
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

452824Osobní číslo:OleksandraJméno:KoshchiiPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Uživatelsky přívětivé ladění virtuálních počítačových sítí

Název bakalářské práce anglicky:

Pokyny pro vypracování:
Implement a tool that arranges and presents data gathered by the
plotnetcfg[1] tool in an interactive graph form. The focus is on user
experience with the typical user being a network administrator or a network
developer. Research the needs of the typical users, gather their input,
explore and analyze different approaches to the UI design, choose the most
suitable approach and implement it.
Given the amount of data, it's important to not clutter the display with all
the information available at once, yet all the data has to be easily and
intuitively accessible in an ergonomic way. At any point in time, the
presented data view has to be comprehensible and useful for the task at
hand. For the typical user, there should be no need to search in
documentation to find out how to get to a particular piece of information or
how to get to a more generic view. Also, the data itself has to be presented
in a well arranged, easily understood form.
Using data gathered by plotnetcfg and sosreport on three nodes of
a typical OpenStack deployment, measure and evaluate the efficiency of
understanding interconnections, packet flows and packet modifications
between the network components by a typical user of the tool without and
with the tool implemented.

Seznam doporučené literatury:
1] plotnetcfg json output format [online]. Available at: https://github.com/jbenc/plotnetcfg/blob/master/plotnetcfg-json.5
[2] D. Davis: The Essentials of Linux Network Administration, ActualTech Media, 2017
[3] Skydive Real-time network analyzer tutorial [online]. Available at: http://skydive.network/tutorials/first-steps-1.html

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jiří Benc, katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 31.01.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Benc

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

User Experience in Virtual
Computer Network Debugging

Oleksandra Koshchii
Software Engineering and Technologies

May 2019
https://github.com/sashkoboom/redhat_network_visualization
Supervisor: Ing. Jiri Benc

https://github.com/sashkoboom/redhat_network_visualization

Acknowledgement / Declaration

I would like to thank CTU FEL for
being a great school for me, my friends
and family for moral support through-
out years of studying.

I hereby declare that this thesis is my
own original work and that all academic
sources have been referenced according
to the the Methodical instruction num-
ber 1/20 on Compliance with Ethical
Principles of University Diplomas.

In Prague on 24. 05. 2019

. .

iii

Abstrakt / Abstract

V tomto dokumentu je posán proces
tvorby uživatelsky-přivětivé vizualizace
rozsáhlých virtuálních počítačových
sítí. Jinými slovy, hlavním cílem bylo
navrhnout, implementovat a otestovat
program, který bude moci vykreslovat
graf pomocí výstupu nástroje plotnet-
cfg[1]. Finální implementace musí moct
vizualizovat počítačové interfaces, zaří-
zení a data o nich, která jsou popsána
v souborech ve formátu JSON odpoví-
dajícím formátu generovanému pomocí
plotnetcfg.

Klíčová slova: vizualizace; graf; uživa-
telský zážitek; ládění počítačových síti.

Překlad titulu: Uživatelský přivětivé
ladění virtuálních počítačových sítí

This document describes the process
of creating a user-friendly vizualization
of large virtual computer networks.
In other words, the main goal was to
design a tool capable of rendering graph
using output of the plotnetcfg tool[1].
The final program should be able to
show network interfaces, devices and
data about them described in a JSON
file conforming to the format generated
by plotnetcfg.

Keywords: visualisation; graph; user
experience; computer network debug-
ging.

iv

Contents /

1 Introduction .1
2 Basic analysis .2
2.1 Requirements. .2
2.2 Possible solutions2

2.2.1 Graphviz [2]2
2.2.2 Gephi[3] .3
2.2.3 Conclusion of the basic

analysis .4
3 Understanding virtual comput-

er networks .5
3.1 Elements and processes5

3.1.1 Network interfaces5
3.1.2 Network namespaces6
3.1.3 Tunnelling6

3.2 Major use cases6
3.3 Goals for the visualisation6

4 User Research .7
4.1 Designing user research7

4.1.1 Graph arrangement7
4.1.2 Interfaces color8
4.1.3 Arrows type9
4.1.4 Lines color 10
4.1.5 Tunneling 11
4.1.6 Initial information 11
4.1.7 Additional Information . . 12

4.2 Results of the user research . . . 13
4.2.1 Graph arrangement 13
4.2.2 Interfaces color 14
4.2.3 Arrows type 15
4.2.4 Lines color 15
4.2.5 Tunneling 16
4.2.6 Initial information 16
4.2.7 Additional Information . . 17

5 Design . 18
5.1 Visual interactive design. 18

5.1.1 Graph arrangement 18
5.1.2 Nodes color. 19
5.1.3 Arrows. 20
5.1.4 Lines color and inter-

action . 21
5.1.5 Tunneling 24
5.1.6 Initial info 24
5.1.7 Additional Information . . 26
5.1.8 Color palette 26

5.2 Technology . 27
5.2.1 D3.js . 27

5.2.2 D3 Force 27
5.3 Architecture . 28

5.3.1 Render. 28
5.3.2 Handling data for ren-

dering. 29
5.3.3 Getting data from the

user . 30
6 Implementation 31
6.1 Analysis of the implementa-

tion . 31
7 User testing . 33
7.1 Testing design 33

7.1.1 Target group 33
7.1.2 Methodology 33
7.1.3 System Usability Scale

Questionnaires 33
7.2 Testing . 34
7.3 Measuring the results 34

7.3.1 Statistical analysis 34
7.3.2 Other feedback 35

7.4 Conclusions of the testing 36
8 Conclusion . 37

References . 38
A Tasks . 41
B GraphPad Output 42
C Abbreviations . 43
D Installation and running 44

v

Tables /

4.1. Feedback for options of initial
information to be written on
interface boxes 17

7.1. Evaluation for statements
from testing questionnaires 34

7.2. The final score distribution. . . . 35

vi

Chapter 1
Introduction

The plotnetcfg1 tool gathers network configuration data on a Linux system. Its main
targets are nodes in a complex cloud infrastructure. [1]

A single such system typically contains large number (tens to hundreds) of virtual net-
work devices, virtual bridges, failover solutions, tunnel overlays, etc. interconnected in
various ways. To virtualize workloads, such systems often make use of containerization
technologies which partition the networking interfaces into interconnected containers.
This results in a convoluted topology. For developers working on and debugging cloud
infrastructure, clear visualization of the topology and links between the virtual network
interfaces is crucial. [4]

Thus, there is a need for a visualization tool capable of drawing graphs depicting
interfaces and relations between them. To help with this effort, the plotnetcfg is capable
of outputting all the gathered data in a JSON and DOT[5] format.

1 https://github.com/jbenc/plotnetcfg

1

https://github.com/jbenc/plotnetcfg

Chapter 2
Basic analysis

This chapter describes the initial analysis of the requirements for visualisation and
examines the existing solutions of the addressed problem.

2.1 Requirements
Len Bass et al. state that a software architecture must be based on a set of well-
specified requirements. [6] Because of that, based on the problem description presented
in Chapter 1, a list of most general yet essential requirements for the final tool was
gathered.

. R1. Read input file in a JSON or in a DOT format. It may assume it’s well formed.. R2. Be platform independent. and be usable on most computers without the need to
install specific software (e.g. when debugging a problem at customer’s site). R3. Work offline. To execute debugging in a wider range of conditions.. R4. Draw the network interfaces as nodes and draw the links and relations between
the nodes as connecting lines. This is the most comprehensible visual structure for
network visualization. The network interfaces may be grouped into containers (a
network interface must be in at most one container).. R5. Display metadata. Network interfaces and containers have names; network
interfaces may have a type, network addresses and states. Links may have a type
and a tag.. R6. The data should be presented in a comprehensible arrangement. E.g. by using
different font styles and colors as well as shapes and colors of the container boxes,
etc.. R7. Allow changing of placements of the elements. The initial placement should be
done in a way that the elements (network interfaces and containers) do not overlap,
at least for the most common input data. The placement of the elements should be
manually adjustable by the user, e.g. by dragging them with the mouse.

