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Abstrakt

Tato diplomová práce se zabývá předpov́ıdáńım ceny elektřiny v závislosti
na počaśı. Výzkum tohoto tématu je předmětem velkého zájmu, protože na
přesných předpověd́ıch cen elektřiny záviśı provozovatelé elektráren i velké
podniky, které elektřinu spotřebovávaj́ı. Vzhledem k nemožnosti efektivńıho
ukládáńı větš́ıho množstv́ı elektřiny a nutnosti vyvažovat v śıti mezi produkćı
a spotřebou cena elektřiny na krátkodobých trźıch velmi výrazně koĺısá, což
čińı jej́ı přesné předpov́ıdáńı náročným.

Cenu elektřiny ovlivňuje mnoho faktor̊u. Zejména ve středńı a západńı
Evropě je jedńım z nich počaśı, kv̊uli stále se zvyšuj́ıćımu množstv́ı solárńıch
a větrných elektráren. Ćılem této práce je analyzovat dostupná data o počaśı
a cenách elektřiny na burze a vytvořit pro tato data prediktivńı model.

Kĺıčová slova předpověd’ cen elektřiny, časové řady, počaśı
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Abstract

This thesis deals with electricity price forecasting based on weather conditions.
The research of this topic is of great interest because accurate forecasting is
essential for both the electricity producers and consumers. Due to the inability
of storing a large amount of electricity efficiently and the necessity to balance
between production and consumption, the short-term electricity price tends
to be very volatile, which makes it difficult to predict it accurately.

There are many factors that affect the electricity price. Especially in
Central and Western Europe, very important factor is the weather, due to
increasing number of solar and wind power plants. This thesis aims to analyze
available data about weather forecasts and the electricity prices and create
predictive models for this data.

Keywords electricity price forecasting, time series, weather

ix





Contents

Introduction 1

1 Theoretical background 3
1.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Akaike information criterion . . . . . . . . . . . . . . . . . . . . 3
1.3 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Weak stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Root mean squared error . . . . . . . . . . . . . . . . . . . . . . 7
1.7 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Lag operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Difference operator . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 ARIMA models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.11 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Electricity price forecasting approaches 15
2.1 Multi-agent models . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Reduced-form models . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Machine learning models . . . . . . . . . . . . . . . . . . . . . . 17

3 Analysis 19
3.1 Electricity market . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Selection of the market for modeling . . . . . . . . . . . . . . . 21
3.3 Data sources analysis . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data 27
4.1 Data retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



4.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Modeling 39
5.1 SARIMAX models . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Neural network models . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Model averaging algorithm . . . . . . . . . . . . . . . . . . . . 43

6 Results 47

Conclusion 53

Bibliography 55

A Acronyms 59

B Contents of enclosed CD 61

xii



List of Figures

1.1 Examples of correlation coefficients . . . . . . . . . . . . . . . . . . 6
1.2 Basic model of artificial neuron . . . . . . . . . . . . . . . . . . . . 12
1.3 Various activation functions . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Feedforward networks . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Electricity spot market schema . . . . . . . . . . . . . . . . . . . . 20
3.2 Typical electricity price development . . . . . . . . . . . . . . . . . 20
3.3 Example of negative electricity prices . . . . . . . . . . . . . . . . . 21
3.4 Shares of renewable energy sources in Germany . . . . . . . . . . . 22

4.1 Solar power plants by electrical capacity . . . . . . . . . . . . . . . 30
4.2 Wind power plants by electrical capacity . . . . . . . . . . . . . . . 31
4.3 Histogram of the electricity prices . . . . . . . . . . . . . . . . . . 34
4.4 The electricity price from May 2017 to December 2018 . . . . . . . 35
4.5 Mean electricity price by hours and seasons . . . . . . . . . . . . . 36
4.6 Mean electricity price by days . . . . . . . . . . . . . . . . . . . . . 37
4.7 Grouped histograms of negative prices . . . . . . . . . . . . . . . . 37

6.1 Example of good ensemble prediction . . . . . . . . . . . . . . . . 49
6.2 Example of uncommon prices development . . . . . . . . . . . . . 50
6.3 Example of bad ensemble prediction . . . . . . . . . . . . . . . . . 51
6.4 The percentage of non-zero weights for models . . . . . . . . . . . 52

xiii





List of Tables

3.1 Popular weather forecast models comparison . . . . . . . . . . . . 23

4.1 Statistical properties of the weather data . . . . . . . . . . . . . . 33
4.2 Statistical properties of the electricity prices data . . . . . . . . . . 34
4.3 Values of the Pearson correlation coefficient between the features . 38

5.1 Selected SARIMAX models . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Selected ANN models . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Models performance . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 The number of non-zero weights for models . . . . . . . . . . . . . 52

xv





Introduction

Ensuring a stable electricity supply is a very complicated task. It is not yet
possible to store a large amount of electricity efficiently. On the other hand,
it is critical to assure that the electricity is available in the network all the
time. Both the demand and supply vary greatly over time. The demand
is generally lower in the night and higher during the daytime, but it also
changes seasonally on a weekly, monthly and yearly basis. Part of the supply
is created by renewable power sources, such as wind or photovoltaic power
plants, where the supply is determined by the current weather - especially the
wind conditions and the cloud cover - and therefore can change rapidly.

Some form of a regulator that ensures that the supply and demand in the
transmission grid are balanced exists in most regions. If more electricity is
supplied to the grid than taken out, the utility frequency in the system can
increase (and vice versa), which can cause serious problems. The regulator is
responsible for keeping reserves to compensate for possible disruptions in the
supply. Until a few decades ago, the state-owned companies had a monopoly
in the electricity market in every country in the world. The first country to
attempt privatization of the electric power systems and subsequent creation
of a deregulated power market was South American Chile in the early 1980s
[1]. This attempt is generally considered to be fairly successful. After Chile,
several other South American countries tried to privatize this industry to some
extent, due to the necessity of investments in the infrastructure. However, the
results were limited.

In 1990, UK’s Prime Minister Margaret Thatcher privatized electricity
supply industry in the United Kingdom [2]. During the first few years, the
electricity prices rose, but since 2000, the consumers started to gain from the
transformation. Consequently, other Commonwealth countries adopted the
British model into their economies.

In the United States of America, about a dozen states implemented dereg-
ulation of the power market in the late 1990s. In 2000–2001, California ex-
perienced vast electricity supply shortages and consequent rapid increase in
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Introduction

electricity prices. The price for a megawatt hour rose from $30 in April of 2000
as high as $450 in November of the same year. This rise was caused mainly
by a combination of increased demand, reduction in imports, and delays in
new power plants approvals [3].

Many developed countries chose to deregulate the electricity market to
some extent, allowing private companies to buy and sell the electricity on
the market. Nowadays, it can be traded intra-day (balance market), day-
ahead (spot market), or for a longer time ahead (futures market). This thesis
aims to create a predictive model for the spot market prices. The short-term
market is convenient for this purpose because it is very liquid and therefore the
time series of the prices is available. Also, reliable weather forecasts are not
available over a longer period of time, and therefore the price in the futures
market is less influenced by the weather than the spot market prices.
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Chapter 1
Theoretical background

In this chapter, the theoretical background of the concepts used in the thesis
is presented. These include both the models used for the forecasting and
statistical tools for their analyses and evaluation.

1.1 Likelihood function

Let X1, . . . , Xn be a random sample, x1, . . . , xn the values of the random sam-
ple from a population characterized by the parameters θ1, . . . , θr. According
to [4], the likelihood function of the sample is defined as the joint probability
mass function evaluated at (x1, . . . , xn) if (X1, . . . , Xn) are discrete,

L (θ1, . . . , θr) = p (x1, . . . , xn; θ1, . . . , θr) , (1.1)

or the joint probability density function evaluated at (x1, . . . , xn) if (X1, . . . , Xn)
are continuous,

L (θ1, . . . , θr) = f (x1, . . . , xn; θ1, . . . , θr) . (1.2)

The value of the likelihood function is a positive number, often very small.
This fact makes it convenient to work with a logarithmic transformation of
the likelihood function, known as the log-likelihood function.

1.2 Akaike information criterion

Akaike information criterion (AIC) is a statistical tool that can be used to
estimate the relative quality of statistical models for a given dataset. It was
formulated by Japanese statistician Hirotugu Akaike in 1973 [5].

AIC can be computed as

AIC = −2 log
(
L
(
θ̂|y
))

+ 2K, (1.3)
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1. Theoretical background

where log
(
L
(
θ̂|y
))

is the numerical value of the log-likelihood at its maxi-
mum point and K denotes the number of estimable parameters in the model,
according to [6]. The models with lower value of AIC are considered to be
better than those with higher value.

1.3 Distributions

In the following sections, the distributions that are used later in the thesis are
defined.

1.3.1 Bernoulli distribution

Bernoulli distribution is a discrete distribution of a random variable X that
can take two possible values with probabilities p and 1−p. Let X be a random
variable that satisfies

P (X = 1) = p (1.4)

and
P (X = 0) = 1− p. (1.5)

Random variable X then has the Bernoulli distribution with parameter p,
X ∼ Bernoulli(p) [4].

