
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 20, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Academic Collaboration Information System

 Student: Bc. Petr Jirásko

 Supervisor: Ing. Marek Suchánek

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The aim of the thesis is to create an easily extensible information system supporting scientific research
activities within academic institutions internally as well as externally (with partners from other institutions).
The system must support the whole life-cycle of collaborative production of various types of publications.

- Analyze types of scientific publications and the process of their preparation and creation up to publishing
and indexing. Specify requirements for the system.
- Briefly research current solutions for collaboration upon publications.
- Design a system supporting the process of publishing activities. During the designing, take into account
extensibility of the system and consider integrations of suitable external services.
- Implement the designed system and test it thoroughly. Justify selection of the programming language and
other technologies (e.g. a web framework).
- Evaluate benefits of the system for users and compare it with alternative applications.

References

Will be provided by the supervisor.

Master’s thesis

Academic Collaboration Information
System

Bc. Petr Jirásko

Katedra softwarového inženýrství
Supervisor: Ing. Marek Suchánek

May 9, 2019

Acknowledgements

I would like to thank my tutor, Ing. Marek Suchánek, for all the care, imme-
diate answers to my emails and great help with this thesis. I would also like
to thank Ing. Robert Pergl, Ph.D. for helping me with design of the system.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In In Prague on May 9, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Petr Jirásko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Jirásko, Petr. Academic Collaboration Information System. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Cílem mé diplomové práce je navržení a implementace aplikace, která bude
usnadňovat vědeckou spolupráci při psaní publikací. Práce obsahuje popis
vytváření vědeckých článků, návrh systému, jeho implementaci a testování.

Klíčová slova Vědecká spolupráce, usnadnění, integrace

Abstract

The aim of my diploma thesis is design and implementation of an applica-
tion, that would facilitate scientific collaboration during process of creating
publications. This work contains description of publication creation process,
design of the system as well as its implementation and testing.

Keywords Scientific collaboration, facilitation, integration

vii

Contents

Introduction 1
Aim of this thesis . 1
Structure of this thesis . 1

1 Analysis of current situation and requirements on the ap-
plication 3
1.1 Scientific publications . 3
1.2 Current tools for cooperation 6
1.3 SciCol . 8
1.4 Requirements . 8
1.5 Use cases . 12

2 Design 25
2.1 Type of application . 25
2.2 Used technologies . 25
2.3 Architecture . 27
2.4 OntoUML model . 29
2.5 Relational Model . 30
2.6 Wireframes . 32

3 Implementation 37
3.1 Authentication and authorization 37
3.2 Serialization . 39
3.3 Templates . 41
3.4 Resources . 43

4 Testing 49
4.1 Testing environment . 49
4.2 Unit testing . 49

ix

4.3 Functional testing . 50
4.4 UI testing . 50

5 Further possibilities 53
5.1 New external services . 53
5.2 Tighter integration with services 53

Conclusion 55
Benefits and omparison with other applications 55
Dissuades of application . 55
Fullfilment of assignment . 55

Bibliography 57

A List of used abbreviations 65

B Content of attached SD card 67

C Installation manual 69
C.1 How to get the source code . 69
C.2 Dependencies . 69
C.3 Installation . 70
C.4 Updating . 71

x

List of Figures

1.1 Trello kanban board . 7
1.2 Basic idea of SciCol . 8
1.3 Adminstrator use cases . 20
1.4 Active users use cases . 21

2.1 Symfony architecture . 28
2.2 Resource structure . 29
2.3 OntoUML model . 33
2.4 Class diagram . 34
2.5 Configuring new project . 34
2.6 Viewing a running project . 35

3.1 Template settings . 42
3.2 Template parsing diagram . 43
3.3 Resources structure . 44

xi

List of Tables

1.1 Table of requirements fulfilled by use cases 1 22
1.2 Table of requirements filled by use cases 2 23

xiii

Introduction

Aim of this thesis

Writing of scientific publications is, as every other activity demanding human
cooperation, a challenging process. There are various tools for cooperation,
such as emails, Kanban boards, different cloud drives etc., however their dis-
advantage is, that they are not connected and the principle investigator of a
project has to manually add new collaborators to all of these sources.

The aim of this thesis is to create a system, that would reduce the ammount
of unnecessary manual work while managing these 3rd party tools.

Structure of this thesis

This thesis is logically divided into 4 main chapters: Analysis of current situ-
ation and requirements on the application, Design, Implementation and Test-
ing.

Analysis of current situation and requirements on the application
describes types of publications as well as their creation and contains analysis of
current tools for scientific collaboration. There also is analysis of requirements
on the appplication along with their use cases.

Design describes selection of the type of the application and based on that
selection of used technologies and architecture. There is also OntoUML model
thoroughly describing the application domain. Design chapter also contains
relational modal, which is based on OntoUML model and serves as a structure
of the database. Last, but not least, this chapter contains wireframes.

Implementation describes all principles and peculiarities during imple-
mentation. It contains description of authentication and authorization, my
own serializer, templates and mainly how I dealt with 3rd party resources
integration.

1

Introduction

Testing describes unit testing, functional testing as well as manual walk-
through of the system.

2

Chapter 1
Analysis of current situation and
requirements on the application

1.1 Scientific publications
In today’s world, regardless whether scientific or not, there are countless in-
formation sources. Key part of spreading information you researched among
target audience is publishing.

According to Öchsner [1] we can distinguish following types of publications
(the higher it is in the list, the larger the volume of information and the more
recognized the publication is):

• books – authorship

• books – editorship

• book chapters

• journals

• conference proceedings

• theses

• patents, technical reports

• others (web pages, non-scientific, etc.)

Disregarding where in the above mentioned list the publication is, it po-
tentially needs a lot of cooperation.

As mentioned in Öchsner [1] it is possible to distinguish two broad types
of publications according to the fact, whether their content is professionally
reviewed.

3

1. Analysis of current situation and requirements on the
application

So-called Grey literature, that is not professionally reviewed, is defined
by Luxembourg convention [2] as a literature, that which is produced on all
levels of government, academics, business and industry in print and electronic
formats, but which is not controlled by commercial publishers.

Among reviewed literature there are two main types of publications –
journals and books. Since publishing anything in reviewed literature is more
complex than in Grey literature and therefore it needs more actions to perform,
in the following subsection I will take closer look to journal publication type
as a representative of a reviewed publication type and clarify the process of
publication.

1.1.1 Identification of publications
Before I will clarify more about journals, let me explain, how reviewed publi-
cations are identified.

In order to identify a source well for later on citation, it is necessary to
have a unique identifier. For journals there is an 8 digit number called ISSN
(International Standard Serial Number [3]) and for books there is a 13 digit
number called ISBN (International Standard Book Number [4]).

It is quite peculiar to evaluate scientific quality of articles. One of the
ways is to measure the impact factor, which should tell about a journal, how
prestigeous it is and therefore how reliable the information in it are. However,
there is a lot of criticism of such an attitude [5, 6].

1.1.2 Journals and magazines
There are two basic types of periodical publications – journals and magazines.
While magazines focus on more popular content, contains a lot of advertise-
ments and the articles are only reviewed by an editor, journals are often go
through a peer review process [7]. However, the border between these to types
is not strict. The following subsection is addressed to content of scientific jour-
nals.

1.1.2.1 Types of contributions to journals

According to Öchsner [1] the basic division of types of contributions to jour-
nals, that are reviewed, is

• Research paper is the most common type of contribution to journal and
describes significant advancement in a particular research field. It is
original and therefore it was not published before. Every research paper
is judged according to its novelty, contribution and quality of scientific
content. Alternative terms are ‘Original Paper’, ‘Original Article’ or
‘Research Article’ [1].

4

1.1. Scientific publications

• Review article does not provide only original content of the authors,
however it rather summarizes content of other articles and its purpose
is to broaden reader’s knowledge through critical comparison. Review
articles are highly cited source of information. Alternative terms are
‘Critical Review’ and ‘Critical Literature Review’. [1].

• Rapid communication is an announcement of a breakthrough scientific
results, that are meant to be widespread as much as possible in order to
stimulate further research. Alternative term by some journals: ‘Letter’
[1].

• Short communication has a similar style as an article, however its length
is limited and it only needs to demonstrate the proof of principle [1].

• Technical note describes noteworthy improvements, significant novel ap-
plications, or practical solutions to problems in an (established) tech-
nique [1].

In the following section subsection I will briefly explain the process of
publishing a contribution in a journal.

1.1.2.2 Contributing into a journal

Writing a contribution to a journal is a very complex process. Depending on
the institution you are working for there might be slight differences in the
work flow of writing the contribution, however according to Ellison [8] writing
a paper consists roughly of following stages.

• Assignment might be general or more concrete. Such an assignment
should clarify what are the expectations from the paper, such as its
length, due date etc., analyze the audience and choose a topic. Such an
assignment can be result of your own idea or a call for paper, e.g. for a
conference.

• Research might be done after creating your assignment as well as precede
it. E.g. if there is a conference concerning a field of research you are
involved it and there is a call for paper, you probably have done the
research already.

• Writing. The vital part of making of an article. Tight cooperation
among team members is necessary, as well as setting out the responsi-
bilities, outlines etc. In order to ensure high standard, citing of good
source is necessary [9].

• Peer review. To ensure the quality, the article is after finishing reviewed
by experts in given research field [10]. The reviewer also might give
suggestions, what should be updated. Also the article might be rejected.

5

1. Analysis of current situation and requirements on the
application

• Submission. After a successful review and implementing of all demanded
changes, an article is submitted and published.

Off course, as Winkler and Metherell say [9], a very important part of making
an article is choosing a suitable topic, that is not too broad, neither too
narrow.

1.2 Current tools for cooperation
In todays world, there are many tools supporting collaboration among re-
searchers on a publication, some of which are traditional and used by almost
everybody, while others offer groundbreaking features, however they are com-
plicated to use and they are not widespread. In the following section I discuss
some of the tools, that I discovered through interviewing researchers and web
research. The overview, off course, is not complete and some of tools have
overlaps in their features and usage.

1.2.1 Email

Email is the oldest form of electronic communication of which predecessors
reach back into the 60’s [11]. Its major advantage is, that everybody owns
an email address and is willing to use it. However, this aspect might also be
counteraproductive, because it might discourage email users to use anything
else. Its main disadvantage is complete absence of any versioning tool as well
as lack of organization. Some services, such as Gmail [12] offer a possibility
to organize emails into conversations. There is also a browser extension called
Streak [13] (unluckily available only for Chrome), that supports putting emails
concerning one publication together and divide them into different phases.

1.2.2 Instant messaging tools

There are various instant messaging services, such as Slack [14], WhatsApp
[15], Telegram [16] or Fleep [17]. Their main advantage is, that they allow
collaborators to communicate with each other in real time. Even though with
mentioned tools you can organize collaborators in groups, the main disadvan-
tage is lack of structure causing peculiarities if somebody needs to extract a
particular piece of information after a longer time period.

1.2.3 Kanban

Kanban boards are systems that are helping researchers to organize their tasks,
put them into various categories and set deadlines and assignees. In figure 1.1
you can see an example of such a Kanban board – Trello [18].

6

1.2. Current tools for cooperation

Figure 1.1: Trello kanban board

1.2.4 GIT
GIT is a powerful tool for versioning widely used by technically skilled re-
searchers [19]. There are a lot of implementations, like GitHub [20] or Git-
Lab [21]. Its main advantage is, that it is almost a perfect tool for versioning
of LATEXcodes. Its main disadvantage is, that manipulation through CLI de-
mands a deeper knowledge of the system. However, there are various clients
with GUI. Even though some researchers still refuse to use GIT and they share
their versions by sending files through email.

As a bonus, GitHub and GitLab offer more tools such as CI, a Kanban
board, issues (if there is in issue anywhere in the source code/text, an issue is
assigned to responsible person to solve it).

1.2.5 Google Drive
Google family of services outstand with their user friendliness and therefore
are quite popular. Google Drive is an online file system, which main advantage
is that it is a part of Google ecosystem and almost everybody has an account.
Among disadvantages of Google Drive belong absence of versioning.

1.2.6 Google Documents
Google Documents are WYSIWIG editor quite similar to Microsoft Word
with very limited features, however with two advantages – they are part of
Google ecosystem and there is no need to install any particular client, since
you can edit documents directly in your browser simultaneously with other
collaborators. They are widely use thanks to their simplicity, however there
is only limited versioning available.

