Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Creating Realistic Environment using Photogrammetry

Bachelor Thesis

Daniel Hanak

Field of study: Computer Games and Graphics

Supervisor: doc. Ing. Jiti Bittner, Ph.D.

May 2019

ii

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
PFijmeni: Hanak Jméno: Daniel Osobni Cislo: 467182

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/istav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Studijni obor: Pocitacové hry a grafika
\ J
Il. UDAJE K BAKALARSKE PRACI
~N
Nazev bakalarské prace:
Tvorba realistického prostiedi pomoci fotogrametrie
Nazev bakalafské prace anglicky:
Creating Realistic Environments using Photogrammetry
Pokyny pro vypracovani:
Zmapujte metody tvorby realistickych prostfedi pro pocitacové hry a dostupné souvisejici softwarové nastroje. Na zakladé
provedené analyzy navrhnéte postup pro vytvofeni realistického modelu pfirodniho prostfedi, konkrétné prostredi lesa.
Zameéfte se na metody vyuzivajici fotogrametrie pro ziskani detailniho geometrického modelu scény a jejich ¢asti. Pomoci
navrzené metodiky vytvorte nejméné pét riznych modeld strom(, vegetace a podlozi, které poskytnou zaklad pro naslednou
kompozici celé scény. Modely zpracujte do formy, kterda umozni jejich zobrazovani v realném ¢ase s vyuzitim normalovych
map a textur definujicich parametry PBR shaderd. Kde je to mozné pouzijte pro ziskani vyslednych model open-source
nastroje. Popiste vytvofeny fetézec véetné vSech pouzitych nastroji a analyzujte jeho silné a slabé stranky. Ze ziskanych
modell vytvofte komponovanou scénu o rozloze nejméné ¢tyr ¢tverecnich kilometrd. Diikladné otestujte zobrazovani
vytvorené scény z hlediska vizualni kvality a rychlosti zobrazovani v hernim enginu Unreal.
Seznam doporucené literatury:
[1] Snavely, Noah, Steven M. Seitz, and Richard Szeliski. 'Modeling the world from internet photo collections.' International
journal of computer vision 80.2 (2008): 189-210.
[2] Lagarde, S., and C. D. Rousiers. 'Moving frostbite to physically based rendering.' SIGGRAPH 2014 Conference,
Vancouver. 2014.
[3] McDermott, W. M. 'The Comprehensive PBR Guide by Allegorithmic, vol. 1.”
https://www.allegorithmic.com/system/files/software/download/build/PBR_Guide_Vol.1.pdf. 2015.
[4] J. L. Schonberger and J. Frahm, 'Structure-from-Motion Revisited,' 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 4104-4113.
Jméno a pracovisté vedouci(ho) bakalarské prace:
doc. Ing. Jifi Bittner, Ph.D., Katedra poditacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalaiské prace: 14.02.2019 Termin odevzdani bakalarské prace: 24.05.2019
Platnost zadani bakalarské prace: 20.09.2020
doc. Ing. Jifi Bittner, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
L podpis vedouci(ho) prace podpis dékana(ky))

CVUT-CZ-ZBP-2015.1 Strana 1z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to express my gratitude to my
supervisor Jifi Bittner, associate professor
in the Department of Computer Graph-
ics and Interaction, for his useful advice,
comments, and remarks. Furthermore,
I would like to thank my parents for all
the support, emotional and financial, they
provided me with.

Declaration

I hereby declare I have written this thesis
independently and quoted all the sources
of information used in accordance with
methodological instructions on ethical
principles for writing an academic thesis.

Prague, May 20, 2019

Abstract

When creating a realistic environment for
games, we want to achieve maximum cred-
ibility of our scene. Simultaneously we
want to render everything in real-time.
Creating realistic vegetation, trees, and
surfaces may be a rather challenging and
This thesis
gives an overview of the 3D computer

time-consuming problem.

modeling workflow with the integration
of photogrammetry.

We have implemented a workflow of
creating a realistic environment with pho-
togrammetry. For testing purposes, we
have created a coniferous forest scene, and
we have presented results of benchmark
evaluated in Unreal Engine.

Keywords: Game environment,
Photogrammetry, Unreal Engine,

Realistic forest, Computer graphics

Supervisor:

doc. Ing. Jiti Bittner, Ph.D.
DCGI, FEE, CTU in Prague
Praha 2, Karlovo namésti 13

vi

Abstrakt

P1i tvorbé realistickych prostiedi do her
chceme dosdhnout maximaélni vérohod-
nosti nasi scény a zaroven chceme, aby se
vse vykreslovalo v redlném case. Tvorba
realistickych porostii, stromi a povrchu
muze byt pomérné slozity a c¢asové na-
rocny problém. Tato prace dava ctenafi
prehled o 3D pocitacovém modelovani s
vyuzitim fotogrammetrie.

Implementovali jsme postup vytvo-
feni realistického prostfedi pomoci foto-
grammetrie. Pro testovani jsme vytvorili
scénu jehlicnatého lesa a prezentujeme
vy-sledky zatézovych testi vyhodnocené
v Unreal Engine.

Kli¢ova slova: Herni prostredi,
Fotogrammetrie, Unreal Engine,

Realisticky les, Pocitacova grafika

Preklad nazvu: Tvorba realistického

prostiedi pomoci fotogrammetrie

Contents

1 Introduction

2 Computer Graphics for Games

2.1 Game Asset Creation

2.1.1 Concept Art

2.1.2 Geometry Modeling
2.1.3 Geometry Parameterization .

2.1.4 Texturing

2.1.5 Rigging

2.1.6 Animation

2.2 Real-time Rendering Pipeline ..

2.2.1 Geometry Processing

2.2.2 Rasterization

2.2.3 Pixel Processing

2.3 Physically Based Rendering

2.3.1 Diffuse and Specular
Reflection

2.3.2 Bidirectional Reflectance
Distribution Function

2.3.3 Physically Based Materials

3 Photogrammetry for Games
3.1 Capturing Photographs
3.1.1 Research and Development

3.1.2 Capturing on Location

3.1.3 Images Processing

1l

vii

3.2 Generating Geometry

3.3 Mesh Optimization

3.4 Texture Creation

3.4.1 UV Parameterization

3.4.2 Texture Baking

4 Environment Creation in Unreal
Engine

4.1 Creating a Landscape
4.2 Creating Landscape Materials
4.3 Generating Vegetation

4.3.1 Setting Up Collisions
4.3.2 Creating Level of Detail ...
4.3.3 Procedural Foliage Spawner

4.4 Profiling and Optimization ...

4.4.1 Draw Calls

4.4.2 Shader Complexity

4.4.3 MIP Mapping

5 Results
5.1 Photogrammetry and Statistics

5.2 Performance

5.3 Visual Quality
6 Conclusions

References

A DVD Contents

Figures

1.1 Horizon: Zero Dawn environment
and vegetation

2.1 The main character from Spyro the

Dragon
2.2 A shot from first-person shooter

game DOOM...................
2.3 Diffuse and specular reflection .
3.1 Open world environment from

first-person shooter Far Cry 5 ...
3.2 Endor environment from Star

Wars: Battlefront 14
3.3 Tree stump with the color

checker
3.4 Reconstructed tree stump in

RealityCapture
3.5 Retopologized tree stump with a

wireframe topology.............
3.6 Tree stump with a checkered

texture o o L 20
3.7 Game ready tree stump with

physically based textures
4.1 Stylized environment from

Fortnite
4.2 Unreal Engine user interface . .
4.3 Material Editor..............
4.4 Dirt material with puddles
4.5 Level of detail coloration view . 2§
4.6 Beaked hazelnut leaves 30!

viii

5.1 Full HD frame chart

52FulHD FPS................
5.3 4K UHD frame chart
5.4 4K UHD FPS

5.5 A screenshot from the conifer

forest game

5.6 Forest vegetation close up.

Tables

3.1 Photogrammetry software system
requirements

5.1 Tested hardware.

33

ix

Chapter 1

Introduction

Computer graphics in games is constantly improving. Nowadays AAA!'| games already
have large realistic environments that are close to reality. Creating a realistic environ-
ment for games with maximum credibility and simultaneously rendering in real-time is
a difficult task. A common approach to make a three-dimensional (3D) model for a
game is to create a low poly mesh and a high poly mesh in modeling software, mesh
parameterization, generating texture maps from the high poly mesh (also called texture
baking) and creating textures for the low poly mesh. Creating the low poly mesh
usually starts with a simple primitive, then complexity is added until the desired form
is reached. Modeling polygonal objects is generally done by technical, environment,
and character 3D artists. This standard computer modeling workflow and tools for
games are expanding and rapidly changing.