1.3.2 Categorical distribution

Categorical distribution is a generalization of the Bernoulli distribution to
K possible outcomes. Let x be K-dimensional vector in which one of its
elements xk is equal to 1 and all remaining elements are equal to 0, and
µ = (µ1, . . . , µK) is a vector containing the probabilities of x1, . . . , xK being
equal to 1. According to [7], categorical distribution is then given by

p (x|µ) =
K∏
k=1

µxk
k . (1.6)

The elements of the vector µ = (µ1, . . . , µK) represent probabilities and there-
fore satisfy conditions

K∑
k=1

µk = 1 (1.7)

and
µk ≥ 0, k ∈ {1, . . . ,K} . (1.8)
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1.4. Weak stationarity

1.3.3 Dirichlet distribution

Let µ = (µ1, . . . , µK) be vector such that ∑K
k=1 µk = 1 and µk ∈ [0, 1] for each

k ∈ {1, . . . ,K}. According to [7], the Dirichlet distribution is given by

Dir (µ|α) =
Γ
(∑K

k=1 αk
)

∏K
k=1 Γ (αk)

K∏
k=1

µαk−1
k , (1.9)

where Γ is the gamma function and α = (α1, . . . , αK) are the parameters of
the distribution.

1.4 Weak stationarity

Weak stationarity is an important property of time series that is necessary
for some models. According to [8], the time series is weakly stationary if its
expected value and variance are time-invariant, and the variance is finite.

1.5 Correlation

In the broadest sense, correlation is a statistical association between two ran-
dom variables. It is usually used to establish how much two random variables
are related. In the following sections, some of the applications of this concept
are discussed.

1.5.1 Pearson correlation coefficient

Pearson correlation coefficient (PCC) is a statistical measure of mutual linear
dependence between random variables X and Y . Assuming positive variances
of random variables X, Y , Pearson correlation coefficient ρX,Y can be math-
ematically expressed as

ρX,Y = cov(X,Y )
σxσy

= cov(X,Y )√
varX

√
varY

. (1.10)

PCC can be applied to a data sample by replacing variances and covari-
ances with their estimates in Equation (1.10). For n samples {(x1, y1), . . . , (xn, yn)},
sample Pearson correlation coefficient estimate can be expressed as

rxy =
∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2 , (1.11)

where x = 1
n

∑n
i=1 xi is the sample mean of x (y can be calculated analogously).

The value of the PCC is a real number from closed interval [−1, 1] where
value -1 means total negative linear relationship, 0 no linear relationship at
all and 1 total positive linear relationship. An example of the correlation
coefficients for various X and Y pairs is visualized in Figure 1.1.
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1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure 1.1: Examples of correlation coefficients [9]

1.5.2 Partial correlation coefficient

Let X and Y be random variables with some linear relationship between them,
and Z n-dimensional vector that affects both X and Y . To measure the
correlation between the two random variables, it is necessary to remove the
influence of the vector Z. The partial correlation coefficient ρXY ·Z between
X and Y given Z is defined as

ρXY ·Z = ρXY − cor(X,Z)(corZ)−1 cor(Z, Y )√
[1− cor(X,Z)(corZ)−1 cor(Z,X)] [1− cor(Y, Z)(corZ)−1 cor(Z, Y )]

(1.12)

If Z is scalar, the above formula can be simplified to

ρXY ·Z = ρXY − ρZXρZY√(
1− ρ2

ZX

) (
1− ρ2

ZY

) . (1.13)

The domain of the partial correlation coefficient is (just as for the Pearson
correlation coefficient) a closed interval [−1, 1] [10].

1.5.3 Autocorrelation function

The autocorrelation function (ACF) for a time series is a Pearson correlation
coefficient of the series in different points in time. For weakly stationary time
series Xt and times s and t, ACF R(s, t) is defined by

R(s, t) = E[(Xt − µ)(Xs − µ)]
σ2 . (1.14)

Assuming that the value of time series Xt is directly influenced by the
previous value Xt−1, the absolute values of ACF will be gradually decreasing
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1.6. Root mean squared error

because the influence of the previous value decreases. ACF allows determining
some properties of time series [11].

1.5.4 Partial autocorrelation function

Let Xt be weakly stationary time series. The partial autocorrelation func-
tion (PACF) α(k) of lag k is the autocorrelation between Xt and Xt+k, with
removed linear relationship of values Xt+1, . . . , Xt+k−1. It can be mathemat-
ically described as

α(k) = rXt+kXt·{Xt+1,...,Xt+k−1}. (1.15)

PACF allows determining some properties of time series [11].

1.6 Root mean squared error

The root mean squared error (RMSE) is a popular and frequently used mea-
sure of differences between predictions and the real values. It is defined as
a square root of the average of squared differences between observations and
the model prediction. The measure is mathematically expressed as

RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)2, (1.16)

where n is the number of predictions, yt is the tth measurement and ŷt is the
tth prediction.

RMSE is always non-negative, with value 0 indicating a perfect model that
always predicts the same value as an observation. It is used to compare the
performance of different models on a particular dataset. It cannot be used to
compare forecasting accuracy between datasets because it is dependent on the
scale of the data [11].

1.7 White noise

The white noise is a random process Xt that satisfies the following conditions,

E[Xt] = 0, (1.17)

var(Xt) = σ2 <∞, (1.18)

cov(Xt, Xt+τ ) = 0. (1.19)
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1.8 Lag operator

The lag operator (or backshift operator) L is used for convenient notation
in many time series related concepts [11]. It is an operator that for a given
element of a time series returns the previous element,

LXt = Xt−1, t > 1. (1.20)

The inverse of the lag operator L−1, given Xt, returns the next value in
the time series,

L−1Xt = Xt+1. (1.21)

The lag operator can be raised to an integer power, resulting in its multiple
application,

LkXt = L · L · · ·L︸ ︷︷ ︸
k×

Xt = Xt−k. (1.22)

1.9 Difference operator

The difference operator ∇ applied to an element of a time series returns the
difference of this element with the previous one, which can be conveniently
written using the lag operator L [11],

∇Xt = Xt −Xt−1 = (1− L)Xt. (1.23)

Raising the operator to an integer power results in multiple application of
the operator, which can also be simplified using the lag operator [11],

∇kXt = (1− L)kXt. (1.24)

1.10 ARIMA models

The ARIMA models were popularized by statisticians George Box and Gwilym
Jenkins [10], and they have become one of the most popular models in time
series modeling. ARIMA stands for AutoRegressive Integrated Moving Aver-
age, and it consists of two parts - the autoregressive (AR) part and the moving
average (MA) part. The description of the models in the following sections
references [11].

1.10.1 AR models

The autoregressive (AR) models describe random process using its past real-
izations. Autoregressive model AR(p) with order p is defined as

Xt = β0 +
p∑
i=1

βiXt−i + εt, (1.25)
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1.10. ARIMA models

where β = (β0, . . . , βp) is a vector of regression coefficients and εt is white
noise.

1.10.2 MA models

Assuming that εt is white noise, the moving average model MA(q) with order
q is defined as

Xt = µ+ εt +
q∑
i=1

θiεt−i, (1.26)

where µ is the mean of the time series and θ = (θ1, . . . , θq) are the parameters
of the model.

1.10.3 ARMA models

The autoregressive moving average (ARMA) models combine both AR and
MA approaches. ARMA(p, q) model with AR order p and MA order q can be
expressed as

Xt = c+ εt +
p∑
i=1

φiXt−i +
q∑
i=1

θiεt−i, (1.27)

where c is a constant and φ = (φ1, . . . , φp) are the parameters of the AR part.

1.10.4 ARIMA models

The autoregressive integrated moving average models (ARIMA) are a gener-
alization of ARMA models. For non-stationary time series, it is possible to
replace the original data values with differences between neighboring values
to eliminate the non-stationarity. This process is called differencing and can
be applied one or multiple times. The number of times the differencing is
performed is called the order of differencing.

ARIMA models can be defined using lag operator L as(
1−

p∑
i=1

φiL
i

)
Xt =

(
1 +

q∑
i=1

θiL
i

)
εt. (1.28)

1.10.5 SARIMA models

The seasonal ARIMA (SARIMA) is an extension of the previously defined
ARIMA model, which takes seasonality into account. Time series often have
patterns that periodically repeat in one or more cycles. For example, the
outside temperature has daily cycles and yearly cycles. This property is called
seasonality. When modeling time series, seasonality causes non-stationarity.
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1. Theoretical background

The differencing was previously used to remove non-stationarity in a time
series. The same approach can be used in this case, differencing the values
across the period of the seasonality,

∇sXt = (1− Ls)Xt = Xt −Xt−s. (1.29)

Model SARIMA(p, d, q)(P,D,Q)s with seasonality s is defined as

ΦP (Ls)φp(L)∇Ds ∇dXt = θq(L)ΘQ(Ls)εt, (1.30)

where

• ΦP (Ls) is seasonal AR operator with order P ,

• φp is AR operator with order p,

• ∇Ds is seasonal difference operator with order D,

• ∇d is difference operator with order d,

• ΘQ(Ls) is seasonal MA operator with order Q,

• θq(L) is MA operator with order q.

1.10.6 SARIMAX models

The SARIMAX is an extension of the previously defined SARIMA models
that allows to include exogenous regressors into the model. It is particularly
useful when the target variable is to some extent determined by one or more
explanatory variables. For the purpose of this thesis, the weather conditions
can be considered as the explanatory variables of the electricity price.