1.2.7 Research Gate
Research Gate is a social network for for scientists, where a researchers can
share publications, ask questions (analogue of Stack Overflow [22] in the scope

7

1. Analysis of current situation and requirements on the
application

of research world), follow other researchers updates, get statistics concerning
your papers or create projects (however, without connection to any 3rd party
services integrated) [23].

Its main advantage is you can stay in touch with your colleagues, however
its effectiveness during publication process is discutable.

1.2.8 Open Science Framework
Open Science Framework is quite complex platform enabling users to create
more complex projects and invite collaborators [24]. It contains a file system,
where users can upload files, and a communication tool. Its main disadvantage
is, that it is not connectible to any other external service.

1.3 SciCol
Even though, that there are various tools supporting scientific collaboration,
none of them is ideal, however combined together they might be more powerful.

Therefore, in the scope of this thesis I will develop a system, whose idea
is depicted in figure 1.2. It should basically connect various 3rd party tools in
one system and combine their advantages.

SciCol

3rd party
tools

Scientists

Figure 1.2: Basic idea of SciCol

1.4 Requirements
1.4.1 Functional requirements
In this section I will list functional requirements on the system from the user’s
point of view. In other words all functionality available to the user. I will

8

1.4. Requirements

divide this section logically according to fields that the requirements are con-
cerning.

1.4.1.1 Organization management

F-A-1: It will be possible to add and modify scientific organizations.
A chosen user (hereinafter referred to as super administrator) will be
able to add or modify scientific institutions (hereinafter referred to as
scientific organizations), which will be identified by their domain name,
such as ”cvut.cz”.

F-A-2: It will be possible to set one or more administrators for a
given organization. Such administrators (hereinafter referred to as
organization administrator) can be added or removed by other orga-
nization administrators within the scientific organization or by super
administrator.

F-A-3: Super administrator will be able to add other super admin-
istrators. However, a super administrator will not be able to remove
other super administrators.

1.4.1.2 Registration

F-B-1: A registration into system will be possible for users possessing
an email account belonging to an enlisted scientific organiza-
tion. Users will be able to register with their email, that is on a domain
of an scientific organization that is added to the system.

F-B-2: User will be able to log into the system with registered email.
Such an email will have to belong to one of the scientific organizations in
the system and also will determine, that the user belongs to a particular
organization. Log in with any SSO will not be provided within the scope
of this thesis.

F-B-3: Password recovery will be possible. User will be able to recover
his password through a link sent to his email address.

F-B-4: Organization administrator will be able to inactivate and ac-
tivate users. Organization administrator will be able to set status of
a user to inactive. That means, that all data entered into the system
by this user will be preserved, however the user will not be able log in
and/or actively participate in projects anymore. Organization adminis-
trator will be able to make this user active again.

9

1. Analysis of current situation and requirements on the
application

1.4.1.3 Project ownership

F-C-1: User belonging to a scientific organization can start a new
project. Under the term new project (hereinafter referred as project)
we understand a new publication. By founding such a project a user will
become a principal investigator of this project (hereinafter referred to as
as principal investigator). There can be only one principal investigator
at once.

F-C-2: A principal investigator will be able to add or remove project
collaborators. Collaborator (hereinafter referred to as project collab-
orator) will then have to approve that he wishes to be a part of the
project.

F-C-3: A principal investigator will be able to add or remove project
administrators. Only the principal investigator of the project will be
able to remove other administrators (hereinafter referred to as project
administrators). A project administrator will otherwise have the same
rights as the principal investigator. Therefore, all actions, that can be
performed by project administrator, can be performed as well by princi-
pal investigator. As well, any action, that can be performed by project
collaborator can be performed by project administrator.

F-C-4: A principal investigator can pass the ownership of the project.
Principal investigator can pass the ownership to any of project collab-
orators or project administrators. Such a step will result into a loss of
ownership for the former principal investigator (due to the constraint,
that ownership can be held by just one user at a time).

1.4.1.4 Project settings and visibility

F-D-1: A project administrator will be able to set visibility of the
project. There will be 4 levels of visibility: visible for project collabo-
rators only, visible for users within organization, visible for every user
logged in the system and visible to visitors. By visibility is meant to
display project name and project description.

F-D-2: A user will be able to list projects visible to him. User will
be able to filter the displayed projects by organization or display only
projects he is involved in.

F-D-3: A user can ask to join any project visible to him. To start
working on the project the project administrator will have to approve
his request.

F-D-4: System will contain set of templates. Templates will determine
the work flow of the project. There will be 2 types of templates: the

10

1.4. Requirements

first editable by super administrator defining a type of publication, the
second editable by organization administrator redefining the common
one with organization specific tasks added.

F-D-5: A template will contain set of phases. Each phase will have a
name, a deadline, list of preset tasks and one or more resources such as
on-line editor.

F-D-6: A user will set up project settings according to the template.
After selecting a template, project phases and tasks will be automatically
set up. The user can then adjust the settings and then establish a new
project.

F-D-7: All tasks and deadlines will be automatically synchronized
with chosen task system and calendar. As a part of project set-
tings the project administrator will choose a preferred task system (such
as Trello) and a calendar (such as Google calendar). These will be syn-
chronized among each other and change in any of these 3 will result into
automatic change in 2 others.

F-D-8: 3rd party applications needed in a project will be initialized
by credentials given by users. That means, that where necessary,
accounts provided by users will be added to a 3rd party application
(e. g. after establishing a project a new Trello board will be created and
collaborators added to their tasks).

1.4.1.5 Project work flow

F-E-1: All collaborators will see project phases. Every collaborator will
be able to see project phases and their status (done, opened, not opened
yet). By clicking on the project phase a collaborator will be able to see
phase details.

F-E-2: Project administrator will be able to switch the phase of the
project. Project administrator will be able to manually switch between
project phases.

F-E-3: Project administrator will be able to suspend a project. Project
administrator will be able to temporarily suspend the project by putting
it into suspended state. Later on any of the project administrators will
be able to put it back into life or set it as archived. A suspended state
means, that nobody can work on the project anymore, however it will
still appear among active projects.

F-E-4: After finishing the project can be archived. Project adminis-
trator can archive the project. Archived projects will be removed from
visible projects to archived.

11

1. Analysis of current situation and requirements on the
application

F-E-5: A new project can be established from an archived project.
A user can create a new project from an archived one.

1.4.2 Non-functional requirements
N-1: The system will be a web application. It will not be necessary for

the user to install anything but a web browser.

N-2: The system will be mainly optimized for desktop computers.
The application is primarily intended to be used in a desktop envi-
ronment. Even though selected functions will be optimized for mobile
devices.

N-3: All the data in the system will be stored in a relational database.
Off course, vast part of the project will be stored in 3rd parties applica-
tions. The system database will only contain information necessary to
reach them.

N-4: The whole system will be in English language. No support for
translations will be provided.

N-5: Calendar, task system and other resources will be loosely cou-
pled with the system. That means, that an arbitrary calendar, task
system or any kind of resource in the system will be accessed by the sys-
tem through a given facade. Particular implementation of such a facade
for given resource will be provided as a module.

N-6: Super administrator will be added before launching the sys-
tem. Since scientific organization can be added only by super admin-
istrator, there will be at least one super administrator account added
before launching of the system.

N-7: There will be application’s account for 3rd party systems. I. e.
there will be shared Google drive or Trello account for the needs of
application.

N-8: Collaborators can use 3rd party task system in every phase.
Whenever they mark task as done, it will also appear done in the system.

1.5 Use cases
1.5.1 Actors
There will be following actors in the system.

• Unregistered user. The only actions he will be able to perform is to
register and view publicly visible projects.

12

1.5. Use cases

• Inactive user. User set by the organization administrator as inactive.
He can not perform any actions, however all data in a system generated
by him are preserved.

• Active user. User, that has registered with an email belonging to one
of the scientific organizations that are in the system.

• Collaborator. A user, that is participating in a project.

• Project administrator. A user, that can set project collaborators and
phases with tasks and deadlines.

• Principal investigator. A user, that have initiated a project or have
been given the ownership by a principal investigator. Has the same
privileges as a project administrator, however a principal investigator is
the only person that can add or remove project administrator.

• Organization administrator. Can activate and inactivate users within
their organization as well as add or remove other organization adminis-
trators.

• Super administrator. A person that can add or remove scientific
organizations and organization administrators and do basically anything
in the system.

1.5.2 List of use cases
In this subsection the use cases are also logically divided into sections as in
case of functional requirements.

1.5.2.1 Organization management

UC-A-1: Add scientific organization

Actors: Super administrator
Scenario:
1. Super administrator requires to add a new scientific organiza-

tion.
2. Super administrator fills in details about scientific organiza-

tion, such as its name, location and most importantly its do-
main.

3. Super administrator requests saving of the new scientific orga-
nization.

4. System saves the new organization.
Outcome: Now it will be possible to register with an email of added
scientific organization.

13

1. Analysis of current situation and requirements on the
application

UC-A-2: Modify scientific organization

Actors: Super administrator
Scenario:
1. Super administrator asks the system to list scientific organiza-

tions.
2. Super administrator chooses scientific organization to modify.
3. Super administrator modify details of scientific organization.
4. Super administrator requests saving of the scientific organiza-

tion.
5. System saves the details of the scientific organization.

UC-A-3: Add organization administrator

Actors: Super administrator, Organization administrator
Scenario:
1. Super administrator asks the system to list scientific organiza-

tions.
2. Super administrator selects a scientific organization.
3. Super administrator selects a user from the selected scientific

organization.
4. System adds a Organization administrator privilege to given

user.

UC-A-4: Add organization administrator

Actors: Organization administrator, Active user
Scenario:
1. Organization administrator selects a user from given Scientific

organization.
2. System adds a Organization administrator privilege to given

user.

UC-A-5: Remove organization administrator

Actors: Super administrator, Organization administrator, Active
user
Scenario:
1. Super administrator asks the system to list scientific organiza-

tions.
2. Super administrator selects a scientific organization.

14

1.5. Use cases

3. Super administrator selects Organization administrator from
selected scientific organization to be removed.

4. System removes the Organization administrator privilege from
given user.

Outcome: Selected Organization administrator becomes Active user.

UC-A-6: Remove organization administrator

Actors: Organization administrator, Active user
Scenario:
1. Organization administrator selects organization administrator

to be removed.
2. System removes the Organization administrator privilege from

given user.
Outcome: Selected Organization administrator becomes Active user.

UC-A-7: Add Super administrator

Actors: Super administrator, Active user
Scenario:
1. Super administrator select an Active user from a pool of all

Active users.
2. System give the active user the privileges of Super administra-

tor.

1.5.2.2 Registration

UC-B-1: Register

Actors: Unregistered user, Active user
Scenario:
1. Unregistered user requests registration with his email.
2. System checks, if the email is on a domain of any Scientific

Organization in the system. In case it is a registration link is
sent to the email.

3. Unregistered user follows the link and sets a password and fills
in his details, such as name.

4. System adds the user to list of users.

UC-B-2: Log in

Actors: Active user
Scenario:

15

1. Analysis of current situation and requirements on the
application

1. Active user fills in his credentials.
2. System checks, if the email and password are correct.

Outcome: Active user is logged in.

UC-B-3: Password recovery

Actors: Active user
Scenario:
1. Active user requests password recovery on the login page.
2. System send a link to Active user’s email.
3. Active user follows the link and sets up a new password.

UC-B-4: Deactivate users

Actors: Organization administrator, Active user, Inactive user
Scenario:
1. Organization administrator selects a user in his Scientific or-

ganization.
2. Organization administrator turns the Active user into an Inac-

tive user.
Outcome: The inactivated user can not log in anymore, however,
the data he has entered into the system will be preserved.

UC-B-5: Activate Users

Actors: Organization administrator, Active user, Inactive user
Scenario:
1. Organization administrator selects users from the list of Inac-

tive users in his Scientific organization.
2. Organization administrator actives selected users.

Outcome: Activated users can again log in and participate in projects.

1.5.2.3 Project ownership, settings and visibility

UC-C-1: Start a new project

Actors: Active User, Principal investigator, Project administrator
Scenario:
1. Active user asks the system to start a new project.
2. Active user selects a template. The system creates phases and

tasks of the project.
3. Active user fills in details of the project.

16

1.5. Use cases

4. Active user adds collaborators. They will be added, however
in order to participate in the project they will have to accept
it.

