FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF MASTER’S THESIS

Title: Neural Autoencoders in Recommender Systems
Student: Bc. Michal Bajer

Supervisor: doc. Ing. Pavel Kordik, Ph.D.

Study Programme: Informatics

Study Branch: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: Until the end of summer semester 2019/20

Instructions

Survey variants of neural autoencoders and their applications in recommender systems. Implement a
variational autoencoder, explore the effect of hyper-parameters such as the size of the bottleneck layer or
the learning coefficient. Explore different regularization strategies (dropout, sparse encoding, 12 norm,
etc.). Compare the performance of variational autoencoder with standard autoencoders of the same
capacity on at least two recommendation problems. Evaluate experimental results and recommend the
best architecture to maximize recall, catalogue coverage and other criteria.

References

Will be provided by the supervisor.

Ing. Karel Klouda, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague December 10, 2018

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Master’s thesis

Neural Autoencoders in Recommender
Systems

Bc. Michal Bajer

Department of Applied Mathematics
Supervisor: doc. Ing. Pavel Kordik, Ph.D.

May 3, 2019

Acknowledgements

I would like to thank my supervisor doc. Ing. Pavel Kordik, Ph.D. for his
support and advice during the work on this thesis. I would also like to thank
my family and friends for their support.

Access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum provided under
the programme "Projects of Large Research, Development, and Innovations
Infrastructures” (CESNET LM2015042), is greatly appreciated.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 3, 2019

Czech Technical University in Prague

Faculty of Information Technology

© 2019 Michal Bajer. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bajer, Michal. Neural Autoencoders in Recommender Systems. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Tato prace se zabyva moznostmi vyuziti autoencoderi v ramci doporucovacich
systému, jejich potencidlem pro predpovidani chovani uzivatelu a rozdily mezi
ruznymi variantami téchto modeli.

Cilem prace je zmapovat mozné pristupy, stanovit vhodné metriky pro
posouzeni kvality doporuceni, implementovat slibné varianty a porovnat jejich
uspésnost na dostupnych datech.

Vysledkem préace je analyza a diskuze moznych feseni, zmapovani vlivu
hyperparametriu na kvalitu doporuceni a vybér nejvhodnéjsiho modelu na zak-
ladé provedenych pokusti.

Klicova slova Neuronové sité, autoencodery, doporucovaci systémy.

vii

Abstract

This thesis is concerned with the potential usage of neural autoencoders in rec-
ommender systems, their ability to predict user behaviour and the differences
between variants of the models.

The goal of the thesis is to explore the possible solutions, determine suit-
able metrics for measuring the quality of recommendations, implement the
promising solutions and compare their performance on available datasets.

The result of the thesis is an analysis and a discussion of possible solutions,
experimental study of the effects of hyperparameters on the quality of recom-
mendations and the choice of the most suitable model based on performed
experiments.

Keywords Neural networks, autoencoders, recommender systems.

viii

Contents

1

|1 Research backgroundl 3
1.1 Recommender svstemsl 3
1.2 Neural networkd 11
1.3 Autoencoders 14
|2 Analysis and desigd 19
.1 Datasetsl 19
.2 Preprocessing’ 20
2.3 Methodology of experimentsl 21
2.4 Hyperparameter optimizatiorj 22
3 Implementatio 25

3.1 Librariedo 25

Iﬁl_Eerrimenté 29
1.1 Metricdo 29

1.2 Matrix Factorizatiod 30
1.3 AUtoencoders oo 30
1.4 Variational autoencodersl 39
1.5 Latent space Visualizationsi 45
1.6 Discussion of resultsl 49
51
B eraphy 53
|A Contents of C]j 55

ix

List of Figures

1.1 Example of Matrix factorization [11 6
1.2 Structure of neuron in a human brain [2]| 11
1.3 Structure of an autoencoder [3]| 15
1.4 Structure of a variational autoencoder [3]| 16
1.5 The principle of the reparameterization trick [3]| 17
2.1 Visualization of data preparatiod 20
0.2 Processing steps and data flow between thend 21
2.3 Hyperparameter optimization as part of the training processi A
b.l Example of epoch loss plotted in Tensorboard user interfacd ... 26
1.1 Visualization for the parameter space of AE with no hidden layersl 31
1.2 Correlation between used metricy 32
1.3 NDCG@Q100 for different activation functions in the hidden layeII . 34
1.4 NDCGQ100 for different values of dropoutl 34
1.5 NDCG@100 for different loss functionsl 35
1.6 NDCG@100 and coverage for different number of hidden layersl .. 36
1.7 NDCGQ100 for L1 normalizationy 37
1.8 NDCGQI100 for L2 normalization| 38
1.9 NDCG@100 for different size of the latent vectors (each component)l 40
1.10 NDCG@100 and coverage for different number of epochsl 40
1.11 NDCG@100 and coverage for different number of neurons in thei

|hidden laveﬂ 41
1.12 NDCG@100 for different activation functions in the hidden layerl .42
1.13 NDCG@100 and coverage for values of dropoutl 42
1.14 NDCG@100 for different loss functionsl 43
1.15 Metrics for different values of the 8 parameter of the loss functiod 44
1.16 Projections of latent space representation of users and their numbeﬂ

bf ratingé 46

xi

|4.17 Projections of the latent space representation of movies. Redl
trosses represent the Animation genrel
|4.18 Projections of the latent space representation of movies. Redl
|cr0sses represent the Three Colours seriesl

xii

List of Tables

|2.1 Comparison of processed dataset sizesi 20
1.1 Results of matrix factorization applied to two datasets] 30
1.2 Results of AE with no hidden layers applied to two datasety 33
1.3 Results of AE with one hidden layer applied to two datasety. . . . 36
4.4 Results of AE with 12 normalization rate 0.000062 39
1.5 Results of VAE with no hidden layers applied to two datasetd . . . 41
1.6 Results of VAE with one hidden layer applied to two datasety . . . 44
1.7 Results of VAE with two hidden lavers applied to two datasetsl .. 45
1.8 Results of the best models for MovieLens dataset| 49
1.9 Results of the best models for Netflix datased 50

xiii

Introduction

As the Internet spread throughout the world more and more large businesses
were built around it. Many of them have been capable of using the advan-
tages offered by the technological development to outcompete their offline
competitors.

One of the advantages is the unprecedented ability to collect data and
analyse them. The results can then be used to adjust the content for each
individual user.

Another advantage is the fact that online business can often reach many
people in a large geographic area with small additional cost. That allows
them to operate at scale. As a result, Amazon.com almost certainly offers
more books than any book shop and Netflix has a larger collection of film
than any video rental shop.

