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Abstrakt

Hlavńım ćılem této práce je návrh, implementace a vyhodnoceńı webové ap-
likace, která funguje jako doporučuj́ıćı systém mı́st zájmů. Práce se zaměřuje
na zkoumáńı metod, které mohou být využité pro vývoj doporučuj́ıćıho systému,
navrhováńı hybridńıho algoritmu na základě provedeného výzkumu, návrh a
implementace webové aplikace, která využ́ıvá navrhovaný hybridńı př́ıstup.
Součást́ı práce je také zhodnoceńı výsledk̊u použité metody a výsledk̊u testováńı
vyvinuté webové aplikace.

Kĺıčová slova doporučuj́ıćı systém, hybridńı doporučuj́ıćı systém, mı́sto
zájmu, webová aplikace

Abstract

The main goal of this thesis is a design, implementation and evaluation of a
proof of the concept web application acting as the Points Of Interests recom-
mender system. The thesis focuses on the investigation of methods, that can
be used for developing a recommender system, designing the hybrid algorithm,
based on provided research, designing and implementing the web application
which uses the proposed hybrid approach for making recommendations. Also,
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the thesis includes evaluation of the used method’s results and results of the
testing of the developed web application.

Keywords recommender system, hybrid recommender system, Points Of
Interest, web application
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Introduction

Recommender systems relate to systems that can predict the future preference
of a set of items for a user, and recommend the best of them. For achieving
this task a lot of different approaches have been proposed up to now.

In our days, people more often use recommender systems in different
spheres of daily life. Recommender systems facilitate the problem of choos-
ing, which products to buy, which movie to watch, which book to read, etc.
They save users’ time for picking and at the same time help to attain higher
satisfaction.

With the development of the mobile Internet, people start to use different
applications and web sites that help to find Points Of Interest (POI) such
as restaurants, bars, sports clubs and others. In this situation, a good POI
recommender system could facilitate the search and, based on a user’s previous
behaviour, show personalized recommendations of the best POIs fitting the
user preferences. Personalized POI recommendation is especially important
and useful when a user travels to the new city or country, where he has little
knowledge about this area.

This thesis focuses on the developing of the web application that will act as
POI recommender system. This application will help users find new exciting
places in their home city or in the city which they plan to visit in short terms.
All user recommendations will be based on user’s preferences. The application
will use a hybrid method that will combine different approaches, which are
used for building a recommender system. Combining several methods to one is
a good approach because it allows reducing the shortcomings of each method
that will be used in the final algorithm.

This work consists of five chapters. The first one describes what recom-
mender system is, different types of recommender systems and methods that
are used for developing recommender system. The second chapter focuses
on analysing existing POI recommender systems and algorithms that can be
used for developing POI recommender system. Also, the application require-
ments are described in this chapter. Next chapter represents the design of
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Introduction

the developing web application. It includes the detailed description of the
algorithm which lies at the basis of the application, design of application ar-
chitecture, database, description of technologies that will be used and user
interface prototype. The fourth chapter relates to the implementation of the
web application. And the last chapter contains the evaluation of the used
recommender algorithm and user testing of the developed web application.
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Chapter 1
Recommender systems

1.1 Introduction

Recommender Systems (RSs) are software tools and techniques providing sug-
gestions for items to be of use to a user [1]. The suggestions relate to different
decision-making processes, for example, what products to buy, what books to
read, what places to visit, etc. So an ”item” can be anything that user is look-
ing for. The main aim of RS is to suggest to every user the most appropriate
item in which he might be interested. This suggestion might be personalised
for each user and based on his preferences. Personalisation involves matching
the context in sense of the user specifics, preferences and history to infer on
the selection procedure and provide relevant results [2]. In that case, different
users or user groups get different recommendations.

RSs are primarily directed towards individuals who lack sufficient personal
experience or competence to evaluate the potentially overwhelming number
of alternative items that a Web site, for example, may offer [3]. RS makes
a ranked list of items, where it tries to predict the most relevant product
or service, which will be interesting for a user. This prediction based on
information about user preferences that was collected explicitly or implicitly.

• Explicitly – typically by collecting users’ ratings, evaluating of likes and
dislikes for an item. The problem occurs when the user does not rate
the item, and RS does not know if the user likes this item or not.

• Implicitly – typically by monitoring users’ behaviour, for example, brows-
ing history, search patterns, or even mouse movements, etc.

Also, RS can use different demographic user characteristics, such as gender,
age, nationality; social information like followers, followed, twits, and posts, is
commonly used in Web 2.0.; or even information from Internet of things (e.g.,
GPS locations, real-time health signals) [4].

3



1. Recommender systems

There are a lot of different techniques that are used by RS for making rec-
ommendations. The most common and widely-used are collaborative filtering
methods and content-based recommender methods. The collaborative filter-
ing methods are based on user-item interactions. It can be ratings or buying
behaviour. The content-based methods are based on information about an
item. It can be a description of an item, its categories or keywords. Besides,
RSs can use knowledge-based recommender methods. In knowledge-based
methods users explicitly set their requirements for items they want to re-
ceive. Instead of using historical rating or buying data, external knowledge
bases and constraints are used to create the recommendation [5]. Some rec-
ommender systems combine different recommender methods to design hybrid
recommender systems. Hybrid RSs use the strengths of other methods and
usually provide better results.

1.2 Collaborative Filtering Recommender System

Collaborative recommendation is probably the most familiar, most widely
implemented and most mature of the technologies [6]. Collaborative filtering
(CF) methods create user-specific recommendations which are usually based
on items’ ratings. CF doesn’t need any additional information about either
items or users characteristics. This method recommends to the active user
the items that other users with similar tastes liked in the past. The similarity
in the taste of two users is calculated based on the similarity in the rating
history of the users [7].

Typically there is a set of users and a set of items, and each user usually
rates only a small subset of presented items. So the user-item matrix, which
is used for CF, is extremely sparse. It is the primary challenge which CF
methods must deal with. The other problem in using CF methods is the cold
start. This problem appears when a new user starts using the system. It’s
hard to make good recommendations for him because he hasn’t rate any items
yet or he has rated only a few items, so it’s difficult to find users with similar
tastes. Also, the cold start problem can occur when a new item will be added
to the system. This item will not be recommended to the user until some
other users will rate it.

There are two types of methods that are commonly used in collaborative
filtering: memory-based methods and model-based methods [8]:

• Memory-based methods operate over the entire user database to make
predictions. The most popular memory-based CF approaches are user-
based CF and item-based CF.

• In Model-based collaborative filtering, in contrast, uses the user database
to estimate or learn a model, which is then used for predictions.
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1.2. Collaborative Filtering Recommender System

CF cate-
gories

Representative
techniques Main advantages

Main
shortcomings

Memory-
based CF

- Neighbor-based
CF (item-based/
user-based CF
algorithms with
Pearson/vector
cosine correlation)
- Item-based/user-
based top-N rec-
ommendations

- Easy implemen-
tation
- New data can be
added easily and
incrementally
- Need not con-
sider the content
of the items being
recommended
- Scale well with
co-rated items

- Are dependent
on human ratings
- Performance de-
crease when data
are sparse
- Cannot recom-
mend for new
users and items
- Have limited
scalability for
large datasets

Model-
based CF

- Bayesian belief
nets CF
- Clustering CF
- MDP-based CF
- Latent semantic
CF
- Sparse factor
analysis
- CF using dimen-
sionality reduc-
tion techniques,
for example, SVD,
PCA

- Better address
the sparsity, scal-
ability and other
problems
- Improve predic-
tion performance
- Give an intuitive
rationale for rec-
ommendations

- Expensive model
-building
- Have trade-off
between predic-
tion performance
and scalability
- Lose useful
information for
dimensionality
reduction tech-
niques

Table 1.1: Overview of collaborative filtering techniques.

Each of these named methods has it’s own advantages and shortcomings.
A brief overview of CF techniques is depicted in Table 1.1 [9].

1.2.1 Memory-based Collaborative Filtering

Memory-based collaborative filtering algorithms are one of the earliest algo-
rithms that were designed for collaborative filtering. These algorithms are
also called neighborhood-based algorithms. Neighborhood-based algorithms
are based on the fact that similar users display similar patterns of rating
behavior and similar items receive similar ratings [5].

The neighborhood-based CF algorithm, a prevalent memory-based CF al-
gorithm, uses the following steps [10]:

1. calculate the similarity or weight, wi,j , which reflects distance, correla-
tion, or weight, between two users or two items, i and j;
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1. Recommender systems

2. produce a prediction for the active user by taking the weighted average
of all the ratings of the user or item on a certain item or user, or using
a simple weighted average.

There are two main types of memory-based CF algorithms [5]:

• User-based collaborative filtering: In this case, the ratings provided by
similar users to a target user A are used to make recommendations for
A. The predicted ratings of A are computed as the weighted average
values of these ”peer group” ratings for each item.

• Item-based collaborative filtering: In order to make recommendations
for target item B, the first step is to determine a set S of items, which
are most similar to item B. Then, in order to predict the rating of any
particular user A for item B, the ratings in set S, which are specified
by A, are determined. The weighted average of these ratings is used to
compute the predicted rating of user A for item B.

The most important step in memory-based CF algorithms is similarity
computation between users or items. There are a lot of different methods
to compute the similarity, for example, the cosine similarity, the Pearson’s
correlation coefficient, or the Jaccard coefficient and others. The higher the
value of the similarity means the closer (i.e. the more similar) the users’ or
items’ vectors are.

The cosine similarity measures the cosine of the angle between users’ or
items’ vectors. Formula 1.1 is used for computing cosine similarity.

sim(u, v) =
∑

i∈I ru,i × rv,i√∑
i∈I r

2
u,i

√∑
i∈I r

2
v,i

(1.1)

where I is the set of items or users and ru,i and rv,i are the ratings given
to item i by users u and v, respectively [11].

Jaccard coefficient compares two sets of items with shared and distinct
members and can be calculated by Formula 1.2.

sim(u, v) = |Iu ∩ Iv|
|Iu ∪ Iv|

(1.2)

where Iu and Iv are the sets of items rated by users u and v.
The Pearson’s correlation coefficient is the most commonly used. This

coefficient can be found by Formula 1.3.

sim(u, v) =
∑

i∈I(ru,i − ru)(rv,i − rv)√∑
i∈I(ru,i − ru)2

√∑
i∈I(rv,i − rv)2

(1.3)

where the i ∈ I summations are over the items that both the users u and v
have rated and ru is the average rating of the co-rated items of the uth user
[9].
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1.3. Content-Based Recommender System

Top-N recommendation is getting a set of N top-ranked items that will
be interesting to the particular user. For the task of generating a top-N
recommendation, the algorithms look for most similar users or items (nearest
neighbours), calculate similarities and aggregate the neighbours for getting the
top-N most frequent items. These items will be the user recommendations.

1.2.2 Model-based Collaborative Filtering

In model-based methods, a summarized model of the data is created up front,
as with supervised or unsupervised machine learning methods. Therefore,
the training (or modelbuilding phase) is clearly separated from the prediction
phase [5]. The methods that are usually used for this purpose are clustering
models, Bayes classifiers, rule-based methods, regression models, SVD meth-
ods and others. Almost all these models can be generalized to the collaborative
filtering scenario, just as k-nearest neighbour classifiers can be generalized
to neighbourhood-based models for collaborative filtering. This is because
the traditional classification and regression problems are special cases of the
matrix completion (or collaborative filtering) problem [5]. These mentioned
model-based CF algorithms have been developed to solve the shortcomings of
memory-based CF algorithms.