Modern approach is algorithmic creation of game content with limited or indirect
user input (procedural generation method) [29]. The main advantage of procedural
generation methods is the removal of the need to have a human designer or artist
creating specific game content. Game content in our definition is everything, what
is contained within a game: landscapes, levels, textures, vegetation, quests, music,
weapons, characters, etc [29]. If we need to create a huge number of objects that are
similar, but also slightly different from each other, we should not make them manually.
This task can be time-consuming, on the other hand, just copy-pasting objects will
not deal with it. Having too many identical objects may be noticeable for the player.
The procedural generation method is a suitable approach for this task. When creating
a realistic environment for games, procedurally generated content such as landscapes,
treetops, music or procedural placement of objects can be very helpful. For example,
sandbox video game Minecraft from 2011 generates the whole world procedurally; every

LA triple-A video game (AAA) is generally a title developed by a large studio that offers more
content and a realistic graphical style.

1. Introduction

r-fomzoiu

ZERO QAWK

Figure 1.1: Horizon: Zero Dawn has a massive open world with realistic vegetation which
has been created by hand and procedurally [26]. (Image courtesy of Sony Interactive
Entertainment Europe. Game developed by Guerrilla.)

generated world has different environments composed of different biomes. Horizon:
Zero Dawn is another game that uses a procedural placement system that dynamically
assembles the game world with vegetation, sounds, effects, wildlife, and game-play
elements [31]. A shot from the game with a subalpine forest is shown in Figure

During the past few years, some game studios have used photogrammetry
method for creating realistic materials and objects. Ubisoft Entertainment has used
photogrammetry for recreating Montana [15] for Far Cry 5, BioWare has utilized this
method for creating advanced textures such as molten lava for their game Anthem
[11], EA Digital Illusions CE AB (DICE) has first used this method on Battlefield,
and they fully embraced the technology and workflow for Star Wars: Battlefront
[7]. Photogrammetry has started to gain popularity within the game industry and
continuously push the boundaries of creating a realistic environment for games.

In this thesis, we will cover computer graphics for games, workflow for creating
3D game assetsﬂ basics of real-time rendering pipeline, and physically based rendering.
Then we will analyze the photogrammetry method, integrate this method into the
3D asset creating workflow, and use it for creating game ready assets. Furthermore,
we will go through the implementation of the game environment in Unreal Engine.
Finally, we will deploy a simple game and test it on a set of different hardware.

2 Assets in the video game industry are elements (2D and 3D objects, textures, scripts, audio, etc.)
from which a video game can be built.

Chapter 2

Computer Graphics for Games

. 2.1 Game Asset Creation

The exact process of game asset creation varies from game to game. The whole process
is specialized in stages. Every stage involves people with different skill sets working on
each asset at various times. This section covers the 3D game asset creation process
and the fundamentals of computer graphics for games.

B 2.1.1 Concept Art

Everything that will populate our game, such as characters, environments or props
should be drawn on paper. Concept art is used to convey our ideas and settle the
visual style of our game content. The reason is to make sure that all the game assets
that we bring to life belong to the same stylization. It is developed through several
iterations with multiple variants to pick the best design we want.

B 2.1.2 Geometry Modeling

The standard 3D game asset creation process starts by modeling the object geometry
according to concept art. The fundamental building block of object geometry is a
polygon. The inside area of a polygon is called a face, the sides which bound the
face are called edges and points where two edges meet are vertices [10]. A group of
polygons that forms a model is called a polygon mesh. Typically, the polygon mesh is
created in two versions. The low poly mesh will be used in the game engine for the

3

2. Computer Graphics for Games

representation of the object’s geometry and the high poly mesh which will be used
for baking details into a parameterized low poly mesh. Let us divide object geometry
creation into three groups: standard polygon modeling (also called box modeling),
digital sculpting and procedural modeling.

Standard polygon modeling is performed in a general 3D modeling software such
as Autodesk 3D studio Max, Maya, or Foundry Modo. Artists can scale the object,
translate vertices, edges, and add more faces by cutting into geometry. Vertices can
be welded together, broken apart, and aligned. Edge functions include chamfer and
bridge. Face functions include extrude, bevel, bridge, inset, outline, etc [2]. More
complex functions such as Boolean operations allow intersection, difference, and union
of geometry; we can also edit geometry with modifiers which transform our geometry.

Creating creatures or characters with small details is difficult with box modeling
technique. Digital sculpting is preferred for achieving photorealistic results, mainly
used for high poly organic modeling and hard surface modeling. Industry standard
software for digital sculpting is Pixelogic Zbrush. Digital sculpting works like sculpting
with real clay; artists use brushes and tools that push, smooth, pinch and pull. The 3D
asset is typically created in a multi-layer process. The first layer defines a basic shape
and silhouette of our geometry. More detail is added after subdividing the geometry
in higher layers. Digital sculpting uses a lot of resources, tools, and plugins which help
to create complex structures. Everything you can imagine can be digitally sculpted
from scratch.

Node-based approach for creating geometry is called procedural modeling. Nodes
represent specific functions with inputs and outputs. Wired node network defines a
recipe for creating tweakable and unique results. Fully procedural software for game
development, motion graphics, film, and virtual reality is SideFX Houdini which is used
for procedural modeling, terrain generation, animation, rigging, physical simulations,
hair and cloth generation, etc. For example, Ubisoft Entertainment used Houdini for
automatization of the world generation in Far Cry 5 [9, 20] . Another example is
Manhattan from Marvel’s Spider-Man game which was also created with procedural
techniques [27]. More specialized software like SpeedTree is used as middleware for
generating procedural vegetation.

B 2.1.3 Geometry Parameterization

Process of projecting a 3D geometry into a 2D plane is called UV parameterization.
UV coordinates are generated for each vertex in the low poly mesh. We can match the
UV coordinates to points on a texture map; these points are called texture coordinates
[10]. Parameterization starts with a seam definition, edges selected as seams will split
polygons apart. Polygons on the 2D plane are unfolded, normalized and arranged, so

4

2.1. Game Asset Creation

they fill the available texture space as densely as possible. A checkered texture is used
to visually track any distortion which can cause problems with textures later. UV
parameterization can be done in a general 3D software or a specialized software such
as Headus UV Layout or RizomUV Virtual Spaces.

B 2.1.4 Texturing

In the game industry, we usually use the term texture to refer to a 2D static image,
applied to a mesh [I]. Textures add a variety of different types of information and
detail to our model without adding to the polygon count.

One of the most noticeable attributes of any surface is its color. Diffuse reflected
color represents a diffuse map (also called an albedo map) in RGB space [2I]. An
example of the diffuse map applied to a mesh is shown in Figure Projected details
of a high poly mesh to a low poly mesh represent a normal map in RGB space. Normal
maps are commonly used in video games to simulate surface details. Each channel of
the normal map corresponds to the z, y and z components of the surface normal [21].

Figure 2.1: The main character from Spyro the Dragon, game released in 1998. On the
left is mesh geometry with a wireframe of about 400 triangles. On the right, a mesh with
textures. (Image courtesy of Activision Publishing, Inc. Game developed by Insomniac
Games, Inc.)

Let us assume that we have battle-scarred metal armor with a layer of old paint
and dust that will not be reflective and areas where this layer has been worn away
to reveal reflective metal. The reflectance values are defined in a specular map [21].
It controls what parts of the surface are shiny or not based on the grayscale values

5

2. Computer Graphics for Games

of the map. Specular maps are commonly created from the diffuse maps [I]. The
surface inconsistency that causes light diffusion is stored in a glossiness map [21]. It
is a grayscale map, where white color represents a smooth surface, and black color
represents a rough surface. The glossiness map defines the size of the specular highlight,
and the specular map controls the intensity of the highlight on the surface. These two
maps represent old specular/glossiness texturing workflow; we cover new physically
based rendering (PBR) workflow in section |2.3|

If we want to change the height of the surface along the normal, we can use a
height map which is used to displace the actual geometry. It is a grayscale map, where
white color represents positive displace, and black color represents negative displace
along the normal. Exactly grey color (value of 128) will not affect our geometry.

Not every piece of geometry is opaque. Opacity maps (also called transparency or
alpha maps) are grayscale images used to change the transparency of textures. We can
use this map to make part of our model completely invisible or partially transparent.
Opacity map can be used on simple planes for creating leaves for plant models, fences,
windows, or for in-game effects such as explosions, smoke, and fire. The trade-off
is that transparency is commonly used on surfaces with low polygon count, but it
requires more processing power [1].