This gives online businesses potential competitive advantage, but it also
presents some new challenges. For example, Amazon.com sells hundreds of
millions of products [4] in the United States. How are you ever supposed
to find what you’re looking for among so many products? And how can the
website help you?

One way of helping you is to use the collected data to point you towards
products, which might interest you and hide those, which you won’t buy any-
way. This is the basic idea behind the topic of this thesis — the recommender
system.

The goal of the recommender system is to predict what items a user might
be interested in. Based on this prediction a website can point the user towards
these items. If the recommendations are good, users will easily find what they
are looking for and the merchant will sell more goods. Or at least that is the
hope.

As the online stores became larger, more attention has been given to de-
veloping these systems. In this thesis I will explore one of the many ways in
which the predictions of user preferences can be generated. I will be using
neural networks or more specifically neural autoencoders. This algorithm has

INTRODUCTION

been popular in the field of Artificial Intelligence in recent years, but so far it
hasn’t been used in recommendations very often.

The goal of the thesis is to research the relevant literature and find appro-
priate ways of using autoencoders for the problem of recommendation.

First part will contain a discussion of the research area and relevant algo-
rithms. The results of this discussion will be used to design a way of recom-
mending items.

Once the design is complete, the resulting approach will be implemented
together with a way of measuring the quality of the generated recommenda-
tions. The implementation will be tested on available datasets.

Finally, the experiments and the measured results will be analysed and
the best model (or models) will be chosen.

CHAPTER

Research background

1.1 Recommender systems

The dream of the recommender system is to predict which products will be
interesting to you and show them to you directly. For example, representatives
from Netflix sometimes talk about potential future, where Netflix would only
need to show the user several options. The user would almost certainly like
at least one of them and started watching almost immediately.

The problem of recommendation has two main components. One is the
user for whom the recommendations are generated. The other is in the liter-
ature usually called an item. An item can be a product, an article, a video,
an advertisement or many other things, which are being offered to the user.

Data about both components and the interactions between them can be
helpful. The basic assumption of the recommender system is that there are
dependencies between users and items and the data can be used to find them.

For example, a user, who is interested in a horror film, is more likely to
be interested in a similar film. Therefore, the knowledge that a given user
has watched one horror film and the knowledge about which films are horrors
could be used to generate recommendations for the user.

Obtaining data about items is a domain specific process. Recommenda-
tions are typically made with a database of items. If the items are sorted into
categories or labelled, that information can be used to analyse similarities
between them.

Data about users and their preferences are more difficult. In some cases
explicit user feedback is available. For example, users may rate items using a
five-star system.

Very often the user feedback is implicit. For example, a user clicking on a
product is considered a positive feedback. In this case only user’s interest in
certain items is known. There is no negative feedback. The advantage of this
approach is that data can be collected in the background. There is no need to

3

1. RESEARCH BACKGROUND

ask the user for collaboration. As a result, there is a lot more data to analyse.

The systems are usually separated into three categories. The first category
is collaborative filtering. These systems are based on predicting missing values
in the matrix of user-item interactions. They use similarities between rows
(users) or items (columns) to do so.

Content-based systems follow the premise, that user ratings can be ex-
plained based on the properties of items (e.g. film genres). Unlike the collab-
orative systems the description of items plays a key role.

The last category is knowledge-based systems. These systems are used in
domains, where it is unlikely to collect enough data about a user to generate
good predictions. One example could be real estate. There are many factors
that influence choice of a house and people rarely look through houses, unless
they intend to buy one. That makes prediction of user preferences almost
impossible. Therefore, these systems rely on the user to share their own
preferences. The result is an iterative search through the database.

There are two ways to define the recommendation problem with respect
to its output [5].

1. Prediction problem: The system is expected to predict user ratings for
items, which haven’t been rated by the user yet. This can also be viewed
as matrix completion problem, because it is based on an incomplete
matrix of users and items.

2. Ranking problem: The system is expected to select k items, which will be
shown to the user. This is a more real-world definition of the problem,
because this is what is typically done with the selected items. This
problem is also referred to as the top-k recommendation problem.

In practical terms the goal of the recommender system is to increase the
merchant’s sales. However, that is not an operational goal that an algorithm
inventor can follow. There are several common operational goals [b].

1. Relevance: Almost by definition recommended items should be relevant
to the user. Otherwise, they will be meaningless. However, there are
other important goals.

2. Novelty: It is important that the recommended items haven’t been seen
by the user before. For example, there is very little value in recommend-
ing the most popular film of a given genre, because the user has very
likely already seen it.

3. Serendipity: It seems to be beneficial, if sometimes the recommendation
is surprising to the user. Meaning it is not only a new item similar to
the ones, that the user has already seen. This helps the user to expand
their horizons slightly and for the merchant it increases sales diversity.

1.1. Recommender systems

4. Diversity: Typically, the final recommendation is a list of top-k items
displayed to the user. If all the items are very similar, the user might
not like any of them. More diverse list improves the chances, that at
least one of the items will be interesting to the user.

1.1.1 History

One of the first recommendation systems was developed in 1994 by Paul
Resnick from MIT and others. It was called GroupLens. It focused on bulletin
boards, which were used to share articles online. As the number of the articles
grew, many of them became noise.

In the words of the authors: ”GroupLens provides a new mechanism to
help focus attention on interesting articles. It draws on a deceptively simple
idea: people who agreed in their subjective evaluation of past articles are
likely to agree again in the future.” [G]. In other words, this system used
collaborative filtering to generate recommendations.

In more recent years the development of these systems was encouraged by
Netflix with the Netflix Prize. The contest started in 2006 and the goal was
to improve upon the results of algorithm called Cinematch, which was used
by Netflix to recommend films.

A large dataset was published for the purposes of this contest. The training
dataset contained approximately 100 000 000 ratings of 18 000 films from 480
000 users. The goal was to reach 10% improvement.

The winning team was called "BellKor’s Pragmatic Chaos”. They reached
improvement 10,06% in 2009 and won one million dollars [[7]. Their algorithm
was a combination of around hundred different elements. The main part
was collaborative filtering using matrix factorization. Other parts included
processing the time of viewing and other available information. The authors
published the algorithm in their own article [§].

1.1.2 Collaborative filtering

Systems in this category use only the user ratings matrix to generate their
recommendations. This makes the algorithms generally applicable, because
they don’t have to be adjusted as much for a specific domain.

One of the biggest challenges is the fact, that the user ratings matrix is
very sparse. Let’s take online streaming service as example. The service may
easily offer hundreds of thousands of films or episodes. But most users have
seen only tens or hundreds. Many have seen almost none.