According to [12], the SARIMAX model can be expressed as

Xt = ut +
N∑
i=1

β
(i)
t x

(i)
t , (1.31)

where N is the number of exogenous regressors, x(i)
t is ith exogenous regressor,

β
(i)
t is coefficient of ith exogenous regressor, and ut represents SARIMA model,

ΦP (Ls)φp(L)∇Ds ∇dut = θq(L)ΘQ(Ls)εt. (1.32)

1.11 Neural Networks

The artificial neural networks (ANNs) is a class of machine learning models
that are inspired by biological neural networks. ANNs have become very
popular recently, due to their ability to successfully model a large variety of
problems. According to [13], the main benefits of neural networks are:
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1. Nonlinearity

The structure of ANN can be non-linear, which is very important for
modeling difficult problems which are often inherently non-linear.

2. Input-Output Mapping

The ANNs belong to a group of machine learning techniques called su-
pervised learning (or learning with a teacher). These methods involve
creating a function that maps the input to output, given example input
data and desired output. The process of creating the function is called
learning or training, and the example data are called the training set.

In the learning process, the model is being given randomly chosen data
from the training set, and it adjusts its inner parameters (e.g., synaptic
weights in the case of the ANNs) to minimize the difference between its
prediction and the desired output.

3. Adaptivity

The artificial neural networks can easily adapt to the changes in the
environment they are operating in. They can be retrained to take the
changes that might occur into account, or they can even be designed to
adjust the synaptic weights in real time.

4. Fault tolerance

Due to the fact that the knowledge of ANN is distributed across the
whole network, ANNs are robust in the sense that when a part of the
network gets damaged, the network can still perform reasonably, rather
than fail completely.

1.11.1 Neuron

A neuron is an elementary unit of the artificial neural networks. According to
[13], the basic model of an artificial neuron consists of three parts:

1. Synapses

The synapses are the connecting links that bring input signal into the
neuron. Each synapse is assigned a weight which multiplies the signal
brought to the neuron by the synapse.

2. Summing function

The summing function sums the input signals weighted by the weights
of the synapses that brought them into the neuron and a constant term
called bias.

11
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Figure 1.2: Basic model of artificial neuron

3. Activation function
The activation function transform the output of the summing function
into a defined interval - usually [−1, 1] or [0, 1]. The function can be
linear or non-linear.

Mathematically, neuron k can be described by equation

yk = ϕ

(
m∑
i=1

wkixki + bk

)
, (1.33)

where ϕ is the activation function, wk1, . . . , wkm are the synaptic weights of
the neuron k, xk1, . . . , xkm are the input signals, bk is the bias term and yk is
the output of the neuron k. The basic model of an artificial neuron is shown
in Figure 1.2.

According to [13], there are two main categories of activation functions:

1. Threshold functions
Using this type of function, the output of the neuron is either 0 or 1.
The threshold function can be for example the Heaviside function, which
is given by

ϕ(v) =
{

1 if v ≥ 0,
0 if v < 0.

(1.34)

2. Sigmoid functions
The most common type of the activation functions are the sigmoid func-
tions. They are strictly increasing and S-shaped. An example of the
sigmoid function is the logistic function, which is defined as

ϕ(v) = 1
1 + e−av

, (1.35)
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Figure 1.3: Various activation functions

where a is a parameter that affects the slope of the function. The effect
of changing this parameter can be seen in Figure 1.3.

1.11.2 Network architectures

Multiple architectures of the artificial neural networks have been proposed.
According to [13], three main types of ANN architecture can be distinguished:

1. Single-layer feedforward networks
The most basic type of feedforward ANN is the single-layer network.
It consists of one input layer of source nodes and one output layer of
neurons. An example of the single layer ANN architecture with 4 output
neurons is visualized in Figure 1.4a.

2. Multilayer feedforward networks
The multilayer feedforward ANN contains, in addition to the single-layer
ANN, one or more hidden layers of neurons. Using the hidden layers,
the network is able to model more difficult problems, as the output of
the neurons in the first layer is brought as the input to the neurons in

13
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Figure 1.4: Feedforward networks

the second layer, and so on. An example of multilayer ANN with one
hidden layer is visualized in Figure 1.4b.

3. Recurrent networks
The recurrent neural networks (RNNs) contain one or more loops that
bring the output of one or more neurons back to the input of some of the
neurons. The RNNs can also be designed to have one or more hidden
layers.
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Chapter 2
Electricity price forecasting

approaches

In this chapter, some of the existing techniques and approaches for electricity
price forecasts are described.

Electricity price forecasting is a topic of great interest for many commer-
cial researchers, as accurate forecasts are vital to both energy producers and
consumers. With accurate forecasts, the energy producers, as well as large
industrial costumers can adjust their market strategies accordingly to mini-
mize the risks and maximize profits. Over the years, there have been many
approaches to deal with this problem. Some of them are discussed in this
chapter.

There are multiple general methods to tackle electricity price forecasting
problem. According to [14, 15], the modeling techniques can be divided into
five general categories, namely (i) multi-agent models, (ii) structural models,
(iii) reduced-form models, (iv) statistical models, and (v) machine learning
models.

2.1 Multi-agent models

These models are based on using multiple agents (electricity producers and
consumers) that interact with each other in a simulation of the real market.
The price is forecasted by matching the demand and supply in the simulated
market. The inherent weakness of this approach is that it requires precise
calibration parameters. Otherwise, it can diverge far from the real situation.
The determination of these parameters is highly complicated.

An example model of this category can be the Cournot competition or the
Supply function equilibrium (SFE) [15]. These two techniques were compared
on the German electricity market in paper [16]. The researchers concluded
that the SFE method is more robust than the Cournot competition, due to the

15



2. Electricity price forecasting approaches

fact that it relies less on the calibration parameters. However, they noted that
the results for other than the German electricity market might be different.

2.2 Structural models

The structural models try to capture the relationships between the target
variable (electricity price in this case) and the specific variables that influence
it. These can include weather conditions, loads or specific system parameters.

This approach is very often applied in hybrid models that employ these
exogenous variables to improve forecasting, in addition to exploiting other
approaches. Purely structural models are usually more suitable for medium-
term forecasts because the input data they need for the predictions are usually
not available with hourly resolution [15].

2.3 Reduced-form models

These models aim to describe statistical properties of the target variable or
correlations with other commodity prices, rather than to provide accurate
hour-to-hour prices. [15]

2.4 Statistical models

The statistical models often use previous prices, or various exogenous regres-
sors, e.g., weather for forecasting. Models belonging to this category can
include, among others:

1. Similar-day methods

This technique assumes that somehow similar days will also have similar
electricity price. The similarity can be characterized by multiple factors -
most importantly hour, day of the week, or other exogenous factors.
The forecast can be computed as the price of the most similar day or as
a combination of the prices of multiple similar days.

2. Regression models

The regression models are popular for many problems. They are used
to find relationships between the target variable and its exogenous re-
gressors, which can, as in previously presented approaches, include, for
example, hour, day of the week, or weather. This technique is widely
used for EPF, but it is often combined with other approaches.

3. Autoregressive models

16



2.5. Machine learning models

This category includes models that use the previous values of the target
variable to forecast new ones. They are very popular in time series fore-
casting. Numerous modifications and extensions of a simple autoregres-
sive model exist, such as ARMA, ARIMA, SARIMA, and SARIMAX,
which were defined in the previous chapter.

Probably the most popular statistical models for short-term electricity
price forecasting belong to the ARIMA family. In paper [17], ARIMA models
were tested on two different electricity markets - Spanish and Californian - to
predict the prices for the next 24 hours. The achieved accuracy is different for
each of the markets, with an average mean error around 10% for the Spanish
market and around 5% for the Californian market. According to the authors,
these results are good, compared with the performance of ANN, which they
supposed to be a more suitable model for the data. The varying predictive
performance for the two markets shows that it is not possible to compare
the accuracy of the models across different markets, as they often behave
differently. This is due to numerous reasons, the most important of which is
probably different legislation in the US and Spain.

In a related study [18] carried out for the Californian market, the re-
searchers discovered that modeling each hour separately improved the accu-
racy of the forecasts. This result was confirmed by paper [19], that performed
the study on Leipzig Power Exchange using variously modified AR and ARMA
models.

A paper examining the predictive power of weather for day-ahead electric-
ity prices on the Scandinavian market was released in 2009 [20]. The researches
concluded that the weather conditions helped to partially anticipate spikes in
the prices.

2.5 Machine learning models

Machine learning models are a vast group of methods that were proposed to
solve the limitations of the “classical” - e.g., probabilistic and statistical -
models. They have become very popular recently. Their main advantage is
that they can usually handle nonlinearity well. Techniques such as artificial
neural networks (ANNs), decision trees or support vector machines (SVMs)
belong to this category.

Artificial neural networks are often used for electricity price forecasting,
and many papers dealing with exploiting them for EPF can be found. For
example, in 2011 paper [21], an artificial neural network with two hidden
layers was used to predict hourly electricity prices. The results revealed good
performance during days with a normal trend but showed gradual degradation
for days with significant price spikes.
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Chapter 3
Analysis

In this chapter, an analysis of the electricity price forecasting problem is car-
ried out. First, some of the electricity market mechanisms that are important
for the forecasting are presented in Section 3.1. In Section 3.2, the particular
electricity market for the modeling is selected. In Section 3.3, the available
data sources, both for weather conditions and the electricity prices, are dis-
cussed. The selection of the approaches that are used for the modeling is
described in the last Section 3.4.

