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Abstrakt

Tato diplomová práce se zabývá stromovými jazyky. Stromový jazyk se skládá
z množiny stromů, podobně jako textový jazyk se skládá z množiny tex-
tových řetězc̊u. Jelikož byla dokázána rovnost mezi tř́ıdou jazyk̊u přij́ımaných
konečnými stromovými automaty a tř́ıdou jazyk̊u popisovanou regulárńımi
stromovými výrazy, tak je možné provádět převody. Já se zaměřuj́ı na převod
konečných stromových automat̊u na regulárńı stromové výrazy. Během práce
je představeno jedno současné řešeńı a daľśı dva nové př́ıstupy jsou navrženy
a implementovany. Práce také zahrnuje porovnáńı nových algoritmů včetně
měřeńı zavedené kvality výsledku.

Kĺıčová slova konečný stromový automat, regularńı stromový výraz, kon-
verze
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Abstract

This thesis studies tree languages. Tree language is composed from set of
trees similarly as textual language is composed from set of textual strings.
Since class of languages which are accepted by finite tree automata and class
of languages which are denoted by regular tree expressions are proven to be
equal, conversion can be performed. I focus on conversion from finite tree
automata to regular tree expressions. During this thesis one state-of-the-art
solution is presented and two new approaches are discovered and implemented.
Brief comparison between algorithm and measurements are included.

Keywords regular tree expression, finite tree automaton, conversion
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Introduction

In this thesis, I focus on regular tree languages. In a textual-language dis-
cipline there is a class of regular languages as well as its generator, regular
grammar, its acceptor, finite state automaton (FA) and an alternative lan-
guage descriptor regular expression (RE). Analogically in the world of com-
puter science there exist regular tree language’s class, regular tree grammar,
finite tree automaton (FTA) and regular tree expression (RTE). Furthermore,
the analogy between tree languages and textual languages is deeper. There
exists deterministic and non-deterministic version of FTA, determination of
non-deterministic FTA, minimization algorithm, pumping lemma for regular
tree language [1], Glushkow’s algorithm for conversion regular tree expressions
to finite tree automata [9], equation method for conversion from FTA to RTE
introduced in [10]. And this thesis is endeavour to find analogical algorithm
for FA to RE conversion by state elimination method.

Motivation

The discipline of tree languages is not so widely explored such as textual-
language discipline. However, it is widely used in computer science. Tree
languages have been useful for a wide variety of problems such as code gener-
ation, indexing [5], cryptography [2], XML processing [8] and natural language
processing [7].

Conversion from FTA to RTE can be performed by the mentioned equation
method [10]. FTA can be determinized and minimized by exact algorithms.
However, no such a minimization algorithm is known for RTE. A comparison
between two RTEs is implemented by conversion of both to FTA followed by a
comparison of their minimal forms. Therefore it is reasonable to figure out the
algorithm, that gives as short and as intuitive results as possible. Moreover
deeper examination of this analogy is topic important enough.
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Introduction

Goals

The primary goal is to design a new algorithm converting FTA to RTE that can
be considered as an analogy to state elimination algorithm as was mentioned.
The secondary goal is to design an algorithm that gives shorter or more natural
results.

Achieved results

The first goal was achieved by the algorithm 4.1. However, this solution
has weaknesses (see section 3.1.2). Source of sub-optimal constructions and
confusions was denoted. Proposal for fixation was given and implemented. I
proposed criterion on purpose to determine whether it helped. Measurements
point out that the second solution is significantly better.

2



Chapter 1
Used notation

In the beginning, definitions of tree language, finite tree automaton, regular
tree expressions and some of the related terms will be useful to create foun-
dations for this work. Used notation is based on [1]. However, the notation is
simplified and extended on the purpose of this thesis. Let me firstly describe
in general language followed by an exact formal definition.

1.1 Trees

I will use only rooted trees, where each element (ranked symbol) has ordered
list of children. A tree is composed inductively by connecting other trees as
children. And it ends by leaf, which is a symbol of zero ranks.

Definition 1.1.1 (Ranked symbol). Let S is a symbol and r ∈ N; r ≥ 0 is a
rank, then Sr is a ranked symbol. When rank is zero, it is so-call leaf. E.g.
A0 is a leaf.

Definition 1.1.2 (Ranked alphabet). Let ranked alphabet is a couple (
∑

,
Arity), where

∑
is a finite set and Arity is a mapping from

∑
into N. The

arity (also known as rank) of symbol h ∈
∑

is Arity(f). Elements of arity 0
are called leaves or constants. Alphabet has to containing at least one leaf to
be useful. Moreover let

∑
i ⊂

∑
is a set of all symbols of arity i. E.g.

∑
0 is

a set of leaves.

Remark 1.1.1. When it is clear, the rank (arity) is usually in the index. Eg.
h2 is ranked symbol h with rank 2.

Definition 1.1.3 (Extended alphabet by X). Let X be a set of leaves called
substitution symbols. Substitutions symbols and alphabet are usually disjoint
sets. This set is used as an extension for alphabet. Then

∑ ⋃
X is extended

alphabet.

3



1. Used notation

Definition 1.1.4 (Tree). Let ranked symbol T ∈
∑

r is the root of the tree
with rank r, then follows r roots of nested trees e.g. a2(b0, c2(d0, e1(d0))).
Besides, let L(

∑
) is a set of all the trees over alphabet

∑
.

I will be working with finite trees only, therefore I need at least one leaf
in the alphabet.

Remark 1.1.2 (Tree representation). Trees can be either represented graph-
ically or textually in strings. In my work I will use both representations, but
mostly textual form.

f2

h1 f2

b a a

Figure 1.1: Example tree

For textual form I will use prefix notation, which is more common. Fol-
lowing tree is same as tree on the figure 1.1.2. f2(h1(b0), f2(a0, a0))

Definition 1.1.5 (Tree language). Let
∑

be an alphabet, then k ⊂ L(
∑

) is
a tree language over alphabet.

Definition 1.1.6 (Tree substitution, Language substitution). Let
∑ ⋃

X be
an extended alphabet. Let t, d1, . . . , dn be trees over it and �1, . . . ,�n ∈
X. Substitution is mapping from substitution symbols to trees. Substitution
operation is operation that replaces substitution symbols by trees, so that
result of substitution operation is original tree, but all substitution symbols
covered by substitution are substituted by appropriate trees. Eg. Let

∑
=

{f2, g2, a, b} and X = {x1, x2}. Consider tree over extended alphabet t =
f(x1, x1, x2) and following substitutions s = {x1 ← a, x2 ← g(b, b)}, z =
{x1 ← x2, x2 ← b}. Then t · s = f(a, a, g(b, b)), t · z = f(x2, x2, b).

The language substitution is defined by following application of tree sub-
stitution. L1 · sL2 = {t1 · t2|t1 ∈ L1, t2,∈ L2}.

Definition 1.1.7 (Language iteration). Let L be a language over extended
alphabet and � be substitution symbol from the same alphabet and n is
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1.2. Finite Tree Automaton

number of iterations, then iteration Ln� is defined inductively as

Ln� = L ·�En−1�

L0� = �.
(1.1)

Definition 1.1.8 (Iteration closure). Let L be a language over extended al-
phabet and � be substitution symbol from the same alphabet Then closure
L?� is defined as

L?� =
∞⋃

k=0
Lk�

1.2 Finite Tree Automaton

There are two types of tree automata one is top-down, which traverses a tree
from its root, and another one is bottom up, which traverses a tree from
leaves. In this work, I will use only bottom-up tree automata. Bottom-up
types accept when the root of the tree is on the final state. Set of all the trees
that automaton accepts is the language of the automaton. We consider two
automata are equal when languages they are accepting are equal. These can
be deterministic and non-deterministic, but we will prove their power equality.