The idea behind collaborative filtering is that the missing ratings can be
predicted, because there are similarities between users and items. For example,
let’s image that Steve and Bill have liked the same five films and Steve has
also liked one more. The basic assumption is that there is now an increased
chance that Bill will also like the sixth film.

1.

RESEARCH BACKGROUND

There are two basic types of collaborative filtering algorithms.

1. Memory-based algorithms: They are also called neighbourhood-based.

The recommendation is based on the most similar users or items (the
neighbourhood). Typically, either users (rows) or items (columns) are
used. The algorithm is then called user-based or item-based.

Recommendation for Bill is required. For the user-based version rows
will be processed. First the system will find n most similar users (rows)
to Bill using a similarity function. Afterwards it can find ratings for
items which Bill hasn’t rated yet. Finally, it computes weighted average
(by similarity) and generates the predicted ratings. The items with the
highest value should be recommended.

This approach is relatively easy to implement and can work well. The
issue often arises with too sparse matrices. If an item has no rating yet,
it can never be recommended.

. Model-based algorithms: They process the matrix using variety of opti-

mization algorithms and machine learning models. The goal is to find
patterns in the matrix and use them to predict the missing ratings.

One example of this type are latent factor models popularized by the
Netflix prize. They are based on a simple observation. The rating matrix
is sparse and the values are not independent. That suggests that it could
be well approximated by a much smaller matrix.

Item
W X Y Z W X Y VA
A 24.5 2.0 Alizo0s 1.5 1.2 1.0 0.8
. B 40 3.5 B|i409 1.7 06 1.1 0.4
2 = X
5C | 5.0 2.0 Cliszo
D 35 40 10 D|1.208
.) User Item
Rating Matrix Matrix Matrix

Figure 1.1: Example of Matrix factorization [L]

In state-of-the-art systems this is usually achieved using Matrix factor-
ization methods like Singular Value Decomposition. The goal of Matrix
factorization is to find two smaller matrices, which can be multiplied to
create a new matrix as similar to the original one as possible. Missing
values in the original matrix make it easier. The generated values in
the new matrix also represent our predicted ratings. Example of these
matrices can be seen in figure [1.1].

1.1. Recommender systems

1.1.2.1 Singular Value Decomposition

SVD can be formally defined as factorization of a matrix into tree matrices:

R~ Qi3 Pl (1.1)

The rank k represents the size of matrix ¥j; and must be smaller than the
smaller side of the original matrix. It is the only parameter which needs to be
tuned in order to use SVD for recommendation purposes. The final matrices

shown in picture can be obtained in the following way:
U= Qi (1.2)
V=~

The process of finding the relevant matrices in EI is an optimization prob-
lem. Different ways of solving it can be found (among others) in the book [p].

1.1.3 Content-based systems

Unlike collaborative filtering methods, content-based systems consider only
ratings given by the target user. They relate the rating of an item to its
properties.

For the sake of simplicity, this section will consider a database of films,
where each film has tags assigned to it. These tags may include the genre, the
director, etc.

When a user gives a rating to a film, it is assumed that the rating can
be explained by corresponding tags. When the films, their ratings and their
tags are combined, it is possible to derive a set of attributes, which the user
seems to like. The system can then look for other similar films and recommend
those.

In reality the process of deriving more abstract description of user pref-
erences can be based on many attributes and use a complex algorithm. This
approach has one interesting advantage.

When a new film is added to the database, there are no user ratings for
it. This would prevent collaborative filtering from ever recommending it.
However, a content-based algorithm can recommend it as well as any other
film as long as there are tags for it.

On the other hand, when the system is presented with a new user, there
is no way to generate recommendation for them. That is because there is no
history of ratings and therefore no information about the user’s preferences.

Another potential disadvantage comes from the fact that with more ratings
available the system refines the user preferences and stays within them. This
can lead to obvious items being recommended and very little novelty.

1. RESEARCH BACKGROUND

1.1.4 Knowledge-based systems

The previous section introduced systems, which use the properties of items.
They relied on ratings provided by users or collected as implicit feedback
to generate recommendations. However, sometimes there is no reasonable
expectation of collecting ratings or any form of feedback.

An example of such items could be cars. People usually buy a new car once
in several years at most. The whole market can change during that period
and so can the user preferences. At the same time a car is a very complex
product with many attributes and many options. There is simply no way to
collect sufficient amounts of data to generate good recommendations.

This is where knowledge-based systems can be used. They are based on
a simple idea. If the system doesn’t know anything about the user, it can
ask them. As a result, these systems are typically a form of iterative search,
where the user step by step clarifies their preferences.

The name knowledge-based comes from the fact, that these systems require
a so-called knowledge base to function. The base contains domain-specific
rules or similarity functions, which allow the systems to find the connec-
tion between the user preferences and items. There are two main types of
knowledge-based systems:

1. Constraint-based recommender systems: The user interface allows the
user to specify values for certain attributes, for example, a price range.
The system then displays a set of items and the user can change the
constraints. This iterative approach allows the user to find items they
like.

2. Case-based recommender systems: Alternatively, the interface presents
the user with examples. The user provides feedback and the system uses
similarity functions to find items more alike the ones the user preferred.

1.1.5 Ensembles

Each type of recommender systems discussed in previous sections has advan-
tages and disadvantages. For example, the knowledge-based systems are the
best when there are no data about the user. Collaborative filtering can work
very well when there are a lot of data.

Therefore, it can be interesting to use a combination of different methods.
A simple way of doing this would be to use a different method for new users.
Once enough data could be collected, second method would be used.

In realistic situations there are many ways to combine different systems.
This situation is similar to ensemble machine learning systems used to generate
more robust results.

Different algorithms of the same category can be used, or multiple types
can be combined. Algorithms can process the same data, or they can be

8

1.1. Recommender systems

adapted to handle different data. This allows different types of data to be
incorporated.

Once all the algorithms generate recommendations, rules or meta-model
can be used to create the final set of recommended items.

1.1.6 Evaluation

The problem of recommendation can be viewed as a generalisation of regres-
sion in the following way. In regression the data are in the form of a matrix
with columns representing features and a column, which represents target
variable. The algorithm then predicts the values of the target variable based
on the values of features.

In recommendation (especially in collaborative filtering) the data are a
matrix with columns representing items. It is just as valid to invert the matrix
and have columns represent users. The problem stays the same. There are no
distinctions between the columns. The goal is to fill in any missing values in
any column.

Because of this connection, many of the basic evaluation metrics from
regression could be applied. For example, a mean squared error could be
computed. However, because practically speaking the typical goal is the top-
k list of recommendations, these metrics don’t correspond very well to the
expectations of the recommender system.

