
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 1, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Evolvability of UI technologies

 Student: Bc. Václav Mareš

 Supervisor: Mgr. Ondřej Dvořák

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Nowadays, the pace of technological progress accelerates. The companies are under a big market pressure
to evolve their solutions to latest technologies quickly. Such an upgrade is usually related to a big
investment and is often very difficult to achieve. One of the technologies which struggle with that
phenomenon are those used to develop User Interfaces (UI). Map common Web and Desktop UI
technologies in the past years, clarify concepts of their architectures and evaluate their limitations when
upgrading software from one technology to another.
1. Analyze common architecture patterns in UI technologies
2. Review latest trends in so-called evolvable architectures
3. Implement an explanatory application in few technologies of choice and demonstrate their limitation
when upgrading the application from one technology to another
4. Clarify architecture concepts which limits the the upgrade of UI efficiently
5. Summarize and evaluate the results reached

References

Will be provided by the supervisor.

Master’s thesis

Evolvability of UI technologies

Bc. Václav Mareš

Department of Software Engineering

Supervisor: Mgr. Ondřej Dvořák

May 8, 2019

Acknowledgements

I would like to thank my supervisor for guiding me on the path of writing this
thesis and his valuable input. I would also like to thank professors H. Mannaert
and J. Verelst for their help with NS theory and their ideas on my thesis. I
also express many thanks to my girlfriend and family for their never ending
support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as school work under the
provisions of Article 60(1) of the Act.

In Prague on May 8, 2019 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2019 Václav Mareš. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mareš, Václav. Evolvability of UI technologies. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2019.

Abstrakt

Tato diplomová práce se zaměřuje na evolvabilitu technologíı uživatelských
rozhrańı. V textu jsou popsány jednotlivé architektury takových systémů a je-
jich principy. Jsou představeny dvě metodologie, které se zaměřuj́ı na koncept
evolvability. Text obsahuje rozvahu nad možnými př́ıstupy k přechodu mezi
technologiemi grafických uživatelksých rozhrańı. Dále obsahuje přehled dvou
.NET technologíı, zařazeńı jejich architektur a zhodnoceńı jejich evolvability.
Uveden je také př́ıklad aplikace a jej́ı převedeńı z jedné technologie do druhé.
Výstupem této práce je přehled aspekt̊u, které hraj́ı roli při změně grafického
uživatelského rozhrańı.

Kĺıčová slova evolvabilita, grafické uživatelské rozhranńı, normalizované
systémy, evolvabilńı architektury, GUI architektury

vii

Abstract

This master’s thesis looks at the evolvability of graphical user interface tech-
nologies. The text describes different architectures of these systems and their
principles. It presents two different methodologies that focus on the concept of
evolvability. It contains reasoning about approaches to transitioning from one
graphical user interface technology to another. Overview of two .NET tech-
nologies their architecture categorization and evolvability evaluation. And an
example application transition between the two technologies. The product of
this thesis is on overview of all the aspects that play a role in a graphical user
interface migration.

Keywords evolvability, graphical user interface, normalized systems, evolu-
tionary architectures, GUI architectures

viii

Contents

Introduction 1
Motivation . 1
Goals . 2
Structure of the Thesis . 2

1 State-of-the-art 3
1.1 Paradigms . 3
1.2 Methodology . 21

2 Goals revisited 29

3 Analysis 31
3.1 Frameworks . 31
3.2 Transition approaches . 45
3.3 Testing . 49
3.4 Summary . 50

4 Case study 51
4.1 Introduction . 51
4.2 Implementation . 54
4.3 Summary . 61

5 Related Work 63

Evaluation 65

Conclusion 67

Bibliography 69

A Acronyms 73

ix

B Contents of enclosed SD card 75

x

List of Figures

1.1 Observer pattern . 4
1.2 Composite pattern . 5
1.3 Chain of Responsibility pattern . 6
1.4 Example GUI . 6
1.5 Presentation patterns . 7
1.6 Record Set . 9
1.7 MVC pattern . 11
1.8 Passive View variation of MVP . 15
1.9 MVP/MVC pattern for Web . 16
1.10 Presentation Model . 17
1.11 MVVM Pattern . 19
1.12 MVI Pattern . 20
1.13 Example of Evolutionary architecture’s fitness function fit 26

3.1 Example of Add/Remove User Control 37
3.2 Abstraction layer placement . 48
3.3 Abstraction layer usage . 48

4.1 Car Dealership app use cases . 52
4.2 Login screen . 55
4.3 Select branch screen . 55
4.4 Main screen . 56
4.5 Set data dialog . 56
4.6 Migrated Set dialog . 59

xi

List of Listings

3.1 Simple form example . 33
3.2 Event handler function . 34
3.3 Simple binding example . 35
3.4 Complex binding example . 36
3.5 XAML example . 40
3.6 Code behind file ExpenseItHome.xaml.cs 42
3.7 Interoperability example . 43
4.1 Set Dialog implementation . 57
4.2 Log of action messages . 58
4.3 XAML describing Set Dialog view 60
4.4 XAML describing Set Dialog view with MVVM 60
4.5 Set Dialog MVVM implementation 61

xiii

Introduction

Motivation

The world of software engineering today is an ever faster moving colossus of
different frameworks and approaches to all sorts of problems. It seems like a
new option to choose from for one’s project pops up nearly every week e.g.,
see the dynamics of JavaScript [1]. If we have learnt to respect Moore’s Law
[2] for hardware that exponential increase of transistors enables in a few years
things impossible to imagine at current point. It is in our best interest to
accept the idea of Ray Kurzweil the so-called Law of Accelerating Returns [3],
which claims that technological change is advancing exponentially and that
future in the 100 years of 21st century should be counted more as 20,000 years
of progress at present rate. If we accept this law it quickly becomes daunting
for me and every other developer. We have too many options to choose from
and even the option we choose will soon become obsolete. How should we deal
with this?

First of all, I will narrow the scope, a lot. My interest lies in Graphical User
Interface (GUI) technologies, they are affected by the Law of Accelerating
Returns same way as any other technology. Every application that lives for
long enough time will encounter the need for a change in the presentation
layer. The past few decades changed the paradigm of GUI several times not
to mention hundreds of technologies available. One of the big pressures to
change GUI, but not the only one, is a move to cloud and with it related
switch to web based GUIs; however, there are many other reasons as well.

With this narrowed scope I am still not attempting to set a silver bullet answer
for such a complicated question. These changes to GUI are complicated and
costly, yet they are seen necessary for many companies and projects. What I
aim to do is to clarify concepts of GUI architectures, evaluate their limitations

1

Introduction

when upgrading from one to another, and reach some tips to follow in order
to make the transition easier.

Goals

The following list of goals serves as a template for this thesis and guides the
structure of it. I will come to defining more exact goals after the State-of-the-
Art in chapter 1.

1. Analyze common architecture patterns in UI technologies

2. Review latest trends in so-called evolvable architectures

3. Implement an explanatory application in few technologies of choice and
demonstrate their limitation when upgrading the application from one
technology to another

4. Clarify architecture concepts which limits the upgrade of UI efficiently

5. Summarize and evaluate the results reached

Structure of the Thesis

As just mentioned the first chapter is dedicated to the State-of-the-Art. Here, I
have a look at GUI paradigms, the basics of how they work, and their benefits
and drawbacks. I also present the methodologies that I use for evaluating
the upgradeability of GUIs, their point of view at systems, and principles of
evaluation.

The second chapter, is dedicated to revisiting thesis’ goals. Here, based on the
knowledge from the first chapter I set the list of exact goals I want to achieve
or provide answer to.

In the third chapter, I choose two GUI technologies from the .NET environ-
ment. Analyse them using the GUI paradigms and evaluate them with the
help of the methodologies described earlier.

The fourth chapter, is a presentation of a case study. An example of applica-
tion implemented and transitioned between the above mentioned technologies.

Fifth chapter presents related work to this thesis and adds some context.

Closing the thesis are two sections Evaluation, where I provide answer to all
my goals from third chapter, and Conclusion, where I summarize the whole
thesis and provide some ideas for future work.

2

Chapter 1
State-of-the-art

1.1 Paradigms

Graphical user interfaces or GUIs have become a must for almost every soft-
ware application and fill vast majority of our screens. As such the requirements
for GUI have changed over time and multiple different approaches and archi-
tectures have been described to solve problems encountered on this journey.
Here, I take a look at some of the most known architectural patterns, a bit
of their history, and their reasons for existence. I also compare them, and
summarize their pros and cons, in order to build knowledge base which helps
me to classify specific frameworks mentioned later in this thesis.

1.1.1 Architectural and Design Patterns

To avoid confusion I would like to describe the difference between architectural
and design patterns that I am using in this thesis.

The design patterns are widely know from the book Design Patterns, elements
of reusable Object-Oriented software by the Gang of Four [4]. It was defined
as follows:

Design patterns are descriptions of communicating objects and classes
that are customized to solve a general design problem in a partic-
ular context.

This means that design patterns are an abstract way of solving a recurring
problem. We can use design patterns on different levels of abstraction as well
as well as on small classes or modules of big system.

3

1. State-of-the-art

The architectural patterns have a broader scope. They describe organization
on the highest levels of abstraction. They as well serve to solve problems, but
also just to keep a mental picture of a system or subsystem.

Architectural patterns often, if not always, use many instances of design pat-
terns. This can be seen in the analysis chapter 3 where I am referring to them
quite a bit. It can also be seen in the Design patterns book, where the Model
View Controller (MVC) architectural pattern is used as an example of many
different design patterns in collaboration [4, p. 4]. The opposite is not true,
design patterns do not use architectural patterns in their description.

There are many design patterns used in the architectures I describe in this
chapter. Here I am presenting few that I will reference later, but more can be
found in the already mentioned book Design Patterns [4].

1.1.1.1 Observer pattern

The Observer pattern [4, p. 293], also known as publish-subscribe pattern,
describes how to establish a relationship between a subject and its observers,
see figure 1.1.

Figure 1.1: Observer pattern

Observers are notified whenever the subject undergoes a change in a state.
The observers than retrieve the subject’s state and carry on their business.
The subject does not need to know who the observers are nor how many
there are. This pattern is useful to announce change in a loosely coupled way
without assumptions about the observers.

1.1.1.1.1 Data Binding One of the use-cases for the Observer pattern is
Data Binding. Generally this term means connecting data of one entity to
data of another entity. For GUI purposes it refers to the link between data
inside elements that are able to be rendered on screen and the source of the
data be it a business logic object or data transfer object. This binding can
be supported directly by a framework or not. It can also be unidirectional

4

1.1. Paradigms

propagating changes from GUI elements to the data objects or bidirectional.
It all depends on implementation details. In all these cases the mechanism to
realize the link is usually the Observer pattern.

1.1.1.2 Composite pattern

The Composite pattern [4, p. 163] is an abstraction in order to treat individual
objects and compositions of objects uniformly, see figure 1.2.

Figure 1.2: Composite pattern

The key to this pattern is the abstraction class that represents both primitives
and their containers allowing to use their common functionality. This allows us
to manipulate hierarchies of objects without special treatment viewing them
all as Components.

1.1.1.3 Chain of Responsibility pattern

The Chain of Responsibility pattern [4, p. 223] describes a way to avoid cou-
pling between sender of a request and its receiver.

The core idea is that a request is made and there is a Handler that has the
option to react on it. It also has a reference to its successor so if it sees fit
it can forward the request. The specific handlers are derived from a common
class, see figure 1.3.

This is very useful in GUI when we register user’s click action and we can let
different entities react on this input sequentially. This is also known as event
routing.

1.1.2 Case study

For the purpose of my analysis, I talk about a very simple application that
could be used by a car dealership. Imagine an information system that is used

5

1. State-of-the-art

Figure 1.3: Chain of Responsibility pattern

by each branch of our dealership to monitor sales. In this system there is a
dialog where we can see three edit boxes. A target number of cars to sell in a
given month. This is set by the dealership headquarters. An actual number of
sold cars, and the variance number calculated by the application. The system
colors the variance number red if it is more than 10% below the target number
and green if it is 10% or more above the set target. See figure 1.4.

Figure 1.4: Example GUI

This simple dialog of an application is described from the points of view of the
different architectures and patterns. The sections below are by no means a
complete and exhaustive analysis of each pattern. They are an overview of the
common principles of their variants and flavors. For some of those patterns it
is enormously difficult to get the grasp of what they are supposed to present in
their pure form. There are dozens of sources describing Model View Controller
(MVC) pattern, yet they often do not present the same principles and ideas.
Some of them I would not even consider an adaptation of MVC at all. Where

6

1.1. Paradigms

the footing was loose I used the work of Martin Fowler [5] as a reference.

Figure 1.5: Presentation patterns

Before I dive into individual architectures I would like to provide an overview
in the form of figure 1.5. The approaches are organized loosely by chronological
order MVC being the oldest and MVI the latest addition. The links between
are a take on showing their line of evolution as you will read later it is not
exactly easy to always pinpoint the origins.

1.1.3 Forms and Controls

Starting with the simple and straight forward approach to GUI most encour-
aged by the server-client development in times of Visual Basic and Delphi, so
think 90’s, is Forms and Controls. This approach does not actually have a
coined name, but I am sticking with what Martin Fowler came up Forms and
Controls[5].

The basic building blocks of this approach are custom made forms out of
generic reusable controls. A control is an element of the GUI to give some
examples a TextBox, Button, Label and so on. Most of the GUI frameworks
come with a bunch of premade controls that could be used to populate a
specific form. If the provided controls are not enough there is still the option
to implement our own control, but even in this case think about the control
as a generic and reusable element for several forms or even applications.

7

1. State-of-the-art

The form fulfills two main roles:

• Screen layout - the arrangement of the controls and the hierarchical
structure between them.

• Form logic - behaviour that is difficult to get out of controls alone,
usually some form state or shared metadata.

Most of the GUI frameworks come with a handy graphical editor that allows
the developer to drag and drop controls on a precise place in a form. This is
pleasing WYSIWYG1 experience, but it has its drawbacks as you can imag-
ine, especially today with strong demand for responsive design. The controls
display data, in case of the example GUI data about car sales, but data always
comes from somewhere. For a car dealership application the data are most
likely from an SQL database, but that is definitely not the only copy of the
data involved here so lets have a look. There are three copies of our data:

• Record State - This is the data directly in SQL database. The database
may be shared and visible to multiple users and application simultane-
ously.