3.1 Electricity market

Currently, the electricity market is divided into two main sections, namely
the spot market and the futures market. In the spot market, the electricity is
traded day-ahead, while in the futures market, the deals are closed for a longer
period of time ahead - generally from a few days to a year.

In Figure 3.1, general schema of electricity spot market is visualized. Dur-
ing the day, the bids and offers for the electricity delivery for the next day are
placed, until the market closes. For the European Energy Exchange (EEX)
market, it is usually around noon CE(S)T. The market clearing price (MCP)
is then established by the market operator as the intersection of the supply
and demand curves.

On the spot market, the electricity price fluctuates significantly from hour
to hour, usually having two peaks - one in the morning and the other in the
evening. The minimal price mostly occurs in the night and the early afternoon.
Typical price development over two days can be seen in Figure 3.2. However,
the development can be very different during some anomalous conditions.

One of the very interesting things about the electricity price is the possi-
bility of its negative value (in some markets, including the EEX). This usually
happens because of two possible reasons - a very high supply or a very low
demand (or a combination of the two). The high supply is tightly connected to
the weather. It often happens when there is high electricity production from
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Figure 3.1: Electricity spot market schema
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Figure 3.2: Typical electricity price development
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Figure 3.3: Example of negative electricity prices

renewable power plants, mainly the wind and solar power plants. On the other
hand, low demand usually occurs during the night. The electricity producers
often accept the occasional negative price, as it is cheaper than shutting the
power plant down for a few hours. An example of negative electricity prices
is shown in Figure 3.3.

3.2 Selection of the market for modeling

The electricity markets are usually national. The markets in different countries
may vary, e.g., due to legislation and therefore it is necessary to choose a single
national market for the forecasting. Because this thesis deals with forecasting
based on weather conditions, the market should be in a country that generates
a significant part of its electricity from solar and wind power plants, as they
are highly dependent on the weather conditions. The market should also be
reasonably liquid and developed.

Another concern is the availability of free historical electricity price data
for research purposes, which are usually sold by the market operators or other
subjects to private companies for profit.

All of these conditions are satisfied by the German electricity market,
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Figure 3.4: Shares of renewable energy sources in Germany [22]

which was eventually selected for the thesis. Germany has a stable electricity
market, and for the past two decades, the share of renewable electricity sources
was rising steadily up to 37.8% in 2018 [22], see Figure 3.4.

The main renewable electricity sources in Germany are the wind power
plants with the production over 111 TWh in 2018 (both the on-shore and
off-shore plants combined), and photovoltaic power plants with production
over 46 TWh in the same year. In 2018, the total production from renewable
electricity sources was around 225 TWh; thus these two sources made almost
70% of the renewable sources in Germany [22].

3.3 Data sources analysis

One of the goals of this thesis is to analyze the available electricity price and
weather data. This includes the selection of appropriate data sources, their
retrieval, preprocessing, and finally the analysis itself.

3.3.1 Electricity price data

The leading energy exchange in central Europe is the European Energy Ex-
change (EEX) [23]. It operates a market that includes energy and associated
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3.3. Data sources analysis

Model Spatial
resolution [◦]

Time
resolution [h]

Number of forecast
steps [h]

GFS [25] 0.25/0.5 3 384
ICON [26] 0.25 3 78
GEM [27] 0.24 3 240

NAVGEM [28] 0.5 3 180

Table 3.1: Popular weather forecast models comparison. The spatial resolu-
tion of GFS model is 0.25 degrees, but the archive data (older than 1 month)
are only available in 0.5 degrees resolution.

commodities, such as power derivative contracts and emission allowances. Ac-
cording to 2017 annual report [24] (the latest available at the time of writing
this thesis), the volume of traded electricity on the spot market amounted to
543 TWh.

The EEX group kindly provided free access to their historical market data
for the purpose of writing this thesis.

3.3.2 Weather data

The weather forecasts are produced by numerical weather prediction (NWP)
models. They compute weather predictions based on the initial state of the
atmosphere at the base time and a large set of parameters. Calculating these
models is computationally extremely demanding, and only a handful of global
weather forecast models exist.

Most of the models run 2 or 4 times a day. The models are differently
parameterized and feature a different number of forecast steps and different
spatial and time resolution. They also forecast a different set of elements (such
as temperature or cloud cover).

In Table 3.1, there is an overview of some of the frequently used models.
One of the most popular of them is the GFS (Global Forecast System) model,
which is run by the US National Weather Service (NWS). Because of the US
legislation, the produced forecasts are available for free in the public domain.
In 2016 comparison [29], GFS ranked 4th best among the global models.

For the purpose of this thesis, GFS is the best choice, because it is available
for free in the public domain, but still provides reasonably accurate predic-
tions. Considering the fact that the weather forecasts (which are 2D grids for
each element) have to be transformed into single time series for each element,
the slightly better performance of other models would probably not lead to
significantly better results.
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3.4 Modeling approaches

In this thesis, two different approaches to the electricity price forecasting are
evaluated, namely the statistical model and the machine learning model. The
selection of these models is described in Sections 3.4.1 and 3.4.2, respectively.
To improve the forecasts, an algorithm for combining these two models is
proposed in Section 3.4.3.

3.4.1 Statistical models

Since the electricity price is time series data with seasonality components, and
there are exogenous explanatory variables - the weather data - a convenient
model for the data is SARIMAX. It includes the simpler models, e.g., the
ARIMA models, that were previously successfully exploited for the electricity
price forecasting [17, 18, 19].

SARIMAX, being an extension of the basic ARIMA model, allows to in-
clude exogenous regressors in the prediction, which makes it possible to use
the weather conditions in the forecasting. There is also an implementation of
the model in statsmodels module for python3 programming language, which
makes it easy to evaluate.

3.4.2 Machine learning models

From the machine learning approaches, the artificial neural networks (ANNs)
were selected as candidates for modeling. ANNs are a very popular tool for
modeling a large variety of different problems. Many papers regarding us-
ing them to forecast the electricity prices were published, with good results
regarding its accuracy [17, 21].

Also, the practical expertise of the author of this thesis suggests, that these
models might be convenient for the electricity price forecasting.

3.4.3 Model averaging

In real-life electricity price forecasting, the performance of the chosen model
may vary in different situations. For example, some simple models can per-
form very well when the prices obey the usual daily cycle, but they can fail
to give reliable prediction in more difficult conditions. On the other hand,
more complicated models might predict unusual price development well, but
perform worse in other conditions.

Given the unstable nature of the electricity price, it is a good idea to create
several different models, and combine their predictions in some way, to gain
from their diversity. There are different techniques to achieve this goal. In this
thesis, the aim is to use an approach that is consistent with the probability
theory. It is proposed in the following subsection.
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3.4. Modeling approaches

3.4.3.1 Probabilistic interpretation

Assume that we have a total of n models M (1), . . . ,M (n) that provide predic-
tions Y (i)

t+1:T =
(
y

(i)
t+1, . . . , y

(i)
t+T

)
, where i ∈ {1, . . . , n} is the model index and

T ≥ 1 is the prediction horizon.
We want to find an optimal combination of predictions Y (i)

t+1:T that reflects
the probabilities of M (i) being “correct”. We can suppose that some of the
models are better than the others, and therefore their predictions should be
preferred over the rest of the models; however, it is not possible to identify
them exactly on a finite dataset. Still, we can think of the vector of models
M =

(
M (1), . . . ,M (n)

)
as a categorical variable with distribution

M ∼ Cat
(
M (1), . . . ,M (n);ω(1), . . . , ω(n)

)
, (3.1)

where the vector ω =
(
ω(1), . . . , ω(n)

)
contains the probabilities of the models

M (1), . . . ,M (n) being correct and Cat is the categorical distribution.
The probabilities ω have to be estimated from a finite dataset that is avail-

able for modeling. Using the Bayesian approach, the Dirichlet distribution can
be chosen as the a priori distribution for the estimate of ω,

ω ∼ Dir
(
ω(1), . . . , ω(n);α(1), . . . , α(n)

)
, (3.2)

where α1, . . . , αn ∈ R are the hyperparameters of the Dirichlet distribution.
Using Bayes’ theorem, the proper estimate of ω can be written as

π(ω|yt, . . . , yt−τ , θ) ∝ f(M |θ)π(ω), (3.3)

where f is the probability density function, θ is a parameter and π(ω) is the a
priori distribution of ω. However, this estimate cannot be used because f(M |θ)
is not available, and therefore has to be replaced by some other estimate.
For probability models, we can use model likelihoods (previously defined in
Section 1.1) to calculate the estimate ω̂,

ω̂(i) =
M (i)

(
yt, . . . , yt−τ |θ(i)

)
∑n
i=1M

(i) (yt, . . . , yt−τ |θ(i)) , (3.4)

where θ(i) are the parameters of ith model, the numerator in the fraction is the
likelihood of last τ+1 measurements and the denominator is the normalization
term ensuring that ∑n

i=1 ω̂
(i) = 1.