1.1.6.1 Online evaluation

From this perspective, the best way to evaluate a recommender system is A /B
testing. The merchant starts with already functioning service, connects part
of the users to the new system and compares the results to the old recom-
mender system. The evaluation metric can be anything that has a business
value, for example the conversion rate of users clicking on films, which were
recommended.

However, this is not always an option and it can only be done with a sys-
tem, which is already relatively mature. Therefore, offline evaluation metrics
are necessary as well. Creating an offline metric with correlation to the results
of an online tests is a difficult task [9].

To be able to perform offline evaluation, historical dataset of user interac-
tions is required. Example of this can be the Netflix prize dataset discussed in
section . As was discussed before, there are different goals for the recom-
mendation system. Because of that, multiple metrics should be computed to
try to fulfil different goals. Some of the most common ones are the following.

1.1.6.2 Accuracy

Because of the similarity to regression, accuracy can be applied very easily.
Since part of the goal of recommender systems is to predict user preferences,

9

1. RESEARCH BACKGROUND

accuracy can be used to measure this aspect. An example of a popular function
in this category is the root mean squared error (RMSE).

n (P _ p)2
RMSE:\/W (1.4)
n

The formula in @ shows how to compute RMSE for n predicted values.

A

P; represents predicted value and P; represents original value.

1.1.6.3 Recall

Recall is a metric which focuses on the top-k list of recommended items for
given user u. The calculation is performed using a held-out set of items, that
the user has clicked on. The recommended top-k list generated based on the
remaining ratings is compared to the held-out set. The more items from the
top-k list can be found in the set, the closer the resulting value of recall is to
one.

S Lw(k) € 1|
min(K, |I,|)
The formula in @ shows how to compute recall for the list of K items. The
function w(k) represents an item at position k in the top-k list and function I
in an indicator function, which determines whether the item is present in the
held-out set. Finally, the denominator is the minimum of K and the number

of items clicked on by user u. This normalizes the value to range between zero
and one [10].

RecallOK (u,w) = (1.5)

1.1.6.4 Normalized discounted cumulative gain

NDCG is a metric similar to recall. It focuses on top-k list of recommended
items and compares it to the set of held-out items. Unlike recall, it also
considers the order of the items in the top-k list. When an item at better
position is found in the held-out set, it contributes higher weight. The weight
is given by monotonically decreasing function (e.g. logarithm).

K ollw(k)elu| _ 1

DCGaK =) —

() kz::l log(k +1)
NDCG@K is the DCGQK linearly normalized to [0, 1] after dividing by
the best possible DCG@QK, where all held-out items are ranked at the top [10].

(1.6)

1.1.6.5 Coverage

Catalog coverage (CC) is a measure of the fraction of the database of items,
which is recommended by the system to at least one user. As discussed in
the previous sections, some systems can have issues with recommending new

10

1.2. Neural networks

items. Because one the goals of recommender systems is diversity, the fraction
of items ever recommended is relevant.

| U1 T
n
The formula in @ shows how to compute catalog coverage for database
of n items and top-k list generated for m users. T, represents top-k list for
user u.

CcC = (1.7)

The structure of the recommendation systems section was based on the
book Recommender systems by Ch. Aggarwal [5].

1.2 Neural networks

This section serves as an introduction into models, which will be ultimately
used in this thesis for recommendation. The origin of these models is in the
field of machine learning. The introduction will use examples from this field.

The idea of a neural network in based loosely on our understanding of
neuroscience and the function of our brain. The elementary unit is called a
neuron. Roughly speaking, neurons are connected into a larger network and
communicate using electrical impulses. The structure of a single neuron shown
in figure consists of several key parts.

Dendrite
Axon Terminal

Node of
Ranvier

Cell body

Schwann cell

Myelin sheath
Nucleus

Figure 1.2: Structure of neuron in a human brain [2]

The dendrite is where the neuron receives impulses from other neurons.
A single neuron has many of them and receives impulses from many other
neurons. The axon is a longer nerve fibre, which transmits impulses away
from the neuron and connects to dendrites of other neurons. The cell body,
through its internal reactions, decides when to send an impulse over the axon.

This basic idea has inspired an abstract model called the neural network.
One of the first attempts to use this model as a classifier was made by Frank
Rosenblatt in 1958 and became known as the perceptron [11].

11

1. RESEARCH BACKGROUND

The perceptron is an algorithm for binary classification which determines
its output using the formula @ The function acts as a threshold. Vector w
represents the weight assigned to each input. Vector x represents the input
data. Parameter b is called bias. By adjusting (learning) w and b the output
can be changed to conform to our expectations.

f(x) =

1 if w- b
{ if w-x+5b>0, (1.8)

0 otherwise

In modern terminology of neural networks, this is a neuron with Heaviside
step function used as the activation function. It was soon discovered that
a single neuron (or a single layer of neurons), where the input is a vector
of features and the output is a class, can only be used to classify linearly
separable problems. This led to a period of low interest in this algorithm,
until the idea of the multi-layer perceptron was introduced.

1.2.1 Multi-layer perceptron

As the name suggests, the idea of the multi-layer perceptron (MLP) is a
generalization of the original perceptron. The behaviour of a single unit is
similar. First step is a weighted sum of its inputs.

inj =X qw;ja; +b=w-x+b (1.9)

The formula @ is very similar to @ The input for neuron j is a weighted

sum of n values plus bias. The main difference between a neuron in MLP and

in the original perceptron is the activation function. The final output of the
neuron is an activation function A applied to its input.

out; = A(in;) (1.10)

Any MLP consists of, at least, three layers of nodes: an input layer, a
hidden layer and an output layer. The input layer is in fact only an abstraction
for the input vector x, which contains the feature values from a given dataset.
The hidden and output layers contain neurons. Except for the first hidden
layer, the input vectors x of these neurons are always a vector of outputs of
all neurons in the previous layer.

The activation function should be a nonlinear function. That allows the
MLP to represent a nonlinear function applied to feature vectors. The output
of the function represents the class. As a result, this model can be used to
classify problems, which are not linearly separable [[12].

The activation function can be a threshold like in the case of the percep-
tron. More commonly it is differentiable function. For example, the logistic
sigmoid .

S(z) = (1.11)

12

1.2. Neural networks

The resulting MLP is a complex function with many parameters to be
learned. This is done using a method called backpropagation, which was
derived by multiple researchers in the early 60’s. It is a shorthand for "the
backward propagation of errors”.