• Session State - This is an in-memory copy of the Record State data
stored in a Record Set, figure 1.6. Server-client environments usually
support this with tools to make things easy (ADO.NET for example).
The Session state data are private for the running application, which
can make changes to it as it pleases. To publish the data to Record set
a save or commit is needed and a subsequent merge of the data. I am
not going any deeper into this problem as it is far from GUI and it is a
chapter on its own.

• Screen State - Last copy of the data is in the GUI elements. This data
is being displayed on the screen, that is where the name come from. For
every GUI it is very important and interesting how the Session state and
Screen state are synchronized.

1.1.3.1 Screen and Session states synchronization

The easiest way for synchronization between Screen state and Session state
is Data Binding. The idea is that any change to the data in form or controls
is propagated to the underlying Record Set and any change to the set means

1What you see is what you get. Approach used not only for designing user interfaces.
The author can see the result of his work directly. For example MS Office Word uses this
approach with documents.

8

1.1. Paradigms

Figure 1.6: Record Set

a direct update of the Screen state. So a user action modifying the edit box
Actual updates the correct cell in the Record Set table.

There are two things to keep an eye on with Data Bindings. One is a cycle
of updates, when a change to the control propagates to Record Set, which
changes the control, which updates the Record Set... To break this loop we
can set the binding so that is not strictly bi-directional. We populate the
screen when it is opened and any change done to the controls propagates to
Session state. It is unusual for the Record Set to be updated directly as the
screen is opened so we can omit the update the other way.

This behaviour is usually covered by the frameworks supporting this GUI
approach. Setting control’s property binds it to a specific column of a table
from a record set. In reality this means setting the column name in a property
editor for a given control.

The other issue with Data Binding is inherited from the fact that it binds to
the Record Set. The variance is calculated by the GUI and is not part of any
table. Most of the time there is some logic that won’t fit into controls and
is inherent to the application. In such cases the logic’s place is in the form
which is application specific. In order to make this work we need the generic
text box of Actual to call some specific routine in the application form.

There is not just one solution to this problem, but perhaps one of the most
used is events. Each control is equipped with a list of events that can be
raised and to which anyone subscribe to and react. Essentially this means
using the Observer pattern and letting the form observe its controls. Each
framework solving the problem this way provides some mechanism how to
invoke a routine for a raised event and also a place where that routine should
be implemented.

9

1. State-of-the-art

Once the routine has control it can do what it needs. It can do some logic
needed to populate some fields it can pull additional data from Record Set
all sorts of interactions. It is also important to say that this mechanism can
work alone without Data Binding. It just means implementing every single
interaction via the handlers to events including initial loading and final saving
of the Screen state to Session state on clicking a save button for example.

1.1.3.2 Example

Lets walk through a scenario assuming Data Binding is in place. A user opens
our Car Sales form. As the form is being initialized it subscribes its own event
handler method OnActualTextChanged to the event raised by Actual control
when the text changes. Also it subscribes to other events, but lets keep this
example simple. When the user sets the value for Actual the edit box raises
an event for the change of text. Through the mechanism of the framework the
registered handler is executed. This method gets the values from the Target
and Actual fields does the subtraction and fills in the Variance field. It also
decides on the color of the text displayed.

1.1.3.3 Summary

The Forms and Controls approach is the simplest to grasp and very straight
forward. The developer writes application specific forms out of generic con-
trols. The form defines the layout and structure of the GUI it also observes its
controls and can react to interesting events raised by them. Simple data edits
are usually handled by Data Binding complex changes on the other hand are
implemented by event handlers in the form.

1.1.4 Model View Controller

This GUI model is probably the most referenced one from all mentioned here.
It is also the most misrepresented one. The main reason for this is that MVC
needs to be adapted for GUIs of today and every author refers to their own
flavor by the same abbreviation.

The origin of the MVC pattern comes from Smalltalk-80 it is in fact one of
the first attempts to do any sort of GUI architecture [6]. I am not going into
all the details of monochromatic graphical system created in the later 70’s,
but many of the concepts first introduced here are still well used today and
that is what I want to focus on.

In the core of MVC is the great idea of Separated Presentation. Introduc-
ing the concept of isolated domain objects that model our real world as the
business logic objects, and presentation objects that are solely for the use
of the GUI elements on screen. The domain objects should be completely

10

1.1. Paradigms

independent of any presentation, they should be able to support multiple pre-
sentation possibly even concurrently. This approach was heavily connected to
the Unix culture allowing for one underlying program that could have GUI
and command-line interface as well.

In MVC the domain objects are referred to as Model. Model is completely
ignorant of any GUI. The MVC is also assuming actual domain model objects
not a record set. This simply reflects the fact that unlike Forms and Controls,
that were intended to manipulate records in a database, MVC was initially
intended for Samlltalk a purely object oriented environment.

Figure 1.7: MVC pattern

The presentation part of MVC is constructed out of two elements: View and
Controller. The Controller’s job is to react to user input and figure out what
to do. The View’s job is to present the Model’s data to the user. View and
Controller have a direct reference to the Model. They also have reference to
each other, but this connection is purposefully used as little as possible

I should mention that there are many Controller-View pairs. Each control on
screen has its pair, and the screen itself has a pair too. So the first step in
reacting to user input is deciding what controller should be executing.

Similar to other environments Smalltalk MVC expects developers want to
reuse GUI controls, in this context it means reusing the general Controller-
View class pairs and plugging in application specific behaviour. There would
also be a higher level View representing the whole screen and describing the
layout of the of the lower level controls, in par with form from Forms and
Controls. Unlike the form, however, there are no events raised by controls
and no event handlers in the higher level View. All information is conveyed
through the Model.

11

1. State-of-the-art

1.1.4.1 Example

Once again lets have a look at our simple Car Sales dialog and how MVC would
work with it. On the screen initialization we would have Controller-View pairs
created for each of the fields present and one more for the enclosing window.
We would have a Model consisting of our domain objects, values of Target,
Actual and Variance. The developer decides what Controllers and Views
do register as observers to their relevant object of interest. This is mostly
implicit in this simple example. When a user changes the value of Actual the
controller handles the user input and passes the value to the Model. As the
value of the Actual object is changed in notifies its observers to give them
chance to react. The Actual View updates its value so that on the screen the
user sees what he/she typed. As the Actual domain object was changed the
Model recalculated the value of Variance object and this object notifies its
observers resulting in the Variance View getting updated.

There are some wrinkles to the sequence I described like what about the
Variance color? I will get to that in a moment.

1.1.4.2 Flow vs. Observer Synchronization

MVC works quite a bit differently than the Forms and Controls approach there
is no interactions from View or Controller to any other View or Controller,
no events, no entity handling the application visual logic. When the Actual
Controller changes the value in the Model it does not update its View directly
it lets the Observer pattern take over. These are what M. Fowler calls Flow
Synchronization and Observer Synchronization.

Flow Synchronization means the element that is changing directly updates all
those who need to be updated. This is a heavy handed approach for a rich
user interfaces. The consequences are even more apparent if we take Data
Binding out of the system. Without it every interaction of Session state and
Screen state data has to be done manually by the developer. Typically this
means on opening a screen, hitting save button and other interesting point in
the application flow.

Observer Synchronization makes this easier there is no form that checks ev-
erything and polices that the dependencies of a screen, but as a consequence
it makes Controllers completely oblivious to any other widget needs. This is
very useful especially in GUIs where are multiple screens showing the same
data, like graphs and tables. Imagine dealing with forms synchronization that
would need to check what other forms are open to propagate changes. So in
this case the Observer pattern is like a blessing, when it is not a blessing at
all is when you want to read the code and find out what is going on. The
inherent obfuscation of the Observer pattern functionality means that what is

12

1.1. Paradigms

really going on can be only seen during a debug time. This definitely needs
some getting used to.

I promised I would return to the Variance color property and here I am. I
would also like to take a step back and look at the Variance value as well.
I admit I skipped a little bit that in MVC we have the value of Variance in
the Model and it makes perfect sense. The Variance is a value that is viable
without any presentation in place it does not need to be in the data source be
it an SQL database or not, we can always calculate it. For the color, however,
MVC does not have a neat place. It does not fit into a domain logic. What
can be argued as fitting into the domain logic are the rules for the color the
10% above and below Target value. The mapping from the intervals to colors
definitely not domain logic; it is view logic.

This problem was not unknown to the Smalltalk engineers. Here I admit that
the Model won’t be pure domain objects and domain logic and infiltrate the
necessary view logic requirements to the Model. This is definitely not ideal,
but it is quite easy and straight forward to do. The downside is Model with
mixed responsibilities. To deal with this problem properly we will need to
shift the architecture a little bit.

For the synchronization we have a choice. Either mimic what Forms and
Controls does. Register the screen View as an observer for the Variance
value and set its color and behave like the enclosing authoritative entity. This
adds another Observer pattern obfuscated behaviour and it can get pretty
messy with bigger GUI. We could also derive another Controller-View pair
that can handle color and hook on directly. This View would have internal
mapping for the colors based on the boundaries that could be described in
Model. This can get out of hand as well with sub-classing for all sorts of
controls. Also it heavily depends on how well is certain framework developed
and how much it allows for easy sub-classing. For Smalltalk it is really easy.

Lastly, there is an option to create another Model intended for the screen.
A place where the visual logic could be. Any methods that are the same
as in the domain Model would be delegated to it, but it can add methods
that are fulfilling the needs of the GUI, like our Variance color. This was
popularized by the Smalltalk framework VisualWorks and became known as
Application Model. I will once again borrow a term from Mr. Fowler and use
the term Presentation Model (PM), which is more abstract and I dare to say
that Application Model is just adaptation of Presentation Model.

The Presentation Model solves the problem of visual logic place very nicely.
It also adds another benefit. It allows to keep view state. The information
about our interaction with the Model, not the state of the Model. Behaviour

13

1. State-of-the-art

like enabling save button only when something changed etc.

1.1.4.3 Summary

The origin of MVC comes from Smalltalk-80 and can be credited for the idea of
Separated Presentation. This means that we have isolated presentation layer,
Controller-View pair, and domain, the Model. The Controls have each their
own pair, the Controller handles user input and View presents information.
The communication is done through the Model as much as possible. Lastly we
have the great contribution of Observer Synchronization, the use of Observer
pattern to indirectly update controls.

1.1.5 Model View Presenter

The term Model View Presenter (MVP) comes from 90’s when it appeared in a
paper by M. Potel of IBM [7]. To describe MVP principles it is best to think
about what we already know. MVP is an approach trying to lift the best
out of both Forms and Controls, and Model View Controller architectures.
Taking the direct approach of reusable widgets out of Forms and Controls
and combining it with the Separated Presentation and isolated domain model
of MVC. It tops it of with one more requirement GUI testing.

The paper on MVP describes View as a structure of widgets, like controls on
a form, removing all the pairing. We do not use Controllers in the sense we
had in MVC. All the interaction to user input is handled by a Presenter that
decides what to do. Yes technically the View has the initial entry point for
user actions, but they just delegate the control to Presenter. Potel describes
scenario when Presenter interacts with model using commands and selections
– this is useful idea as it enhances testability and allows for undo/redo func-
tionality. As the Model is updated by the Presenter the View is updated using
the Observer Synchronization where possible. If there are actions that are too
complex the Presenter gets involved and sets the View directly. This is what
become known as Supervising Controller.

Here I feel the need to explain why is the naming so confusing. Mr. Potel
did a good job of defining the term Presenter and keeps it clean in his paper.
Later adaptations unfortunately not so much. So you can find Controller
when describing MVP pattern and it means Presenter. There is a solid case
for calling it Controller as it handles user input. I try to do my best to keep
the terminology separated, but some terms like Supervising Controller or even
some frameworks like ASP.NET MVC do not share this strict differentiation.

14

1.1. Paradigms

1.1.5.1 Passive View

Removing all Data Binding, Observer Synchronization out of the View-Model
relation, we get Passive View. The view is just plane structure of widgets with
no logic and no way to reach data on its own. The Presenter is completely in
charge of everything. It handles user inputs, modifies Model and loads data
into View. If the center point of MVC was Model, here it is the Presenter,
figure 1.8.

Having all logic and control in Presenter allows for simple View and a simple
interface between those two. The benefit of this is that View can be replaced
for testing with any test double, like a View Stab for example.

1.1.5.2 Model View Controller/Presenter Web adaptation

The MVC was not really developed when internet was around; hence, there
is adaptation needed if we want to use it with web applications. One of
the most well known usages are Java Server Pages Model 2 – MVC [8] and
ASP.NET MVC [9]. The reality is those architectures are essentially MVP,
usually Passive View, with another Front Controller that decides what server
side Controller to reach. The Frameworks also add routing and filtering and
all sorts of other functionality, some of them provide data binding of different
variety.

1.1.5.3 Example

Looking at MVP (Supervising Controller), startup looks similar to Forms
and Controls we have Presenter subscribing its handlers to events of widgets.
When a user updates the text in Actual field, event is raised, handled by
Presenter and the Model value is updated. Model recalculates Variance value
as well. At this point the Observer pattern kicks in and View is updated. The
last part of setting the color for Variance is done by Presenter, it gets the
category of Variance and sets the color accordingly.

Figure 1.8: Passive View variation of MVP

15

1. State-of-the-art

Figure 1.9: MVP/MVC pattern for Web

1.1.5.4 Summary

The Presenter is the pivotal point of this pattern. It handles user input and
conveys it to Model. It deals with complex GUI settings or in case of Passive
View is in charge of setting data to View completely. This allows for reusable
widgets placed in the View, it also allows for testing.

Comparing MVP to the previously described architectures:

• Forms and Controls – With MVP we have the Observer Synchronization
and even though the we can access widgets directly it should not be the
first approach to use.

• MVC – Instead of Controller-View pairs we have widgets that pass in-
teractions to Presenter. It is also important to say that usually there is
one Presenter per form and not per widgets.

