

Master’s thesis

Productivity CLI for work with grid
network MetaCentrum

Bc. Jakub Tuček

Department of Software Engineering
Supervisor: RNDr. Jan Blažek, PhD.

May 7, 2019

Acknowledgements

I would like to thank my supervisor for his patience, consultations and needed
notes. Important acknowledge also belongs to the MetaCentrum for providing
access to the grid that was essential to develop and test the created tool.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 7, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Jakub Tuček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Tuček, Jakub. Productivity CLI for work with grid network MetaCentrum.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstract

In this thesis, we introduce a new command line interface for management
of a grid computations. The proposed tool solves main weaknesses of the
PBS planning system used in the MetaCentrum National Grid Infrastructure
context.

We introduce a systematic view of the grid computation by adding a new
level of abstraction, that allows solving detected bottlenecks in users workflow.
Suggested solution offers features like versioning of executions, automatic re-
submission or improved notifications.

Due to the highly specialized manner of this tool, users involvement in the
CLI future development is discussed.

Keywords grid computing, hypothesis testing, command line interface, Meta-
Centrum National Grid Infrastructure

vii

Abstrakt

V této práci představujeme terminálovou aplikaci pro správu výpočt̊u na
gridových śıt́ıch. Navržená aplikace řeš́ı hlavńı slabiny plánovaćıho systému
PBS v kontextu Národńı Gridové Infrastruktury MetaCentra.

Nová vrstva abstrakce umožňuje řešit problémy, které nejv́ıce omezuj́ı
uživatele při gridovém poč́ıtáńı. Navržená aplikace řeš́ı verzováńı spuštěných
úloh, automatické znovu-spuštěńı výpočt̊u nebo vylepšené notifikace.

Protože CLI má (a bude mı́t) málo uživatel̊u z d̊uvodu vysoké specializace,
v závěru práce diskutujeme jejich zapojeńı do vývoje CLI.

Kĺıčová slova gridové śıtě, poč́ıtáńı na gridových śıt́ı, testováńı hypotéz,
terminálová aplikace, Národńı Gridová Infrastruktura MetaCentrum

viii

Contents

Citation of this thesis . vi

Introduction 1

1 Grid computing 3
1.1 Computer cluster . 3
1.2 Grid computing . 3
1.3 Cluster vs Grid . 4
1.4 Distributed computing applications 4

1.4.1 Portable Batch System 5
1.5 Virtual organizations . 5
1.6 MetaCentrum National Grid Initiative 6

1.6.1 National participation efforts 6
1.6.2 MetaCentrum NGI details 7

1.7 Academic cluster services . 8
1.7.1 Information systems and Technologies of CTU Super-

computer . 8
1.7.2 Technical University of Ostrava – IT4Innovations 9
1.7.3 Summary of academic cluster services 9

1.8 Cloud based services . 11
1.8.1 Amazon Web Services Lambda 12
1.8.2 Amazon Web Services Fargate 12
1.8.3 Google Cloud Functions 13
1.8.4 Azure Functions . 13
1.8.5 Summary of cloud-based services 13

2 MetaCentrum NGI example usage 15
2.1 Job lifecycle . 15
2.2 Computational file . 15
2.3 Example of usage . 16

ix

2.4 Versioning . 16
2.5 Resource allocation . 17

2.5.1 Hardware resources . 17
2.5.2 Modules . 18
2.5.3 Licenses and toolboxes 20

2.6 Notifications . 21
2.7 Failed jobs and automatic resubmitting 21

3 Possible solution and analysis of CLI 23
3.1 Versioning of scripts and data 23

3.1.1 Versioning tools . 24
3.1.2 Versioning summary . 25

3.2 Allocation of resources . 26
3.2.1 Virtual hardware resources 26
3.2.2 Software resources . 26

3.3 Notifications . 27
3.4 Failed jobs and automatic resubmitting 27

4 CLI structure and usage 29
4.1 Installation . 29
4.2 Commands in the CLI . 30

4.2.1 Configuration file . 33
4.3 Storages . 36

4.3.1 Metadata storage type 36
4.3.2 Storage type . 37

4.4 User quick start . 37
4.4.1 Quick guide . 38
4.4.2 Detailed configuration guide 38

5 Technical details of realised CLI 41
5.1 Technology stack . 41

5.1.1 Language and build system 41
5.1.2 File format . 42

5.2 Implementation details . 42
5.2.1 Notable interfaces . 42

5.3 Local environment setup for development 47
5.3.1 Docker . 49
5.3.2 Local environment solution 49
5.3.3 DEV profile for CLI . 49
5.3.4 Docker configuration . 50

5.4 Distribution . 50
5.4.1 Wrapping execution script 50

6 Assessment of created CLI and future plans 53

x

6.1 Assessment of created CLI . 53
6.1.1 Resource management 53
6.1.2 Notification and re-submission 54
6.1.3 Versioning . 55

6.2 Further development plans . 55
6.2.1 New releases and user participation 55
6.2.2 Resource profiles . 55
6.2.3 Task types . 56
6.2.4 Versioning . 56

Conclusion 57

Bibliography 59

A List of used terms 63

B Content of attached CD 65

xi

List of Figures

1.1 MetaCentrum NGI providers statistics based on provided number
of CPUs [1] . 8

1.2 Creation of new Function for AWS Lambda services via web interface 11

3.1 Versioning of large files using DVC.org, supported by Git server
and external data storage [2] . 25

4.1 Description of $HOME/.clusterize folder structure 30
4.2 Activity diagram of submit command 31
4.3 Example of list command with debug output 32
4.4 Help command output . 33
4.5 Metadata folder structure . 37
4.6 Storage folder structure . 38

5.1 High level view of submit action data flow 44
5.2 Class diagram for Action types . 44
5.3 Time-flow visualization of Configurators execution before submit

action . 46
5.4 Class diagram for all submit TaskExecutors 48

xiii

List of Tables

1.1 Summary of main differences between clusters and grids [3] 4
1.2 Summary of basic PBSPro user commands [4, p. 50] 7
1.3 Queues available on MetaCentrum for all users. CPU/user repre-

sents maximum CPU cores per user 8
1.4 Overview of resources provided by CTU cluster 9
1.5 Queues available on Salomon super-computer [5] 10
1.6 Comparison of Microsoft azure plans [6] [7] 14

2.1 Overview of file types and their purpose 17
2.2 Overview of resource types with example value 20

5.1 Overview of notable interfaces . 43

xv

Introduction

Computation of hundreds or thousands of computation jobs on the grid brings
specific issues for users, as the parallelization is more complex than program-
ming itself. There are multiple ways how to parallelize a task. This thesis is
focused on the one that splits the computation into hundreds or thousands of
jobs, whose outputs are aggregated after their execution.

In this ecosystem, it is essential to introduce new systematic workflow,
which deals with parametrization of jobs, the status of execution, user no-
tifications or versioning. The thesis primary focuses issues occurring on the
MetaCentrum grid network but the solution can be also applied to the alter-
native systems with identical environment.

This thesis presents an introduction to grid networks, clusters and super-
computers with focus on MetaCentrum National Grid Initiative operated by
CESNET department. Both the academic and commercial alternative services
are described and compared in terms of available resources and software that
they offer.

The goal is to propose a possible solution and create a tool that allows sys-
tematic handling of the parallelization by splitting a computation into multiple
jobs.

Assessment of the thesis is done based on implemented solution and how
well it deals with the issues that are encountered while using the MetaCentrum
grid network.

1

Chapter 1
Grid computing

The thesis is dedicated to the analysis and solving issues occurring in grid
computing usage with a primary focus on the MetaCentrum grid network. To
introduce context to a reader, it is necessary to first establish definition of a
grid versus a cluster. These definitions are not established terms, but for the
needs of this work, the definition based on a hardware configuration of the
systems is used.

The difference between a grid and cluster is then essential for grasping the
discrepancy between the MetaCentrum grid and alternative services.

Another important part is a description of the planning system and its
interface. The functionality of the interface effects user’s workflow, as its
options are limited. Understanding of the existing option is then needed for
grasping the motivation behind the development of the own command line
interface.

1.1 Computer cluster

A computer cluster is a single logical unit consisted of multiple units with a
homogeneous hardware and operating system which are locally linked into
one local network. Computers connected in a cluster behave as one single
more powerful machine that provides parallelism and therefore much bigger
computation power than a single computer. [8]

1.2 Grid computing

Grid computing is virtual (meta) computer composed of multiple nodes with
a heterogeneous hardware configuration. Each node has its own resource
management and memory allocation politics. Such nodes can be personal
computers, clusters with powerful processors or graphics cards. Combination
of nodes then provides a powerful computation source. [9]

3

1. Grid computing

Cluster Grid
Same hardware Different hardware
Same operating software Various operating software
Centralized job management Distributed job management
LAN WAN
Centralized scheduling system Distributed scheduling

Table 1.1: Summary of main differences between clusters and grids [3]

One way to classify the system as a grid is to meet three following condi-
tions by Ian Foster:

• Computing resources are not administered centrally.

• Open standards are used.

• Nontrivial quality of service is achieved [10].

Under nontrivial quality of service is meant that a grid allows using re-
sources in a coordinated fashion to deliver required service and allocation of
multiple resource types meet complex user demands, so that utility of the
combined system is significantly greater than that of the sum of its parts [10].

1.3 Cluster vs Grid

The difference between a grid and cluster is that clusters are homogeneous
whereas grids are heterogeneous, everything else is somewhere in between
and requires special care.

The computers that are part of a grid can run different operating sys-
tems and have different hardware whereas cluster computers all have the same
hardware and OS [3]. Grid is inherently distributed by its nature over a LAN,
metropolitan and WAN. On the other hand, the computers in the cluster are
normally contained in a single location or complex [3] and thus connected via
LAN. The difference between the two is summed in Table 1.1.

1.4 Distributed computing applications

As mentioned in the grid computing definition, a grid needs to provide a way
for a user to effectively use resources. This functionality is provided by a
job planning system, which is monitoring available resources and distributes
computations across the grid.

4

1.5. Virtual organizations

1.4.1 Portable Batch System

PBS is an acronym for Portable Batch System, a scheduler developed initially
by NASA in the early to mid-1990s, and still available as open source [11].

The original codebase was forked into at least three projects:

• Community version of PBSPro

• Torque – open source successor of PBSPro

• PBSPro – proprietary pay-for-core version

PBS optimizes job scheduling and workload management clusters, grid
networks and supercomputers [12].

The node of a grid, that provides a user interface for submitting work to
the grid is called front-end node.

PBS command line interface allows user to perform following core actions:
[4, p. 18]

• Add a job to the queue.

• Remove a job from the queue.

• Rerun a job.

• Update queued job properties (alter, delete, hold, move).

• See the status of the queue where is among other submitted jobs.

The queue itself is a virtual computing space in the grid network where
each job can require different memory, storage, CPU, GPU or application
options.

1.5 Virtual organizations

Virtual organization in a grid computing context refers to a dynamic set of
individuals or institutions sharing their resources according to defined rules
and conditions. It’s very common that participants have a common scientific
topic or the same goal. [13]

The list of existing VO is large and they are both from academic and
private sphere (see lists at 1, 2 or 3). This thesis primarily focuses on the
organizations (VO and non-VO) based in the Czech Republic and alterna-
tive to grid or cluster computing. One of the academic VO is, for example,
MetaCentrum National Grid Initiative, described in the following section.