5. Active user asks the system to save the project.
6. System saves the project.
7. Active user becomes the principal investigator of the project.

UC-C-2: Accept project

Actors: Active User
Scenario:
1. Active user lists his projects.
2. Active user asks the system to accept a project.
3. Active user fills in his credentials for 3rd party systems.
4. System checks, if provided credentials are valid.
5. System adds user as a project collaborator.

UC-C-3: Start a new project from old project

Actors: Active user, Principal investigator
Scenario:
1. Active user lists archived and frozen projects.
2. Active user selects a project.
3. Active user establishes a new project based on the old one.
4. Active user adjusts the settings of the project.
5. Active user becomes principal investigator of this project.

UC-C-4: Remove project administrators

Actors: Principal investigator, Project administrator
Scenario:
1. Principal investigator list projects he owns.
2. Principal investigator selects project.
3. Principal investigator removes the project administrator.
4. Selected project administrators become collaborators of the

project.

UC-C-5: Pass project ownership

Actors: Project Owner, Project administrator, Collaborator
Scenario:

17

1. Analysis of current situation and requirements on the
application

1. Principal investigator selects one of the project collaborators
or project administrators.

2. Principal investigator then passes the ownership to the selected
person.

Outcome: The former principal investigator loses project ownership
and becomes project administrator.

UC-C-6: Join a project

Actors: Active User, Project administrator
Scenario:
1. Active user list all projects visible to him.
2. Active user asks to join a project.
3. Project administrator then accepts or rejects the request.
4. Active user gets a notification about the result.

Outcome: Active user becomes collaborator of the project.

UC-C-7: List visible projects

Actors: Active User, Project administrator
Scenario:
1. User list all projects visible to him.

1.5.2.4 Project work flow

UC-D-1: Display project phases

Actors: Collaborator
Scenario:
1. Collaborator lists all active projects he is part of.
2. Collaborator selects a project.
3. System displays a chart with all phases of the project.

UC-D-2: Switch project phase

Actors: Project administrator
Scenario:
1. Project administrator displays project phases.
2. Project administrator clicks on the current phase.
3. Project administrator switches the phase.

UC-D-3: Suspend a project

18

1.5. Use cases

Actors: Project administrator
Scenario:
1. Project administrator selects an active project.
2. Project administrator suspends the project.

Outcome: The suspended project will not be displayed among the
active projects anymore. Nobody can work on it anymore.

UC-D-4: Resume a project

Actors: Project administrator
Scenario:
1. Project administrator lists all suspended projects.
2. Project administrator selects the suspended.
3. Project administrator resumes the project.

UC-D-5: Archive a project

Actors: Principal investigator
Scenario:
1. Principal investigator lists his active and suspended projects.
2. Principal investigator selects a project.
3. Principal investigator archives the project.

Outcome: Archivf

1.5.3 Use cases diagrams
I prepared 2 use case diagrams, since there were to many use cases to display
them in just one diagram.

In diagram 1.3 there are use cases concerning Organization administrators
and Super administrators. In diagram 1.4 there are use cases concerning Un-
registered users, Active users, Collaborators, Project administrators and Prin-
cipal investigators. The link between those 2 diagrams is, that Organization
administrator inherits from Active user.

1.5.4 Use cases fulfilling requirements
In order to be sure use cases cover all requirements, in tables 1.1 and 1.2 there
is described, which use case fulfill which reqirement.

19

1. Analysis of current situation and requirements on the
application

UC-A-1: Add scientific
organization

UC-A-7: Add super
adminsitrator Super

administrator

UC-B-4: Deactivate
user

UC-B-5: Activate
user

Organization administrator
UC-A-4: Remove

organization administrator

UC-A-2: Modify scientific
organization

Figure 1.3: Adminstrator use cases

20

1.5. Use cases

UC-C-7: List
visible projects

UC-C-2: Accept
project

UC-D-5: Archive a project

UC-D-3: Suspend
a projectUC-D-4: Resume a project

UC-D-2: Switch
project phase

UC-D-1: Display
project phases

UC-C-6: Join
a project

UC-C-5: Pass
project ownership

UC-C-4: Remove
project administrators

UC-C-3: Start
a new project from old

UC-C-1: Start
a new project

UC-B-3: Password
recovery

UC-B-2: Log in

Principal investigator

Project administrator

Collaborator

Unregistered user

Active user

UC-B-1: Register

Figure 1.4: Active users use cases

21

1. Analysis of current situation and requirements on the
application

Table 1.1: Table of requirements fulfilled by use cases 1

Use cases

U
C
-A

-1
:
A
dd

sc
ie
nt
ifi
c
or
ga

ni
za
tio

n

U
C
-A

-2
:
M
od

ify
sc
ie
nt
ifi
c
or
ga

ni
za
tio

n

U
C
-A

-4
:
A
dd

or
ga

ni
za
tio

n
ad

m
in
ist

ra
to
r

U
C
-A

-5
:
R
em

ov
e
or
ga

ni
za
tio

n
ad

m
in
ist

ra
to
r

U
C
-A

-7
:
A
dd

su
pe

r
ad

m
in
ist

ra
to
r

U
C
-B

-1
:
R
eg
ist

er

U
C
-B

-2
:
Lo

g
in

U
C
-B

-3
:
Pa

ss
wo

rd
re
co
ve
ry

U
C
-B

-4
:
D
ea
ct
iv
at
e
us
er
s

U
C
-B

-5
:
A
ct
iv
at
e
us
er
s

Reqs

F-A-1: * *
F-A-2: * *
F-A-3: *
F-B-1: *
F-B-2: *
F-B-3: *
F-B-4: * *

22

1.5. Use cases

Table 1.2: Table of requirements filled by use cases 2

Use cases
U
C
-C

-1
:
St
ar
t
a
ne

w
pr
oj
ec
t

U
C
-C

-2
:
A
cc
ep

t
a
pr
oj
ec
t

U
C
-C

-3
:
St
ar
t
a
ne

w
pr
oj
ec
t
fro

m
ol
d
on

e

U
C
-C

-4
:
R
em

ov
e
pr
oj
ec
t
ad

m
in
ist

ra
to
rs

U
C
-C

-5
:
Pa

ss
pr
oj
ec
t
ow

ne
rs
hi
p

U
C
-C

-6
:
Jo

in
a
pr
oj
ec
t

U
C
-C

-7
:
Li
st

vi
sib

le
pr
oj
ec
ts

U
C
-D

-1
:
D
isp

la
y
pr
oj
ec
t
ph

as
es

U
C
-D

-2
:
Sw

itc
h
pr
oj
ec
t
ph

as
e

U
C
-D

-3
:
Su

sp
en

d
a
pr
oj
ec
t

U
C
-D

-4
:
R
es
um

e
a
pr
oj
ec
t

U
C
-D

-5
:
A
rc
hi
ve

a
pr
oj
ec
t

Reqs

F-C-1: * *
F-C-2: * *
F-C-3: * * *
F-C-4: *
F-D-1: * *
F-D-2: * *
F-D-3: *
F-D-4: * *
F-D-5: * *
F-D-6: * *
F-D-7: * *
F-D-8: *
F-E-1: *
F-E-2: *
F-E-3: * *
F-E-4: *
F-E-5: *

23

Chapter 2
Design

In the previous chapter I specified requirements that the system must meet.
In order to be able to implement the application a good design is necessary.
In this chapter I will describe and justify the selection of technologies and
introduce OntoUML model, wireframes and data model.

2.1 Type of application
The application should serve variety of users, from those who are technically
competent to those that have no connection to the world of technologies.
Therefore usage of the application should be as simple as possible and there
should not be any barrier in a form of a need to install any sort of client.
Therefore, according to non-functional requirement N-1: the application will
be a web application, which does not require any specific software but a web
browser.

2.2 Used technologies
Before I was going to design the architecture, I found it beneficial to choose the
technologies I would use in the application before designing the architecture,
since the architecture is strongly dependent on the language and framework
used.

2.2.1 Language selection
There is a large variety of programming languages around the world that are
more or less useful to develop a web application. Some of them are very
well known and are often place on the top ranks in lists of web programming
languagues, such as PHP, Java, Python for back end and JavaScript and
HTML for front end, while others are rather rarity, such as Rust or Go (

25

2. Design

[25–27]). Therefore during the selection of a programming language I took
into account more criteria.

The very first, rather personal criterion, in order to write the code effec-
tively, was, that I have to have a certain knowledge of the language I would
use. This quite shrank the selection to Java, Python and PHP for the back
end and JavaScript accompanying HTML and CSS for the front end.

Along with this criterion of personal knowledge comes another one –
good documentation and support from the community. The quality of doc-
umentation is hard to measure, but I find all of the documentations of lan-
guages mentioned above (Java [28], Python [29], PHP [30], JavaScript [31]
and HTML [32]) as satisfying. When it comes to community support, I took
as a measure the number of tags of selected languages on Stack Overflow [33]
(1,539,953 for Java, 1,156,341 for Python, 1,278,731 for PHP, 818,421 for
HTML, 583,114 for CSS and 1,798,449 for JavaScript). Those numbers indi-
cate, that there probably is an answer to any question if a problem appears
in the development.

Another criteria I took into consideration are the easiness of coding (which
is debatable) and performance. According to my experience, as well as some
other sources [34], Java is more robust and secure than Python and PHP,
however it takes more time to code in it. Personally, I find PHP is slightly
easier to code and therefore I chose PHP for the back end. For the front
end I chose JavaScript, CSS and HTML, as they are a long-term, irreplacable
standard.

2.2.2 Back end framework selection
Working with a pure language without any framework might be a solution
for a very restricted project, however for a project of a size of this thesis it is
an absolute necessity to have a framework. There are dozens of frameworks
and in the decision, which one to select, I took into consideration following
criteria: it must have a good documentation (hard to measure), it must have
reasonable performance, support from community, well-working ORM, simple
router and vast selection of libraries.

The requirement to have a well-working ORM and simple router disqual-
ifies the most popular Czech framework Nette [35]. Due to the requirement,
I was looking for a popular framework, so in the end, I was deciding among
Laravel, Zend, Symfony and CodeIgniter ([36–39]). In the end I decided
for Symfony framework, since it meets all criteria I demand and as bonus, I
already had worked with it previously.

2.2.3 Front end framework selection
There are also numerous JavaScript frameworks. I had similar requirements on
the JavaScript framework as on the PHP framework: it must have a good com-

26

2.3. Architecture

munity support, good performance, vast selection of libraries and a perspective
to be maintained in the future. From the most popular frameworks [40, 41] I
found the most appropriate Angular.js and React.js. I decided to select Re-
act.js, because I already worked with it and it is fast to develop as well as it
offers satisfying performance.

2.2.4 Relational database

To fulfill the non-functional N-3:All the data in the system will be stored in a
relational database, there must be a relational database engine. The selection
of relational database engines is not as wide as selection of JavaScript and
PHP frameworks, however it is still quite complicated to select database that
perfectly suits application needs.

Therefore I set a few criteria, that the database must meet. It must run on
a Linux server as well as it cannot have a proprietary license, which disqualifies
Oracle [42] and Microsoft SQL server [43]. It also should be among popular
databases, since in case of any problem it is easier to find a solution, so in
the end I was deciding among PostgreSQL, MySQL and MariaDB [44]. Since
the application will not presumably use the database excessively and I wanted
a database as easy to set up as possible, I chose MariaDB, which is a fork
from MySQL and is as easy to maintain as MySQL, however offers more
features [45].

2.3 Architecture

2.3.1 Back end architecture

The architecture of the system is determined by used frameworks. Architec-
ture of the Symfony framework is based on Model-View-Controller pattern.

The Symfony architecture, according to [46], is depicted in figure 2.1. The
work flow is following:

1. The user sends a HTTP GET request through webrowser to the server.

2. The server forwards the request to PHP layer - Symfony framework.

3. HttpKernel resolves, which Controller should process the requests and
forwards the request to appropriate Controller.

4. Controller calls the Model structures to perform the business logic.
When it is necessary to load anything from database, the Doctrine ORM
queries the database and automatically transforms the selection results
into PHP entities [47].

27

2. Design

5. Controller then can return HTTP response directly (e.g. in form of
JSON [48]) or render a View through a template enginge, in our case
Twig [49].