1.3 Content-Based Recommender System

Content-based recommender systems are designed to make suggestions that
are based on items, which can be described with the set of attributes. Content-
based algorithms use items’ characteristics to understand the user’s taste,
find items with similar characteristics and recommend them to the particular
user. This type of recommender systems tries to match users to items that
have similar attributes with items what they have rated with high rates in
the past. Unlike collaborative systems, which explicitly leverage the ratings
of other users in addition to that of the target user, content-based systems
largely focus on the target user’s own ratings and the attributes of the items
liked by the user [5]. This approach is advantageous when a new item will be
added. Content-based methods can extract the attributes from the new item,
and then it can recommend this new item to the users, based on extracted
attributes. So it solves the cold-start problem for new items. On the other
hand, the cold-start problem for new users cannot be addressed with content-
based recommender systems. Furthermore, by not using the ratings of other
users, one reduces the diversity and novelty of the recommended items [5].

Content-based systems are largely used in scenarios in which a significant
amount of attribute information is available at hand [5]. Usually, these at-
tributes are keywords, which are extracted from the item descriptions.

At the most basic level, content-based systems are dependent on two
sources of data [5]:

7



1. Recommender systems

1. The first source of data is a description of various items in terms of
content-centric attributes. An example of such a representation could
be the text description of an item by the manufacturer.

2. The second source of data is a user profile, which is generated from user
feedback about various items. The user feedback might be explicit or
implicit.

The user profile regularly consists of various types of information. The
most common is the model of the user’s preferences and history of the user’s
interactions. The model of the user’s preferences, it is usually a description
of items that the user is interested in. There are many possible alternative
representations of this description, but one common representation is a func-
tion that for any item predicts the likelihood that the user is interested in
that item. For efficiency purposes, this function may be used to retrieve the
n items most likely to be of interest to the user. The history of the user’s
interactions may include storing the items that a user has viewed together
with other information about the user’s interaction, (e.g., whether the user
has purchased the item or a rating that the user has given the item) [12].

The recommendation process is performed in three steps, each of which is
handled by a separate component [7]:

• Content Analyzer : The main responsibility of the component is to rep-
resent the content of items (e.g. documents, Web pages, news, product
descriptions, etc.) coming from information sources in a form suitable
for the next processing steps. This representation is the input to the
Profile Learner and Filtering Component.

• Profile Learner : This module collects data representative of the user
preferences and tries to generalize this data, in order to construct the
user profile.

• Filtering Component: This module exploits the user profile to suggest
relevant items by matching the profile representation against that of
items to be recommended. This step might be very efficient because the
suggestions need to be performed in real time.

Content-based recommender systems have several advantages and shortcom-
ings. Main advantages are:

• New items can be easily added to the system. They do not need to have
any ratings to be recommended to the users.

• It is user independence approach. Content-based RS need not have
ratings from other users for making recommendations. Systems might
not have a significant amount of users and ratings for making good
recommendations.
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1.4. Knowledge-based Recommender System

• Explanations on how the recommender system works can be provided
by explicitly listing content features or descriptions that caused an item
to occur in the list of recommendations [7].

Nevertheless, content-based systems have some shortcomings:

• Even though content-based methods are effective at providing recom-
mendations for new items, they are not effective at providing recom-
mendations for new users. In order to get accurate recommendations,
the user must have a enough ratings [7].

• Limited understanding of content. It might be hard to include all fea-
tures that mark the aspects that make content favorable to a user, which
means that the system can easily misunderstand what the user likes [13].

1.4 Knowledge-based Recommender System

Knowledge-based recommender systems suggest items based on specific do-
main knowledge about how items satisfy user preferences. These systems
are useful for a recommendation in domains of items that are rarely bought,
for example, cars, houses and so on. Moreover, users often need to specify
their requirements explicitly. A user may often be willing to accept a movie
recommendation without much input, but he would be unwilling to accept
recommendations about a house or a car without having detailed information
about the specific features of the item [5]. The benefit of knowledge-based sys-
tems is that users have better control of items that will be suggested because
they can specify their requirements in a very detailed way. Knowledge-based
recommender systems will be suitable in the following situations [5]:

1. Customers want to explicitly specify their requirements. Therefore, in-
teractivity is a crucial component of such systems. Collaborative and
content-based systems do not allow this type of detailed feedback.

2. It is difficult to obtain ratings for a specific type of item because of the
greater complexity of the product domain in terms of the types of items
and options available.

3. In some domains, such as computers, the ratings may be time-sensitive.
The ratings on an old car or computer are not very useful for recom-
mendations because they evolve with changing product availability and
corresponding user requirements.

The main characteristic of knowledge-based systems is a high level of cus-
tomization to the specific domain. This customization is achieved through the
use of a knowledge-base that encodes relevant domain knowledge in the form
of either constraints or similarity metrics. Some knowledge-based systems
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1. Recommender systems

might also use user attributes (e.g., demographic attributes) in addition to
item attributes, which are specified at query time. In such cases, the domain
knowledge might also encode relationships between user attributes and item
attributes [5].

There are two types of methods that are commonly used in knowledge-
based RS:

• Constraint-based: In constraint-based systems users typically specify
requirements or constraints (e.g., lower or upper limits) on the item
attributes. Furthermore, domain-specific rules are used to match the
user requirements or attributes to item attributes. These rules represent
the domain-specific knowledge used by the system. Such rules could
take the form of domain-specific constraints on the item attributes (e.g.,
”Cars before year 1970 do not have cruise control.”) [14].

• Case-based: In case-based recommender systems, specific cases are spec-
ified by the user as targets or anchor points. Similarity metrics are de-
fined on the item attributes to retrieve similar items to these targets.
The similarity metrics are often carefully defined in a domain-specific
way. Therefore, the similarity metrics form the domain knowledge that
is used in such systems. The returned results are often used as new tar-
get cases with some interactive modifications by the user. For example,
when a user sees a returned result that is almost similar to what she
wants, she might reissue a query with that target, but with some of the
attributes changed to her liking [15, 16].

Knowledge-based recommender systems are generally designed for domains
in which the items are highly customized, and it is difficult for rating informa-
tion to directly reflect greater preferences. In such cases, it is desirable to give
the user greater control in the recommendation process through requirement
specification and interactivity. Knowledge-based systems are largely based on
user requirements, and they incorporate only a limited amount of historical
data. Therefore, they are usually effective at handling cold-start issues. The
drawback of this approach is that historical information is not used for ”filling
in the gaps”. In recent years, methods have also been designed for incorporat-
ing a greater amount of personalization with the use of historical information
from user sessions [5].

1.5 Hybrid Recommender System

Hybrid recommender systems combine several approaches for recommender
systems. The main aim of the hybrid RS is to combine the power of different,
avoid shortcomings of the simple RS methods especially the cold-start problem
and provide better results.
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1.5. Hybrid Recommender System

There are three primary ways of designing hybrid recommender systems
[13]:

• Monolithic: It takes different components of several recommender sys-
tems and join them together in a new ways to improve overall perfor-
mance.

• Ensemble: The idea is to calculate recommendations using several full
recommenders and then somehow combine results to the final recom-
mendation.

• Mixed: It runs a number of recommenders, returning all of them.

The main difference between an ensemble and a mixed RS is that the first one
will show only the final combined result, while the mixed type of RS will show
all results for every recommender.

All hybrid recommender systems can be classified into the following cate-
gories [6]:

• Weighted: The scores of different recommender systems are combined
into a single unified score by computing the weighted aggregates of the
scores from individual components [5]. Usually, the methodology for
weighting the results of recommender systems is based on heuristic.

• Switching: This technique allows choosing between different recom-
mender systems and applying the selected one that provides the best
suggestion at a given period.

• Mixed: Recommendations from different recommenders are presented to
the user at the same time.

• Feature Combination: Features derived from different knowledge sources
are combined together and given to a single recommendation algorithm.

• Feature Augmentation: One recommendation system computes a feature
or set of features, and then this features are used as part of the input to
the next RS.

• Cascade: In this case, one recommender system refines the recommen-
dations given by another. In generalized forms of cascades, such as
boosting, the training process of one recommender system is biased by
the output of the previous one, and the overall results are combined into
a single output [5].

• Meta-level: One recommendation system is applied and produces some
sort of model, and then it is used as the input to the next recommender
system.

11



1. Recommender systems

Figure 1.1: The space of possible hybrid recommender systems

In the Figure 1.1 [12] is represented the summary of designing hybrid rec-
ommender systems, that are built on different recommender systems methods.

1.6 Evaluation of Recommender System

Each recommender system has its own advantages and shortcomings. So the
evaluation is critical for the understanding of the effectiveness of different
recommendation methods. The quality of RS methods is based on the results
of the evaluation.

Empirical evaluations of recommender systems usually focused on the eval-
uation of a recommender system’s accuracy. An accuracy metric empirically
measures how close a recommender system’s predicted ranking of items for
a user differs from the user’s true ranking of preference. Accuracy measures
may also measure how well a system can predict an exact rating value for a
specific item [17].

There are three main types of accuracy metrics: predictive accuracy met-
rics, classification accuracy metrics and rank accuracy metrics.

1.6.1 Predictive Accuracy Metrics

Predictive accuracy metrics measure how close the recommender system’s pre-
dicted ratings are to the true user ratings [17]. For this purpose usually used

12
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Mean Absolute Error (MAE), Normalized Mean Absolute Error (NMAE) and
Root Mean Squared Error (RMSE).

Mean Absolute Error is the most widely-used metric for evaluation of rec-
ommender system. It calculates the average of the absolute difference between
the predictions, that are made by RS, and true users’ ratings [9]. It uses the
Formula 1.4.

MAE =
∑
{i,j} |pi,j − ri,j |

n
(1.4)

where n is the total number of ratings over all users, pi,j is the predicted
rating for user i on item j, and ri,j is the actual rating. The lower value of
the MAE means the better prediction of the item’s rating.

Beyond measuring the accuracy of the predictions at every rank, there
are two other advantages to mean absolute error. First, the mechanics of the
computation are simple and easy to understand. Second, mean absolute error
has well studied statistical properties that provide for testing the significance
of a difference between the mean absolute errors of two systems [17].

Different recommender systems may use different numerical rating scales.
Normalized Mean Absolute Error normalizes MAE to express errors as per-
centages of full scale [18]. It can be calculated by Formula 1.5.

NMAE = MAE

rmax − rmin
(1.5)

where rmax and rmin are the upper and lower bounds of the ratings.
Root Mean Squared Error amplifies the contributions of the absolute errors

between the predictions and the true values [9]. RMSE can be found by using
Formula 1.6.

RMSE =
√√√√ 1
n

∑
{i,j}

(pi,j − ri,j)2 (1.6)

where n is the total number of ratings over all users, pi,j is the predicted
rating for user i on item j, and ri,j is the actual rating again.

Although accuracy metrics have greatly helped the field of recommender
systems, the recommendations that are most accurate are sometimes not the
ones that are most useful to users, for example, users might prefer to be
recommended with items that are unfamiliar with them, rather than the old
favorites they do not likely want again [19].

1.6.2 Classification Accuracy Metrics

Classification accuracy metrics measure the frequency with which a recom-
mender system makes suitable or unsuitable suggestions of items for RS users.
Classification accuracy metrics do not attempt to directly measure the ability
of an algorithm to accurately predict ratings. Deviations from actual ratings
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Selected Not Selected Total
Relevant Nrs Nrn Nr

Irrelevant Nis Nin Ni

Total Ns Nn N

Table 1.2: Items classification in Precision and Recall metric.

are tolerated, as long as they do not lead to classification errors [17]. This
types of metrics is mainly suitable for domains, where the user’s preferences in
recommendations are binary. The most common classification accuracy met-
rics are Precision and Recall and Receiver Operating Characteristic (ROC)
curve-based.

The first one (Precision and Recall) is the most popular and widely-used
metric. The main idea of this using this metric is to classify all items into
two groups: relevant and irrelevant. This classification can be demonstrated
in Table 1.2 [17].

Precision represents the probability that a selected item is relevant. It
calculates by Formula 1.7.