Definition 1.2.1 (Finite tree automaton). Finite tree automaton (FTA) over∑
is a 4-tuple A = (Q,

∑
, F, δ) where

Q is a finite set of states,∑
is an alphabet,

F ⊂ Q is a set of final states,
δ is a set of transition.

(1.2)

Transition is of the following type:

fr(q1(x1), . . . qr(xr))→ q(f(x1), . . . , f(xr)),
where r ≥ 0, fr ∈

∑
r, q, q1, . . . , qr ∈ Q, and x1, . . . , xr are helper variables

denoting trees.
FTA is always in class of non-deterministic FTA (NFTA), deterministic FTA
(DFTA) is subset of NFTA. An tree automaton is DFTA, when there are no
two transitions with same left-hand side in its set of transitions.

Remark 1.2.1 (Simplified transitions). Note that transitions defined above
stores input in attributes of states and accumulates tree. Eg.: Consider fol-
lowing automaton.

A = ({A,F},{a0,+2}, {F}, δ)
δ = {+ (A(x1), A(x2))→ F (+(x1, x2)),

a→ A(a)}
(1.3)

5



1. Used notation

Leaf a activates the second rule a → A(a) and two leaves a leading in + ac-
tivates the first rule +(A(a), A(a))→ F (+(a, a)), then the automaton accepts
input tree +(a, a).

The property that automaton stores the input is appreciable, but it is not
essential for this research. Therefore simplified notation can be used here.

Definition 1.2.2 (Transition in simplified notation). Let A = (Q,
∑
, F, δ) be

FTA, then transition in simplified notation is

fr(q1, . . . qr)→ q,

where r ≥ 0, fr ∈
∑

n, q, q1, . . . , qr ∈ Q.

1.2.1 Notation of transition

For given DFTA (resp. NFTA) A = (Q,
∑
, F, δ). Let me set specific names

for parts of transition here. Let me break t = (fr(q1, . . . qr) → s) ∈ δ into
ranked symbol fr ∈

∑
r with rank r, let incoming states be a name of vector

(q1, q2, . . . , qr), where qi ∈ Q for i = 1, . . . , r and target state s ∈ Q.

The mapping which associates state to set of incoming transitions to state
as well as mapping to outgoing transition from state can be stated, let call
them TrTo and TrOut. Moreover let me set mapping that can be used to entry
a part of transition. Let define symbol of transition as mapping transition to
ranked symbol and call it Symb and children called Kids as incoming state
into transition.

TrTo(u) = {(fr(q1, q2, . . . qr)→ s) ∈ δ; where u = s}
TrFrom(u) = {(fr(q1, q2, . . . qr)→ s) ∈ δ; where u ∈ q1, . . . , qr}
Symb((fr(q1, q2, . . . qr)→ s)) = fr

Target((fr(q1, q2, . . . qr)→ s)) = s

Kids((fr(q1, q2, . . . qr)→ s)) = (q1, q2, . . . qr)

(1.4)

Following definition terms language of state and language from edge are
defined inductively dependent each on other.

1.2.2 Language of automaton

Definition 1.2.3 (Language of state, language of edge). Let A = (Q,
∑
, F, δ)

is a FTA. Let s ∈ Q be a state, then define Lstate(s) as a language of state s.
Which is composed from all the trees flowing into that state. These trees are
flowing into state through transitions. Furthermore, language of transition is
combination of languages from incoming children connected into one symbol,

6



1.2. Finite Tree Automaton

which is their common root.
Lstate(u) =

⋃
tk∈TrTo(u)

Ledge(tk)

Ledge(tk) = {f(x1, . . . , xk)|x1 ∈ Lstate(c1), . . . , xk ∈ Lstate(ck)},
where f = Symb(t), (c1, . . . , ck) ∈ Kids(tk)

(1.5)

Definition 1.2.4 (Language of automaton). Let A = (Q,
∑
, F, δ) is a FTA.

Then L(A) is a language composed of all trees acceptable by A.

L(A) =
⋃

f∈F

L(f)

1.2.3 Properties of tree automata

Definition 1.2.5 (Determinization algorithm). Perform following steps on
NFTA to obtain DFTA.

1. When more transitions of the same left-hand-side exists, then collect set
of their targeting states. Create a new state representing that set of
states.

2. Compose its name from sorted elements of set. For instance {C,A,B} →
‘ABC‘ or {C,A} → ‘AC‘.

3. Replace group of mentioned redundant left-hand-side transitions by one
transition leading to the new state.

4. Then collect all transitions leading from all of collected states and add
similar transitions, but leading from the new state.

5. Continue step 1 until there is nothing to add.

Remark 1.2.2. Determinization algorithm 1.2.5 is transcript from proof of
Theorem 1.1.9 in [1].

Lemma 1.2.3. Algorithm will terminate and can’t be worse then exponential
in time.

Proof. Let Q is the set of states of NFTA, it is finite set. Let N = |Q| is a
number of elements. This set has 2N subsets, thus we can produce at most
2N states in new DFTA.

Theorem 1.2.4. NFTA and DFTA are equally strong.

Proof. Conversion exists in both directions.

1. Since by definition is DFTA is subset of NFTA, it is trivially fulfilled.

2. We can convert NFTA to DFTA using determinization 1.2.5.

Thus NFTA and DFTA are equally strong.

7



1. Used notation

1.3 Regular Tree Expression

This is another way to describe a tree language. Regular Tree Expression
(RTE) is of a tree structure. It does consist ranked alphabet powered by
special features. A tree can consist of alternation, iteration and substitution.
It uses substitution symbols denoting where are trees connected and how they
are generated.

Definition 1.3.1 (regular tree expressions). The set TRegEx(
∑

, X) of regular
tree expressions over ranked alphabet

∑
extended by substitution symbols X

is defined inductively:

Empty set is in RTE.
E = ∅
Substitution symbol is in RTE.
E = �x where �x ∈ X
Alphabet ranked symbol followed by RTEs is also in RTE.
E = fn(E0, . . . , En) where n ≥ 0, fn ∈

∑
n

and Ei ∈ TRegEx(
∑

,X)

Alternation is in RTE
E = E0 + E1 where Ei are RTEs
Substitution by substitution symbol is RTE
E = E0 ·�E1 where Ei are RTEs and �x ∈ X.
Iteration by substitution symbol is RTE
E = E?�

0 where E0 is RTE and �x ∈ X.

(1.6)

Definition 1.3.2 (Language of RTE). Let E ∈ TRegEx(
∑
,X), then L(E) is

a language composed by all the tree that E denotes. Language is defined by
following equations

L(∅) = ∅
L(�x) = �x where �x ∈ X
L(fn(E0, . . . , En)) = {f(x1, . . . , xn)|x1 = L(E0), . . . , xn = L(En)}
L(E0 + E1) = L(E0) ∪ L(E1)
L(E0 ·�E1) = L(E0) · {�← L(E1)}
L(E?�

0 ) = L(E0)?�

(1.7)

1.3.1 Additional notation

Let me extend traditional notation of regular tree expressions by n-ary alter-
nation.