1.2.2 Backpropagation

To explain how neural networks can be trained, first a loss function must be
defined. The loss function represents an error between the output of the neural
network and the expected output in the training dataset.

Loss = |y — hw(x)]* = Zj_y (yx — az)? (112)

Formula is an example of mean squared error used as the loss function.
Vector y represents expected output vector and hy (x) represent the neural
network with ap being an element of the output. Therefore, the error is
between the expected and actual output of the network.

The training process is an optimization using gradient descent. In order to
be able to use this method, the entire loss function needs to be differentiable
with respect to weights w [[12].

%LOSS = %22:1(3/1@ —ar)® = 22:1%(% — ag)? (1.13)

For the output weights in the output layer, gradients can be derived rela-
tively simply as shown in . However, the entire network can be a complex
function. The output of every layer is the input of the next and as a result
every layer is an extra nested function.

However, the entire function can be decomposed using the chain rule. The
weights are updated layer by layer starting with the output layer and going
back through the network. That is why the process is called the backpropa-
gation of error.

Wi 5 = Wi+ X a; X Aj (1.14)

Each weight can be updated by rule . The value of the weight w; ;
of the connection between neurons ¢ and j changes between iterations. The
change is given by the learning rate «, the output a; of neuron ¢ and the
propagated delta A;.

The value of A; is determined by the sum of deltas Ay of neurons in the
next layer weighted be the weights w; . The last important element of the
calculation is the derivative ¢'(in;) of the activation function.

Aj = g’(inj)EzzleAk (115)

13

1. RESEARCH BACKGROUND

1.2.3 Convolutional neural networks

The structure of MLP is often called feed-forward neural network with fully
connected layers in modern literature. The standard approach is to take out-
puts of all neurons in the previous layer and use all of them as the input
of every neuron in the next layer. However, this approach turned out to be
impractical for visual data.

For visual inputs the convolutional layers are commonly used. The neurons
are organized into 2D grid and every neuron uses as its inputs only the outputs
of a corresponding neuron in the previous layer and its neighbours. The vector
of weights is replaced by a matrix of weights, which is shared by all neurons
in a given 2D grid. As a result, the matrix acts as a mask applied to every
element of the input matrix. This operation is called convolution and gives
name to the layer.

Because applying single mask to the input may cause too much information
to be lost, every layer typically consists of several grids. This effectively gives
the layer third dimension. Each grid takes input from corresponding grid
in the previous layer. This way multiple independent representations of the
original image can be passed through the network.

It is not strictly necessary to apply convolution in two dimensions. 1D
version can be used, for example, on time series data, while 3D version can
be used on a video.

1.3 Autoencoders

Until now, the discussion focused only on neural networks, which are used for
classification. That means they belong in the category of supervised learning.
However, they cannot be directly used in a recommender system. There are
no labels in recommendation. That is why this chapter will end with a version
of neural networks used for unsupervised learning.

The autoencoder is a neural network with two parts: encoder and decoder.
During the learning process the same vector is used as the input into the
encoder and as the target of the decoder (in place of the class variable in
MLP).

Most importantly, the output vector of the encoder (the latent vector) is
the input of the decoder. And the latent vector is smaller than the original
input vector. During the training, the encoder is forced to generate smaller
representation of the input vector, which can then be used by the decoder to
recreate the original vector. In other words, the encoder is forced to create
more compact representation of the input.

With randomly generated input vectors, this task would not be possible.
However, for any meaningful learning the datasets contain input vectors, which
represent something and are related to each other. The autoencoder then

14

1.3. Autoencoders

encoder decoder

Figure 1.3: Structure of an autoencoder []

attempts to learn the hidden structures in the dataset in order to find low
dimensional representation of the vectors []

Loss function is needed to be able to backpropagate through the autoen-
coder. The main component of this function is the similarity between the
input and output vectors. The term reconstruction error is typically used for
this function. However, more terms can be added to the equation and include
other aspects into the learning process.

1.3.1 Sparse autoencoder

Questions arise about how to choose the structure of the autoencoder. For
example, how large the latent vector should be. The hyperparameters of neural
networks often need to be found using experiments or iterative optimization
strategy.

In the case of the optimal size of layers, it is possible to make that part of
the learning process in the following way. If the loss function could be extended
to penalize too many activations of neurons, the optimization process would
also attempt to use as little neurons as possible in every layer during training.
This extra term in the loss function is called sparsity constraint.

Jsparse = J (W,) + BEF_ K L(pl|p;) (1.16)

The formula m is the loss function of the sparse autoencoder. The
original reconstruction loss is represented by J(w,b). Parameter 5 controls
the weight of the sparsity penalty term and n is the number of neurons in
a layer. The term X7 KL(p||p;) is the Kullback-Leibler (KL) divergence
between a Bernoulli random variable with mean p and a Bernoulli random
variable with mean p;. KL-divergence is a standard function for measuring

15

1. RESEARCH BACKGROUND

how different two different distributions are [] The term is computed using
the formula ,

(1—p)
(1—p5)

where p represents the sparsity parameter and p; is the activation (the
output) of a neuron j averaged over the dataset. Parameter p is typically

chosen to be a small number (for example p = 0.05). The effect of KL-
divergence is bringing p; closer to our selected p.

. P
Sj KL (pllps) = Tjaplog £+ (1 - p)log (1.17)
J

In implementation, the sparsity of a layer can also be achieved by applying
L1 normalization to it. This penalizes too many activate neurons at same time.

In conclusion, by adding extra term to the loss function, it is possible
to make more compact latent representation one of the goals of the learning
process.

1.3.2 Variational autoencoder

There is a potential downside to the standard autoencoder. The vectors in
the latent space don’t follow any specific distribution. This isn’t an issue for
applications, where autoencoders are used for compression or removing noise.
However, it is a complication for use in generative models.

For generative models it would be beneficial to be able to artificially create
a latent vector, which the decoder will transform into meaningful output. For
this purpose, it is better to know the distribution from which the latent vector
should be sampled. Variational autoencoders have been developed to allow
this.

sample

encoder decoder

Figure 1.4: Structure of a variational autoencoder [B]

The way a variational autoencoder guarantees the distribution is quite
simple. Instead of passing the output of the encoder directly into the decoder,
the output is interpreted as two vectors. These vectors are then used as mean

16

1.3. Autoencoders

v and standard deviation ¢ of normal distribution A (y, 02). The latent vector
is then sampled from this distribution.

As a result, the decoder learns to create something similar to the original
input vectors from samples generated from normal distribution. This makes
the usage in generative modelling easier.

In order to use the normal distribution meaningfully, one more adjustment
is necessary. If someone simply used reconstruction loss during the learning
process, the standard deviation ¢ would go to zero and mean p would effec-
tively became the latent vector from standard autoencoder.