The last texture we are going to discuss is an ambient occlusion map. It defines
how much of the ambient environment lighting is accessible to a surface point [21].
This map is generally used to create a more natural and realistic look.

Textures are commonly created by texture artists. They can be hand-painted
or created from photographs in a general 2D software such as Adobe Photoshop.
Nowadays AAA games use procedurally generated textures; the industry-standard
software for creating procedural textures is Allegorithmic Substance Designer. Artists
can create materials with full control and infinite variations. Another approach for
texturing 3D assets is texturing directly in 3D; this can be done in software such as
Allegorithmic Substance Painter.

B 2.1.5 Rigging

Before animating our object, we are going to create controls, constraints, and connec-
tions for our model to simplify animation. This process is called rigging. The most
common type of deformers used to rig and manipulate geometry are joints. Geometry
can be connected to joints via parenting, constraining, and skinning. The model
with assigned joints can be deformed in many ways depending on our parameters [5].
Parenting (also called hierarchy) is a grouping of objects into parent and child nodes.
Any transformation applied to the parent node will affect the child node, but the child

6

2.1. Game Asset Creation

node is still controlled independently. Joints are created singularly or connected in
hierarchical chains; connections between two joints are commonly represented as bones.
After creating a skeleton, the mesh is attached to it. This process is called skinning [5].
For each vertex of each joint on the mesh, there is a weight parameter which defines,
how the mesh is goint to be affected. Rigging is a complex and challenging task that
needs custom tools to automate and simplify the whole rigging process.

B 2.1.6 Animation

The animation process is where our assets come to life. When we are in a game, we
are usually moving around the world, and we interact with things or other players.
All movements and interactions have specific animations. Animations are commonly
created in cycles which are used in combinations. For example, a breathing cycle will
be used with idle, walking, and climbing animation. Many animations are driven by
the real movement of animals and people. Making realistic animations by recording
the movement of objects or people is called motion capture. The capture subject has
marks that are tracked by calibrated cameras. Any performance done by the subject
is recorded and processed into actual animations that can be used in games. The
animations are done; we need to define how we want to apply them in the world.
Nowadays, games use animation systems driven by artificial intelligence (AI); for
example, developers from id Software created an advanced animation system with
full-body animations driven by Al for their game DOOM [§]. A screenshot from the
game is shown in Figure 2.2

Figure 2.2: A shot from first-person shooter game DOOM. (Image courtesy of Bethesda
Softworks® LLC. Game developed by id Software, Inc.)

2. Computer Graphics for Games

B 22 Realtime Rendering Pipeline

Let us assume that we have created our 3D environment for our game. How do game
engines render our scene to a 2D screen? A conceptual model which describes the
sequence of operations that is required to render a 3D scene to a 2D screen is called
graphics rendering pipeline. The shapes and locations of our objects from the scene in
the rendered 2D image are determined by their geometry and placement of a camera.
The visual representation of the objects is affected by light sources, materials, textures,
and shading equations. Engine core of the rendering pipeline which is used in real-
time computer graphics applications commonly uses the following stages: application,
geometry processing, rasterization, and pixel processing. [3].

B 2.2.1 Geometry Processing

The application stage defines which primitives (points, lines, and triangles) should
be rendered and sends them into the geometry processing stage. We can divide the
geometry processing stage into vertex shading, projection, clipping, and screen mapping
substage [3]. In the vertex shading substage the main task is to compute the position
for a vertex and define its ouput data such as normal and texture coordinates. The
projection substage transforms a view frustum into a unit cube. Commonly used
projections are orthographic and perspective. Optional vertex processing tasks that
can be executed are tessellation, geometry shading, and stream output [3]. Tessellation
converts sets of vertices into bigger sets of vertices that are used to create new sets
of triangles. Geometry shader converts vertices into complex structures: triangles,
squares made of triangles, etc. The last optional task stream output puts vertices to
an array for further processing instead of sending them to the rest of the pipeline.

The clipping substage defines which primitives should be sent to the rest of the
pipeline. Primitives that are entirely outside of the view frustum are not rendered
and are discarded. Primitives that are partially inside of the view frustum are clipped.
A vertex that is outside of the view frustum is replaced by a new one that is in the
intersection between the corresponding edge and the view frustum [3]. Primitives that
are fully inside of the view frustum are kept. Primitives passed from the clipping
substage into the screen mapping substage are still in 3D. Mapping substage transforms
each primitive coordinates into screen coordinates.

8

2.3. Physically Based Rendering

B 2.2.2 Rasterization

The task for the rasterization stage is to find all pixels on the screen that are inside
primitives (triangles) which are being rendered. We can split the rasterization into
two substages: triangle setup and triangle traversal [3]. One way of determining if the
triangle overlaps the pixel is a single point sampling method. All pixels have a single
sample assigned in the middle of them, and if the sample point is inside the triangle,
the corresponding pixel is assigned to the triangle. In the triangle setup substage,
there are computed data for interpolation of the various shading data, produced by
the geometry stage. They are passed to the triangle traversal substage, where are
generated fragments for each pixel assigned to the triangle [3].

B 2.2.3 Pixel Processing

Il can be done here. Per-

Any desired computation defined in a pixel shader program
pixel shading computations use the interpolated shading data as input. The output of
this stage is color value for each fragment defined in the rasterization stage [3]. One
crucial task here is defining colors based on input textures. The computed color value
is passed to a color buffer. When all colors are computed, they are displayed on the

screen.

B 23 Physically Based Rendering

Physically based materials are widespread and present in all modern game engines
such as Unreal Engine or Unity. These materials use physically based rendering (PBR)
which is a rendering and shading technique that provides an accurate representation
of how light interacts with surfaces [21]. However, what does physically based actually
mean? It derives from light-matter interaction, follows basic physical rules, e.g., energy
conservation, has representation with metrics in the real world and separates lighting
and material. Our goal with this technique is to simulate photorealism.

B 2.3.1 Diffuse and Specular Reflection

The fundamental building block of PBR is how light interacts with objects. When a
light ray hits a surface, it can be reflected off the surface, absorbed by the material
and scattered internally. Absorbed light changes into another form of energy which

!Pixel shaders are programmable blocks which compute colors for each fragment.

9

2. Computer Graphics for Games

causes intensity decreasing. Scattered light does not change its intensity, but it changes
the direction based on the material. Specularly reflected light also does not change
its intensity, but it travels in a different direction based on the surface irregularity.
Diffuse reflection happens when the light ray is refracted, scattered multiple times,
and reflected out of the object [21]. This process is illustrated in Figure

Air

Diffuse reflection

Surface

Scattering particles
e © o ©

Figure 2.3: The refracted light travels through the material and scatters from parti-
cles inside the material. Some refracted light is scattered out of the surface in various
directions.

The index of refraction (IOR) describes the change in the direction a light ray
is traveling when it passes through one material to another. IOR is measured from
real-world data. Surface color is determined by the scattering and absorption which is
different for different wavelengths of light. If a surface scatters a red wavelength and
absorbs the rest, it will appear red.

B 2.3.2 Bidirectional Reflectance Distribution Function

Reflectance properties of a surface are described in the bidirectional reflectance distri-
bution function (BRDF). It meets energy conservation which states the total amount
of light reflected and scattered back by a surface is less than the total amount of light
received [21]. Another coefficient of BRDF is a Fresnel reflection factor which states
the amount of light reflected from a surface depends on the viewing angle at which it
is perceived. Energy conversation and Fresnel effect are aspects of physics that are
both handled by the PBR shader.

10

2.3. Physically Based Rendering

The scattering factor of the reflected light depends on the structure of the
microsurface described by surface roughness. Common scattering factors depend on
additional surface layers such as dirt, dust, and physical damage. The last factor is
the definition of a metallic surface. Metals are good conductors of heat and electricity;
they contain many free electrons that partially reflect the light and absorb all the
refracted light. Non-metals are poor conductors of electricity. They reflect a smaller
amount of light than metals, so they reflect mostly diffuse color [21].

B 2.3.3 Physically Based Materials

We will go through the two most common PBR texturing workflows, which are
metal /roughness and specular/glossiness, for physically based material definition. The
PBR shader uses standard maps for both of them; these maps are normal map, ambient
occlusion map, and height map.

