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Abstract

This bachelor thesis focuses on study of near-field acoustic holography methods
and appropriate regularization technics, with following simulation of SONAH
method in MATLAB. In this thesis, Tikhonov regularization is technics studied. Two
ways of determination of the regularization parameter were compared: manually
chosen value of the parameter and Morozov method.

Abstract

Tato bakalarska prace se zabyva rozborem metod akustické holografie v blizkém
poli a vhodnych regularizaénich technik s naslednou simulaci metody
SONAH v prostrfedi MATLAB. V této praci je rozebrana Tichonovova regularizaéni
metoda. Jsou porovnavané dvé metody uréeni regularizaéniho parametru: ru¢né
zvolena hodnota a Morozovova metoda.
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1. Introduction

Measurement of vibration and noise levels are one of the basic measurements of
nonelectrical quantities. Classical method of measuring vibration using
accelerometer possesses several faults. Difficulties with placement and fixation of
the sensors to the source of vibration is one of them. Weight of the sensors
influence the original behavior of measured objects in case of light thin plates
[3],[6]. Therefore, new methods were needed.

Near-field Acoustic Holography (NAH) is a contactless method of reconstruction
vibration (noise) source’s quantities by measuring acoustic field in proximity to the
source. This method appeared in 1980 and is based on theory of acoustic
holography, which started to develop in mid 1960s [9]. Acoustic holography can
be used for localization, identification and prediction of noise sources [7]. Due to
taking into consideration evanescent waves, a reconstruction image with high
resolution can be obtained by using NAH. One of the practical restrictions of NAH
is a requirement of significant number of microphones for measurement for
desired level of resolution.

The thesis are focused on study of near-field acoustic holography methods and
appropriate regularization technics. Study is based on simulation of SONAH
(Statistically optimized NAH) method in MATLAB. In this thesis, Tikhonov
regularization is technics studied. Two ways of determination of the regularization
parameter were compared: manually chosen value of the parameter and Morozov

method.



2. Theoretical part

In this chapter a brief review of essential acoustic equations needed for Nearfield

Acoustic Holography methods are presented.

2.2 Basic acoustic equations

One of the most important equations in acoustics is a acoustic wave equation. For
a homogeneous fluid with no viscosity it defined as
vp- L9P (1
c% ot
where p(x,y,z,t) is an acoustic pressure function, that satisfies Eq. (1), c is a
constant and refers to the speed of sound in the medium (at 20°C ¢ = 343 m/s in
air and 1481 m/s in water).
In the frequency domain acoustic wave equation is defined as
Vip + k?p =0, (2)
also known as Helmholtz equation, where k = w/c is the acoustic wave number
and the frequency is 2nf = w.
In Cartesian coordinates Laplacian operator is defined as
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Equation, that defines relation between acoustic pressure and acoustic velocity, is
Euler’s equation

v o
- _ (3)
Po T Vp,

where ¥ = Ul + vJ + Wk represents the velocity vector, where 1,V and w are
components of velocity vector.

In the frequency domain Eq. (2) becomes
iwp,¥ = Vp. (4)
Gradient V in Cartesian coordinates is defined as
G 27405, 07%
V=it ay/ +5.k

R
where 7, J, k are unit vectors in x, y and z directions respectively.



Next let us introduce sound intensity. In time domain sound intensity is defined as
I(t) = p(t) ¥ (t). (5)
Problematic places are determined by large levels of sound intensity.
Sound energy density in steady state in source-free region is [9]
V- I(w) =0, (6)

where

T

S 1 R
i) =7 [ 3 O )
T 0
or using complex variable notation

[(w) = %Re(p(w) 7 (w)"). (8)
T =1/f, f is a excitation frequency.
Eg. (6) means that in source-free region the divergence of the time average
acoustic intensity must be 0. The divergence could be not 0 only when there are

energy loses in medium or if there is a source in the referred area.