1.1.6 Presentation Model

As we have seen with MVC and MVP rich GUIs bring some problems to
presentation layer. Two of the bigger issues are where to put view logic and

16

1.1. Paradigms

where to put View’s state caused by user interaction. Modifying widgets
directly encourages writing presentation logic into the View. The Presentation
Model (PM), presented by M. Fowler [10], strives to remedy this. It aspires to
be an abstraction of the view. Coordinating with the Model of domain layer
and either handling the state of view completely or at least synchronizing very
often.

The PM is essentially a self-contained class representing all any GUI frame-
work would need to know or use in order to render controls. Multiple views
can utilize a single Presentation Model, but each View should refer to a single
one. Composition is possible and a Presentation model may contain several
child PMs, but each control will again refer to a specific one.

Figure 1.10: Presentation Model

To do this PM will have data fields for all information for the view and that
means not just the contents of controls, but also information about their
visibility, if they are enabled or highlighted etc. It does not mean that the
PM has this fields for every control, if the property is never used it can be
omitted, but if it is needed it is present in the PM.

The drawback of Presentation Model comes with tight synchronization. Sud-
denly there is a need for synchronization not just on the level of screens or
components, but lower – field or key level synchronization. This opens pos-
sibility for fine-grained synchronization, M. Fowler discourages from it as it
brings a lot of complication, especially when things do not work as intended.
I would say it depends on the nature of specific project, but coarse-grained
synchronization in the form of syncing whole stat of View with Presentation
Model is definitely simpler.

Than there is the question of where to put synchronization code. Choosing
Presentation Model means we can test the synchronization, which should al-
ready be a pretty simple code (coarse-grained sync for sure), but we drag a
reference to the GUI framework into PM, which we have to keep in mind. On
the other hand we can choose the View, this is a natural place for it as the
PM can be oblivious to the View completely. If we ever feel the need to write
tests for anything in the View objects it might signal, that we need to rethink
how this synchronization works and what codes lives where.

17

1. State-of-the-art

1.1.6.1 Example

Returning to our simple Car Sales dialog. On startup a Presentation model
would be created as a layer between View and Model. It loads data from
Model Target, Actual and Variance value and probably also the boundaries
for setting color in percentages. It decides on the status of Variance and
provide a property Variance color. When a user changes value for Actual it
reacts to it updating its Actual value, recalculating Variance and updating its
property for Variance color. View then observers these changes and updates
itself. Note that to this point no changes have been propagated to Model. If
the user for example left the field of Actual empty, the PM could be extended
to have a property for the save button and set it to be disabled in such
case. Only on valid value for Actual and click on save button we synchronize
Presentation Model and Model.

1.1.6.2 Summary

Presentation model steps in to provide a place for visual logic and View state.
Widgets do not observe domain Model instead they observe Presentation
Model. It allows for rich and complex GUIs. On the other hand, it calls
for tighter synchronization with View making heavy use of Observer patter,
which could be alleviated by frameworks.

1.1.7 Model View ViewModel

Mode View ViewModel (MVVM) architecture first appeared in a Microsoft
blog post by J. Gossman in 2005 [11]. To be blunt it is in its core an imple-
mentation of Presentation Model. It was a model directly developed for .NET
use by Windows Presentation Foundation (WPF) and then used Silverlight.
Even though the abstract idea is identical to Fowler’s PM it brings more to
the table. The View which is declaratively described using a modified XML,
Extensible Application Markup Language (XAML), which sets the visual ap-
pearance. It is expected that this work is done by a designer not necessarily
a developer.

MVVM also builds on a strong Data Binding between View and ViewModel.
This is handled by the framework and the problem of tight synchronization is
solved under the hood for anyone using this technology. MVVM also encour-
ages use of commands in ViewModel that are triggered by GUI events, this
as was already mentioned above is great for re-usability and testing.

MVVM grew outside of .NET ecosystem and since MVVM is linked to Mi-
crosoft’s implementation, the idea is also refered to as Model View Binder.
Java has its implementation, ZK framework[12], granted it does not uses Mi-

18

1.1. Paradigms

Figure 1.11: MVVM Pattern

crosoft’s XAML, but ZK User Interface Markup Language (ZUML). Similar
fairly popular implementation is in JavaScript – KnockoutJS.

Model View ViewModel does not bring anything completely new in terms
of architecture it is more of an extended implementation of the Presentation
Model.

1.1.8 Model View Intent

Latest evolution on the MVVM pattern. It was first specified by André
Medeiros in his JavaScript framework Cycle.js [13]. It was readily adopted
by Android developers and Kotlin environment, where it is solving some cum-
bersome problems in mobile GUIs.

The issues are mutability of ViewModel which gets misused by developers.
Coupling between View and ViewModel in the form of tight synchronization
and finally asynchronous events that are present in web and mobile applica-
tions more than on desktop.

To answer this problems MVI is building on the concept of Reactive program-
ming from functional programming. The term is spread to reactive appli-
cations and reactive frameworks. Adding ideas of states and with it related
immutability and unidirectional flow. With the help of these terms I will try
to explain how MVI is supposed to work. The core principle can be described
in terms of mathematical formula as follows:

view(model(intent()))

User acts on the GUI and exhibits intents. These intents are processed by
model and based on them view is rendered with the results. Model is where
all the magic happens so lets look closer with the help of figure 1.12.

User actions are listened to by the View and passed to the Model as intents.
Note that the Model here is for the purposes of GUI, meaning ViewModel or
Presenter in previous patterns as if the confusion was not sufficient already.
This time the Model consumes intents; acts based on them it may work with

19

1. State-of-the-art

Figure 1.12: MVI Pattern

business layer of the application. As an intermediate product it creates result
caused by user intent. Lastly it goes through state reduction. In this step it
combines current State of the GUI and the results and produces new instance
of State. This state is passed to View and it is a complete description for
rendering. The loop is closed when View renders this State and we wait for
the next user’s action. The flow of information goes only this way, there are
also no side effects, the only place where information is held and exchanged
is during processing with business layer.

This is a pretty complex setup, but it allows for multiple asynchronous actions
ultimately affecting the View, without problems. This is achieved thanks
to the immutable State, that is created from the state reduction step. The
problem of tight coupling of View and Model is minimized as the contracts
are very simple.

The View is only capable of rendering State and producing Intents. The Model

20

1.2. Methodology

is ultimately capable of consuming Intents and producing a new State. The
connection here is realized just by Observer pattern.

1.1.8.1 Example

Bringing MVI to our case study of Car dealership dialog. On start up the
complex Model is created. It loads necessary data from business layer and
creates the initial State. The View is also initialized and registered as observer
to Model’s State. Start up is done when View renders this initial State.

Now as the user updates value of Actual Intent is produced and observed by
Model. The flow is started and the Intent is to update vale of Actual. This
is interpreted and Actions has to be taken to: update the value of Actual in
business layer and get the Variance a check for range is done, color is decided.
This set of changes is our Result and it gets merged with the current State
during state reduction. Finally we get new State with all the right properties
and View’s Observer pattern kicks in and rendering happens.

1.1.8.2 Summary

Overall this is a complex setup for a presentation layer, but it addresses prob-
lems in web and mobile GUIs, that are hard to solve in other architectural
patterns. The fact that this approach works with asynchronous actions and
asynchronous streams where data trickle by pieces makes it very powerful.
Ultimately developer has to decide if the trade-off for this complexity is worth
it.

1.2 Methodology

In order to evaluate GUI architectures and technologies from the evolvability
point of view, I need some framing and theory to define what characteristics of
the systems are interesting. I present two views; Normalized System Theory
[14] and Evolutionary Architectures [15].

1.2.1 Normalized Systems Theory

The Normalized Systems Theory (NST) is an effort to design and engineer
software systems that are proven to be evolvable. It started form observa-
tion of the software engineering landscape and realization that many projects
do not reach their goals, don’t meet deadlines, and/or go over budget. All
that while the pressure is rising to be more agile and nimble supporting busi-
ness, while adopting latest technologies, which leads to often implementing
similar functionality over and over again. Manny Lehman’s law of Increasing
Complexity captures this reality stating that:

21

1. State-of-the-art

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done to
maintain or reduce it.”

—Manny Lehman, 1980

This law implies that software systems are growing in size and complexity
while also decreasing in readability, maintainability as new features and re-
quests are added to them. This leads to a complex architectures, dropping
quality higher cost of operation until the whole system breaks and/or stops
being profitable. This is inline with many industry best practices to fight the
bit rot of applications and work on constant improving.

Normalized System Theory assumes that software architectures should be able
to evolve over time and accommodate change. The NST defines rules that
has to be followed in order to avoid combinatorial explosions in the impacts
of changes to a software system. From the view point of NST the dream
of constructing information systems based upon rational principles becomes
possible:

“The user will expect families of routines to be constructed on
rational principles so that families fit together as building blocks.
In short, he should be able safely to regard components as black
boxes.”

—Douglas McIlroy, 1968

This promise of McIlroy would allow for reuse and evolution of modules that
would be the building blocks of our systems. Building a system would es-
sentially mean picking desired modules, upgrading a system would mean a
simple switch of system’s module for another. In reality we have to combat
ever increasing complexity of our systems when implementing and even when
we reach and master said complexity change to the system always occurs. The
need is to master not static but dynamic evolvable modularity assembling a
system. Ultimately NST aims to map one-to-one requirements to constructs
thus promoting isolation and reuse in software systems, bringing the McIlroy’s
dream to reality.

1.2.1.1 Systems theoretic stability

The NST builds on knowledge from other fields of engineering. Concepts like
layered abstraction, black boxes, and hierarchic modularity allowed us to build

22

1.2. Methodology

planes, space rocketry and micro processors. The starting point of NST is the
systems theoretic stability. This system property means that a bounded input
function results in bounded output values for an infinite time. In the world
of software engineering this translates to the demand that a bounded set of
changes results in a bounded amount of impacts to the system, even for an
infinite time.

The infinite time assumes unlimited evolution of a system. That in turn
means unlimited growth of a system increasing the number of primitives and
dependencies between them up to infinity. They become unbounded. The
demand for system stability says that bounded input, request for a change,
has to result in bounded output. This forces the conclusion that the change
cannot depend on the size of system and only on the nature of the change
itself. Any impact on the system that is caused by the size of the system
is called combinatorial effect and it is the root cause of instability from the
evolvability point of view. This thought chain results in statement that any
bounded change to a system results to a bounded impact that is independent
of the size of the system and the point in time when applied.

1.2.1.2 Combinatorial Effect

The so called combinatorial effect is an unwanted impact on a system caused
by a change that was not directly related and should not cause this impact. To
be more explicit the combinatorial effects are undesired and sometimes hidden
couplings and dependencies between modules, parts or primitives of a system
increasing with it size. They are the consequences of integration of task, action
and data entities and as current software constructs and methodologies do not
pay much attention to them they are omnipresent.

1.2.1.3 Normalized Design Theorems

In the NST book [14] the authors present four principles to support antici-
pated changes and avoid most of combinatorial effects. These principles are
independent of programming and modeling languages.

1.2.1.3.1 Separation of Concerns This theorem expresses the need to
isolate tasks. Meaning that each function should only be implementing a
single task and therefore be impacted by a single change driver. This in
reality means avoiding duplication of code and implementing single purpose
functions. Essentially bringing up the submodular tasks to the modular level.
This theorem has many real world manifestations in the form of integration
bus, multi-tier architectures, and external workflows to say the least.

23

1. State-of-the-art

1.2.1.3.2 Data Version Transparency Data Version transparency im-
plies that in a way that is resilient to a change to data elements. This means
that change to a data in the form of adding new values that were not previ-
ously needed does not effect currently implemented components and functions.
This theorem voices the need for encapsulation in order to avoid combinato-
rial effect. In the NST book this is expressed as Stamp coupling passing data
structures between modules instead of each parameter separately, called Data
coupling.

1.2.1.3.3 Action Version Transparency This theorem is concerned with
the upgradeability of task implementation – processing functions. The fact
that there is a new version of task implementation must not break the sys-
tem and not only that calling the new version should be seamless, without
any additional changes, therefore, avoiding combinatorial effects. This calls
for encapsulation of action entities and sharing common interface. This is
seen in practice with object polymorphism, wrapping and Interface Definition
Languages (IDL) such as Microsoft’s COM for example.

1.2.1.3.4 Separation of States Separation of States calls for state keep-
ing for every action or step in a workflow. This results in an asynchronous
and stateful workflow, where each task is atomic and returns action state that
guides the steps of the workflow. This is once again combating the problem of
combinatorial effects that emerge from synchronous calling pipelines that are
natural to object-oriented systems. In order to realize this theorem it becomes
apparent that workflow has to be separated in its own entity as well.

1.2.1.4 Summary

Authors of NST laid down a very solid foundation for their effort to reach for
the McIlroy’s dream. Following this theory we know that to build an evolv-
able architecture we need hierarchic modularity and ideally zero combinatorial
effects. This means identifying our change drivers and isolating them to their
own entities. NST provides the theorems to follow in order to avoid many
combinatorial effects and it is very clear that current programming principles
are not enough to do so. However, all the principles are in line with well
known heuristics of today, which certainly suggest the industry is noticing the
problems.

1.2.2 Evolutionary Architectures

Evolutionary Architecture (EA) is a term coined in the book Building Evolu-
tionary Architectures, support constant change by Neal Ford, Rebecca Parsons
and Patrick Kua in 2017 [15]. The idea was first sparked at O’Reilly hosted

24

1.2. Methodology

Software Architecture Conference. Here a lot of the speakers talked about
microservices and the disruption it caused.

Thanks to progress in DevOps, Continuous Integration and Delivery, and
containers like Docker a shift in the big complicated software systems became
possible. Deployments could be made small and rapid. Microservices took
over the architectures and instead of splitting systems by the physical layers,
split by functions were possible. This also changed the notion of “Architectural
changes are hard” and allowed architecture that is designed to accommodate
change. It should hold true that to replacing one microservice for another
should be as easy as switching Lego bricks. By definition [15, p.6]:

An evolutionary architecture supports guided, incremental change
across multiple dimensions.