The metal /roughness workflow is determined through a set of textures, maps
specific to this workflow are base color, metallic, and roughness. The base color
texture is a map in RGB space that contains diffuse reflected color for dielectrics
(reflected wavelengths) and reflectance values for metals. If a surface is metallic or
not is described in the metallic texture. It acts like a standard mask that tells the
shader how to interpret data found in the base color texture. The metallic texture is a
grayscale map, where white colors represent raw metal and define base color texture
as metal reflectance; black colors represent dielectric and define base color texture as
reflected. The base color texture values defined as metallic should be obtained from
real-world measured values [21]. The surface irregularities that cause light diffusion are
defined in the roughness texture. It is a grayscale map, where white colors represent
the rough surface and create more significant and dimmer-looking highlights; black
colors represent the smooth surface and create a brighter reflected light.

The specular/glossiness workflow is also determined through a set of textures
but uses different maps. Specific textures for this workflow are diffuse, specular, and
glossiness. The diffuse map contains only diffuse reflected color; it does not have any
reflectance values. The surface areas with raw metal have a black color defined in
diffuse texture, as metal does not have a diffuse color. The specular map represents the
reflectance values for metallic surfaces and the Fresnel reflectance at zero degrees (F0)
for dielectric surfaces. The FO value should be obtained from real-world measured data
[21]. The surface irregularities that cause light diffusion are defined in the glossiness
texture. It is the inverse of the roughness texture from the metal/roughness workflow,
so it is also a grayscale map, where white colors represent the smooth surface and
create a brighter reflected light, black colors represent a rough surface and create larger
and dimmer-looking highlights [21].

11

12

Chapter 3

Photogrammetry for Games

Photogrammetry is the science of extracting reliable measurements from images, in our
case, for generating textures and geometry. This field of study connects many other
fields and disciplines such as computer vision, mathematics, optics, and projective
geometry. We focus on 3D meshes generated from a workflow utilizing a technique
known as stereophotogrammetry which compares multiple images taken from different
positions for estimating object coordinates in 3D space [15].

FARCRYS

Figure 3.1: Far Cry 5 is an action-adventure first-person shooter game, set in an open

world environment that is created with the photogrammetry method. (Image courtesy of
Ubisoft Entertainment.)

Generating 3D assets with photogrammetry has existed in many forms within
other fields and disciplines. Within the entertainment and game industry, the technology

13

3. Photogrammetry for Games

is relatively new, but a few games already have assets created with photogrammetry.
An art team from Ubisoft Entertainment took a series of trips to Montana, during
which the developers got to know Montana’s ecosystem, wildlife, and people, and
took thousands of photos. They were able to re-create the whole environment with
realistic soils, trees, vegetation, and buildings [24]. A shot from a fictional country in
the United States from Far Cry 5 is shown in Figure 3.1l Another example is Star
Wars: Battlefront; developers from DICE visited real film locations such as Iceland
and California’s national redwood forests [7]. They captured complete asset libraries
for all Star Wars planets in outstanding quality and automated the whole process of
creating assets with the photogrammetry method. An example of their result is shown
in Figure This method can be even used for creating more complex objects such
as cars and trucks. SCS Software company sent a small technical team to the Scania
Demo Centre in Sweden, to acquire detailed reference material for Scania’s new S and
R trucks for their game Euro Truck Simulator 2 [28].

BATTLEFRONT

=

Figure 3.2: A shot from Star Wars: Battlefront. Endor environment was created from
photographs taken in California’s national redwood forests. (Image courtesy of Electronic
Arts Inc. Game developed by EA Digital Illusions CE AB.)

One of the most exciting tasks in game development is creating game assets
and game environments. Every 3D game asset can be digitally sculpted or created
procedurally, so why should we use the photogrammetry method? This method brings
a realistic visual appearance based on real-world data and reduces creating time
[6]. The standard process of creating game assets with photogrammetry is divided
into the following stages: taking a series of photographs, aligning photographs in
photogrammetry software, generating a high-resolution mesh with color information,
mesh simplification, mesh retopology, mesh parameterization, and generating (baking)
textures. This process seems to be simple. We are going to find out, it is not.

14

3.1. Capturing Photographs

B 31 Capturing Photographs

For taking photographs, we need a camera. Technically, any camera can be used, such
as a digital single-lens reflex camera (DSLR), a smartphone or a drone, but the quality
of our asset depends on the taken photographs. We need a camera that allows us
to use manual control, a camera histogram, and shoots in RAW!'. The lenses for our
camera should have focal lengths from 24 mm to 70 mm; we avoid ultra-wide angle and
fish-eye lenses. A polarisation filter that removes unwanted reflections by selecting
which light rays enter the lens can be very handy. We can use tripods and monopods
for stabilizing the camera; they can be beneficial with limited lighting conditions. Our
last gear for photography pre-processing and calibration is a color checker. We will
use it for setting correct white balance and photography calibration to get the most
accurate colors.

B 3.1.1 Research and Development

The first step before organizing a photogrammetry adventure is to find references
for game assets that we want to create. Not every asset can be created with this
method; it is necessary to be familiar with the photogrammetry algorithm to get the
best possible results. The algorithm hunts for parallax shifts between features within
multiple photographs [I5]. Recreating assets need to have different features, objects
without structure or objects with repetitive patches can cause the photogrammetry
algorithm to fail when trying to match the feature sets.

Capturing surface should be consistent, we are unable to create transparent,
reflective and moving objects such as wet surfaces, glass, metallic surfaces, and veg-
etation in the wind. We will take photographs from different angles, but reflective
surfaces appear differently from different view angles; this can cause similar confusion
for the photogrammetry algorithm. It works very well with rough and static objects.

When is the best time to go on the photogrammetry adventure? The best lighting
conditions for our photographing are during overcast days with constant illumination.
Correct PBR diffuse texture should contain only colors without any shadows. We do
not want any strong shadows on our object; we use artificial light (probably day/night
cycle) in our game and shadows are generated artificially. It is possible to remove
shadows from the texture, but it is a time-consuming and challenging task which can
decrease overall texture quality.

'RAW image format contains captured image data as recorded by the camera sensor [12].

15

3. Photogrammetry for Games

B 3.1.2 Capturing on Location

Let us assume that we have chosen our object for reconstruction. We photograph
our object from all sides and different angles, so make sure that every part of it is
accessible. First, we remove all undesired elements on the photographed object. All
these elements that we do not remove will be present in the final game asset. If we
want to capture surface ground for tileableE] material, we should remove significant
patterns. They will be visible after repeating the material in our game. Then use
markers to define the reconstruction region, based on the texel density of our material.
Texels are pixels in the image texture; we use this term to separate them from the
pixels on the screen. If we want to achieve 2048 x 2048 textures with texel ratio of
1000 texels per one meter in the game, we have to photograph an area of 4m?. It is
crucial to keep the same scale ratio between all assets, otherwise over-detailed assets
or assets with poor quality may be created. A prepared tree stump is shown in Figure
3.3l

Figure 3.3: Prepared tree stump for reconstruction with the color checker.

The most important thing is a need to take photographs that are sharp, correctly
exposed and focused [23]. We switch our camera to manual mode; it is recommended
to have good practice with it. We will go through some common parameters that
we need to set correctly. The amount of light reaching the digital camera’s sensor
is defined by the amount of time the light is allowed to fall (exposure time) and the
size of the hole through which the light travels inside the lens (aperture) [30]. The
overall lighting can be changed with the camera’s sensor sensitivity (ISO). These three
parameters drive the quality of our game asset.

2Tileable texture (also called seamless) is an image that can be repeated without a visible seam.

16

3.2. Generating Geometry

ISO gives us the ability to take photographs with poor lighting conditions.
Unfortunately, high sensor sensitivity settings produce grain in the photograph which
usually takes the appearance of chroma noise that is visible as random colored spots
across the photograph [30]. It is not recommended to set ISO higher than 1000, because
it affects photogrammetry software during reconstruction and causes noise which is
visible on generated geometry. Size of the lens aperture affects depth of field, which
is the distance between the nearest and the furthest objects that are in sharp focus.
It is recommended to set aperture higher than f/8, but it depends on the depth of
photographed surface, shooting angle, and weather conditions. Exposure time depends
on lighting conditions. If we have the tripod or monopod, we can set higher exposure
time. If we have to stabilize our camera with hands, it is recommended to use as small
exposure time as possible. These parameters need to be set before every capture and
should not be changed during the entire capture.

We need to photograph every part of our object. First, we capture one loop
around the object with three height levels in ten-degree increments, where the whole
object fits in the image (approximately 108 images). Next, we capture the close-range
images with details of the object. It is recommended to shot images with at least 60%
overlap [I7]; it is crucial because low overlap causes photogrammetry software to fail
image alignment.