8



1.3. Regular Tree Expression

Definition 1.3.3 (n-ary alternation). Let M = {E1, E2, . . . , En} be a set of
RTEs, then n-ary alternation is defined as E =

∑
e∈M e and its language is

obviously L(
∑

e∈M e) =
⋃

e∈M L(e)

Definition 1.3.4 (Contains). Let E ∈ TRegEx(
∑
,X) and � ∈ X.

contains(E,�) = true when e contains �
= false otherwise

(1.8)

Remark 1.3.1. Example RTE h(a,�)?� is denoting following
{�, h(a0,�), h(a, h(a,�)), . . . }. Note that this iteration always left substi-
tution symbol after itself. Usually substitution symbols are not part of lan-
guage’s alphabet, therefore iteration is usually followed by substitution like
h(a,�)?� ·� b. Now it generates language {b, h(a, b), h(a, h(a, b)), . . . }.

Here is an example iteration which, can terminate itself h(a, b+�)?� gen-
erating {�, h(a, b), h(a,�), . . . }.

Lemma 1.3.2. All iterations may leave substitution symbol after itself no
matter how many loop it performed.

Proof. Obviously from definition 1.1.7 for given number of iteration always
exists case it left �.

Theorem 1.3.3. NFTA and RTE are equally strong.

Proof. Conversion exists in both direction.

1. Follow this work to see conversion from NFTA to RTE. For instance
method of equations 2.1 or dynamic programming approach 4.2.1.

2. Direction from RTE to NFTA is not included in this work, but follow
master’s thesis [9].

9





Chapter 2
Observation about problem

Let me just introduce some related works and note what they came with. As
the first contact with the topic I can mention the source [3], where is brief
straight introduction to final tree automata and regular tree grammar.

One of the most relevant sources about tree languages is the book Tree
Automata Techniques and Applications [1]. This book contains a wide range
of definitions and properties, and shows connections with related topics. The
book covers not just the basics on Tree Automata theory for finite ordered
ranked trees, but also advanced applications and their variants such as con-
straining automata and tree transducers.

The last but not least is the diploma thesis Construction of a Pushdown
Automaton Accepting a Language Given by Regular Tree Expression [9] writ-
ten by Ing. Tomáš Pecka, who were inventing modification of Glushkov’s
Algorithm for conversion from RTE to Push-Down automata, which can be
then converted to finite tree automata. It is a conversion in opposite direction,
than I do.

Remark 2.0.1 (Relation between finite tree automata and pushdown au-
tomata). Regular tree languages are closely related with context-free textual
languages. As it was mentioned (remark 1.1.2), tree can be represented textu-
ally. It can be proved that regular tree grammar is special case of context-free
textual grammar [4]. Thus pushdown automaton can accept textual form of
regular tree language. Pushdown automata of this type were able to be con-
verted to equivalent finite tree automata. However it is not true that any
pushdown automata can be converted to FTA, because regular tree grammar is
weaker then context-free textual grammar [6].

Existing solutions

There is a constructive proof of Kleene’s Theorem for Tree Languages in the
source [1]. This theorem is based there on preposition that says “for any finite
tree automaton, there exists regular tree expression denoting equal language”.

11



2. Observation about problem

There is a paper [10] introducing solution with equations. To cut long
story short they simply creates equation system from transition function of
FTA. Then they solve equation system by substituting variables until they
can construct a result. This solution is described in following section in my
notation.

12



2.1. Solution with equations

2.1 Solution with equations

For given automaton A = (Q,
∑
, F, δ) let’s create system of equations first.

The system of equations is based on TRegEx(
∑
,X). Where X is subset of

{Xs|s ∈ Q} ∪ {xs|s ∈ Q} Each state s is considered as variable Xs, there-
fore is present in X and when iteration is necessarily substitution symbol xs

appears. The variable is equal to summation of symbols leading the state.
Those symbols are connected to appropriate variables of states.

Definition 2.1.1 (equation of state). Let s ∈ Q be state and T = TrTo(s)
incoming transitions. Then equation of state is defined as this.

Xs =
∑
t∈T

Symb(t)XKids(t)

Where Xs is variable of state s, XKids(t) is similar to Kids(t) but it returns
vector of state’s variables instead of vector of states. Eg.: Kids(t) = (2, 2, 1)⇒
XKids(t) = (X2, X2, X1)

See on the example.

1

0
1

2

0

0

3

0

4

1

1

0

f2

f2

b0 f2

a0
h1

a0
h1

Figure 2.1: Example automaton

For instance there into state 1 are leading exactly two different transitions
of symbol f2. Therefore for first state it is X1 = f2(X1, X1) + f2(X2, X4), and
ranks seam to look redundant here, so just omit them. I will generate whole
system in this manner.

X1 = f(X1, X1) + f(X2, X4)
X2 = b+ f(X2, X4)
X3 = a+ h(X4)
X4 = a+ h(X3)

(2.1)

13



2. Observation about problem

2.1.1 Solving system of equations

According to [10] article, we can solve the obviously by substituting, when
definition of state is equation dependent on itself, then it is a loop, which can
be solved by iteration. Performing of substitution X3 → X4 makes a loop.

X1 = f(X1, X1) + f(X2, X4)
X2 = b+ f(X2, X4)
X3 = a+ h(X4)
X4 = a+ h(a+ h(X4)) ← loop here

(2.2)

Of course substitution here does not help, but let’s expand it few times for
observation.

X4 = a+ h(a+ h(a+ h(a+ h(a+ h(a+ h(X4))))))

After peruse of expression, note that X4 is composed out of non-loop parts
and loop parts. Non-loop part surely terminates a loop.

X4 = a︸︷︷︸
non-loop

+h(a+ h(X4))︸ ︷︷ ︸
loop

RTE iteration can be straightforwardly implemented from the loop as h(a +
h(x4))?x4 by using substitution symbol x4. It can either leave substitution
symbol or terminate itself by h(a). When it leaves x4 symbol it should be
substituted by any of non-loop parts of X4. Thus final RTE of state 4 has to
be X4 = h(a+ h(x4))?x4 · x4 a.

Definition 2.1.2 (Loop and non-loop parts). Let Xs be a variable denoting
state s ∈ Q and Rs be a set of all options defining Xs =

∑
r∈Rs

r, so that
equality holds. There is no other variable then Xs on the right side. Then
define loop and non-loop parts as

loop(Xs) = {r ∈ Rs; contains(r,Xs)}
non-loop(Xs) = {r ∈ Rs;¬contains(r,Xs)}

(2.3)

Theorem 2.1.1. When equation with variable Xs has on the right hand side
just variables Xs and no other variable. It can be always handled as this.

Xs =

 ∑
o∈loop(Xs)

o

?Xs

·Xs

 ∑
m∈non-loop(Xs)

m


14



2.1. Solution with equations

Proof. I am starting with equation from definition 2.1.2

Xs =
∑

r∈Rs

r

Xs =
∑

o∈loop(Xs)
o+

∑
m∈non-loop(Xs)

m

Xs =

 ∑
o∈loop(Xs)

o+
∑

m∈non-loop(Xs)
m

?Xs

·Xs∅

where ∅ is empty symbol

(2.4)

Loop can be terminated by either loop alternative if there is that option or
by non-loop variant. When non-loop variant is chosen it terminates a loop
surely. Thus non-loop part can be used as a substitute for Xs symbol after
loop.