To prevent this, KL-divergence (one example of it is equation) is
added to the loss function as a distance between the learned distribution and
the standard normal distribution A/(0,1).

The loss function consists of reconstruction loss and KL-divergence. In
order to be able to calculate gradient for every layer and use backpropagation,
it is not possible to have the normal distribution in the latent layer directly.
The reparameterization trick is typically used to solve this issue.

N (i, 0%) ~ p+ o*N(0,1) (1.18)

z=p+o’, e+ N(0,1) (1.19)

Thanks to the equivalency latent vector z can be generated using
formula . As a result, the learned parameters p and o are no longer pa-
rameters of the normal distribution and therefore the training doesn’t depend
on the computation of its gradient. This is illustrated in figure [L.5.

—~

z) N(p,0?)

BackProp

\\/\
Vi N\

e\/\<—N(0,1)

-

o
<7§\Backprop
e—®

e \/ I

[) =

+

Q

-

(a) Before (b) After

Figure 1.5: The principle of the reparameterization trick [3]

17

CHAPTER 2

Analysis and design

2.1 Datasets

2.1.1 MovieLens

The MovieLens 20M Dataset has been collected by researchers from the Grou-
pLens Research Group at the University of Minnesota. It was compiled from
user activity on movielens.org between January 09, 1995 and March 31, 2015.
It contains 20,000,263 ratings across 27,278 films. The data were created by
138,493 users. Users were selected at random for inclusion. All selected users
had rated at least 20 films. [14].

The ratings are on a 5-star scale between 0.5 and 5 stars. For the purposes
of this work, the scale was transformed into implicit feedback matrix. Ratings
of 4 stars and above became 1, everything else became 0. The final size of the
ratings matrix can be found in table R.1.

The dataset also contains tags for every film and so-called tag genome. It
is a matrix, which encodes how much a certain film corresponds to given tag.
For each film the title and genre are also known. This information could be
used for recommendation in more context-aware systems.

2.1.2 Netflix

Netflix provided a dataset of 100,480,507 ratings, given by 480,189 users to
17,770 movies, for the purposes of the Netflix prize [7]. The average user in
the dataset rated over 200 movies, and the average film was rated by over
5,000 users. Some films in the dataset have as few as 3 ratings, while one user
rated over 17,000 movies.

The format is similar to the MovieLens dataset. The ratings are given in
the form of 5-star scale. For the purposes of this work, it has been transformed
into implicit feedback matrix. Ultimately, the preprocessed dataset becomes
a sparse matrix in the Compressed Sparse Row format.

19

2. ANALYSIS AND DESIGN

Dataset MovieLens | Netflix
Number of users 136,472 461,381
Number of items 17,218 15,422

Size of CSR matrix | 7.5MB 34.9MB

Table 2.1: Comparison of processed dataset sizes

2.2 Preprocessing

USER 1 1 0 1

’ USER ID ‘FILMID‘ RATING ‘TIMESTAMP‘ :> USER 2 0 0 1
USER 3 0 0 1

Preproccesing

Load original dataset Save new matrix%

Figure 2.1: Visualization of data preparation

Prepared datasets are to necessary perform the experiments, which will
form the core of this thesis. Datasets used in this thesis come in a similar
format. They contain a list of ratings given by a user to an item. The rating
is given in the form of 5-star scale. Additionally, they also contain other
metadata about the items.

The implemented algorithms expect ratings in the form of the user-item
matrix. The basic transformation into this form is illustrated in diagram Ell

The original data are a list of vectors in the following format:

[userld, movield, rating, timestamp]

For the purposes of this work, explicit user feedback in the form of 5-star
scale isn’t ideal. That is why it has been transformed into implicit feedback.
One represents an item that a user took interest in, everything else is zero.
Ratings of four and above are considered positive feedback.

As the last step, the vectors have been transformed into a matrix, where
rows represent users and columns represent items. Because the matrix is very
large and sparse, the Compressed Sparse Row format is well suited to represent
the matrix in memory.

20

2.3. Methodology of experiments

2.3 Methodology of experiments

Split prediction
Test set: and held-out ——Held-out matrix
matrix

Prediction matrix

Train set /—ﬁ—\
Split train, Generate
validation and Train model Modet—* - —Predicted ratings Calculate metrics
et prediction
-

Validation set

Full user item matrix Computed metrics values
and other useful data

User item matrix “

Figure 2.2: Processing steps and data flow between them

Once the dataset is prepared, models can be trained and evaluated. In
order for the results to be meaningful, several steps are necessary. The basic
steps and the data flow between them are visualized in diagram P.2.

2.3.1 Splitting sets

First the dataset needs to be split into training, validation and test sets. This
effectively simulates the situation, when model is trained on given data and
later used for predictions on new data. Evaluating on different data allows for
verification in order to find out whether the model generalizes well.

Training set will be used to train the model. Validation set will be used
to evaluate model during training to limit over-fitting. Test set will be used,
when the training is finished, to generate predictions and calculate metrics.

Training set will contain % of the original dataset. Validation and test sets

1

will each contain z. The split will be along the user dimension. The items

will remain the same in every subset.

2.3.2 Training model

The training process of a neural network is an iterative process. The structure
of the network and the training process itself are governed by many param-
eters. Finding good values for these hyperparameters is a major part of this
thesis.

2.3.3 Evaluation

The test set will be used for the purposes of evaluation. However, before it
can be used, it needs to be split into two parts. All users and all items will

21

2. ANALYSIS AND DESIGN

be present in both parts.

In order to calculate many of the metrics described in section two
sets of ratings need to be created. One matrix (the prediction matrix) will
contain most of the ratings, and the second matrix (the held-out matrix) will
contain the remainder.

This split allows to generate predictions for ratings using the prediction
matrix and then compare them to the actual ratings in the held-out matrix.
This simulates the situation, where a user receives a recommendation. Their
actual preferences (known from the held-out set) are compared to the models
predicted preferences.

The held-out matrix will contain 20% of the ratings. Because during the
split some users in the prediction matrix can be left with no ratings (no ones),
these users will be removed. As a result, the two matrices have the same di-
mensions, but some users have been removed compared to the original matrix.

2.4 Hyperparameter optimization

Hyperparameters are configurable parameters of a model. It could be the
maximal depth of a decision tree, the number of neighbours in the k-nearest
neighbours algorithm or the number of hidden layers in a neural network. In
an abstract sense, it is simply a value with a given range of meaningful values,
which can be adjusted to improve the performance of the model.