B 3.1.3 Images Processing

Captured images need to be calibrated and exported. It can be done in image-processing
software such as DxO PhotoLab or Adobe Lightroom. First, we create a preset based
on the color checker for correcting image colors. Next, we fix the exposure if needed
and lighten the shadowy parts and darken the lighted areas. We should minimize
all the shadows captured on our object. After updating our preset, we apply it to
all captured images and export them into the specific format supported by a chosen
photogrammetry software.

B 32 Generating Geometry

Generating high-resolution meshes is done in a photogrammetry software such as
Meshroom, Colmap, and RealityCapture. It requires a powerful computer with
hardware shown in Table [3.1. We register all exported images into the memory.
The software starts with extracting distinctive groups of pixels that are invariant
to changing camera viewpoints. The algorithm used for feature detection is called
Scale-invariant feature transform (SIFT) [19]. The algorithm first extracts a set of

17

3. Photogrammetry for Games

System Minimum Recommended
Requirements
Processor 64-bit processor with SSE Intel i7-9700K or
4.2 (Streaming SIMD AMD RYZEN Threadripper
Extensions) 1920X
Memory 8 GB DDR3-1600 RAM 64 GB DDR4-2133 RAM
Graphics NVIDIA graphics card with | NVIDIA GeForce
CUDA 2.0 and 1 GB GTX 1080 or TITAN X
VRAM

Table 3.1: Photogrammetry software system requirements

images and compares individual features irrespective of rotation, translation, and scale.
Features are matched together, and individual camera positions, directions, and up
vectors are estimated.

After the camera alignment, we align our scan preview to the ground and set
the reconstruction region for our asset. Then we run meshing which is the most
time-consuming task. For example, the reconstructed tree stump shown in Figure 3.4
took eight hours to generate with Intel i7-4700HQ and NVIDIA GeForce GTX 780M.

Figure 3.4: Generated and textured tree stump with camera alignment and reconstruction
region. All photographs were authored with full-frame camera Sony a7 III; the geometry
was reconstructed from 260 images in RealityCapture.

We create a simplified version of reconstructed geometry because many external

18

3.3. Mesh Optimization

geometry tools cannot handle full resolution generated meshes which consist of millions
of polygons. The base color can be exported in two ways. We can save color into
vertices or generate mesh parameterization for our simplified mesh and generate the
color texture with fixed texel density. We also keep full resolution mesh for normal
maps, height maps, and ambient occlusion. Finally, we export all the generated meshes
and proceed to optimization.

Figure 3.5: Retopologized tree stump with a wireframe topology of about 6000 triangles.

B 33 Mesh Optimization

Now we have a high poly mesh and a simplified mesh with color information, but we
need an efficient low poly asset. We need to decimate (reduce the polygon count) the
geometry, fix geometry errors, and retopology our asset. Mesh decimation and initial
cleaning can be done in MeshLab which gives accurate results. Widespread problems
in the decimated mesh are holes, T-vertices (edges in T formation), and non-manifold
mesh. The manifold mesh is without any topological inconsistencies, such as having
three or more polygons sharing an edge, disconnected vertices, and disconnected edges
[3]. Then we bring the mesh into a general 3D modeling software for retopology. The
type of retopology we perform depends on the asset; whether it is going to be static or
animated. Before updating the mesh topology, we delete all parts of the mesh that we
do not want on the final game asset. We can draw a new topology on the decimated
mesh or update the topology of the current mesh. This task is crucial; all the topology
errors that we do not remove are going to occur during the mesh parameterization.
See Figure for an example of the finished topology of the tree stump.

19

3. Photogrammetry for Games

. 3.4 Texture Creation

To create textures for the low poly mesh, we have to create a mesh parameterization.
Then we can define all maps needed for PBR shader.

B 3.4.1 UV Parameterization

UV parameterization can either be generated automatically or created manually.
Automatic methods are useful for simple primitives, but it is not recommended to use
automatic methods for complex meshes, they tend to waste vast amounts of texture
space. We open UV Texture Editor in our preferred 3D modeling software and start
with seam definition. Next, we unwrap our mesh based on seams into a 2D plane.
We can use translation, rotation, and scale to make as efficient use of the UV space
available as possible. We also want to maintain proportional UV density throughout
the object. While doing unwrapping, a checkered texture can be used to track any
created distortion (see Figure [3.6]).

Figure 3.6: Checkered texture can be used to track any created distortion.

B 3.4.2 Texture Baking

Process of projecting details from one model to another (commonly from high poly
mesh to low poly mesh) is called texture baking. For each texel of parameterized

20

3.4. Texture Creation

texture space are interpolated tangent basis, surface position, and texture coordinate.
Baker casts a ray from the interpolated boundary towards the high poly mesh. When it
intersects high poly geometry, it determines surface detail (tangent normal, height, and
base color) which is stored into the texture using texture coordinates [22]. Ambient
occlusion is commonly computed via Monte Carlo methods. Rays are cast from
uniformly distributed positions over the hemisphere in random directions [3].

Texture baking is an automated process which is implemented in all standard
3D packages. We bake tangent space normal map, height map, ambient occlusion,
and base color from the high poly model. Authoring accurate roughness and metallic
textures is hard, but we can use a physically based material chart as a starting reference
[32]. The chart shows us linear microsurface, to get the roughness texture, we need
to invert the microsurface map from the chart. We can convert base color texture to
grayscale and use it as a mask for defining roughness values to different parts of the
game asset. We avoid tweaking materials values to look more impressive in a specific
lighting environment. They should be consistent and look realistic no matter how we
light them. See Figure for the finished tree stump with applied textures.

Figure 3.7: Game ready tree stump with physically based textures.

21

22

Chapter 4

Environment Creation in Unreal Engine

Software for developing unbelievable 3D game worlds—game engines like Unreal Engine
4 developed by the Epic Games company is a complete suite of development tools
made for anyone working with real-time technology. Unreal Engine was first used in
first-person shooter Unreal, which was released in 1998. This version of the engine had
many robust systems, such as rendering, artificial intelligence, collision detection, and
scripting [25], the current version of the engine, Unreal Engine 4.22, is an extremely
powerful tool containing everything we need for building a realistic game environment.

Figure 4.1: Stylized environment from the most popular online video game Fortnite, game
created in Unreal Engine. (Image courtesy of Epic Games, Inc.)

When we first open Unreal Engine Launcher, we can open already created projects

23

4. Environment Creation in Unreal Engine

or create a new one based on available templates. Each template provides specific assets
needed for the chosen game type. They are available in two versions: C++ version,
and a Blueprint (visual script) version with the same behaviour. Blueprint Visual
Scripting is a flexible and extremely powerful node-based interface to create gameplay
elements without writing a single line of code. It is used to describe object-oriented
classes in the engine [14].

All | €5 |7 Content » FirstPersonBP »

Figure 4.2: The Unreal Editor provides the core level creation functionality. It is where
levels are created, viewed, and modified.

There are many templates available; for example, a first-person shooter template
gives us a player controller which is viewed from the first-person perspective. The
player character is equipped with a gun that fires a simple sphere projectile. Another
example is a vehicle template, which features simple physics-driven vehicle. Vehicle
controller has two cameras with implemented head-up display, first is behind the vehicle
(also called chase view), second is inside the vehicle (also called cockpit view). The
head-up display informs the player about current gear and speed. After creating a new
project based on the available template, we can see the Unreal Engine interface (see

Figure.
N 41 Creating a Landscape

Unreal Engine has the ability to build huge maps (a single level can be as large as The
Elder Scrolls V: Skyrim). First, we create a new level and start with landscape creation.
Creating a new landscape from scratch is done through the Landscape tool. We have

24

4.2. Creating Landscape Materials

two different possibilities for creating a landscape for our environment. The first
method of landscape creation is importing a custom height map which is a grayscale
map that uses the scale from black to white to form the height of the landscape [25].
This method requires the use of an external program such as World Machine. The
second method is creating a flat landscape based on input parameters. Landscapes are
made of multiple square components which can optionally be divided into subsections.
They are used for landscape level of detail (LOD) calculations [14]. When we generate
our landscape geometry, we can use sculpting tools to modify landscape height. After
updating the overall landscape shape, we add some erosion effects to the landscape to
give it a weathered look.

Figure 4.3: The Material Editor is a node-based graph interface that enables us to create
shaders that can be applied to our geometry.