5

https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://www.revolvy.com/page/List-of-distributed-computing-projects
https://boinc.berkeley.edu/projects.php

1. Grid computing

1.6 MetaCentrum National Grid Initiative

MetaCentrum NGI is a national grid infrastructure operated by MetaCen-
trum, CESNET department, responsible for coordinating and managing grid
activities in the Czech Republic [14].

The grid consists of resources across different locations and domains. The
main focus of the project is to provide a virtual computer that allows effective
utilization of connected hardware nodes. Such virtual computer can be then
used for solving tasks whose memory and/or CPU requirements exceeds the
possibility of an individual single computing machine [14].

The access to the grid is available for students and employees of academic
or research subjects located in the Czech Republic [15]. Usage is free and with-
out limitations for non-commercial use. The usage conditions are acceptance
of rules and acknowledgement in user’s publications.

1.6.1 National participation efforts

The MetaCentrum is flexible enough for any other academic subject to par-
ticipate by integrating their resources as part of the grid network [14].

Participation in the project has several benefits for owners of clusters:

• qualified support during the selection of hardware and software, installa-
tion, operation of computing clusters, necessary administration, system
updates etc.;

• account management, installation and operation of task management
systems;

• shared operation monitoring;

• priority or even dedicated access to own machines [16].

Thanks to these advantages, ranging from CESNET organization to man-
age support of the machines and dedicated access to own resources, many
notable Czech academic institutions joined the project:

• CERIT Scientific Cloud, [17]

• CEITEC Research Centrum, [18]

• Institute of Physics AS CR, [19]

• Information Technology at Masaryk University, [20]

• European Life-Science Infrastructure for Biological Information, [21]

• Technical University of Liberec, [22]

6

https://wiki.MetaCentrum.cz/wiki/Pravidla_vyu%C5%BEit%C3%AD

1.6. MetaCentrum National Grid Initiative

• University of West Bohemia [23].

The participation with the provided number of CPUs is shown in Fig-
ure 1.1.

1.6.2 MetaCentrum NGI details

MetaCentrum NGI is using the PBSPro planning system and submission is
operated from front-end node with standard commands summed in table 1.2.

command description
qstat Status job, queue, server
qsub Submit a job
qdel Delete job
qrerun Requeue running job

Table 1.2: Summary of basic PBSPro user commands [4, p. 50]

A queue is an abstract space under which the submitted job is executed.
Each queue has associated hardware resources on which the actual execution
is done and the system determines which resource to use based on availability
and set priorities. Different queues can also provide specific options or values
for parameters like CPUs cores, GPUs cores or memory size.

A single computational unit in the PBS environment is represented by a
job. The job is usually bash script that prepares the environment and executes
actual computation program and collects result.

One of the base parameters for submitting a job is a walltime that repre-
sents lower and upper bounds of the computational time. If the computation
exceeds the upper bound of the queue’s maximum walltime, it is terminated.
The queue in the MetaCentrum environment is determined based on the wall-
time (see Table 1.3).

The MetaCentrum contains multiple types of queues, public and private
ones. Public ones are available for all registered and approved users of the
grid network. Private queues are dedicated to only some users and thus it is
needed to have special permissions for submitting jobs there. Public queues
are shown in Table 1.3.

The grid offers a large variety of free and proprietary software along with
commercial libraries for all registered users. The details of provided software
is further described in subsection 2.5.2 and subsection 2.5.3.

7

1. Grid computing

queue time limit
(hh:mm:ss)

CPU/user description

gpu 0 - 24:00:00 500 GPU queue
gpu long 0 - 168:00:00 200 GPU queue for long jobs
q 2h 0 - 02:00:00 2000 2 hour CPU queue
q 4h 02:00:01 - 04:00:00 1800 4 hour CPU queue
q 1d 04:00:01 - 24:00:00 15000 1 day CPU queue
q 2d 24:00:01 - 48:00:00 1000 2 days CPU queue
q 4d 48:00:01 - 96:00:00 1000 4 days CPU queue
q 2w 168:00:01 - 336:00:00 1000 2 weeks CPU queue
phi 168:00:01 - 336:00:00 384 6 x Xeon Phi 7210

Table 1.3: Queues available on MetaCentrum for all users. CPU/user repre-
sents maximum CPU cores per user

Figure 1.1: MetaCentrum NGI providers statistics based on provided number
of CPUs [1]

1.7 Academic cluster services

1.7.1 Information systems and Technologies of CTU
Supercomputer

Information systems and Technologies department of Czech Technical Uni-
versity in Prague uses for difficult computations computers by SGI company
[24].

The hardware consists of SGI ALTIX UV 100, one cluster of 7 nodes and

8

1.7. Academic cluster services

two SGI C1001 machines (see Table 1.4).

name no. cpu x cores memory storage
SGI ALTIX UV 100 12 x 6 576GB 7.2TB
Cluster SGI XE node 2 x ? 24GB ?
SGI C1001-RP6 2 x 8 64GB ?

Table 1.4: Overview of resources provided by CTU cluster

The cluster uses PBS for task submission. Software like Mathematica,
Matlab or Maple is not available on all machines and thus the user must know
where to execute his computation.

The services are available to students and employees of Czech Technical
University after approval [24].

1.7.2 Technical University of Ostrava – IT4Innovations

IT4Innovations National Supercomputing Center (IT4Innovations) is part of
VSB-Technical University of Ostrava. In terms of theoretical peak perfor-
mance, it is currently ranked as 87th most powerful supercomputer in the
world [25].

The organization provides access to two supercomputers – Anselm and
Salomon (see its queues in Table 1.5). For using them, specific front-end
(access) nodes must be used. For task submission and resource allocation,
PBS Pro system is available and is required to be used [5].

Access to both computers is available for both academic and industry
subjects. For full access to all resources, academic applicants must be selected
and approved, industry subjects have the option to buy a computation time
on machines. Even the academic subjects have limited usage as they are given
an only fixed number of core hours [5].

It is important to note that some of the resources are connected to the
MetaCentrum grid network.

1.7.3 Summary of academic cluster services

It is not possible to directly compare MetaCentrum NGI with alternative
services offered by other organizations, as MetaCentrum is grid network con-
sisted of multiple clusters and computers, while other mentioned options are
not grids but services offering clusters or super-computers not connected to
one unified system.

The MetaCentrum grid offers many benefits in comparison to alternatives
and those are:

• available for all academic subjects;

9

1. Grid computing

queue
name

time
limit

nodes
per job

cores
per node

description

qexp 1h 8 24 Express queue, testing and small
jobs

qprod 48h 86 24 Production queue
qlong 144h 40 24 Long queue
qmpp 4h 1006 24 Massive parallel queue
qfat 48h 1 8 Dedicated queue, access to Nvidia

accelerated nodes

qfree 12h 86 24 Allows utilization of free resources
when project exhausted
available ones

qviz 8h 2 4 Visualization queue, using OpenGL
accelerated graphics

qmic 48h 8 - Dedicated queue, access to
Many Integrated Core nodes using
Xeon Phi processors

Table 1.5: Queues available on Salomon super-computer [5]

• no restrictions on usage and used computed time;

• large quantity of resources and queues;

• both GPU and CPU queues;

• configuration of the environment by loading modules;

• licenses for proprietary software and libraries;

• dedicated access to queues with special permissions;

• unified environment on physical nodes.

The easiest option for all academic organizations is to use the resources
offered by MetaCentrum grid. Unless the academic subject has some specific
needs or requires dedicated access to a specific cluster that is not part of the
grid.

In the case of commercial subjects, some other option must be used. One
of them is, for example, IT4Innovations, which offers an option to buy com-
putation resources.

10

1.8. Cloud based services

1.8 Cloud based services

Another approach is using one of suitable cloud-based cluster service. Cloud
computing can be defined as a service that provides data storage and comput-
ing power without direct active management [8]. The term was popularized
after announcing Amazon EC2 Service [26].

Figure 1.2: Creation of new Function for AWS Lambda services via web in-
terface

11

1. Grid computing

1.8.1 Amazon Web Services Lambda

Amazon Web Services Lambda (AWS Lambda) offers running code without
provisioning or managing servers. Payment is only for the time consumed
while computing. [27]

Lambda offers virtual execution of code for any type of application of back-
end service. The executed code is in this context called Function. Creation of
a new function using web interface can be seen in Figure 1.2. [27]

The service has multiple resource limitations [28], that are much more
strict compared to grid networks or mentioned clusters. Those are:

• maximum 1000 concurrent executions;

• maximum 75GB storage for function;

• memory allocation is limited 128 MB to 3008 MB, in 64 MB increments;

• time limit for function execution is 15 minutes;

• deployment package must be under 50 MB (zipped) and 250 MB (un-
zipped).

Thanks to these limitations, especially the time limit, Lambda is not suit-
able for a long time running functions, which can be a significant issue for
some computations.

1.8.2 Amazon Web Services Fargate

AWS Fargate is a compute engine for Amazon ECS that allows running con-
tainers without having to manage servers or clusters. With Fargate, all that
needs to be done is to package an application in containers, specify the CPU
and memory requirements, define networking and launch the application. The
service provides seamless scaling of resources without the need to manage the
infrastructure. [29]

For hypothesis testing, a user can package his computation to the container
and execute it as a batch job or application. The difficulty here is that the
environment in the container is solely in the hands of the user and can be hard
to set up.

Another issue that could occur is with input and output files that are
too large for the container to keep them. The solution is using a storage
service, like Amazon S3 that offers large persistence storage accessible via
HTTP protocol. This increases requirements on computation a script that
needs to work with such service instead of local storage.

Maximum supported configuration for one instance is 4 virtual CPU cores
and maximum 30GB memory in 1 GB increments.

12

1.8. Cloud based services

1.8.3 Google Cloud Functions

Google Cloud Functions (GCF) is an alternative solution similar to AWS
Lambda. It is an event-driven serverless computing platform that offers auto-
matic scaling and does not require to manage resources. [30]

GCF offers the option to deploy code and execute a function on the Google
cloud platform. This has some limitations similar to the AWS Lambda [31],
which are:

• maximum number of functions per project is 1000;

• deployment size must be under 100 MB compressed and 500 MB un-
compressed;

• time limit is 9 minutes;

• maximum memory a function can use is 2048 MB;

• maximum 100,000 GHz-seconds per 100 seconds.

Run-time limits of the solution are much stricter than the AWS Lambda
ones. Some of the limits are defined in a different manner or missing entirely.
This makes a comparison without deep analysis not possible. One of missing
limit is, for example, maximum storage that can be used or available CPU
computation power.

1.8.4 Azure Functions

Azure Functions (AF) is another alternative solution for easily running small
pieces of code, or ”functions,” in the cloud. The solution allows writing the
code without worrying about a whole application or the infrastructure. The
code is executed on the scalable Microsoft Azure platform. [32]

The AF offers two plans, Consumption and App Service. The key differ-
ence between them is that the Consumption is based on scalable server-less
architecture while the App Service provides execution of functions on own VM
instances. The App Service also provides fewer limitations and the possibil-
ity to use more resources than in the case of Consumption plan. Complete
comparison can be found in Table 1.6.