2.3 Plane waves

The general equation describing plane wave in the frequency domain is [9]

p(w) = A(w)ellax+kyytizz) (9)
where A(w) is an arbitrary constant, and
k? = kZ + k; + kZ. (10)
The general plane wave in time domain at the frequency w, is described by
equation [9]
p(t) = Aeilkax+kyy+izz—wot) (11)
where A is an arbitrary constant and k = w,/c.
A plane wave can be represented using condensed notation [9]:
pilkxxtkyy+ksz) — ei(Tc-f)' (12)
where 7 represent the position vector to the observation point in the sound field,

and k gives the direction of the wave [9].
The particle velocity of plane wave in the frequency domain, given by Eq. (4) and

Eqg. (9), is defined as



. 1 . . >
v(w) = fope (kxl + kyJ + k k)p(w). (13)

Since k is a constant and k,, k,,, k, are not independent of one another, usually

k, is chosen as dependent variable, with k, and k,, as independent ones, so

kZ=k*— kZ— k2,

k, = i\/kz —k2- k2. (14)

When k, or k,, > k, plane wave turns into evanescent wave. Then Eq. (14)

becomes

k, = ii\/kz — kZ— k2 =+ik], (15)

where k is real, and the plane wave, turned evanescent, has the form [9]
p = Ae—kzzilkxx+kyy) (16)
This is a form of an evanescent plane wave decaying in z direction.

From Eq. (4) the particle velocity of evanescent plane wave is

R 1 R R >
v(w) = m(kxl + ky] + kk)p(w). (17)

2.4 Nearfield acoustic holography

2.4.1 Fourier based NAH

The oldest method of NAH, based on measurement across a surface in separable
coordinate system, allowing calculation to be performed by spatial discrete
Fourier transform (DFT) or fast Fourier transform (FFT) [2].
The pressure in source-free region can be described completely by sum of plane
and evanescent waves [9].

p(x,y,7) = Z z P(ky, k) elkxx+eyytias) (1)

kx Ky

where k, and k,, are independent variables, k, depends on them. P(ky, k, ) is
multiplying coefficient, depending on two wavenumbers.

For a general problem [9]



1 °° @ .
p(x, v, Z) = W dkx f dkyp(kx, ky) el(kxx+kyy+kzz) (19)

If z = 0 Eq. (19) becomes
1 @ © .
POY.0) =gz | dbe | kPl y) e, (20
and represent a pressure in the infinite plane at z = 0.
Comparing Eq. (19) to a definition of inverse Fourier transform, is clear that the

complex amplitude P (ky, k) can be defined as

P(ky ky) = f dx f dy p(x,y, 0) e 1t *ky?), (21)

P(ky, ky) is called the angular spectrum [9].
After determination of the angular spectrum, we can determinate the pressure
field in 3D space using Eq. (19).
The general expression to extrapolate the angular spectrum in the plane z’ to the
plane z is [9]

P(ky, ky, z) = P(ky ky, z")ekzZ=2) (22)
with the assumption, that

P(ky, ky) = P(ky, ky,0). (23)
Using Eq. (4) we can calculate three angular spectrum components of the velocity
vector

U(ley, by, 2)T + V (b, ey, 2)] + W (ky, ko, 2)K
(24)

- (ke + kyJ + kK P (Ko, Ky, 2),

where W(kx, ky,z) is a two-dimensional Fourier transform of a velocity vector’s
component w(x, y, z)

W (ky, ky, z) = FFy[W(x,y,2)] . (25)
Analogically with U(kx, ky,z) and V(kx, ky,z).
Using Eq. (24) and Eqg. (22) we can relate the velocity to the pressure in a different
plane [9]

U(key, ey, 2)T + V (ky, ey, 2)] + W (ky, ko, 2)
(26)

1 > 5 S o
= pOCk (kxl + ky] + kzk)P(kx’ky,Z )elkz(z z )

Then the normal component of velocity is

7



W (ky, ky,z) = —=P(ky, ky, z")e*z(z2"), (27)

PoC k
Eq. (27) relates the angular spectrum components of normal velocity in one plane
to the components of pressure in a different plane [9].