B a2 Creating Landscape Materials

Materials in Unreal Engine are constructed not through a code but via a network of
visual scripting nodes (See Figure . Each node contains a snippet of DirectX’s
High-Level Shader Language (HLSL), created to execute a specific task [14]. The
landscape contains layers with different materials that can be blended. We create
material functions for each layer of the landscape material. Material functions are
small snippets of graphs that can be reused across multiple materials. They are
simplifying the creation process by providing instant access to regularly used material
networks. Each material function has texture samples for albedo, tangent space normal,
roughness, ambient occlusion, and height. Texture samples have UV (two-vector) input

25

4. Environment Creation in Unreal Engine

and tiling (scalar) input; we set tiling based on landscape size and UV input to the
absolute world positionﬂ Material functions outputs go into LandscapelLayerBlend
node which creates material painting layers. Each landscape layer has a grayscale
map which defines where is the material function applied. We can also blend two
materials based on their height map. Let us assume that we have dirt material with
dynamic height map and calm water with constant height. We can blend these two
materials based on their height textures; we get dirt with puddles. Figure 4.4/ shows a
physically based dirt material with adjusted textures based on a mask created with
height blending.

Figure 4.4: Dirt material with puddles created with photogrammetry method and height
blending.

Landscape material can modify the landscape geometry based on assigned height
maps. We create a material function that tessellates and displaces the actual geometry
of the landscape. Tessellation is a runtime process that splits triangles into smaller
triangles to increase the surface detail [3]. We create a tessellation function based on
the actual position of the camera. The function calculates vector length of substracted
camera position and absolute world position. Then it divides calculated length with a
scalar parameter. The function output is normalized and goes to Tessellation node
in landscape material. Displacement function takes masks from landscape layers and
multiplies them with world space vertex normal. The landscape is tessellated and
displaced based on landscape height maps and player position.

! Absolute world position node outputs the position of the current pixel in world space.

26

4.3. Generating Vegetation

BN a3 Generating Vegetation

Creating and texturing vegetation such as grass, ferns, and trees can be challenging,
but once we use photogrammetry and procedural techniques for populating our game,
a game environment can be relatively easy to create. In order to create an environment
that looks believable, we need to understand what should be in a particular environment
and focus on shape and color.

B 4.3.1 Setting Up Collisions

By default, there is no collision set on our assets. Without collisions, the player would
be able to move through geometry or fall into the void. Collisions are determined by
entities that are invisible to the player; these objects include sphere, triangles, axis-
aligned bounding box (AABB), oriented bounding box (OBB), and discrete oriented
polytope (k-DOP) [3]. Unreal Engine sets object type and series of responses to every
object that can collide. We can easily set what collides with what and what happens
to involved objects when a collision event occurs. We can add collision entities in Mesh
Editor; created entities can be moved, rotated, and scaled into the desired position.

B 4.3.2 Creating Level of Detail

When an asset is far off in the game and displayed using a few pixels, we do not need
to draw it with full resolution. We can swap it for a lower version which increases
the efficiency of rendering. We can build several versions of the asset, each with
progressively smaller polygon count, and these asset versions can be swapped by the
engine [2]. Another possibility is generating other versions in the engine. Unreal
Engine uses Simplygon which provides high-quality mesh reduction. Individual mesh
versions are swapped based on the covered screen size.

Since we are creating an open world game with massive forest, the LODs of
our assets are crucial. Small plants, rocks, and sticks will disappear when the screen
coverage is deficient, but trees will not. We can create tree billboards and apply them
as the last displayed LOD. Created LODs with colored meshes are shown in Figure [4.5.

27

4. Environment Creation in Unreal Engine

Figure 4.5: Level of detail coloration view displays the current LOD index of a mesh.
Assets with white color are rendered with the maximum resolution; blue assets use billboard

geometry.

B 4.3.3 Procedural Foliage Spawner

Unreal Engine allows us to place created assets inside the level using a procedural
placement system instead of placing everything manually. The Procedural Foliage
Spawner is used for simulating enormous forests that are filled with many different
kinds of assets such as grass, plants, bushes, and trees. It simulates how a forest grows
over the years using steps to define individual years. Each step casts new virtual seeds
into the level; these seeds act as spawn location for new foliage actors [14].

We can also spawn our assets on the landscape based on a specific layer mask.
We create a material function that generates specific assets on the landscape. Let us
assume that we have grass material and dirt material applied to the landscape. We
want cloverleaf meshes and branches on dirt material, so we create foliage type for
all assets that we want to be generated on dirt material and connect them to dirt
layer. For each asset, we set spawn density, random scale, and placement settings.
Branches and plants are aligned to landscape normal vector; trees are spawned only
with random yaw rotation.

These procedural methods allow us to populate our world based on specific input
parameters; we can generate an extensive game environment with relative ease.

28

4.4. Profiling and Optimization

B aa Profiling and Optimization

Game optimization is an essential part of game development. We will go through basic
profiling and optimization that we should always keep in mind when creating real-time
game assets.

B 4.4.1 Draw Calls

Request that invokes the graphics application programming interface (API) such as
Direct3D, OpenGL, and Vulkan to draw a group of primitives is called draw call [3].
These requests are CPU bound; the render thread needs to process each object and its
data such as material, lighting setup, collision, and culling. We can reduce draw calls
by combining materials accepting more complex pixel shaders (creating atlases with
textures for different assets), reducing view distance, combining mesh elements into
larger assets, and disabling shadow casting [14].

B 4.4.2 Shader Complexity

Shader complexity and overdraws are issues that cause GPU slogging. Overdraw occurs
when a pixel must be drawn multiple times; this happens when objects are drawn
on top of others and contributes significantly to fill rate issues [3]. We can reduce
shader complexity by minimizing the geometry area for overdraw. Mesh geometry
should exactly match the outline of the texture opacity. For example, state-of-the-art
grass planes in games significantly increase shader complexity; individual blades are
packed and mapped into a plane; these planes are stacked together and create 3D grass
clusters. Advantage of this method is that the vertex count of the actual geometry is
quite low.

The better approach for creating grass and foliage takes advantage of shader
complexity. We can create planes for individual grass blades and minimize geometry
area for overdraw. These planes are packed into different grass clusters for better mesh
instancing. This method for creating grass increases draw calls; overall performance is
significantly better. On the other hand, this method is time-consuming and can not
be used on every type of vegetation [4].

29

4. Environment Creation in Unreal Engine

B 4.4.3 MIP Mapping

Creating multiple sizes of a texture displayed at various distances is called MIP mapping
[1]. Generation of MIP maps happens during importing of the texture; Unreal Engine
creates a MIP map chain which consists of multiple levels of the same texture. We
can author textures at pretty much whatever resolution we like with photogrammetry,
but we should keep in mind that we may not always use full resolution. We can use
texture streaming profiler to see what level of MIP maps we are using for a given
texture and remove unused MIP levels. Figure |4.6 shows beaked hazelnut leaves which
were mapped to 2048 x 2048 texture atlas. Textures were gathered in 4096 x 4096
resolution, but there is no need to use them, they require four times more memory
and storage space.

Figure 4.6: Beaked hazelnut leaves with downscaled 2048 x 2048 textures mapped on a
geometry with 22 triangles.

30

Chapter 5

Results

Modern games need to run on a wide range of hardware with an acceptable frame rate.
Depending on the platform and game, 30, 60, or even more frames per second may be
the target. In this chapter, we summarize the photogrammetry pipeline for creating
game-ready assets. Furthermore, we present measured performance with an automated
cinematic level sequence on different hardware, and we compare the measured frame
rate with Far Cry 5 benchmark. Finally, we discuss the visual quality of the assets
created with photogrammetry.

51 Photogrammetry and Statistics

The photogrammetry method is not a silver bullet — it is only one part of achieving
the final results in the game environment. It brings realistic visual appearance based on
real-world data and significantly reduces asset creating time. With the photogrammetry
method, anyone can become a high precision 3D scanner with a basic camera.

This method requires a significant amount of data captured during overcast
days without any strong shadows. The capturing surface needs to be consistent; we
are unable to reconstruct transparent, reflective, and moving objects. The capture
process has taken approximately ten days; actual times needed for generating meshes
in photogrammetry software vary from asset to asset, but they range from eight hours
to fifteen hours.

The photogrammetry method is suitable for complex objects. Nowadays, game
studios use this method mainly for creating people, natural environments, and vehicles.
It is a creative process which is incredibly repetitive; it can and should be automated.

31

5. Results

The whole pipeline consists of the following steps:

Taking series of photographs

Images processing

Aligning data in photogrammetry software

Generating a high-resolution mesh

Mesh simplification

Geometry retopology and parameterization

Textures baking

We have used Autodesk 3D studio Max, Allegorithmic Substance Painter, and
Adobe Photoshop for the standard modeling and texturing techniques; mesh op-
timization was done in MeshLab. We have also tested Meshroom, Colmap, and
RealityCapture photogrammetry software; each provides different features, but all of
them have given accurate results. Pine trunks and spruce trunks were reconstructed
from approximately 350 images per object. Forest grounds such as needles, grass,
and dirt were reconstructed from approximately 200 images per object. We have also
authored approximately 250 images for each tree stump.