To include non-probability models (such as ANNs) into the averaging, the
likelihoods cannot be used either, because they are not available for these
models. Instead, we have to use another metric, for example, RMSE.
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After estimating the vector ω̂ =
(
ω̂(1), . . . , ω̂(n)

)
, the final prediction can

be calculated as the weighted average of the individual models predictions
using ω̂ as the weights,

Yt+1:T =
n∑
i=1

ω̂(i)Y
(i)
t+1:T . (3.5)

Using this approach, we exploit the current modeling performance mea-
sure - the weights - as factors describing the expected future performance.
The idea is inspired by the Bayesian model averaging [30], which adopts a
purely probabilistic viewpoint based on the predictive performance of tradi-
tional statistical models.
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Chapter 4
Data

This chapter deals with the data that are used for the formulation of forecast-
ing models. All stages of the data preparation are discussed, including the
selection of proper data sources, data downloading and preprocessing, and
analysis of the prepared data.

4.1 Data retrieval

In this section, the process of data retrieval is described. In the following
sections, the retrieval of the electricity price data and the weather data is
discussed separately. For the purposes of data downloading, several python
scripts were created. They can be found in data/data_downloading folder.

4.1.1 Weather data

Weather forecasts from the GFS model are available for free in the public
domain, and can be download from GFS archive [31] in grib2 format. At the
time of downloading the files, continuous forecasts were available from May 1,
2017, to the present date. Since large parts of forecasts before this date were
not available, only data from the dates between May 2017 and December 2018
are used in the thesis.

There are 4 runs of the GFS model each day - at midnight, at 6:00 AM,
at noon, and 6:00 PM. For the purpose of electricity price forecasting, the
midnight run is the best choice, as the forecasts produced by it are available
each day around 4:00 AM, which leaves enough time for generating the fore-
casts for the next day before the spot market closes (which is around noon).
The forecasts are available in multiple grib2 files. Each of the files contains
the forecasts of all of the elements (e.g., temperature, cloud cover) for a given
hour.

For the downloading of GFS forecasts, python3 script download_gfs.py
was prepared. It contains a simple CLI interface and allows to set the date of
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the model run to download and specify the forecast hours ahead of the base
time. For the purpose of this thesis, forecast hours from +3 to +27 with a 3-
hour step were downloaded for each day. It is due to the fact that the forecast
hour +0 does not contain all of the needed elements, so hour +24 from the
previous day has to be used instead. The forecast hour +27 was downloaded
because it is used to interpolate the weather data for 1:00 AM and 2:00 AM.

4.1.2 Electricity price data

The EEX group provided free access to large portions of their market data.
The data are available from mid-June of 2000; however, for the purpose of this
thesis, it is not necessary to use all of the available data. In the long-term,
the electricity price is more affected by other factors than the weather, for
example by inflation. In the thesis, the analysis and modeling are done on
data from dates between May 2017 and December 2018. The reason for the
choice of this range is that both the weather and the electricity price data are
continuously available in a single version for it, so no additional preprocessing
to deal with different versions and missing weather data is needed.

The EEX group offers multiple kinds of data about the spot electricity
prices in separate files. There are both detailed data from the electricity
auction (individual biddings) and final market results. All of the data are
available in csv, xls and xml format, for German, Austrian, Swiss, and French
markets separately. For the purpose of this thesis, the market clearing price
(MCP) of the German market is used.

For the downloading, python3 script download_electricity_data.py
was prepared. It contains a simple function that downloads all the data (filter-
ing only needed rows) from a given date range. The data are saved in separate
csv files for each day for later preprocessing.

4.2 Data preprocessing

In this section, data preprocessing procedures are described. Weather data
and electricity price data are discussed separately in different subsections.

4.2.1 Weather data

The weather forecasts from the GFS model are available in grib2 files, in
separate files for each forecast hour, with each of the file containing all of the
available elements for the whole Earth. For further use, it is necessary to
convert the data from grib2 format to csv, filter out unneeded elements and
the locations outside of Germany. Since the GFS model offers forecasts with
3-hour step, but the electricity prices data are hourly, the weather data are
interpolated to obtain finer resolution.
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The data transformation from grib2 format to csv, as well as the ele-
ment and location filtering is done by transform_gfs.py. It uses the pygrib
module [32], providing easy-to-use interface for accessing the data from grib2
files. The script filters 17 different elements. The spatial coverage was selected
to include the whole of Germany with 0.5◦ resolution, which is illustrated in
Figures 4.1 and 4.2. The output of this script are csv files for each day and
coordinate that contain the forecasts for the selected elements with 3-hour
step.

The interpolating procedures for finer time resolution (1 hour) are con-
tained in the python3 script interpolate_gfs.py. Simple linear interpola-
tion between two known time points is implemented there. For two known
times t0, t3 and known forecasts F0, F3, interpolated values F1 and F2 can be
computed using formulas

F1 = F0 + F3 − F0
3 (4.1)

and
F2 = F0 + 2 · F3 − F0

3 . (4.2)

For the purpose of performing downloading and basic preprocessing simul-
taneously, the bash script gfs_batch.sh encapsulates all of the mentioned
scripts. It takes one argument specifying the date and run of the GFS model
to download and process.

At the time of downloading the weather data, several missing model runs
in the used date range were revealed. These values were manually substituted
by the most recent previous model run, which was usually 6:00 PM or 12:00
PM of the previous day.

In the previous steps, csv files with hourly forecasts for each point in
Germany were prepared. However, there are separate time series for each
coordinate in the used grid (intersections of parallels and meridians in Fig-
ures 4.1 and 4.2) for each element. For the analysis, it is necessary to convert
them into a single time series for each of the elements. There are multiple
ways to achieve this, the simplest one being simply averaging the data across
the grid. However, this approach does not take into account the fact that
the wind and photovoltaic power plants are not distributed equally across the
country. Because of this, the more appropriate solution is to use a weighted
average, where the weights reflect the amount of electrical capacity of the
renewable power plants at the coordinates.

Data about renewable power plants are available from Open Power Sys-
tem Data [33]. At the time of downloading the data for this thesis, the newest
available data were from March 8, 2018. The data contain GPS coordinates
of solar and wind power plants and their electrical capacities in MW. To
achieve the same spatial resolution as in the weather data (0.5◦), the coordi-
nates for each power plant are changed to the nearest point in 0.5◦×0.5◦ grid.
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Figure 4.1: Solar power plants by electrical capacity

For each point in the grid, the sum of electrical capacities is subsequently
computed (for both the solar and wind power plants separately). Resulting
aggregated capacities for solar and wind power plants can be seen in Fig-
ures 4.1 and 4.2, respectively. These aggregated capacities are then used as
weights in the weighted averaging procedure, which yields a single time series
for each element. Forecasts for cloud cover, short-wave irradiation, and long-
wave irradiation are weighted by aggregated capacities of solar power plants,
whereas wind (decomposed into two vectors U and V, describing the westward
and northward part, respectively) is weighted by the aggregated capacities of
the wind power plants. The forecasts for temperature are weighted by the
sum of both types of aggregated capacities.

Let N be the number of the points in the grid, w = (w1, . . . , wN ) vector of
weights and Fp forecast for given element in given time in point p. Weighted
average F of the prediction is then computed using formula

F =
∑N
p=1 Fp · wp∑N
p=1wp

. (4.3)
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Figure 4.2: Wind power plants by electrical capacity

4.2.1.1 Weather elements

For the purpose of forecasting, 7 elements that are most likely to affect the
electricity prices were selected. These elements are briefly described in the
following list. In the parentheses, abbreviated names of the elements that are
used in the datasets are stated.

• Temperature (temperature or temp)

The GFS model uses Kelvin (K) units for temperature; however, in the
preprocessing, the temperature is converted to degree Celsius (◦C). The
model provides forecasts for multiple vertical levels, but for the purpose
of this thesis, only 2 meters above the ground level is used.

• Cloud cover (clouds)

The cloud cover forecasts are available for low (up to 2km above the
ground), middle (2–7km above the ground), high cloud cover (5–13km
above the ground), and an aggregation of all the levels (which is used
in the thesis). The values in the data denote the percentage of sky that
is covered with clouds, considering all of the vertical levels. The cloud
cover directly affects the production of photovoltaic power plants.

31



4. Data

• Long-wave irradiation, Short-wave irradiation (lw, sw)
These elements describe the amount of long-wave (wavelength between
3 µm and 100 µm) and short-wave radiation (wavelength between 0.2 µm
and 3 µm) that reaches the earth surface, measured in W m−2. Along
with the cloud cover, they affect the electricity production of solar power
plants.

• U wind component, V wind component (uw10, vw10)
Wind forecasts are provided decomposed into U and V vectors of the
wind, measured in m s−1. The U component describes the part of the
wind that blows from the east to the west, whereas the V component
describes the wind blowing from the south to the north. The values are
negative when the wind blows in the other direction (from the west to
the east and from the north to the south).

