length(x)))*crossrec); % with noise 2 
prrec_noise3=abs((pmeas_noise3.')*inv((Arec')*Arec+ 
eps_rec3*eye(length(x)))*crossrec); % with noise 3 
 

For the both problems the sound pressure for the noiseless simulated measured 

data and for the tree levels of the noisy data are reconstructed. For the both 

problems two methods of determination of the regularization parameter 𝜀  are 

used. The first one is an manually chosen positive number, and the second one is 

using the Morozov method. 

 

3.3 Simulation results 

The sound pressure levels of all three planes without noise are shown in the 

figures below.  
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These sound levels are simulated for reference purposes. The reconstructed sound 

fields must have some resemblance to these reference levels.  

 

Fig. 1. The sound pressure level on the source plane, without noise 

 

 

Fig. 2. The sound pressure level on the measurement plane, without noise 

 

 

Fig. 3. The sound pressure level on the reconstruction plane, without noise 



 

19 
 

 

The manually chosen parameters for the reconstruction of the both planes are: 

eps_source0=18; %regularization parameter for reconstruction without 
noise 
eps_source1=20; %regularization parameter for reconstruction with noise1 
eps_source2=35; %regularization parameter for reconstruction with noise2 
eps_source3=40; %regularization parameter for reconstruction with noise3 
eps_rec0=25; %regularization parameter for reconstruction without noise 
eps_rec1=25; %regularization parameter for reconstruction with noise 1 
eps_rec2=29; %regularization parameter for reconstruction with noise 2 
eps_rec3=28; %regularization parameter for reconstruction with noise 3 
 

The sound levels for these values of the regularization parameter are:  

 

Fig. 4. The sound pressure level on the source plane, reconstructed using the SONAH 

general equation with manually chosen regularization parameter 

 

 

Fig. 5. The sound pressure level on the source plane with noise 1, reconstructed using 

the SONAH general equation with manually chosen regularization parameter 
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Fig. 6. The sound pressure level on the source plane with noise 2, reconstruction using 

the SONAH general equation with manually chosen regularization parameter 

 

 

Fig. 7. The sound pressure level on the source plane with noise 3, reconstructed using 

the SONAH general equation with manually chosen regularization parameter 

 

 

Fig. 8. The sound pressure level on the reconstruction plane, reconstructed using the 

SONAH general equation with manually chosen regularization parameter 
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Fig. 9. The sound pressure level on the reconstruction plane with noise1, reconstructed 

using the SONAH general equation with manually chosen regularization parameter 

 

 

Fig. 10. The sound pressure level on the reconstruction plane with noise2, reconstructed 

using the SONAH general equation with manually chosen regularization parameter 

 

 

Fig. 11. The sound pressure level on the reconstruction plane with noise3, reconstructed 

using the SONAH general equation with manually chosen regularization parameter 
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As we can see, to estimate regularization parameter manually is not so trivial task.  

To properly chose the regularization parameter manually needed time and 

patience. But in this case, we can try and determine regularization parameter only 

because it is a simulation and we have the reference sound levels, that we can 

refer to understand if the way we are changing the regularization parameter is 

right. In real-world cases we usually don’t have these references. 

The other option how to determine the regularization parameter is to use 

Morozov discrepancy principle. 

The Morozov algorithm in this simulation is solved this way: 
s=1000000; %service variable 
sigma1=sqrt(length(x)*length(y))*s1; 
Hs=ones(length(x),length(y))*(j*w*p0);%spatial transfer function, made into 
matrix 
for ii=0:100 
    eps=ii; 
    ra=(inv(eps*eye(length(x))+(Hs')*Hs))*(Hs'); 
    P=Hs*ra*Pm; %wanted pressure matrix P from measured pressure 
matrix Pm 
    n=norm(P-Pm)-sigma1; 
    if (n<s) 
        s=n; 
        eps_reg_meas0=ii; 
    end 
end 
 
This algorithm is for noiseless data. For noisy data algorithm is the same, with 

one difference: matrix Pm is changed for pmeas_noise1, pmeas_noise2 or 

pmeas_noise3.  

The results are the following: 

 

Fig. 12. The sound pressure level on the source plane, reconstructed using the SONAH 

general equation with Morozov method regularization parameter 
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Fig. 13. The sound pressure level on the source plane with noise 1, reconstructed using 

the SONAH general equation with Morozov method regularization parameter 

 

 

Fig. 14. The sound pressure level on the source plane with noise 2, reconstructed using 

the SONAH general equation with Morozov method regularization parameter 

 

 

Fig. 15. The sound pressure level on the source plane with noise 3, reconstructed using 

the SONAH general equation with Morozov method regularization parameter 



 

24 
 

 

Fig. 16. The sound pressure level on the reconstruction plane, reconstructed using the 

SONAH general equation with Morozov method regularization parameter 

 

 

Fig. 17. The sound pressure level on the reconstruction plane with noise1, reconstructed 

using the SONAH general equation with Morozov method regularization parameter 

 

 

Fig. 18. The sound pressure level on the reconstruction plane with noise2, reconstructed 

using the SONAH general equation with Morozov method regularization parameter 
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Fig. 19. The sound pressure level on the reconstruction plane with noise3, reconstructed 

using the SONAH general equation with Morozov method regularization parameter 

 

The regularization parameter in these cases was 30, for all eight reconstructions. 

As we can see, the results of both regularization technics are almost the same, but 

for Morozov algorithm we weren’t using the verifying images.  
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4. Conclusion 

In this bachelor thesis were briefly reviewed main three methods of the NAH: the 

Fourier-based Near-field acoustic holography method (also referred as a general 

NAH), Statistically Optimized Near-field Acoustic Holography (SONAH) and 

Helmholtz Equation Least-Square method (HELS).  

The SONAH method with Tikhonov regularization was simulated in this thesis with 

results presented in figures in previous part. Studying resulting images, we can 

conclude, that with increasing noise variance and power, the quality of the 

obtained hologram decreases. Acoustic holography methods are designed for 

getting out of the noisy data the results as free of noise influence as possible. 

For the determination of the regularization parameter two methods were used: 

manually chosen value and Morozov method. Even thought in the end images for 

the same initial conditions looks almost the same, the amount of time, need for 

these results, is different. The Morozov method, if programmed right, takes far 

less time for returning the satisfying result, while with manually chosen value of 

the regularization parameter there is a need to restart algorithm several times to 

finally find the satisfying image. 

The next steep, in continuation of this thesis, could be the simulation of the next 

acoustic holography methods and regularization technics, or comparison the 

results of the simulations to the results of the real measurement. 

The Near-field Acoustic Holography is a rapidly progressing field of the acoustic 

measurement. The methods of Near-field Acoustic Holography are constantly 

developing and so are the regularization technics. The main field of application of 

the acoustic holography methods is a localization of the sources of the vibration. 
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