. 5.2 Performance

When we move a joystick or push a button, the central processing unit (CPU) processes
input from the player and updates the game logic. The graphics renderer takes the
current state of the game established by CPU and uses it to render an image which
is displayed on the screen. We will measure this process on different hardware with
automated cinematic level sequence to see the actual difference.

We have deployed the game with conifer forest running on DirextX. The game
implements player controller with the first-person mode and the third-person mode. It
has a basic user interface that allows the player to change graphics scalability. The
world includes 4km? of playable area, background mountains, volumetric clouds, and
fully dynamic lighting. The performance was evaluated on a set of different hardware
shown in Table |5.1. For each test, we set graphics scalability to EPIC based on Epic
Games scalability reference to use the best quality available [14]. Figure 5.1/ shows the
Full HD comparison of the frame times measured with the automated cinematic level
sequence.

32

5.2. Performance

Computer System information

TITAN Xp Windows Server 2012 R2; Intel Xeon W-2125;
64 GB DDR4-2666 RAM; NVIDIA TITAN Xp

RTX 2080 Windows 10; Intel Core i7-870; 16 GB DDR3-1333 RAM;
NVIDIA GeForce RTX 2080

GTX 1080 Ti | Windows 10; Intel Core i7-950; 12 GB DDR3-1066 RAM;
NVIDIA GeForce GTX 1080 Ti

GTX 1070 Windows 10; Intel Core i7-4790; 16 GB DDR3-1333 RAM
NVIDIA GeForce GTX 1070

GTX 770 Windows 10; Intel Core i7-4770K; 20 GB DDR3-1333 RAM
NVIDIA GeForce GTX 770

Table 5.1: Tested hardware.

Measured frame times for each computer are expected due to graphics cards

performance. The game thread times were approximately 2ms, so the game was GPU

bound. The best frame times (approximately 7.2 ms) were measured on TITAN Xp
powered by NVIDIA Pascal architecture. RTX 2080 powered by NVIDIA Turing
architecture measured average time 8.2ms. Since we did not implement real-time

raytracing which is supported in the latest Unreal Engine version, GTX 1080 Ti had a

similar average frame time 8.7 ms. Note that both computers had DRR3 memory with

lower data rate and input/output bus clock than standard DDR4 memory.

frame time in milliseconds

m— GTX 770 === GTX 1070 === GTX 1080 Ti === RTX 2080 === TITAN Xp

seconds

Figure 5.1: Frame time measured with the level sequence on Full HD (1920 x 1080).

33

5. Results

Important measurement brought GTX 1070; this video card and GTX 1060 are
currently used by most players on Steam video game distribution platform [13], so that
most computers frame time will be approximately 11.3ms. The highest average frame
time 24.4ms was measured on older NVIDIA video card GTX 770 powered by Kepler
architecture. Figure shows the measured average frame times per second (FPS).

TITAN Xp
RTX 2080

GTX 1080 Ti

GTX 1070

GTX 770

N W W H » 00 00 O O N NN O 0 © O
oo o1 o o oo o1 o O

00T
G0T
01T
GTT
0cT
Gt
0€T
GET
orT
48

frames per second

Figure 5.2: Average frame times per second measured on Full HD (1920 x 1080).

Nowadays monitor with 1920 x 1080 pixel resolution is still the standard for
video games, but graphics cards aim to 4K monitors with a 3840 x 2160 pixel resolution.
The game consoles are also capable of 4K resolution, so we have decided to measure
deployed game with the same level sequence and scalability with 4K resolution (see

Figure .

=== GTX 1070 === GTX 1080 Ti === RTX 2080 === TITAN Xp
35

30

25

frame time in milliseconds

seconds

Figure 5.3: Frame time measured with the level sequence on 4K UHD (3840 x 2160).

The GTX 1070 average frame time was 30 ms which is a significant drop. Other

34

5.3. Visual Quality

computers average frame times were approximately the same, GTX 1080 Ti measured
18.2ms, RTX 2080 succeeded with 17.3 ms, and finally, TITAN Xp conquered with
16.5ms. Frames per second measured on 4K resolution are shown in Figure 5.4

TITAN Xp
RTX 2080
GTX 1080 Ti

GTX 1070

o
o

10 15 20 25 30 35 40 45 50 55 60

frames per second

Figure 5.4: Average frame times per second measured on 4K UHD (3840 x 2160).

We have experimented with GTX 1070 computer to have frame rate reference
with AAA game. We have chosen Far Cry 5 which includes performance sequence
similar to ours. We have set the graphics quality to ultra which defines texture filtering,
graphical details of shadows and water, graphical complexity of the world geometry
and vegetation, and quality of the volumetric fog. Ultra quality also enables Temporal
anti—aliasingﬂ (TAA) and motion blur. Note that we have also deployed the game with
TAA. Far Cry 5 with ultra settings requires 2.7 GB of VRAM; we with EPIC settings
require only 1.6 GB of VRAM. The measured average FPS on Full-HD monitor was 76
frames; the deployed game with conifer forest ran with 88 FPS, so we have some space
for adding explosions, water, characters, and vehicles.

B 53 visual Quality

The main reason why we used photogrammetry method is the realistic visual appearance
based on real-world data. The deployed conifer forest consists of essential ground
materials such as grass, mud, dirt, and needles. The landscape use displacement based
on material height textures and camera position. We have created rocks, branches,
needles, and bark clusters with many variations to build realistic distinctive forest floor.
The forest includes various vegetation assets such as leaf clovers, grass, ground ivy,
beaked hazelnuts, and ferns. They are controlled with procedural mesh spawner based
on specified landscape layer masks. The forest also consists of tree stumps, spruce

! Anti-aliasing programs such as Fast approximate anti-aliasing (FXAA) or Temporal anti-aliasing
(TAA) are pixel shader programs that reduce contrast on pixel and sub-pixel aliasing [I8], [16].

35

5. Results

Figure 5.5: A screenshot from the conifer forest game.

trees, and pine trees (one tree instance has approximately 20000 triangles). Tree bases
were created with photogrammetry method; treetops were generated procedurally in
SpeedTree. Trees are controlled with the procedural spawner which simulates forest
grown. All small assets such as foliage, rocks, and branches are packed to 2048 x 2048
textures, only tree trunks are rendered with 4096 x 4096 textures. Figures 5.5/ and 5.6
show the visual quality of the whole conifer forest and vegetation.

Figure 5.6: Forest vegetation close up.

36

Chapter 6

Conclusions

We have described a photogrammetry pipeline for creating game-ready assets. It is
based on comparing multiple images taken from different positions for estimating object
coordinates in 3D space. We have discussed the research and development before
the actual capture and shown how to photograph the asset for reconstruction. Then
we have reconstructed objects from conifer forest and optimized them for real-time
rendering. Assets were efficiently parameterized into 2D space with proportional UV
density. After that, we have projected details from the reconstructed geometry into
the low poly version and authored textures for the physically based rendering.

Created assets were tested in a game environment built in Unreal Engine. We
have described the development process and techniques that were used for making
the conifer forest. First, we have created extensive landscape geometry with displaced
materials based on their height map. Then we have designed LODs for the assets and
added collision entities to block any movement through the geometry. The massive
forest was generated procedurally with a designed spawner that allowed us to simulate
growing forest over the years. Finally, we have optimized the created game environment
and deployed the game for performance testing.

We have measured average frame time 7.2ms on TITAN Xp; on RTX 2080
the level sequence has run with average frame time 8.2 ms; the similar result 8.7 ms
was measured on GTX 1080 Ti. The most popular NVIDIA video card GTX 1070

measured average frame time 11.3 ms, and the highest frame time 24.4 ms was achieved
on older NVIDIA video card GTX 770.

Future research should focus on asset blending with the landscape. Landscape
textures should be interpolated to most reconstructed assets; they could also have
landscape radiosity projected on to them. We would also like to automate the repetitive
process of the photogrammetry method.

37

38

[1]

[7]

8]

[9]

References

L. Ahearn. 3D Game Textures: Create Professional Game Art Using Photoshop.
CRC Press, 4th edition, 2016.

L. Ahearn. 3D Game Environments: Create Professional 8D Game Worlds. CRC
Press, 2nd edition, 2017.

T. Akenine-Moller, E. Haines, N. Hoffman, A. Pesce, S. Hillaire, and M. Iwanicki.
Real-Time Rendering, Fourth Edition. CRC Press, 4th edition, 2018.