• Wind speed (wind_spd)
The wind speed directly affects the production of wind power plants,
a negative correlation with the electricity price is expected. It is not
directly forecasted by the GFS model, but it can be easily computed
from the U and V components, using formula

Wspd =
√
W 2
u +W 2

v . (4.4)

4.2.2 Electricity price data

Weather forecasts from the GFS model use Coordinated Universal Time (UTC)
time standard, which does not adopt the daylight saving time. On the other
hand, the EEX Group expresses the time in Central European (Summer) Time
(C(E)ST), which adopts the daylight saving time. Because of this, the time
that EEX uses is 1 hour ahead of UTC time in winter and 2 hours ahead in
summer. To synchronize the two times, the time of the electricity price dataset
is converted to the UTC time standard.

4.3 Data analysis

In this section, an analysis of the preprocessed data is discussed. Weather data
and electricity price data are dealt with separately in different sections. For the
purpose of analysis and forecasting, several new features are created. These
include separated parts of date and time (hour, day of the week, month) and
an indicator feature is_weekend, which is set to 1 on Saturday and Sunday.

The analysis is carried out using python3 programming language and ex-
ternal modules. These include pandas [34] for the data manipulation and
analysis, numpy [35] for various computing tasks and matplotlib [36] for plot-
ting.
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4.3. Data analysis

temperature clouds lw sw uw10 vw10 wind spd
mean 11.3 56 310.3 161.3 1.1 0.6 3.5
std 7.3 26.6 37.2 204.1 3.1 2.2 1.9
min -10.2 0 177.5 0 -9.6 -8.3 0.02
max 31.9 100 406.4 778.3 11.9 8.7 12.9
Q5 -0.3 9.7 241.2 0 -4 -2.9 0.9
Q10 1.5 18.4 260.1 0 -3 -2.2 1.3
Q25 5.3 35.4 288.3 0.6 -1 -1 2.2
Q50 11.7 57.7 313.1 54 1.2 0.5 3.2
Q75 16.8 78.5 337.1 285.2 3.3 2.1 4.7
Q90 20.9 90.8 356.3 514.6 5.1 3.4 6.2
Q95 23.1 95.4 365.5 597.5 6.1 4.3 7.1

Table 4.1: Statistical properties of the weather data

4.3.1 Weather data

The Table 4.1 summarizes selected descriptive statistics of the transformed
dataset. All of the variables are in expected bounds. Further description of
the variables can be found in Section 4.2.1.1.

4.3.2 Electricity price data

Firstly, some basic statistical properties of the prices data should be evaluated.
All the values are electricity prices in EUR/MWh on the spot market. The
dataset contains 14641 records, with mean value and standard deviation being
39.66 and 18.18, respectively. Minimal recorded value in dataset is -83.6,
maximal is 129.56. In Table 4.2, selected percentiles of the data are stated.
Histogram 4.3, depicts the distribution of the data. From both the table
and histogram, it can be seen that prices under 11 EUR/MWh and over 70
EUR/MWh are very rare.

As mentioned in the introduction, the electricity price tends to be very
volatile. In Figure 4.4, the electricity price between May 2017 and December
2018 is depicted. No obvious trend or seasonality can be seen in this large
scale graph. However, very clear daily seasonality is apparent from Figure 3.2.
The same seasonality can be observed in Figure 4.5, which represents hourly
means of the electricity prices in 2018. From these graphs, it is obvious that
the daily price tends to have two maxima - in the morning and the evening,
and two minima - in the afternoon and in the night. However, the typical
daily cycle can be disrupted, so this behavior does not always occur, as can
be seen in Figure 3.3.

From the hourly mean graph in Figure 4.5, it is also possible to see how
the prices change through the seasons of the year. Except for December
(winter), the price curve is very similar, just shifted upwards or downwards.
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4. Data

value
mean 39.66
std 18.18
min -83.6
max 129.56
Q5 11.21
Q10 19.82
Q25 30.02
Q50 39.12
Q75 49.94
Q90 61.79
Q95 69.59

Table 4.2: Statistical properties of the electricity prices data
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Figure 4.3: Histogram of the electricity prices
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Figure 4.4: The electricity price from May 2017 to December 2018

In December, the afternoon minimum is less distinctive, which might be caused
by the necessity of heating throughout the day.

The electricity price time series also has clear weekly seasonality. Mean
prices by days of the week in the dataset are shown in Figure 4.6. This
seasonality is most likely caused by decreased electricity consumption during
weekends which can be explained by the fact that most factories and other
large power consumers do not operate on Saturday and Sunday.

As mentioned in Section 3.1 and shown in Figure 3.3, the electricity price
can be negative. It does not happen very often though, negative prices oc-
curred 241 times only, which makes 1.6% of the dataset. In Figure 4.7, his-
tograms of the negative values grouped by Day, Hour, Month and is_weekend
features can be seen. From the histogram, it is clear that this anomaly mostly
happens at night, around noon, and on Sunday. On the other hand, it rarely
occurs in the late afternoon, which is in accordance with the assumption that
it should occur mostly in off-peak hours. Considering a relatively small num-
ber of negative prices, they can be discarded as outliers and replaced by the
mean value of prices in the same hour, day in a week, and month from the
dataset.
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Figure 4.5: Mean electricity price by hours and seasons

4.3.3 Correlation between weather and electricity price

The basic overview of the relationship between the weather conditions and
the electricity price can be obtained by calculating Pearson correlation coeffi-
cients. Values of the correlation coefficients between the variables are stated
in Table 4.3.

From these values, it is obvious that wind has the most influence on the
electricity price. Especially the feature wind_spd, which represents the ab-
solute wind speed. The correlation is negative, which is in compliance with
the assumption - we suppose that the stronger wind, the more electricity is
generated by the wind power plants, and therefore the lower the market price
would be.

The cloud cover variable has much lower correlation with the electricity
price than the wind. Surprisingly, the correlation is also negative, which is
against the intuition (even though the correlation is not very strong). The
assumption was that the correlation should be positive - the less clouded sky
means more production of the solar power plants, and therefore the electricity
price should be lower. The counterintuitive correlation can be caused by many
factors. One of the most probable causes is the fact that the cloud cover
feature is also included during the night when the production of solar power
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Figure 4.6: Mean electricity price by days
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Figure 4.7: Grouped histograms of negative prices
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Price temp clouds lw sw uw10 vw10 wind spd
Price 1.00 0.06 -0.13 0.02 0.04 -0.24 -0.12 -0.45
temp 0.06 1.00 -0.27 0.87 0.64 0.06 -0.10 -0.22
clouds -0.13 -0.27 1.00 0.09 -0.25 0.23 0.10 0.28

lw 0.02 0.87 0.09 1.00 0.40 0.20 -0.13 -0.13
sw 0.04 0.64 -0.25 0.40 1.00 -0.04 -0.18 -0.04

uw10 -0.24 0.06 0.23 0.20 -0.04 1.00 0.12 0.41
vw10 -0.12 -0.10 0.10 -0.13 -0.18 0.12 1.00 0.20

wind spd -0.45 -0.22 0.28 -0.13 -0.04 0.41 0.20 1.00

Table 4.3: Values of the Pearson correlation coefficient between the features

plants is always zero. Also, the spatial resolution of the weather data is 0.5◦,
which makes about 55.6 km in Germany. The solar power plants production
is affected by the instantaneous cloud cover of the exact location of the power
plant, which is generally very hard to predict precisely.

All of the other features have insignificant correlations with the price.
However, the Pearson correlation coefficient measures the strength of the linear
relationship, and it is possible that these features affect the electricity price
nonlinearly.
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Chapter 5
Modeling

In this chapter, the construction of predictive models for the electricity price
forecasting is described. For predicting the prices, two different approaches
were chosen to be implemented - a statistical model and a machine learning
model. In Section 3.4, SARIMAX was proposed to be implemented as the
statistical model and ANN as the machine learning model. To improve the
forecasts, an implementation of an algorithm for combining the forecast of
different models is proposed in Section 5.3, based on the method described in
Section 3.4.3.

All of the modeling was implemented using python3 programming lan-
guage and external modules that implement the model fitting and forecasting
and provide a high-level interface for these procedures. These modules are
mentioned in the following sections.

5.1 SARIMAX models

The SARIMAX models were implemented using the statsmodels module [12].
It contains high-level methods for fitting the model and creating the predic-
tions, and it has many hyperparameters that allow very detailed tuning of the
models.

5.1.1 Parameter tuning

For SARIMAX models, the most important parameters to select are the orders
p, q, d, P , Q, D and the seasonality s, which are described in Section 1.10.4.
Simultaneously, the subset of the available exogenous variables to be included
in the model has to be specified. Unfortunately, it is not possible to perform
an exhaustive grid search of all the possible combinations of these parameters,
because the fitting is computationally very demanding; thus only a subset of
them is evaluated.
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5. Modeling

In order to keep the models simple and prevent overfitting, it is not possible
to use the entire dataset when fitting the predictive model, but only include
the most recent data (of some length). By evaluating the performance of the
models (in terms of RMSE) for lengths 30, 60, 90, and 120 days, the ideal
length of the training dataset was found out to be 60 days.

The selection of parameter s, the length of the seasonality, is fairly straight-
forward. Because the dataset contains hourly data and the electricity price
has strong daily seasonality, the obvious value of s is 24.