Precision = Nrs

Ns
(1.7)

where Nrs is number of selected items that are relevant and Ns is total
number of all selected items.

Recall represents the probability that a relevant item is selected by recom-
mender system. It calculates by Formula 1.8.

Recall = Nrs

Nr
(1.8)

where Nrs is number of selected items that are relevant and N is total
number of all relevant items.

Several approaches are combining precision and recall into one metric. F1
is one of them. F1-measure is the harmonic mean between precision and recall
[20]. It can be found by using Formula 1.9.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(1.9)

As with all classification metrics, precision and recall are less appropriate
for domains with non-binary granularity of true preference. For those tasks,
at any point in the ranking, we want the current item to be more relevant than
all items lower in the ranking. Since precision and recall only measure binary
relevance, they cannot measure the quality of the ordering among items that
are selected as relevant [17].
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1.6. Evaluation of Recommender System

ROC curve-based metrics is an alternative to precision and recall metric.
An ROC (Receiver Operating Characteristic) curve is a two-dimensional de-
piction of classifier performance, on which TPR (true positive rate) is plotted
on the Y-axis and FPR (false positive rate) is plotted on the X-axis [9]. The
TPR is the same as the recall. So, the ROC curve plots the ”good” recall
against the ”bad” recall. Although ROC curves are often used for evaluating
recommender systems, they do not always reflect the performance from the
end-user perspective.

1.6.3 Rank Accuracy Metrics

Rank accuracy metrics measure the ability of a recommendation algorithm to
produce a recommended ordering of items that matches how the user would
have ordered the same items. Unlike classification metrics, ranking metrics are
more appropriate to evaluate algorithms that will be used to present ranked
recommendation lists to the user, in domains where the user’s preferences
in recommendations are nonbinary [17]. Ranking metrics do not attempt to
measure the ability of an algorithm to accurately predict the rating for a single
item – they are not predictive accuracy metrics. If a recommender system will
be displaying predicted rating values, it is important to additionally evaluate
the system using a predictive accuracy metric as described above.

The Normalized Discounted Cumulative Gain (NDCG) is a widely used
evaluation rank accuracy metric. NDCG is designed for ranking tasks with
more than one relevance levels [21]. The measure includes a position depen-
dence for results shown to the user (that gives higher ranked results more
weight). NDCG is defined as follows [21]. Set of numerical relevance grades
is given: Z = {z1, ..., zn}.

The Discounted Cumulative Gain (DCG) for a given set of search results
(for a given query) can be calculate by Formula 1.10.

DCG =
n∑

i=1
(cizi) (1.10)

where ci is the discount factor of the ith document in the ranked list. The
most common discount factor can be found by Formula 1.11.

ci = 1
log(1 + i) (1.11)

The normalised DCG is computed by Formula 1.12.

NDCG = DCG

IDCG
(1.12)

where IDCG is ideal DCG score. It is a DCG score of the best ranked list,
which can be computed by Formula 1.13.

IDCG = maxDCG (1.13)
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The value of NDCG ranges from 0 to 1. A higher value indicates better
ranking effectiveness.
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Chapter 2
Analysis

2.1 Points Of Interests recommender systems

Points Of Interests recommender systems are useful to both users and busi-
nesses. With the help of the POI RS users can find new great POIs to visit,
that they will like, and in that case, business will have new visitors.

In recent years a lot of different POI RS approaches have been developed.
Nevertheless, in comparison with other recommender systems domains (e.g.,
movies, books), POI recommendations face new challenges [22] as follows:

• Rich contexts: First, a user’s preference is frequently based on geo-
graphical position, because users regularly visit POIs which are situated
in their activity regions: near home or workplace. Second, users are vis-
iting the same places every day (e.g., home, workplace). Third, users’
preference may be dependent on time. Users like to go to different types
of places at a different time: for example, going to a coffee shop in the
early morning and going to the bar in the late night. Fourth, users’ visit-
ing preferences might be influenced by their social levels. Other types of
context may include reviews on POIs, social posts on POIs and others.

• Data sparsity problem: POI recommender systems have a big problem
with sparsity, even worth than other types of recommender systems.
Usually, users visit a very small part of all POIs in the system. For
example, the density of the data used in experimental studies for POI
recommendations is usually around 0.1%, while the density of Netflix
data for movie recommendations is 1.2% [22].

POI recommendation methods use different types of context information
and adopt different approaches for getting user’s preferences. Memory-based
collaborative filtering techniques, such as user-based CF and item-based CF,
are exploited for POI recommendation [23].

Some of these methods are described below.
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2. Analysis

2.1.1 Location Recommendation framework without
Temporal Effects

Location Recommendation framework without Temporal Effects (LRT) [24]
is a time-enhanced Matrix Factorization model. LRT is designed to suggest
places to users by taking advantage of temporal patterns, so it based on the ob-
servation that user’s visiting behaviour depends on the time of day/week/year.

The whole framework consists of three steps: temporal division, tempo-
ral factorization, and temporal aggregation. Firstly, the original user-location
matrix C is divided into T sub-matrices according to the T temporal states,
with each sub-matrix only containing check-in actions that happened at the
corresponding temporal state. Secondly, each Ct is factorized into the user
check-in preference Ut and the location characteristics L, while L is shared
by all of Ut. Finally, the corresponding low-rank approximation Ct is con-
structed and aggregated into C representing the user check-in preferences of
each location [24].

2.1.2 Geographical Modeling and Matrix Factorization

Geographical Modeling and Matrix Factorization (GeoMF) [25] is a geograph-
ical weighted matrix factorization model. In order to capture the spatial
clustering phenomenon (i.e., POIs visited by same users are supposed to be
in the same region), GeoMF integrates geographical influence by modeling
users’ activity regions and the influence propagation on geographical space
[22]. GeoMF divides the whole geographical space into grids, each of which
represents a geographical region. For each POI, its influence is propagated to
surrounding regions, attracting nearby users to visit [22].

2.1.3 LORE

LORE [26] considers sequential influence, in addition to social and geograph-
ical influence.

Social influence. Friend-based Collaborative Filtering is adopted to model
social influence, where social similarities between friends are computed based
on the distance of their residences. In case, if residence locations of users
are not available, it can be taking the most frequent check-in POIs as users’
residences.

Geographical influence. For each user, LORE models a check-in probability
distribution over a two-dimensional space using Kernel Density Estimation.
The geographical probability of visiting a new POI is then estimated based
on its location on the check-in probability distribution.

Sequential influence. LORE employs additive Markov chain to exploit se-
quential influence between POIs. The sequential probability of a user visiting
a POI is based on the transition probability between all the user’s visited POIs
and the target POI.
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2.2 Points Of Interests recommender applications

In the last few years, the increasing interest in location-based services (LBS)
has favoured the introduction of geo-referenced information in various Web
2.0 applications, as well as the rise of location-based social networks (LBSN)
[27]. LBSN allows people looking for new interesting places, leave their reviews
and tips about the advantages and disadvantages of visited POIs. This kind of
feedback helps other users to find really great places to visit and avoid places,
that they will not like. Nowadays it is a variety of different existing LBSNs,
for example Yelp, Foursquare, TripAdvisor and many others.

2.2.1 Yelp

Yelp is one of the most popular LSBN. Yelp helps people find places they will
like.

On the Yelp web site user can search for places within a category or loca-
tion, and he will get a list of places, that will match the request. Users can get
detail information about the POI they will choose. On the POI detail page,
there is a description of the place, opening hours and list of properties (i.e.
location, whether it takes credit cards, etc.). Also, on this page user can read
individual reviews with ratings from other users, that have visited this place,
and based on that information decide if they will like to go to that place or
not. For leaving the review and rating (from 1-5 stars) for the visited POI,

(a) Search results page (b) POI detail page

Figure 2.1: Yelp web site interface
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the user may have a free account, which requires registration on the web site.
Users may choose to submit reviews for many reasons. For example, Yelp
provides direct incentives for reviewers, such as having occasional parties for
people who have submitted a sufficiently large number of reviews [28].

The Yelp web site interface is described on Figure 2.1.

2.2.2 Foursquare

Foursquare is another widely popular LSBN. Foursquare ”helps discover new
places, with recommendations from a community you trust.” [29].

On the Foursquare web site, a user can search POIs by categories and the
city. All POIs that satisfy user search request are displayed on the map, so
user can see what places are situated nearby. Also, user can filter places by
price, opened places or places he has been or hasn’t been visited.

On POI detail page describes photo gallery and information about POI,
including contact information, like web site, phone number, links to social
networks. Registered users can leave some short tips about places, which they
have visited. Other web site visitors can read them and use these tips while
they will visit the POI.

Furthermore, on the Foursquare web site, registered users can save POIs,
that they are interested in and want to visit, to the list. User can create
several lists, and save there POIs by different criterions, for example by cate-
gories, cities, etc. Also, a user can add his tastes that will help to get better
recommendations.

(a) Search results page (b) POI detail page

Figure 2.2: Foursquare web site interface
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(a) Search results page (b) POI detail page

Figure 2.3: TripAdvisor web site interface

The Foursquare web site interface is described on Figure 2.2.

2.2.3 TripAdvisor

TripAdvisor is an LSBN which is focused on travellers. The main idea is
that travellers from all of the world can plan their own trips based on other
travellers’ reviews.

Users write reviews, comment and rate locations based on their impression.
They can make a selection from five possible variants of rating: terrible, poor,
average, very good and excellent. The rating allows TripAdvisor to create
Traveller Ratings for every hotel, restaurant and visitor attraction within site.
This process involves calculating a summary score based on the quality, quan-
tity and age of the individual traveller reviews [30]. The result is represented
as a five-point indicator for every place.

Furthermore, users can upload different multimedia content, such as pho-
tos or videos, that are related to the place they have visited. For doing all
these actions, users may be registered in the system, so they must create a
profile with basic personal information.

The TripAdvisor web site interface is described on Figure 2.3.

2.3 Application requirements

The main aim of the future developed application is to recommend to user
points of interest that are matched his preferences. Based on that, were de-
fined requirements which the developed application may satisfies. They are
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divided into functional (specify a behaviour or function) and nonfunctional
requirements (software and hardware requirements).

2.3.1 Functional application requirements

The functional requirements for the developing application are:

1. Providing to any user ability to create personal profile and manage it.

2. Searching POIs by cities and categories.

3. Ordering the list of POI search results depending on user roles:

• For unauthorised users: ordering results by POIs’ ratings.
• For authorised users: ordering results based on users’ recommen-

dation scores.

4. Calculation the recommendation score for users based on their prefer-
ences and previous behaviors (visited and rated POIs).

5. Filtering the list of POI search results by categories, price range and
attributes.

6. Displaying POIs’ detailed information at POI’s page: basic information,
rating, categories, attributes, location on the map.

7. Displaying POIs’ reviews and tips that were written by other users.

8. Providing to authorised users ability to write reviews and tips, and to
rate places, which they have visited.

9. Providing to the administrator ability to add, edit and remove POIs
from the developing application.

10. Providing to the administrator ability to add new cities to the developing
application.

11. Providing to the administrator ability to manage users.

2.3.2 Nonfunctional developing application requirements

The nonfunctional requirements for application are:

1. The application will be available online with a web browser.

2. The application will be responsive and cross-browser.

3. Internet connection is required
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Chapter 3
Design

3.1 Recommender algorithm

The main aim of the developing web application is to recommend POIs to
users based on their previous behaviour (rating POIs and written reviews).
For providing these recommendations, the application will use the hybrid rec-
ommendation algorithm that combine three approaches:

• Item-based collaborative filtering

• Singular-value decomposition method

• Content-based filtering

The mentioned methods will be combined together to produce the best sug-
gestion to the user based on the category of POI and city he is interested
in.