Response (to webserver)

MySQL database

Models

Doctrine ORM

Views

Controller

RoutingHttpKernel

PHP - Symfony

Web server
(Apache)

Request (from browser)

Figure 2.1: Symfony architecture

2.3.2 Front end
The front end of the application will be implemented in React [50]. In order
to work, react needs an HTML element, where it can render the HTML tree.
Therefore there will be an HTML Twig template [49], in which will be an
element <div id="react-root">, which will be a container and the whole
content will be render by React. The data necessary will be provided through
the template as a variable.

2.3.3 Integration with other systems
The application will be connected to 3rd party systems and that is possible only
through an API. The applications connected to the system will be Trello [18],
Google Calendar [51], Google Documents [52] and Google Drive [53]. All of
these offer such an API [54,55].

However, to achieve extendability of the system, I do not want to hardwire
any of these APIs into the application logic. Instead, I will introduce a resource

28

2.4. OntoUML model

- an abstract class with abstract methods, that every resource will have to
implement. As you can see in the figure 2.2, for each type of resource, such
as a calendar or a task system, there will be another abstract class, that will
implement the abstract resource method by using new abstract methods - i.e.
for a calendar resource a method addEvent. These abstract methods will be
then implemented in a particular resource class.

Such a structure ensures, that it not only will be possible to add a new
resource, but there will be also possibility to introduce a new resource type
by just implementing a naw resource type abstract class.

Particular Resource

ResourceType

Resource

Figure 2.2: Resource structure

2.4 OntoUML model
In order to be able to design the application well, there was a need to design
a good quality model. When deciding about the modeling language, the first
thought was to use widely accepted standard in form of UML [56]. How-
ever, the standard UML model does not fully reflect ontological aspects and
therefore I decided to use OntoUML.

OntoUML is a graphical conceptual modelling language aimed at construct-
ing ontologically well-founded conceptual models. It is based on Unified Foun-
dational Ontology (UFO) [57]. UFO is composed of three parts, each of which
describes different aspects [57]. UFO-A deals with theory of various types of
things, UFO-B with theory of events and processes and last, but not least,
UFO-C intentional and social aspects of business processes. [57]. In my model
I will use all three UFO ontologies.

2.4.1 Sortals
2.4.1.1 Kinds and Subkinds

During creating of the OntoUML model I was following materials of CTU’s
subject Conceptual Modeling [58].

I started the model with Sortal types providing identity – Kinds and Sub-
kinds. The Kind User represents unregistered user, because even though there

29

2. Design

is no database record necessary for such a user, he has his own ontological
identity. The Subkind Registered User is from ontological view just User
extension. I created a separate Subkind of User for Super Administrator,
since he is not connected anyhow to any Organization.

The kind Project is a Kind representing work on one publication and it
has its Phases and these have their Tasks. A Phase and Task can have their
Resource, which is a connection to a 3rd party service.

2.4.1.2 Phases and Roles

A Registered User has 2 disjoint Phases – he can either be Inactive or
Active. An Inactive user has been inactivated by administrator and can
not perform any actions, while Active can perform all actions according to
his permissions.

A Project can be in 3 disjoint phases – Active, Suspended and Archived.
While Active project can be switched into Suspended one and vice versa, once
a Project gets into Phase Archived, it cannot get into any other Phase.

A Registered User can have a Role Organization Administrator in re-
lation with an Organization and Role Collaborator, Project Administrator
or Principal Investigator in relation with a Project. These Roles are in
hierarchy, since they only add permissions to their parent Roles.

2.4.2 Relations Whole-Part
There are only 2 Collectives – sets of Templates and Team, that always belongs
to a certain Project and as members it has Roles Collaborator, Project
Administrator and Principal Investigator.

2.4.3 UFO-C concepts
From UFO-C conceptes there are 2: UFO-C action and UFO-C organization.
I have chosen UFO-C organization for Organization, since it is a spot on
match concept of it.

2.5 Relational Model
From the OntoUML model, that describes the domain more deeply and in
more details I needed to create a relational model of database, respectively
class model of entities used in Symfony. I decided to follow Zdeněk Rybola’s
doctoral dissertation [57] with a vast amount of adjustments to the needs of
the application (names in bold are concerning OntoUML model, names in
italics are names of UML classes). The resulting class diagram is to be seen
in the figure 2.4.

30

2.5. Relational Model

2.5.1 Transformation of Kinds and Subkinds
I transformed Kinds into UML classes with following adjustments:

• User, Registered User and Super Administrator were transformed
into one class User. Even though a User, that is not registered, has his
own ontological identity, I omitted it in the class model, since he can not
perform any action except listing project and therefore he does not need
any database entry. I degraded Super Administrator to be a single
system role in the list of User’s roles property.

• Resource has its reflection into class structure only in the form of Re-
sourceUsername a ResourceSettings, since the Resources are not an item
to store in a database, but they are loaded on the fly from the classes
with particular implementations, that can handle a 3rd party service (see
also subsection 2.3.3).

• No adjustments were made during transformation of Project, Phase
and Task.

2.5.2 Transformation of Roles
Collaborator, Project Administrator and Principal Investigator were
shrank them into one class connected to Project and User, where the Role in
the Project is described by the property role. Role Organization Administrator
was degraded to be a system role in the list of User’s roles property.

2.5.3 Transformation of Phases
All the Phases were degraded to a single value in their respective entities.
Since they are all complete and disjoint, they are introduced as enumeration
(phase in Project and) and a boolean value (active in User).

2.5.4 Transformation of relations Whole-Part
The Collective Team was transformed into Project property projectInvolved,
which is a collection of ProjectInvolved. Template will be stored as a textual
settings (see also section 3.3) and therefore there will be only the Template
entity and the Phases will be created from the textual settings.

2.5.5 Transformation of UFO-C concepts
All the Actions, that are part of the model, will be implemented as method of
respective entities. The Scientific Organization was degraded to a single
entity Organization.

31

2. Design

2.6 Wireframes
Wireframes are a prototyping tool, that not have any precise colors or design,
however, they are there in order to depict the layout and type of control
structures such as text inputs, check boxes, switches, menus and others [59].

For this prototyping I used the tool called Pencil [60]. Since the application
is mainly proposed for desktop user, I chose the layout with classical menu on
a side the main container next to it. Along with that comes the user settings
menu in the right top corner.

In figure 2.5 you can see establishing of a new project, in figure 2.6 you
can see, how such a project will be displayed.

32

2.6. Wireframes

«
K

in
d

»
P

ro
je

ct
 P

h
a

se

«
U

F
O

-C
::

A
ct

io
n

»
A

d
d

s/
R

e
m

o
ve

s
«

S
u

b
K

in
d

»
S

u
p

e
r

A
d

m
in

is
tr

a
to

r
«

R
o

le
»

O
rg

a
n

iz
a

ti
o

n
 A

d
m

in
is

tr
a

to
r

«
U

F
O

-C
::

O
rg

a
n

iz
a

ti
o

n
»

S
ci

e
n

ti
fi

c
O

rg
a

n
iz

a
ti

o
n

«
U

F
O

-C
::

A
ct

io
n

»
R

e
co

ve
r

P
a

ss
w

o
rd

«
U

F
O

-C
::

A
ct

io
n

»
L

o
g

in

«
P

h
a

se
»

In
a

ct
iv

e
 U

se
r

«
P

h
a

se
»

A
ct

iv
e

 U
se

r

«
P

h
a

se
»

A
ct

iv
e

«
P

h
a

se
»

S
u

sp
e

n
d

e
d

«
P

h
a

se
»

A
rc

h
iv

e
d

«
U

F
O

-C
::

A
ct

io
n

»
A

d
d

«
U

F
O

-C
::

A
ct

io
n

»
R

e
m

o
ve

«
U

F
O

-C
::

A
ct

io
n

»
R

e
m

o
ve

«
U

F
O

-C
::

A
ct

io
n

»
A

d
d

«
C

o
lle

ct
iv

e
»

T
e

a
m

«
K

in
d

»
R

e
so

u
rc

e

«
K

in
d

»
P

ro
je

ct
 P

h
a

se

«
C

o
lle

ct
iv

e
»

T
e

m
p

la
te

«
K

in
d

»
P

ro
je

ct

«
M

o
d

e
»

In
te

g
ra

ti
o

n
 S

e
tt

in
g

s

«
U

F
O

-C
::

A
ct

io
n

»
P

a
ss

 o
w

n
e

rs
h

ip

«
R

o
le

»
P

ri
n

ci
p

a
l

In
ve

st
ig

a
to

r

«
R

o
le

»
P

ro
je

ct
 A

d
m

in
is

tr
a

to
r

«
R

o
le

»
C

o
lla

b
o

ra
to

r

«
U

F
O

-C
::

A
ct

io
n

»
R

e
g

is
te

r

«
S

u
b

K
in

d
»

R
e

g
is

te
re

d
 U

se
r

«
K

in
d

»
U

se
r

1
..

1

0
..

*

1
..

1

0
..

*

1
..

1

0
..

*

1
..

1

0
..

*

1
..

*
0

..
*

 {
d

is
jo

in
t,

 c
o

m
p

le
te

}

 {
d

is
jo

in
t,

 c
o

m
p

le
te

}

1
..

1
1

..
1

M

 0
..

*
0

..
*

1
..

1
0

..
*

1
..

1

0
..

*

0
..

*
M 1

..
1

«
ch

a
ra

ct
e

ri
za

ti
o

n
»

1
..

1

1
..

*

1
..

1
1

..
1

Figure 2.3: OntoUML model

33

2. Design

«class»
ResourceSettings

-resourceName: string
-resourceSettings: json

«class»
AccessCode

-id: integer
-code: string
-accessType: enum
-accesEntityId: integer

«class»
Organization

-id: integer
-name: string
-domain: string

«class»
Phase

-id: integer
-rank: integer
-name: string
-description: text
-resources: array

«class»
Project

-id: integer
-calendars: array
-taskSystems: array
-name: string
-description: text
-phase: enum
-visibility: enum

«class»
Task

-id: integer
-deadLine: datetime
-inCalendar: boolean
-name: string
-description: text

«class»
Template

-id: integer
-name: string
-settings: text

«class»
ProjectApplicant

-id: integer

«class»
ProjectInvolved

-id: integer
-role: enum
-accepted: boolean

«class»
ResourceUsername

-id: integer
-username: string
-resourceName: string

«class»
User

-id: integer
-email: string
-firstName: string
-lastName: string
-password: string
-plaintextPassword
-roles: array
-active: boolean

1..10..2

0..n 1..1

0..n

1..1

1..1 0..n

0..n 1..1

0..n

1..1
0..n

0..1

0..n 0..1

Figure 2.4: Class diagram

Figure 2.5: Configuring new project

34

2.6. Wireframes

Figure 2.6: Viewing a running project

35

Chapter 3
Implementation

3.1 Authentication and authorization

In general, authentication is verifying identity of the user while authorization is
checking, whether selected user can perform a particular action [61]. A real life
example: a police check – if a policeman stops a driver, firstly he authenticates
the driver by his id and then the authorization comes – the policemen checks
whether the driver has the permission to drive a motor vehicle.

Since the system is based on collaboration among multiple scientific organi-
zations (and number of organizations is virtually not limited), we encounter 2
issues concerning authentication and authorization. Firstly, the usage of SSO
systems is problematic as there would be a need to provide a particular imple-
mentation for every organization. Secondly, for every user we need to specify
not only list of his authorizations (i.e. list of actions a user can perform), but
also the organization connected to these rights (e.g. a user is an organization
administrator at Czech Technical University in Prague, however he cannot
perform any administrator actions at Brno Univesity of Technology).

3.1.1 Registration

To avoid usage of SSO systems on one hand and the necessity of approving ev-
ery registration manually on the other hand I decided to provide a registration
through email on domain of selected scientific organization. An organization
has saved its domain (e.g. cvut.cz) and when a new user registers, the system
checks, whether his email has a domain of a known scientific organization.

In such a case a new User entity is made with active property set to
false and in the same time a verification email with activation code is sent to
entered email address.

37

3. Implementation

3.1.2 Authentication
Symfony provides so called Security bundle [62]. This provides either tools
for authentication as well as for authorization.

The authentication is provided based on users email and password, which
is stored in the database in form of salted hash [63], which is a prevention
against any password stealing. The plaintextPassword property of User
entity is used only for processing sign in form.

In Symfony it is possible to user your own class for user (in my case
App\Entity\User), that has to implement UserInterface and there must be
an instance of UserProvider [64], that tells the framework, where and how
to load and authenticate users. Thanks to this mechanism the usage of SSO
systems is possible (even though it is not in the scope of this thesis).