The Rayleigh’s second integral relates the spatial pressure in one plane to the

spatial pressure in another plane, with z > z', [9]

1k|r 71|
p(x,y,z) = f f p(x',y',z" _l| ldxdy, (28)

where 7 = (x,v,2), 7 = (x',y',z"), and
7 =71 ==X+ =)+ (2= 2

The Rayleigh’s first integral relates the spatial pressure in one plane to the normal

component of the velocity in another plane, with z > 7/,

ipgck
p(x,y,Z)=—p° f f w(x',y', 7z

Both Rayleigh’s integrals provide means to compute the radiation into half space

1k|r 71

dx'dy’. (29)

—)[l

z = z' using the information of the pressure on a surface z = z', Eq. (28), or the
normal velocity on a plane z = Z/, Eq. (29) and provide solution only for a forward
problem. In other words, they can only provide the pressure radiated from the
sources [9]. For inverse problems solution is provided by NAH.
The mathematics behind NAH is summarized in the single statement [9]

WXy, 2) = F B B (Y, 2)1G (ks Ky, 2 — 7)) (30)
where z = z; is a surface of the vibration source, z = z;, is a measurement plane,
and z; <

G is called the velocity propagator and is defined as

G(ky, ky,z —zp) = elkz(z=zn) (31)

pock
Using the convolution theorem, Eq. (30) can be rewritten as [9]

W(x,y,25) = p(x,Y,2n) *x g5 ' (X, ¥, 25 — Zn), (32)
where symbol ** represent a two-dimensional convolution, and g;1(x,y, z; —
zp) is the inverse velocity propagator defined as [9]

ggl(x» Vi Zs — Zp) = Tx_lT_l[G(kx' ky' Zg — Zp)]

(33)
— f]: 17: [ 1kz(z—zh)]

pock



Because NAH solves the inverse problem, the mathematical solution must be
unique and stable. And therefore Eq. (30) must be approached with caution.

DFT and FFT are needed for discretization of the holography equation, for any
practical measurement.

The final holography equation would be [9]

To(y,2) = D ol =Ly —Lyz) = FIFGL  (34)
p,q=—

where pp is a sampled version of the measured pressure p over the measured
aperture and is zero outside of it and must be dense enough to avoid aliasing [9],
L, and L,, are dimensions of the aperture.

The inverse propagator operates on an infinite plane of replicated measurements,
not just an actual one. The replicated measurements outside the actual one are
reconstructed in the same way as the actual measurement aperture by
convolution with the inverse propagator, but this measurements contribute less
to the velocity in the reconstructed aperture because they are further from it.
Since the left side of Eq. (34) is periodic, the reconstructed sources also form an
infinite grid of replicated apertures, called replicated sources [9].

The simplest way to reduce the errors due to replicated measurements is to add
zeros outside the actual measurement, to at least double the size of the measured
aperture. The improvement is obtained through the increased distance between
the replicated pressure measurement and the corresponding reduction in their
influence in the reconstruction over the real source[9].

The use of DFT allows NAH to proceed data very fast but appears a side-effect in
form of a spatial windowing effect, unless the measurement fully covers the area
with high sound pressure. In some cases this requirement cannot be fulfilled, and

in many cases the necessary size becomes prohibitively large [2].

2.4.2 Statistically optimized NAH (SONAH)

SONAH was developed to overcome limitations of Fourier based NAH [2].
Prediction of particle velocity and acoustic pressure directly in time domain allows

to avoid using Fourier transform [1].



SOHAN use a local model of the sound field in terms of elementary wave functions
and perform fit of the elementary wave model (EWM) to the measured sound field
data [2].
The matrix SONAH formulation is

Ba = p, (35)
where

(W1(r) Wa(ry) - Wy
B={L|Jn(ri)}={¢1(:r2) Y2 (rz) . ‘IJNSTZ)}' (36)

W) W) )
B is a matrix of values of wavefunctions s at the measurements positions r;, i=1,

2, ..., 1, in a source-free area.

p(ry)
p =Gy ={PU} (37)
p(r;)
is a vector of measured pressures.
a;
az
a= {an} = Lo (38)
an

is a vector of the complex expansion coefficients.
Because of the ill-posed nature of the inverse problem, regularization is needed.
General SONAH formulation of estimated sound pressure p(r), including
regularization[2]:
pr) =d" a(r) = p"[(BBY + eD)7'|"B*a(r) =
=pT[(BB! + eD)T]"'B*a(r) = (39)
= pT[ARA + eI] A" a(r) = pTc(r).