2.2 Possible solutions
There are three approaches to solve this task. First, it is known that an implemented
solution already exists. [1] Second, it might be possible to find a visualization framework
that can be configured according to the listed requirements. Third, another way is to
design and implement the tool from scratch.

2.2.1 Graphviz [2]
Plotnetcfg already offers a tool that is able to visualize output, as well as to produce
data in DOT format. The existing implementation uses Graphviz. It is capable to
render a graph into a static PDF page containing information about virtual devices
and showing the interconnections. It fulfills the following criteria:

2

. 2.2 Possible solutions

. R1. Read input file in a JSON or in a DOT format. The program accepts DOT
format.. R3. Work offline. The program works offline.. R4. Draw the network interfaces as nodes and draw the links and relations between
the nodes as connecting lines. The program allows it as seen on Figure 2.1.

Figure 2.1. A sample visualization by Graphviz.

The resulting graphs, however, do not suit the other requirements.

. R2. Be platform independent. Graphviz software must be downloaded and installed
from the official website[3] and does not provide an implementation for every plat-
form.. R5. Display metadata. The DOT language in general is too limited and is not
suited for displaying of such complex relations. It also can’t be used to display all
metadata gathered from the system. It would not be practical anyway – the network
configuration consists of too much data.. R6. The data should be presented in a comprehensible arrangement. First, because
of the network structure and Graphviz default behavior most networks are shown
as a very wide graphs with a few or no hierarchy levels. Moreover, the result is
stored in PDF format. Hence, a horizontal mouse dragging movement through a
comparatively big sheet is required to view the graph in its entirety, which gives rise
to frustration. Second, the boxes for interfaces are usually not well-arranged. In
case of a complicated network structure the relations are very hard to follow, mostly
because the lines are overlapping with the interface boxes.. R7. Allow changing of placements of the elements. It is not interactive due to the
PDF format limitations.

Therefore, this implementation does not meet the requirements R2, R5, R6, R7 for
the visualization tool and, consequently, is not a suitable solution to the addressed
problem

2.2.2 Gephi[3]
The closest possible solution to the problem found during the research is the use of
Gephi. It is an open-source Java-based desktop visualization software for various kinds
of graphs and networks.

. R1. Read input file in a JSON or in a DOT format. It is possible to implement
a JSON-parsing interface for Gephi, as there are Java packages providing necessary
functionality, for example: 1. R3. Work offline. As a desktop application, Gephi works offline.. R4. Draw the network interfaces as nodes and draw the links and relations between
the nodes as connecting lines. Gephi provides that possibility in its Graph API.

1 https://github.com/stleary/JSON-java

3

https://github.com/stleary/JSON-java

2. Basic analysis .
. R5. Display metadata. Gephi implementation possess Attributes API, which is

capable of defining node attributes as rows and columns.. R6. The data should be presented in a comprehensible arrangement. Gephi allows
that kind of configuration within its Graph API and Layout API.

Figure 2.2. A screenshot from Gephi. Source: 1

As for the installation requirements, Gephi does not satisfy the requirement of sim-
plicity in that matter.

. R2. Be platform independent. According to the installation guide, it’s required to
have a recent Java JRE installed. Gephi is compatible with Java 7 and 8 versions.
Gephi is implemented on Windows, Linux and Mac OS platforms. Also, Gephi has
issues with memory allocation and if too little memory is allocated, Gephi may stop
running and lose the unsaved work. Moreover, for faster graph visualization, Gephi
uses an OpenGL 3D engine, therefore, it demands a sufficient graphic card. If user’s
dedicated graphic card is manufactured before year 2010 or not installed at all, it is
required to upgrade the hardware to run Gephi. [3]. R7. Allow changing of placements of the elements. Even though it is possible for user
to change the parameters of Gephi visualization on the run, Gephi does not allow
manipulations with a specific node such as selecting it with a mouse and changing
its position.

Therefore, Gephi is not a suitable solution to the addressed problem, because it does
not meet some of the crucial requirements for the implementation.

2.2.3 Conclusion of the basic analysis
Since the existing solutions do not meet all the requirements, it is essential to develop
a new solution that will suit the needs of the users.
1 https://gephi.org/screenshots/

4

https://gephi.org/screenshots/

Chapter 3
Understanding virtual computer networks

The designed visualization is explanatory. The definition of an explanatory visualization
by Noah Iliinsky and Julie Steele includes the fact that it tells a ‘story’, i.e. information
that the visualization intends to convey from designer to user [7]. Without a basic
understanding of data that are to be shown within the visualization it is impossible to
imprint the required properties of said data into image in a clear and concise form.

Since the field is quite vast and complex, only it’s basics were studied.

3.1 Elements and processes
The two most fundamental elements to review are network interfaces and namespaces.
[8]

3.1.1 Network interfaces

Physical computers typically possess one or several network cards, also referred as
network interfaces. They ensure communication within a computer network. It is
possible to assign an IP address to it. Each interface has its unique name in the
system, like “eth0”, “vlan0” etc. Network interfaces may be physical as well as virtual.
[8] These are major types of interfaces:

. bond
In a complex server with several interconnected interfaces, it is possible that one of

them might malfunction and cause the server to lose connection to the Internet. To
avoid that, two interfaces (one of them being reserved) are connected to each other
and referred to as bond. Despite being virtual, bond behaves like a typical network
card. When bond receives a data package from outside, the operating system decides,
where to send it next. When a data package is received by any of the interfaces
connected to bond, bond receives it automatically as well. [9]. bridge

Bridge is another virtual interface that interconnects several other interfaces.
When it gets a data package on one port, it automatically sends it on all other
ports. The difference between a bond and a bridge is that a bond connects two
places with two possible routes, while a bridge ensures that interfaces connected to
it are able to “see each other” and communicate. [8]. Open vSwitch

Open vSwitch is a programmable variation of bridge. It has additional function-
ality besides sending packages, for example resending the package somewhere else
or adding a VLAN tag to it. It creates a virtual interface connected to a switch.
Within Open vSwitch, it is possible to program the direction of data flow. For these
matters, such interfaces may have their own Open vSwitch rules listed similarly to
routing table rules. [10]

5

3. Understanding virtual computer networks .
3.1.2 Network namespaces

Big servers may contain several virtual machines. Each of them emulates presence of
a hardware with it’s own network card. Thus, virtual machine behaves as if there is a
virtual interface within the server. Because maintenance of virtual machines consumes
a lot of processing resources, the container technology is widely used instead.

Containers, also referred as namespaces, run inside one operating system. They
behave as if they are isolated virtual machines that communicate through their own
interfaces. They may have their own networking inside them with several interfaces.
[11]

3.1.3 Tunnelling
Tunnelling works similarly to VPN (in fact, it is used in VPN development). It is
a process, in which a secured logical connection is created between two endpoints by
virtue of encapsulation. One network protocol is encapsulated into another. [12]

3.2 Major use cases
A typical use case is data loss. Within a chain of interfaces, data packages might
get lost because one link could malfunction. To determine where it happened, network
administrator must go through every interface and check if data flows through it. Thus,
it is important to determine the chain quickly and to be able to determine where would
data go next on crossroads. That could be learned from routing tables, Open vSwitch
rules, etc.

Another use case is Open vSwitch development. The visualization might be useful
to debug Open vSwitch activity efficiently. [4]

Specific tasks to be completed with the use of interactive graph visualization are
listed in Appendix A.