In order to fulfill this definition Evolutionary architectures the authors propose
several useful characteristics. There are also described principles directing us
in the way towards those characteristics. All of this is based on heuristics
distilled from the industry proven by the successful projects and ensured by
experts.

1.2.2.1 Characteristics

1.2.2.1.1 Modularity and Coupling To limit breaking changes it greatly
helps to lock functionality into models that are standalone. The other impor-
tant part is coupling that needs to be kept in check. The least evolvable archi-
tecture is the Big Ball of Mud where everything is one huge module connected
to almost every other entity in that big ball. We can see that things improved
with layer architectures, but with microservices and container isolation it can
be finally truly exploited.

Evolutionary architectures show high modularity with very limited coupling
to promote ease of change.

1.2.2.1.2 Organization around business As already mentioned microser-
vices changed the how systems are deployed. Each a small deployment de-
signed as a service offering functionality for the rest of the system. So modules
of Evolutionary architectures are inspired by business needs not technical ones.

1.2.2.1.3 Experimenting Evolutionary Architectures allow for things like
A/B testing and Canary releases. Simply by exchanging or orchestrating mod-
ules to allow for different outcomes. This allows for gradual replacement of

25

1. State-of-the-art

functionality and eventually it removes speculation out of backlog issues and
allows for testing hypotheses in the real world.

1.2.2.2 Principles

Figure 1.13: Example of Evolutionary architecture’s fitness function fit

1.2.2.2.1 Fitness Function Fitness functions is a term borrowed from
evolutionary computation techniques like genetic algorithms, but it is a con-
cept very useful for evolutionary architectures. The idea is that each system
has a list of “-ilities” that are essential for it. Usability, security, accessibil-
ity, traceability, fault tolerance, low latency, testability and many many more.
The authors separate these into different categories, but the important mes-
sage is that we as architects and developers should bay attention to them.
Identify them as soon as possible, rate them based on how important they are
for a given project, example in figure 1.13, and implement gatekeepers into
production pipelines. This only extends the Continuous Delivery principles
with additional checks that are placed on systems and modules. This could be
for example requirements for code coverage over 90% and results from static
code analysis meeting a certain threshold. Load testing passing the require-
ment that all web requests are served under 10 seconds even when network
latency is present. GDPR2 compliance showing logs of how personal data are

2The General Data Protection Regulation is a regulation in EU law on data protection
and privacy for all individuals within the European Union.

26

1.2. Methodology

handled and stored, and so on. These observations make it possible to keep
an eye on the state of the architecture and make informed decisions to future
changes.

1.2.2.2.2 Bring the pain forward This principle is also not entirely new.
This is based on the idea of technical debt that does not behave linearly, but
instead as projects grow it increases exponentially. Solution to this problem
gave us Continuous Integration since integration was/is one of the headaches
of development process. Steps in development that are complicated, time
consuming and are therefore not done very often need to be automated where
possible. Things that need close attention database migrations, code refac-
toring should be done as soon as possible. This allows for the rapid builds
and deployments and only thanks to this principle the fitness functions are
possible. The authors advice to identify these issues and remove the pain early
before interest accumulates.

1.2.2.2.3 Last Responsible Moment I would consider this principle as
an extension to the well know YAGNI (You ain’t gonna need it) heuristic.
In traditional architectures many subsystems, technology stacks and tools are
chosen very early or even before coding entirely. The authors weight the cost
of incorrect early decision against delayed decision benefiting from additional
information gained during the time difference and argue for the later. Of
course this decision to delay has its own price a potential re-work, that can
be soften by some abstraction, but here YAGNI strikes again. The benefit is
that this cost ought to be significantly smaller than for example inappropriate
messaging system, which could slow down the development in many other
areas and eventually be marked as tech debt and finally replaced much later
in the life of the project. With this in mind a natural question presents itself.
When is the last responsible moment for a certain decision? Here the fitness
function provides some help. Decisions that have bigger impact on the whole
system or are of significant importance should be made earlier. The core of
the idea is to wait as much as possible, but don’t stall.

1.2.2.3 Conway’s Law

In order to bring Evolutionary Architectures into the real world we need to
create microservices. I would argue that we could talk even about modules,
but the book mentions microservices so I respect that. But in order to make
that happen we cannot have a company divided along the knowledge expertise.
This is voiced strongly throughout the book and presented by the Conway’s
Law [16]:

27

1. State-of-the-art

“Organizations which design systems are constrained to produce
designs which are copies of the communication structures of these
organizations.”

—Melvin E. Conway, 1967

The lesson learned here is to inverse this law. If we want to build standalone
independent microservices we need to disperse the experience and build teams
around projects and business functionalities. This aligns with agile approach
to build teams of diverse members and makes a lot of sense given the context
of Continuous delivery etc. mentioned above.

1.2.2.4 Summary

Evolutionary Architectures build on the advances of DevOps and Continuous
Delivery. It advises architects not to dwell on static diagrams of the current
architecture and accept the fact that one of the core building block of a suc-
cessful architecture is its evolution and openness to change. The authors also
remind us of the following fact. Architecture is abstract until operationalized.
Meaning that we can’t judge architecture as a diagram and actually not even
after first implemented. To say an architecture is successful the system has
to go through several upgrades and maybe even some breakthrough in some
premises that were used to build it in the first place.

1.2.3 Summary

The two presented views on evolvability of architectures and systems approach
the issue from different directions. The Normalized systems theory draws on
parallels from different engineering areas. Prepares a solid theoretical founda-
tion and then proceeds to set proven theorems that has to be followed in order
to achieve evolvable software product. It build from the bottom up talking
about small structures, classes and single functions in its examples.

The Evolutionary Architectures comes from top down perspective. It is based
in knowledge gained through experience and time proven heuristics. It also
draws on the largest concepts of enterprise architectures and the transforma-
tion done here with microservices. It presents characteristics that should be
present in an evolvable architecture and provides principles on how to achieve
them.

Even though these methodologies come from completely different angles they
reach similar conclusion. And as of my understanding they are applicable
simultaneously.

28

Chapter 2
Goals revisited

Before I revisit my list of goals from the introduction of this thesis I would like
to summarize few realizations resulting from the paradigms and methodologies
overview.

As stated in section describing Forms and Controls, section 1.1.3, there are
three data states we can talk about, but for the purpose of GUI architectures
we can ignore the record state and just focus on screen and session states. As
I did during the whole overview as no other architectural model even mentions
this data state. This choice is respected in my following analysis as well and
I won’t talk about data persistence at all.

Overall in the Paradigms section, 1.1, several GUI architectures were pre-
sented. There are many different adaptations and implementations in various
programming languages and frameworks. In order to evaluate any concrete
implementation one have to look at what are the founding principles and best
practices for chosen technology and if these rules are adhered to. If the im-
plementation is unorderly there is no real chance to review its potential for
evolvability. So I take this requirement as a prerequisite for my analysis.

Since both mentioned methodologies present very similar ideas just from dif-
ferent angles I will use their common principles for evaluation of technologies
I’ll choose for analysis. The important principles from my point of view are:

• Modularity of the GUI system, its submodules and concepts

• Separation of Concerns for objects

• Minimal combinatorial effects caused by transition changes

29

2. Goals revisited

I do not aspire to calculate the exact number of classes need to be refactored
or give a formula for an estimate of man hours. The goal of my work is to
explore evolvability of GUIs and if possible provide some advice on what to
look for and what to avoid.

Revised all of these points I think I can revisit my list of goals and this time
be more specific about each point.

G1 Describe common GUI architectural patterns

G2 Present trends and methodologies focusing on evolvability of architec-
tures and choose principles for analysis

G3 Choose two GUI framework/technologies and categorize their architec-
tures

G4 Evaluate chosen technologies based on NST and EA

G5 Reason about approaches to convert presentation layer of an application

G6 Implement example application and upgrade its GUI layer (use chosen
technologies)

G7 Specify which concepts are costly or limits the transition between chosen
technologies

G8 Summarize knowledge needed to ease transition between GUI technolo-
gies

30

Chapter 3
Analysis

In this chapter, I choose two GUI technologies, categorize their architectures,
review their principles, and concepts, evaluate their evolvability, and lastly
reason about approaches of transitioning an application using one to using
the other.

I am following the advice of the authors of NST, professors Herwig Mannaert
and Jan Verelst. I am not trying to analyse as many technologies as I can. I
am much more concerned about what steps should be taken if one considers
evolving an application between technologies. Analysing a technology is a
costly endeavour in the scope that I am facing. For those reasons I work
with sample of two technologies. If one would like to expand this number the
approach to the analysis and evaluation can be closely followed.

Now, without further ado let’s have a look at the specific frameworks I have
chosen to work with.

3.1 Frameworks

My choices of frameworks for the analysis is Windows Forms (WinForms) and
Windows Presentation Foundation (WPF). This decision is very subjective.
Part of the reasoning is that I do have some experience with these frameworks.
Following that, I am currently member of a team that is faced with a business
project migration between these technologies. The application is a computer
assisted design system to model and analyse structural statics and it used all
over the world. Both of these frameworks are mature and established within
the .NET ecosystem and intended for desktop applications.

Some of you might consider these, well over decade old technologies, dead; but
I would like to oppose that opinion. Google Trends shows both topics are still

31

3. Analysis

searched for worldwide about half as much as were their peak search volume
for each topic [17]. Quick search through GitHub shows several very active and
highly rated repositories [18, 19] extending or consuming these technologies.
Not to mention products like DevExpress [20] and Telerik [21] that set their
business models on extending these Microsoft’s frameworks and produce new
versions for both. So I conclude that WPF and WinForms are alive and used
a lot, and I can move towards their analysis.

I want to be very clear that I am not reviewing the myriad of different li-
braries, extensions, and frameworks built on top of what Microsoft provides
as their GUI technologies. I limit myself to the documentation, principles
and code samples provided by Microsoft, mostly what can be found on their
documentation website [22, 23].

3.1.1 Windows Forms

WinForms [22] is the original GUI framework developed by Microsoft for .NET
applications released together with the first version of .NET in 2002. It was not
completely new concept at that time either. It builds on previous Microsoft
Foundation Class Library written for C++. To give an idea of the time it was
the time of Windows XP, spreading internet and nearly all applications were
desktop applications. Even though it is now some 17 years old framework, it is
by no means not a dead platform. WinForms still have support present today,
like high DPI scaling coming in with .NET Framework 4.8. WinForms are also
supported in the latest version of .NET Core 3.0 [24]. These decisions might be
indicators that the framework is present in a lot of business critical application
that companies invested a lot of time and money into and Microsoft does not
want to let their corporate customers down. Speculations aside, let’s have a
look at the framework itself.

3.1.2 Intended use

As the name of the framework suggests, the original architectural model was
Forms and Controls, section 1.1.3. So there are indeed forms and the docu-
mentation describes them as visual surface on which you display information
to the user. There are also controls displaying data to user and raising events
in case of interaction. There are many controls provided out of the box, but
there is the option of custom controls as well. The events raised by controls
are handled by event handler functions. Where is this event handling function
and what it should do? Those are some very interesting questions. Let’s look
at one of the simplest form examples provided in the documentation3.

3I did remove several lines for brevity that is why you can see the triple dots. Nothing
of importance was lost and I will remove lines from other code listings as well.

32

3.1. Frameworks

...
using System . Windows .Forms;

namespace FormWithButton
{

public class Form1 : Form
{

public Button button1 ;
public Form1 ()
{

button1 = new Button ();
button1 .Size = new Size (40, 40);
button1 . Location = new Point (30, 30);
button1 .Text = "Click me";
this. Controls .Add(button1);
button1 .Click += new EventHandler (button1_Click);

}
private void button1_Click (object sender , EventArgs e)
{

MessageBox .Show("Hello World");
}
[STAThread]
static void Main ()
{

Application . EnableVisualStyles ();
Application .Run(new Form1 ());

}
}

}

Listing 3.1: Simple form example

Modifying GUI elements

Even in this tiny example, listing 3.1, we can see several clues to how the frame-
work is meant to be used. In the constructor of the Form1 we see it sets up
its control, button1, and fills its properties. It also hooks the button1 Click
event handler function to the event of button1 being clicked. Lastly we can
read that this function is showing a message box dialog directly. Maybe you
can say I am overprojecting here and the message box invocation is just to
demonstrate some action, but in fact there are many more examples shown,
where the code in event handler function modifies other elements directly or
manipulates Session state data. For example here in figure 3.2, that is de-
scribed in the documentation as follows:

This example uses the Parent property and the Find method of Control to
set properties on the parent control of a Button and its Form. The example

33

3. Analysis

assumes that a Button control named button1 is located within a GroupBox
control. The example also assumes that the Click event of the Button control
is connected to the event handler method defined in the example.

...
private void button1_Click (object sender ,

System . EventArgs e)
{

// Get the control the Button control is located in.
// In this case a GroupBox .
Control control = button1 . Parent ;
// Set the text and backcolor of the parent control .
control .Text = "My Groupbox ";
control . BackColor = Color.Blue;
// Get the form that the Button control is contained
// within .
Form myForm = button1 . FindForm ();
// Set the text and color of the form containing
// the Button .
myForm .Text = "The Form of My Control ";
myForm . BackColor = Color.Red;

}
...

Listing 3.2: Event handler function

What does this all mean? The Forms and Controls approach is adhered to.
The Form1 is the all knowing entity that manipulates its controls and its logic
dictates what the controls do and how they behave.

In another example, listing 3.3, we can see that there is Data Binding present.
WinForms actually have two types of binding; simple one property binding
and complex so-called Data Source binding. In listing 3.3 we can see the simple
binding that can lead to a DataSet which represents data from database and
the methods are best prepared for that scenario, but it can represent any data
source as well.

The other kind of binding expects a DataSource an enumerable of objects.
This binding is prepared for grids, lists, and combo boxes. In listing 3.4 the
listbox1 binds to fonts a collection of objects and displays their property
Name. Again it works very well with representing data tables and the documen-
tation mentions the intended use with ADO.NET framework for connection
to SQL databases.