3.1.3 Authorization
There are two approaches to authorization in a Controller – either the @Is-
Granted notatation or calling isGranted method. The difference is, that if
the function is called and user is unauthorized, @IsGranted notatation will
cause 403 HTTP status, while is isGranted method just returns a boolean
value, whether the user has a given role:
/**
* @IsGranted("AUTH_SUPER_ADMIN")
*/
public function someMethod(){

if($this->isGranted('AUTH_SUPER_ADMIN')){
...

}
}

Both of methods mentioned above use use authorizations and to perform
a check Symfony uses classes implementing VoterInterface [65], which have
2 methods – supports tells you, whether the particular voter should decide
about the authorization, userCanReachAuth then tells you, if user should be
granted or not. The Voters are implemented in App\Security and there are
two basic approaches I used to implement them.

3.1.3.1 Roles and role hierarchy

The first approach to implement Voters is, that they check if a User has a
certain role or if the demanded role is in his role hierarchy. Role hierarchy is
a tree of roles, where some roles have a list of other roles, that are included in
them. Role hierarchy used in SciCol is in the YAML 3.1.3.1. For some roles,
the authorization is granted if a user has a certain role (i.e. if a user has the
role ROLE_SUPER_ADMIN, he will be granted AUTH_SUPER_ADMIN), for others
connect to a certain organization the role contains also id of the respective

38

3.2. Serialization

organization (i.e. the user will be granted as AUTH_ORG_SPEC for organization
with id equal to 1, if he has a role ROLE_1_ORG_SPEC).

role_hierarchy:
AUTH_SUPER_ADMIN: [AUTH_ORGANIZATION_ADMIN]
AUTH_ORGANIZATION_ADMIN: [AUTH_ORGANIZATION_MEMBER]

3.1.3.2 Dedicated entities

Another approach to implement Voters is to have dedicated entities. I use
them only in connection with a Project object, where ProjectInvolved con-
nected to a particular instance of Project entity contains information about
user’s authorization in relation to the project – whether the user is only a
collaborator or project administrator / principal investigator.

3.2 Serialization

Since the PHP back end of the application runs on the server and most of the
front end runs in JavaScript in a web browser of the user, there is a need to
serialize the entities in the back end into some format such as JSON or XML,
sending them through HTTP protocol to the client, deserialize and process
them on the client side and then serialize, send and deserialize them again.
Therefore I needed a (de)serializer.

3.2.1 Symfony (de)serializer

Symfony offers its own serializer, which serializes entities (firstly it normalizes
an entity into an array and then encodes the array into the chosen format) [66].
However I have encountered 3 major issues that made the built-in serializer
unusable.

Firstly, it is impossible to choose which properties of an entity will be
serialized and followingly send to the front end. In some entities I store in-
formation that should stay just in the back-end (such as security tokens for
resources, see 3.4).

Secondly, in a lot of entities I had a problem with circular references (e.g.
a Project has a list of Phases and a Phase has its Project). In order to
avoid this you can provide a built-in ObjectNormalizer object, where you can
set a circular reference limit and function that handles the cases of circular
references [66]. However, those two methods are deprecated since Symfony
4.2 [67].

Thirdly, I could not find any tool, that would transform PHP code of
entities into JavaScript, to be able to use them on the front end side.

39

3. Implementation

3.2.2 Own serializer

Due to issues mentioned above I decided to implement my own serializer, that
is located in App\Serialization\Serializer.

Every entity, that can be serialized must implement ISerializableEntity
interface:

interface ISerializableEntity {
public static function getProperties();

public function getId() : ?int;

public function setId(?int $id);
}

The getProperties function returns an array of App\Serialization\Property,
that are supposed to be sent to the front end. Property contains information
about

• type of property – either primitive (scalar types as defined in PHP [68]),
entity (object implementing ISerializableEntity) or array, that can
either consist of primitives or entities.

• getter function – by default set to getPropertyName, however it is pos-
sible to set it to something else. This function is used to retrieve the
value of the property.

• setter function – by default set to setPropertyName, which is used dur-
ing deserialization to set a value of either primitive value or an entity.

• adder function – by default set to addPropertyName, which is used dur-
ing deserialization to add elements to array properties.

• class name – in case of an entity the class name, that is stored also in
the JavaScript side object and helps deserialization when retrieved back.

During serialization the Serializer transforms an entity into an array,
which is then encoded into JSON format by standard PHP function php_encode
[69] and send to the front end.

During deserialization the Serializer the serializer distinguishes two cases.
If the entity coming from the front end already has an id, that is not null or
negative, the Serializer loads the entity from repository and updates prop-
erties that are not null in the serialized entity. If the entity’s id is null or is
negative, a new entity is formed. Negative ids are added to support deserial-
ization of complex new entities to signalize, that the entities with the same
negative ids are the same.

40

3.3. Templates

3.2.3 Front end part of serialization
Since I needed some tool, that would transform the entities code from PHP
to JavaScript, I decided to implement a Symfony command [70], which is run
from the command line by php bin/console serializer:js and is located
in App\Command\JSSerialization.

It automatically transforms all classes implementing ISerializableEntity
interface and located in App\Entity into a JavaScript class, that has a con-
structor taking either an array (that initializes the entity from JSON, that is
reconstructed from the string sent over HTTP by standard JavaScript function
JSON.parse) or nothing (that creates a class with all properties set to null or
an empty array in case of array properties) and a method deserialize, that
deserializes the object back to JavaScript JSON (it also recursively deserializes
subentities).

3.3 Templates
When a user decideds to establish a new project, he does not have to define all
the phases and tasks inside of them, however, he can use a template. When a
template is selected, phases and tasks within the phases are filled in according
to the template.

3.3.1 Template entity structure
The Template entity contains properties name, organization and settings
and represents a template of phases and tasks for a certain type of publication,
such as article or book.

If the organization is null, it means the template is a general template
not connected to any organization and is editable only by a super adminis-
trator. On the other hand, if the organization is not null, it belongs to
an organization and can be edited by a super administrator or a respective
organization administrator.

The settings is a text in YAML format and represents a recipe, what all
should be added to a project if it is base on the particular template.

3.3.2 Template settings structure
To describe the structure of a template let’s use settings in YAML 3.1.

ICalendar and ITaskSystem contains names of resources, that will be
used for as calendars and task systems. After establishing of the project the
system will automatically add events to all listed calendars and put tasks into
all task systems.

Brainstorming and Planning, are 2 phases that will be added to the
project. Brainstorming has a rank equal to 1, which is a human readable

41

3. Implementation

ICalendar: Google Calendar
ITaskSystem: Trello
Brainstorming:

rank: 1
description: "Description of brainstorming phase"
leadsTo: [2]
"Do brainstorming":

rank: 1
IDocument: GoogleDocument
inCalendar: true
description: "Some description of brainstorming part"

Planning:
rank: 2
description: "Plan the deadlines for the whole project"
leadsTo: [3]
"Plan who will do what":

rank: 1
inCalendar: false
description: "Assign people to all tasks"

...

Figure 3.1: Template settings

and short identification of the phase within the project. The leadsTo attribute
contains list of ranks of phases, that the phase can be switched into – in this
case Brainstorming can be switched to Planning.

Do brainstorming is a task, which has a unique rank within its phase
– Brainstorming. IDocument tells, that there will be automatically made
a document for this task, that will be shared to all participants (however,
you can use any kind of resource except those representing task systems and
calendars). The inCalendar attribute determines, whether the particular task
should be added to calendars, since if there would be all tasks, calendars would
be labyrithine.

3.3.3 Creating a new project from a template

The whole process of transforming a template into a Project entity is de-
picted in the figure 3.2. When a user selects a template, a JavaScript method
TemplateParser.createNewProjectFromTemplate is called and an instatnce
of JavaScript class Project with pre-filled phases and tasks is created. User
then adjusts the Project, which is then deserialized (since Project is a class
created by serializer described in subsection 3.2.3), sent over HTTP, where
the PHP Serializer turns it into a PHP entity Project

42

3.4. Resources

json_decode«Entity»
Project

EntityManager

Serializer

JavasCript«JavaScript object»
Template

Template

parser

«YAML»
Template

 JavaScript
php

arraySerializer.deserialize() string over HTTP

Template.deserialize()

Figure 3.2: Template parsing diagram

3.4 Resources
The most important part of the system are, as I called them, resources. They
represent a connection layer between the system and 3rd party services.

3.4.1 Abstract resource structure
As you can see in diagram 3.3, there is an abstract class called Resource, that
defines all methods, that every single resource needs to implement, since they
are necessary for synchronization of the resources during manipulation with
projects, their phases and tasks (see also subsections ?? and 3.4.4).

Every resource has a name (i.e. Trello or Google Document) and is of a
certain type – in our case a document, calendar, task system or a file system.
Each type is represented by an abstract class extending the class Resource
and all of these classes, Document, Calendar, TaskSystem and FileSystem,
implement the abstract methods of Resource and introduce new abstract
methods specific for the particular resource type, that are then implemented
in the particular implementation.

In case anybody would like to add another resource type, i.e. GIT, he just
needs to add an abstract class, that will extend Resource.

To make the matter clear, let’s take a look on an example. The method
addProjectInvolved is called, when a ProjectInvolved accepts the offer
to participate in the project and we need to assign him his tasks in our
TaskSystem, particularly Trello. The method addProjectInvolved is im-
plemented in class TaskSystem and calls the abstract methods of TaskSystem,
namely addProjectInvolvedToBoard and addProjectInvolvedToTask. These
methods are then implemented in class Trello, that is connected to Trello API
(see subsubsection 3.4.5.2).

43

3. Implementation

«abstract class»
TaskSystem

+createBoard(Project)
+createPanel(Phase)
+updatePanel(Phase)
+addProjectInvolvedToBoard(ProjectInvolved)
+removeProjectInvolvedFromBoard(ProjectInv)
+taskDone(Task)

«abstract class»
FileSystem

+createFolder(ISerializableEntity, ?string)
+deleteFolder(ISerializableEntity)
+renameFolder(ISerializableEntity)
+shareRootWithProjectInvolved(ProjectInvolved)
+unshareRootWithProjectInvolved(ProjectInvolved)
+createDirectoryStructure(Directory)

«abstract class»
Document

+createDocument(ISerializableEntity,?string)
+deleteDocument(ISerializableEntity)
+shareDocument(ISerializableEntity, ProjectInv)
+unshareDocument(ISerializableEntity, ProjectInv)

«abstract class»
Calendar

+initCalendar(Project)
+addEvent(Task)
+removeEvent(Task)
+changeEventTime(Task)
+function setAttendees(Task $task)

«abstract class»
Resource

-getName(): string
+getInterfaceName(): string
-dependsOnResources(): array
+initFromConfiguration()
+getShareLink(ISerializableEntity) : string

+addProjectInvolved(ProjectInvolved)
+updateProjectInvolved(ProjectInvolved)
+removeProjectInvolved(ProjectInvolved)

Figure 3.3: Resources structure

3.4.2 Pairing of application classes with resources

Parts of Project, namely parts represented by classes ProjectInvolved,
Phase and Task are always bound to certain entities within the resource, e.g.
a Task is represented by an event in Google Calendar. In order to be able
to pair the application entities with the resource entities, there is an entity
EntityResourceRelator.

EntityResourceRelator consists of four pieces of information – resource
name (e.g. Trello), entity class (e.g. Task), SciCol entity id and resource
entity id. Then EntityResourceRelatorRepository can provide resource
entity id after providing of SciCol entity and vice versa.

44

3.4. Resources

3.4.3 Resource types
As mentioned earlier, there is an abstract class for every type of a resource.
In case somebody would like to extend the application and add some other
resource type, the only step necessary is to add such a class. Let’s describe
the resource types present in SciCol.

3.4.3.1 Calendar

Class Calendar represents a calendar system. Project is bound to a calendar
and Task is bound to an event placed in such a calendar. Phase does not have
a calendar counterpart.

3.4.3.2 TaskSystem

TaskSystem represents a tool for managing tasks. In TaskSystem a Project
represents a board. Board consists of lists, each of which is a counterpart of
a Phase. A list then contains arbitrary number of cards representing Tasks.
If a ProjectInvolved is assigned to a Task, then in the task system he is
assigned to the bounded card.

3.4.3.3 Document

A Document can be bound to either of Phase and Task.