3.3 Goals for the visualisation
While using this interactive graph visualization its typical user (network developer or
network administrator) should be able to:

. rapidly determine state of the interface;. see which interfaces belong to which namespaces;. examine tunneled connections;. view a chain of interfaces and determine the dataflow;. look into routing tables;. be able to see VLAN tag for any connection;

6

Chapter 4
User Research

Before heading into development, it is important to organize a primary user research.
It helps to understand user’s needs, motivations and behaviours through applying ob-
servation techniques, helding surveys etc. [13]

4.1 Designing user research

In this case, the methodology is to hold direct one-on-one interviews with the users
to get their opinions on the possible design solutions presented as prototypes. As
reported by Jeff Rubin, it is acceptable to ask the users about demonstrated prototypes
straightforwardly. According to Rubin, questions can be global, like where to look for
certain pieces of information within the layout, as well as about particular elements
attributes, such as color. [13]

The design of the interactive graph visualization will be split into seven parts: graph
arrangement, nodes color, arrows and lines, tunneling representation, initial information
and additional information - one for each aspect of the visualization that holds data.

Because it is a visualization, it might be difficult for participants to figure out their
preferences without viewing the examples, so each question about each aspect of the
design should be supported with several illustrations.

Bigger number of examples of potential graphic solutions provided to users leads to
more detailed opinions that can be collected from the participants. Jeff Rubins states
that comparison tests with different prototypes matched against each other is a good
way to avoid committing to one option that will turn out to be badly-designed in the
future. [13]

4.1.1 Graph arrangement

According to Noah Iliinsky and Julie Steele, position is not the most efficient encod-
ing method for data visualization. However it should be the first to be defined in a
visualisation. [7] Therefore, the aspect of positioning will be discussed first.

Because interface nodes create hierarchical structures with parent nodes and child
nodes, it is obvious to render them into hierarchical tree figures. However, in most of
cases, all network data do not belong to one perfectly hierarchical tree. They rather
form a set of independent structures that may or may not be connected in various ways.
Thus, other options of graph arrangement were designed, too.

Figure 4.1 shows raw designs for overall graph structure.

7

4. User Research .

Figure 4.1. Designs for overall graph structure: hierarchical - left to right (A), hierarchical
- right to left (B), hierarchical - top to bottom (C), hierarchical - bottom to top (D),
clusters - roots in the middle (E), clusters - roots floating separately (F), clusters - roots

in row (G), clusters - roots in column (H)

4.1.2 Interfaces color

Because interfaces are rendered as boxes, it is possible to not only to render some text
about their corresponding interfaces on them, but also to add a visual color encoding
in their appearance, for example by defining different fill or stroke attributes of the box
that has some meaning.

As reported by Noah Iliinsky and Julie Steele [cite], color is not the best neither it is
a universal tool for general visual data representation. These authors provide a number
of reasons for that claim, such as different color interpretation in different cultures or

8

. 4.1 Designing user research

accessibility limitations. However, color is a convenient property to label categorical
data, such as states of the interfaces.

Plotnetcfg official documentation [1] defines the following states of an interface:
down: the interface is administratively disabled.
up: the interface is up and operating.
up_no_link: the interface is up but has no link.
none: state cannot be determined or is not applicable to this kind of interface.
Basing of these data, a set of options was designed. (Figure 4.2)

Figure 4.2. Designs for interface colors distribution: by status - fill as status: available -
green, unavailable - red, down - gray (A); by status - stroke as status: available - green,
unavailable - red, down - gray (B); by status - status: available - gray, unavailable - red,

down - crossed (C)

4.1.3 Arrows type

Interconnections between interface nodes also provide information. For example, in
the initial Graphviz implementation, each line between nodes had a “tag” property
(rendered near the center of the line). It described, which tag is obtained by packets
sent between interconnected interfaces.

As for the arrows, initial visualization had them, but connections did not have hi-
erarchical direction, as for arrow from A to B meant that A is a parent of B. Instead,
direction of the arrow represented connection direction, i.e arrow from B to A meant
that B is plugged into A (whilst B being child of A). Despite all of that, when we
discuss a real computer network, all the connections are usually bidirectional, which
means that data within one connection between virtual devices flows in both ways.
Therefore, arrows are not only pointless as an element of information but may also
cause confusion.

Because of that, several arrow placement designs were created. (Figure 4.3)

9

4. User Research .

Figure 4.3. Designs for arrows shape and placement options: hierarchical - from parent to
child node (A); by the direction of connection (B); metaphor of connection (C)

4.1.4 Lines color

Lines color can also encode information, such as states. Alternatively, their color may
indicate, from which namespace is the line coming. These and other options are listed
below. (Figure 4.4)

Figure 4.4. Designs of lines color: by status - stroke as status of the next node (A); by
namespace - stroke by the namespace color (B); all black (C).

10

. 4.1 Designing user research

4.1.5 Tunneling
Tunneling is another property to interfaces and their interconnections that must be en-
coded. The initial visualization encoded tunneled devices and connections with dashed
stroke as for “being less visible”. That is so because, in real systems, tunneling provides
a way to “shadow” one network operation from another, as mentioned in Chapter 3.
This approach conforms to the usability heuristics defined by Jakob Nielsen, “Match
between system and the real world” [14]. The other variant suggests higher opacity of
tunneled interfaces which serves the same purpose. (Figure 4.5)

Figure 4.5. Designs for tunneling encoding: dotted elements (A); lower opacity (B).

4.1.6 Initial information
As each interface is represented by a box, it is important, for one thing, to distinguish
them by some text on them, and, for another, to be able to read information about
the devices that is most crucial and useful efficiently. It means that each interface and
namespace box need to have a set of fields that is always visible. Also, there should not
be too much information on every small box which may confuse the user.

A complete list of possible fields being rendered on every node by default was gath-
ered. As for the interfaces:

. interface name. driver. IPv4 addresses. IPv6 addresses. MAC addresses. MTU. tunneling parameters. bond mode. firmware info. XTP loaded

11

4. User Research .
as for the namespaces:

. namespace name. amount of routing tables. amount of IP table rules. indication : IP table rules loaded

The lists were shown to each participant. They were asked to tell which fields they
would rather see on the corresponding boxes. Their feedback is listed in Table 4.1

4.1.7 Additional Information

For the time of this thesis development, the plotnetcfg output contained only sets of
routing tables for namespaces. These tables should be placed in convenient locations.
For one hand, they should be fully-visible to be studied by users efficiently. For another,
they should not drastically overlap the rendered graph, since most of use cases require to
study the routing table whilst tracing the nodes connections, as described in Chapter 3.
Several designs were created using wireframes made with Balsamiq Mockups 1. (Figure
4.6)

Figure 4.6. Designs for additional information display: info panel on the side (A); modal
window (B); shrinking node (C). Wireframes were made with Balsamiq Mockups.

1 https://balsamiq.com/wireframes/

12

https://balsamiq.com/wireframes/

. 4.2 Results of the user research

4.2 Results of the user research

Three direct one-on-one interviews were held. In this section, their results will be
presented with inputs provided by each surveyed interviewee (referred as Participant
1-3).

Participants were asked to vote for one or multiple options for each aspect of graph
visualisation discussed in previous section. The final scores were modelled with Google
Docs. 1

4.2.1 Graph arrangement

Figure 4.7. Score for graph arrangement

Overall participants liked the concept of graph arrangement to be hierarchical. The
most popular variant was “top-to-bottom”, two of three participants put it as their prior
preference. Although hierarchical variants received as many voices in total as different
types of arrangement (the former got 4 against the 4 for the latter), participants noted
that they preferred hierarchical arrangement over the alternatives.

However, some participants pointed out that too wide or too tall graph would be
hard to scroll through and to understand. This is one of the main flaws of the initial
implementation, which used this exact type of arrangement. Nevertheless, some of the
participants suggested to make the graph structure scalable through interactive design.
One of them proposed hiding big amounts of children when zooming out.