34

3.1. Frameworks

...
protected void BindControls ()
{

/* Create two Binding objects for the first two TextBox
controls . The data -bound property for both controls
is the Text property . The data source is a DataSet
(ds). The data member is the " TableName . ColumnName "

string . */

text1. DataBindings .Add(new Binding ("Text", ds ,
" customers . custName "));

text2. DataBindings .Add(new Binding ("Text", ds ,
" customers . custID "));

...
}

Listing 3.3: Simple binding example

Extensibility

This is still very much in line with the Forms and Controls architecture. Last
topic I want to go briefly over is extensibility of controls in WinForms and
how it is with code sharing and behavior inheriting.

The top most concept of WinForms classes created by its users is Component.
Component is any class that either does business logic or background work,
it does not have a GUI representation. This often means whole libraries and
dependencies that are called from forms. Controls are Components that do
have visual representation and can be rendered. This also means that Forms
are Controls in addition to the more obvious ones like edit boxes, buttons,
etc. Microsoft provides several traditional Controls with the framework itself.
To add new options for Controls developers have two options. Either define
a Custom Control with brand new visuals and possibly enhanced capabilities
over the provided Controls, or create a composite control called User Control.
User Control is built out of already made Controls and the visuals cannot be
redefined here, what is possible is to introduced more complex behavior. For
example the add/remove control that can be found in many applications even
today, see figure 3.1.

There are of course many more implementation details and multiple approaches
to achieve goals within the framework after all it is almost two decades old.
This is reflected in the current state of its documentation, different fragments
of original approaches are peaking between new layers and functionality that
was added in later versions of .NET. It is impossible for me to uncover how
the framework was originally released, but the origins have big ramifications

35

3. Analysis

...
private TextBox textBox1 ;
private Button button1 ;
private ListBox listBox1 ;

private BindingSource binding1 ;
void Form1_Load (object sender , EventArgs e)
{

listBox1 = new ListBox ();
textBox1 = new TextBox ();
binding1 = new BindingSource ();
...
MyFontList fonts = new MyFontList ();

for (int i = 0; i < FontFamily . Families . Length ; i++)
{

if (FontFamily . Families [i]
. IsStyleAvailable (FontStyle . Regular))

{
fonts.Add(new Font(FontFamily . Families [i], 11.0F,

FontStyle . Regular));
}

}

binding1 . DataSource = fonts;
listBox1 . DataSource = binding1 ;
listBox1 . DisplayMember = "Name";

}
...

Listing 3.4: Complex binding example

for the current state. I did my best to present what I consider relevant for the
evaluation which follows.

3.1.2.1 Evaluation

Let’s have a critical look at WinForms using the lens of NST and EA method-
ologies. Starting with Separation of Concerns; I dislike the Form class. It
might be even worthy of the anti-pattern label “God class”. Listing its most
obvious responsibilities:

• Visual representation – This might not be obvious at first sight, since
Visual Studio provides form designer where developers can drag and drop
controls, set their properties and even generate event handlers. In the
end it is one class and one object that during initialization handles all

36

3.1. Frameworks

Figure 3.1: Example of Add/Remove User Control

this complexity. The Form takes care of the layout of controls and their
properties population.

• Data Binding – In case of simple binding, the Binding object is created
during Form initialization and the Form knows what data binds to what
control’s properties. If we consider complex binding, it is basically the
same with the option that the DataSource might be instantiated during
the form load or other startup event.

• User input – Controls raise events and those can be received and han-
dled, but again it is in the realm of the form. Form designer from Visual
Studio generates these event handlers directly to the Form class leading
developers to write the event handling logic there. This can expand to
calling into business Components and down the rabbit hole. Potentially
this design can lead to freezing the application waiting for some back-end
response.

This is a staggering number and scope of responsibilities gathered in one
class. With so many reasons to change and the tight coupling present between
components and methods fulfilling the different requirements, which are in the
Form, the Combinatorial effects are present all over the place. Change to any
control means change to the initialization of the form, its data binding and
event handlers as well. This propagates to every form that is using the control.
This ripple effect is also present from the other side. If data changes all the
different bindings and assignments to controls have to change too.

37

3. Analysis

There is also no notion of view state. Only the controls hold data that they are
displaying, which again mixes responsibilities and also hinders any possibility
to share the state across multiple views.

Lastly there is the modularity of the architecture or should I say lack of it.
Any time we would like to reuse an existing form and add something to it,
or we would like to adjust few controls the framework leads us to creating a
new form entirely. Composition exists only on the level of whole Controls and
even tweaking an existing control leads to creating a completely new custom
one.

3.1.2.2 Summary

Windows Forms was intended as implementation of the Form and Controls
architectural pattern and it was built with the needs of its time in mind.
It is very simple to start a project in it and develop in it relatively small
application. However, the system is fundamentally flawed, there are concepts
that will create ripple effects in reaction to changes. Worst of all is the concept
and role of the Form class, containing too many different change drivers.

I have to be critical to myself here. If anyone considers writing an application
with WinForms today, the community will suggest much better approaches,
MVP being the most voiced one with suggestions on how to isolate and limit
certain areas that I marked as sources of Combinatorial Effects. I admit that
is true. If one would start with WinForms now, even though I would suggest
some other technology entirely, if at all possible; but the goal of transitioning
and evolving a long existing application is much more in line with the presented
model of WinForms. I already made some hard to overcome simplifications
that would most likely not hold in the real world, like very strict following of
the suggested use of a framework with minimal deviation. So I dare to expect
an application that was written long ago with the standard of its time.

3.1.3 Windows Presentation Foundation

The Windows Presentation Foundation (WPF) [23] previously known as Avalon
was first released in 2006 with .NET Framework version 3.0. It is an extensive
GUI framework for building desktop applications with rich contents, controls,
dynamic layouts, data binding, and more. It uses Extensible Application
Markup Language (XAML) as a declarative way to describe its visuals, but
XAML does not depends on WPF neither the other way around. Currently
WPF project is hosted on GitHub pages [25] and is open source under the
MIT license.

38

3.1. Frameworks

3.1.3.1 Intended use

The WPF framework was presented as new take on user interface, but not a
direct replacement of WinForms. Initially it was a way to provide support for
rich content such as animations, media, documents etc. It is also much more
modular than WinForms allowing for placing controls into other controls and
over all easier extensibility.

It evolved through the years to be very versatile and supporting modern GUI
approaches. We also have to take into consideration that WPF was and still
is trying to be very compatible with WinForms allowing similar concepts and
code practices as WinForms. Big impact on the use of WPF is that it was pre-
sented with the MVVM paradigm as suggested approach and the community
followed using it this way.

The big change is the possibility to define GUI with XAML. I’ll try to explain
the basic concepts with listing 3.5. I am using the example from Microsoft’s
documentation the first and very basic application [26].

The idea is a declarative approach to defining user interface going even as
far as to have a graphical designer person doing this part of development.
Microsoft supports this approach with standalone product Blend, where one
can fully engage with the design part of GUI. XAML is a markup language
based on XML so it describes a tree like structure. Page hosts Grid, cells of
Grid have ListBox and Button.

XAML is not enforced by WPF, GUI elements can be defined procedurally,
but XAML looks much cleaner and this opinion seems to be reflected by the
community around WPF as well.

On the technical side XAML describes what is called Logical Tree in WPF.
This is the description of higher level elements that create the GUI it is also
used for Dependency Properties, Static and Dynamic Resources, and Data
Binding. I will explain these terms a bit later. There is a support for dynamic
layouts as with the Grid in the example. You can see the row’s Height
parameter being set to Auto, making layouts very easy.

There is also Visual Tree a super set of the Logical Tree with all the different
elements that are being rendered. So a single node Button from Logical tree is
expanded to a subtree with Border, ContainerPresenter, and a TextBlock.
The Visual Tree is utilized when rendering objects, layouts, and for Routed
Events that travel across it.

How a Control will render depends on its template usually a XAML file,
where the complete description of its visuals is stated. This template can be

39

3. Analysis

<Page x:Class=" ExpenseIt . ExpenseReportPage "
xmlns="http :// schemas . microsoft .com/winf ..."
...
mc: Ignorable ="d"
d: DesignHeight ="300" d: DesignWidth ="300"

Title=" ExpenseIt - View Expense ">

<Grid Margin ="10 ,0 ,10 ,10">
<Grid. ColumnDefinitions >

<ColumnDefinition />
</Grid. ColumnDefinitions >
<Grid. RowDefinitions >

<RowDefinition Height ="Auto"/>
<RowDefinition />
<RowDefinition Height ="Auto"/>

</Grid. RowDefinitions >

<!-- People list -->
<Border Grid. Column ="0" Grid.Row="0" Height ="35" Padding ="5"

Background ="#4 E87D4">
<Label VerticalAlignment =" Center "

Foreground ="White">Names </ Label >
</ Border >
<ListBox Name=" peopleListBox " Grid. Column ="0" Grid.Row="1">

<ListBoxItem >Mike </ ListBoxItem >
<ListBoxItem >Lisa </ ListBoxItem >
<ListBoxItem >John </ ListBoxItem >
<ListBoxItem >Mary </ ListBoxItem >

</ ListBox >

<!-- View report button -->
<Button Grid. Column ="1" Grid.Row="3" Margin ="0,10,0,0"

Width="125" Height ="25" HorizontalAlignment ="Right"
Click=" Button_Click ">View </ Button >

</Grid >
</Page >

Listing 3.5: XAML example

40

3.1. Frameworks

overridden to change visuals of any given Control. Mirroring the concepts
from WinForms there is also a User Control created by combining existing
Controls and a Custom Control deriving from the Control class describing a
completely new element.

I mentioned few concepts that are new with WPF so I’ll briefly explain them.

• Dependency Property – An object property that is managed by WPF
framework. It is registered with its metadata and allows for new func-
tionalities that were not possible with ordinary object property such as:
styling, data binding, using dynamic resources, and animation.

• Resources – Objects can be defined as resources making them avail-
able for reuse in other XAML files. Static resources causes a single
lookup where Dynamic resource creates a link to the value and update on
change. Availability scope depends on the declaration point and spans
only the subtree. Resource dictionaries, separate files, are a common
practice that allows easy reuse of defined objects.

• Data Binding – The concept is identical to the one presented in this
thesis. It is a way to link data of GUI controls to data in objects behind
GUI. XAML supports multiple modes, most used are one-way and two-
way.

• Routed Events – This feature allows for Chain of Responsibility suc-
cession of event handlers to react to an event. The chain progresses
along the Visual Tree and can be bubbling (up) or tunneling (down)
depending on its direction. This allows for reacting only to events that
interest certain control and pass the others.

• Commands – A semantic level approach to actions that application
should execute. It allows for removing logic code from event handlers
and sharing these objects encapsulating the actions across GUI. There
is a little more complexity for RoutedCommands, but the are the most
useful in terms of reuse and isolation.

These are some interesting additions to the GUI toolbox that can be leveraged
to modularize, reuse, and extend the out of the box WPF experience. There
is one more term I would like to present and that is code behind.

Essentially all classes generated when adding new XAML files have the ex-
tension .xaml.cs are code behind classes, see listing 3.6. These are partial
classes that are also described by the XAML files and one can write logic and
business code here into them and their event handlers, but the best practice

41

3. Analysis

using System ;
...
namespace ExpenseIt
{

/// <summary >
/// Interaction logic for ExpenseItHome .xaml
/// </summary >
public partial class ExpenseItHome : Page
{

public ExpenseItHome ()
{

InitializeComponent ();
}

private void Button_Click (object sender ,
RoutedEventArgs e)

{
// View Expense Report
ExpenseReportPage expenseReportPage = new

ExpenseReportPage ();
this. NavigationService . Navigate (expenseReportPage);

}
}

}

Listing 3.6: Code behind file ExpenseItHome.xaml.cs

is to leave them bare and empty, and use commands instead of other objects
that encapsulate just logic.

So there is a familiarity for WinForms developers moving to WPF, that can
be used in the transition period, but I do not think it should be the end of
the process. In order to benefit from MVVM we need to create the objects
of ViewModels that XAML View can bind to and link to their data and
commands. The possibility is there and thanks to the multiple new concepts
of WPF it is feasible to do so.

Similarly to WinForms, WPF is an established framework with several years
and versions of improvements under its belt. Additional features and concepts
pile up with time. I definitely did not aimed to write a deep dive into the
framework, that would be out of scope of this thesis. I presented the most
interesting ideas and functionalities that would be helpful to analyze. Before
I do an evaluation of WPF I want to have a quick look on WinForms, WPF
interoperability.

42

3.1. Frameworks

3.1.3.2 Interoperability

Microsoft documentation has an extensive section on the topic of WinForms
and WPF interoperability describing different scenarios. The most valuable

<Window x:Class=" HostingWfInWpf . Window1 "
xmlns="http :// schemas . microsoft .com/winfx /2006/ xaml/

presentation "
xmlns:x="http :// schemas . microsoft .com/winfx /2006/ xaml"
xmlns:wf="clr - namespace : System . Windows .Forms;

assembly = System . Windows .Forms"
Title=" HostingWfInWpf "
>

<Grid >
<WindowsFormsHost >

<wf: MaskedTextBox x:Name=" mtbDate " Mask=" 00/00/0000 "/>
</ WindowsFormsHost >

</Grid >

</ Window >

Listing 3.7: Interoperability example

information there is that both directions are supported even though there
are some inherent limitations. There is a very simple approach of hosting
WinForms forms inside a WPF host control that can be described using just
XAML. Example of such control can be seen in figure 3.7.

3.1.3.3 Evaluation

Before I start looking at principles of NST and EA, some things are just staring
at me. WPF as a framework is much more complex, with some conceptual
hoops to jump through. It seems that the framework is much more capable,
but is it better in terms of ripple effect in reaction to change and over all
evolvability?

Regarding principle Separation of Concerns the state is much better with
XAML describing visualization and layout, and code behind doing the rest.
The user input is intercepted by Controls and thanks to the concept of Routed
Events that traverse the tree structure. This isolation of elements allows
Components to focus only on events relevant to them. The action following
the input could still be implemented into the event handlers, but if I allow the
influence of MVVM there should be a ViewModel objects with the relevant
commands. This makes a big difference as we can now bind to the commands
directly from the Controls even in XAML. This allows for complete separation
of business logic, but costs some extra effort.