1.8.5 Summary of cloud-based services

The main motivation behind these services is to out-source server manage-
ment to the external provider, while the clusters and grids are built with a
focus on computing tasks. Although cloud services can be used as comput-
ing entities, they don’t offer needed flexibility and have limitations that make
them unsuitable for some computations.

13

1. Grid computing

Consumption plan App Service plan
scalable serverless plan deployed Virtual Machine instances
automatic scaling scaling by adding more VM instances
pay for execution time pay for used VM instances
max time limit 10 minutes unlimited time limit
CPU core per function 4 CPU cores per VM instance
1.5 GB memory per function 14 GiB of memory per VM instance
maximum 200 instances -
max 1 new instance per 1s
(HTTP trigger) -

max 1 new instance per 30s
(non-HTTP trigger) -

Table 1.6: Comparison of Microsoft azure plans [6] [7]

The execution of thousands of mostly long-running computations that use
various libraries and licensed software is unsuitable for most of the services.
Specialized software and licences are not supported out of the box and must be
set up manually with possible restrictions. Strict time limits and unavailability
of GPU cores is then another issue.

Needless to say, AWS Lambda, Google Cloud Functions and Azure with
the Consumer plan are almost the same services that are running on different
platforms. All of them then have very similar limits and usage scope.

One of the exceptions is Azure functions with the App Service plan (see
subsection 1.8.4) and almost identical alternative, AWS Fargate. Although
these services still have some of the crucial limitations, they are the only one
that allow long-running executions making them viable for computations that
do not need a massive amount of CPU cores and memory.

14

Chapter 2
MetaCentrum NGI example

usage

MetaCentrum NGI resources can be used in many ways. This chapter aims
to describe one type of example usage that this thesis focused on. As a by-
product of the description, all used and needed terms used in the context are
described along the way.

2.1 Job lifecycle

The script is submitted to the grid network via qsub command. Based on the
walltime parameter, a job is put into the proper queue.

The submitted job is waiting in the queue for required resources and is
executed immediately when resources are available (and the job is first in the
queue). Physical grid node executing the job is not guaranteed.

If a user wants to check job status, qstat command must be used (see
Listing 2.1).

2.2 Computational file

The MetaCentrum can be effectively used for mapping high-dimensional space
of possible parameterization of an algorithm, where each parameterization is
represented by a job that performs the computation execution based on the
parameters.

The mapping space can be defined as a task. A task is consisted of jobs,
where each of them uses one parametrization of the space and is submitted to
the queue.

The actual execution is represented by the computational file that accepts
parameters as a function or uses environment variables to configure parameters
of the computation.

15

2. MetaCentrum NGI example usage

Listing 2.1: Output of qstat command on the MetaCentrum grid
1 $(STRETCH)jtucek@tarkil : qstat | head -10
2
3 Job id Name User Time Use S Queue
4 --------------------- ---------------- ---------------- -------- -

5 3559877.arien-pro wiki_a4_splitte user1 00:00:00 H q_1d
6 3559881.arien-pro wiki_a4_splitte user1 00:00:00 H q_1d
7 3560548.arien-pro 3D-MPI-test user2 00:00:00 H q_1d
8 3563328.arien-pro conll_train_tes user3 00:00:00 H q_1d
9 3563402.arien-pro meta_B100H0HMRC user4 00:00:00 H q_1d

10 5163329.arien-pro meta_UmbH-allre user5 0 Q q_1w
11 6140219.arien-pro DKS_toluene_com user6 0 H q_6d_ceitecmu
12 6140225.arien-pro DKH2_toluene_co user6 0 H q_6d_ceitecmu

The computation can be represented by Matlab or Python file and is the
unit that performs one part of the computation or hypothesis testing based
on a given configuration.

2.3 Example of usage

For the configuration itself, an example of the existing scenario is to create
a controlling script that setups environment and executes the computation
(see Listing 2.3). This script is then submitted to the queue. After submitting,
the queuing system handles execution automatically. Chooses a physical node
and executes the controlling script.

The issue here is that executing controlling script prepares computation
just for one set of parameters. This means that the controlling script itself
must be generated by other script or manually edited for each set and sub-
mitted to a queue.

The second script can be called parametrization script. The parametriza-
tion script contains nested loops that generate requested combinations of pa-
rameters for the computation (see Listing 2.2) and then submit a created
script to a queue. See all file types summed in Table 2.1.

2.4 Versioning

In the given example an user typically uses different variations of control-
ling and parametrization scripts for generating scripts. These files are being
modified for different computations or re-execution of the same task.

Such behaviour can possibly end up in the state, where the user is unable
to identify which configuration was used for the execution and cannot easily

16

2.5. Resource allocation

file type description

controlling script prepares environment, configuration and executes
computation file

parametrization script generates controlling script and submits it
to a queue

computation file performs computation based on set configuration

Table 2.1: Overview of file types and their purpose

track changes in case files on the filesystem were edited directly by the user.
Input and output data is another part which should be versioned in an

experiment. In case of these files, the issue is that input and output data sets
can be very large in size (gigabytes and more) and thus easily fill up available
local storage.

A relevant requirement for a user (in the example given), would be the
versioning of all the data needed for each run and output data. The moti-
vation is the ability to track history executions and to easily re-execute the
computation with identical configuration.

2.5 Resource allocation

2.5.1 Hardware resources

For successfully submitting a job to a queue, a user must have knowledge of
how the MetaCentrum grid works and how to use available resources.

Without such knowledge, and of course, the grasp how demanding is the
computed job itself, a proper configuration of a job is unlikely.

A user has to determine which hardware resources a job will use:

• if the task uses CPU or GPU for computation,

• how many cores will be used,

• task memory consumption,

• and file storage size.

This narrows available queues that can be used for computation.
The other expected parameters are runtime duration of a job, walltime,

based on which the system attaches a job to a queue. All available public
queues are summed in Table 1.3.

17

2. MetaCentrum NGI example usage

Listing 2.2: Shortened sample of parametrization script generating controlling
script and submitting it to the queue

1 #/bin/bash
2 RUN_COUNTER=1
3
4 for ((VICINITY=2; VICINITY<=2; VICINITY++)); do
5 for ((MIN_TRANSL=0; MIN_TRANSL<=19; MIN_TRANSL++)); do
6 let "RUN_COUNTER++"
7
8 controlling_SCRIPT="˜/bash_scripts/tmp/tmp_$RUN_COUNTER.sh"
9

10 # put env. variables into script that will be submitted
11 echo "export VICINITY=\"$VICINITY\"" >> "$controlling_SCRIPT"
12 echo "export MIN_TRANSL=\"$MIN_TRANSL\"" >>

"$controlling_SCRIPT"
13
14 cat "$HOME_DIR/bash_scripts/controlling_script_template.sh" >>

"$controlling_SCRIPT"
15
16 qsub -l select=1:ncpus=12:mem=30gB:scratch_local=10gB \
17 -l walltime=2:00:00 \
18 -l Matlab=1 \
19 -l Matlab_Neural_Network_Toolbox=1 \
20 "$controlling_SCRIPT"
21 fi
22 done
23 done

The main user requirement is for a job to finish as fast as possible with
success status. Selection of proper parameters is a non-trivial task for user-
beginner because of its complexity. Proper selection depends on the specific
behaviour of the job, such as effective scaling based on a number of CPU/GPU
cores or current state of queues in the grid network (number of submitted jobs
to queues).

Even if a user selects best possible walltime for his job, it can mean that
the assigned queue is currently very overcrowded from jobs of other users,
which could result in job waiting for a long time in the queue before actual
execution. In this case, it could be much more efficient to select a queue that
is freer and thus waiting for the execution would be much shorter.

2.5.2 Modules

On the MetaCentrum grid, the tools necessary for the execution of the com-
putational script are not available in a user environment by default [33]. The

18

2.5. Resource allocation

Listing 2.3: Controlling script executing Matlab function
1 export OUT_DIR=’/user/dir/out/1’
2 export Matlab_THREADS=5
3 export Matlab_DIR=’/user/dir/storage’
4 export MIN_TRANSL=1
5 export USE_GPU=’yes’
6 export LAYERS=[10, 20, 30]
7
8 module add Matlab # load Matlab module
9 module add jdk-8

10 # execute Matlab command
11 Matlab -nodesktop -nosplash -nodisplay -r \
12 "try, "\
13 " main_batch01($MIN_TRANSL, ’useGPU’, ’$USE_GPU’,"\
14 " ’layers’, $LAYERS), "\
15 "catch e, "\
16 " disp(getReport(e)), "\
17 " exit(1), "\
18 "end, "\
19 "exit(0)" \
20 &> "$OUT_DIR/Matlab_stdout.log"
21
22 if ["$?" -eq 0]; then
23 echo "run number ’$RUN_ID’ successfully finished" >

"$OUT_DIR/success" # create file ’success’
24 else
25 echo -e "\nMatlab script completed with exit status != 0\n"
26 fi

grid uses a modular subsystem that provides a command line interface for
modification of user environment by loading required modules and thus op-
tion to easily set up his environment without the need to perform manual
configurations.

After module is loaded as is shown in Listing 2.4, chosen application is
integrated into the user environment, including availability in the PATH vari-
able.

Listing 2.4: Modular subsystem terminal commands
1 // lists all available modules on the grid
2 $ module available
3 // loads modules into a user environment
4 $ module add <modulename> # e.g., module add Matlab

User must load a module each time he logins, as the state is not persisted
from the last session.

19

2. MetaCentrum NGI example usage

resource type description example
walltime Time based on which queue is selected 2:00:00
chunk Set of resources allocated on 1 node 1
ncpus Number of CPU cores on each chunk 2
mem Size of memory 4gb
ngpus Number of GPU cards 2
scratch local Size of file storage on a node 1gb
scratch shared Size of shared file storage 1gb

Table 2.2: Overview of resource types with example value

In case of a job execution on a physical node, the environment is in the
default state and thus before actual execution, proper modules must be loaded.
This can be seen in Listing 2.3, where JDK and Matlab are loaded as modules.

2.5.3 Licenses and toolboxes

Some software resources need to be specified directly in the queuing system to
ensure that the environment where a job is executed will have proper config-
uration and licences. On the MetaCentrum grid they are specified via toolbox
option.

As every PBSPro option, it can be specified in two ways, directly when
submitting a job (see Listing 2.5) or via metadata headers in the submitting
file (see Listing 2.6). The headers are located at the beginning of the file and
are written as comments in a custom format that is recognized by the PBS.
[4, p. 34]

Listing 2.5: Submitting and specifying Matlab toolbox directly
1 $ qsub ... -l Matlab=1 -l Matlab_Statistics_Toolbox=1

Availability of licenses is another complexity factor waiting for a user-
beginner. In case of an unavailable license (whole capacity is used by other
jobs), the job will wait in the queue until the license will be available. This
can be a big issue in case of hundreds or thousands of jobs requiring the same
license. In such case, only a limited number of jobs can run at the same time
as license works as a required token for execution.

The need for the license allocation is that capacity for the proprietary
software execution is limited and only a fixed amount can be used on the grid
at the same time. For example, according to the official grid documentation
[34], the total number of Matlab licences is 450 with toolboxes having much
lower count. The current state of available licenses can be found in the official
MetaCentrum documentation located in the License section.