In the data preprocessing, a total of 11 exogenous regressors that can be
used in the model have been prepared. These variables are Hour, Month, Day,
is_weekend, temperature, clouds, lw, sw, uw10, vw10, and wind_spd. For
a set that contains n elements, 2n possible subsets exist, so in this case, an
exhaustive search of all the possible subsets would require evaluating 211 =
2048 combinations, which would be computationally very demanding. Instead,
6 different subsets of exogenous regressors were selected for evaluation. These
subsets are:

• No exogenous regressors

• wind_spd

• wind_spd, clouds

• wind_spd, clouds, lw, sw

• is_weekend, temperature, clouds, lw, sw, uw10, vw10, wind_spd

• Hour, Month, Day, is_weekend, temperature, clouds, lw, sw, uw10,
vw10, wind_spd

The parameters p, q, d, P , Q, D define the complexity of the model. The
models should be kept reasonably simple, in order to prevent overfitting. The
following inequalities can be used as a rule of thumb for setting the parameters
[37],

• P +Q ≤ 2,

• D + d ≤ 2,

• p+ q ≤ 3.

Using these constraints, a subset of all the possible combinations of all the
above parameters was used to fit the models. The models were then compared
using AIC after fitting the models on randomly selected 60 days. A total of
6 different SARIMAX models with a low value of AIC were selected to be
used for the predictions. Their parameters and achieved AIC are stated in
Table 5.1.
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5.1. SARIMAX models

Model
no. Exogenous regressors p d q P D Q AIC

1
is weekend, temp, clouds,

lw, sw, uw10,
vw10, wind spd

1 0 1 0 1 1 8096.5

2
is weekend, temp, clouds,

lw, sw, uw10,
vw10, wind spd

1 0 2 0 1 1 7904.94

3
is weekend, temp, clouds,

lw, sw, uw10,
vw10, wind spd

2 0 1 0 1 1 7911.31

4 wind spd 2 0 0 0 1 1 7942.45

5
is weekend, temp, clouds,

lw, sw, uw10,
vw10, wind spd

2 0 0 0 1 1 7914.93

6
is weekend, temp, clouds,

lw, sw, uw10,
vw10, wind spd

0 0 2 0 1 1 8026.7

Table 5.1: Selected SARIMAX models

Given the fact that the model averaging algorithm is later used to combine
the forecasts, the performance of a particular model is not critical because the
algorithm should prefer the models that perform the best.

5.1.2 Implementation

The fitting of the SARIMAX model and obtaining the predictions is imple-
mented in class SarimaxModel in models.py. It contains 3 member functions
fit, predict, and predict_on_train.

The member function fit encapsulates the model fitting. It takes two
arguments, start and end, which describe the start and the end of the training
data in YYYY-MM-DD format.

The function predict encapsulates the predicting routines. The predic-
tions are always created for the next day of the last day of the training data
and contain 24 prediction steps.

The last member function predict_on_train encapsulates additional fit-
ting and predicting that is needed for the model averaging algorithm and is
described in Section 5.3.
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5.2 Neural network models

Neural networks models were implemented using scikit’s implementation
MLPRegressor [38]. It is an implementation of multi-layer perceptron regressor
that allows setting many different parameters. Most important of them is the
architecture of the network - the number of hidden layers and the number of
neurons in them.

5.2.1 Adding lags to dataset

To accommodate the neural network to process time series data, it is necessary
to add past values of the target variable to the dataset. However, it is not
possible to directly add the previous value of the target variable, because it is
not available in real forecasting, due to the fact that the forecasts are done for
24 steps ahead. However, it is possible to add feature day_ago, which contains
the electricity price from 24 hours ago.

To reflect the daily and weekly seasonality of the electricity price, 4 new
features were added - day_ago, 2_days_ago, week_ago, and 2_weeks_ago
that represent lags 24, 48, 168 and 336, respectively. Adding more lags could
potentially lead to overfitting and therefore is not done.

5.2.2 Parameter tuning

The implementation of ANN used in the modeling offers many parameters to
be tuned. It is not possible to tune all of them, as it would take too long.
Instead, 3 of these parameters that were supposed to have the most influence
were selected to be tuned, along with the length of the training data.

The most important parameter to tune for the neural network is the ar-
chitecture - the number of hidden layers and the number of neurons in them.
The model should be kept reasonably simple, as it is prone to overfitting with
many hidden layers and neurons. A total of 9 different architectures were
selected to be evaluated - single hidden layer with 2, 5 and 10 neurons, two
hidden layers, each having 2, 5 or 10 neurons and three hidden layers, with 2,
5 and 10 neurons in each.

Another parameter that was selected to be tuned was learning_rate. It
defines the learning rate scheduling for weight updates [38]. The available
settings are:

• constant The learning rate is kept constant; it is the default setting.

• invscaling Gradually decreases the learning rate.

• adaptive Keeps the learning rate constant, as long as the training loss
keeps decreasing. When two consecutive epochs fail to decrease the
training loss enough, the learning rate is decreased.
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Architecture learning_rate early_stopping
Training
dataset
length

RMSE

(5,5) constant False 120 days 7.75
(10,10) constant False 120 days 7.54

Table 5.2: Selected ANN models

The last parameter that was tuned was the early_stopping parameter,
which sets whether to stop the training early when the validation score is not
improving [38]. If set to true, it sets aside 10% of training data as validation
and terminates the training when the validation score is not improving enough
for a set number of consecutive epochs.

The last option that was tuned was the length of the training dataset.
Four different lengths were evaluated - 30, 60, 90 and 120 days.

To improve the performance of the model, data scaling prior to the training
was also tried, but discarded, because the models performed worse than with
the original data.

For the parameter tuning, 92 randomly selected days from the dataset were
chosen, and the models were trained to yield predictions for two consecutive
days with separate training for each of the two days, which made up a total
of 184 days. For each of the parameter combinations, the average RMSE was
calculated, and the models with the lowest values were selected. The selected
models along with their average RMSE are stated in Table 5.2.

5.2.3 Implementation

For the purpose of fitting the ANN model and creating the predictions, class
NeuralNetworkModel in models.py was implemented. It contains identical
member functions as the SarimaxModel class (described in Section 5.1.2) and
therefore it is not be discussed here again.

5.3 Model averaging algorithm

As mentioned in Section 3.4.3, for the purpose of predicting the electricity
price, it is a good idea to combine several models to achieve more accurate
and robust forecasts. To combine the models, the following algorithm was
proposed and implemented:

1. Fit models M (1)
∗ , . . . ,M

(n)
∗ on data Xt−τ :t−υ, where τ > 1 is the length

of the train dataset and υ < τ is the length of predictions on which the
weights of the models are estimated on.

2. Using models M (1)
∗ , . . . ,M

(n)
∗ , create predictions Y (i)

t−υ+1:t.
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3. Using numerical optimizer, estimate weights ω̂ = ω̂(1), . . . , ω̂(n) that min-
imize RMSE of the ensemble prediction Yt−υ+1:t,

Yt−υ+1:t =
n∑
i=1

ω̂(i)Y
(i)
t−υ+1:t, (5.1)

and satisfy conditions
n∑
i=1

ω̂(i) = 1, (5.2)

ω̂(i) ≥ 0, i ∈ {1, . . . , n} . (5.3)

4. Fit models M (1), . . . ,M (n) on data Xt−τ :t.

5. Using models M (1), . . . ,M (n), create predictions Y (i)
t+1:T .

6. Calculate ensemble prediction Yt+1:T = ∑n
i=1 ω̂

(i)Y
(i)
t+1:T .

In step 1, the models are not trained on full training dataset, but a part of it
(last υ measurements) is excluded and the temporary models M (1)

∗ , . . . ,M
(n)
∗

are trained only on data older than τ . The temporary models then create
predictions Y (i)

t−υ+1:t, i ∈ {1, . . . , n} (step 2), which are used to estimate the
optimal weights for the ensemble model (step 3). Without this step, estimating
the weights to minimize the RMSE of the models on the training dataset led
to a very strong preference of the SARIMAX models over ANN, because they
tend to have a better fit to training data, even though the average forecasting
performance is very similar. This additional step ensures that the forecasting
performance is comparable, which was experimentally proven to lead to better
predictive results.

When the weights are estimated, the models are fitted on full training
dataset (step 4), and they yield predictions for T timesteps ahead (step 5).
The weights ω̂ estimated in step 3 are used to calculate the final ensemble
prediction (step 6).

5.3.1 Implementation

The model averaging algorithm described in previous Section 5.3 is imple-
mented in class ModelPool in file models.py. It contains multiple member
functions; the most important of them are discussed in the following list.

• objective

This function returns the RMSE of the combined forecasts of the models,
using weights provided as its argument. It is used as the objective for
the numerical optimization of the weights to minimize the RMSE of the
ensemble prediction in step 3.
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• optimize_weights

This function fits all of the models on data Xt−τ :t−υ (step 1 from the av-
eraging algorithm description), where υ is defined in constructor param-
eter holdout_len in SarimaxModel and NeuralNetworkModel classes.
This fitting is implemented in predict_on_train member function in
these two classes, which also yields predictions Y (i)

t−υ+1:t (step 2).
After the predictions are generated, the function uses an implementa-
tion of a numerical optimizer from the scipy library [39] to estimate
the weights ω̂ =

(
ω̂(1), . . . , ω̂(n)

)
(step 3 of the algorithm) that satisfy

conditions in Equations (5.2) and (5.3). The initial values of each weight
estimate ω̂(i) is set to 1

n , where n is the number of the models.