3.1.1 Item-based collaborative filtering

The item-based collaborative filtering approach looks into the set of items the
target user has rated and computes how similar they are to the target item
i and then selects k most similar items {i1, i2, ..., ik} [31]. For selecting k
most similar items, the similarities {si1, si2, ..., sik} for all item are computed.
For the items with higher similarities, algorithm computes the prediction by
taking a weighted average of the target user’s ratings on these similar items.

The main idea of computing the similarity between the target item i and
some other item j is to select users that have rated both of these items and then
calculate the similarity si,j with the help of one of similarity measures that
were mentioned in the previous section: the cosine similarity measures, the
Pearson’s correlation coefficient and Jaccard coefficient. For the developing
application, the similarity will be computed with the one of the most common
measure: the Pearson’s correlation coefficient similarity measures.
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The weighted average sum is using for generating predictions. It computes
the prediction on item i for a user u by computing the sum of the ratings
given by the user on the items similar to i. Each ratings is weighted by the
corresponding similarity si,j between items i and j. The weighted sum is
scaled by the sum of the similarity terms to make sure the prediction is within
the predefined range [31]. Predictions can be computed by the Formula 3.1.

Predictionsu,i =
∑

similar items,N (si,N ∗Ru,N )∑
similar items,N |si,N |

(3.1)

where Ru,N is appropriate rating value for similar item N .

3.1.2 Singular-value decomposition method

Singular-value decomposition (SVD) is a matrix factorization technique com-
monly used for producing low-rank approximations. Given a matrix A ∈
Rm×n with rank(A) = r, the Singular-value decomposition of A is defined by
Formula 3.2 [32].

A = USV T (3.2)

where U ∈ Rm×n, V ∈ Rn×n and S ∈ Rm×n.
The matrices U , V are orthogonal, with their columns being the eigenvec-

tors of AAT and ATA, respectively. The middle matrix S is a diagonal matrix
with r nonzero elements, which are the singular values of A. Therefore, the
effective dimensions of these three matrices U , S and V are m× r , r× r and
n × r, respectively. The initial diagonal r elements (σ1, σ2, ..., σr) of S have
the property that σ1 ≥ σ2 ≥ ... ≥ σr > 0 [32].

An important property of SVD, which is particularly useful in recom-
mender system, is that it can provide the optimal approximation to the orig-
inal matrix A using three smaller matrices multiplication. By keeping the
first k largest singular values in S and the remaining smaller ones set to zero,
we denote this reduced matrix by Sk. Then by deleting the corresponding
columns of U and V , which are the last r− k columns of U and V , we denote
these two reduced matrices by Uk and Vk, respectively. The truncated SVD
is represented by Formula 3.3.

Ak = UkSkV
T

k (3.3)

where is the closest rank-k approximation to the original matrix A for any
unitarily invariant norm [32].

The dimensionality reduction approach in SVD is beneficial for use in
collaborative filtering. SVD provides a set of uncorrelated eigenvectors. Its
corresponding eigenvector represents each user and item. The dimensionality
reduction may be useful for users who rated similar items to be mapped into
space spanned by the same eigenvectors.

24



3.1. Recommender algorithm

When the m × n rating matrix R is decomposed and reduced into three
SVD component matrices with k features Uk, Sk, and Vk [33], the prediction
for any user u on item i can be computed with using of matrices Uk

√
Sk and√

SkV
T

k . To compute the prediction, the scalar product of the uth row of
Uk

√
Sk

T (denoted as Uk

√
Sk(u)) and the qth column of

√
SkV

T
k (denoted as√

SkV
T

k (q)) is calculated by using Formula 3.4 [34].

predictionuq = vu + σu[Uk

√
Sk(u)·

√
SkV

T
k (q)] (3.4)

where vu and σ are mean rating and standard deviation for user u, respec-
tively.

3.1.3 Content-based filtering

Content-based filtering makes recommendations by matching user query terms
with the index term used in the representation of the items, ignoring data from
other users [35].

Let U = {u1, ..., um} be a set of users, and let I = {i1, ..., in} be a set of
items. In content-based recommendation approaches ordered list of items that
will be interesting for a user is computed [36] with the help of utility function
described by Formula 3.5:

g(um, in) = sim(ContentBasedUserProfile(um), Content(in)) (3.5)

where ContentBasedUserProfile(um) is the content-based preferences of
user um, for example, the item content features that describe the interests,
tastes and needs of the user, and Content(in) is the set of content features
characterising item in. The function sim computes the similarity between a
user profile and an item profile in the content feature space. For the developing
application, the similarity will be computed based on the Pearson’s correlation
coefficient.

The easiest way to define the user profile is as a vector, where each compo-
nent represents the number of times the user has rated with good points items
with the appropriate attribute. Similarly, the item profile can be defined as a
vector, where each component binary represents if the item has an appropriate
attribute or not.

Items in the list of recommendations are ordered by computed similarity
from the highest to lowest.

3.1.4 Hybrid algorithm

As it was mentioned before in the developing web application will be used
the hybrid algorithm, that will calculate recommendations for users. This
algorithm combines three methods that were described in previous sections.
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Figure 3.1: Hybrid algorithm scheme

Figure 3.1 represents the scheme of how these approaches will work together
and provide recommendations for the user. It is an ensemble hybrid algorithm,
that shows only the final combined result.

As the input for the hybrid algorithm will be used the following data:

• name of the category and the city which user uses for searching POIs
request

• user’s ratings that were left for the POIs that were visited before by the
user

• categories of POIs, that user has visited and rated

Each of the algorithms will provide its computations and return the or-
dered list of recommended POIs. Then these ordered lists will be combined
together at the ”Combiner” step.

For combining provided lists to the one final recommendation list, for
each POI will be calculated the average value of its rank positions in every
computed list. This value will be computed by Formula 3.6.

averageV aluei = pcf i + psvdi + pcbi

3 (3.6)

where pcf i is the ith POI position in the item-based collaborative filtering
result recommendation list, psvdi is the ith POI position in the result recom-
mendation list of the singular-value decomposition method and pcbi is the ith
POI position in the content-based filtering recommendation list.

Then all POIs will be ordered by this average value to the final list with
recommendations from the lowest to the highest.
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Combining these three methods together to the one algorithm will help to
deal with the typical recommender systems problems, such as sparsity of the
user rating matrix and ”cold-start” problem.

To avoid the ”cold-start” problem, when user will search for the POI lo-
cated in the city, which user has never visited before, the algorithm will use
only the content-based filtering approach. It will recommend POIs based on
the categories of user preference.

If it will be a new user, who has no reviews and rated POIs, the application
will recommend him POIs list ordered by the global rating.

3.2 Application architecture

The developing application will have a client-server architecture, which is il-
lustrated on the Figure 3.2.

The client and the server will communicate with each other using REST
API. The client will send JSON data to the server. The server will communi-
cate with the database for processing requests due to the business logic. And
then the server will return the response to the client in JSON format.

In the application also will be used third-party API – Google maps API.
The client will send request to the API, and gets necessary JSON data.

Figure 3.2: Application architecture
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3.3 Database structure

For the developing application will be used data from the Yelp open dataset.
It’s a subset of Yelp’s businesses, reviews, and user data. This dataset contains
data about ten metropolitan areas in the USA and Canada.

Based on the described dataset, it was created the application entity rela-
tionship diagram, which is illustrated in Figure 3.3. The application database
will be built on this diagram. All entities from the diagram will be described
below.

Figure 3.3: Application entity relationship diagram
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Title Data type Description
business id varchar(120) POI id. Primary key.
name varchar(255) POI name.
address varchar(255) POI address.
postal code varchar(15) Postal code of POI location.
city varchar(255) City of POI location. Foreign key.
latitude double POI location latitude.
longitude double POI location longitude.
stars double POI average rating.
review count int Amount of POI’s reviews.
is open boolean Describes if POI is open.
categories text POI’s categories. Foreign key.

attr BikeParking boolean POI attribute, describes if POI has
bike parking.

attr BusinessAccepts-
CreditCards boolean POI attribute, describes if POI ac-

cepts credit cards.

attr GoodForKids boolean POI attribute, describes if POI is
good for kids.

attr HasTV boolean POI attribute, describes if POI has
TV.

attr OutdoorSeating boolean POI attribute, describes if POI has
outdoor seating.

attr Restaurants-
Delivery boolean POI attribute, describes if POI is

a restaurant and has delivery .

attr Restaurants-
GoodForGroups boolean

POI attribute, describes if POI is a
restaurant and it’s good for groups
of people.

attr Restaurants-
Reservations boolean

POI attribute, describes if POI is
a restaurant and it allows reserva-
tions.

attr Restaurants-
TakeOut boolean

POI attribute, describes if POI is
a restaurant and it allows to take
out food.

attr Restaurants-
PriceRange int POI attribute, describes average

price range.
h Monday varchar(30) POI Monday working hours.
h Tuesday varchar(30) POI Tuesday working hours.
h Wednesday varchar(30) POI Wednesday working hours.
h Thursday varchar(30) POI Thursday working hours.
h Friday varchar(30) POI Friday working hours.
h Saturday varchar(30) POI Saturday working hours.
h Sunday varchar(30) POI Sunday working hours.

Table 3.1: Place entity structure.
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Place entity is representing POI, which users can visit. Its structure is
described in the Table 3.1.

Review entity is representing review with rating, which users writes about
POIs they have visited. It is a text with rating, where user describes why he
likes or dislikes the POI, he has visited. Review entity structure is described
in the Table 3.2.

Title Data type Description
review id varchar(120) Review id. Primary key.
user varchar(120) User, leaved a review. Foreign key.

business id varchar(120) POI, review was written about.
Foreign key.

stars int User’s rating for reviewed POI.
date timestamp Date when review was written.
text text Text of review.

Table 3.2: Review entity structure.

Tip entity is representing tips, which users write about POIs they have
visited. It is usually small text where users advise something. Its structure is
described in the Table 3.3.

Title Data type Description
tip id varchar(120) Tip id. Primary key.
user varchar(120) User, leaved a tip. Foreign key.

business id varchar(120) POI, tip was written about. Foreign
key.

date timestamp Date when tip was written.
text text Text of tip.

Table 3.3: Tip entity structure.

Photo entity is representing photos connecting to POIs. It can be different
views of POI or provides services. Photo entity structure is described in the
Table 3.4.

Title Data type Description
photo id varchar(120) Photo id. Primary key.

business id varchar(120) POI, photo is referenced to. Foreign
key.

caption text Photo caption.
label varchar(255) Photo label.

Table 3.4: Photo entity structure.

30



3.3. Database structure

Category entity is representing categories to which POIs can be classified.
Each category can include some subcategories. Category entity structure is
described in the Table 3.5.

Title Data type Description
category id varchar(120) Category id. Primary key.
title varchar(255) Category title.
has subcategories boolean If category has subcategories.
subcategories text List of subcategories.
alias varchar(255) Formatted category title.

Table 3.5: Category entity structure.

City entity is representing cities where POI is located. Its structure is
described in the Table 3.6.

Title Data type Description
city id varchar(120) City id. Primary key.
city name varchar(255) Name of the city.
state varchar(15) State where city is situated.

Table 3.6: City entity structure.

User entity is representing basic user’s information that is necessary for
registration and logging in. Its structure is described in the Table 3.7.

Title Data type Description
user id varchar(120) User id. Primary key.
username varchar(150) User’s username.
password varchar(120) User’s password.
first name varchar(150) User’s first name.
last name varchar(150) User’s last name.
email varchar(255) User’s email address.

last login timestamp Date and time when user login last
time.

is superuser boolean If user has superuser rights.
is staff boolean If user has staff rights.
is active boolean If user account is still active.

date joined timestamp Date and time when user was regis-
tered in the application.

Table 3.7: User entity structure.

Profile entity is representing user’s profile. It is an additional information
about user. Its structure is described in the Table 3.8.
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Title Data type Description
profile id varchar(120) Profile id. Primary key.
user id varchar(120) User id. Foreign key.
avatar varchar(255) User’s photo.
review count int Amount of review, user has written.

average stars double Average rating, user has left for
POIs.