Xs =

 ∑
o∈loop(Xs)

o

?Xs

·Xs

 ∑
m∈non-loop(Xs)

m

 (2.5)

X1 = f(X1, X1) + f(X2, X4)
X2 = b+ f(X2, X4)
X3 = a+ h(h(a+ h(x4))?x4 · x4 a)
X4 = h(a+ h(x4))?x4 · x4 a

(2.6)

X1 = f(X1, X1) + f(X2, X4)
X2 = b+ f(X2, h(a+ h(x4))?x4 · x4 a)
X3 = a+ h(h(a+ h(x4))?x4 · x4 a)
X4 = h(a+ h(x4))?x4 · x4 a

(2.7)

X1 = f(X1, X1) + f(X2, X4)
X2 = f(x2, h(a+ h(x4))?x4 · x4 a)?x2 · x2 b

X3 = a+ h(h(a+ h(x4))?x4 · x4 a)
X4 = h(a+ h(x4))?x4 · x4 a

(2.8)

X1 = f(X1, X1) + f(f(x2, h(a+ h(x4))?x4 · x4a)?x2 · x2b, h(a+ h(x4))?x4 · x4a)
X2 = f(x2, h(a+ h(x4))?x4 · x4 a)?x2 · x2 b

X3 = a+ h(h(a+ h(x4))?x4 · x4 a)
X4 = h(a+ h(x4))?x4 · x4 a

(2.9)
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2. Observation about problem

Finally there is the solution of equation system.

X1 = f(x1, x1)?x1 · x1f(f(x2, h(a+ h(x4))?x4 · x4a)?x2 · x2b, h(a+ h(x4))?x4 · x4a)
X2 = f(x2, h(a+ h(x4))?x4 · x4 a)?x2 · x2 b

X3 = a+ h(h(a+ h(x4))?x4 · x4 a)
X4 = h(a+ h(x4))?x4 · x4 a

(2.10)

Result is summation of what is on final states, in this case final is just 1. Thus
X1 is a solution.

Remark 2.1.2. Order of substitution has effect to the result. For example
when I would substitute in X3 first, then I am obtaining loop on X3 instead
of X4 and this change leads to different result later.

X1 = f(X1, X1) + f(X2, X4)
X2 = b+ f(X2, X4)
X3 = h(a+ h(x3))?x3 · a
X4 = a+ h(X3)

(2.11)
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Chapter 3
New approach

3.1 State elimination approach

The algorithm presented in this section is similar to constructive proof of
preposition 2.2.7. from source [1]. The preposition is there used to prove
Kleene’s Theorem for Tree Languages.

The first what I was asked to do was state elimination approach. Let me
take into consideration whether a state of given FTA can be substituted by
RTE. Note that each state of the automaton denotes its language. Each RTE
also denotes the language. Let me suppose that an RTE that denotes the
same language as the state can be constructed. Then all outgoing transitions
from the state that was exchanged are kept in the automaton, child of that
state is replaced by appropriate RTE.

The automaton seams to be broken, since it is not a valid automaton
according to definition. Nevertheless, it will be proved, that this construct
is representing the same language as original automaton. Following lemma
(3.1.1) describes how it could be achieved.

Definition 3.1.1 (Eliminated states). Let A = (Q,
∑
, F, δ) be an automaton

with Q set of states, then Q is a set of eliminated states. This set is initially
empty for every valid automaton. However, it will be filled during algorithm.

Definition 3.1.2. (Links) Let q be a RTE. Then define

Links(q) = {each substitution symbol in q}

Definition 3.1.3 (self-loop and out-to-in transition). Let A = (Q,
∑
, F, δ)

be an automaton and s ∈ Q be a state, then all its incoming transitions are

17



3. New approach

either self-loop or out-to-in.

∃t = (fr(q1, q2, . . . qr)→ s) ∈ TrTo(s)

t

{
is self-loop transition if s ∈ Kids(t) or ∃q ∈ Kids(t) ∧ q ∈ Q ∧ s ∈ Links(q)
is out-to-in transition otherwise

(3.1)

Let me admit for following algorithm that state can be interchanged by
RTE and RTE can use states of automaton as substitution symbol.

Definition 3.1.4 (State extends RTE). Let A = (Q,
∑
, F, δ) be an automaton

and s ∈ Q be its state. Then s is also special substitution symbol generating
L(s) and can be substituted.

Lemma 3.1.1 (State substitution). Let A = (Q,
∑
, F, δ) be a FTA and s ∈

Q; s /∈ Q be its state. It is possible to substitute a state s by RTE to get new
FTA A′ with Q′ = Q

⋃
{s} so that equations holds L(A) = L(A′).

Proof. Language of state is defined

L(s) =
⋃

tk∈TrTo(s)
Ledge(tk) = L(s)

, equal RTE can be obtained by following construction.

O = {t ∈ TrTo(s); t is self-loop}
M = {t ∈ TrTo(s); t is out-to-in}

t =


when s has any self-loop

(
∑

o∈O Symb(o)(Kids(o)))?s · s((
∑

m∈M Symb(m)(Kids(m))))
otherwise

(
∑

m∈M Symb(m)(Kids(m)))

(3.2)

Graphical explanation may suit better here. We can simply create RTE
from transition by transition’s ranked symbol connected to appropriate chil-
dren.

options
without

loop

To create RTE from state, there are two options. If state has no self-
loop transition, it is just alternation from out-to-in transition’s RTEs. It is
obviously right.

18



3.1. State elimination approach

. s

* s
options
without

loop

options
with
loop

When any self-loop exists, then self-loop’s RTEs are to be under iteration
and out-to-in’s RTEs will be under substitution. Here it could be anything
under iteration out-to-in options as well as self-loop options. In that case out-
to-in option always terminates the iteration. Thus there is no need for return
into the loop. Because of substitution symbol may be left after any number
of iterations (lemma 1.3.2), therefore it can be out of loop under substitution.

Final language of automaton (according to definition 1.2.4) is dependent
on language of state (definition 1.2.3) When state s ∈ Q to obtain its language
RTE will be used.

L(s) =
{
Lstate(s) if s /∈ Q
LRTE(s) if s ∈ Q (3.3)

Language of edge need just a minor change.

Ledge(tk) = {f(x1, . . . , xk)|x1 ∈ L(c1), . . . , xk ∈ L(ck)},
where f = Symb(t), (c1, . . . , ck) ∈ Kids(tk)

(3.4)

Then language of automaton is not affected at all.

Corollary 3.1.2. Simple algorithm can be done.

Definition 3.1.5 (State Elimination Algorithm). An algorithm performs con-
version from FTA to RTE.
Input: NFTA A = (Q,

∑
, F, δ), Output: equivalent RTE

1. Initialisation. Create new NFTA A′ = (
∑′, Q′, δ′, F ′) that has new state

Y ; Q′ = Q
⋃
{Y }. This new state is only one final F ′ = {Y } and all

of finals of original automaton are leading into Y through special unary
symbol ϑ transition δ′ = δ

⋃
{(q, ϑ)→ {Y } : q ∈ F}.

2. ∀u ∈ Q do

Create a language definition of state u in RTE by following rules:

19



3. New approach

a) If u has a self-loop, then all its incoming loop transitions sum under
iteration. Careful when transition is leading from RTE, check all its
substitution symbol, transition can be self-loop by backward sub-
stitution symbol. Use state symbol as substitution symbol. Then
substitute symbol by summation of all out-to-in transitions. Oth-
erwise just combine out-to-in transitions.

b) Remove incoming transitions from automaton, and replace state by
expression

3. Collect RTEs from transitions leading to Y , cut off their roots (unary
symbols ϑ) and sum them up. It is a result.

Example

Let me apply an algorithm on following example.