1 https://docs.google.com

13

https://docs.google.com

4. User Research .
4.2.2 Interfaces color

Figure 4.8. Score for interfaces color

Interface color question caused a lot of discussion. All of the participants had different
views on this topic. (Figure 4.8)

The first participant pointed out that visual division by color would be inaccessible
for color-blind users, which is a solid argument. Their preference was the optionC C,
which contained only red and gray.

The second participant initially liked the “green - red - gray” variant but agreed it
was inaccessible after I mentioned the remark from the first participant. Therefore, they
disliked all of the choices, but suggested “green - green crossed - gray” color scheme for
available, unavailable and shut down interfaces respectively.

The third participant disliked the idea of crossing interfaces that are unavailable, as
the crossing lines will overlap the useful information written on the box of the interface
node. Instead of that, they made a suggestion to make the division not by filling of the
nodes, but by the wider stroke. The available interfaces would be green, unavailable -
green with yellow stroke, shut down - green with red stroke. They also had the idea of
making a legend which would give users the means for understanding the relations of
colors with conveyed information.

14

. 4.2 Results of the user research

4.2.3 Arrows type

Figure 4.9. Score for arrows type

Regarding the arrows, participants mostly didn’t think this aspect was necessary to
render at all. According to Participant 2, as far as graph is arranged hierarchically
already, there is no need to add arrows.

4.2.4 Lines color

Figure 4.10. Score for lines color

All of the participants had an opinion that, with large amount of interfaces, the
lines color would not really contribute to better understanding of the overall structure.
Moreover, they heavily critiqued the B variant, with assigning lines the color similar to
the namespace color they’re heading to. According to the participants, if there would be
thousands of namespaces, it would mean thousand of colours for lines, so they wouldn’t
be really distinguishable. Therefore, all of the participants prefered “all back” variant.
(Figure 4.10)

15

4. User Research .
But, in addition to that, participants supported the idea of lines color changing with

user interaction. Two of them considered highlighting the lines when mouse is over
them. The third participant came up with a whole interactive model. According to
them, the lines would be all black by default, when clicking on line - line would have
color of the namespace; when mouse is over a namespace, all the lines coming from a
namespace would also highlight; when when mouse is over a node, lines coming from
the node would highlight.

Thus, as reported by the participants, for this case, the best solution is to develop
an interactive model.

4.2.5 Tunneling

Figure 4.11. Score for tunneling

In case of tunneling there wasn’t neither a real discussion, nor strong opinions from
the participants. (Figure 4.11)They either preferred the dotted variant or liked them
both. They also noted that the tunneling could be represented by a different type of
arrow, leaving nodes representation the same as other nodes.

4.2.6 Initial information

Participants’ feedback is listed in Table 4.1 with following answers:

. ++ - this field must be there. + - this field should be there. ? - this field should be there, but the participant hesitated (the reason may be listed
in remarks)

The remarks:

A) Participant 3: agree, but show it only if interface is virtual
B) Participant 3: agree, but 1) addresses are too long to fit in the boxes; 2) there may

be more than 1 address, which would cause even more visual complications
C) Participant 3: hide MTU to a secondary information panel

16

. 4.2 Results of the user research

Participant 1 2 3 remarks
INTERFACES
interface name ++ ++ +
driver ++ + ? A
IPv4 addresses ? + ? B
IPv6 addresses ? + ? B
MAC addresses + ++ +
MTU + + ? C
tunneling parameters
bond mode
firmware info
XTP loaded +
NAMESPACES
namespace name + + ++
amount of routing tables +
amount of IP table rules +
indication : IP table rules loaded +

Table 4.1. Feedback for options of initial information to be written on interface boxes

4.2.7 Additional Information
In this case, participants either liked the idea of having a panel on the side, or suggested
to make a floating panel near the node that was selected.

The third participant made up an interactive model as follows: when mouse is over
a node, a small floating panel with additional info appears near it; when user clicks on
the node, a bigger panel with more information appears. Another participant thought
of buttons inside every interface, so the additional info could be revealed after clicking.

It is noteworthy that all of the participants came up with the same idea of dividing
additional info about nodes into expandable sections. Moreover, they all thought about
it independently, therefore, it is intuitive to organise it this way.

17

Chapter 5
Design

In this chapter is about creation and ideas behind the final design of the interactive
graph visualization from both graphical and technological perspectives.

5.1 Visual interactive design
Based on the data and opinions from users described in the previous chapter and on
additional research an interactive design was created to visualise all previously men-
tioned aspects of the graphs. Each subsection will be divided into two parts. The first
will describe the final visual decision. The second will be discussing possible problems
faced by the users as a result of chosen decision as well as by possible solutions. The
issues described in the second part have occurred either during the design development
or during the implementation.

5.1.1 Graph arrangement
Overall graph structure was decided to be hierarchical: top to bottom.

Noah Iliinsky and Julie Steele state that items located on top of the page are treated
as more important than items on the bottom. People mostly read from the top down,
so top elements will be read first. [7] This view is proved by the result of user research,
in which all three participants stated that this is the most intuitive option. Thus, the
overall structure was designed to be a vertical hierarchy with roots on top.

Each visualization is expected to contain several hierarchical structures. This must
be handled by the design. Regarding visualisation of separate hierarchies which are not
by any means connected, it is important to mention the notion of semantic distance.
This term refers to how close or distant two units of language are in terms of their
meaning. [15]. In the present thesis semantic distance will be used only for the task of
locating fully independent graphs apart from each other.

Issue:

. long horizontal image
Because the overall structure is chosen to be vertically hierarchical and, because in

most cases network structure is consisted of many small independent structures, the
final visualizations are expected to be horizontally long. This would not only cause
complications in moving through the whole plane, but also in finding a particular
interface node of namespace node.

Possible solutions :

. to implement a way to perform fast zoom in and out

. to implement horizontal scrollbars

. “bunch of children”: if node has a huge amount of childless children, hide them
into one node or cloud representing bunch of nodes which can be expanded

. to add search: when user enters an interface name in search field, the interface is
highlighted

18

. 5.1 Visual interactive design

. many nodes in a single tree are on one level
Possible solution: in case of bigger amount of nodes on one hierarchical level,

group them into a few rows (ensure there is enough padding between levels for visible
hierarchy)

5.1.2 Nodes color

Interfaces color. A color is assigned to each state:
down - red. up - gray, up no link - white, none - yellow.
This distribution is based on the discussion with surveyed users.
Issue: visual categorical division must be accessible - i.e. not depend on color only.
Color accessibility is important, as it lets users with visual impairments to understand

the data as efficiently as non-visually-impaired users. To rely solely on color is unethical.
[16].

Possible solution : To decrease dependency on color, it was decided to use patterns.

Figure 5.1. Raw design of interface state representation. Gray rectangles in the center will
contain text about nodes.

For yellow and red states, stripes and crossed pattern were added respectively. Yellow
and stripes correspond to their traditional meaning of caution, red and crosses were
chosen to represent prohibition or unavailability.

This design was tested for the most common types of color-blindness with use of
Adobe Photoshop CC Proof Setup function for color-blindness [17] https://helpx.adobe.com/photoshop/using/proofing-
colors.html. Results are shown on Figures 5.2, 5.3

Figure 5.2. Appearance of interface node design for protanopia color-blindness type.

19

5. Design .

Figure 5.3. Appearance of interface node design for deuteranopia color-blindness type.

Namespaces color. In the case of present design task, there is no significant reason
to visually divide namespaces into categories, thus they were decided to be in a single
color.

5.1.3 Arrows
After user research, it was decided not to render arrows at all. Connections between
nodes are bidirectional and data flow goes both ways, therefore arrows would not really
contribute to understanding the network structure. Moreover, the arrows might bring
harm to the overall simplicity and could cause uncertainty in data interpretation by
user, as their presence does not have a meaningful reason. It is also worth mentioning
that arrow direction traditionally represent hierarchy, which should be rendered in this
visualization. Despite that, the graph would be already hierarchically structured.