20

https://wiki.MetaCentrum.cz/wiki/Matlab#Licences
https://wiki.MetaCentrum.cz/wiki/Matlab#Licences

2.6. Notifications

Listing 2.6: Submitting Matlab job with toolbox specified in a file’s metadata
using PBS directives

1 #!/bin/bash
2 #PBS -N PythonTaskType
3 #PBS -l walltime=01:00:00
4 #PBS -l select=1:ncpus=1:mem=1gb:scratch_local=1gb
5 #PBS -l Matlab=1
6 #PBS -l Matlab_Statistics_Toolbox=1

2.6 Notifications

The PBSPro system provides email notifications for notable changes in a job
lifecycle. Main lifecycle points are: job cannot be routed to a node, is deleted
by a user, is aborted or begins and ends execution. [4, p.50]

A user can modify default lifecycle points [4, p.50] as part of configuration
during submission. Following methods can be used:

The -m <mail points> option to qsub
The #PBS -WMail_Points=<mail points> PBS directive

To configure email recipient list available methods are [4, p.50]:

The -M <mail recipients> option to qsub
The #PBS -WMail_Users=<mail recipients> PBS directive

The case where this functionality stops being sufficient is when a user
submits hundreds or thousands of jobs. In this case, the user will consecutively
receive thousands of emails for each job and the only result will be his overfilled
email inbox. On the other hand, with proper filtering and searching it is
possible to detect failed jobs and possible issues in submitted task much faster
than by manually checking state via remote terminal connection to the grid
network.

2.7 Failed jobs and automatic resubmitting

The nature of some computations does not have to have a deterministic re-
sult if for example, used algorithm works based on randomization and thus
execution is not ensured to be successful on every run.

In this case, a user wants to submit a job with a given configuration to
the queue multiple times until computation ends properly. Unfortunately,
PBSPro or the grid does not offer an option to automatize this task.

Needless to say, PBSPro has rerun functionality, but it works only when
a job is terminated before finishing [4, p. 189]. So even if a job ends with

21

2. MetaCentrum NGI example usage

failure status code, the queue system considers a job as finished and will not
rerun such job. In cases where second execution would cause a problem (like
rewriting needed historical data), a user can mark a job as not rerunnable.

The only way to rerun a finished job is by manually resubmitting it, which
can be quite a time-consuming process in case of multiple jobs.

22

Chapter 3
Possible solution and analysis of

CLI

The section 2.2 defined the task as a unit consisting of jobs, where each of
them uses one parametrization of the configuration space and is submitted to
the queuing system. Development of this abstract concept further and most
importantly, integrating it into the CLI as the core approach, allows new
innovative approach for solving issues encountered on the MetaCentrum grid.
The detailed solution to these issues and others are described in this chapter.

3.1 Versioning of scripts and data

One of the first steps for the successful versioning is the ability to track histor-
ical execution in such way that it can be resubmitted to the planning system.
The files needed for re-submission are input data, controlling scripts and com-
putational files (see overview in Table 2.1). The controlling scripts must be
either directly versioned or there must be an option to generate them using
previous configuration of parametrization space.

More flexible option is to only remember user configuration, as the control-
ling scripts can be generated in the same manner as in the previous execution.
This configuration, along with state of the run is called metadata. The sim-
plest option is to store the files as copies in a structured directory hierarchy.

The size of data files is often overwhelming and thus can cause issues
by exceeding available capacity. The solution is to exclude large files from
versioning and for the metadata to only contain absolute paths to them. Ex-
clusion can be then based on a user configuration option. Excluding of data
files brings a new issue in the re-submission process, that must use the same
input data files and, if not configured properly, can overwrite output data.

It is also possible to use some existing Version Control System and for a
user to version the files manually using VCS CLI. The requirement for this

23

3. Possible solution and analysis of CLI

solution is for data to have folder structure allowing initializing VCS repository
in it.

Extension of this idea is to directly integrate the VCS into CLI and au-
tomatize the process. The advantage is that automatic versioning can be done
in each CLI execution and not to rely on a user.

3.1.1 Versioning tools

Version Control System provides management of changes to documents, source
code and other files. VCS is usually a stand-alone application that handles
tasks to manage multiple versions of files. In the case of distributed VCS, the
application also provides an interface for synchronization of the state with a
remote repository. Wide-spread VCS are for example Git, Mercurial or SVN.
[35]

Size of data files cause issues for the remote repositories with the limitation
for the maximum file and overall size. The Github, Git-based hosting service
has the limitation on one file 100 MB and recommends to have repositories
under 1 GB each [36]. Another hosting service, Bitbucket, has a soft limit 1
GB and 2 GB hard limit for git repositories [37]. Although alternative services
exist and a user can use own hosting server, the main issue here is that Version
Control Systems was designed primarily for source code version control [38].

The solution for versioning large data files is to use a different approach
by versioning only pointers to the actual remote location of the large files.
Distributing data across different physical locations and not in the actual
repository allows then much bigger flexibility in storage options [39] [40].

DVC.org

One of the solutions for versioning large files is DVC [39] project that special-
izes on version control of machine learning projects. Project is designed for
working upon large data sets and solves the issue of tracking files that are too
large for the VCS (like Git) to handle, as the remote storage location for each
file can be defined separately so the large files can be stored in other location.
DVC offers its own command line interface to configure versioning of large
files. [39]

The repository only stores internal DVC pointers to the external location
of the large files (see Figure 3.1).

Unless a user works with large files, other basic operations and versioning
of other files are done using a VCS command line utility. This makes DVC
independent on the underlying version control system.

Git Large File Storage

More Git native-based approach is the usage of Git Large File Storage (LFS).
LFS works on the basis of replacing large binary files in the repository with

24

3.1. Versioning of scripts and data

Figure 3.1: Versioning of large files using DVC.org, supported by Git server
and external data storage [2]

text pointers. Actual files are then hosted on a dedicated server where LFS is
supported [40].

Git and DVC comparison

The core difference between approaches is that DVC can store large files on
remote servers that do not have installed dedicated software like LFS and
thus can be used for any remote storage. Remote storage for the DVC can
be for example Amazon S3, which is cloud-based file storage service [41]. The
second difference is that DVC does not depend on specific under-laying VCS,
so a user can choose the one he needs or prefers.

3.1.2 Versioning summary

Although VCS and both solutions for versioning large data can be technically
incorporated into the CLI, it was not implemented. The main issue here is
that the potential policy on how to version the data is not clear. Taking a
stand to one way of versioning the data, could mean limiting the usage of CLI
for other users or forcing them to use solution that they do not require. To
solve this, further analysis of user behaviour is required.

25

3. Possible solution and analysis of CLI

The solution that offers flexibility and still solving main issues is the im-
plementation of the systematic view on the execution data and version them
locally. This can be developed further by integration of VCS and large data
storage tools.

3.2 Allocation of resources

3.2.1 Virtual hardware resources

Straightforward solution for specifying resources would be to rely on a user
configuration and follow it blindly. The biggest disadvantage in this solution
is that a user must have good knowledge about MetaCentrum grid.

User knowledge is necessary for a determination whether CPU or GPU
suits well for a job computation as well as for the task wall-time, memory
consumption and disk space.

And even in this case, the best configuration is not ideal in every moment
of the grid, as the number of submitted jobs of other users in queue varies in
time. This could be the cause of jobs waiting in the overflowed queue instead
of being executed in the queue that is not used as much.

The opposite approach is to compute resources dynamically and automat-
ically by executing a script with various configurations and determining the
best one in a given time.

The complexity of this solution depends on a number of parameters that
are being determined. The dimension of the parameters could be then reduced
by a user providing part of the configuration. Such parameter that could be
very helpful in narrowing the queues used for computation is a queue type
(CPU vs GPU allocation), because not knowing it means that jobs must be
submitted to both types of queues and prolong computation itself even more.

The next issue in this approach is choosing the right size of memory and
storage size, where its impact on the computation in most cases will be if it
fails or not. The automatic solution is then choosing some base values and
try them until successful ones are found.

3.2.2 Software resources

The software resources depend on the type of computational task and specific
libraries that are used. Thanks to this, a tool without deep inspection of the
computational script, cannot determine every needed module or toolbox that
are needed for execution in the queue system.

Even so, with minimal knowledge about the task, some of the modules can
be determined automatically. For example, in case we knew, that the task is
a Matlab one, we can predict that a user wants to use the newest available
Matlab.

26

3.3. Notifications

Although if a user wants to use specific libraries, it cannot be solved au-
tomatically and a user will need to input them.

3.3 Notifications

Notification support on the MetaCentrum grid has its disadvantages for a large
number of submitted jobs, as from PBS’s point of view they are stand-alone
jobs without any connection. The task abstraction allows a new approach to
the notification and status checking, as it is possible to track submitted jobs
as a whole.

A new mechanism for checking the status of submitted jobs belonging the
same computation must be introduced. The solution can then notify a user
about the most crucial events in a task lifecycle.

These events are if a job is failing or when all jobs of a task end and com-
putation can be then considered as finished. The viable notification method
is by email, supported on the grid by using terminal command sendmail (see
Listing 3.1).

Listing 3.1: Example of sendmail usage
1 $ sendmail -tv < "./file"
2
3 // file content
4 To: to@email.com
5 Subject: Subject of the mail
6 From: from@email.com
7
8 Mail text

3.4 Failed jobs and automatic resubmitting

Implementing re-submission of failed jobs could be considered as an extension
of the notification system described in the previous section. To avoid an
infinite re-submission loop, a user needs the option to configure maximum
resubmit count.

Such parameter also makes sense, as with subsequently failing jobs, the
probability that next submission would end successfully is lower with each
execution.

The proposed functionality is that in automatic check mechanism used for
notifications, the failed jobs are submitted to the queue.

Keeping historical data is another aspect of re-submission, where the
straightforward re-execution could overwrite existing outputs of the failed job.

27

3. Possible solution and analysis of CLI

The solution to this issue is changing the submitted script in a way that new
output data does not override the existing one. That can be done by changing
output locations and the directory in which the script is submitted so no data
are overwritten.

28

Chapter 4
CLI structure and usage

Based on possible solutions mentioned in chapter 3, CLI solving the most crit-
ical issues was created. The solution reduces the complexity of MetaCentrum
and PBS submission system to one configuration file and clusterize applica-
tion. Moreover, the tool offers a solution for versioning, user notification and
task monitoring.

This chapter is dedicated to the introduction of the created tool from a
user perspective. Installation, available commands and configuration file are
described.

At last, documentation and quick guide accessible outside of the thesis is
introduced. The external documentation allows users to learn about the CLI
functionalities without the need to read the whole thesis. The quick guide is
then an effective way for the introduction of the tool by providing examples
that can be executed with minimal additional configuration.

4.1 Installation

Installation for a user was designed to be as straight forward as possible. The
CLI was created with the focus on the MetaCentrum grid environment. Al-
though the tool can be also installed on other systems using PBS and modular
subsystem, they are directly supported.

Installation on the front-end node is done via running one command in a
shell terminal. The command downloads installation script and runs it with
a parameter that represents a version to be installed.