3.4.3.4 FileSystem

FileSystem is a specific resource. If bound to any Phase or Task, the system
creates a root folder for the whole Project, sub-folder of the root folder for a
bounded Phase and a sub-folder of it for a bounded Task.

3.4.4 Resource Loader
When working with resources, the application somehow needs to manage
them. For that purpose there is the class ResourceLoader. It implements
following functions:

• getResource – return the resource with given name

• getResourcesImplementing – return all resources the are of a certain
type, e.g. Calendar

• getAllResources – return all resource available in the application

• checkAllUsernames – for a given ProjectInvolved insepcts, whether
all ResourceUsername entities have a valid username for the given re-
source

45

3. Implementation

• callFunctionOnAllResources – calls the given function on all resources
available. E.g. after ProjectInvolved accepts a Project, the Resource
function addProjectInvolved is called on every Resource

3.4.5 Implementations
For every resource, that is used in the application, there must be a partic-
ular implementation, that connects to an external service through an API a
performs the synchronization. The necessary configuration of every resource
is stored in a YAML file, from where its loaded by ResourceLoader when a
certain resource is required.

3.4.5.1 Common Google framework

Even though I use three different Google services (namely Google Documents
[52], Google Calendar [51] and Google Drive [53]), they share the a common
part to secure the communication with the services through the Google REST
API.

That has the advantage, that for all Google service I can use the same core
functionality. Therefore, every Google related resource, Google Calendar,
Google Drive and Google Document, extend their respective parent classes
(Calendar, Document and FileSystem) and use GoogleCommon trait, since
there is not allowed multiple inheritance in PHP [71].

In SciCol the Google PHP client [72] is used, since it makes the usage
of the Google REST API much simpler. In the common Google core the
Google_Client is initilized and in Calendar, Document and FileSystem the
corresponding services (Google_Service_Calendar and Google_Service_Drive,
since Google does not distinguish much between folders and files [73]) are used.

3.4.5.2 Trello

Trello offers a REST API [54] to create, update and delete its boards, lists
and cards as well as to assign users to cards.

In order to call the API, you can use a PHP HTTP client, such as Guzzle
[74], however I decided to use Steven Maguire’s Trello client [75]. It contained
most of the methods I needed to work with Trello. I implemented the rest of
them in the class TrelloClient, that extends Steven Maguire’s client.

3.4.6 Savers
When addding, updating or removing an entity, that is a part of a project
there is also a need to call associated services. From that reason there is
an abstract class Saver, that has the abstract method save. Every type of
entity related to Project (Phase, Task and ProjectInvolved) has an own
implementation of this method.

46

3.4. Resources

This method accepts 2 arguments – the original entity instance, that is
stored in the database, and the new serialized entity, that has updated in-
formation in it. Both of them can be null. The new entity with updated
information cannot be serialized, since thanks to Symfony ORM the original
entity would get updated as well. There are three allowed combinations:

• The original entity instance is null and the new entity array is not null.
In such a case the ResourceLoader calls a function add* on all services,
since we just added the entity. The new entity is saved into the database.

• The original entity instance is not null and the new entity array is not
null. The function update* is called and the new entity instance is saved
in the database.

• The original entity instance is not null and the new entity array is null.
The function remove* is called and the entity instance is removed from
the SciCol database.

3.4.7 Webhooks
In case there is a need for a bi-directional synchronization, the webhooks come
to the word. When a change occurs in any resource, e.g. Trello, the resource
makes a GET request on pre-defined address to notify, that some changes have
occured.

For this purpose I have created WebhookController, that takes care about
this all incoming requests. I chose the a Controller, since a method taking
care about the triggered webhooks will have to accept HTTP requests.

3.4.7.1 Trello webhooks

Trello webhooks are accessible only through its API [76]. In order to assign
webhook to any Trello entity (in case of Trello boards, lists and cards), a
call containing modelId (idBoard, idList or idCard) and webhook callback
address must be made. For this purpose there is the createWebhook of class
Trello. This method is called always, when any new Trello entity is added.
There is no need to delete the webhook when deleting the entity, since it is
automatically done by Trello itself.

Whenever something in Trello changes (e.g. dead line or name of a card),
Trello calls http://scicol.fit.cvut.cz/trelloCallbacks/. In SciCol this
invokes the method trelloWebhook of WebhookController, which saves all
the changes and initiates changes in other resources.

3.4.7.2 Google webhooks

Google API offers webhooks as well, just under the name push notifica-
tions [77]. Originally, I wanted to implement them as well, however, Google

47

http://scicol.fit.cvut.cz/trelloCallbacks/

3. Implementation

push notifications require a callback adress with HTTPS. However, so far the
SciCol server as well as my dev server do not have HTTPS yet. I prepared
createWebhook method of GoogleCalendar, which is called, but now still has
empty body. The WebhookController method for GoogleCalendar callbacks
still has to be implemented.

48

Chapter 4
Testing

4.1 Testing environment

Symfony offers concept so-called environments [78]. This feature helps to
divide configuration of Symfony packages and system variables for different
environments. By default there are 3 different environments: prod for pro-
duction, dev for development and test for testing.

For testing purposes I created a package of Symfony fixtures [79], that can
be found in App\Fixtures. When the fixtures are loaded, the loader purges
the database and inserts entities defined in the fixtures. These data are then
used in the tests. For test purposes I created a separate database scicol_test
(production and development use database scicol).

In order to automate everything I created a bash script tests\runtest.sh
that runs migrations if any new, than loads the fixtures and then executes all
defined tests.

4.2 Unit testing

Symfony has integrated tests for both, unit testing as well as functional testing
[80]. Unit testing tests a single functionality, that do not need any other
interaction with other resources, e.g., database.

In SciCol there is a limited set of functional tests, since most of the system
backend logic is relatively complex and cannot be covered by simple unit tests.

Unit tests cover testing of expected behavior of entities, e.g., for ProjectInvolved
it tests whether you do not want to assign two Prinicipal Investigators to a
Project or for Task, that you are not trying to add ProjectInvolved be-
longing to another project.

49

4. Testing

4.3 Functional testing
Functional tests are more complex than unit tests and use various different
resources, such as database [80].

For functional testing, that requires also enityManager to load the entities
from the database, a Symfony Kernel is needed. I used the same Kernel as
in the production withou any adjustments.

I divided functional tests into 2 logical parts: testing of serialization and
testing of resources.

4.3.1 Testing of serialization
Serializer does a quite complex operations and therefore needs to be tested
thoroughly.

The tests cover the basic functionality of Serializer by loading various
entities from database, their serialization followed immediately by their dese-
rialization and comparison with the original entities.

It also test storing of new entities recieved from the front end into database.
The front end assigns to new entities, that do not have any database id yet,
negative ids. The Serializer than should store entities of the same type with
same negative id as one entity.

4.3.2 Testing of resources
All the resources are working with APIs. It is definitely not a good idea to do
any automated tests against live API. Therefore I used PHP-VCR [81] library,
that records all the HTTP communication during the first iteration of the test
and replays it during the next iterations.

In the tests, various entities are added to resources (e.g. when a Project
is added to GoogleCalendar resource, a new Google Calendar is created) and
the database is checked for presence of all EntityResourceRelator entities.

4.4 UI testing
User Interface is an important part of the application as well and therefore
should be tested as well.

4.4.1 Manual walk-through
Since the application is based on integration with 3rd party tools through
various APIs, the static tests with recorded HTTP communication might not
reflect edge cases. Therefore I have decided to make a manual walk-through
and make tests against live API. I was checking all 3rd party tools, whether

50

4.4. UI testing

they reflect the changes in SciCol as intended. Before executing the walk-
through, I have initialized database with fixtures located in src\Fixtures.

Here is the list of exact steps I made:

• I started by creating a new project. I selected template Article, that
is in TemplateFixture. I filled in the project name, description and set
visibility to Only organization members. I added one collaborator and to
task Do brainstorming I added deadline and assigned myself. I saved the
project and checked, if a new calendar with 1 event was made in Google
Calendar, if a new board with appropriate lists and tasks was made in
Trello and corresponding Google Drive structures were made.

• Then in My projects I accepted the project. During the first run I
added all usernames, during the second run only Trello and Google
calendar. I checked, whether I was added correctly to the task in
Trello and Google Calendar and if I could access Google Drive.

• Then I viewed the project. Firstly I clicked on General settings, changed
the project name and checked whether the project name was changed in
all 3rd party tools.

• Afterwards I opened the Brainstorming phase and changed the dead-
line (DL), turn on and off inCalendar and changed the deadline again.
During this I was checking in Trello if the deadline changes in corre-
sponding card and in Google Calendar, whether the event appears and
disappears as it should.

• In Collaborators I added Marek Suchánek as a collaborator and turned
on and off Project Administrator option.

• In the phase modal window I removed and added Google Document to
Phase and to Task.

• I added and removed myself to Task and observed, whether I will be
added and removed to the card in Trello and event in Google Calendar.

• I pinned and unpinned the project.

• I suspended and unsuspended the project, afterwards I archived it.

4.4.2 Problems found during manual walk-through
During first few iterations of the manual walk-through I was getting large
ammounts of internal server error. Thanks to the testing I found following
bugs:

• The Serializer was not serializing correctly properties of datetime type
as well as the JSerializerCommand was not initializing them at all.

51

4. Testing

• The mechanism of saving changed entities with classes inherited from
Saver was completely wrong, since I was trying to compare entities dese-
rialized with Serializer with those loaded from the database. I found
out, that any two instances of any doctrine entity are synchronized.

• I was doing changes in Google services wrongly. E.g., when you want
to change a file name of Google Document, you have to create a brand
new Google Document instance and set only the values, that you want
to update.

• There was no mechanism of checking, whether the user has saved the
username for given service or not.

• There was no check, if there already exists an equivalent of entity in
3rd party tools (e.g. Trello card for a Task), so in certain situations it
happened, that one entity had more equivalents.

All of the described problems were fixed.

52

Chapter 5
Further possibilities

The scope of this thesis is relatively large and many more hundreds of hours
could be spend on developing the system. In the following sections I want to
outline the possibilities of further development based on my ideas as well as
ideas provided by others.

5.1 New external services
Understandably, there are many tools that the researchers might use during
the publication process. It is almost impossible to satisfy everybody, however
thanks to emphasis on extendability it is relatively uncomplicated to imple-
ment a new Resource representing a new external tool.

In the application I included four different external tools: Trello, Google
Calendar, Google Documents and Google Drive. It might be beneficial to im-
plement connection to other external tools of the same type (calendar, shared
drive, task system, document) or a brand new type, such as GIT.

5.2 Tighter integration with services
Many researchers use only email or some type of shared documents and are
so used to it, that they refuse to learn anything new.

Therefore it might be beneficial to make some tighter integration with
external services, e.g., include messages from Gmail directly into the applica-
tion.

53

Conclusion

Benefits and omparison with other applications
In comparison with other applications, that are supposed to guide collabo-
rators throughout the whole process of creating a publication, such as Re-
searchGate or Open Science Framework mentioned in section 1.2, SciCol is
not trying to implement the whole process, however it relies on external ser-
vices that the collaborators ought to already be used to and is not trying to
do it better than Google.

It is also relatively straight forwared to use.

Dissuades of application
Among the dissuades of current implementation belongs, in my opinion, the
fact, that there is a lack of implemented connections to external services.

Fullfilment of assignment
During designing and implementation I was following the assignment. In the
following list I specify fullfilment of every point of the assignment:

• Analyze types of scientific publications and the process of their
preparation and creation up to publishing and indexing. Spec-
ify requirements for the system.

• Briefly research current solutions for collaboration upon pub-
lications. In the chapter 1.2 I summarized the most used applications
during creating and publishing an article upon my own research as well
as upon interviews with people from the faculty.

55

Conclusion

• Design a system supporting the process of publishing activi-
ties. During the designing, take into account extensibility of
the system and consider integrations of suitable external ser-
vices. I designed the system with the help of OntoUML (see section
2.4) along with usage and extendability of external services as described
in subsection 2.3.3.

• Implement the designed system and test it thoroughly. Justify
selection of the programming language and other technologies
(e.g. a web framework). The language and framework were selected
and justified already during the designing phase (see section 2.2). Then
the system was implemented (chapter 3) and tested (chapter 4). I admit
lack of user testing as well as not fulfilling the requirements to pass
project ownership and start a new project based on an old one. However,
I plan to continue working on the project even after submission of this
thesis.

• Evaluate benefits of the system for users and compare it with
alternative applications. Please see the upper part of this chapter.