Issue: lines are going through nodes they do not belong to (Figure 5.4)
It is difficult to implement an algorithm which would produce a complex graph with-

out nodes being crossed by the lines that do not belong to said nodes. This problem is
illustrated in Fig. N5. Moreover, the visualization must give users the ability to move
any interface node, which adds complexity to the problem of node rearrangement.

Figure 5.4. Illustration of the problem with lines going through nodes they do not relate
to.

Possible solution:

20

. 5.1 Visual interactive design

Hierarchical parents and children would get round marks at the end of the line.
(Figure 5.5) Because marks are similar on both sides, they do not represent direction.
Also, marks resemble real-world hardware plugs, which brings Compatibility with Re-
ality property to the visualization, which is one of the Nielsen heuristics for usability
inspection. [14]

Figure 5.5. Raw design for marks at the end of the lines.

5.1.4 Lines color and interaction

In static condition, i.e. with no user input, lines between interface nodes would be
black. User research have shown that the less confusing option is to change lines color
only to highlight some nodes upon user interaction. Thus, an interaction model for
mouse movements and clicks was developed as follows:

. initial state

. action: no action

. line color: black

. illustration: Figure 5.5

. mouse over line

. action: mouse over line L between interface nodes I1, I2

. line color: L, N1 and N2 are highlighted

. illustration: Figure 5.6

21

5. Design .

Figure 5.6. Illustartion for mouse over interaction with lines

. mouse over namespace rectangle
. action: mouse is over namespace node N
. line color: all lines coming to/from N are highlighted
. illustration: Figure 5.7

Figure 5.7. Illustartion for mouse over interaction with namespaces

. mouse over interface rectangle
. action: mouse is over interface node I

22

. 5.1 Visual interactive design

. line color: all lines coming to/from I are highlighted, as well as all interfaces I is
connected to

. illustration: Figure 5.8

Figure 5.8. Illustartion for mouse over interaction with interfaces

Issue: highlighting with color is not enough for bigger graphs.
Rendered graphs are in most cases expected to be huge, with big amount of nodes

displayed. Firstly, even with smart hierarchical structure, some connections between
nodes may end up far beyond the screen. Secondly, even with highlighted lines it might
be hard to concentrate on two specific nodes with a complex detailed structure around
them.

Possible solution: lower opacity of elements that are not highlighted (Figure 5.9)
Make highlight and opacity decrease last when user makes a click, return to initial
state after the second click

Figure 5.9. Overall opacity decreases when specific elements are highlighted

23

5. Design .
5.1.5 Tunneling

After the user research and further analysis, it was decided to use the initial design
of tunneled interfaces and connections based on the Graphviz implementation where
the stroke between the tunneled nodes is dashed. The rest of the interface design will
remain the same as for their non-tunneled contreparts (Figure 5.10).

Figure 5.10. Raw design of tunneling representation.

5.1.6 Initial info
User research has shown that the following fields are best to be shown in following scale
configurations

Static info on interfaces. normal scale
text on the box: interface name
argumentation:

. interfaces are rather small

. many information on each of hundreds of visible boxes is confusing
illustartion: Figure 5.11

Figure 5.11. When graph is in normal scale, there are interface names on interface boxes.

24

. 5.1 Visual interactive design

. graph is scaled down
text on the box: none (interfaces are only filled with their status color and pattern)
argumentation:

. it’s easier to find a red or yellow interface fast

. any text on small boxes is unreadable

illustartion: Figure 5.12

Figure 5.12. When graph is scaled down, there is no info on interface boxes.

. graph is scaled up
text on the box:

. interface name

. MAC address

. MTU

argumentation:
. more space for text
. the most important info according to users

illustartion: Figure 5.13

Figure 5.13. When graph is scaled up, there is a set of fields displayed on the interface
boxes.

Static info on namespaces

. any scale
static text in the corner:

. namespace name

25

5. Design .
. count of routing tables loaded

argumentation:
. fast way to get number of routing tables at any scale
. information in the corner would not overlap anything

5.1.7 Additional Information
As before, the design described below is based on the interviews with the users. Addi-
tional info would appear after following actions:

. mouse click on interface
consequence: a floating panel near the interface appears with:

. interface name

. interface state

. driver

. IPv6, IPv4 addresses

. MAC address

. MTU

(panel is dismissed by clicking on x button). mouse click on namespace
consequence: a floating panel appears with a set of routing tables

5.1.8 Color palette
Aesthetics contribute a lot to visual appeal of any webpage. Users not only find visually
attractive websites to be more usable, but also tend to be more tolerant to usability
issues on such webpages [18]. This phenomenon is described in great detail in the book
“Emotional Design: Why We Love (or Hate) Everyday Things” by Don Norman [19].

Therefore, because color palette is one of the few fully predictable aspects of every
visualization, it should be designed as visually pleasing.

The color palette for this visualization was generated by COLOR SUPPLY 1 application
as shown in Figure 5.14.

Figure 5.14. Color palette generated with COLOR SUPPLY tool.

While red and yellow would be used as primary colors for states as will be described in
section , green and blue would be used for namespace colors and highlights respectively.
Another color to be used is gray, also assigned to an interface state. (Figure 5.15)

Figure 5.15. Gray color for the color palette
1 https://colorsupplyyy.com/app

26

https://colorsupplyyy.com/app

. 5.2 Technology

5.2 Technology
The solution must run on any platform and have minimal installation requirements. As
web browsers are ubiquitous, a suitable option is to develop the program with HTML
and a scripting language. Thus, the tool is developed as a browser application run-
ning on JavaScript (the latest version of the language at the time is ES6/7). Also,
JavaScript possesses native APIs to read and parse JSON from file, which is useful for
our purposes. The graph structure would be represented in SVG format, which is easily
created and manipulated by JavaScript. Though implementation of a SVG manipula-
tion library from scratch would be too complicated and time-consuming. Therefore, for
these purposes, it was decided to use D31 framework.

5.2.1 D3.js

Data-Driven Documents or D3.js is a JavaScript library for data visualization which
uses web standards. D3 provides:

. a data-driven approach to the visualization;. an interface to create and manipulate SVG elements;. a framework for variable user interaction, such as dragging and dropping specific
elements, panning and zooming the SVG container;. a framework for programming graphs with a possibility of programming node behav-
ior, i.e. node arrangement would be dictated by the predefined rules.[20]

5.2.2 D3 Force

D3 Force module contains a simplified implementation of a velocity Verlet[21] numer-
ical integrator which simulates physical forces on particles. It is practically useful for
generating interactive graphs representing network and hierarchy relations. [22]

Figure 5.16. Examples of D3 Force visualization. Sources: 2, 3

The framework allows to create a so called “force simulation” and define the forces
for its calculations of node positions. The force itself is a function which modifies nodes’
positions or velocities; it accepts a D3 node structure as an argument and recalculates
its geometrical “x”, “y” values according to its rules. In force simulation, calculations
are held within interactions. After each interaction each nodes position is recalculated
for every force to approach the optimal position.

1 https://d3js.org
2 http://bl.ocks.org/mbostock/ad70335eeef6d167bc36fd3c04378048
3 https://bl.ocks.org/mbostock/95aa92e2f4e8345aaa55a4a94d41ce37

27

https://d3js.org
http://bl.ocks.org/mbostock/ad70335eeef6d167bc36fd3c04378048
https://bl.ocks.org/mbostock/95aa92e2f4e8345aaa55a4a94d41ce37

5. Design .
D3 offers a range of its default configurable forces, such as collision force (a force that

prohibits node overlapping by defining unpassable circles around them), force-X and
force-Y (a node is approaching a specified “x” or “y” value), centering force (a node
is approaching a specified “x” and “y” values) etc. and also allows to program custom
force functions.[20]

5.3 Architecture

1) Collect JSON data from the user.
2) From these data, separate the information about namespaces, interfaces and inter-

faces’ relations into arrays of three different data structures, which would be suitable
for further D3 manipulations.