The command for installation is:

1 $ sh -c "$(curl -fsSL URL_TO_SCRIPT/install.sh) 0.13"

Installation script deals with preparing folder structure, downloading dis-
tribution file and generating wrapping run script. The distribution tar file is

29

4. CLI structure and usage

$HOME
_clusterize

clusterize
clusterize..................................Wrapping script
bin Contains execution script generated by build system
lib Contains jar files of libraries and source

metadataStorage.............Default metadata strorage location
log...........Archived old logs when CLI is executed as cron job
app-configration.yml....................User configuration file
cron.log..Standard output of the CLI when executed as cron job

Figure 4.1: Description of $HOME/.clusterize folder structure

downloaded from the GitHub releases section 1.
Execution files are saved in a user’s home directory .clusterize folder (see

Figure 4.1). An important part of the script is checking for JAVA HOME
environment variable during installation, so it can be set automatically in
wrapping script before actual CLI execution.

Removing clusterize from system can be done by recursively deleting .clus-
terize/clusterize folder. For complete deletion of CLI from a system, a user
must delete the configuration and metadata about past runs. This can be
done by deleting remaining files in the .clusterize folder.

4.2 Commands in the CLI

This section aims to describe the usage of all commands that the CLI of-
fers, along with a detailed explanation of the configuration file used for task
specification.

The availability of the CLI binary called clusterize in the PATH variable
is assumed in all following examples. The general usage can be defined like
this:

$ clusterize <command> [specific parameters or switches]

Submit

Submit is a command, that submits a task’s jobs to the queue based on a given
configuration file. Folders, scripts and other files are prepared before actual
submission. If some required information is missing in the configuration file,
a user can interactively input such data. If the path is not given, CLI tries
to use clusterize-configuration.yml file in the current directory. A user

1The new release is create based on the newly pushed tag to the git repository. Automa-
tion is supported by Travis Continuous Integration platform [42]

30

4.2. Commands in the CLI

Figure 4.2: Activity diagram of submit command

and CLI interaction for submit command is visualized in Figure 4.2. Usage is
shown in Listing 4.1.

Listing 4.1: Submit command usage example
1 $ clusterize submit [optional path to configuration file]
2 $ clusterize submit
3 $ clusterize submit /path/to/configuration-file.yml

List

The list will check metadata storage folder (containing information about past
runs) and return the state of executed tasks with their id. This command is
very useful for checking the status of the task that contains thousands of jobs,
as we can see the exact state as a whole in a structured format (see Figure 4.3).

The CLI assumes that metadata folder is in the home directory, but it is
possible to specify a custom location. A path can be either specified directly

31

4. CLI structure and usage

Figure 4.3: Example of list command with debug output

or using the configuration file containing such path. Structure of configuration
file is described in Configuration file section. See example in Listing 4.2.

Listing 4.2: List command usage example
1 $ clusterize list
2 $ clusterize list -p path/metadataFolder
3 $ clusterize list -c /path/to/configuration-file.yml

Resubmit

Resubmit command reruns task based on its id using the same data and
configuration. One of the usages is when task execution is not deterministic
and unexpectedly fails, in which case, a user can rerun the whole task and
retrieve the second result.

Important note is that resubmit depends on list command to be executed
before. This shouldn’t be an issue for a user, as the only way to find out task
id is from list command. See resubmit example in Listing 4.2.

Listing 4.3: Resubmit command usage example
1 $ clusterize resubmit [task id]
2 $ clusterize resubmit 12

Cron

CLI needs some mechanism to periodically check for updates and notify the
user without needing him to have an active session on the front-end node.
The native system solution is to run the CLI command action as a cron job
in a defined interval.

Running cron start will register new cron job that executes cron-start-
interval command. Before registering (starting) cron job for the first time,
a user is asked for his email, which is then saved to the configuration file in
$HOME/.clusterize directory.

32

4.2. Commands in the CLI

Figure 4.4: Help command output

CLI also provides additional manipulation operations like stopping or
restarting periodic check (see Listing 4.4).

Listing 4.4: Cron command usage example
1 $ clusterize cron start
2 $ clusterize cron end
3 $ clusterize cron restart

Cron start internal

Cron-start-interval is an internal command that is executed in periodic cron
job execution. Command basically extends list functionality and also resub-
mits jobs if it is enabled in the configuration file. When completion of the job
is detected, the user is notified about the current state in an email notification.

Help

Displays help and usage examples to standard output, see usage example and
output in Figure 4.4.

4.2.1 Configuration file

The configuration file is a file that specifies the task and its jobs that are
supposed to be submitted to queues. Default and only supported serialization
format is YAML (YAML Ain’t Markup Language), which is a standardized
human-readable data serialization language [43].

The file can be divided into 4 sections:

• Iterations – array that specifies loops

• General – general configuration

• TaskType – specific configuration for task

• Resources – specification of queue resources

33

4. CLI structure and usage

Iterations

Iterations section emulates nesting loops in a parametrization script and is
used for generating all required parameters that a user wants to use for exe-
cution of the computation.

Possible iteration types are:

• ARRAY – iteration over values given in an array;

• INT RANGE – provides standard for-cycle iteration like programming
language C.

Configuration example of the iterations part is shown in Listing 4.5, its
equivalent programmatic representation using two inner loops is in Listing 4.5.

Listing 4.5: Iterations of two loops, one as an array and one from value 1 to
2.

1 # defines iterations in a given order
2 iterations :
3 - type: ARRAY # will iterate over values given in an array
4 name: VICINITY TYPE # variable name
5 values: [10, 20, 30]
6 - type: INT RANGE # will iterate over given integer range
7 name: MIN TRANSL
8 # initial value (inclusive)
9 from: 1

10 # last value (inclusive)
11 to: 2
12 # step for each iteration
13 step: 1
14 # operation type (PLUS, MINUS, MULTIPLY, DIVIDE)
15 stepOperation: PLUS

34

4.2. Commands in the CLI

Listing 4.6: Visualization how the iterations listing from 4.5 would look like
in Javascript

1 const options = []
2 for (i in [10, 20, 30]) {
3 for (j = 1; j <= 2; j++) {
4 options.add({VICINITY_TYPE: i, MIN_TRANSL: j})
5 }
6 }

General

The general section is mainly for specifying the location of folders where data
are kept or retrieved from. Metadata storage path contains information about
task execution. Its content is created after submitting and updated after each
status (list) check. Storage path contains execution files, which are generated
script, outputs and job status information.

The source path is the location of data or other resources needed for com-
putation. Resubmit count defines how many times each job can be resubmitted
in case of failure.

The dependentVariables section specifies variables, whose values de-
pend on a value of a derived variable, i.e. by changing it with some static
modifier. The derived variable can be from the environment or the iteration
section. Modifier must be bash expression for it to work.

Listing 4.7: General configuration part example

1 general:
2 # optional
3 metadataStoragePath: ’folderName/metadataStorage’
4 storagePath: ’storage’ # usually storage
5 sourcesPath: ’sources’ # sources, data used for computation
6 maxResubmits: 3
7 # environent variables
8 variables :
9 ENV VAR: 123

10 # variable that depends on other variable value
11 dependentVariables:
12 - name: MAX TRANSL
13 dependentVarName: VICINITY TYPE
14 modifier: ’+1’

35

4. CLI structure and usage

Task type

Task type specifies how user computation is executed. Currently supported
task types are Matlab and Python. From a user perspective, the configura-
tion slightly differs (see Listing 4.8 and Listing 4.9).

The CLI based on action type determines needed modules and sets their
latest versions to the environment.

The main part of task type is a function (or command) call, which specifies
execution of a computational script and parameters, environment variables or
static values that should be passed on.

Listing 4.8: Matlab task type configuration example
1 taskType:
2 type: Matlab # type of runner
3 # Matlab function call with variables and specified values
4 functionCall: |−
5 main batch01($VICINITY TYPE, $MIN TRANSL, ’useGPU’)

Listing 4.9: Python task type configuration example
1 taskType:
2 type: PYTHON # type of runner
3 # bash-like function call with variables and specified values
4 command: |−
5 python −c ”from python fibonacci import main; main($FROM, $TO)”

4.3 Storages

CLI uses two types of storages: storage and metadata. Each one has a
different purpose, which is described in the following subsections.

Each execution creates two folders of the mentioned types, with name in
this format:

task-(TASK_ID)-YYYY-mm-dd_hh:mm:ss

4.3.1 Metadata storage type

Metadata storage stores metadata file for each task in the created directory.
The file keeps status of a job, the configuration used for execution and other
additional information.

For a task to be recognized in the metadata directory, task’s directory
must be present in the mapping file. The mapping file lies directly in the
metadata folder and maps task id with the corresponding directory.

36

4.4. User quick start

metadataStorageFolder
task-1 2019-02-26 20-00-20

sources
fibbonnaci.m Computational script

task-2 2019-02-26 21-37-39
metadata-id-to-path.yml...........Mapping task id to folder path

Figure 4.5: Metadata folder structure

4.3.2 Storage type

Storage type contains the job’s generated script and output files. The gener-
ated script is the one that is submitted to the queuing system and is similar
to the controlling script discussed in section 2.3.

The script setups environment before execution and executes the compu-
tation script with proper parameter values. The script is also responsible for
the creation of files that are used for tracking the status of a job because the
information that can be retrieved from the queuing system is limited. These
information ranges from job’s exit code to when the computation of a job ac-
tually started and ended. The remaining files are standard and error output
of the script accompanied by the computation script standard output saved
in the file called stdout job.

For each job in a task, a folder with a name equal to a job’s id is created. If
a job fails, rerun option is enabled and maximum rerun quota is not exceeded,
the job will be executed in a different folder. This folder will be created in
the same level as the original job folder, with name in the format:

{JOB_ID}_RERUN_{RERUN_COUNT}

The size requirement for each job folder is not very demanding. The
generated controlling script has the approximate size of 4 KB and supporting
files have size lower. As for standard and error output, the size depends on a
computation script output.

4.4 User quick start

CLI requires basic user knowledge of the MetaCentrum and the CLI. For
this purpose, there is documentation of MetaCentrum (wiki) and several files
describing CLI: README, QUICK GUIDE and CONFIGURATION. Files
are located at the root of GitHub repository. The backup of repository is also
on the attached CD under sources folder (see Appendix B).

37

https://wiki.MetaCentrum.cz/wiki/Hlavn%C3%AD_strana
https://github.com/jakub-tucek/clusterize

4. CLI structure and usage

storageFolder
task-1 2019-02-26 20-00-20

0
inner script.sh Generated controlling script submitted to the
queue
job.infoText file that contains information about job execution
stderr.log Standard error output of the submitted script
stdout.log...........Standard output of the submitted script
stdout job.log....Standard output of the computation script

0 RERUN 1..........................Second failed rerun of the job
0 RERUN 2...................Final and successful rerun of the job

inner script.sh
job.info
stdout.log
stdout job.log

0 RERUN 1
1

task-2 2019-02-26 21-37-39

Figure 4.6: Storage folder structure

4.4.1 Quick guide

For very fast warm-up of the user of CLI, several examples were prepared along
with steps on how to submit the first task. Documentation and sources of the
quick guide are part of the Git repository. Source files for examples are located
at examples folder, documentation is in docs/QUICK GUIDE.md file.

Quickstart contains two main examples, first uses a simple Python function
that calculates Fibonacci sequence based on given parameters. Configuration
to this example is very simplistic, containing only required values along with
a low count of generated parameters for the computation.