Where A = BT, and @ is a coefficient vector estimated from the measurement.
I is a unit diagonal matrix of appropriate dimensions, € is a regularization
parameter.
Symbols T representing transpose of a matrix or a vector, symbol H represents

Hermitian transpose and symbol * represents complex conjugate.

10



Matrix A”A can be perceived as matrix of cross correlations between the
measurement points in the domain of the elementary wave functions and can be

defined as [2]
(4745 = ) YU ). (40)

Vector A a(r) then contains the cross correlations between the measurement

points and the estimation position and can be defined as [2]

[A"a(r)]; = Xn Un () Wn(r). (41)
Then the estimated particle velocity in a y direction is [2]
1 0p(r)
7 = — 42
B (1) =~ (42

Here w is the angular frequency, p, is the density of the medium.

2.4.3 Helmholtz equation least-squares method (HELS)

When using HELS method, the reconstruction of the acoustic field is done by
directly solved the Helmholtz equation, Eq. (2). The acoustic pressure is expanded
in terms of a set of independent functions y*, that are generated by the Gram-
Schmidt orthonormalization with respect to the solution of the Helmholtz
equation on the actual vibrating plane [8]. The coefficients of these functions are
determined by requiring form of the solution to satisfy the boundary conditions of
the measurement [8].

The solution of the Helmholtz equations, with respect to boundary conditions, can

be approximated by a linear combination of the functions *

N
p*=pc Z Copi (43)
i=1

Where p is the density of the medium, c is the speed of sound in the medium, C;
are the coefficients.

After determination of C;, the acoustic pressure can be approximated anywhere
using Eq. (43) [8].

Suppose that an N -term expansion used in Eq. (43) and M measurements is taken

(N < M), than

11
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| 1.031 1.032 . 1/};1\/ | g1 P(:)z

| lP31k1v 1/):3N . ¢§N l} CZ - i P(?N t (44)
: : 0 : N :
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If the measured quantities p, are exact, then the approximated solution p*
converges to the true value as N — oo [8].

The coefficients C; can be solved [8]

1
C=—THp,, 45
e Po (45)

where T is a transformation matrix, and T# is pseudoinverse transformation
matrix and define as [8]
TH = ([Ymn]" [Wmn]) ™ [mn]” (46)

where [;,,] represent a matrix of the same form as a matrix of " in Eq. (44).

2.5 Regularization

Due to existence of the evanescent waves in near-field, that decay at various rates,
the inverse problems are usually ill-posed. Regularization provides a technics to

overcome the ill-posedness [10].

2.5.1 Tikhonov regularization

Tikhonov regularization is one of the most used regularization technics.
In the Tikhonov regularization method we have to minimize, with respect to w for
a fixed parameter a, the general Tikhonov function J, given by [10]

Ja W) = |[HWwS — p0||” + a|[Lw?|)%, (47)
where ||. || represent the L2 norm, usually L =1, where I is a unit diagonal matrix
of needed size, p5 is the pressure data with noise, H is a spatial transfer function
with the dimension M X M, which directly relates the pressure vector to the
velocity vector. The a||Lv'|/5||2 is so called penalty term, in this case it prevents the
amplitude of the reconstructed normal velocity from growing without a limit
during the minimalization [10].