A = (
∑

, Q, δ, F )∑
= {00, 10, or2, and2}

Q = {t, f}
δ = {

1→ {t},
0→ {f},
and2(t, t)→ {t},
and2(f, t)→ {f},
and2(t, f)→ {f},
and2(f, f)→ {f},
or2(t, t)→ {t},
or2(f, t)→ {t},
or2(t, f)→ {t},
or2(f, f)→ {f}

}

(3.5)
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3.1. State elimination approach

f

0

1

01

0

1

t

1

1

0

0

1
false

and, or

and
true

or

or

and, or

1

0

and

Figure 3.1: Diagram of original automaton.

0

1

t

1

1

0

0

1

true

or

or

and, or

finalf

f

· f

* f false

+

orandand and

f f f t t f f ff f

f :

Figure 3.2: State f is eliminated.
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3. New approach

. t

  

* t true

+

oror and or

t t t tt t· f

* f false

+

orandand 

f f f t t f ff f

and

· f

* f false

+

orandand 

f f f t t f f ff f

and

 t

final

 t :

Figure 3.3: State t is eliminated, finish.

This algorithm is trivial and is analogical to state elimination for conver-
sion from FSM to RE. The algorithm in this variant is not implemented during
my research. I rather focused on more practical versions. Two sources that
causes sub-optimal results are described bellow. The first one is redundancies
(3.1.1) and second one is order sensitivity (3.1.2).

3.1.1 Redundancies

The result tree may contain a lot redundant sub-trees. Some redundancies
can be trivially resolved. For example two same children under symbol could
be optimised by substitution above symbol. Another redundancies are not
easy to reduce.

3.1.2 Order does matter

Performing elimination in different order gives a different result. This method
is very order sensitive. Some of orders are better than others. Consider
previous example. Elimination was performed in order t, f and nice result
was obtained.
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3.1. State elimination approach

Result when f is first

(and(t, t)
+ or(t, (and(f, f) + and(f, t) + and(f, t)) + or(f, f))?f · f(false))
+ or((and(f, f) + and(f, t) + and(f, t)) + or(f, f))?f · f(false), t)
+ or(t, t))?t · t(true)

(3.6)

But starting with state t.
Reaching from t state

(and(t, t) + or(t, t) + or(t, fstate) + or(fstate, t))?t · t(true)

. Note there is no loop through f . Since t is eliminated, it is just a RTE
on incoming edge and there is an existence of self-loop for f leading through
RTE. After elimination of f getting

(and(f, f)
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ or(f, f))?f · f(false)

(3.7)

Situation is that f is connected to Y through RTE. Whole problem is that
this is just a RTE of state f , however, t is leading into final state.

Result when t is first

(and(t, t)
+ or(t, t)
+ or(t,

(and(f, f)
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ or(f, f))?f · f(false))

+ or(
(and(f, f)
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ and(f, (and(t, t) + or(t, t) + or(t, f) + or(f, t))?t · t(true))
+ or(f, f))?f · f(false)

, t))?t · t(true)

(3.8)
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3. New approach

3.1.2.1 What causes such a differences?

Basically algorithm is doing a tree structure from a graph structure. Cycles
are represented as RTE’s iterations. It works, however result can be counter-
intuitive.

Lemma 3.1.3. Every cycle in given FTA will be once processed as self-loop
transition during state elimination process. And RTE iteration of that cycle
wins the last eliminated state from that cycle.

Proof. Let s1, s2, . . . , sn are states of some FTA forming a cycle

s1 → s2 → . . . sn → s1

When sk is eliminated, there state s(k+n−1) mod n is leading to RTE of sk and
RTE of sk is leading to state s(k+1) mod n.

· · · → s(k+n−1) mod n → RTEsk → s(k+1) mod n → . . .

This principal continues until state sh is the last and all others are eliminated.

· · · → RTEs(h+n−1) mod n → sh → RTEs(h+1) mod n → . . .

Cycle is now self-loop and gained iteration is on RTEsh.

Lemma 3.1.4. Let s1, s2, . . . , sn are states of some FTA forming a cycle, sh

is an iteration winner and Y final state. When path from sh to final state
leads through s1 6= sh another state of cycle. Then cycle fragment s1  sh

has its RTE above the iteration and then again inside the loop.

Proof.

s1 → s2 → · · · → sh → . . . sn → s1  Y

Algorithm generates following result.
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3.1. State elimination approach

Y

s1

from s1 to sh

·sh

?sh

s1

from s1 to sh

sh

out-to-ins

Fragment from s1  sh is there twice. The iteration is not situated well
here.

Corollary 3.1.5. When s1 is winner, there is not such a segment.

Y

·s1

?s1

sn

out-to-ins

Definition 3.1.6 (Well-situated iteration). Let s1, s2, . . . , sn are states of
some FTA forming a cycle, sh is an iteration winner, Y is final state and path
from Y to sh does not lead through another state of cycles. Thus there is not
redundant path above integration and under iteration (as in Lemma 3.1.4).
Then I call this well-situated iteration.
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3. New approach

Path redundancies not only make results much longer but also less under-
standable. To reach maximum advantages from this lemma 3.1.4 I need to
figure out an algorithm based on a different principle, which is focusing the
next chapter.
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Chapter 4
Enhanced solutions

In this chapter, I focus on optimisation of naive solution. In previous chapter
sources of sub-optimal results have been described. I am introducing proposal
of improvement for each issue. However, I have not figured out how I could
combine these solutions to optimise both simultaneously.

4.1 Removal of State Approach – Optimisation by
Substitution

This approach aims to solve the redundancy problem 3.1.1. The main idea
is in different construction strategy. The algorithm starts with the sum of
substitution symbols each for one of the final states. This particular result
requires substitution above. Thus these are inserted in the stack. States on
the stack are to be eliminated. Each state is eliminated at most once. When
node from the stack is eliminated, every transition is handled as a symbol
with substitution symbols denoting incoming states. These children could be
of 3 types. It can be the state itself, then it indicates trivial self-loop. In the
second case, it is state which has not been eliminated yet. This state requires
substitution above, thus it is pushed to the stack. Moreover for that state of
elimination is this child stored in the set and this set is accessible by dictionary
through the state of elimination (I call it leadingUp). The last type of child is
a state which is already eliminated. This state is already solved in a particular
result, but it occurred again. Thus this state has to be resolved again with all
its leadingUps that are already eliminated and inductively leadingUps that are
eliminated of leadingUps that are eliminated. This sub-problem resolves func-
tion ComposeClosure. Transitions are separated into two classes self-loops and
out-to-ins. Loop can lead through eliminated states, the function IsSelfLoop is
responsible for this traversal. After each elimination particular result grows by
new substitution. When all the states are substituted, the result is complete.
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4. Enhanced solutions

Algorithm 1 Removal of state approach
Input: NFTA A = (Q,

∑
, F, δ).