The second example uses a Matlab script that accepts multiple arguments,
prints their values to console and sleeps itself for a few seconds. The config-
uration file contains almost all possible configuration options, like the speci-
fication of resources directly in the file, which make the example much more
interesting if a user wants to use it as a template for his own computation.

4.4.2 Detailed configuration guide

The quick guide provides a basic understanding of task submission and overall
possibilities of the CLI. To use the CLI effectively, a user must have knowledge
about the task configuration details before submission. For this purpose,
second guide was created – docs/CONFIGURATION.md.

38

4.4. User quick start

The guide describes every part of configuration file while using Quick
guide’s modified examples described in the previous section.

The aim of the guide is for a user to gain to ability modify and create the
file for his use-case.

39

Chapter 5
Technical details of realised CLI

While the previous chapter 4 describes possibilities of the tool and usage from
a user perspective, this chapter is dedicated to used technologies, patterns and
solutions for encountered issues.

5.1 Technology stack

This section describes used technologies used for implementing the CLI and
the reasons why they were selected.

5.1.1 Language and build system

The CLI is written in Kotlin [44], which is statically typed programming lan-
guage running on JVM (Java Virtual Machine). One of the main motivations
was to use mainstream technology that is supported by MetaCentrum’s mod-
ular system.

Another aspect is the ability to use an existing large quantity of stable
libraries and tools from the Java ecosystem. Thanks to the CLI running on a
virtual machine, distributed compiled files (releases) do not need to depend on
specific system version and thus it is not needed to create multiple distribution
versions.

The reason why Java itself wasn’t chosen was to be able to use new and
advanced programming features like lambda expressions and simultaneously
not depend on specific JDK that brings such features. This is the case where
Kotlin excels, as it is possible to target old JDK versions and yet use modern
features of the language [45].

The future of the tool can benefit from static typing, which provides an
option for other developers to extend the functionality of the created tool
much more efficiently thanks to existing interfaces and defined corresponding
types.

41

5. Technical details of realised CLI

The used build system for assembling, building and management of li-
braries is Gradle [46]. Unified building process via Gradle ensures that each
assembling is done the same way on every machine and that the resulting build
will have the same versions of libraries that will be automatically downloaded
during the build.

To avoid the need for a developer to download and manage Gradle versions
locally, Gradle wrapper is used. This simplifies build even more, as the only
thing that needs to be done is to execute:

$./gradlew build installDist

The Gradle wrapper then downloads Gradle automatically based on ver-
sion specified in source files and uses it for building source code.

5.1.2 File format

The chosen file format for serialization of user configuration files is YAML Ain’t
Markup Language, shortened YAML. The goal was to choose a standardized
format that is both human-readable, easily deserializable and not having a
strict form which a user must follow. All of these features are fulfilled by the
format.

For serialization and deserialization of YAML files, multiple Java or Kotlin
libraries exists: SnakeYAML, YamlBeans, Jackson Yaml Dataformat or Kaml.

Used library for the created tool is Jackson deserializer, extended with
mentioned Jackson Yaml DataFormat for working with YML format. The
reason for Jackson is that possible change or extending support for another
format would be much more efficient, because Jackson can be easily extended
to support other standardized formats like JSON or XML, without the need
to completely rewrite deserialization implementation.

5.2 Implementation details

5.2.1 Notable interfaces

The key focus when designing the architecture of CLI was to ensure extensi-
bility of supported features. These features are either user commands or core
functionality that is done under the hood of CLI (see Table 5.1).

Commands

The action is a representation of user command. Each action belongs to one
CLI command and differs in additional arguments that a user has to provide.
The data flow of submit command in application is shown in Figure 5.1.
ActionSubmit and ActionService code snippet is in Listing 5.1.

42

https://bitbucket.org/asomov/snakeyaml/overview
https://github.com/EsotericSoftware/yamlbeans
https://github.com/FasterXML/jackson-dataformats-text
https://github.com/charleskorn/kaml

5.2. Implementation details

Action Commands that user of CLI wants to execute
Configurator Configuration of resources based on user input
ConfigValidator Validation of configuration file
TaskExecutor Defines execution steps for specific action

Table 5.1: Overview of notable interfaces

From an implementation perspective, an action is represented by the Ac-
tion interface which contains command specific data and defines which Ac-
tionService implementation needs to be called for the execution of the action
logic.

Listing 5.1: Action and ActionService code snippet
1 // action that submits new jobs to queue
2 sealed class ActionSubmit() : Action()
3
4 // ActionService implementation for handling submit action
5 class ActionSubmitService() : ActionService<ActionSubmit> {
6 override fun processAction(argumentAction: ActionSubmit) {
7 // handle action
8 }
9 }

ConfigValidator

Data given by a user must be validated so the program properly terminates
in case they are not valid. This ensures that CLI won’t go into an unexpected
state during runtime and will be able to help the user update his configuration
so it contains proper values.

ConfigValidator is an interface that contains one type of validation for the
ConfigFile provided by a user. Found errors are wrapped and represented by
ValidationResult class (see Listing 5.2). This ensures that users can see all
found errors in the controlled output, unlike the case when the CLI would be
forced to end after first validation failure.

Configurator

Configuration of the submit command is represented by the ConfigFile class,
where the initial values are deserialized from the file specified by a user.

As the values do not have to be complete, in the sense that the configura-
tion file does not have to contain all the information needed for submission,
additional values must be collected. To gather these missing values, Configu-
rator interface (see Listing 5.3) and its implementations exist.

43

5. Technical details of realised CLI

Figure 5.1: High level view of submit action data flow

Figure 5.2: Class diagram for Action types

44

5.2. Implementation details

Listing 5.2: ConfigValidator interface and ValidationResult data class
1 interface ConfigValidator {
2 fun validate(configFile: ConfigFile): ValidationResult
3 }
4
5 data class ValidationResult(val messages: List<String> = emptyList(),
6 val success: Boolean = true) {
7 constructor(message: String, success: Boolean) :

this(listOf(message), success)
8 companion object {
9 fun merge(a1: ValidationResult, a2: ValidationResult):

ValidationResult {
10 val newList = ArrayList<String>()
11 newList.addAll(a1.messages)
12 newList.addAll(a2.messages)
13 return ValidationResult(newList,

a1.success.and(a2.success))
14 }
15
16 fun merge(a1: ValidationResult, newMessages: String):

ValidationResult {
17 val newList = ArrayList<String>()
18 newList.addAll(a1.messages)
19 newList.add(newMessages)
20 return ValidationResult(newList, false)
21 }
22 }
23 operator fun plus(newRes: ValidationResult): ValidationResult {
24 return merge(this, newRes)
25 }
26 operator fun plus(newMessages: String): ValidationResult {
27 return merge(this, newMessages)
28 }
29 }

45

5. Technical details of realised CLI

Listing 5.3: Configurator interface
1 interface Configurator {
2 fun configure(config: ConfigFile): ConfigFile
3 }

Figure 5.3: Time-flow visualization of Configurators execution before submit
action

Implementations are executed in the defined order, where each accepts
ConfigFile instances, modifies it and returns new one, as the class is immutable
and cannot be modified. The created instance is then passed to the next
implementation until the last implementation in the chain creates the final
instance.

Implementations can be divided into two types: the first one is the comput-
ing of additional values automatically based on given data, while the second
interactively collect values by asking user in the command prompt. Such val-
ues are for example resources wanted for the job or job’s name under which
CLI remembers current execution.

TaskExecutor

TaskExecutor is an interface that defines and performs one part of execution
for a specific Action (see implementation in Listing 5.4).

TaskExecutor implementations are the core of the CLI and contain code
that is performing actual business logic. The motivation behind such modular
architecture and splitting logical components is that multiple TaskExecutors

46

5.3. Local environment setup for development

Listing 5.4: TaskExecutor
1 interface TaskExecutor {
2 /**
3 * Performs execution and returns result in ExecutionMetadata.
4 */
5 fun execute(metadata: ExecutionMetadata): ExecutionMetadata
6 }

can be grouped in task executor groups and reused for different actions, which
improves re-usability of the code and effective implementing new functionality.

TaskExecutor accepts ExecutionMetadata class, which contains informa-
tion about current task like its state, configuration, jobs to be generated,
job’s current status, etc.

If we would talk only about executors that are used in the submit action,
then their job is to prepare an environment, create data, create jobs, submit
them to the queue and store information about the task in the proper location
(see class diagram in Figure 5.4).

This means execution is split into parts where each is represented by the
implementation of the TaskExecutor

TaskExecutor interface and its behaviour is similar to previously men-
tioned interfaces and their implementations. Executors are grouped into the
collection and executed in sequence, while their input and output is saved to
ExecutionMetadata instance (see Figure 5.3 with Configurator example).

Groups of TaskExecutors can be divided either by the Action or by the
type of task, for example, Matlab or Python. In the case of task type, current
implementation reuses almost all executors for both types in the chain except
for the one which generates execution script. This composition allows to easily
extend currently supported task types with new ones.

5.3 Local environment setup for development

Created CLI heavily depends on the queuing system PBSPro to be available
on the target machine. This is quite a complication in the local environ-
ment, where the queuing system would have to be installed and even in such
case, the installation would have different options available in opposite to the
MetaCentrum one.

Such options are available application modules, queues and resources that
can be used.

The first issue that needed to be solved is local development and avail-
ability of the queuing system itself. As a solution for simple and unified
installation process, virtualization using docker was selected.

47

5. Technical details of realised CLI

Figure 5.4: Class diagram for all submit TaskExecutors

48

5.3. Local environment setup for development

5.3.1 Docker

A container is a standard unit of software that packages up the code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another. [47]

Docker container is created from Docker images at runtime when they run
on Docker Engine. Docker Engine is available on main platforms like Linux,
Windows and Mac OS X systems and ensure that software will run the same
on all of them. [47]

In the case of queuing systems, an official image for PBSPro software
container exists (see on DockerHub). For the needs of created CLI, this image
is extended with some additional functionality, along with few more steps that
user must follow for a successful installation.

5.3.2 Local environment solution

The main requirement for basic local development is the ability to run propri-
etary software like Matlab or just software that needs additional installation
steps like Python.

As actual Matlab or Python computation is not needed in the minimal
development setup, a script that can be used for mocking software was de-
veloped (see Listing 5.5). The script can be added by following a few steps,
to the image’s PATH variable under the name of the software that needs to
be mocked. From the CLI perspective, it then behaves like the actual execu-
tion on the target machine. The script emulates an asynchronous task that is
completed in random time and does not have a deterministic result as it may
sometimes fail.

Listing 5.5: Script for mocking computation in a local development
1 #!/bin/bash
2 sleep ‘grep -m1 -ao ’[0-9][0-9][0-9]’ /dev/urandom \
3 | sed s/0/10/ | head -n1‘
4 echo $@
5 RETURN_ID=‘grep -m1 -ao ’[0-2]’ /dev/urandom | head -n1‘
6 echo $RETURN_ID
7 exit $RETURN_ID

5.3.3 DEV profile for CLI

The local environment relying on Docker container causes a new issue that
must be solved. First is the need for commands to execute in the container
environment and second is that available resources in the container are limited.
These resources are the number of CPU cores to be used, RAM, queue types,
toolboxes and modules.

49

https://hub.docker.com/r/pbspro/pbspro/

5. Technical details of realised CLI

The solution to these issues is introduction of the environment variable
CLUSTERIZE PROFILE. After setting the variable with dev value, the
CLI behaves differently.