43

3. Analysis

Where I can see a weak point is in the relation of Model and ViewModel that
was not much discussed here. The idea of MVVM is that the ViewModel
is a wholesome description for the GUI to render. Some of this might be
very fragile depending on the exact implementation of passing data between
Model and ViewModel, but WPF does not describe this part. Nonetheless this
relationship can be a source of combinatorial effects if multiple ViewModels
feed from a shared Model, change to the Model can have unbounded impact.

The binding to data is also extended allowing not only multiple modes, but
also a wide variety of targets. The most notable is the Dependency Property
that allows for all the dynamic links. This results in evaluating these properties
just-in-time even based on multiple inputs, that are not tightly coupled. This
contributes to lowering the combinatorial effects since instead of propagating
and copying data there is a link to a central dictionary. Limiting the possible
number of object relationships from n2 to just n.

Last topic of my interest is modularity of the system. Looking at the View
side of the framework XAML is working very well in this direction. It allows
for resource dictionaries, separate styles, and each Control to be defined inde-
pendently. On the side of business logic it can be direct and simple written in
code behind, loosing the modularity and reusability, but embracing the View-
Model concept that is supported with Commands and wide available Data
Binding all the logic of the application can be made reusable and wrapped in
appropriate objects.

3.1.3.4 Summary

It might look from the Evaluation above that WPF is clearly much better in
terms of functionality and also in terms of evolvability. I would tend to agree
that WPF with the MVVM architecture seems like a really good approach to
GUI in general, but I would also like to add that the devil is in the detail.
I tried to describe the most notable concepts and make some arguments for
what they mean in terms of my scope. The point to take from this analysis
is the approach. I would advise to be much more thorough in the case of real
project analysis that should be done on a specific code base.

3.1.4 Summary

I gave a basic overview of the two technologies I will be using in my exploration
of the transition process. I am aware that they are rather brief trying to
capture the concepts and not exactly the implementation details. One of the
important realizations that came from the analysis is that frameworks can be
leading developers towards a certain GUI architectural pattern, but they can
be adapted to others as well.

44

3.2. Transition approaches

This means that for an existing project that should undergo migration to an-
other framework one should analyse the code base on multiple levels. Namely:
chosen architectural pattern, framework’s support for said pattern, frame-
work’s functionalities, and adherence to the implicit implementation rules that
come from these aspects. I think these levels should be looked at on both ends
of the transition, meaning starting state and intended state. Adding to that
in real world project we need to pose the following question. Is the code base
fragmented and full of edge cases and ad-hoc solutions, or is it systematic?
This is one more overarching quality that needs to be reviewed before we even
consider transition at all. All of these angles are necessary in order to under-
stand what does the transition from one GUI technology to another actually
mean for a given project.

3.2 Transition approaches

Suppose we have an application and its GUI is implemented using a certain
framework. If we are tasked to transition this application to another GUI
framework the path is not instantly clear. One of the prerequisites to even
start thinking about this path is an analysis of the initial state and the in-
tended state. This would be similar to the one described above, most likely
more detailed and in depth. However, even if we have descriptions of the
states of the application there is a non-trivial question of How do we get to
the intended state?

I divide the options to two very different approaches one being a Rewrite of
at least the GUI layer of said application. This means a new project and the
new version is not deployed until done. The other approach is Incremental.
A transformation from the initial state to the intended state in steps. The
application remains operational in each one of those steps.

In the following sections I will reason and argument about the benefits and
drawbacks of these paths. I want to provide some clues as to how they should
be used and what tools might be useful on that path.

3.2.1 Rewrite

This approach in scope of this thesis means developing a new presentation
layer using the new technology. Even though, this might seem like a fresh
start it is definitely not. The requirements on functionality, appearance, and
behaviour are transferred to the new GUI. Essentially we need to reverse
engineer the current presentation layer gather at least the conceptual model
and build a new presentation layer. As for estimating the time and cost of
this process there are solutions that deal with the reverse engineering [27],

45

3. Analysis

the other direction is a usual process for every software project and can be
estimated.

This approach leads to extraction of the concepts from a developed GUI. This
act in and of itself can be very beneficial not only to the transition, but to
the project itself. But it is also non-trivial and has its own challenges. I
would argue that without this extraction and critical look at the conceptual
model the development is just blindly copying what was already implemented,
potentially leading to big problems of GUI that does not work as the initial
one.

The idea of rewriting an application, or its part, that is in need of an update
or severe maintenance is not new. There are real world examples that we
can point to. One of which is the case of Netscape 6.0. Netscape was in
its time the most dominant web browser on the market. When the company
was developing the version 5.0 of its dominant browser the code proved very
difficult to deal with and a decision to scrap version 5.0 was made. Instead
the company decided to rewrite its aging code base and it took three long
years. During these years the company actually lost its independence and was
overtaken by AOL. When the Netscape 6.0 was finally released in November
2000, the product was rushed and not fully developed. By that time the
competition in form of Internet Explorer already flooded the market. This
marked the end of Netscape era. Last version of the Netscape browser was
released in 2008 and the company is now under the Verizon brand.

These are also not unique consequences of such decisions to rewrite an ap-
plication. Similar stories can be found with Microsoft’s Word in 1991, that
effort was abandoned, and many others. I can personally add at least one ex-
perience of such ambitions to rewrite a product. It was a desktop application.
The project had a dedicated team and the original application was still being
maintained and also developed with new features. The reason for that was
no to stay frozen in place until the rewrite is done. So there was a race to
implement all features of the old application, plus all the new features, plus
challenges of new environment in the same time that the old application added
only new features. After six long years of this marathon and about ten million
Czech crowns spent, the project was halted and the team was dismissed.

My conclusion for this approach is that one has to be very careful if this is the
chosen path forward. Rewriting implicitly means great time delay, expenses
that might be hard to estimate, usually a broad scope, even if only part of a
system is being rewritten like GUI, and lastly great risk that it might fail at any
point. If we would want to relate to the agile approach of software development
today we cannot be much further apart. I am not saying rewriting is to be
completely avoided, it depends on context, tools available, etc. But personally

46

3.2. Transition approaches

I want to avoid it if I can and there are other smarter people than me like
Joel Spolsky, co-founder and CEO of StackOverflow, who think alike [28].

3.2.2 Incremental

This approach means gradual changes of the application, or in scope of this
thesis the presentation layer. We have an initial state A and an intended state
B of an application. The path is a series of small steps altering the current
state until will reach B. The key principle here is that the applications remains
operational at each step and is potentially also deployed.

A→ A′ → A′′ → A′′′ → ...→ B

Once again I can refer to the ideas of Martin Fowler as he calls this approach
the Strangler Application [29]. There are real world examples that show suc-
cess using this approach and promote the reduce risks that it provides. This
paper, An Agile Approach to a Legacy System [30], gives an insight into a
transition of legacy financial application InkBlot.

What changes exactly does each step introduce? This is a very good question
and it is not easy to answer, but I will try. One can expect introduction of some
isolation layers like the Anti-Corruption Layer pattern [31] or generally an
abstraction layer. I will elaborate on this topic little more later. In the InkBlot
example there is also mentioned the idea of delivering the core functionality
first. It is building on the 80/20 rule saying that the most used twenty percent
of features satisfies eighty percent of users. As this approach draws from the
Agile approach to software development I will make on more parallel. Each
step has to either get us directly closer to the intended state. This can mean
that some part of GUI is migrated to the new technology or some part of the
architecture is transformed to the new paradigm.

Or the step is enabling us to move closer to the intended state in the next step.
By this I want to describe work on restructuring the code and opening new
options. These preparations actually make the transition even possible. An-
other important part is testing, functional and integration testing, preparation
of these also fits into these steps.

Coming back to the abstraction layer I mentioned. There are several case
studies [32], where we can see the usage of this pattern in order to allow
the transition and be able to deploy in each step. The core idea is that the
abstraction layer is developed between a consumer and a component providing
certain functionality, figure 3.2.

47

3. Analysis

Figure 3.2: Abstraction layer placement

The step of creating the abstraction layer is beneficial on its own as it can
point to what is used and needed from the consumer perspective. Thanks
to the existence of the abstraction layer we can gradually replace the the old
component with the new one, figure 3.3. When all the functionality is used
from the new component we can remove the old one and potentially also the
abstraction layer. This depends, if it imposes penalties on the application
performance, and ultimately is a decision for the project’s team.

Figure 3.3: Abstraction layer usage

I intentionally do not mention how broad the abstraction layer is and what
granularity the consumer and components are. This can be chosen during the
transition and depends on technical details and other context.

48

3.3. Testing

Stepping back a bit the problem I am describing here looks like combating
technical debt. And I would argue that indeed the root problem is that the
old technology has become technical debt and we are now paying interest on
it during the migration. There are many other great source on how to deal
with and prevent technical debt, like the book Refactoring [33].

3.2.3 Summary

I presented two approaches of transforming an application from one techno-
logy to another. Both are used in real world projects even though it seems
the incremental approach is more popular with the rise of agile in software
engineering. It is hard to make convincing conclusions from the descriptions I
provided. For me the incremental approach makes much more sense and limits
the risks inherent to a migration between environments. You don’t have to
take my word for it.

The Standish Group International has done a research on this topic. They
focused on some 100 applications that stood before decision to either rewrite,
buy a package to deliver needed functionality, or modernize current software.
The research looks at cost, risk, and reward of these options. Their conclusion
is that the modernization is pre-optimized and limits the number of decisions
needed to achieve the goal. These information come from the report that The
Standish Group International publicly provided [34].

3.3 Testing

Testing plays an important part in developing any application. The fact that
we are discussing revising an application, or part of an application, does not
change that. On the contrary, it may pose additional requirements on the
testing as it does on the development, as I described earlier. Further more
as I scoped this thesis on the topic of GUIs there are inherent challenges to
testing user interfaces.

To verify that application after transition behaves as before it we need some
system tests or acceptance tests. Preparing these tests can uncover problems
and inconsistencies that need reaction on their own. This depends on the
principle behind the transition, but questions like Should we reproduce this
buggy behaviour? might appear. Answers to these questions can shape the
additional requirements on the intended state.

The other layer of complexity is testing of GUIs. It is not a simple task. One
can deploy complicated setups of Selenium [35], Ranorax [36], or TestComplete
[37]. All these solutions aim to automate GUI testing in some way. The test
cases usually need constant support and updates to keep up with the change

49

3. Analysis

of the visual appearance. In case of the Rewrite approach these are basically
not usable at all.

Aiming at testing the functionality with unit testing is possible. But unit
testing the GUI itself is considered not worth it [38]. So instead unit test the
business logic. And track the actions that are triggered by GUI elements in
form of messages for example. These practices seems like a much better idea.

Of course there is always manual testing and evaluating user feedback. This
should be always part of the transition process. Utilizing the previously de-
scribed approaches might prove difficult with the Rewrite approach as I do not
expect modifications to the initial application. For the Incremental approach
the situation is very different and I would argue that not only the intended
state should pass these tests. Also the incremental steps should be covered.
This is only supported by the notion that the application is deployable in
every step of the transition.

3.4 Summary

Closing the analysis chapter I want to reiterate its contents. I reviewed my
chosen technologies and did their evaluation with respect to limited evolv-
ability. I did explore the approaches that are available for transition between
technologies and made some comments on their characteristics. I expressed
that the Incremental approach is much more relevant to me. It seems to be
getting more attention in the industry. It also ties nicely with the Evolution-
ary Architectures that expand the ideas of DevOps. I gave a short insight
into the importance of testing. There is definitively a need to at least test the
initial and intended states.

50

Chapter 4
Case study

This chapter is focused on a case study. In the previous chapters I was ex-
ploring the different approaches and prerequisites that I deemed necessary to
realize a transition of an application. Here, I show an example of such process
with a small demonstrative project. This case study by no means the focus of
this thesis. In fact it is just a small part of it demonstrating few of the above
mentioned concepts.

4.1 Introduction

I want to reuse the little GUI example that I presented at the beginning of
this thesis in section 1.1.2. For this reason I follow through with the pre-
sented domain. A fragment of Car Dealership information system. Of course
I needed to expand it a little so that the example application is not just a
single dialog window. On the other hand bare in mind that the application
is intentionally very naive. The quality of the solution for the domain is also
just demonstrative. The point of the case study is to show the evaluation, the
planning and the steps of the incremental approach of a transition.

4.1.1 Domain

Previously I described the single dialog show in figure 1.4. The idea is that
there are three values Target, Actual, and Variance. The Target is set for
each month by the dealership headquarters, the Actual is set by an employee
of a branch of said dealership, and the Variance is calculated and colored by
the system.

Now, to the expanding the story of Car Dealership. Imagine There are multiple
branches in different locations. So the system keeps information for each
branch location. The dealership also offers multiple models of its cars. For

51

4. Case study

Figure 4.1: Car Dealership app use cases

each of this type the system keeps the three values. Finally there is a Manager
in the headquarters and a Sales representative working for a branch. The
Manager is the person who sets the Target value every month for each branch
and model. The Sales Representative is the person who inputs the Actual
value for each model for his branch.

This all boils down to a couple of use cases that we can see at figure 4.1. Both
users want to view Target and Variance values. These use cases include the
need to select branch location, month in a year, and car model. The Manager
also wants to modify the Target. This use case extends the common view
Target one. Lastly the Sales Representative needs to set the Actual value.
This last use case shares the needs of selection of location, month, and model.

52

4.1. Introduction

4.1.2 Technologies

The case study is a desktop application written in C# running on Windows.
As previously advertised I am using WinForms and WPF in this case study.
Aligning with my analysis of these frameworks I honor the suggested archi-
tectures Forms and Controls, and Model View ViewModel respectively. I do
not claim the application is programmed expertly. But it is implemented sys-
tematically and true to the practices of the framework and the architecture.

The case study disregards any data layer or persistence as it is not impor-
tant for the example. The data source is still needed though and is mocked
sufficiently enough to show the GUI is working as expected.