Output: an equivalent RTE.
1: procedure ToRTE(A = (Q,

∑
, F, δ))

2: S ← new Stack()
3: R← ∅
4: for all f ∈ F do
5: S.push(f)
6: R← R

⋃
{SubstSymb(f)}

7: leadingToMe ← new Dictionary¡State, Set¡State»()
8: leadingUp ← new Dictionary¡State, Set¡State»()
9: for all s ∈ Q do

10: for all t ∈ TrTo(s) do
11: for all neighbour ∈ Kids(t) do
12: leadingToMe[s].Insert(neighbour)
13: Result ←

∑
R

14: ToRTE ← new Dictionary()
15: covered ← new Set()
16: . . . . Procedure continues on the next page.
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4.1. Removal of State Approach – Optimisation by Substitution

Algorithm 2 Removal of state approach — continue
1: . . . . Procedure begins on the previous page.
2: while S.NotEmpty() do
3: current ← S.pop()
4: if current ∈ covered then
5: continue
6: loopEdges ← ∅, outToInEdges ← ∅
7: for all t ∈ TrTo(current) do
8: edgeRTE ← new RTE()
9: edgeRTE.setSymbol(Symbol(t))

10: doesLinkToCurrent ← false
11: statesToSubstitute ← new Set()
12: for all neighbour ∈ Kids(t) do
13: if neighbour ∈ covered then
14: statesToSubstitute.Insert(neighbour)
15: else if neighbour 6= current then
16: mentioned.Push(neighbour)
17: leadingUp[current].Insert(neighbour)
18: if IsSelftLoop(covered, leadingToMe, neighbour, current) then
19: doesLinkToCurrent ← true
20: edgeRTE.addKid(Symbol(neighbour))
21: for all n ∈ statesToSubstitute do
22: with ← ComposeClosure(covered, leadingUp, stateToRte, n)
23: edgeRTE ← Substitution(edgeRTE, with, Symbol(n))
24: if doesLinkToCurrent then
25: loopEdges.insert(edgeRTE)
26: else
27: outToInEdges.insert(edgeRTE)
28: outToIn ←

∑
outToInEdges

29: currentRTE ← outToIn
30: if loopEdges.any() then
31: loopRTE ← Iteration(

∑
loopEdges, Symbol(current))

32: currentRTE ← Substitution(loopRTE, outToIn, Symbol(current))
33: stateToRte[current] ← currentRTE
34: result ← Substitution(result, currentRTE, Symbol(current))
35: covered.Insert(current)
36: return result
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4. Enhanced solutions

Algorithm 3 IsSelftLoop
Input: covered, leadingToMe, from(neighbour), to(current) and visited ←

new Dictionary()
Output: True if from leads back to to.

1: procedure IsSelfLoop(covered, leadingToMe, from, to, visited)
2: if from = to then return true
3: if from /∈ covered then return false
4: if visited[from] then return false
5: visited[from] ← true
6: result ← false
7: for all state ∈ leadingToMe[from] do
8: if isSelfLoop(covered, leadingToMe, state, to, visited) then
9: result ← true

10: return result

Algorithm 4 ComposeClosure
Input: covered, leadingUp, stateToRte, state
Output: RTE that denotes state.

1: procedure ComposeClosure(covered, leadingUp, stateToRte, state)
2: toSubs ← new Vector()
3: stack ← new Stack()
4: stack.Push(state)
5: while stack.NotEmpty() do
6: current ← stack.pop()
7: if current /∈ covered ∨ current ∈ toSubs then continue
8: toSubs.PushBack(current)
9: for all other ∈ leadingUp[current do

10: if other ∈ covered then
11: stack.Push(other)
12: toSubs.popFront()
13: result ← stateToRte[state]
14: for all other ∈ toSubs do
15: rte ← stateToRte[other]
16: result ← Substitution(result, rte, Symbol(other))
17: return result

Routine ComposeClosure may be considered as interesting. The dictionary
stateToRte stores expression of the state s from the moment it was eliminated.
The set of states directly reachable from that state s that were eliminated
before state s has to be resolved inside its RTE. States that are reachable from
state s (its leadingUps) that are not eliminated are expected to be eliminated
later, and substituted above. So only what has to be resolved here is a set of
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4.1. Removal of State Approach – Optimisation by Substitution

states that are its eliminated of its leadingUps and state that are reachable
through eliminated leadingUp of its eliminated leadingUps and inductively.
This composes closure, which consist of at most all eliminated states.

4.1.1 Time complexity

Let me analyse algorithm’s time complexity for input automaton
A = (Q,

∑
, F, δ) Let T is number of outgoing connections in the automaton.

This can be evaluated as accumulated rank over all transitions.

T =
∑
h∈S

Rank(h),

where S is list of all symbols, for each transition one symbol.

Algortithm is base on DFS traversal and inside are called subroutines
IsSelfLoop and ComputeClosure both are base on DFS. Thus final time com-
plexity is O(S + T (S + T )).
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4. Enhanced solutions

4.2 Dynamic programming approach

In the previous chapter, I discussed the state elimination algorithm, and its
disadvantage demonstrated on the example. In this chapter, I will endeavour
to avoid redundancies of the type introduced by lemma 3.1.4. At first, I have
to mull over whether the change of elimination order preventing the problem.
The following example 4.2.1 points towards the fact that it is not just about
the order.

4.2.1 Example cyclic fragment

Consider following fragment of automaton with cycle. There is just one cycle,
but more are final states. State elimination approach permits just one winner,
although this is not the only way how it can be done. Loop can be processed
for each access point separately.

1

2

a  

3
b

4

c  

d

...

...

...

...

Figure 4.1: Fragment of FTA.
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Figure 4.2: Fragment of FTA converted by state elimination.
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a

d

4

Figure 4.3: Possible optimisation of iterations.

However, the presented approach renders substitution optimisation impos-
sible, because the common part is lost.
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Figure 4.4: Possible optimisation by substitution.

4.2.2 Approach against the flow

Let me remind what is flowing into the state is a language of that state (Def-
inition 1.2.3). FTA’s language is the union of languages over all finite states
(Definition 1.2.4). Let me deliberate construction of RTE during graph traver-
sal from the final state against the flow. To complete RTE of a state, it is
necessary to have RTEs of incoming transition. Incoming transitions are natu-
rally children of the state, because of traversal against the flow. Thus recursion
seems to be suitable for this. Consider recursive Depth-First Search or recur-
sive Breadth-First Search as a base of the algorithm. The RTE of the state
can be compiled in post order. Furthermore, it is possible to detect a cycle.

Usually, traversal generates a sequence of visited nodes, and all nodes are
visited at most once. Nevertheless, this traversal will be entirely different in
this way.

Consider an automaton with cycle and two different of its states are con-
necting the cycle to final. Then in the result, the cycle has to be processed
twice. Firstly the winner is the first-mentioned state. Secondly, the winner is
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4. Enhanced solutions

the second mentioned state. Naturally, the question comes to the mind “What
is the termination condition and does algorithm even terminate?”

Recursion generates a call tree. On the stack is always the path to the
initial call, which is here also the node’s flow to the final, because the call was
initiated from the final state against the flow.

Because of this, more corollaries can be stated. When child if some edge is
on the stack path, it has to be a cycle. Moreover, that state is a great candidate
to initiate an iteration, because the loop will be well-situated (proof 4.2.2).
The termination condition is defined as the current state is not on stack path
instead of the current state is not visited as ordinarily. It can be proven, that
algorithm terminates, from fact, that stack path consist sequence of unique
states (according to termination condition). And number of state state is
finite (definition of FTA 1.2.1). Therefore there is at most |Q|! of stack paths.

Theorem 4.2.1. A transition leading to a state from stack path indicates the
cycle. When the state is initiator of iteration, then iteration is well-situated.