3) Calculate default positions for nodes representing interfaces and rectangles represent-
ing namespaces.

4) Render a force-directed graph with D3.

Because the solution depends heavily on D3, which is used at the end of the pipeline,
the order of design and implementation was reversed relative to the rendering process.

5.3.1 Render
The rendering interface must be able to:

. accept sets of: objects representing interfaces, objects representing links between
interfaces, objects representing namespaces (nodes and links objects are demanded
to be defined by the D3). render them as D3 force-directed graph similar to Figure5.17

Figure 5.17. Graph generated by the initial implementation of rendering interface as an
example of a supposed force-directed graph structure

Considering the typical network topology, the graph must have a tree-like structure
(a child node may have one or many parent nodes and vice versa).

To fulfill the requirement of understandable node arrangement, it was decided to
place nodes horizontally into corresponding hierarchical levels, i.e. the parent nodes

28

. 5.3 Architecture

would always be on the left and the child nodes would be on the right. The desired
alignment can be managed by D3’s force type “forceX” which makes node move towards
the given “x”, as if it was magnetically attracted.

To avoid overlapping nodes, the use of D3s’ default collision force mentioned before
is a reasonable option.

As for the namespace rectangles, they would have a static predefined position and
the interface nodes would not be allowed to leave the area of a namespace they belong
to. It would be provided by a custom force which would control whether supposed
future position is situated inside the predefined rectangle (if it doesn’t, the node will
be left on the brink of the rectangle).

5.3.2 Handling data for rendering

The general plotnetcfg JSON output structure is an object, containing a set of names-
pace objects, which contain a set of interface objects providing most of the metadata.
As stated before, on this step, the data from JSON must be put into objects which will
be suitable for the rendering interface. There must be separate classes for interfaces and
namespaces which would represent the graphical elements and contain the data. These
classes are revealed on the Figure 5.18. Objects in the final implementation contain
more fields and methods than listed in the Figure 5.18, but weren’t mentioned because
of being irrelevant to the current discussion.

Figure 5.18. Class diagram for objects that will be used by D3

The Node class contains the data about geometrical position and size. The Inter-
faceNode class extends it by “json” field which is meant to hold all the metadata. Class
NamespaceNode contains metadata of the namespace in “json” field and a reference to
a set of IntefaceNodes included in the namespace.

29

5. Design .
Because a JSON input of a specific format is parsed, it is expected that there would

be no empty namespaces as well as interfaces without namespaces containing them,
therefore the logical relation between NamespaceNode class and InterfaceNode class is
strictly “1 to 1...*”.

5.3.3 Getting data from the user
Because plotnetcfg output is generated into a file on user’s computer, acquisition of
their data is realised through typical Select file... button powered by Javascript native
File API 1.

1 https://developer.mozilla.org/en-US/docs/Web/API/File

30

 https://developer.mozilla.org/en-US/docs/Web/API/File

Chapter 6
Implementation

The final program is a web page with a file selection input. After the user chooses a
JSON file from their computer, its contents are parsed and rendered into an interactive
graph visualization (Figure 6.1)

Figure 6.1. The interactive graph visualization.

The resulting force-directed graph:

. contains nodes for interfaces, which are draggable, but could not leave the area of
their namespace or overlap over each other;. displays interfaces’ metadata and routing tables of namespaces inside the floating
windows;. is pannable; the panning executes when user drags the plane by the space outside
interface nodes;. is zoomable; the graph scales in response to mouse wheel scrolling or touchpad scale
gestures.

The installation process is described in Appendix D.

6.1 Analysis of the implementation
As for the requirements stated in the Chapter 2, the final implementation suits all of
the following:

. R1. Read input file in a JSON or in a DOT format. It parses JSON provided by the
user.. R2. Be platform independent and work on most computers without a need of instal-
lation of specific software As a web-page, it is able to run on any of the modern
browsers, which exist for most of the platforms. It was tested in Google Chrome,

31

6. Implementation .
Opera, Microsoft Edge and Safari. The installation process is simple as well and does
not require any additional software to be installed besides any modern browser.. R3. Work offline. The program does not communicate with any external sources,
so it does not require Internet connection in runtime.. R4. Draw the network interfaces as nodes and draw the links and relations between
them as lines connecting them. It does, as seen on Figure 6.1.. R5. Display metadata. Metadata are displayed inside floating windows (Figure 6.2).. R6. The data should be presented in a comprehensible arrangement. The graph
structure is implemented according to the design described in Chapter 5, which is
based on talks with user mentioned in Chapter 4. It will also be tested from this
perspective in Chapter 7.. R7. Allow changing of placements of the elements. It is implemented as well. User
interaction possibilities are listed above.

Figure 6.2. Example of metadata displayed

Thence, the final implementation provides all the necessary functionality. However,
it is not possible to assume its usability. Thus, additional testing with real users must
be held.

32

Chapter 7
User testing

This chapter describes the testing process of the final implementation by the users.

7.1 Testing design
A quantitative testing was held, comparing two programs for debugging virtual com-
puter networks. The first one is sosreport 1, and the second is interactive graph visu-
alization designed in the present work. Sosreport is a program that gets configuration
information from the computer it is running on. Its output is a set of files to be analyzed
by the user. Plotnetcfg works in a similar way. [23]

7.1.1 Target group
Target group are network administrators or network developers. They are expected to
have previous experience with sosreport.

7.1.2 Methodology
The programs were evaluated by participants using System Usability Scale. It is a
commonly used and reliable method of measuring usability created by John Brooke.
Participants were filling in questionnaires containing ten statements each with five re-
sponse points representing a scale from ‘strongly disagree’ to ‘strongly agree’. The
responses are scored and their numerical values are used for further statistical analysis.
[24]

In addition to that, every user was asked to share their own opinion on the imple-
mented program. Riccardo Mazza states that even though controlled experiments are
helpful in estimation of efficiency and usability, they are less appropriate when it comes
to discovering problems that can show up during the observations and for getting in-
formation on user’s preferences, impressions, and attitudes. According to him, the best
way to determine if a certain visual representation is useful for a certain target group
is by asking participants explicitly. [25]

7.1.3 System Usability Scale Questionnaires
A test questionnaire consists of 10 statements about participants’ experience with
evaluated program. Each claim can be answered with one of five options from
strongly disagree to strongly agree. Those are “ strongly disagree ”, “ I don’t
know ”, “ I slightly agree ”, “ I strongly agree”.

The statements are listed below.

. Q1 I would like to use this program frequently.. Q2 I find this program unnecessarily complex.. Q3 I think this program is easy to use.
1 https://github.com/sosreport/sos

33

https://github.com/sosreport/sos

7. User testing .
. Q4 I think I would need the support of a technical person to be able to use this

program properly.. Q5 I think the various functions in this program are well integrated.. Q6 I think there is too much inconsistency in this program.. Q7 I would imagine that most people would learn to use this program very quickly.. Q8 I found this program very cumbersome to use.. Q9 I feel very confident using this program.. Q10 I needed to learn a lot of things before I could get going with this program. [24]

The actual questionnaires were distributed using Google Forms 1.
Questionnaire for Sosreport: 2

Questionnaire for interactive graph visualization: 3

7.2 Testing
During the testing participants were asked to complete two similar debugging tasks
using each of the discussed programs and then fill the questionnaires related to each
program. They also could gave additional voluntary feedback in form of open text.

The tasks were designed by this work’s supervisor Jiri Benc and are enclosed in
Appendix A.

7.3 Measuring the results
Every answer from both questionnaires was evaluated according to the Table 7.1. Table
7.2 shows the answers by each participant as well as a final test scores for each of the
programs. One of the participants didn’t fill the form for sosreport because of time
limitations.