Table 3.8: Profile entity structure.

3.4 Server-side technologies

In this section will be discussed all technologies that will be used on a server-
side of application.

The server side of the application will be developed in Python language
using the Django framework.

3.4.1 Database

PostgreSQL will be used as a database for the developing application. It is a
powerful, open source object-relational database system that uses and extends
the SQL language combined with many features that safely store and scale
the most complicated data workloads [37].

The main advantage of PostgreSQL is that it provides enterprise-class per-
formance and functions among current Open Source DBMS with no end of
development possibilities. A fully open-source project, PostgreSQL’s source
code is developed by a large and devoted community. Similarly, the Postgres
community maintains and contributes to numerous online resources that de-
scribe how to work with the DBMS, including the official documentation, the
PostgreSQL wiki, and various online forums.

PostgreSQL supports languages similar to PL/SQL in Oracle such as
PL/pgSQL, PL/Python, PL/Perl, C/C++, and PL/R.

3.4.2 Python

Python is one of the most popular programming languages in the world. It
is very powerful and has clear and understandable syntax. Python is an in-
terpreted, interactive, object-oriented programming language, that provides
high-level data structures such as list and associative arrays (called dictio-
naries), modules, classes, exceptions, etc. [38]. Python transforms into a
high-level language suited for scientific and engineering code that’s often fast
enough to be immediately useful but also flexible enough to be sped up with
additional extensions [39].
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This language was picked for developing the application because it has a
lot of built-in general-purpose libraries and also it can be extended by plenty
of different modules and libraries that are used for scientific and mathematical
purposes, that will be good for implementation of the recommender algorithm.

3.4.3 Django

Django is a modern high-level framework that was built using Python lan-
guage. It is simple, robust, flexible, and allows to design solutions without
much overhead [40]. Django provides high-level abstractions of common Web-
development patterns, shortcuts for frequent programming tasks, and clear
conventions on how to solve problems [41], so it’s no need in reinventing the
wheel, just using prepared solutions. Django takes care of user authentication,
content administration, site maps, RSS feeds, and many more tasks – right out
of the box. Django takes security seriously and helps developers avoid many
common security mistakes, such as SQL injection, cross-site scripting, cross-
site request forgery and clickjacking. Its user authentication system provides
a secure way to manage user accounts and passwords [42].

The application will be developed with Django framework because it allows
building complex and effective web applications in a short period. Moreover,
as it was mentioned, Django has many solutions to handle common web de-
velopment tasks, and at the same time, it lets working outside the scope of
the framework as needed.

3.4.4 REST

REpresentational State Transfer (REST) is an architectural style for build-
ing large-scale distributed hypermedia systems. It provides some standards
between computer systems on the web, making it easier for systems to com-
municate with each other. Web services that were developing according to the
REST architectural style are identified as RESTful Web services (RWS).

The REST architectural style is based on the following constrains [43]:

• Client-server architecture. The main principle behind this constraint is
the separation of concerns. It allows for the separation of front-end code
(representation and possible UI-related processing of the information)
from the server side code, which should take care of storage and server-
side processing of the data.

This constraint allows for the independent evolution of both components,
offering a great deal of flexibility by letting client applications improve
without affecting the server code and vice-versa.

• Stateless. Communication between client and server must be stateless,
meaning that each request done from the client must have all the infor-
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mation required for the server to understand it, without taking advan-
tage of any stored data.

• Cacheable. It proposes that every response to a request must be explic-
itly or implicitly set as cacheable.

• Uniform Interface. It is one of REST’s main characteristics. By keeping
a uniform interface between components, it simplifies the job of the
client when it comes to interacting with the system. Another major
winning point here is that the client’s implementation is independent,
so by defining a standard and uniform interface for all of the services,
it is effectively simplified the implementation of independent clients by
giving them a clear set of rules to follow.

• Layered System. By separating components into layers, and allowing
each layer to only use the one below and to communicate its output to
the one above, it simplifies the system’s overall complexity and keeps
component coupling in check. This is a great benefit in all type of
systems, especially when the complexity of such a system is ever-growing
(e.g., systems with massive amounts of clients, systems that are currently
evolving, etc.)

• Code-on-Demand. It is the only optional constraint imposed by REST.
With this constraint, the client can download and execute code provided
by the server (such as Java applets, JavaScript scripts, etc.). In the case
of REST APIs, this constraint seems unnecessary, because the normal
thing for an API client to do is just get information from an endpoint,
and then process it however needed; but for other uses of REST, like
web servers, a client (i.e., a browser) will probably benefit from this
constraint.

The developing application will use the REST API for communication
between client and server sides of application because it is very flexible and
allows the independent implementation of the client and server.

3.5 Client-side technologies

In this section will be discussed all technologies that will be used on a client-
side of application.

On the client-side, application will be developed as JavaScript single-page
application (SPA). It will be built created with the React framework, and it
will use the Bootstrap framework for styling a user interface.
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3.5.1 Single-page application

A single page application (SPA) is a web application that uses only one HTML
web page as a shell for all the application’s web pages and whose end-user
interactions are implemented by using JavaScript, HTML, and CSS [44]. Most
of the SPA development is performed on the front-end in contrast to traditional
web applications. The SPA fully loads all of the resources in the initial request,
and then due to user interactions, an application replaces and updates page
components. It is no need to reload new web pages whenever navigation
occurs.

SPA allows a more flexible and elegant way of dealing with data. Refresh-
ing particular part or a section of a page without refreshing an entire page is
the primary goal that SPA is serving, but all this flexibility requires a more
interactive interface, and this leads to the better user experience [45].

SPAs are also very responsive in terms of server interaction. All the oper-
ations that go to the server are performed using Ajax and therefore the user
interface can still receive events and won’t be stuck.

3.5.2 React

React is a full-scale Javascript framework. React was built to deal with dis-
playing data in a user interface.

React does not set out to solve every problem that will appears in user
interface design and front-end development. React solves a specific set of
problems, and in general, a single problem. React builds large-scale user
interfaces with data that changes over time [46].

React is in its simplest form, just the view of Model-View-Controller frame-
works. React is a way to describe the user interface of an application and a
mechanism to change that over time as data changes. React is made with
declarative components that describe an interface. React uses no observable
data binding when building an application. React is also easy to manipulate
because the developer can take the components he creates and combines them
to make custom components that work as he expects every time because it can
scale. React can scale better than other frameworks because of the principles
that drove it from its creation. When creating React interfaces, developer
structures them in such a way that they are built out of multiple components.

3.5.3 Bootstrap

Bootstrap is a well-known open-source frontend framework in the world. It
includes HTML, CSS and JavaScript components.

Bootstrap uses a 12-column responsive grid system and features, dozens
of components, styles and JavaScript plugins. In addition, it has a basic
global display, typography and link styles. Moreover, by using the customizer
Bootstrap can be suited for a specific web project by adjusting variables,
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components, JavaScript plugins and more. It is possible to expand Bootstrap
by using a wealth of resources, including themes and interfaces and building
tools. Moreover, Bootstrap is used for building mobile first responsive websites
of all size and complexity. It has ready to use responsive themes and templates
as a starting point for any web project [47]. All of this allows frontend web
development to be catapulted forward, building on a stable foundation of
forward-looking design and development [48].

This will be used for application development because it allows saving
time on the styling of user interface components and in that case paying more
attention to the application functionality.

3.6 User Interface

The main aim of a user interface is to provide easy and effective communication
between a user and an application. A successful user interface should be

• intuitive: not require training to operate

• efficient: not create additional or unnecessary friction

• user-friendly: be enjoyable to use

Before designing the low-fi prototype for the web application, it is crucial
to define tasks that application might deal with and relationships between
them.

3.6.1 Task List and Task Graph

Task list is using for determining the actions that will application perform to
meet defined functional requirements.

We will focus only on the user’s tasks. The administrator’s tasks do not
need to develop special interface because they will be used the standard django
CMS admin page, which allows the administrator to make all the necessary
content manipulations, for example adding new POI to the application, up-
dating information about POI, deleting POI, etc.

All the user’s tasks that the application should perform are listed below.
These tasks were divided into four groups.

The first group contains all tasks referred to the basic user operations for
managing and displaying user profile. The needed tasks are mentioned below:

• Registration of a new user in the application

• Log in to the application

• Log out from the application

• Show user profile:
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– Display user name, avatar, username, email, date of the registra-
tion in the application, average rating for visited POIs, amount of
written reviews.

• Edit user profile:

– Change user avatar and email address.

The second group includes tasks that will be performed from the first
minute of working with the application. These tasks are related to the home
page of the application. All tasks are listed below:

• Show home page

• Get city of user location

• Show top POI categories of the user location city

• Show top POIs per each of top categories of the user location city ranged
by rating

• Search POIs by categories and cities

The third group has all tasks that will deal with the primary function
of the application – recommending POIs. It covers searching the best POIs
for users and ordering them by rating (for unauthorized users) or calculated
recommended score (for authorized users). The tasks are the following:

• Show searched POIs ordered by rating or recommended score

• Choose another category for searching POIs

• Filter POIs by price range or POI attribute

• Show all/filtered POIs on the map

• Choose POI to see details

To the fourth group brings together tasks that are responsible for the dis-
playing POI details and allow users to impact on this information, by leaving
the feedback. The tasks are listed below:

• Show POI basic details

– Display POI name, address, categories, opening hours, attributes

• Show POI photo

• Show POI average rating

• Show amount of written reviews for POI
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• Show POI on a map

• Show also recommended POIs from the same category and city

• Show POI reviews and ratings left by other users ordered by the date

• Show POI tips left by other users ordered by the date

• Show info about user who left review or tip

– Display user name, avatar, amount of written reviews

• Write reviews and rate visited POI

• Write tip for visited POI

Next important step for designing user interface is making a task graph.
Task graph describes the application structure and actions which application
may perform.

Figure 3.4 represents the task graph of the developing application. It
contains mentioned tasks and divides them into groups that were discussed
before: user profile group, home page group, search result group and POI de-
tails group. Each of this group will represent the web page in the application.

This graph represents the application from an authorized user view because
the only difference in actions between authorized and unauthorized is that
an authorized user can write tips, reviews and rate visited POIs while an
unauthorized user can only read others users’ feedback.

The work with the application starts from the ”Landing” point. Here user
can register to the application, or if he already has an account, he can log
in. Logged in user can watch his profile and add or change some information
there.

On the home page application will detect the city of user location and
suggest him the best POIs ordered by rating from top categories in this dis-
covered city. So user can choose one POI of the recommended list, or he can
search some POIs by category in a particular city.

Then a user will get his search result – a list of POIs ordered by rating
or recommending score (for authorized users). All founded POIs will be dis-
played on the map. User can change category or filter POIs by price range
or its attributes. After finding attractive POI in the list, a user will have an
opportunity to see details about selected POI.

When a user selects POI, he can read information about it: address, cat-
egories, price range, opening hours, characteristics. POI location will be dis-
played on map. Also, it will provide a photo of this POI, its average rating
and amount of written reviews. User can read all reviews and tips written by
other users, and if he is authorized, he can leave his own opinion and rating
for the POI he had already visited.
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Figure 3.4: Application task graph
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If a user does not like this POI, he can choose another from the ”also
recommended POIs” list and read information about other selected POI.

Figure 3.5: Home page prototype

3.6.2 Low-fi prototype

Based on the determined task list and task graph was designed the low-fi
prototype for the developing application.

The application will contain the following pages:

• home page

• user profile page

• page with the list of POIs that are recommended for visiting

• page with the POI’s details

The low-fi prototype of the application pages was designed in the Axure
PR 8.