4.1.3 Transition approach

In the summary at the end of the analysis chapter, section 3.4, I expressed I
am favoring the Incremental approach for the transition process. That holds
true in this case study. This opens a few questions that I need to answer like:
What is the initial state? What is the intended state? I can also ponder about
steps that are necessary to reach the intended state. And I think I can foresee
some that will be likely on the path of the transition.

In this example transition process I do not want to change any functionality
nor implement new requirements. The only goal is to realize the migration
from WinForms to WPF. This is most likely an artificial setup. One of the
benefits of the Incremental approach is the ability to satisfy needs of the users
of potentially old and neglected application. So in a real world transition the
Incremental process could be much more dynamic and agile.

Initial State

The Car Dealership application fulfills all the use cases depicted in figure 4.1.
The framework used for implementation is WinForms with the Forms and
Controls architecture.

Intended State

The Car Dealership application fulfills all the use cases depicted in figure
4.1. The original dialog from figure figure 1.4 is implemented using WPF and
MVVM.

Expected Steps

As I mentioned earlier I see two kinds of steps in the Incremental process.
Enabling steps and direct steps. Regarding direct steps there is the need for
migrating controls from WinForms to WPF. This can be as granular as a

53

4. Case study

control per step. Using the interoperability of WinForms and WPF to keep
the application working at each step. I also need to change the underlying
paradigm to the MVVM for the dialog. This need some enabler steps to add
necessary supporting code. Further enabling steps should cover tests to verify
that the requested behaviour of the GUI remains present.

None of this is binding. I do not commit to any order of these expected steps.
It only serves me as a mind map to list the hurdles that I have to overcome
no matter the implementation of the transition steps.

4.1.4 Testing

In the scope of this case study I am not diving into a full testing suite. I don’t
even carry out manual testing of initial and intended states. What I am doing
is tracking the actions of the application in a log. Each user interaction with
GUI starts a chain of messages. These chains are my checks to verify that the
functionality stays the same across my incremental steps. It is not a perfect
system it lies on the fact that I log actions at the point when they happen
consistently. And I do try to do so.

4.2 Implementation

Now after I presented the case study concept, its domain, transition approach,
and testing, I show the process of transitioning in greater detail. For this
purpose I created a git repository that can be found on the SD card attached
to this thesis. In that repository there are tagged commits referring to the
initial and intended states. All the commits in between are considered steps,
respecting the scoping of this case study. In the following sections, I present
the initial implementation of the example application and go through each
step.

4.2.1 Initial state

The initial implementation of the case study application follows the initial
state description that was presented in the Introduction. The role of the user
is selected on the first screen, figure 4.2. Than the user can select the car
dealership branch for which he wants to see data, figure 4.3. Next screen is
the main screen, where data for each model of a selected branch location are
shown, 4.4. With the click of on the button Set user can open the Set Dialog
that was used when describing GUI architectures, figure 4.5.

Focusing on the Set Dialog that I transform in the following steps. It is
implemented as a Windows Form. It gets its relevant data during construction
passed from the parent form. On the save button click it sets its saved

54

4.2. Implementation

Figure 4.2: Login screen

Figure 4.3: Select branch screen

55

4. Case study

Figure 4.4: Main screen

Figure 4.5: Set data dialog

56

4.2. Implementation

public partial class SetForm : Form
{

private CarDealership .Role _userRole ;
private bool _saved = false;
private (int Target , int Actual) _originalData ;

internal SetForm ((int Target , int Actual) data ,
CarDealership .Role userRole)

{
InitializeComponent ();
_userRole = userRole ;
_originalData = data;
target_tbx .Text = data. Target . ToString ();
actual_tbx .Text = data. Actual . ToString ();
variance_tbx .Text = (data. Actual -

data. Target). ToString ();
}

private void SetForm_Load (object sender ,
System . EventArgs e)

{
if(_userRole == CarDealership .Role. Manager)

target_tbx . Enabled = true;
else if(_userRole == CarDealership .Role.Sales)

actual_tbx . Enabled = true;
}

private void save_Click (object sender ,
System . EventArgs e)

{
_saved = true;
Close ();

}

internal (int Target , int Actual) GetData ()
{

if(! _saved)
return _originalData ;

var Target = int.Parse(target_tbx .Text);
var Actual = int.Parse(actual_tbx .Text);
return (Target , Actual);

}
}

Listing 4.1: Set Dialog implementation

57

4. Case study

variable to true. This variable is checked in method GetData to figure out if
the new or the original data should be returned. Here you can see the whole
implementation of the Set Dialog, see listing 4.1.

The implementation is not complex as the dialog itself is not complex. But
even here there is some logic like what text boxes has to be enabled and how
to return data after the dialog is closed.

4.2.2 Step 1 – Log messages

The first step is an enabling step. I manually added messages that describe
user actions on GUI elements. I implemented messages to internal functions
in order to see the chain of system reactions that follows. You can see A log
of these messages in listing 4.2. The intended messages are produced by the
application. This log serves me as an example for the application behaviour
and I my goal is not to mutate it.

Application start
CarDealership app initialized
Antwerp location selected
January month selected

Click on Manager button
Manager role selected

Click on Next button Grid layout set up
Grid data loaded
Grid data updated

Clock on Set button of the first row SetDialog Target
value changed

SetDialog Actual value changed
SetDialog for model Sedan opened

Input value 8 as new Target value
SetDialog Target value changed

Click on Save button SetDialog values saved
SetDialog closed
Grid data updated

Listing 4.2: Log of action messages

4.2.3 Step 2 – WPF project

Another enabler step. This is one is purely technical I had to make changes
to the CarDealership.csproj file in order to use WPF elements.

4.2.4 Step 3 – Dialog migration to WPF

In this step I switched the framework used for Set Dialog. I created a XAML
file where the WPF controls are described, but I kept the logic as is. This

58

4.2. Implementation

Figure 4.6: Migrated Set dialog

results in a Form and Control architecture with WPF. I had to made some
changes to the names of a few control properties such as Enabled changed to
IsEnabled in WPF, but these are very minor. You can see that the XAML
does not use binding or commands preferred by MVVM rather it still describes
event handles, see listing 4.3. You can also see that the visual appearance
changed slightly thanks to WPF, figure 4.6.

4.2.5 Step 4 – Relay command

Here is another technical step in preparation to move from Forms and Controls
architecture to MVVM. I added a RelayCommand class that I later use to
implement commands that are bound to the GUI elements in XAML.

4.2.6 Step 5 – Dialog migration to MVVM

Last step, reaching the intended state for this case study is the switch of the
paradigm for the Set Dialog. This meant adding a new class SetFormViewModel,
which as the name suggests is a ViewModel for the Set Dialog. This step moved
the logic from the Form to the ViewModel. This affected the XAML, that now
binds to the properties of the ViewModel, see listing 4.4. It also meant that
the code behind is essentially empty, see listing 4.5. It also changed slightly
how the parent Form handles the dialog, that can be seen in the attached git
repository. Lastly the log of messages produced by the application in reaction
to user input stayed identical to the one listed in here 4.2.

59

4. Case study

<Window >
<StackPanel >

<Grid >
...

<TextBox x:Name=" target_tbx " Grid. Column ="2" Grid.Row="0"
IsEnabled ="false"
TextChanged =" target_tbx_TextChanged "/>

<TextBox x:Name=" actual_tbx " Grid. Column ="2" Grid.Row="1"
IsEnabled ="false"
TextChanged =" actual_tbx_TextChanged "/>

<TextBox x:Name=" variance_tbx " Grid. Column ="2"
Grid.Row="2" IsEnabled ="false" />

</Grid >
<StackPanel Orientation =" Horizontal "

HorizontalAlignment =" Center ">
<Button x:Name="Save" Content ="Save" Padding ="5,0"

Margin ="0,15" Click=" save_Click "/>
</ StackPanel >

</ StackPanel >
</ Window >

Listing 4.3: XAML describing Set Dialog view

<Window >
<StackPanel >

<Grid >
...

<TextBox x:Name=" target_tbx " Grid. Column ="2"
Grid.Row="0" IsEnabled ="{ Binding TargetEnabled }"
Text="{ Binding Target }" />

<TextBox x:Name=" actual_tbx " Grid. Column ="2"
Grid.Row="1" IsEnabled ="{ Binding ActualEnabled }"
Text="{ Binding Actual }"/>

<TextBox x:Name=" variance_tbx " Grid. Column ="2"
Grid.Row="2" IsEnabled ="{ Binding VarianceEnabled }"
Text="{ Binding Variance }"/>

</Grid >
<StackPanel Orientation =" Horizontal "

HorizontalAlignment =" Center ">
<Button x:Name="Save" Content ="Save" Padding ="5,0"

Margin ="0,15" Click=" save_Click " Command ="{ Binding
SaveCommand }"/>

</ StackPanel >
</ Window >

Listing 4.4: XAML describing Set Dialog view with MVVM

60

4.3. Summary

public partial class SetFormWpf : Window
{

internal SetFormWpf (SetFormViewModel viewModel)
{

InitializeComponent ();
DataContext = viewModel ;

}

private void save_Click (object sender ,
System . EventArgs e)

{
Close ();

}
}

Listing 4.5: Set Dialog MVVM implementation

4.3 Summary

I presented a case study on a small project. Showing the preparation and
the process of migration itself. I utilized all the topics mentioned during this
thesis. I focused only on properly migrating one single dialog. Even that
proved to be challenging when considering all the aspects of a migration. I
implemented some elementary testing in the form of logging action messages.
Overall I consider this case study as a reasonable walk through the process of
migration from WinForms to WPF.

The more challenging parts of the case study were definitely the categorization
of the frameworks and their analysis. I mentioned it previously, that for real
world projects I feel the need to be much more careful and thorough. Another
more difficult step is the switch of the paradigm. I can see many pitfalls in it.
There is the need to understand both frameworks and paradigm and devise
a reasonable hybrid during the transition. Lastly I see testing and verifying
functionality as a difficult task. I did not utilize any advanced techniques for
testing. There will be problems as the GUI changes especially with the visual
aspect even if the new implementation strides to be as similar as possible.

61

Chapter 5
Related Work

Putting this thesis into context of other work is not exactly easy. I would argue
there are at least two levels how to look at it. Directly related work. Meaning
any article or research on the topic of migrating GUI across technologies and
what approaches should be taken. As far as I know there is no work done
directly on this topic.

With no direct comparison I can point out the loosely related work. There
are several areas that I consider related in this way. The specific migration
from WinForms to WPF and their interoperability. There is a book WPF
recipes in C# 2008: a problem-solution approach. In this book there is a
chapter dedicated to WinForms and WPF relation [39, ch. 13]. The chapter
is loosely related as it does not delve into the wider process of migration. It
only looks at the technical aspects of converting from WinForms to WPF and
interoperability. The authors write specifically that they do not aspect mass
migrations or rewrites from WinForms to WPF.

Another area is general migration of the GUI layer. Even here I struggled to
find reasonable number of references, but here is the most interesting. The
article Automated reverse engineering of Java graphical user interfaces for web
migration [40] describes how to reverse engineer existing desktop GUI and
migrate it to Web. It is also narrowly scoped. The environment presented in
this article is Java environment: Java Swing and Aspect J. The authors also
provide a case study of their approach. This work is related in the topic of
migrating Java GUI elements. It describes similar problems as this thesis and
springs from very similar motivation.

Another related area is work around the concept of evolvability. Specifically
Normalized Systems and Evolutionary Architectures. Both topics are de-
scribed in the section 1.2 Methodology. They are one of the corner stones of
this thesis as they are used to evaluate frameworks and guide the direction

63

5. Related Work

of the GUI transition. The NST defines combinatorial effect which it aims
to eliminate in order to make systems more evolvable. It also describes four
principles to achieve the elimination. These are: Separation of Concerns, Data
Version Transparency Action Version Transparency, and Separation of States.

The NST is implemented in the form of NSX tools [41]. These tools are capable
of generating and regenerating systems that are guaranteed to be evolvable
based on NST. In a sense this is an automated rewrite of an application.

Evolutionary Architectures is the second approach to the topic of evolvability.
It attacks the problem from the higher system level. It looks at concepts
such as microservices, expanding the DevOps approach, and evaluating the
progress with system fitness function.

64

Evaluation

Concluding this thesis I return to my goals that I formulated in section 2
Goals revisited. The following is a list of each goal and its resolution:

G1 Describe common GUI architectural patterns

I fulfilled this goal by presenting and analysing the various paradigms in sec-
tion 1.1. I did my best to differentiate and name the most common archi-
tectural patterns that are publicly known. The categorization wasn’t an easy
task as there are conflicting sources on this topic.

G2 Present trends and methodologies focusing on evolvability of
architectures and choose principles for analysis

This goal is satisfied mainly by section 1.2 Methodology. In this section I de-
scribe the two main approaches to looking at the term evolvability. Those are
Normalized System Theory and Evolutionary Architectures. In this section
I also summarized that they aim for the same goals so there is a common
ground. In the section 2 Goals revisited I specify the principles for following
analysis based on the common ideals of the mentioned methodologies.

G3 Choose two GUI framework/technologies and categorize their
architectures

In the second chapter in section 3.1 Frameworks I talk about choosing two
frameworks of interest to me. These are Windows Forms and Windows Pre-
sentation Foundation. In the following sections I do an overview of both and
categorize them. I used the architectural patterns that I presented to fulfill
the goal G1. I have to say that one cannot categorize just frameworks. Frame-
works are flexible to fit many paradigms. I did my best to select the most
used paradigm to each framework in my analysis.

65

Evaluation

G4 Evaluate chosen technologies based on NST and EA

This goals is reached by two sections 3.1.2.1 and 3.1.3.3 of the Analysis chapter.
The idea of doing a full in depth analysis based on Normalized System Theory
and Evolutionary Architectures is just enormous. It had to be scoped down in
order to reach something useful in context of this thesis. For this reason I used
the principles for my analysis, established to satisfy goal G2, in the evaluation.
Even this provided many interesting observations and sparked some ideas for
future work.

G5 Reason about approaches to convert presentation layer of an
application

Section 3.2 Transition approaches is fulfilling this goal. I presented two very
different paths for transitioning an application. One is a rewrite approach the
other is an incremental one. I described their benefits and drawbacks as I see
them and gave some examples that I know of.