The solution, w®%, for the minimalization of Eq. (47), is given by[10]:

12



Wwo = Ww*® = R,pf, (48)
Where R, is a regularized inverse of H,
R, = (al”L + H'H)"1H” = (al + H'H)"H", for a > 0. (49)
For determination of parameter a could be used several methods.
First, for the sake of mentioning, coefficient & can be chosen manually. The
disadvantage of this method is, that the form of the reconstructed sound field is
very sensitive to &, and could differ dramatically with different values of a.
Next one, the Morozov discrepancy principle. This is a simple method for finding
the regularization parameter when is known the variance of the noise 2.
The Morozov discrepancy principle states that the solution for Eq. (47) must satisfy
the equation [10]:
[Hwed — p8||* = 5, § = VMo. (50)
or
p®% = Hw®® = HRp®. (51)
We vary the a, and thus R, in Eq. (49), until the predicted pressure differs from

the measured pressure by just the noise [10].

2.5.2 Landweber iteration

Using this technic, we have [10]
w = (I — BHH)W + SHp, (52)
where [ is a positive number to be determined.
The iteration procedure is set up by using the right side to compute the left side
starting with the first iteration of w°® = 0 [10]. Than
wm = (I — BHAH)W™ 1 + pHp, m=1,2,.. (53)

For convergence, 8 must be chosen less than 1/, |?

13



3. Practical part

In this part of the thesis the simulation of the SONAH method is described and
discussed and two methods of determination of the regularization parameter are

compared.

3.2 Simulation description

The simulations were realized in MATLAB, therefore the description of the
simulation steps is presented in the form of MATLAB code. The first step in trying
to recreate sound field in forward and inverse directions is to define the source(s)
of sound.

In this simulation the tree sources on different coordinates were chosen:

%%source's positions
% source 1

x1=0.4,

y1=0.2;

%source 2
x2=0.8;
y2=0.55;

%source 3
x3=0.5;
y3=0.65;

For the source the same characteristics were used:

f=1000; %Hz frequency
Al=1; Y%amplitude

w=2*pi*f; % angular speed
lambda=c/f; %m wave length
kO=w/c; %wave number

Than the basic properties of the surrounding medium were defined:

c=343; %m/s speed of sound in air
pref=2*10"-5; %Pa
p0=1.275; %kg/m3 air density

14



Finally the aperture size with the coordinates of the measured points was set:

Yoaperture
x=linspace(1,0,40);
y=linspace(1,0,40);

If it was the actual measurement, then in these points the microphones for the
sound pressure measurements would be placed.

Then for each source we determine the matrix of the distances from the source to
the measured point:

%distance matrix, source plane
for m=1:length(y)
for n=1:length(x)
rlsource(m,n)=sqrt((x(n)-x1)"2+(y(m)-y1)"2);
r2source(m,n)=sqrt((x(n)-x2)"2+(y(m)-y2)"2);
r3source(m,n)=sqrt((x(n)-x3)"2+(y(m)-y3)"2);
end
end

The same principle for the distance matrix for the measurement plane and the
reconstruction plane is used, with respect to the z coordinate. For the
measurement plane it is /3 and for the reconstruction plane it is 21/3.

The measurement plane is the plane where the actual measurement have been
held. So simulated data on the measurement plane would be referred as the actual
measurement data. The reconstruction plane is the plane, where the forward
problem have been reconstructed, meaning radiation from the source to given
distance. And the source plane is the plane where the sound sources have been
located. In following text, these planes would be referred as measurement plane,
reconstruction plane and source plane respectively.

For the evaluation and comparison purposes we determine the “true” sound
pressure on all three planes.

%sount pressure on measured plane
plmeas=(Al.*exp(-j*k0.*rlmeas))./rlmeas; %pressure from source 1
p2meas=(Al.*exp(-j*k0.*r2meas))./r2meas; %preassure from source 2
p3meas=(Al.*exp(-j*k0.*r3meas))./r3meas; %pressure from source 3
Pm=plmeas+p2meas+p3meas; %total pressure from all three sourcec
pmeas=abs(plmeas+p2meas+p3meas); %total abs pressure without
noise, abs

Lmeas=20*log10((pmeas)/pref); %pressure level without noise

15



Similar calculations were done on other two planes.