3.6.2.1 Home page

Figure 3.5 represents the prototype of the home page of the developing web
application.
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The navigation bar will be displayed on all application pages. It will be
sticky and will be situated at the top of the page. The logo of the application
with the link to the home page will be represented on this navigation bar.
Unauthorized user will see two buttons on the navigation bar for registration
and logging in. After clicking on one of these buttons will open the modal
with the form for registration or logging in. If a user is authorized instead of
the described buttons, he will see user icon after clicking on it will appear a
dropdown menu with a link to profile setting and link for log out action.

On the home page will be located section for searching POIs. It will provide
two inputs with the search button. In one input user will choose the category,
which he is looking for, from the suggested list, and in another user – city.
The home page also will have the section with the suggested lists of POIs by
categories. There will be represented five of the most popular categories in
the city of user location. Each of these categories will contain the list of the
best POIs. Every element of a list will be represented as ”POI card”. This
card will include basic POI information: name, rating, amount of reviews and
categories it belongs, and it will be a link to the certain POI detail page.

3.6.2.2 User profile page

The prototype on the Figure 3.6 represents the user profile page.
This page will display information about a user: name, username, avatar,

email address, date of registration in the application, average rating and
amount of written reviews. User can see his own profile page or profile page of
any other registered user. If it is user’s own profile page, he will see a button
for editing the profile information. If he clicks on the button, it will appear
editing section, which is described on the Figure 3.7. This section has a form
for changing avatar by uploading a new file and changing email address. Also,
there is a link to go back to the user information.

Figure 3.6: User profile page prototype
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Figure 3.7: Editing user profile page prototype

3.6.2.3 Search result page

Figure 3.8 illustrates search result page.
This page is divided into three columns. The centre column contains a

list of POIs with ”POI cards”. The right column displays a map with the
markers of each POI that is listed in the searching result. And the left column
represents filters for filtering POI list. Filters are classified into three groups:
price range, categories and attributes. User can pick only one option from the
price range and categories filter, but from the attributes filter, he can choose

Figure 3.8: Search result page
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any amount of options.

3.6.2.4 POI detail page

The last of the mentioned pages – POI detail page is represented on the Figure
3.9.

Figure 3.9: POI detail page

This page displays all information about selected POI: name, address,
categories, opening hours, etc. Also, there is a section with the big photo of
the POI and a map section, where the marker displays the POI location on the
map. On this page is situated reviews and tips section. User can switch tabs
for reading reviews or tips about POI. Reviews and tips have the same view
with one difference: reviews also have ratings from the users. Each review/tip
has a text of review/tip, date when it was posted and information about the
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user who wrote it: avatar, name and amount of written reviews. Name of the
author of review/tip is a link to his profile.

If a user is authorized, he can see review and tip form. After filling the
form, he can post a new review/tip. Additionally, there is an ”also recom-
mended POIs” section in the right part of the page. There displays a list of
POIs that can likewise be interested for the user.
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Chapter 4
Implementation

Implementation of the application was divided into two parts: backend and
frontend implementation. Each of them will be described in the following
sections.

4.1 Backend implementation

In this section will be discussed the implementation of the backend part of
the application. As it was mentioned before in the design chapter, the back-
end part was developed with Django framework, so the implementation was
coming out of opportunities of this framework.

4.1.1 Models

Django framework has an object-relational mapper in which the developer de-
scribes the database layout in Python code. A model is the single, definitive
source of information about the data. It contains the essential fields and be-
haviours of the storing data. Generally, each model maps to a single database
table. Each model is a Python class that subclasses django.db.models.Model.
Each attribute of the model represents a single database field. With all of this,
Django provides an automatically-generated database-access API [42].

Models that are used in the application were created based on the database
structure defined in the design chapter. Each table that was described has its
own appropriate model with the same structure. Models have the same fields
and fields types that were listed in the tables above. All created models are
related to each other due to figure 3.3 which illustrates the database entity
relationships in the previous chapter. Each model is responsible for the rele-
vant database table structure and data that it stores. Models are synchronised
with the database tables.
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4.1.2 Data uploading

As it was mention in the design chapter, the application uses Yelp dataset.
It is an open dataset that was downloaded from the yelp.com website. It
contains data about POIs and users that are written in the JSON format. For
loading this data to the database were used Django fixtures.

A fixture is a collection of data that django knows how to import into a
database. Fixtures can be written as JSON, XML or YAML documents [42].

For the transforming Yelp dataset to the fixtures was created a script. This
script generates a fixture in the JSON format for each model that is used in
the application. Each of the created fixture contains data only for one model
and represent an array of objects, that describes one object in the database
table. Each fixture object includes model name, primary key and fields values.

4.1.3 Administration page

There was no need to develop separate pages for administrative purpose be-
cause Django provides it. When the models are defined, Django can auto-
matically create a professional, production-ready administrative interface – a
website for managing content [42]. It lets authenticated users add, change and
delete objects.

Figure 4.1: Administration page

The user who has administrator permissions can log in to an administration
page, that is described on the Figure 4.1, and work with the stored content.
Models that are connected to the administration page are ”Users”, ”Cities”
and ”POIs”. So an administrator can add new POIs to the application, or
update the information about existing POIs, or if POI doesn’t exist anymore,
he can easily delete it from the application. If the administrator needs to
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add the POI from the city, which hasn’t been in the application yet, he can
add a new city and connected created POI to this city. Furthermore, the
administrator can manage users. He can change their roles from regular user
to the administrator of the application.

In the application was created one user with the administrator permissions.
There are two ways of creating administrators in the application. The first one,
the existed administrator can add administrator role to any of the registered
users. And the second one, it can be done by using the command from the
terminal, that can be found in the installation guide in Appendix C.

4.1.4 Recommender algorithm

For the implementation of the algorithm, that makes POIs recommendations
for a user, based on his preferences, were used external libraries and packages.
They are NumPy, pandas and Surprise.

4.1.4.1 NumPy

NumPy is the fundamental package needed for scientific computing with
Python. This package contains [49] a powerful N-dimensional array object,
sophisticated (broadcasting) functions, basic linear algebra functions, sophis-
ticated random number capabilities and many other things.

In the developed web application, NumPy is used in the implementation of
two parts of the recommender algorithm: the item-based collaborative filtering
part and singular-value decomposition method part. In these parts, NumPy
is mainly used for storing data as an N-dimensional array object, because the
chosen methods need to work with the data stored in a matrix and to perform
operations on this matrix, and NumPy package provides these functionality.

4.1.4.2 Pandas

Pandas is a Python package providing fast, flexible, and expressive data struc-
tures designed to make working with ”relational” or ”labeled” data both easy
and intuitive. Pandas is well suited for many different kinds of data: tab-
ular data with heterogeneously-typed columns, as in an SQL table or Excel
spreadsheet, ordered and unordered (not necessarily fixed-frequency) time se-
ries data, arbitrary matrix data with row and column labels, any other form of
observational/statistical data sets. The two primary data structures of pan-
das, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast
majority of typical use cases in finance, statistics, social science, and many
areas of engineering. Pandas is built on top of NumPy and is intended to
integrate well within a scientific computing environment with many other 3rd
party libraries [50].

Pandas package is used in the implementation of the content-based filtering
part of the designed recommender algorithm. In this method, it is suitable
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to use labelled columns for storing and working with data. DataFrame stores
user’s reviews and using this DataFrame, program creates new DataFrames
for user profile and POIs feature vectors. Pandas provides many functions on
its DataFrame which are useful and save much time in developing.

4.1.4.3 Surprise

Surprise is a Python scikit building and analyzing recommender systems.
Surprise gives users perfect control over their experiments, provides various
ready-to-use prediction algorithms such as baseline algorithms, neighborhood
methods, matrix factorization-based (SVD, PMF, SVD++, NMF), and many
others, also, various similarity measures (cosine, pearson...) are built-in [51].

Surprise is used in the implementation of the item-based collaborative
filtering part and singular-value decomposition method part. It has a built-
in collaborative filtering algorithm, that is called KNNBasic(), and can be
set by parameters. In our case, it has set parameters to perform item-based
collaborative filtering and use Pearson correlation similarity measure. Also,
Surprise has a built-in singular-value decomposition method – SVD(). So the
advantage of using Suprise that it is no need to develope the algorithms from
the beginning. Surprise provides optimized and ready to use algorithms, so
the developer can focus only on using and interpretating the results.

4.1.5 User authorization

For the registration of new users and their authorization, in the application is
used django-allauth package. It allows for both local and social authentication
and supports multiple authentication schemes (e.g. login by user name, or by
e-mail), as well as multiple strategies for account verification (ranging from
none to e-mail verification) [52].

The application uses only local authentication. As the authentication
scheme is used login by username. For the registration of new user it requires
next user data: username, email, password, first name and last name.

4.1.6 REST API

For developing the application REST API was used Django REST framework.
It is a powerful and flexible toolkit for building Web APIs [42].

For the application was developed REST API. There are described only
that API endpoints which are used by application on frontend.

• GET cities/
Method that returns information about all cities stored in the applica-
tion.
Returns codes: 200 OK, 404 Not Found
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• GET cities/{city}/pois/

Method that returns list of all POIs that are located in the chosen city
{city}.

Returns codes: 200 OK, 404 Not Found

• GET cities/{city}/categories/

Method that returns a list of objects for categories to which the POIs
that situated in the selected city {city} belong.

Returns codes: 200 OK, 404 Not Found

• GET cities/{city}/categories/{category}/pois/

Method that returns information about all POIs that are located in the
city {city} and belong to the picked category {category}.

Returns codes: 200 OK, 404 Not Found

• GET categories/

Method that returns information about all categories that POIs can
belong.

Returns codes: 200 OK, 404 Not Found

• GET categories/{category}

Method that returns detailed information about category {category}:
name and its subcategories.

Returns codes: 200 OK, 404 Not Found

• GET pois/{poiId}

Method that returns detailed information about selected POI that has
defined id {poiId}.

Returns codes: 200 OK, 404 Not Found

• GET pois/{poiId}/photos/

Method that returns photos of selected POI that has defined id {poiId}.

Returns codes: 200 OK, 404 Not Found

• GET pois/{poiId}/reviews/

Method that returns all reviews that were written by users about selected
POI that has defined id {poiId}.

Returns codes: 200 OK, 404 Not Found
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• POST pois/{poiId}/reviews/

Method that creates new review object for selected POI with id {poiId}
and adds it to database. Body of request is a JSON object with data
that contains user username, text of review, rating stars and POI id,
and response with the created review object.

Returns codes: 201 Created, 400 Bad Request

• GET pois/{poiId}/tips/

Method that returns all tips that were written by users about selected
POI that has defined id {poiId}.

Returns codes: 200 OK, 404 Not Found

• POST pois/{poiId}/tips/

Method that creates new tip object for selected POI with id {poiId} and
adds it to database. Body of request is a JSON object with data that
contains user username, text of review and POI id, and response with
the created tip object.

Returns codes: 201 Created, 400 Bad Request

• GET user-profiles/{username}

Method that returns information about registered user who has user-
name {username}.

Returns codes: 200 OK, 404 Not Found

• PUT user-profiles/{username}

Method that returns information about registered user who has user-
name {username}. Body of request is a JSON object with data that
contains user username, updated avatar and new email address.

Returns codes: 202 Accepted, 400 Bad Request

• GET user-profiles/{username}/cities/{city}/categories/

/{category}/pois/

Method that returns list of POIs, that are recommended to the user
with the username {username} based on his preferences. All of POIs
are located in the city {city} and belong to the category {category}.

Returns codes: 200 OK, 404 Not Found
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4.2 Frontend implementation

In this section will be described the implementation of the frontend part of the
application. As it was mentioned before in the design chapter, the frontend
part was developed with React framework, so the implementation was coming
out of opportunities of this framework.