G6 Implement example application and upgrade its GUI layer (use
chosen technologies)

This goal is satisfied by the chapter 4 Case study. In this chapter I first present
the domain of the example application and go over pre-requisites for a GUI
upgrade. I first implemented the application using WinForms and transitioned
into WPF. I limited myself to upgrading just part of the GUI as the case study
aims to provide overview of the process in the first place.

G7 Specify which concepts are costly or limits the transition
between chosen technologies

This goal is achieved in the summary of my case study, section 4.3. I point out
the difficult parts of the process of transitioning in my example project. The
summary is also answering the more general view of transitioning between any
two GUI technologies.

G8 Summarize knowledge needed to ease transition between GUI
technologies

The topic of knowledge to ease transition is spread across this whole the-
sis. Summaries of all the sections combined could serve as this knowledge
overview, but I repeat it shortly here. The main points are that before mi-
gration we should know the following for initial and intended states. What
are the paradigms, frameworks capabilities, their interoperability, testing sys-
tems, and what is the chosen transition approach. These are the main aspects
from my point of view.

66

Conclusion

Following the above list of all resolved goals I want to share some ideas and
observations that I gathered during my work on this thesis.

First of all an overview. I looked at evolvability of UI technologies in a
broader sense. Presenting the different paradigms of GUI systems. Diving
into methodologies that focus around the concept of evolvability. And finally
I worked this knowledge into some examples on specific technologies. I dis-
covered that there are many preparations and considerations that are related
to migrating an application between GUI technologies. There are questions
that needs answers to make the process successful or even possible. Questions
like: What is my initial and intended state? What are the paradigms I use?
What capabilities my frameworks have? And many others. I tried to provide
a way to find an answer for these questions.

Second, is the topic of the GUI paradigms. I want to express once again that
there is no clear consensus on their implementation nor their definition. It
can be difficult to communicate the ideas behind them. That is why I did an
overview of them and tried to make clear what I am describing. I also observe
a trend in the paradigms in term of complexity which is rising. And makes
understanding of these architectures more and more difficult.

Third, I had to limit myself in the depth I use the NST and EA methodolo-
gies. I see a big potential in comparing these approaches and their possible
symbiosis. During evaluating my selected frameworks I ran into the need of
scale for evolvability. Currently there is no way to objectively compare if one
approach is more evolvable than other.

Next, I have to point out the many levels of scoping I did. I limited myself in
terms of evaluation using common topics of described methodologies. I chose
to work with two desktop frameworks both using the .NET environment. My

67

Conclusion

case study is limited to a small naive application. I can see each of these limits
being removed as an expansion of this thesis in a future work.

Lastly, the most valuable output of this thesis in my eyes is the overview of
all the aspects that play a role in a GUI transition.

68

Bibliography

[1] Wittern, E.; Suter, P.; et al. A Look at the Dynamics of the JavaScript
Package Ecosystem. In Proc. 13th Working Conference on Mining Soft-
ware Repositories (MSR), IEEE, 2016, pp. 351–361. Available from:
https://ieeexplore.ieee.org/document/7832914

[2] Schaller, R. R. Moore’s law: past, present and future. Spectrum, IEEE,
volume 34, no. 6, 1997: pp. 52–59.

[3] The Law of Accelerating Returns, [online]. [cit. 2019-03-16]. Avail-
able from: http://www.kurzweilai.net/the-law-of-accelerating-
returns

[4] Errich, G.; Richard, H.; et al. Design Patterns, Elements of Reusable
Object-Oriented Software. 75 Arlington Street, Suite 300, Boston:
Addison-Wesley Longman Publishing Co., Inc., 1995, ISBN 0201633612.

[5] Fowler, M. GUI Architectures, [online]. [cit. 2019-02-28]. Available from:
https://www.martinfowler.com/eaaDev/uiArchs.html

[6] Steve Burbeck, P. Applications Programming in Smalltalk-80(TM):
How to use Model-View-Controller (MVC), [online]. [cit. 2019-03-01].
Available from: https://web.archive.org/web/20120729161926/http:
//st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

[7] MVP: Model-View-Presenter The Taligent Programming Model for
C++ and Java, [online]. [cit. 2019-03-01]. Available from: http://
www.wildcrest.com/Potel/Portfolio/mvp.pdf

[8] Model 1 and Model 2 (MVC) Architecture, [online]. [cit. 2019-03-01].
Available from: https://www.javatpoint.com/model-1-and-model-2-
mvc-architecture

69

https://ieeexplore.ieee.org/document/7832914
http://www.kurzweilai.net/the-law-of-accelerating-returns
http://www.kurzweilai.net/the-law-of-accelerating-returns
https://www.martinfowler.com/eaaDev/uiArchs.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://www.javatpoint.com/model-1-and-model-2-mvc-architecture
https://www.javatpoint.com/model-1-and-model-2-mvc-architecture

Bibliography

[9] Overview of ASP.NET Core MVC, [online]. [cit. 2019-03-01]. Avail-
able from: https://docs.microsoft.com/en-us/aspnet/core/mvc/
overview?view=aspnetcore-2.2

[10] Presentation Model, [online]. [cit. 2019-03-01]. Available from: https:
//www.martinfowler.com/eaaDev/PresentationModel.html

[11] Introduction to Model/View/ViewModel pattern for building
WPF apps, [online]. [cit. 2019-03-02]. Available from: https://
blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-
to-modelviewviewmodel-pattern-for-building-wpf-apps/

[12] ZK, [online]. [cit. 2019-03-01]. Available from: https://www.zkoss.org/

[13] Model-View-Intent, [online]. [cit. 2019-03-19]. Available from: https://
cycle.js.org/model-view-intent.html

[14] Mannaert, H.; Verelst, J.; et al. Normalized Systems Theory. Heerveld-
straat 4a, 3510 Kermt: NSI Press powered by Koppa, 2016.

[15] Ford, N.; Parsons, R.; et al. Building Evolutionary Architectures. 1005
Gravenstein Highway North, Sebastopol, CA 95472: O’Reilly Media, Inc.,
2017.

[16] Conway, M. E. How Do Committees Invent? Datamation, April
1968: pp. 28–31. Available from: http://www.melconway.com/Home/pdf/
committees.pdf

[17] Google Trends - WPF, WinForms, [online]. [cit. 2019-03-29]. Avail-
able from: https://trends.google.com/trends/explore?date=all&q=
%2Fm%2F05q185,%2Fm%2F03f8ny

[18] GitHub - Topic: WinForms, [online]. [cit. 2019-03-29]. Available from:
https://github.com/topics/winforms

[19] GitHub - Topic: WPF, [online]. [cit. 2019-03-29]. Available from: https:
//github.com/topics/wpf

[20] DevExpress, [online]. [cit. 2019-03-29]. Available from: https://
www.devexpress.com/#ui

[21] Telerik, [online]. [cit. 2019-03-29]. Available from: https:
//www.telerik.com/

[22] Windows Forms, [online]. [cit. 2019-03-29]. Available from: https://
docs.microsoft.com/en-us/dotnet/framework/winforms

[23] Windows Presentation Foundation, [online]. [cit. 2019-03-29]. Available
from: https://docs.microsoft.com/en-us/dotnet/framework/wpf

70

https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.2
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://www.zkoss.org/
https://cycle.js.org/model-view-intent.html
https://cycle.js.org/model-view-intent.html
http://www.melconway.com/Home/pdf/committees.pdf
http://www.melconway.com/Home/pdf/committees.pdf
https://trends.google.com/trends/explore?date=all&q=%2Fm%2F05q185,%2Fm%2F03f8ny
https://trends.google.com/trends/explore?date=all&q=%2Fm%2F05q185,%2Fm%2F03f8ny
https://github.com/topics/winforms
https://github.com/topics/wpf
https://github.com/topics/wpf
https://www.devexpress.com/#ui
https://www.devexpress.com/#ui
https://www.telerik.com/
https://www.telerik.com/
https://docs.microsoft.com/en-us/dotnet/framework/winforms
https://docs.microsoft.com/en-us/dotnet/framework/winforms
https://docs.microsoft.com/en-us/dotnet/framework/wpf

Bibliography

[24] .NET Core 3 and Support for Windows Desktop Appli-
cations, [online]. [cit. 2019-03-29]. Available from: https:
//devblogs.microsoft.com/dotnet/net-core-3-and-support-for-
windows-desktop-applications/

[25] Windows Presentation Foundation (WPF), [online]. [cit. 2019-04-04].
Available from: https://github.com/dotnet/wpf

[26] Walkthrough: My first WPF desktop application, [online]. [cit. 2019-
04-04]. Available from: https://docs.microsoft.com/en-us/dotnet/
framework/wpf/getting-started/walkthrough-my-first-wpf-
desktop-application

[27] Golian, C. Migration of relational databases using CodiScent’s Projective
Technologies. Bachelor’s thesis, Czech Technical University in Prague,
2015.

[28] Things You Should Never Do, Part I, [online]. [cit. 2019-06-04]. Avail-
able from: https://www.joelonsoftware.com/2000/04/06/things-
you-should-never-do-part-i/

[29] StranglerApplication, [online]. [cit. 2019-11-04]. Available from: https:
//martinfowler.com/bliki/StranglerApplication.html

[30] Stevenson, C.; Pols, A. An Agile Approach to a Legacy System. In
XP 2004: Extreme Programming and Agile Processes in Software En-
gineering (EDS), Springer, 2004, pp. 123–129. Available from: http:
//cdn.pols.co.uk/papers/agile-approach-to-legacy-systems.pdf

[31] Anti-Corruption Layer pattern, [online]. [cit. 2019-11-04]. Avail-
able from: https://docs.microsoft.com/en-us/azure/architecture/
patterns/anti-corruption-layer

[32] Strangler Applications, [online]. [cit. 2019-15-04]. Available from:
https://paulhammant.com/2013/07/14/legacy-application-
strangulation-case-studies/

[33] Fowler, M. Refactoring. Addison-Wesley Signature Series (Fowler),
Boston, MA: Addison-Wesley, second edition, 2018, ISBN 978-0-13-
475759-9.

[34] Modernization, [online]. [cit. 2019-15-04]. Available from: https://
www.standishgroup.com/sample_research_files/Modernization.pdf

[35] Selenium - Web Browser Automation, [online]. [cit. 2019-20-04]. Available
from: https://www.seleniumhq.org/

71

https://devblogs.microsoft.com/dotnet/net-core-3-and-support-for-windows-desktop-applications/
https://devblogs.microsoft.com/dotnet/net-core-3-and-support-for-windows-desktop-applications/
https://devblogs.microsoft.com/dotnet/net-core-3-and-support-for-windows-desktop-applications/
https://github.com/dotnet/wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://martinfowler.com/bliki/StranglerApplication.html
https://martinfowler.com/bliki/StranglerApplication.html
http://cdn.pols.co.uk/papers/agile-approach-to-legacy-systems.pdf
http://cdn.pols.co.uk/papers/agile-approach-to-legacy-systems.pdf
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://www.standishgroup.com/sample_research_files/Modernization.pdf
https://www.seleniumhq.org/

Bibliography

[36] Ranorex - TEst Automation for GUI Testing, [online]. [cit. 2019-20-04].
Available from: https://www.ranorex.com/

[37] TextComplete - Automated UI Testing Tools, [online]. [cit. 2019-20-
04]. Available from: https://smartbear.com/product/testcomplete/
overview/

[38] Hamill, P. Unit test frameworks - a language-independent overview.
O’Reilly, 2005.

[39] Noble, S.; Bourton, S.; et al. WPF recipes in C# 2008: a problem-solution
approach. Apress, 2008.

[40] Samir, H.; Kamel, A. Automated reverse engineering of Java graphi-
cal user interfaces for web migration. 2007 ITI 5th International Con-
ference on Information and Communications Technology, 2007, doi:
10.1109/itict.2007.4475638.

[41] NSX: Normalized Systems, [online]. [cit. 2019-29-04]. Available from:
https://normalizedsystems.org/

[42] Esposito, D.; Saltarello, A. Microsoft .NET - Architecting Applications
for the Enterprise, 2nd Edition. Redmond, Washington 98052-6399: Mi-
crosoft Press, 2015.

[43] Fowler, M. Patterns of Enterprise Application Architecture. 75 Arlington
Street, Suite 300, Boston: Addison-Wesley Longman Publishing Co., Inc.,
2011.

[44] Krasner, G. E.; Pope, S. T. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. Journal of
Object-Oriented Programming, volume 1, no. 3, 1988: pp. 26–49.
Available from: https://www.lri.fr/˜mbl/ENS/FONDIHM/2013/papers/
Krasner-JOOP88.pdf

[45] Reactive Apps with Model-View-Intent, [online]. [cit. 2019-03-20]. Avail-
able from: http://hannesdorfmann.com/android/mosby3-mvi-1

72

https://www.ranorex.com/
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/
https://normalizedsystems.org/
https://www.lri.fr/~mbl/ENS/FONDIHM/2013/papers/Krasner-JOOP88.pdf
https://www.lri.fr/~mbl/ENS/FONDIHM/2013/papers/Krasner-JOOP88.pdf
http://hannesdorfmann.com/android/mosby3-mvi-1

Appendix A
Acronyms

EA – Evolutionary Architecture

GUI – Graphical user interface

MVC – Model View Controller

MVI – Model View Intent

MVP – Model View Presenter

MVVM – Model View ViewModel

NST – Normalized System Theory

PM – Presentation Model

WinForms – Windows Forms

WPF – Windows Presentation Foundation

WYSIWYG – What you see is what you get

XAML – Extensible Application Markup Language

XML – Extensible markup language

73

Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
exe the directory with executables

data....................................data for the case study app
initial stateinitial state exe of case study app
intended state intended state exe of case study app

src.......................................the directory of source codes
git repository case study git repository
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

75

	List of Listings
	Introduction
	Motivation
	Goals
	Structure of the Thesis

	State-of-the-art
	Paradigms
	Methodology

	Goals revisited
	Analysis
	Frameworks
	Transition approaches
	Testing
	Summary

	Case study
	Introduction
	Implementation
	Summary

	Related Work
	Evaluation
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD card