Answer score for odd statements score for even statements
I strongly disagree 1 5
I slightly disagree 2 4
I don’t know 3 3
I slightly agree 4 2
I strongly agree 5 1

Table 7.1. Evaluation for statements from testing questionnaires.

7.3.1 Statistical analysis
Null hypothesis: “In terms of debugging virtual computer network and understanding
it’s structure, it is true that sosreport has the same usability as interactive graph tool
developed by Koshchii Oleksandra”.

The final score for data mentioned above was evaluated using a paired sample t-test
[26] with statistical significance threshold p ≤ 0.05.

1 https://www.google.com/forms/about/
2 https://docs.google.com/forms/d/e/1FAIpQLSfT3QRps9636yCDJ6p4l03rtpZIzB_icRRqMwE9pfLWqqxPTQ/

viewform?usp=sf_link
3 https://docs.google.com/forms/d/e/1FAIpQLScKYtyY6P0mDthp3TB0qkxzAefhdofQIDoQGNvQD2d4oWoXxw/

viewform?usp=sf_link

34

https://www.google.com/forms/about/
https://docs.google.com/forms/d/e/1FAIpQLSfT3QRps9636yCDJ6p4l03rtpZIzB_icRRqMwE9pfLWqqxPTQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfT3QRps9636yCDJ6p4l03rtpZIzB_icRRqMwE9pfLWqqxPTQ/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScKYtyY6P0mDthp3TB0qkxzAefhdofQIDoQGNvQD2d4oWoXxw/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScKYtyY6P0mDthp3TB0qkxzAefhdofQIDoQGNvQD2d4oWoXxw/viewform?usp=sf_link

. 7.3 Measuring the results

Participant 1 2 3 4 5 6 7 8 9 10 sum
sosreport
1 2 5 2 5 1 3 1 2 4 2 27
2 5 3 3 3 3 5 3 3 5 1 34
3 2 2 2 2 2 5 1 1 2 1 20
4 3 4 2 5 2 2 5 2 4 5 34
interactive graph visualisation
1 4 4 4 5 4 5 4 5 4 3 42
2 3 5 4 5 4 5 5 2 4 5 42
3 5 5 5 5 4 5 5 5 5 4 48
4 5 4 5 5 5 4 5 4 5 5 47
5 5 5 2 5 2 5 5 2 2 4 37

Table 7.2. The final score distribution.

Independent variables are two selected programs.
Dependent variables are the participants’ responses to the questionnaires’ statements.
The value of p is 0.0330.
The result is significant because p < 0.05. (where p is the probability of the null

hypothesis value)
The calculation was performed using the GraphPad program 1. Full GraphPad out-

put is enclosed in Appendix B.
Therefore, statistical analysis supports the following claim:
“In terms of debugging virtual computer network and understanding it’s structure, it

is not true that sosreport has the same usability as interactive graph tool developed by
Koshchii Oleksandra”.

Figure 7.1. Scatter dot plot for test scores

Since average score of graph visualization is higher than that of sosreport (86,4 for
the former and 62,4 for the latter), and, also, as seen on Figure 7.1, it is possible to
claim that:

“In terms of debugging virtual computer network and understanding it’s structure,
interactive graph tool developed by Koshchii Oleksandra is more usable than sosreport”.

7.3.2 Other feedback
Participants mostly had similar problems and remarks regarding their experience with
the interactive graph visualisation. Overall, according to them, their feelings about
1 https://www.graphpad.com/

35

https://www.graphpad.com/

7. User testing .
the program were positive. One of the Participants stated that, with interactive graph
visualisation, they finished their task two times faster than with sosreport.

This is a complete list of issues faced by users during the testing. Each statement is
followed by a number of users who pointed it out.

. “search” field - when user entered an IP address, the interface wasn’t found, unless
they added a netmask to it (5/5). program lacked horizontal scroll bar (5/5). Open vSwitch rules were not implemented yet (5/5). when users tried to build a path for data flow, only a part of it could be highlighted;
it would be better, if there was a possibility to expand highlighted selection (4/5). program used a lot of CPU performance during rendering (3/5). “search” field - users expected to be able to search with regular expressions they are
used to (2/5). the window with routing tables had fixed position and couldn’t be folded - sometimes
it overlapped important content (2/5). as an alternative to horizontal scroll bar, users expected to use a “teleport” function,
which would pan the whole graph from one endpoint to another after user would
click on a circular end mark (2/5). there was no distinctive visual difference between bridges, bonds a Open vSwitches,
which could benefit to overall understanding of network structure (2/5). if namespaces had different order, in some cases, graph could have had cleaner struc-
ture and be more comprehensible (1/5)

Further analysis of these issues is beyond the scope of this thesis.

7.4 Conclusions of the testing
Considering the results of statistical analysis mentioned in Section 7.3.1 and users’
feedback, it is possible to claim that the developed program succeeds as a tool for
debugging virtual computer networks.

36

Chapter 8
Conclusion

This document described the process of design, implementation and testing of the
interactive graph visualization depicting connections and structure of virtual computer
networks.

It started with a basic analysis and discussion of other available solutions and ap-
proaches to network visualisation, which led to a necessity to develop and implement
a new solution. A user research was conducted, focusing on what visual and interac-
tive structure the users would prefer to see in the developing visualization. Based of
this data, an interactive visual design was created and a description of used technology
and assembled architecture is provided in this thesis. The final implementation was
analyzed according to initial requirements and tested by users.

The final user testing compared the interactive graph tool with a program that is
commonly used in the field. The testing had proven that in terms of debugging virtual
computer network and understanding it’s structure the interactive graph tool is more
usable than its counterpart.

To summarise, it is safe to claim that even though the final implementation has
some issues and can be improved, it succeeds as a tool for virtual computer network
debugging and fulfills all given requirements.

37

References

[1] Jiří Benc. plotnetcfg, Tool to visualize network config.
https://github.com/jbenc/plotnetcfg. visited on 2019-5-16.

[2] Graphviz - Graph Visualization Software.
https://www.graphviz.org. visited on 2019-5-16.

[3] Gephi, The Open Graph Viz Platform.
https://gephi.org/. visited on 2019-5-16.

[4] M. Tim Jones. Virtual networking in Linux.
https://help.ubnt.com/hc/en-us/articles/115005778547-Intro-to-Networking-
Virtual-Private-Networks-Tunneling. visited on 2019-5-21.

[5] The DOT Language.
https://www.graphviz.org/doc/info/lang.html. visited on 2019-5-20.

[6] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
2 edition. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2003. ISBN 0-201-19930-0.

[7] Noah Iliinsky Julie Steele. Designing Data Visualizations. O’Reilly Media, Inc.,
2011. ISBN 9781449314774.

[8] Hangbin Liu. Red Hat Developer. Introduction to Linux interfaces for virtual
networking. 2018.
https: / / developers . redhat . com / blog / 2018 / 10 / 22 / introduction-to-linux-
interfaces-for-virtual-networking. visited 2019-5-21.

[9] A Linux Foundation Collaborative Project. Bonding. 2016.
http://docs.openvswitch.org/en/latest/topics/bonding/. visited 2019-5-21.

[10] A Linux Foundation Collaborative Project. What Is Open vSwitch? 2016.
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/. visited 2019-5-21.

[11] Ciro da Silva da Costa. Using network namespaces and a virtual switch to isolate
servers. 2018.
https: / / ops . tips / blog / using-network-namespaces-and-bridge-to-isolate-
servers/. visited 2019-5-21.

[12] Inc. Ubiquiti Networks. Intro to Networking - Virtual Private Networks and Tun-
neling.
https://www.ibm.com/developerworks/linux/library/l-virtual-networking/. vis-
ited on 2019-5-21.