Then we add a tree levels of white gaussian noise with selected variance and
mean=0 to the measured pressure. First noise with the variance of the minimum
value from all measured pressures, second noise with variance of the 10 times of
this minimum value, and third noise with variance of the 20 times of this minimum
value.

%noise definition

pmin=min(min(pmeas)); %determination of minimal pressure value
sl=pmin*1; %sqrt noise variance level 1

s2=pmin*10; %sqrt noise variance level 2

s3=pmin*20; %sqrt noise variance level 3

Consequently, the simulated pressure with the noise calculate:

pmeas_noisel=Pm + s1*randn(size(Pm)); %prassure on measured plane
with noisel

Lmeas_noisel=20*log10(abs(pmeas_noisel)/pref); %pressure level on
measured plane with noisel

pmeas_noise2=Pm + s2*randn(size(Pm)); %prassure on measured plane
with noise2

Lmeas_noise2=20*log10(abs(pmeas_noise2)/pref); %pressure level on
measured plane with noise2

pmeas_noise3=Pm + s3*randn(size(Pm)); %prassure on measured plane
with noise3

Lmeas_noise3=20*log10(abs(pmeas_noise3)/pref); %pressure level on
measured plane with noise3

Similar calculations are done on the other two planes.

These calculated sound pressure levels on the source plane and the reconstruction
plane are used as the reference.

Now we will reconstruct the sound pressure on two planes, the source plane and
the reconstruction plane, using simulated data only from the measurement plane,
with the exception of the matrix B, that is a matrix of elementary wave function
values, that in this simulation can be substituted by the matrixes of the sound
pressure functions without noise.

We will use the same measured data for both problems.

For the pressure on the source plane, the solution of the inverse problem is:

Bsource=(plsource+p2source+p3source); Yomatrix of Elementary Wave
Functions for source plane

Asource=Bsource.’;

C=conj(Bsource);
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for ii=1:length(x)
cross_source=(C(ii).*Bsource);
end

prsource=abs((Pm.")*inv((Asource")*Asource+eps_source0*eye(length(x))*
cross_source); % without noise
prsource_noisel=abs((pmeas_noisel.")*inv((Asource’)*Asource+
eps_sourcel*eye(length(x)))*cross_source); % with noise 1
prsource_noise2=abs((pmeas_noise2.")*inv((Asource’)*Asource+
eps_source2*eye(length(x)))*cross_source); % with noise 2
prsource_noise3=abs((pmeas_noise3.")*inv((Asource')*Asource+
eps_source3*eye(length(x)))*cross_source); % with noise 3

And for the reconstructed plane, the solution of the forward problem can be
realized as:

Brec=plrec+p2rec+p3rec; Yomatrix of Elementary Wave Functions for
reconstructed plane
Arec=Brec.’;
D=conj(Brec);
for ii=1:length(x)
crossrec=(D(ii).*Brec);
end

prrec=abs((Pm.")*inv((Arec')*Arec+eps_recO*eye(length(x),length(y)))*
crossrec); %without noise
prrec_noisel=abs((pmeas_noisel.)*inv((Arec')*Arec+
eps_recl*eye(length(x)))*crossrec); % with noise 1
prrec_noise2=abs((pmeas_noise2.")*inv((Arec')*Arec+
eps_rec2*eye(length(x)))*crossrec); % with noise 2
prrec_noise3=abs((pmeas_noise3.")*inv((Arec')*Arec+
eps_rec3*eye(length(x)))*crossrec); % with noise 3

For the both problems the sound pressure for the noiseless simulated measured
data and for the tree levels of the noisy data are reconstructed. For the both
problems two methods of determination of the regularization parameter ¢ are
used. The first one is an manually chosen positive number, and the second one is

using the Morozov method.