• predict

This function calculates the final ensemble predictions. First, it calcu-
lates predictions of each of the models and then it uses the estimated
weights to create the final prediction. It should be used in predict_long
function only because it requires the weights of the models to be set and
models to be fitted.

• predict_long

This function encapsulates the long-term predicting. It takes two argu-
ments, from_date and to_date, which set the date range of the predic-
tions (in YYYY-MM-DD format). For each of the dates in the range, all of
the models are fitted to make predictions for the given date. Then the
function optimize_weights estimates the weights of the models for the
subsequent averaging. Then, predict function creates the final predic-
tions using the estimated weights.

• plot

For the purpose of visualizing the forecasts, the member function plot
was implemented. It creates a plot using matplotlib library that con-
tains the predictions from all of the models, the ensemble prediction and
the real value of the target variable.
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Chapter 6
Results

For evaluating the predictive performance of the models, predictions for 50
random days were created using all of the models and also the ensemble model,
calculated by the model averaging algorithm. For each of the predictions,
RMSE value was calculated, and then the average of these values was taken.

In Table 6.1, the measured average RMSE values for the models are stated.
The Parameters column defines (p, d, q)(P,D,Q)s for the SARIMAX models,
number of neurons in hidden layers (layers are separated by comma) for the
ANN models, and the value of υ in days for the ensemble models. The best
achieved RMSE for each model category is in bold.

From Table 6.1 it clearly follows that on average, all of the ensemble models
performed better than any of the individual models. The best value of υ is
1 day. In average, both artificial neural network models performed worse
than any of the SARIMAX models. However, for some days, ANNs were
significantly better.

In many days, the ensemble predictions successfully assigned the largest
weights to the best performing models, and therefore the final ensemble pre-
diction achieved RMSE similar to the best-performing model. In some days,
the ensemble prediction was even significantly better than the best performing
model. For example, the ensemble forecast for 16 December 2018 performed
almost twice better than the average of all the individual models, and sig-
nificantly better than the best one. The plot for this date can be seen in
Figure 6.1.

During some days, the electricity price experienced anomalous behavior,
which none of the models could capture. It was most likely caused by some
factors that cannot be successfully predicted. An example of this behavior can
be seen in Figure 6.2, where the predictions for 21 May 2018 are visualized.

In some cases, the averaging algorithm assigned large weights to models
that turned out to perform poorly. An example of this situation can be seen
in Figure 6.3, where the only models that were assigned non-zero weights were
the worst performing two. However, these situations are rare, as can be seen
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Model
number Model Parameters Training

length
Exogenous
regressors RMSE

1 SARIMAX (1,0,1)(0,1,1)24 60
is weekend, temp,
clouds, wind spd,

lw, sw, uw10, vw10
7.818

2 SARIMAX (1,0,2)(0,1,1)24 60
is weekend, temp,
clouds, wind spd,

lw, sw, uw10, vw10
7.821

3 SARIMAX (2,0,1)(0,1,1)24 60
is weekend, temp,
clouds, wind spd,

lw, sw, uw10, vw10
7.9

4 SARIMAX (2,0,1)(0,1,1)24 60 wind spd 8.023

5 SARIMAX (2,0,0)(0,1,1)24 60
is weekend, temp,
clouds, wind spd,

lw, sw, uw10, vw10
7.888

6 SARIMAX (0,0,2)(0,1,1)24 60
is weekend, temp,
clouds, wind spd,

lw, sw, uw10, vw10
7.721

7 ANN (10,10) 120 - 8.383
8 ANN (5,5) 120 - 9.093
- ENSEMBLE 1 - - 7.455
- ENSEMBLE 3 - - 7.657
- ENSEMBLE 5 - - 7.874
- ENSEMBLE 7 - - 7.673

Table 6.1: Models performance. The Parameters column defines
(p, d, q)(P,D,Q)s for SARIMAX models, number of neurons in hidden lay-
ers (layers are separated by comma) for ANN models, and the value of υ in
days for the ensemble models.

from the average RMSE of the averaged models.
In the ensemble predictions (value υ set to 1 day), the model averaging

algorithm tended to assign non-zero weights only to a small number of models.
Non-zero weights were assigned in 34% of the cases only to 1 model, in 38%
of the cases to 2 models, in 20% of the cases to 3 models and 8% of the cases
to 4 different models.

In Table 6.2 and Figure 6.4, information about how often the models were
assigned non-zero weights can be seen.
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Figure 6.1: Example of good ensemble prediction. The ensemble prediction
is labeled “Prediction”. In this case, the RMSE of the ensemble prediction
is 6.34, while the best of the models achieved RMSE 10.22 and the average
RMSE of the models was 12.24. In this case, model 2 was assigned weight
0.52 and model 7 had weight 0.48. The value υ was set to 1 day.
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6. Results
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Figure 6.2: Example of uncommon prices development. The ensemble pre-
diction is labeled “Prediction”. On this day, the electricity price experienced
anomalous behavior, which was not captured by any of the models. It was
most likely caused by some unpredictable factors. The value υ was set to 1
day.
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Figure 6.3: Example of bad ensemble prediction. The ensemble prediction is
labeled “Prediction”. In this case, the averaging algorithm incorrectly assigned
large weights to the models that performed the worst. It assigned weight 0.49
to model 6 and 0.51 to model 7. The ensemble prediction achieved RMSE
6.32, while an average of the models that had weight 0 was 2.99. The value υ
was set to 1 day.
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6. Results

Model number Number of non-zero
weights

Percentage of non-zero
weights

1 6 12%
2 5 10%
3 10 20%
4 18 36%
5 1 2%
6 13 26%
7 26 52%
8 22 44%

Table 6.2: The number of non-zero weights for models. The values represent
the number of times, the models were assigned non-zero weights, in absolute
values and in percentage. The data were taken on 50 random prediction days
for value υ set to 1 day. The model numbers correspond to Table 6.1.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 80%

10%

20%

30%

40%

50%

Percentage of non-zero weights for models

Figure 6.4: The percentage of non-zero weights for models. The values repre-
sent the percentage of times, the models were assigned non-zero weights. The
data were taken on 50 random prediction days for value υ set to 1 day. The
model numbers correspond to Table 6.1.
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Conclusion

The goal of this thesis was to create predictive models for the electricity price
forecasting (EPF), using weather conditions. This included the analysis of
the available data for the weather and the electricity price, understanding
the mechanisms of the electricity market, proposing convenient models, and
evaluating their predictive performance.

In the theoretical part of this thesis, the necessary theoretical background
was presented, and the existing techniques for the EPF were reviewed. Then,
the available electricity prices and weather data were analyzed. Data from the
EEX Group power market for Germany were selected for the modeling. Ger-
many was determined to be a convenient country for predicting the electricity
price based on weather conditions. The reason for it is that a large portion
of German electricity is generated from renewable sources, which makes the
electricity prices dependent on the weather. Weather forecasts from the GFS
model were used, mainly because the data are available for free in the public
domain.

The weather data were preprocessed and transformed into single time series
for each element using a weighted average based on installed electrical capacity
of solar and wind power plants in the nodes of 0.5◦×0.5◦ grid covering the
whole of Germany.

For the modeling, statistical and machine learning models were chosen
to be used. In particular, the selected models were the SARIMAX and the
artificial neural networks. For improving the forecasts, an algorithm for av-
eraging the predictions from multiple models was proposed, along with its
probabilistic interpretation.

All of the proposed models and the averaging algorithm were implemented
using python3 programming language. The parameters of the models were
tuned and a total of 8 models (6 SARIMAX, 2 ANN) were selected to be used
in the model averaging algorithm. On a sample of 50 randomly selected days,
the ensemble model achieved better average accuracy (in terms of RMSE)
than any of the 8 individual models.
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Conclusion

All of the goals of this thesis were fulfilled. In the future, the results
could probably be improved by an exhaustive parameter tuning, which was
not possible in this thesis due to the limited computational power. Also, more
different types of models could be added to the averaging procedure, which
would introduce more diversity into the ensemble model and possibly lead to
better results. Additional exogenous regressors could also be added to the
dataset, for example, coal prices (which affect the price through electricity
generated in coal power plants) or the prices of emission allowances.

The results of this work are planned to be published in a scientific journal
after further research.
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Appendix A
Acronyms

ACF Autocorrelation function

AIC Akaike information criterion

ANN Artificial neural networks

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

C(E)ST Central European (Summer) Time

EEX European Energy Exchange

EPF Electricity price forecasting

MCP Market clearing price

ML Machine learning

NWP Numerical weather prediction

PACF Partial autocorrelation function

PCC Pearson correlation coefficient

RNN Recurrent neural networks

SARIMA Seasonal autoregressive integrated moving average

SARIMAX Seasonal autoregressive integrated moving average with eXoge-
nous regressors

SVM Support vector machines

UTC Coordinated Universal Time
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
data..................................the directory with code and data

capacities...................the data about power plant capacities
data downloading..................the scripts for data downloading
prices .................................... the electricity price data
weather .......................................... the weather data

doc .................... the directory of LATEX source codes of the thesis
images ................................... the directory with images
MT Dejdar Jan 2019.pdf..............the thesis text in PDF format
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