4.2.1 Bootstrap

For building styled UI components was used Bootstrap framework as it was
described before. For implementing Bootstrap was used a package called React
Bootstrap. It is a version of the most popular front-end framework [53] that
is rebuilt for React. React Bootstrap replaces the Bootstrap javascript. Each
component has been built from scratch as true React components, without
unneeded dependencies like jQuery.

Also, the application uses a free theme for Bootstrap, which was down-
loaded from Bootswatch [54] and called Yeti. It is a CSS file with rules that
describes views of the components for the entire application in one style. This
file connects to the main file with the application styles. The used theme was
a little bit customized by changing the colour scheme.

The most significant benefit of using Bootstrap is that it has a great grid
system. It allows to position UI elements in a fast and easy way. Furthermore,
it takes care of responsive views of the page, so there were no need to waste
a lot of time on writing special media queries for every breakpoint. So for the
making application responsible, it was written only some extra media queries,
the main part of them were included in Bootstrap libraries.

4.2.2 Routing

On the UI design stage was defined that application will have four primary
pages: home page, user profile page, search result page and POI detail page.
The developed application is a SPA, and for navigation between created pages,
it uses the React Router package [55]. There are three types of components
in React Router: router components, route matching components, and nav-
igation components. So route matching is done by comparing a <Route>’s
path prop to the current location’s pathname. When a <Route> matches, it
will render its content.

The web application has four routes:

• /

When this route matches, it renders the component, that represents the
main page of the application.

• /users/:username
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When this route matches, it renders the component, that represents the
user profile page of the application, and it is filled with information about
the user with username :username. For opening the editing section on a
page, it just changes rendering options of components inside of the page
component.

• /:city/categories/:category/places

When this route matches, it renders the component, that represents the
search result page of the application. The components on this page
represent information about POI in the selected city :city and chosen
category :category.

• /places/:placeId

When this route matches, it renders the component, that represents the
POI detail page of the application. This component displays information
about the selected POI that has an id :placeId.

4.2.3 State management

Application React components might have a lot of states and share it. Man-
aging the state of each component is painful. So the best idea is to handle all
the states from one place. For these purposes, the application uses the Redux
library.

Redux [56] is a predictable state container for JavaScript apps. It helps
to write applications that behave consistently, run in different environments
(client, server, and native), and are easy to test.

Due to Redux principles [56] the state of the whole application is stored
in a single store. For changing the state are used actions – objects describing
what happened. For specifying how does the state change are used reducers.
Reducers are just pure functions that take the previous state and an action
and return the next state.

In the application, the main reducer splits into three small reducers: auth,
pois and cities.

The auth reducer stores users authentication data – username, token, and
an error if authentication fails.

The pois reducer stores data about POIs which are registered at applica-
tion. It stores POIs list that is fetched from the backend, filtered POIs list
and an error if it occurs during fetching data from the backend.

The cities reducer stores data about cities existed in the application. It
stores cities list fetched from the backend, and an error if it occurs during
fetching data from the backend.

Any of the developed components can access and update all this stored
data at any time it needs.
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4.2.4 Communication with server

All client-server communications in the developed application were build on
Ajax. For providing communications were used axios [57] library. It is the
promise based HTTP client for the browser and node.js. The library has
predefined methods that allow making requests and getting responses easier
and quicker. Also, it provides automatic transforms for JSON data and client-
side support for protecting against Cross-site Request Forgery (CSRF).

4.2.5 Third-party API

One of the functional requirement was displaying POIs on the map, for this
purpose was used Google Maps API [58]. It allows to add an interactive map
to the web application and customize it with content and imagery. To facilitate
the work with Google Maps API in React components was used google-maps-
react package. It provides the declarative Google Map React component that
can be customized via properties and components it wraps.

Another application requirement was detecting the city of user location.
For this purpose also was used Google Maps API. The application sends a
request to the API that contains user’s geolocation coordinates, API key and
language of received data, and it responses with the name of the city which
corresponds to the sent geolocation coordinates. Coordinates are taken from
the browser navigator object.

4.2.6 User interface

The user interface of the application was developed based on the low-fi pro-
totype, that was created and described in the design chapter. As it was
discussed before, the application contains four main screens: home page, user
profile page, search result page and POI detail page. The developed user
interface is represented on the following Figures 4.2 - 4.5.

Figure 4.2: Home page
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Figure 4.3: User profile page

Figure 4.4: Search result page

Figure 4.5: POI detail page
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Chapter 5
Testing

Testing is one of the most critical parts of application development. It will
point out the errors that occur during the development phases. Testing makes
sure that the application performs all required functions and users can work
with the application without any problems.

Testing of the developed application consists of two parts: recommender
algorithm evaluation and user testing. Each of these parts is described in
details below.

5.1 Recommender algorithm evaluation

The designed hybrid algorithm that is used in the application from making
recommendations for a user was evaluated with two types of metrics: clas-
sification accuracy metrics and rank accuracy metrics. The evaluation with
predictive accuracy metrics is impossible because the algorithm returns only
the rank list of POIs and doesn’t predict the rating of POI.

For performing the algorithm evaluation were selected three different users
from the existing dataset. The first one has the highest number of posted
reviews, and another two have posted only some reviews about POIs they
visited. For each of these users were created user’s profile that allows logging
in the application via username and password.

Written reviews by the selected users were divided into two equal parts.
The first part was used for training the algorithm and the second part – for
testing. The algorithm was tested for the city where users have the highest
number of written reviews, and for the city where they have posted only some
reviews.

The hybrid algorithm evaluation results also were compared with the eval-
uation results of individual methods of which the final algorithm consists and
with the list of POIs that is ordered by rating.
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Figure 5.1: Evaluation results for the fist user and Toronto city

5.1.1 Evaluation with classification accuracy metrics

For the evaluation with classification accuracy metrics was used Precision and
Recall metric.

As it was mentioned before, the algorithm was tested on the data from
three users. For the measuring were used first 100 items from the recommen-
dation list.

The first user has written the highest amount of reviews – 4130 reviews.
For him were selected two cities: Toronto and Thornhill. For POIs that located
in the Toronto city, he has left the highest amount of reviews – 1716 reviews,
and for POIs located in Thornhill – 110 reviews.

The diagram on the Figure 5.1 displays the results of the used algorithm
evaluation with Precision and Recall metric for the Toronto city and evaluation

Figure 5.2: Evaluation results for the first user and Thornhill city
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Figure 5.3: Evaluation results for the second user and Las Vegas city

results presented by other algorithms.
The diagram on the Figure 5.2 displays the evaluation results for the

Thornhill city.
The second selected user has written 1559 reviews. For him were selected

two cities: Las Vegas and Scottsdale. The highest total number of reviews he
has posted for POIs located in Las Vegas – 1070 reviews and in the Scottsdale
he has rated only 64 POIs.

The Figure 5.3 and the Figure 5.4 represent the diagrams with the evalu-
ation of algorithms for the second user for the Las Vegas city and Scottsdale
city respectively.

The third selected user has posted only 499 reviews. Scottsdale city and

Figure 5.4: Evaluation results for the second user and Scottsdale city
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Figure 5.5: Evaluation results for the third user and Scottsdale city

Tempe city were selected for testing of the algorithms. In the Scottsdale, he
has rated 232 POIs, and in Tempe city, he has visited 39 POIs.

The Figure 5.5 and the Figure 5.6 describe the diagrams with the evalua-
tion of algorithms for the third selected user and cities Scottsdale and Tempe
respectively.

To sum up, based on the received results from the evaluation of the al-
gorithms with the Precision and Recall metric, the implemented hybrid algo-
rithm works pretty well in case when the user has rated more POIs from one
city. In case when the user has rated only a few POIs in the web applica-
tion, the algorithm will give user a list with a higher amount of relevant POIs
than recommendation list ordered by rating, but results will be close to the
content-based filtering method.

Figure 5.6: Evaluation results for the third user and Tempe city
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Figure 5.7: Evaluation results for the first user

5.1.2 Evaluation with rank accuracy metrics

For the evaluation with rank accuracy metrics was used NDCG metric.
The evaluation of the algorithms with the NDCG metric was made on the

same data that was used and described in the previous section. Furthermore,
the evaluation results from the implemented hybrid algorithms were compared
with the result from the other methods: item-based collaborative filtering,
singular-value decomposition method, content-based filtering and recommen-
dations by rating.

Results of the evaluation of the algorithms on data from the first selected
user are displayed on Figure 5.7. It represents NDCG values for every tested

Figure 5.8: Evaluation results for the second user

59



5. Testing

Figure 5.9: Evaluation results for the third user

algorithm in two cities: Toronto and Thornhill.
The Figure 5.8 represents the diagrams with the results of the computing

NDCG values form data about the second user on cities: Las Vegas and
Scottsdale.

The results from the evaluation of algorithms using the NDCG metric on
the data from the last third user is illustrated on Figure 5.9. It displays results
for two cities: Scottsdale and Tempe.

So, in conclusion, the implemented hybrid algorithm gives good results. It
works better when the user has a great user profile (has rated a lot of POIs);
in this case, it works better than other algorithms that were tested. But
in the situation when it is a new user who just starts to use an application
and has rated only a few POIs, the algorithm can rank the recommendations
better than item-based collaborative filtering, singular-value decomposition
method and recommendations by rating, but content-based filtering method
ranks recommendations a little bit better.

5.1.3 Execution time

For each evaluation of the algorithm was measured the execution time. The
measurement was made on laptop with a 2.7 GHz Intel Core i5 processor.

Execution time was measured by using the time built-in Python module.
Results of time measurement are described in Figure 5.10. It displays time of
running the computations for each selected user and cities that were chosen
for measurement before. The time was measured in seconds.

The execution time of the used algorithm is increasing due to the size
of a user profile. It is a problem, in case that users will not want to wait
long for getting the results. There are some ideas that will help to reduce
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Figure 5.10: Execution time

the algorithm execution time. The first one is to run the algorithm on more
powerful hardware. The second one is to make the algorithm run in parallel.
And the last one is to use query results caching on the database layer.

5.2 User testing

User testing is one of the primary methods of functionality and interface test-
ing. The advantage of this testing is that you have feedback from potential
users about how the developed application is convenient and intuitive for the
user who works with it for the first time. Furthermore, a people who test it
can suggest some improvements. The disadvantage is that this type of testing
is very time-consuming.

5.2.1 Target audience

People from the target audience of the application always participate in user
testing. The target audience for the developed application has no restrictions
on age and gender. A potential application user is a person who is computer
literate and uses the Internet for his own purposes (for example using applica-
tions, reading news, watching videos, etc.). The application focuses on people
who love travelling or visiting and exploring new places in their home city. At
this stage of the development, the application will be useful for people who
live or planning to visit the USA or Canada because it stores POIs from these
countries.
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5.2.2 Testing process

Testing of the application is divided into three parts. At first, person, who
takes part in application testing might answer the following pre-test question-
naire:

• How do you discover new places which you want to visit?

• Do you use some web sites/application that recommends you where to
go?

• Have you ever participated in any usability testing?

After answering the questions, a person can go to the next part of the
testing. He needs to complete tasks, that are described in the testing scenario,
step by step. The tasks are:

1. Register in the application. Use your own information.

2. Log in the application with the data you provide on previous step.

3. Change information in your profile. Upload new avatar, use file avatar.png
on the desktop. Change e-mail address.

4. Go back to your profile information and check if avatar and e-mail are
changed.

5. Go to the main page.

6. Imagine that next week you are going to the city Richmond Hill. Find
some good places to eat in this city.

7. Find expensive restaurants.

8. Choose one that you would like to visit.

9. Read information about this place. Read some reviews and tips.

10. Imagine that you have visited this place, write a review with your opin-
ion.

11. Log out from the application.

Finally, after finishing performing tasks from the testing scenario, a person
who tests the application might leave feedback about the application in the
form of answering the following questions:

• What is your overall impression of the application?

• Was the test scenario clear?
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• What did you like in the application?

• What didn’t you like in the application?