[13] J. Rubin. Handbook of Usability Testing. Wiley, 1994. ISBN 0471594032.
https://dl.acm.org/citation.cfm?id=561768.

[14] J. Nielsen. Enhancing the explanatory power of usability heuristics. Boston, MA:
Proceeding, CHI ’94 Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1994. ISBN 0-89791-650-6.
https://dl.acm.org/citation.cfm?id=191729.

38

https://github.com/jbenc/plotnetcfg
https://www.graphviz.org
https://gephi.org/
https://help.ubnt.com/hc/en-us/articles/115005778547-Intro-to-Networking-Virtual-Private-Networks-Tunneling
https://help.ubnt.com/hc/en-us/articles/115005778547-Intro-to-Networking-Virtual-Private-Networks-Tunneling
https://www.graphviz.org/doc/info/lang.html
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking
http://docs.openvswitch.org/en/latest/topics/bonding/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://ops.tips/blog/using-network-namespaces-and-bridge-to-isolate-servers/
https://ops.tips/blog/using-network-namespaces-and-bridge-to-isolate-servers/
https://www.ibm.com/developerworks/linux/library/l-virtual-networking/
https://dl.acm.org/citation.cfm?id=561768
https://dl.acm.org/citation.cfm?id=191729

. .
[15] Graeme Hirst Saif Mohammad. Measuring Semantic Distance using Distributional

Profiles of Concepts.
http://saifmohammad.com/WebDocs/Measuring-Semantic-Distance.pdf. visited on
2019-5-16.

[16] Justin Rey Reyna. Here’s What You Need to Know About Color Accessibility in
Product Design.
https://uxplanet.org/heres-what-you-need-to-know-about-color-accessibility-
in-product-design-aecbd0c30628. visited on 2019-5-16.

[17] Proofing colors. Adobe Photoshop User Guide
https://helpx.adobe.com/photoshop/using/proofing-colors.html.

[18] The Interaction Design Foundation. What is Aesthetics?
https://www.interaction-design.org/literature/topics/aesthetics. visited on
2019-5-16.

[19] Don Norman. Emotional Design: Why We Love (or Hate) Everyday Things. Basic
Books; 1 edition, 2005. ISBN 978-0465051366.
https://www.nngroup.com/books/emotional-design/.

[20] Scott Murray. Interactive Data Visualization for the Web, 2nd Edition. O’Reilly
Media, 2017. ISBN 9781491921296.
https: / / www . oreilly . com / library / view / interactive-data-visualization /
9781491921296.

[21] Loup Verlet. Computer ”Experiments” on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules. Phys. Rev.. 1967, 159 DOI 10.1103/Phys-
Rev.159.98.

[22] d3-force.
https://github.com/d3/d3-force. visited on 2019-5-16.

[23] Bryn Reeves. SoS .
https://sos.readthedocs.io/en/latest/index.html. visited on 2019-5-19.

[24] John Brooke. SUS-A quick and dirty usability scale (in ”Usability Evaluation in
Industry”, PW Jordan, B Thomas, I McLelland, BA Weerdmeester (eds)). London:
Taylor and Francis, 1996. ISBN 978-0748404605.

[25] Riccardo Mazza. Introduction to Information Visualization. Springer Publishing
Company, Incorporated , 2009 . ISBN ISBN 878-1-84800-219-7.
https://dl.acm.org/citation.cfm?id=1529936.

[26] M. Navara. Pravděpodobnost a matematická statistika: Skriptum FEL ČVUT,.
Praha: 2007.
http://cmp.felk.cvut.cz/˜navara/pms/.

39

http://saifmohammad.com/WebDocs/Measuring-Semantic-Distance.pdf
https://uxplanet.org/heres-what-you-need-to-know-about-color-accessibility-in-product-design-aecbd0c30628
https://uxplanet.org/heres-what-you-need-to-know-about-color-accessibility-in-product-design-aecbd0c30628
https://helpx.adobe.com/photoshop/using/proofing-colors.html
https://www.interaction-design.org/literature/topics/aesthetics
https://www.nngroup.com/books/emotional-design/
https://www.oreilly.com/library/view/interactive-data-visualization/9781491921296
https://www.oreilly.com/library/view/interactive-data-visualization/9781491921296
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98
https://github.com/d3/d3-force
https://sos.readthedocs.io/en/latest/index.html
https://dl.acm.org/citation.cfm?id=1529936
http://cmp.felk.cvut.cz/~navara/pms/

Appendix A
Tasks

These tasks were developed by this thesis’s supervisor. They were used during the final
usability testing mentioned in Chapter 7.

. Task 1:
In the vm-night container, a ping 192.168.147.183 command is executed.

Through what chain of interfaces does the traffic flow?
In the same vm-night container, a ping 198.145.29.83 command is executed.

Through what chain of interfaces does the traffic flow now?. Task 2:
In the vm-party container, a ping 192.168.100.133 command is executed.

Through what chain of interfaces does the traffic flow?
In the same vm-night container, a ping 195.113.144.230 command is executed.

Through what chain of interfaces does the traffic flow now?

41

Appendix B
GraphPad Output

Table Analyzed Data 1
Column B interactive graph visualization vs. Column A sosreport
Paired t test
P value 0.0330
P value summary *
Significantly different (P ¡ 0.05)? Yes
One- or two-tailed P value? Two-tailed
t, df t=3.754 df=3
Number of pairs 4
How big is the difference?
Mean of differences 16
SD of differences 8.524
SEM of differences 4.262
95% confidence interval 2.436 to 29.56
R squared (partial eta squared) 0.8245
How effective was the pairing?
Correlation coefficient (r) -0.4078
P value (one tailed) 0.2961
P value summary ns
Was the pairing significantly effective? No

42

Appendix C
Abbreviations

Here is a list of abbreviations used in this thesis.

JSON JavaScript Object Notation
HTML HyperText Markup Language

CSS Cascading Style Sheets
SVG Scalable Vector Graphics

ES ECMAScript
D3 Data Driven Documents

VLAN Virtual Local Area Network

43

Appendix D
Installation and running

These steps must be executed to install and run the latest version of the
tool.

1) Clone or download the repository: https://github.com/sashkoboom/
redhat_network_visualization

2) Go to redhat_network_visualization/run and open “index.html” in
your browser.

3) To launch the algorithm, push “Select file...” button and select one of the
.json files located in redhat_network_visualization/samples. This
folder contains some examples of the plotnetcfg JSON output.

44

https://github.com/sashkoboom/redhat_network_visualization
https://github.com/sashkoboom/redhat_network_visualization
redhat_network_visualization/run
redhat_network_visualization/samples

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Basic analysis
	Requirements
	Possible solutions
	Graphviz cite [graphviz]
	Gephicite [gephi]
	Conclusion of the basic analysis

	Understanding virtual computer networks
	Elements and processes
	Network interfaces
	Network namespaces
	Tunnelling

	Major use cases
	Goals for the visualisation

	User Research
	Designing user research
	Graph arrangement
	Interfaces color
	Arrows type
	Lines color
	Tunneling
	Initial information
	Additional Information

	Results of the user research
	Graph arrangement
	Interfaces color
	Arrows type
	Lines color
	Tunneling
	Initial information
	Additional Information

	Design
	Visual interactive design
	Graph arrangement
	Nodes color
	Arrows
	Lines color and interaction
	Tunneling
	Initial info
	Additional Information
	Color palette

	Technology
	D3.js
	D3 Force

	Architecture
	Render
	Handling data for rendering
	Getting data from the user

	Implementation
	Analysis of the implementation

	User testing
	Testing design
	Target group
	Methodology
	System Usability Scale Questionnaires

	Testing
	Measuring the results
	Statistical analysis
	Other feedback

	Conclusions of the testing

	Conclusion
	References
	Tasks
	GraphPad Output
	Abbreviations
	Installation and running