3.3 Simulation results

The sound pressure levels of all three planes without noise are shown in the

figures below.
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These sound levels are simulated for reference purposes. The reconstructed sound

fields must have some resemblance to these reference levels.
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Fig. 1. The sound pressure level on the source plane, without noise
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Fig. 2. The sound pressure level on the measurement plane, without noise
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Fig. 3. The sound pressure level on the reconstruction plane, without noise
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The manually chosen parameters for the reconstruction of the both planes are:

eps_source0=18; %regularization parameter for reconstruction without
noise

eps_sourcel=20; %regularization parameter for reconstruction with noisel
eps_source2=35; %regularization parameter for reconstruction with noise2
eps_source3=40; %regularization parameter for reconstruction with noise3
eps_rec0=25; %regularization parameter for reconstruction without noise
eps_recl=25; %regularization parameter for reconstruction with noise 1
eps_rec2=29; %regularization parameter for reconstruction with noise 2
eps_rec3=28; %regularization parameter for reconstruction with noise 3

The sound levels for these values of the regularization parameter are:
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Fig. 4. The sound pressure level on the source plane, reconstructed using the SONAH
general equation with manually chosen regularization parameter
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Fig. 5. The sound pressure level on the source plane with noise 1, reconstructed using
the SONAH general equation with manually chosen regularization parameter
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Fig. 6. The sound pressure level on the source plane with noise 2, reconstruction using
the SONAH general equation with manually chosen regularization parameter
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Fig. 7. The sound pressure level on the source plane with noise 3, reconstructed using
the SONAH general equation with manually chosen regularization parameter
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Fig. 8. The sound pressure level on the reconstruction plane, reconstructed using the
SONAH general equation with manually chosen regularization parameter
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Fig. 9. The sound pressure level on the reconstruction plane with noisel, reconstructed
using the SONAH general equation with manually chosen regularization parameter

1 - e .
0.9 115
0.8 110
105
0.7
100
0.6
95
0.5
90
0.4 85
03 80
0.2 75
0.1 70
0 65
0 0.2 0.4 0.6 0.8 1

x[m]

y [m]

Fig. 10. The sound pressure level on the reconstruction plane with noise2, reconstructed
using the SONAH general equation with manually chosen regularization parameter
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Fig. 11. The sound pressure level on the reconstruction plane with noise3, reconstructed
using the SONAH general equation with manually chosen regularization parameter
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As we can see, to estimate regularization parameter manually is not so trivial task.
To properly chose the regularization parameter manually needed time and
patience. But in this case, we can try and determine regularization parameter only
because it is a simulation and we have the reference sound levels, that we can
refer to understand if the way we are changing the regularization parameter is
right. In real-world cases we usually don’t have these references.

The other option how to determine the regularization parameter is to use
Morozov discrepancy principle.

The Morozov algorithm in this simulation is solved this way:
s=1000000; %service variable
sigmal=sqrt(length(x)*length(y))*s1,;
Hs=ones(length(x),length(y))*(j*w*p0);%spatial transfer function, made into
matrix
for ii=0:100
eps=ii;
ra=(inv(eps*eye(length(x))+(Hs")*Hs))*(Hs");
P=Hs*ra*Pm; %wanted pressure matrix P from measured pressure
matrix Pm
n=norm(P-Pm)-sigmal;
if (n<s)
s=n;
eps_reg_measO=ii;
end
end

This algorithm is for noiseless data. For noisy data algorithm is the same, with
one difference: matrix Pm is changed for pmeas_noisel, pmeas_noise2 or
pmeas_nhoise3.

The results are the following:
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Fig. 12. The sound pressure level on the source plane, reconstructed using the SONAH
general equation with Morozov method regularization parameter
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Fig. 13. The sound pressure level on the source plane with noise 1, reconstructed using
the SONAH general equation with Morozov method regularization parameter
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Fig. 14. The sound pressure level on the source plane with noise 2, reconstructed using
the SONAH general equation with Morozov method regularization parameter
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Fig. 15. The sound pressure level on the source plane with noise 3, reconstructed using
the SONAH general equation with Morozov method regularization parameter
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Fig. 16. The sound pressure level on the reconstruction plane, reconstructed using the
SONAH general equation with Morozov method regularization parameter
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Fig. 17. The sound pressure level on the reconstruction plane with noisel, reconstructed
using the SONAH general equation with Morozov method regularization parameter
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Fig. 18. The sound pressure level on the reconstruction plane with noise2, reconstructed
using the SONAH general equation with Morozov method regularization parameter
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Fig. 19. The sound pressure level on the reconstruction plane with noise3, reconstructed
using the SONAH general equation with Morozov method regularization parameter

The regularization parameter in these cases was 30, for all eight reconstructions.