• Do you have any improvement suggestions?

5.2.3 Testing results

The application was tested by five people. All their feedback is provided in
Appendix B. Also, screen casts from the user testing are available on the
attached CD disk.

Based on testers feedback, the application testing results are the following.
The developed application has an intuitive and user-friendly interface. It is
easy to use and find all necessary things and information that user need to
know about POI he wants to visit. The application has basic functionality,
but even so, it allows a user to specify his request by using filters.

Some shortcomings were detected during application testing. All of them
will be fixed. The critical ones are

• The weird behaviour of the registration form. Sometimes it doesn’t
create a new user. There are no successful or error messages, so the user
doesn’t know if his registration was successful and he can log in to the
application.
The solution to this problem is adding successful/error messages and
fixing the form validation.

• The name of the ”registration” button might confuse users. Some of the
testers at first click to the ”log in” button instead of the ”registration”
button. One of them said that he was confused, and could not find the
right one from the first sight.
The solution is to rename the button from ”Get started” to the ”Regis-
tration”.

• Search results return too many POIs, especially on the map. It causes
difficulties for a user to explore POIs throw the map.
The solution is to add pagination for the search results, and it will reduce
the number of POIs described on the map at the same time.

Also, testers have suggested some improvements, that will be applied in the
future. For example, adding the ability of searching POIs by several categories
at the same time and adding photo gallery for POI, where users will be able
to share their photos, which were made at the POI.
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Conclusion

The main goal of this work was a design, implementation and evaluation
of a proof of the concept web application acting as the Points Of Interests
recommender system.

In the work were considered various types of recommender systems and in-
vestigated different methods, which can be used for making recommendations.
It was designed and described the hybrid method which lies at the basis of
the developed web application. Designed algorithm combined three different
approaches: item-based collaborative filtering, singular-value decomposition
method and content-based filtering. Combining of approaches allows to deal
with shortcomings of each of these methods, especially it helps to avoid the
cold-start problem.

Based on the designed hybrid algorithm was designed and implemented
web application, that acts as the Points Of Interests recommender system.

The application was tested and had good feedback about the overall im-
pression of the user interface, but it also was discovered some shortcomings,
that are described in the previous chapter ”Testing”, all of them will be fixed.

Furthermore, the used hybrid algorithm was evaluated with two types of
metrics: classification accuracy metrics and rank accuracy metrics. For this
purpose were used three users with different user profile size. The results of
the evaluation was that for the big user profile the designed algorithm returns
better ranked recommendations than each of the algorithms it contains. For
the case, when user is looking for the POIs in the city, where he hasn’t rate
any POI, the content-based filtering method works better. This information
was taken into account and for this cases the developed application uses the
content-based filtering method.

The developed web application that acts as the Points Of Interests recom-
mender system satisfies all the requirements that was defined in the ”Analysis”
chapter. It uses the hybrid recommender algorithm that makes pretty good
recommendations. So users of the web application can find new amazing
places, that they will like, quickly and easily.
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[35] Mart́ınez, L.; Pérez, L. G.; et al. A multigranular linguistic content-
based recommendation model. International Journal of Intelligent Sys-
tems, 2007: pp. 419–434.

[36] Ivan Cantador, D. V., Alejandro Bellogin. Content-based recommenda-
tion in social tagging systems. Proceedings of the 2010 ACM Conference
on Recommender Systems, 2010.

[37] Martinez, L.; Perez, L. G.; et al. What is PostgreSQL? International
Journal of Intelligent Systems, 2007: pp. 419–434.

[38] Sanner, M. F. Python: a programming language for software integration
and development. J Mol Graph Model, 1999.

69

http://foursquare.com/about
http://foursquare.com/about


Bibliography

[39] Oliphant, T. E. Python for Scientific Computing. Computing in Science
Engineering, 2007: pp. 10–20.

[40] Forcier, J.; Bissex, P.; et al. Python Web Development With Django.
Addison-Wesley Professional, 2008, ISBN 9780132701815.

[41] Forcier, J.; Bissex, P.; et al. The Definitive Guide to Django: Web Devel-
opment Done Right. Apress, 2009, ISBN 9780132701815.

[42] Django. Django documentation. Available from: https:
//docs.djangoproject.com/en/1.8/

[43] Doglio, F. Pro REST API Development with Node.js. Apress, 2015, ISBN
9781484209172.

[44] Fink, G.; Flatow, I.; et al. Pro Single Page Application Development:
Using Backbone.js and ASP.NET. Apress, 2014, ISBN 9781430266747.

[45] Jadhav, M. A.; Sawant, B. R.; et al. Single Page Application using Angu-
larJS. International Journal of Computer Science and Information Tech-
nologies, 2007: pp. 10–20.

[46] Gackenheimer, C. Introduction to React. Apress, 2015, ISBN
9781484212455.

[47] Cochran, D. Twitter Bootstrap Web Development How-To. Birmingham
: Packt Publishing Ltd, 2012.

[48] Spurlock, J. Bootstrap. O’Reilly Media, 2013, ISBN 9781449343910.

[49] NumPy. About NumPy. Available from: https://www.numpy.org

[50] Pandas. Pandas documentation. Available from: http://
pandas.pydata.org/pandas-docs/stable/

[51] surprise. Surprise documentation. Available from: https:
//surprise.readthedocs.io/en/stable/

[52] django-allauth documentation. Available from: https://django-
allauth.readthedocs.io/en/latest/index.html

[53] React Bootstrap documentation. Available from: https://react-
bootstrap.github.io/getting-started/introduction

[54] Bootswatch: Free themes for Bootstrap. Available from: https://
bootswatch.com

[55] React Router documentation. Available from: https://
reacttraining.com/react-router/

70

https://docs.djangoproject.com/en/1.8/
https://docs.djangoproject.com/en/1.8/
https://www.numpy.org
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
https://surprise.readthedocs.io/en/stable/
https://surprise.readthedocs.io/en/stable/
https://django-allauth.readthedocs.io/en/latest/index.html
https://django-allauth.readthedocs.io/en/latest/index.html
https://react-bootstrap.github.io/getting-started/introduction
https://react-bootstrap.github.io/getting-started/introduction
https://bootswatch.com
https://bootswatch.com
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/


Bibliography

[56] Redux documentation. Available from: https://redux.js.org

[57] Axios documentation. Available from: https://github.com/axios/
axios

[58] Google Maps Platform Documentation. Available from: https://
developers.google.com/maps/documentation/

71

https://redux.js.org
https://github.com/axios/axios
https://github.com/axios/axios
https://developers.google.com/maps/documentation/
https://developers.google.com/maps/documentation/




Appendix A
Acronyms

API Application programming interface

CB Content-based Filtering

CF Collaborative Filtering

CSRF Cross-site Request Forgery

DCG Discounted Cumulative Gain

FPR False positive rate

JSON JavaScript Object Notation

LBS Location-Based Service

LBSN Location-Based Social Network

MAE Mean Absolute Error

NDCG Normalized Discounted Cumulative Gain

NMAE Normalized Mean Absolute Error

POI Point Of Interest

REST REpresentational State Transfer

RMSE Root Mean Squared Error

ROC Receiver Operating Characteristic

RS Recommender system

RWS RESTful Web services

SPA Single-page application
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A. Acronyms

SQL Structured Query Language

SVD Singular-value decomposition

TPR True positive rate
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Appendix B
Testing survey

B.1 Tester 1

Maksym, 24 years old, student.

B.1.1 Pre-test questionnaire

1. As usual I use travel guides, local guides, youtube travel series.

2. Yes, I use navigation apps, like google maps that allows to search places
that are located nearly.

3. Yes.

B.1.2 Post-test questionnaire

1. Application looks nice.

2. Yes, it was clear.

3. I like the map on the search result page, where you can find places
near you favourite location. Filtering by attributes looks very useful,
especially if you in a situation when you haven’t any cash, you can find
place where you can pay by card, or order a delivery.

4. I don’t like that all results are shown on the one page, especially on the
map. Also I don’t like that after changing user picture, updated infor-
mation doesn’t show even the successful notification message is shown.
It confuses the user.

5. I suggest to add successful notification messages after creating a profile,
add pagination for search result and reviews and add photo gallery for
places cover image.
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B. Testing survey

B.2 Tester 2

Kostantyn, 21 years old, student

B.2.1 Pre-test questionnaire

1. I use advises from friends, foursquare or advertising on bus stops.

2. Yes, as I have said, I use foursquare and sometimes web sites that ag-
gregate all events in my city.

3. No.

B.2.2 Post-test questionnaire

1. Application looks fine, but it has small functionality and sometimes it
doesn’t work as I was expected.

2. Yes.

3. I like that the interface was very intuitive.

4. I don’t like that categories are not mixed together, so you can choose
only one, also I don’t like that selected category aren’t highlighted.

5. I think that good improvement will be allowing user to choose more cat-
egories in one time, also I can suggest to add some arrows for switching
in the search fields, because if user fill wrong field he can easily switch,
it is no need to retype his searching parameters, and also I advise to fix
some weird application behavior especially with registration form.

B.3 Tester 3

Sergey, 20 years old, student

B.3.1 Pre-test questionnaire

1. Mainly I use the youtube.

2. Sometimes I use foursquare.

3. No.
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B.4. Tester 4

B.3.2 Post-test questionnaire

1. Application is good and easy to use.

2. Clear.

3. I like that application is user-friendly and intuitive.

4. I don’t like that it no allowed to search only by city name.

5. I advise to add searching only by city name, maybe to do it by the most
popular category.

B.4 Tester 4

Ludmila, 21 years old, student

B.4.1 Pre-test questionnaire

1. I just google everything what I need.

2. No, I don’t use any of them.

3. No.

B.4.2 Post-test questionnaire

1. It is pretty easy to use.

2. Yes.

3. I like that application is simple and as I have said it easy to use.

4. I don’t like the submenu under the user icon, that you need to click
to the icon and than choose Profile option, I was expected that I’ll be
navigated to profile page after clicking the user icon in the navigation
panel.

5. I don’t know, maybe fix that thing with user profile navigation.

B.5 Tester 5

Vlad, 22 years old, student
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B. Testing survey

B.5.0.1 Pre-test questionnaire

1. I listen my friends and their advises.

2. No.

3. Yes.

B.5.1 Post-test questionnaire

1. Regular application, I found all that I was need.

2. Yes, it was ok.

3. I like that I can find all that I need.

4. I don’t like that searching fields don’t have dropdown options, and you
need to start typing.

5. I advise to change name of registration button to something more un-
derstandable, that will not confuse the user.
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Appendix C
Installation guide

The following steps need to be performed for the application installation.
Before the application installation it might be installed node.js, python,

PostgreSQL.
For the backend part installation:

1. Go to the directory application/backend

2. Create virtual environment by the command from the terminal:
virtualenv poienv

3. Activate created virtual environment:
source poienv/bin/activate

4. From the terminal run the command:
pip install -r requirements.txt

5. In the file application/backend/poi/poi/settings.py find the DATABASES
section and set it up according to your database.

6. Go to the directory application/backend/poi

7. Run the command:
python manage.py makemigrations

8. Run the command:
python manage.py migrate

9. Load data to the database:
psql -h hostname -d databasename -U username -f application/poi.sql

For the frontend part installation:
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C. Installation guide

1. Go to the directory application/frontend/gui

2. From the terminal run the command:
npm install

To run the application:

1. Go to the directory application/backend/poi

2. Run the command:
python manage.py runserver

3. Go to the directory application/frontend/gui

4. Run the command:
npm start

The application is running on http://localhost:8080. The adminis-
tration page is available on http://localhost:8000/admin. Administrator
login data is the following:

username: admin
password: admin
To create new administrator user:

1. Go to the directory application/backend/poi

2. Run the command:
python manage.py createsuperuser
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Appendix D
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

application................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format

screen casts..................the directory of user testing screen casts
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