56

Bibliography

[1] Öchsner, A. Introduction to Scientific Publishing. ISBN 978-3-642-38646-
6, Springer, 2013, 9-13 pp.

[2] Schöpfel, J. Grey Literature in Library and Information Studies. ISBN
978-3-598-11793-0, De Gruyter, 2010, 2-3 pp.

[3] International Serial Standard Serial Number International Center. What
is an ISSN? [cited 2019-04-24]. Available from: https://www.issn.org/
understanding-the-issn/what-is-an-issn/

[4] Bradley, P. Book numbering: the importance of the ISBN. The In-
dexer, volume 18, no. ISSN 1756-0632, 1992. Available from: https:
//www.theindexer.org/files/18-1/18-1_025.pdf

[5] Kochel, T. Impact Factor Distortions. Science, volume 340,
no. ISSN 1095-9203, 2013: p. 787. Available from: https:
//science.sciencemag.org/content/340/6134/787

[6] Somnath Saha, D. A. C., Sanjay Saint. Impact factor: a valid measure of
journal quality? Journal of the Medical Library Association, volume 91,
2003: pp. 42–46. Available from: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC141186/

[7] Georgetown University Library. What’s the Difference between Scholarly
Journals and Popular Magazines? 2019, [cited 2019-05-07]. Available
from: https://www.library.georgetown.edu/tutorials/scholarly-
vs-popular

[8] Ellison, C. McGraw-Hill’s Concise Guide to Writing Research Papers.
ISBN 978-0-07-162990-4, The McGraw-Hill’s Companies, 2010.

[9] Anthony C. Winkler, J. R. M. Writing the research paper: A Handbook.
ISBN: 978-0-495-79964-1, Wadsworth, Cangage Learning, 2012.

57

https://www.issn.org/understanding-the-issn/what-is-an-issn/
https://www.issn.org/understanding-the-issn/what-is-an-issn/
https://www.theindexer.org/files/18-1/18-1_025.pdf
https://www.theindexer.org/files/18-1/18-1_025.pdf
https://science.sciencemag.org/content/340/6134/787
https://science.sciencemag.org/content/340/6134/787
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC141186/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC141186/
https://www.library.georgetown.edu/tutorials/scholarly-vs-popular
https://www.library.georgetown.edu/tutorials/scholarly-vs-popular

Bibliography

[10] Jacalyn Kelly, K. A., 1 Tara Sadeghieh. Peer Review in Scientific Pub-
lications: Benefits, Critiques, & A Survival Guide. Journal of the In-
ternational Federation of Clinical Chemistry and Laboratory Medicine,
volume 25, no. ISSN 1051-2292, 2014: pp. 227–243. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975196/

[11] (U.S.)., N. R. C. Electronic Message Systems for the U.S. Postal Service:
A Report. Technical report, National Academy Of Sciences, Washington
D.C., 1976.

[12] Google. Group emails into conversations. [cited 2019-05-07]. Avail-
able from: https://support.google.com/mail/answer/5900?co=
GENIE.Platform%3DDesktop&hl=en

[13] Rewardly, Inc. Features - Streak. [cited 2019-05-07]. Available from:
https://www.streak.com/features

[14] Slack. Where work happens | Slack. [cited 2019-05-07]. Available from:
https://slack.com/intl/en-cz/?eu_nc=1

[15] WhatsApp Inc. WhatsApp Features. [cited 2019-05-07]. Available from:
https://www.whatsapp.com/features/

[16] Telegram. Telegram F.A.Q. [cited 2019-05-07]. Available from: https:
//telegram.org/faq

[17] Fleep Technologies. Fleep. [cited 2019-05-07]. Available from: https://
fleep.io/features

[18] Atlassian. About Trello. [cited 2019-05-07]. Available from: https://
trello.com/about

[19] Software Freedom Conservancy. About - Git. [cited 2019-05-07]. Available
from: https://git-scm.com/about

[20] GitHub, Inc. About GitHub. [cited 2019-05-07]. Available from: https:
//github.com/about

[21] GitLab. The first single application for the entire DevOps lifecycle - Git-
Lab. [cited 2019-05-07]. Available from: https://about.gitlab.com/

[22] Stack Exchange Inc. Tour - Stack Overflow. [cited 2019-05-07]. Available
from: https://stackoverflow.com/tour

[23] ResearchGate GmbH. ResearchGate. [cited 2019-05-07]. Available from:
https://www.researchgate.net/about

[24] Center For Open Science. OSF. [cited 2019-05-07]. Available from: https:
//osf.io/

58

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975196/
https://support.google.com/mail/answer/5900?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/mail/answer/5900?co=GENIE.Platform%3DDesktop&hl=en
https://www.streak.com/features
https://slack.com/intl/en-cz/?eu_nc=1
https://www.whatsapp.com/features/
https://telegram.org/faq
https://telegram.org/faq
https://fleep.io/features
https://fleep.io/features
https://trello.com/about
https://trello.com/about
https://git-scm.com/about
https://github.com/about
https://github.com/about
https://about.gitlab.com/
https://stackoverflow.com/tour
https://www.researchgate.net/about
https://osf.io/
https://osf.io/

Bibliography

[25] Franklin, C. 10 Hot Programming Languages To Build Web
Apps. InformationWeek, 2016, [cited 2019-05-07]. Available from:
https://www.informationweek.com/software/10-hot-programming-
languages-to-build-web-apps/d/d-id/1327471

[26] Shiotsu, Y. Web Development 101: Top Web Development Lan-
guages to Learn in 2018. Upwork Blog, 2017, [cited 2019-05-
07]. Available from: https://www.upwork.com/blog/2017/11/top-web-
development-languages-2018/

[27] James, N. 8 Best Programming Languages to Develop an Ecommerce
Website in 2017. WebEcommerce Pros, volume April, 2017, [cited 2019-
05-07]. Available from: https://www.webecommercepros.com/best-
programming-language-ecommerce-website-development-2017

[28] Oracle. The Jave Tutorials. [cited 2019-05-07]. Available from: https:
//docs.oracle.com/javase/tutorial/

[29] Python Software Foundation. Python 3.7.3 documentation. [cited 2019-
05-07]. Available from: https://docs.python.org/3/

[30] PHP Group. PHP - HyperText Preprocessor. 2019, [cited 2019-05-07].
Available from: https://www.php.net/

[31] Mozilla Developer Network. JavaScript Documentation. [cited 2019-05-
07]. Available from: https://devdocs.io/javascript/

[32] W3Schools. HTML Reference. [cited 2019-05-07]. Available from: https:
//www.w3schools.com/tags/

[33] Stack Exchange Inc. Stack Overflow - tags. [cited 2019-05-07]. Available
from: https://stackoverflow.com/tags

[34] Hornostaiev, M. Java, Python, and PHP: Which is Better for Server
Backends? Erminesoft, volume February, 2019, [cited 2019-05-07]. Avail-
able from: https://erminesoft.com/java-python-and-php-which-
is-better-for-server-backends/

[35] Nette Foundation. Nette Framework. [cited 2019-05-07]. Available from:
https://nette.org/en/

[36] Morris, W. 8 Best PHP Frameworks for Web Developers. Hostinger
Tutorials, 2019, [cited 2019-05-07]. Available from: https://
www.hostinger.com/tutorials/best-php-framework

[37] Machač, M. 10 nejlepších PHP frameworků pro vývojáře. interval.cz,
2015, [cited 2019-05-07]. Available from: https://www.interval.cz/
clanky/10-nejlepsich-php-frameworku-pro-vyvojare/

59

https://www.informationweek.com/software/10-hot-programming-languages-to-build-web-apps/d/d-id/1327471
https://www.informationweek.com/software/10-hot-programming-languages-to-build-web-apps/d/d-id/1327471
https://www.upwork.com/blog/2017/11/top-web-development-languages-2018/
https://www.upwork.com/blog/2017/11/top-web-development-languages-2018/
https://www.webecommercepros.com/best-programming-language-ecommerce-website-development-2017
https://www.webecommercepros.com/best-programming-language-ecommerce-website-development-2017
https://docs.oracle.com/javase/tutorial/
https://docs.oracle.com/javase/tutorial/
https://docs.python.org/3/
https://www.php.net/
https://devdocs.io/javascript/
https://www.w3schools.com/tags/
https://www.w3schools.com/tags/
https://stackoverflow.com/tags
https://erminesoft.com/java-python-and-php-which-is-better-for-server-backends/
https://erminesoft.com/java-python-and-php-which-is-better-for-server-backends/
https://nette.org/en/
https://www.hostinger.com/tutorials/best-php-framework
https://www.hostinger.com/tutorials/best-php-framework
https://www.interval.cz/clanky/10-nejlepsich-php-frameworku-pro-vyvojare/
https://www.interval.cz/clanky/10-nejlepsich-php-frameworku-pro-vyvojare/

Bibliography

[38] Reigns, S. 11 Best PHP Frameworks for Modern Web Developers in
2019. Coders Eye, 2019, [cited 2019-05-07]. Available from: https:
//coderseye.com/best-php-frameworks-for-web-developers/

[39] Njenga, A. 10 Popular PHP frameworks in 2019. Raygun, volume Novem-
ber, 2018, [cited 2019-05-07]. Available from: https://raygun.com/
blog/top-php-frameworks/

[40] Goel, A. 10 Best JavaScript Frameworks to Use in 2019. Hackr.io, vol-
ume March, 2019, [cited 2019-05-07]. Available from: https://hackr.io/
blog/10-best-javascript-frameworks-2019

[41] Smith, J. 9 Popular JavaScript Frameworks for 2019. Raygun, volume
January, 2019, [cited 2019-05-07]. Available from: https://raygun.com/
blog/popular-javascript-frameworks/

[42] Oracle. Database Licensing. [cited 2019-05-07]. Available from: https:
//www.oracle.com/assets/databaselicensing-070584.pdf

[43] Microsoft Corporation. SQL Server 2017 Licensing Data Sheet. [cited
2019-05-07]. Available from: https://download.microsoft.com/
download/B/C/0/BC0B2EA7-D99D-42FB-9439-2C56880CAFF4/SQL_
Server_2017_Licensing_Datasheet.pdf

[44] DB-Enginges Ranking. Available from: https://db-engines.com/en/
ranking

[45] MariaDB. MySQL vs. MariaDB: Comprehensive Differences. [cited
2019-05-07]. Available from: https://mariadb.com/kb/en/library/
mariadb-vs-mysql-features/

[46] SensioLabs. Symfony - AbstractNormalizer. 2019, [cited 2019-05-07].
Available from: https://www.tutorialspoint.com/symfony/symfony_
architecture.htm

[47] SensioLabs. Symfony - Databases and the Doctrine ORM. 2019,
[cited 2019-05-07]. Available from: https://symfony.com/doc/current/
doctrine.html

[48] SensioLabs. Symfony - The HttpFoundation Component. 2019, [cited
2019-04-26]. Available from: https://symfony.com/doc/current/
components/http_foundation.html#creating-a-json-response

[49] SensioLabs. Twig - introduction. 2019, [cited 2019-05-07]. Available from:
https://twig.symfony.com/doc/2.x/intro.html

[50] Facebook Inc. Tutorial: Intro to React. [cited 2019-05-07]. Available from:
https://reactjs.org/tutorial/tutorial.html#what-is-react

60

https://coderseye.com/best-php-frameworks-for-web-developers/
https://coderseye.com/best-php-frameworks-for-web-developers/
https://raygun.com/blog/top-php-frameworks/
https://raygun.com/blog/top-php-frameworks/
https://hackr.io/blog/10-best-javascript-frameworks-2019
https://hackr.io/blog/10-best-javascript-frameworks-2019
https://raygun.com/blog/popular-javascript-frameworks/
https://raygun.com/blog/popular-javascript-frameworks/
https://www.oracle.com/assets/databaselicensing-070584.pdf
https://www.oracle.com/assets/databaselicensing-070584.pdf
https://download.microsoft.com/download/B/C/0/BC0B2EA7-D99D-42FB-9439-2C56880CAFF4/SQL_Server_2017_Licensing_Datasheet.pdf
https://download.microsoft.com/download/B/C/0/BC0B2EA7-D99D-42FB-9439-2C56880CAFF4/SQL_Server_2017_Licensing_Datasheet.pdf
https://download.microsoft.com/download/B/C/0/BC0B2EA7-D99D-42FB-9439-2C56880CAFF4/SQL_Server_2017_Licensing_Datasheet.pdf
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/
https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/
https://www.tutorialspoint.com/symfony/symfony_architecture.htm
https://www.tutorialspoint.com/symfony/symfony_architecture.htm
https://symfony.com/doc/current/doctrine.html
https://symfony.com/doc/current/doctrine.html
https://symfony.com/doc/current/components/http_foundation.html#creating-a-json-response
https://symfony.com/doc/current/components/http_foundation.html#creating-a-json-response
https://twig.symfony.com/doc/2.x/intro.html
https://reactjs.org/tutorial/tutorial.html#what-is-react

Bibliography

[51] Google. Google Docs: Free Calendar App for Personal Use. [cited 2019-
05-07]. Available from: https://www.google.com/calendar/about/

[52] Google. Google Docs: Free Online Documents for Personal Use.
[cited 2019-05-07]. Available from: https://www.google.com/intl/en_
US/docs/about/

[53] Google. Google Docs: Free Cloud Storage for Personal Use. [cited 2019-
05-07]. Available from: https://www.google.com/drive/

[54] Atlassian. Introduction - Trello API. [cited 2019-05-07]. Available from:
https://developers.trello.com/reference

[55] Google. Google APIs Explorer. [cited 2019-05-07]. Available from: https:
//developers.google.com/apis-explorer/

[56] Fowler, M. UML Distilled, Third Edition. ISBN 0-321-19368-7, Addison-
Wesley, 2004.