The purpose of the hyperparameter optimization is finding the hyperpa-
rameters of a model in a way, that maximizes its performance, while investing
sensible amount of resources into it.

2.4.1 Uniform sampling

One way of a finding a good value for a parameter is to start by determining
a range of values for it. The range can often be deduced from the context
reasonably well. Then a process can sample the range uniformly and use the
value, which allowed the model to reach the best performance.

When this approach is used for multiple parameters at the same time, it is
typically called the grid search. For every parameter it chooses a list of values
and trains the model with every combination of the values.

This approach works well for a few parameters, but the number of models
to train grows quickly with the number of parameters. This becomes especially
problematic for models, which have large number of parameters and take long
time to train. That happens to be the case with neural networks.

2.4.2 Model-driven optimization

The number of models, which need to be trained, to find a good configura-
tion of parameters can be lowered by assuming, that there are underlying

22

2.4. Hyperparameter optimization

dependencies, which can be modelled.

Using this assumption, a model of the space of parameters can be build
and used to guide the sampling process, so that the process primarily trains
models with parameter values, which seem to be promising.

There are multiple models which can be used for this purpose. One option
is the Bayesian optimization using Gaussian Processes [15], which seems to
have good empiric results. Various other options can be used. For example,
the Scikit-optimize library [16] also offers the decision trees and the gradient
boosted trees.

R
Split prediction
Test set: and held-out
matrix

Held-out matrix

Prediction matrix

Split train,

Generate

- —Predicted ratings—{ Calculate metrics
prediction

test sets

I
1
validation and :
|

Validationset - — — — — _— _— _— _—_ _ _ _ _ _ _ _ T _ _ _ _ _ _ _ _ _ __ __________C

. . Computed metrics values
Full user item matrix
and Hyperparameter model

User item matrix Results

Figure 2.3: Hyperparameter optimization as part of the training process

23

CHAPTER 3

Implementation

All software used for the preprocessing of data, training of models and evalu-
ation of the results was implemented in Python 3.6. The implementation and
testing of the code were done locally using small parts of the used datasets.

More resources were necessary to process the full datasets. I used the
services provided by metacentrum.cz (operated by CESNET z.s.p.o). This
allowed me to process the entire matrices in memory, especially when they
needed to be dense, which sometimes required tens of gigabytes of memory.

They also provide access to GPUs, which allowed me to train large models
in reasonable time. This ability, for example, allows for more interesting
parameter search experiments.

3.1 Libraries

The main reason for choosing Python as the language for the implementation
was the availability of good libraries for machine learning and data processing
tasks. The description of the main used libraries follows.

3.1.1 Tensorflow

Tensorflow is a library primarily used for training neural networks. The user
describes the structure of the network and the library creates a computational
graph.

High-level API called Keras can be used to describe the network. It can
be combined with low-level API, where the user specifies the computational
nodes directly. This allows combining standard functionality from the library
with custom code easily.

The computational graph is then connected with the data on which the
computation will be performed. The computation itself can be performed
on a CPU, GPU or a specialized accelerator. It can even be performed in
distributed environment.

25

3. IMPLEMENTATION

Version 1.11 was used for this implementation.

3.1.1.1 Tensorboard

Tensorflow library has its own tool for monitoring progress of training. It is
very easy and useful to collect metrics (primarily the loss function for training
and validation sets) during the training process and display it using this tool.

TensorBoard SCALARS GRAPHS
[] Show data download links epoch_loss
Ignore outliers in chart scalin epoch_loss
Tooltip sortin
rnethgd: ’ default ~ 5.000e-3
8.500e-3
Smoothing 8.000e-3
® 0 . 7.5008-3
hd 7.000e-3
6.5008-3
Horizontal Axis

5000 2000 3500 5000
STEP RELATIVE —
DEE

Figure 3.1: Example of epoch loss plotted in Tensorboard user interface

Because the experimental part of this thesis is primarily focused on hyper-
parameter search, the visualizations usually represent a set of models. There-
fore, the output from Tensorboard for single model isn’t shown in the experi-
ments chapter.

The tool was very useful during the initial phase of implementation to val-
idate the training process and to monitor over-fitting during the experiments.

3.1.2 Numpy/Scipy

Numpy and Scipy are the de facto standard choice for processing vectors and
matrices in Python. Numpy is focused primarily on dense matrices and linear
algebra. Scipy focuses on wider range of mathematics.

For the purposes of this work, the main usage of Scipy was the sparse ma-
trix representation, which allowed to store the datasets much more efficiently.
The size of the resulting files is on the order of tens of megabytes. The dense
matrix equivalent would require several gigabytes of storage.

26

3.1. Libraries

3.1.3 Scikit-optimize

This is a relatively new library, which became part of the larger Scikit ecosys-
tem. It focuses on hyperparameter optimization and provides several methods
of achieving it. It also includes tools for visualizing the results.

In order to use these methods, one metric needs to be chosen. Its value
will then be minimized. Most experiments have used the negative of NDCG
as the metric. The other metrics of the models were also saved and evaluated
later.

27

CHAPTER 4

Experiments

This chapter will cover the performed experiments and their results. The
structure should follow a ”constructive” approach. First start with a simpler
model. Evaluate the model and then attempt to add something that could
help and evaluate again. That is the basic work flow, which I intend to follow.

The first section introduces metrics used for evaluation. Afterwards the
first experimental section uses a different well established model to achieve
the same results. That should provide a baseline comparison of the results.
In the next section the first autoencoder will be presented.

4.1 Metrics

The models will be evaluated using the following metrics.

1. Recall@20
2. Recall@50
3. NDCG@100

4. Coverage@50

The theory behind them can be found in section . The first three could
be summarized as a representation of the accuracy of the predicted user pref-
erences. Coverage can be seen as representing diversity of recommendations.
The choice was inspired by paper [L0].

29

4. EXPERIMENTS

4.2 Matrix Factorization

4.2.1 MovieLens

The entire dataset was used to evaluate the SVD method of matrix factoriza-
tion. Since SVD processes and predicts the entire matrix at the same time,
there is no concept of train or test sets.

In order to perform the standard evaluation used in this work (results are
in table {.1]) the entire matrix was split into prediction and held-out matrix.
During this process some users were left with only zeros in the prediction
matrix. They were removed, and the total number of users dropped to 120,720.

4.2.2 Netflix

The Netflix dataset was too large to process because the SVD method requires
dense matrices and the memory requirements were too extreme (about 560 GB
of RAM would be necessary).

Therefore, the method was applied only to first 50,000 users, which were
further limited during the split into prediction and held-out matrix. At the
end 42,363 users were used.