N. Arenz. Preparing Realistic Grass in Unreal Engine 4. https://80.1v/
larticles/preparing-realistic-grass-in-ueéd/|

E. Assaf. Rigging for Games: A Primer for Technical Artists Using Maya and
Python. CRC Press, 1st edition, 2015.

L. M. Bishop, M. Jancosek, and C. Cowan. Photogrammetry for Games: Art,
Technology and Pipeline Integration for Amazing Worlds. Game Developers
Conference (GDC), 2017. https://developer.nvidia.com/gdcl7.

K. Brown and A. Hamilton. Photogrammetry and Star Wars Battlefront.
Game Developers Conference (GDC), 2016. www.gdcvault.com/play/1023272/
[Photogrammetry-and-Star-Wars-Battlefrontl

J. Campbell. Bringing Hell to Life: AI and Full Body Animation in DOOM.
Game Developers Conference (GDC), 2017. www.gdcvault.com/play/1024186/
Bringing-Hell-to-Life-AIl

E. Carrier. Procedural World Generation of Far Cry 5. Game
Developers Conference (GDC), 2018. www.gdcvault.com/play/1025557/
[Procedural-World-Generation-of-Farl

39

https://80.lv/articles/preparing-realistic-grass-in-ue4/
https://80.lv/articles/preparing-realistic-grass-in-ue4/
https://developer.nvidia.com/gdc17
www.gdcvault.com/play/1023272/Photogrammetry-and-Star-Wars-Battlefront
www.gdcvault.com/play/1023272/Photogrammetry-and-Star-Wars-Battlefront
www.gdcvault.com/play/1024186/Bringing-Hell-to-Life-AI
www.gdcvault.com/play/1024186/Bringing-Hell-to-Life-AI
www.gdcvault.com/play/1025557/Procedural-World-Generation-of-Far
www.gdcvault.com/play/1025557/Procedural-World-Generation-of-Far

References

[10]

[11]

[13]

[14]

[20]

[21]

[22]

[23]

[24]

[25]

A. Chopine. 3D Art Essentials: The Fundamentals of 3D Modeling, Texturing,
and Animation. Focal Press, 1st edition, 2011.

B. Cloward. Shading the World of Anthem. Game Developers Conference (GDC),
2019. www.gdcvault.com/play/1026274/Shading-the-World-of-Anthem.

C. Coe and C. Weston. Creative DSLR Photography: The ultimate creative
workflow guide (Digital Workflow). Focal Press, 1st edition, 2009.

V. Corporation. Steam Hardware and Software Survey. |https://store!
steampowered. com/hwsurvey/videocard/|

Epic Games. Unreal Engine 4 Documentation. https://docs.unrealengine,
com/en-us/|

S. Foster and D. Halbstein. Integrating 3D Modeling, Photogrammetry and Design
(SpringerBriefs in Computer Science). Springer, 1st edition, 2014.

J. Korein and N. Badler. Temporal Anti-Aliasing in Computer Generated Anima-
tion. SIGGRAPH Computer Graphics, 1983.

V. Kuzmin. Full Photogrammetry Guide for 3D Artists. https://80.1v/
articles/full-photogrammetry-guide-for-3d-artists,

T. Lottes. FXAA. ACM SIGGRAPH Filtering Approaches for Real-Time Anti-
Aliasing course, 2011.

D. G. Lowe. Object Recognition from Local Scale-Invariant Features. In Pro-
ceedings of the International Conference on Computer Vision. IEEE Computer
Society, 1999.

S. McAuley. The Challenges of Rendering an Open World in Far Cry 5. SIG-
GRAPH Advances in Real-Time Rendering in 8D Graphics and Games course,
2018.

W. McDermott. The PBR Guide: A Handbook for Physically Based Rendering.
Allegorithmic, 3rd edition, 2018.

H. Nguyen. GPU Gems 3. Addison-Wesley Professional, 1st edition, 2007.

RealityCapture Support. Taking Pictures for Photogramme-
try. https://support.capturingreality.com/hc/en-us/articles/
115001528211-Taking-pictures—for-photogrammetry.

M. Reparaz. Far Cry 5 — How Hope County was built into a believ-
able slice of Montana. https://news.ubisoft.com/en-us/article/315853/
far-cry-5-hope-county-built-believable-slice—-montana,

A. Sanders. An Introduction to Unreal Engine 4. CRC Press, 1st edition, 2017.

40

www.gdcvault.com/play/1026274/Shading-the-World-of-Anthem
https://store.steampowered.com/hwsurvey/videocard/
https://store.steampowered.com/hwsurvey/videocard/
https://docs.unrealengine.com/en-us/
https://docs.unrealengine.com/en-us/
https://80.lv/articles/full-photogrammetry-guide-for-3d-artists
https://80.lv/articles/full-photogrammetry-guide-for-3d-artists
https://support.capturingreality.com/hc/en-us/articles/115001528211-Taking-pictures-for-photogrammetry
https://support.capturingreality.com/hc/en-us/articles/115001528211-Taking-pictures-for-photogrammetry
https://news.ubisoft.com/en-us/article/315853/far-cry-5-hope-county-built-believable-slice-montana
https://news.ubisoft.com/en-us/article/315853/far-cry-5-hope-county-built-believable-slice-montana

References

[26] G. Sanders. Between Tech and Art: The Vegetation of Horizon: Zero Dawn.
Game Developers Conference (GDC), 2018. www.gdcvault.com/play/1025530/
Between-Tech-and-Art-Thel

[27] D. Santiago. Procedurally Crafting Manhattan for Marvel’s Spider-Man.
Game Developers Conference (GDC), 2019. www.gdcvault.com/play/1026415/
[Procedurally-Crafting-Manhattan-for-Marvell

[28] SCS Software. 3D Scanning - The Next Generation Scania. https://blog)
|scssoft.com/2017/02/3d-scanning-next-generation-scania.html|

[29] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in
Games (Computational Synthesis and Creative Systems). Springer, 1st edition,
2016.

[30] J. Tarrant. Understanding Digital Cameras: Getting the Best Image from Capture
to Output. Focal Press, 1st edition, 2007.

[31] J. van Muijden. GPU-Based Run-Time Procedural Placement in Horizon: Zero
Dawn. Game Developers Conference (GDC), 2017. www.gdcvault.com/play/
[1024700/GPU-Based-Run-Time-Procedurall

[32] J. Wilson. Physically-Based Material Values. |https://marmoset.co/posts/
physically-based-rendering-and-you-can-too/|

41

www.gdcvault.com/play/1025530/Between-Tech-and-Art-The
www.gdcvault.com/play/1025530/Between-Tech-and-Art-The
www.gdcvault.com/play/1026415/Procedurally-Crafting-Manhattan-for-Marvel
www.gdcvault.com/play/1026415/Procedurally-Crafting-Manhattan-for-Marvel
https://blog.scssoft.com/2017/02/3d-scanning-next-generation-scania.html
https://blog.scssoft.com/2017/02/3d-scanning-next-generation-scania.html
www.gdcvault.com/play/1024700/GPU-Based-Run-Time-Procedural
www.gdcvault.com/play/1024700/GPU-Based-Run-Time-Procedural
https://marmoset.co/posts/physically-based-rendering-and-you-can-too/
https://marmoset.co/posts/physically-based-rendering-and-you-can-too/

42

Appendix A

DVD Contents

The enclosed DVD contains the text of this thesis and the deployed game with packed
conifer forest. It requires 1 GB of free file space and DirectX runtime; EPIC graphics
settings require graphics card with at least 1.6 GB of VRAM.

43

	Introduction
	Computer Graphics for Games
	Game Asset Creation
	Concept Art
	Geometry Modeling
	Geometry Parameterization
	Texturing
	Rigging
	Animation

	Real-time Rendering Pipeline
	Geometry Processing
	Rasterization
	Pixel Processing

	Physically Based Rendering
	Diffuse and Specular Reflection
	Bidirectional Reflectance Distribution Function
	Physically Based Materials

	Photogrammetry for Games
	Capturing Photographs
	Research and Development
	Capturing on Location
	Images Processing

	Generating Geometry
	Mesh Optimization
	Texture Creation
	UV Parameterization
	Texture Baking

	Environment Creation in Unreal Engine
	Creating a Landscape
	Creating Landscape Materials
	Generating Vegetation
	Setting Up Collisions
	Creating Level of Detail
	Procedural Foliage Spawner

	Profiling and Optimization
	Draw Calls
	Shader Complexity
	MIP Mapping

	Results
	Photogrammetry and Statistics
	Performance
	Visual Quality

	Conclusions
	References
	DVD Contents