First changed behaviour is that dependency injection provides a different
implementation of service that executes terminal commands. In fact, provided
service is actually a proxy class of shell service used in production, that prefixes
every executed command so it is executed in the docker container. For proper
functioning, the container must be created as is noted in 5.3.4.

The second behaviour is again solved thanks to dependency injection con-
figuration, so the provided Configurator array contains additional imple-
mentation that changes resource configuration in such way, that it wouldn’t
cause an error when a job is submitted in the local environment.

5.3.4 Docker configuration

Configuration for docker container extends official PBSPro tutorial on how
to set up a queuing system in the base container. Step by step solution can
be found in attachment under path sources/src/env/README.md (see
Appendix B).

5.4 Distribution

One of the significant issues with created CLI was to ensure proper function-
ality on the front-end node of MetaCentrum grid network. The first issue is
that JAVA HOME variable is not available right after a user login but only
after adding the JDK module to the current session. This causes problems
when CLI is executed as a cron job for watching tasks. Another task was to
ensure easy distribution option for users and way to update CLI version if a
new release exists.

To deal with these issues, bash scripts for installation and for wrapping
actual execution were created.

5.4.1 Wrapping execution script

Standard Gradle distribution plugin creates an installation bundle, which con-
tains libraries, application jar file and execution script. The execution script
depends on JDK and JAVA HOME environment availability in the current
session. Unfortunately, this is not possible on the MetaCentrum environment,
where Java must be set from available modules in each session.

Although CLI could depend on a user to set module every time before run-
ning tool, this becomes a significant issue when CLI is executed as a cron job,
where it is difficult to add the module to the current session before execution.

50

5.4. Distribution

This is solved by installation script to create a wrapping bash script, which
sets JAVA HOME with the value known during installation and then executes
the tool with given parameters (see Listing 5.6).

Listing 5.6: Wrapping execution script. HOME represents absolute path to
user directory

1 #/bin/bash
2 export JAVA_HOME=/packages/run/jdk-8/current
3 HOME/.clusterize/clusterize/bin/clusterize "$@"

The alternative solution for the script content would be loading Java using
a modular system. The disadvantage and reason why it wasn’t used is that this
creates dependency on the module. This would cause issues on a system where
the module is not available or if the module name is changed. The advantage
of determining the absolute path to JAVA HOME during installation is that
potential issues can be solved with the re-installation of the tool.

51

Chapter 6
Assessment of created CLI and

future plans

The chapter is dedicated to the assessment of the CLI, description of imple-
mented features and also discussion about future plans for further development
of the tool.

6.1 Assessment of created CLI

The created CLI solves core issues that were introduced in chapter 2. The
core idea of the CLI is to track whole computation as one task composed of
hundreds and thousands of jobs that are submitted to the queuing system and
represent actual computation. The created solution is able to generate multi-
ple configurations and successfully submit them to the queuing system while
helping a user to configure some of the parameters required for computation.

These functionalities are able to heavily improve the workflow of users and
to provide features that wouldn’t be possible without the tool.

6.1.1 Resource management

The CLI supports basic configuration of wall-time, CPU, memory, storage and
GPU cores. These values can be either inputted via the configuration file or
interactively as part of submit command (see section 4.2). Thanks to that, a
user has the structure to follow and thus avoid errors that could occur during
submission via PBS because of incomplete or invalid settings.

Apart from hardware resources, CLI also supports configuration of needed
modules and toolboxes, which are essential on the MetaCentrum grid for the
execution of computation scripts.

53

6. Assessment of created CLI and future plans

6.1.2 Notification and re-submission

Thanks to tracking whole computation as one task, the CLI is able to check
task state based on submitted jobs and notifies a user when all jobs in task
finish using email.

The email contains result and information about all the tasks that finished.
The email also contains information about the task’s jobs to provide a useful
general overview of the state, without the need to login on the front-end node
(see Listing 6.1).

Listing 6.1: Shortened version of the notification email when example Python
task finishes

1 ===== Task information =====
2
3 Task name: RExample
4 Creation time: 2019-04-30T10:23:46.905
5 Update time: 2019-04-30T10:23:48.382
6 Output path:

/home/clusterize/examples/out-python/task-11__2019-04-30_10-23-46
7
8
9 ===== Resources =====

10 Profile: CUSTOM
11 modules:
12 toolboxes: python-3.6.2-gcc,
13
14 walltime: 00:04:00
15 chunks: 1
16 mem: 5gb
17 ncpus: 8
18 scratchLocal: 1gb
19 ngpus:
20
21
22 1 - RExample - 30/04/2019 10:23 - DONE
23 ===== Job history =====
24
25 Total resubmits count: 0
26
27
28 Job_0) Path: task-11__2019-04-30_10-23-46/0
29 - State: DONE
30 - Start: 2019-04-30T08:25:52 | End: 2019-04-30T08:25:55
31 - Resubmit count: 0

The notification mechanism can be configured to resubmit failed jobs while
keeping the failed executions data intact.

54

6.2. Further development plans

6.1.3 Versioning

The CLI versions each submission in a systematic way, that allows checking
historical outputs and re-submission of tasks. The versioning is tightly con-
nected with the status checking, as part of the versioned files are metadata,
which contains not only configuration used for parameterization of jobs but
also locations of sources and latest status of jobs.

6.2 Further development plans

The plan for the future is to test the CLI by current users in the production
environment. Bug-fixes and new features will be implemented based on the
feedback. It is also available for other developers to participate in the project
using open source project on the GitHub platform.

At the moment, all current users are using MetaCentrum NGI as their only
platform for grid computing, but it is possible to extend support for other grid
networks and clusters.

6.2.1 New releases and user participation

User participation is required for further development of the tool. Although
the CLI solves some of the detected issues, its range can be much wider than
it is currently known. For this, user participation is crucial.

Releasing new versions of the CLI is automatized process supported by
the integration of Travis platform and GitHub, making it possible to release
versions with each small improvement. The CLI can be updated version exe-
cuting the installation bash command with the new version.

Thanks to that, users feedback can be gathered in short intervals without
increasing the complexity in the software cycle. Gathering users feedback
quickly allows directing development based on users requirements much more
efficiently.

Further improvement is then implementation of auto-updater directly to
the CLI along with automatic checking for a new version.

6.2.2 Resource profiles

The CLI offers configuration of resources either using the configuration file or
by interactively within the submit command. The more user-friendly approach
is to offer profiles for most common configurations. These could be based on
available queues and their resources.

Another approach is to determine the best configuration by analyzing the
computed task and capacity of queues on the grid. Determination of pa-
rameters is a very difficult task that needs to analyse the computed task by
executing it with multiple configurations. The parameters could be selected

55

https://github.com/jakub-tucek/clusterize

6. Assessment of created CLI and future plans

based on the benchmark. The issue here is the possibility of tasks’ jobs com-
plexity to vary and thus selection of parameters for each job would have to be
dynamic.

The state of queues is another attribute that affects computations. If the
queue is filled by jobs of other users it can mean that computation will spend
a long time in the queue waiting.

6.2.3 Task types

The CLI currently supports Python and Matlab task types. One of the
possible features to be added is to define a new task type definition, that
executes any bash command specified by the user. Implementation of such task
type is almost the same as the Python one with the difference that additional
automatized configuration for the Python environment would not be enabled.

6.2.4 Versioning

The current implementation saves metadata about executions. These meta-
data contain the used configuration of the task, state of submitted jobs and
absolute location of files needed for computation (sources) and output direc-
tory.

This local versioning allows keeping track of past executions and straight-
forward re-submission of the whole task if the location of sources is still valid.

First, possible improvement of versioning is to split source files into com-
putation files and input data sets. This allows versioning computation files
separately from input data. Versioning input along with other files is not a
trivial task as the potential size could easily fill up available storage.

The solution for storage issues is to either limit versioning data exceeding
predefined size or to integrate tools that are built for tracking large data-sets.
More detailed analysis of the solution was presented in section 3.1.

Another aspect is to support versioning of all files by integration VCS
system and to use the remote repository to track these files.

56

Conclusion

The issues occurring in the grid network have a heavy impact on the produc-
tivity of users who are using it for hypothesis testing, algorithms and other
computational tasks. Users are forced to manually set up the whole workflow
by reusing existing scripts which then lacks structure and important features
like versioning files used for executions, overall management of executed jobs
and proper notifications of finished executions.

This thesis proposes a possible solution to these issues and presents an
innovative view on job management of grid computation tasks with a focus
on the MetaCentrum grid. This view can be also applied to all systems that
use PBS submission system.

The created CLI provides an extension of base submission commands by
tracking computation as one task divided into multiple jobs. With this ab-
stract view on the computation, it was possible to implement features like the
generation of high-dimensional space of computation parameters for a given
task, versioning of executions, advanced notification system and automatic
re-submission of failed jobs.

Additional development is planned and will be based on the feedback by
users, which currently undergo a first wave of testing in the production usage.
The overall plan is to extend functionality even further and to be able to
cover most of the use-cases that occurs while computing on the grid via PBS
submission software.

57

Bibliography

[1] MetaCentrum statistics 2018. [cit. 2019-04-22]. Available from: https:
//metavo.metacentrum.cz/cs/state/stats/2018/

[2] Use cases — Machine Learning Version Control System. [cit. 2019-
03-31]. Available from: https://dvc.org/doc/use-cases/data-and-
model-files-versioning/

[3] Comparison of Grid Computing vs. Cluster Computing. [cit. 2019-04-26].
Available from: http://www.jatit.org/research/introduction_grid_
computing.htm

[4] PBSPro User’s guide. [cit. 2019-04-06]. Available from: https://
www.pbsworks.com/pdfs/PBSProUserGuide13.1.pdf

[5] Resource Allocation Policy — IT4Innovations Documentation. [cit. 2019-
04-21]. Available from: https://docs.it4i.cz/general/resources-
allocation-policy/#job-queue-policies

[6] Azure Functions scale and hosting — Microsoft Docs. [cit. 2019-
05-03]. Available from: https://docs.microsoft.com/en-us/azure/
azure-functions/functions-scale/

[7] What is Cloud Computing? – Amazon Web Services. [cit. 2019-05-
03]. Available from: https://docs.microsoft.com/en-us/azure/app-
service/overview-hosting-plans

[8] What is Computer Cluster? – Definition from Techopedia. [cit. 2019-02-
24]. Available from: https://www.techopedia.com/definition/6581/
computer-cluster

[9] Rouse, M. What is grid computing? – Definition from
WhatIs.com. Mar 2013, [cit. 2019-02-24]. Available from: https:
//searchdatacenter.techtarget.com/definition/grid-computing

59

https://metavo.metacentrum.cz/cs/state/stats/2018/
https://metavo.metacentrum.cz/cs/state/stats/2018/
https://dvc.org/doc/use-cases/data-and-model-files-versioning/
https://dvc.org/doc/use-cases/data-and-model-files-versioning/
http://www.jatit.org/research/introduction_grid_computing.htm
http://www.jatit.org/research/introduction_grid_computing.htm
https://www.pbsworks.com/pdfs/PBSProUserGuide13.1.pdf
https://www.pbsworks.com/pdfs/PBSProUserGuide13.1.pdf
https://docs.it4i.cz/general/resources-allocation-policy/##job-queue-policies
https://docs.it4i.cz/general/resources-allocation-policy/##job-queue-policies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale/
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://www.techopedia.com/definition/6581/computer-cluster
https://www.techopedia.com/definition/6581/computer-cluster
https://searchdatacenter.techtarget.com/definition/grid-computing
https://searchdatacenter.techtarget.com/definition/grid-computing

Bibliography

[10] Foster, I. What is the Grid? A Three Point Checklist. June 2002,
[cit. 2019-02-24]. Available from: http://www-fp.mcs.anl.gov/˜foster/
Articles/WhatIsTheGrid.pdf

[11] PBSPro. [cit. 2019-02-24]. Available from: http://
www.softpanorama.org/HPC/PBS_and_derivatives/index.shtml

[12] Industry-leading workload manager and jobscheduler for high-
performance computing. [cit. 2019-02-24]. Available from: https:
//www.pbspro.org/

[13] Foster, I.; Kesselman, C.; et al. The Anatomy of the Grid. Wiley Series
in Communications Networking Distributed Systems Grid Computing:
p. 169–197, doi:10.1002/0470867167.ch6.