Proof. The path from cycle to the appropriate final state leads through it,
because traversal was evoked from the appropriate final state.

One last detail has to be solved. I claim that RTE of state can be built in
post-order, but I also claim that cycle is detected, when state is on the stack
path, which means that it is a leaf of the recursion call tree. Thus I have to
propagate this information from bottom to up, then I can distinguish which
transition is self-loop and which is out-to-in. Let define set of back-links.

Definition 4.2.1 (Back-links). Let back-links for current state u during re-
cursion call tree is defined by following equations of dynamic programming on
trees.

Backlinks(u) =
{

{Symbol(u)} For u as current in rec. leaf call.⋃
x∈Kids(u) Backlinks(x) otherwise

(4.1)

The main part of final algorithm is trivial. It is just calls subroutine for
every final state and sum-ups the result.

The recursive subroutine firstly checks for termination condition (line 2),
if condition is satisfied symbol of current state is added to back-links (line 3).
Then it is collecting for RTEs from incoming transitions in two complementary
sets (lines 5-20). Set of self-loop RTEs (loopEdges) and set of out-to-in RTEs
(outToInEdges). Then RTE for current state is computed and returned (lines
21-26).
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4.2. Dynamic programming approach

Algorithm 5 Dynamic programming approach
Input: NFTA A = (Q,

∑
, F, δ).

Output: an equivalent RTE.
1: procedure ToRTE(A = (Q,

∑
, F, δ))

2: R← ∅
3: for all f ∈ F do
4: stackPath ← new Stack()
5: backlinks ← new Set()
6: rte ← rteOfState(A, f , stackPath, backlinks)
7: R← R

⋃
{rte}

8: return
∑

x∈R x

Algorithm 6 Dynamic programming approach — rteOfState
Input: NFTA A[In], state s[In], stack path [In-Out], back-links [Out]
Output: an equivalent RTE.

1: procedure rteOfState(A = (Q,
∑
, F, δ), s, stackPath, backlinks)

2: if s ∈ stackPath then
3: backlinks ← backlinks

⋃
{s}

4: return s
5: loopEdges ← ∅, outToInEdges ← ∅
6: for all t ∈ transitions to s do
7: edgeRTE ← new RTE()
8: edgeRTE.setSymbol(Symbol(t))
9: doesLinkToCurrent ← false

10: for all c ∈ Kids(t) do
11: neighbourBacklinks ← new Set()
12: kidRTE ← FinalToRTE(A, s, stackPath

⋃
{state},

neighbourBacklinks)
13: edgeRTE.addKid(kidRTE)
14: backlinks.insertAll(neighbourBacklinks)
15: if s ∈ neighbourBacklinks then
16: doesLinkToCurrent ← true
17: if doesLinkToCurrent then
18: loopEdges.insert(edgeRTE)
19: else
20: outToInEdges.insert(edgeRTE)
21: outToIn ←

∑
outToInEdges

22: result ← outToIn
23: if loopEdges.any() then
24: loopRTE ← Iteration(

∑
loopEdges, Symbol(s))

25: result ← Substitution(loopRTE, outToIn, Symbol(s))
26: return result
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4. Enhanced solutions

4.2.3 Time complexity

Let me analyse algorithm’s time complexity for input automaton
A = (Q,

∑
, F, δ) Recursion terminates if current state is on the stack or when

no other path exists. Assume automaton that is fully connected by transi-
tions of unary symbols (from each state to each state). Then then all stack
combination are reachable. Recursion starts from each final state. Thus final
time complexity of algorithm is in O(|F ||Q|!).
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Chapter 5
Implementation and Testing

Algorithm 4.2.2 is implemented as a part of Algorithms Library Toolkit (ALT).

5.1 Algorithms Library Toolkit

The ALT is an ultimate tool consisting of different kinds of automata, gram-
mars, graphs, and other well-known structures in computer science. Moreover,
a rich collection of algorithm related to these structures is implemented there.

ALT has been established by Ing. Jan Trávńıček, Ph.D. at Faculty of
Information Technology of Czech Technical University in Prague and pow-
ered by Ing. Tomáš Pecka, Ing. Štěpán Plachý. This project is continually
maintained by collective of committees supervised by doctor Trávńıček.

Its query language is suitable for integration testing as well as interactive
simulations and debugging. An instance of structure can be created in place
or loaded from a file. Then it can be stored in a variable or piped into an
algorithm. The algorithm’s result can be stored in a variable or stored in a
file or piped into another algorithm. This brilliant interface allows creating
testing pipeline as a chain of algorithms.

A unique advantages of this option is that RTE, as well as NFTA and
DFTA, is already implemented with visualisation ability. Moreover, there are
implemented helper algorithms to set up appropriate tests such as conversion
in the opposite direction, determinization of NFTA, minimization of DFTA
and equality comparison between two DFTAs.

5.2 FTA comparison

One kind of equality determination for two FTA is that languages accepted
by automata are the same. Formally, let A and B be the FTAs, then they
are equal if and only if L(A) = L(B). This is mathematically correct, but
technically comparison of two languages in a computer is impracticable since
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5. Implementation and Testing

languages are usually infinite sets of trees. Nevertheless, every FTA can be
converted into equivalent minimal form. The minimal form of FTA is variant
cut-off states which are not leading to a final state, then determinized and
minimized.

Furthermore, an FTA is similar to the graph structure. States are vertices
and information whether state is final can be encoded in its name. Transitions
are ”weird edges”. In a closer look, one transition consists of the incoming
children to a ranked symbol. Then let me add one special vertex to the graph
denoting the transition. Let incoming children be edges leading from a state
into special the special vertex by simple transition with child’s index on it.
Let ranked symbol be an edge leading from the special state to another state
by transition with a symbol on it. Finally, an FTA can be considered as a
directed graph with symbols on edges.

Moreover, comparison can be done be lemma 5.2.1, however, the definition
of isomorphism has to be stated first.

Two graphs which contain the same number of graph vertices connected
in the same way are called to be isomorphic.

Definition 5.2.1 (Graph isomorphism). Two graphs G and H with graph
vertices Vn = 1, 2, ..., n are said to be isomorphic if there is a permutation p
of Vn such that u, v is in the set of graph edges E(G) if and only if p(u), p(v)
is in the set of graph edges E(H).

Lemma 5.2.1. If minimal forms of two FTA are isomorphic graphs, then
they have to accept the same language.

Proof. According to isomorphism (definition 5.2.1), graphs have same number
of vertices and are connected in the same way. Thus automata are constructed
in the same way. Obviously same-constructed automata have to accept same
language.

5.2.1 Random FTA generator

Another useful component for testing is a generator that provides random
FTAs. The most significant advantage of input generator is that the generator
requires just a tiny storage space than data it can generate. A right generator
is based on the probability model, that allows generating all instances from
the domain. Furthermore, a right-implemented generator provides the facility
to set up an initial seed for the random generator. Generator initialised with
the same seed should always behave in the same way. This is important for
testing when a test failed on some specific input, the seed can be used to
generate exactly the same input again for later analysis.

In ALT, there is already a generator for FTA, which seams to fulfils men-
tioned conditions for my purpose.
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5.3. Testing batches

RandomTreeAutomatonFactory S s i z Asiz MR Den
where

S s i z i s number o f s t a t e s ,
Asiz i s number o f ranked symbols in alphabet ,
MR i s maximal rank ,
Den i s dens i ty between 0 to 1 ,

1 i s f u l l y−connected automaton .