As we can see, the results of both regularization technics are almost the same, but

for Morozov algorithm we weren’t using the verifying images.
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4. Conclusion

In this bachelor thesis were briefly reviewed main three methods of the NAH: the
Fourier-based Near-field acoustic holography method (also referred as a general
NAH), Statistically Optimized Near-field Acoustic Holography (SONAH) and
Helmholtz Equation Least-Square method (HELS).

The SONAH method with Tikhonov regularization was simulated in this thesis with
results presented in figures in previous part. Studying resulting images, we can
conclude, that with increasing noise variance and power, the quality of the
obtained hologram decreases. Acoustic holography methods are designed for
getting out of the noisy data the results as free of noise influence as possible.

For the determination of the regularization parameter two methods were used:
manually chosen value and Morozov method. Even thought in the end images for
the same initial conditions looks almost the same, the amount of time, need for
these results, is different. The Morozov method, if programmed right, takes far
less time for returning the satisfying result, while with manually chosen value of
the regularization parameter there is a need to restart algorithm several times to
finally find the satisfying image.

The next steep, in continuation of this thesis, could be the simulation of the next
acoustic holography methods and regularization technics, or comparison the
results of the simulations to the results of the real measurement.

The Near-field Acoustic Holography is a rapidly progressing field of the acoustic
measurement. The methods of Near-field Acoustic Holography are constantly
developing and so are the regularization technics. The main field of application of

the acoustic holography methods is a localization of the sources of the vibration.

26



5. Bibliography

[1] Jaud, V.: Particle Velocity-based Statistically Optimised Nearfield Acoustic
Holography. Master Thesis. Acoustic Technology, Danish Technical
University, 2006.

[2] Hald, J.: Basic theory and properties of statistically optimized near-field
acoustical holography. The Journal of the Acoustical Society of America
125(4), 2105- 2120, 2009.

[3] Havranek, Z.: Using Acoustic Holography for Vibration Analysis. Doctoral
Thesis. Department of control and instrumentation, Brno University of
Technology, 2009.

[4] Koutny, A.: Sound Source Localization in Enclosures, Doctoral Thesis,
Department Physics, Faculty of Electrical Engineering, Czech Technical
University in Prague, 2017.

[5] Koutny, A., Svec, P.: Porovnani regularizaénich metod v akustické holografii
a volba optimalnich parametr(. 80.akusticky seminar, Ceské Vysoké Uéeni
Technické v Praze, Ceska akustickd spoleénost, 4-6 May, 2010.

[6] Mokhtari, M., Lopez Arteaga, |., Aangenent, W. H. T. M.: Vibration
detection using Fourier acoustics. Department of Mechanical Engineering,
Eindhoven University of Technology. D&C; Vol. 2011.007, 2011.

[7] Qian, Q., Hang, C., Biao, Z., Jinxiang, D., Hu Y.: Sound Field Holographic
Reconstruction System Based on Nearfield Acoustic Holography. IEEE
International Conference on Signal Processing, Communications and
Computing (ICSPCC), 5-8 August 2016.

[8] Wang, Z., Wu, S.F.: Helmholtz equation—least-squares method for
reconstructing the acoustic pressure field. The Journal of the Acoustical
Society of America, 102(4), 2020-2032, 1997.

[9] Williams, E. G.: Fourier Acoustics, Sound Radiation and Nearfield Acoustical
Holography, Academic Press, 1999.

[10] Williams, E.G.: Regularization methods for near-field acoustical
holography. The Journal of the Acoustical Society of America ,110(4), 1976-
1988, 2001.

27