[14] Metacentrum NGI. [cit. 2019-02-24]. Available from: https://
www.metacentrum.cz/en/

[15] Registration form. [cit. 2019-04-22]. Available from: https://
metavo.metacentrum.cz/en/application/index.html/

[16] MetaCentrum Grid/. [cit. 2019-02-24]. Available from: https://
www.metacentrum.cz/en/Sluzby/Grid/

[17] CERIT Scientific Cloud. [cit. 2019-02-24]. Available from: https://
www.cerit-sc.cz/

[18] CEITEC – Výzkumné centrum. [cit. 2019-02-24]. Available from: https:
//www.ceitec.eu/

[19] Zprovozněńı clusteru luna. [cit. 2019-02-24]. Available from: https://
metavo.metacentrum.cz/cs/news/novinka_2014_0001.html

[20] Cloud and High Performance Computing. [cit. 2019-04-21]. Avail-
able from: https://it.muni.cz/en/categories/cloud-and-high-
performance-computing/

[21] Elixir – Metacentrum. [cit. 2019-02-24]. Available from: https://
wiki.metacentrum.cz/wiki/Elixir

[22] Faculty of Mechatronics, Informatics and Interdisciplinary Studies. [cit.
2019-04-21]. Available from: https://www.fm.tul.cz/veda-a-vyzkum/
vypocetni-cluster-charon/informace-pro-uzivatele

[23] Nový cluster Nympha. [cit. 2019-04-21]. Available from: https://
support.zcu.cz/index.php/Aktuality:Nov%C3%BD_cluster_Nympha

[24] Supercomputing center at CVUT. [cit. 2019-04-21]. Available from:
https://ist.cvut.cz/nase-sluzby/superpocitani/

60

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.softpanorama.org/HPC/PBS_and_derivatives/index.shtml
http://www.softpanorama.org/HPC/PBS_and_derivatives/index.shtml
https://www.pbspro.org/
https://www.pbspro.org/
https://www.metacentrum.cz/en/
https://www.metacentrum.cz/en/
https://metavo.metacentrum.cz/en/application/index.html/
https://metavo.metacentrum.cz/en/application/index.html/
https://www.metacentrum.cz/en/Sluzby/Grid/
https://www.metacentrum.cz/en/Sluzby/Grid/
https://www.cerit-sc.cz/
https://www.cerit-sc.cz/
https://www.ceitec.eu/
https://www.ceitec.eu/
https://metavo.metacentrum.cz/cs/news/novinka_2014_0001.html
https://metavo.metacentrum.cz/cs/news/novinka_2014_0001.html
https://it.muni.cz/en/categories/cloud-and-high-performance-computing/
https://it.muni.cz/en/categories/cloud-and-high-performance-computing/
https://wiki.metacentrum.cz/wiki/Elixir
https://wiki.metacentrum.cz/wiki/Elixir
https://www.fm.tul.cz/veda-a-vyzkum/vypocetni-cluster-charon/informace-pro-uzivatele
https://www.fm.tul.cz/veda-a-vyzkum/vypocetni-cluster-charon/informace-pro-uzivatele
https://support.zcu.cz/index.php/Aktuality:Nov%C3%BD_cluster_Nympha
https://support.zcu.cz/index.php/Aktuality:Nov%C3%BD_cluster_Nympha
https://ist.cvut.cz/nase-sluzby/superpocitani/

Bibliography

[25] What is IT4Innovations? — IT4Innovations. [cit. 2019-04-
21]. Available from: https://www.it4i.cz/about-us/what-is-
it4innovations/?lang=en

[26] Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta.
Available from: https://aws.amazon.com/about-aws/whats-new/
2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-
ec2---beta/

[27] AWS Lambda – Serverless Compute – Amazon Web Services. [cit. 2019-
04-22]. Available from: https://aws.amazon.com/lambda/

[28] AWS Lambda Limits – AWS Lambda. [cit. 2019-04-22]. Available from:
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

[29] AWS Fargate – Run containers without having to manage servers or
clusters. [cit. 2019-04-22]. Available from: https://aws.amazon.com/
fargate/

[30] Cloud Functions - Event-driven Serverless Computing — Cloud Func-
tions — Google Cloud. [cit. 2019-04-22]. Available from: https://
cloud.google.com/functions/

[31] Quotas — Cloud Functions Documentation — Google Cloud. [cit. 2019-
04-22]. Available from: https://cloud.google.com/functions/quotas

[32] Azure Functions Overview — Microsoft Docs. [cit. 2019-05-03]. Available
from: https://docs.microsoft.com/en-us/azure/azure-functions/
functions-overview/

[33] Application modules. [cit. 2019-04-04]. Available from: https://
wiki.metacentrum.cz/wiki/Application_modules/

[34] Matlab – MetaCentrum. [cit. 2019-04-04]. Available from: https://
wiki.metacentrum.cz/wiki/Matlab/

[35] OSullivan, B. Mercurial the definitive guide. OReilly Media, 2009.

[36] What is my disk quota. [cit. 2019-04-06]. Available from: https://
help.github.com/en/articles/what-is-my-disk-quota

[37] What kind of limits do you have on repository/file size? [cit. 2019-04-27].
Available from: https://confluence.atlassian.com/bitbucket/
what-kind-of-limits-do-you-have-on-repository-file-size-
273877699.html

[38] Bhattacherjee, S.; Chavan, A.; et al. Principles of dataset versioning. Pro-
ceedings of the VLDB Endowment, volume 8, no. 12, 2015: p. 1346–1357,
doi:10.14778/2824032.2824035.

61

https://www.it4i.cz/about-us/what-is-it4innovations/?lang=en
https://www.it4i.cz/about-us/what-is-it4innovations/?lang=en
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/quotas
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview/
https://wiki.metacentrum.cz/wiki/Application_modules/
https://wiki.metacentrum.cz/wiki/Application_modules/
https://wiki.metacentrum.cz/wiki/Matlab/
https://wiki.metacentrum.cz/wiki/Matlab/
https://help.github.com/en/articles/what-is-my-disk-quota
https://help.github.com/en/articles/what-is-my-disk-quota
https://confluence.atlassian.com/bitbucket/what-kind-of-limits-do-you-have-on-repository-file-size-273877699.html
https://confluence.atlassian.com/bitbucket/what-kind-of-limits-do-you-have-on-repository-file-size-273877699.html
https://confluence.atlassian.com/bitbucket/what-kind-of-limits-do-you-have-on-repository-file-size-273877699.html

Bibliography

[39] Data Science Version Control System. [cit. 2019-03-31]. Available from:
https://dvc.org/

[40] Git large File Storage. [cit. 2019-04-06]. Available from: https://git-
lfs.github.com/

[41] Cloud Object Storage — Amazon Simple Storage Service. [cit. 2019-04-
06]. Available from: https://aws.amazon.com/s3/

[42] Core Concepts for Beginners – Travis CI. [cit. 2019-04-22]. Available from:
https://docs.travis-ci.com/user/for-beginners/

[43] The Official YAML Web Site. [cit. 2019-03-31]. Available from: https:
//yaml.org/

[44] Kotlin. [cit. 2019-04-06]. Available from: https://kotlinlang.org/

[45] Using Gradle – Kotlin programming language. [cit. 2019-04-06].
Available from: https://kotlinlang.org/docs/reference/using-
gradle.html/

[46] Gradle. [cit. 2019-04-06]. Available from: https://gradle.org/

[47] What is a Container? — Docker. [cit. 2019-03-10]. Available from: https:
//www.docker.com/resources/what-container

62

https://dvc.org/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://aws.amazon.com/s3/
https://docs.travis-ci.com/user/for-beginners/
https://yaml.org/
https://yaml.org/
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/using-gradle.html/
https://kotlinlang.org/docs/reference/using-gradle.html/
https://gradle.org/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

Appendix A
List of used terms

CLI Command line interface

CPU Central processing unit

GPU Graphics processing unit

JDK Java developmen kit

PBS Portable Batch System

NGI National Grid Initiative

AWS Amazon Web Services

VCS Version Control System

LAN Local Area Network

WAN Wide Area Network

63

Appendix B
Content of attached CD

readme.txt...content overview
build...build ouput

bin
clusterize Execution script for unix systems

lib...........................Jar files with source code and libraries
sources.......................................Code repository content

docs............................User documentation markdown files
examples................Example configurations and supporting files
src..Source code
README.md Base information about CLI

thesis.......................Source files of thesis text in LATEX format

65

	Citation of this thesis
	Introduction
	Grid computing
	Computer cluster
	Grid computing
	Cluster vs Grid
	Distributed computing applications
	Portable Batch System

	Virtual organizations
	MetaCentrum National Grid Initiative
	National participation efforts
	MetaCentrum NGI details

	Academic cluster services
	Information systems and Technologies of CTU Supercomputer
	Technical University of Ostrava – IT4Innovations
	Summary of academic cluster services

	Cloud based services
	Amazon Web Services Lambda
	Amazon Web Services Fargate
	Google Cloud Functions
	Azure Functions
	Summary of cloud-based services

	MetaCentrum NGI example usage
	Job lifecycle
	Computational file
	Example of usage
	Versioning
	Resource allocation
	Hardware resources
	Modules
	Licenses and toolboxes

	Notifications
	Failed jobs and automatic resubmitting

	Possible solution and analysis of CLI
	Versioning of scripts and data
	Versioning tools
	Versioning summary

	Allocation of resources
	Virtual hardware resources
	Software resources

	Notifications
	Failed jobs and automatic resubmitting

	CLI structure and usage
	Installation
	Commands in the CLI
	Configuration file

	Storages
	Metadata storage type
	Storage type

	User quick start
	Quick guide
	Detailed configuration guide

	Technical details of realised CLI
	Technology stack
	Language and build system
	File format

	Implementation details
	Notable interfaces

	Local environment setup for development
	Docker
	Local environment solution
	DEV profile for CLI
	Docker configuration

	Distribution
	Wrapping execution script

	Assessment of created CLI and future plans
	Assessment of created CLI
	Resource management
	Notification and re-submission
	Versioning

	Further development plans
	New releases and user participation
	Resource profiles
	Task types
	Versioning

	Conclusion
	Bibliography
	List of used terms
	Content of attached CD