5.2.2 Testing pipeline

The testing pipeline can be constructed since all necessary parts have been
introduced. Comparison of two FTA’s is implemented in different approach
as described in 5.2. Both automata are normalised firstly; this process recon-
structs automata in a deterministic way, which makes comparison easier.

# Store minimized FTA
execute RandomTreeAutomatonFactory S s i z Asiz MR Den >

$inputFTA
execute $inputFTA
| automaton : : de te rmin i ze : : Determinize −
| automaton : : s i m p l i f y : : Trim −
| automaton : : s i m p l i f y : : Minimize −
| automaton : : s i m p l i f y : : Normalize − > $minimalOrigFTA

# Convert to RTE, back and compare
execute $inputFTA
| automaton : : convert : : ToRTEDynamicProgramming −
| r t e : : convert : : ToFTAGlushkov −
| automaton : : de te rmin i ze : : Determinize −
| automaton : : s i m p l i f y : : Trim −
| automaton : : s i m p l i f y : : Minimize −
| automaton : : s i m p l i f y : : Normalize −
| compare : : AutomatonCompare − $minimalOrigFTA

5.3 Testing batches

This code describes testing pipeline for one sample automaton. In my testing
routine I have three batches per 100 test samples.

5.3.1 1st batch - small and dense

The first batch contains small and dense automata. Density is set to 1, number
of states is between 0 and 10, alphabet contains at most 5 ranked symbols
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5. Implementation and Testing

and maximal rank is 4. This batch is the best for implementation and first
debugging, because these automata are small enough to be solve by hand.

5.3.2 2st batch - medium-size and medium-density

The second batch consists of medium-size and medium-density automata.
Density is set to 1, number of states is between 0 and 50, alphabet contains
at most 10 ranked symbols and maximal rank is 4.

5.3.3 3st batch - large and sparse

The last batch is composed of large and sparse automata. Density is set to 0.2,
number or states is between 0 and 120, alphabet contains at most 15 ranked
symbols and maximal rank is 4.

5.4 Which solution is better?

In perspective of time complexity, states removal solution is surely better.
Removal of state algorithm is polynomial, whereas dynamic programming so-
lution is factorial in the worst case. Nevertheless, this is not the only criterion.
Both algorithms give different results. These FTE are significantly different
shaped. Let me focus on this in deeper look. I can’t measure how far is a
solution from optimal solution or how beauty tree is or how intuitive, never-
theless, I can evaluate how many edges and nodes have a tree to get rid off
to become empty tree. I think the larger tree is usually less desirable than
the smaller one as well as smaller tree is more understandable then larger one.
Let me define the qualitative property of tree number of nodes.

Definition 5.4.1 (Number of nodes of a three). Let t is a tree then #nodes(t)
is number of nodes tree composes of.

This is not the only criterion I could use. Also, dept or some cumulative
penalty for unbalance or a combination of more of these could be used. In the
presented criterion, the tree node of any type has the same penalty. Also, this
can be done in a different way, for example, bigger penalty for tree iterations.
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Figure 5.1: This RTE a is conversion result of automaton 2.1 processed by
dynamic programming algorithm. #nodes(a) = 27
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Figure 5.2: This RTE b is conversion result of automaton 2.1 processed by
removal of state algorithm. #nodes(b) = 49

The difference between the outputs of both algorithms is significant. Fur-
thermore, note that used sample automaton is relatively small in size. Let me
compare how qualitative property behaves over all three testing batches for
both algorithms.

Following charts visualise results of measurements. In addition there is
mean, standard deviation, 25th and 75th percentiles.

Measurement on 1st batch

For these inputs of this class, dynamic programming solutions is almost always
better according to this criterion.

44



5.4. Which solution is better?
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Figure 5.3: Comparison of algorithms on small dense automata.

mean 7.460000 28.620000
std 9.171123 21.562116
25% 1.000000 14.000000
75% 8.000000 36.000000
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Measurement on 2nd batch
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Figure 5.4: Comparison of algorithms on medium-size and medium-density
automata.

For automata from the medium-size class, the dynamic programming solution
seems to be more stable, whereas removal of state is alternating between peaks
and troughs. This alternation is probably caused because of order sensitivity
(mentioned in section 3.1.2).

mean 19.920000 154.580000
std 25.586328 119.291696
25% 3.000000 62.500000
75% 29.500000 214.250000

Measurement on 3rd batch

Here it forms the same effect as for 2nd batch, but even more notable. It
seems that removal of state algorithm generates always a bigger solution; nev-
ertheless, note that automata from this batch are sparser. Thus optimisation
by substitution may be less relevant here.
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Figure 5.5: Comparison of algorithms on large and sparse automata.

mean 29.270000 378.460000
std 37.175493 267.743523
25% 7.750000 193.000000
75% 43.000000 510.500000
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Conclusion

The analogy between textual languages and tree languages was mentioned.
The problem of conversion regular tree automata to regular tree expressions
was covered with a state-of-the-art solution by equation system. Furthermore,
state elimination algorithm in the basic variant was designed and presented.
Since there was no known algorithm to minimise an RTE, the quality of the
result is considered as the secondary goal of this thesis. In spite of the algo-
rithm is suitable for this work, two sources causing sub-optimal results were
discovered. For each such an issue bespoke algorithm was proposed and im-
plemented. Each algorithm was made to aim only one of the issues because
no common solution resolving both issues simultaneously was found.

The testing pipeline was contracted for validation of correctness. Valida-
tion test was composed of 3 batches per 100 automata each. Relatively large
(up to 120 states) automata are contained in batches as well as medium size
(up to 50 states) and small (up to 10) automata.

One of the mentioned algorithms was the dynamic programming solution
that was estimated as factorial in time complexity in the worst case. An-
other algorithm is called the removal of state that focuses on optimisation by
substitution. This algorithm is polynomial in time. Dynamic programming
solutions were able to compute all automata from testing batches, despite its
estimated time complexity.

The qualitative measurable property of tree was defined for evaluation
of outputted trees, that renders comparison between results possible. The
comparison was showed and the dynamic programming approach was consid-
ered outstandingly better for bigger automata at least for mentioned testing
batches. The remark was stated that it could be caused because of bigger
automata were generated sparser and sparser automata could be optimised
better by well-situated loops (dynamic programming approach) then by sub-
stitution.
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Appendix A
Acronyms

ALT Algorithms Library Toolkit

FA Finite State Automaton

FTA Finite Tree Automaton

DFTA Deterministic Finite Tree Automaton

NFTA Non-deterministic Finite Tree Automaton

RE Regular Expression

RTE Regular Tree Expression
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Appendix B
Contents of enclosed CD

Attached disk contains whole ALT repository, the structure of project’s file-
system and naming are a bit tricky. Therefore, I am denoting position in
project of main files of my work on the directory tree.

DP approach means algorithm based on Dynamic Programming approach.
RS approach means algorithm based on Removal of State approach.

readme.txt ....................... the file with CD contents description
ALT........................the repository of Algorithms Library Toolkit

alib2algo
src

automaton
convert...............................my implementation

ToRTEDynamicProgramming.h ............. DP approach
ToRTEDynamicProgramming.cpp...........DP approach
ToRTERemovalOfState.h .................. RS approach
ToRTERemovalOfState.cpp................RS approach

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
src ................. the directory of LATEX source codes of the thesis
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