[57] Ing. Zdeněk Rybola, P. Towards OntoUML for Software Engineering:
Transformation of OntoUML into Relational Databases. Dissertation the-
sis, Czech Technical University in Prague, 2017.

[58] Konceptuální modelování. [cited 2019-05-07]. Available from: https://
moodle.fit.cvut.cz/course/view.php?id=32

[59] Guilizzoni, P. What are wireframes. Balsamiq Studios, LLC, [cited
2019-05-07]. Available from: https://balsamiq.com/learn/resources/
articles/what-are-wireframes/

[60] Evolus. Home - Pencil project. [cited 2019-05-07]. Available from: https:
//pencil.evolus.vn/

[61] Siddiqui, A. Authentication vs. authorization. Data Driven In-
vestor [online], September 2018, [cited 2019-05-07]. Available from:
https://medium.com/datadriveninvestor/authentication-vs-
authorization-716fea914d55

[62] SensioLabs. Symfony - Security. 2019, [cited 2019-05-07]. Available from:
https://symfony.com/doc/current/security.html

[63] Wolfram Research, I. Hash Function. 2019, [cited 2019-05-07]. Available
from: http://mathworld.wolfram.com/HashFunction.html

[64] SensioLabs. Symfony - Security User Providers. 2019, [cited 2019-05-07].
Available from: https://symfony.com/doc/current/security/user_
provider.html

61

https://www.google.com/calendar/about/
https://www.google.com/intl/en_US/docs/about/
https://www.google.com/intl/en_US/docs/about/
https://www.google.com/drive/
https://developers.trello.com/reference
https://developers.google.com/apis-explorer/
https://developers.google.com/apis-explorer/
https://moodle.fit.cvut.cz/course/view.php?id=32
https://moodle.fit.cvut.cz/course/view.php?id=32
https://balsamiq.com/learn/resources/articles/what-are-wireframes/
https://balsamiq.com/learn/resources/articles/what-are-wireframes/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://medium.com/datadriveninvestor/authentication-vs-authorization-716fea914d55
https://medium.com/datadriveninvestor/authentication-vs-authorization-716fea914d55
https://symfony.com/doc/current/security.html
http://mathworld.wolfram.com/HashFunction.html
https://symfony.com/doc/current/security/user_provider.html
https://symfony.com/doc/current/security/user_provider.html

Bibliography

[65] SensioLabs. Symfony - Authorization. 2019, [cited 2019-05-07]. Available
from: https://symfony.com/doc/current/components/security/
authorization.html

[66] SensioLabs. Symfony - The Serializer Component. 2019, [cited 2019-05-
07]. Available from: https://symfony.com/doc/current/components/
serializer.html

[67] SensioLabs. Symfony - AbstractNormalizer. 2019, [cited 2019-
05-07]. Available from: https://github.com/symfony/symfony/
blob/4.2/src/Symfony/Component/Serializer/Normalizer/
AbstractNormalizer.php

[68] PHP Group. PHP - Introduction. 2019, [cited 2019-05-07]. Available from:
https://php.net/manual/en/language.types.intro.php

[69] PHP Group. PHP - json_encode. 2019, [cited 2019-05-07]. Available from:
https://www.php.net/manual/en/function.json-encode.php

[70] SensioLabs. Symfony - Console Commands. 2019, [cited 2019-05-07].
Available from: https://symfony.com/doc/current/console.html

[71] PHP Group. PHP - Traits. 2019, [cited 2019-05-07]. Available from:
https://www.php.net/manual/en/language.oop5.traits.php

[72] Google. Getting Started - API Client Library for PHP (Beta). [cited 2019-
05-07]. Available from: https://developers.google.com/api-client-
library/php/start/get_started

[73] Google. Share files and folders | Drive REST API | Google Developers.
[cited 2019-05-07]. Available from: https://developers.google.com/
drive/api/v3/folder

[74] Guzzle, an extensible PHP HTTP client. [cited 2019-05-07]. Available
from: https://github.com/guzzle/guzzle

[75] Maguire, S. A php client for consuming the Trello API. [cited 2019-05-07].
Available from: https://github.com/stevenmaguire/trello-php

[76] Atlassian. Trello - webhooks. [cited 2019-05-07]. Available from: https:
//developers.trello.com/page/webhooks

[77] Google. Push Notifications. [cited 2019-05-07]. Available from: https:
//developers.google.com/calendar/v3/push

[78] SensioLabs. How to Master and Create new Environments. [cited
2019-05-07]. Available from: https://symfony.com/doc/current/
configuration/environments.html

62

https://symfony.com/doc/current/components/security/authorization.html
https://symfony.com/doc/current/components/security/authorization.html
https://symfony.com/doc/current/components/serializer.html
https://symfony.com/doc/current/components/serializer.html
https://github.com/symfony/symfony/blob/4.2/src/Symfony/Component/Serializer/Normalizer/AbstractNormalizer.php
https://github.com/symfony/symfony/blob/4.2/src/Symfony/Component/Serializer/Normalizer/AbstractNormalizer.php
https://github.com/symfony/symfony/blob/4.2/src/Symfony/Component/Serializer/Normalizer/AbstractNormalizer.php
https://php.net/manual/en/language.types.intro.php
https://www.php.net/manual/en/function.json-encode.php
https://symfony.com/doc/current/console.html
https://www.php.net/manual/en/language.oop5.traits.php
https://developers.google.com/api-client-library/php/start/get_started
https://developers.google.com/api-client-library/php/start/get_started
https://developers.google.com/drive/api/v3/folder
https://developers.google.com/drive/api/v3/folder
https://github.com/guzzle/guzzle
https://github.com/stevenmaguire/trello-php
https://developers.trello.com/page/webhooks
https://developers.trello.com/page/webhooks
https://developers.google.com/calendar/v3/push
https://developers.google.com/calendar/v3/push
https://symfony.com/doc/current/configuration/environments.html
https://symfony.com/doc/current/configuration/environments.html

Bibliography

[79] SensioLabs. DoctrineFixturesBundle. [cited 2019-05-07]. Avail-
able from: https://symfony.com/doc/master/bundles/
DoctrineFixturesBundle/index.html

[80] SensioLabs. Symfony - testing. [cited 2019-05-07]. Available from: https:
//symfony.com/doc/current/testing.html

[81] PHP-VCR. PHP-VCR | Record HTTP interactions while testing. [cited
2019-05-07]. Available from: https://php-vcr.github.io/

63

https://symfony.com/doc/master/bundles/DoctrineFixturesBundle/index.html
https://symfony.com/doc/master/bundles/DoctrineFixturesBundle/index.html
https://symfony.com/doc/current/testing.html
https://symfony.com/doc/current/testing.html
https://php-vcr.github.io/

Appendix A
List of used abbreviations

CLI Command Line Interface

GUI Graphical User Interface

UI User Interface

CI Continuous Integration

WYSIWIG What You See Is What You Get

PHP Hypertext Preprocessor

HTML Hypertext Markup Language

CSS Cascade Style Sheets

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secured

SQL Structured Query Language

ORM Object-Relational mapper

JSON JavaScript Object Notation

API Application Programming Interface

UFO Unified Foundational Ontology

CTU Czech Technical University

UML Unified Modelling language

SSO Single Sign On

65

A. List of used abbreviations

YAML YAML Ain’t Markup Language

ISSN International Standard Serial Number

ISBN International Standard Book Number

66

Appendix B
Content of attached SD card

readme.txt..........................short description of sd card content
src

impl...............................source code of the implementation
thesis...............................source code of this thesis LATEX

text...text of this thesis
thesis.pdf................................this thesis in PDF format

67

Appendix C
Installation manual

The application was developed under Debian 9.8 Stretch and this manual is
intended for an installation on a server running on Linux.

C.1 How to get the source code
The source code of this project is available on GitLab of the Czech Technical
University, namely under https://gitlab.fit.cvut.cz/jiraspe2/scicol. In
case you would like to install the application your server, please contact me
vie email jiraspe2@fit.cvut.cz and send me your public SSH key.

Once the SSH key is present in the GitLab, clone the repository git@gitlab.fit.cvut.cz:
jiraspe2/scicol.git into any folder on the server, e.g. /home/scicol/. For
further explanation, let’s consider the folder with the repository as the root_path.

C.2 Dependencies
The application needs following programs for its run:

• PHP 7.2

• MySQL 15.1 or any other relational database compatible with Symfony
ORM.

• Apache2 server

• yarn and node.js

• composer

After installation of above mentioned programs it is necessary to set their
configuration.

69

https://gitlab.fit.cvut.cz/jiraspe2/scicol
jiraspe2@fit.cvut.cz
git@gitlab.fit.cvut.cz:jiraspe2/scicol.git
git@gitlab.fit.cvut.cz:jiraspe2/scicol.git

C. Installation manual

In the database machine create 2 databases called scicol and scicol_test
and create a user with all privileges granted for these databases. In files
root_path/.env and root_path/.env.test set the configuration your databases.

In Apache 2 server you will need to adjust you configuration file, on De-
bian usually /etc/apache2/sites-available/000-default.conf. Set the
configuration as following:

<VirtualHost *:80>
ServerName domain.tld
ServerAlias www.domain.tld

DocumentRoot root_path/public
<Directory root_path/public>

Order Allow,Deny
AllowOverride All
Allow from All

</Directory>
ErrorLog /var/log/apache2/project_error.log
CustomLog /var/log/apache2/project_access.log combined

</VirtualHost>

In some Apache2 versions you will need to replace Order Allow,Deny with
Require all granted. Also enable mod rewrite.

C.3 Installation
After installing all necessary programs, go to root_path and do following
steps:

1. Download and install all necessary PHP dependencies by calling composer
install.

2. Call yarn install.

3. And then yarn encore dev, which encores the JavaScript front-end.

4. Run all migrations by calling php bin/console doctrine:migrations:migrate.

5. Run tests by running the bash script tests/runtests.sh. Be sure you
run them from root_path folder.

6. In order to get a super administrator into database, load the UserFixture
by calling php bin/console doctrine:fixtures:load --fixture=/src/DataFixtures/UserFixture.php.
Adjust it to your needs.

Now you should be able to run the server.

70

C.4. Updating

C.4 Updating
For updating always pull the newest content from master branch on GitLab.
Then repeat steps 1-5 from previous section.

71

	Introduction
	Aim of this thesis
	Structure of this thesis

	Analysis of current situation and requirements on the application
	Scientific publications
	Current tools for cooperation
	SciCol
	Requirements
	Use cases

	Design
	Type of application
	Used technologies
	Architecture
	OntoUML model
	Relational Model
	Wireframes

	Implementation
	Authentication and authorization
	Serialization
	Templates
	Resources

	Testing
	Testing environment
	Unit testing
	Functional testing
	UI testing

	Further possibilities
	New external services
	Tighter integration with services

	Conclusion
	Benefits and omparison with other applications
	Dissuades of application
	Fullfilment of assignment

	Bibliography
	List of used abbreviations
	Content of attached SD card
	Installation manual
	How to get the source code
	Dependencies
	Installation
	Updating