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50 | RMSE
MovieLens | 0.16036 0.30237 0.15459 0.04686 0.03494
Netflix 0.17015 0.31099 0.17333 0.05984 0.04369

Table 4.1: Results of matrix factorization applied to two datasets

4.3 Autoencoders

4.3.1 AE with no hidden layers

The first autoencoder (AE) to evaluate is the simplest one. This model con-
tains only the input layer, the latent layer and the output layer. The activation
in the latent layer is linear, which means only the weights of the connections
between the input and the latent layer are relevant (and the bias of each
neuron).

This means that there are only few hyperparameters left to choose. The
size of the latent layer is the most important one. The size of the layer should
be to a certain degree given by the dataset itself. Ideally the smallest possible
size, which can represent the input, should be used.

The other parameters are more connected to the learning process. It is the
learning rate and the number of epochs. The hyperparameter optimization
was used to explore the parameter space.

30

4.3. Autoencoders

4.3.1.1 Parameter search

Graph @ shows the results of the search as represented by the Scikit-optimize
library. The individual graphs show pairwise relationships between the three
parameters. Lighter colour means better value of the optimized metric NDCG.
The graph at the end of each row show the relation between each parameter
value and the metric as modelled by the optimization process.

epochs
18 24 30 36 42

()
o
C
[0}
©
C
[
Q
[0}
©
©
©
Rrtent_dim
50 75 100 125
(]
L —0.150 £
£ 3
EI S
2 r—0.175 &
g °
o ©
L —0.200 €
©
le3rning_rate
0.0006 0.0012 0.0018
0.00175 1 0148
o)]
© 0.00150 - 1 - —0.16 2
g 2
2 0.00125 -
£] L ~0.18 8
© 0.00100 ©
< 1 L —0.20 €
0.00075 A &
-0.22
WD AP AR D P DR RS
epochs latent_dim

Figure 4.1: Visualization for the parameter space of AE with no hidden layers

Based on the results from MovieLens and similar results from Netflix
dataset, the best values appear to be:

e Number of epochs: 20
e Size of the latent vector: 32
e Learning rate: 0.001

These values were used to train a model for each dataset. The results will
be presented in the next section.

31

4. EXPERIMENTS

Recall@20
!

-0.4

Recall@50

-0.0

--0.4

I_08

NDCG@100

-0.18 0.017 -0.25

Coverage
)

i ' i !
Recall@20 Recall@50 NDCG@100 Coverage

Figure 4.2: Correlation between used metrics

The results of the parameter search can be used to show one interesting
property. The correlations between the metrics used to evaluate the model.
The graph shows the pairwise correlations.

The measurements generally agree with expectations. Recall@20 and Re-
call@50 are almost fully positively correlated. NDCG@100 also has very high
positive correlation with recall. Coverage has significant negative correlation
with both previous metrics.

The negative correlation was expected. As a model becomes more success-
ful in predicting the user preferences, it recommends less arbitrarily and the
fraction of recommended items goes down.

4.3.1.2 Results

Once the appropriate parameters were found, the final model was trained for
both datasets. Table shows the results. When compared to results of
the matrix factorization (table Ell), values of all metrics have improved. It is
also interesting to point out, that coverage has increased alongside the other
metrics.

32

4.3. Autoencoders

That shows the differences between the models. For the same model,
coverage tends to decrease as the other metrics increase. This result suggests,
that autoencoder will overall give a chance to a large set of items. That is
often a beneficial property for recommendation system.

The results also show, that the performance on Netflix dataset is worse
than on MovieLens dataset. That is likely (at least partially) caused by the
fact, that the rows of the Netflix dataset contain less ratings. As a result, the
input vectors are sparser and the training process is more difficult.

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.25348 0.40961 0.22961 0.11766
Netflix 0.19062 0.33683 0.19431 0.25885

Table 4.2: Results of AE with no hidden layers applied to two datasets

4.3.2 AE with one hidden layer

In this section the complexity of the model will increase. One hidden layer
will be added to both encoder and decoder. This should in theory allow the
model to better learn a complex function.

The new layers also add more hyperparameters, which need to be config-
ured. The most obvious one is the size of the new layers. The same opti-
mization technique as in the previous section was used to find the best value.
The optimal value turned out to be 512 nodes in a layer. Adding extra nodes
beyond this value hasn’t improved the resulting metrics.

The following subsections will explore other new parameters. The loss
function will also be discussed. It was of course present in the previous section
as well, but its influence wasn’t discussed.

4.3.2.1 Activation function

There is large number of potential activation functions, which can be used in
the hidden layers. The rectified linear unit (ReLU) is one option, which is
commonly used in modern networks.

There is a very active discussion about the properties of different func-
tions, which can be used. One of the more recent comparisons can be found
here [17]. Since no function is universally better and they are readily avail-
able in libraries, it is easy to run the experiment. The relevant results are
demonstrated in graph @.3.

The graph shows that most functions behave similarly on the data, ex-
cept softmax. That is understandable, because softmax places specific extra
constraints on the output of a layer. The goal of the softmax function is to
ensure, that the whole output vector sums to one. This allows the output to
be interpreted as probabilities. While that is an interesting property, which

33

4. EXPERIMENTS

0.26
Gocooe00®
Gogo00® °
0.24 o oe®
o
O 0.22
—
©
©)
g 0.20 1
=
0.18 +
0.16 %
T T T T T T
sigmoid elu softmax tanh relu selu
activation

Figure 4.3: NDCG@100 for different activation functions in the hidden layer

can be interesting for usage in the output layer of many networks, it adds no
value here.

ReLU achieved the best results (although by a small margin). Therefore,
it will be used in future measurements.

4.3.2.2 Dropout

° .6“5‘..
0.24 + °
°
o o °
é 0.22 H
3 o’
Q 0.20 1 o
z °
0.18- o
[}
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

dropout_rate
Figure 4.4: NDCG@100 for different values of dropout
Dropout can be applied to the output of each hidden layer. It causes a

34

4.3. Autoencoders

subset of the neurons in a layer to be left out from one forward and backward
pass. The usage of dropout can help prevent over-fitting and improve the
results.

Graph @ shows different rates of dropout applied to models trained on
the same dataset with other parameters fixed.

The expected pattern arises. Too small or two high values of dropout hurt
the results. There is continuous improvement up to a certain value and then
the performance drops again. The optimal value seems to be approximately
0.75.

4.3.2.3 Loss function

The loss function represents the error between predicted values of the net-
work’s output and the expected output. It should be chosen to fit the type of

data. The graph shows results on MovieLens dataset.

0. 2 5 . 0000 000000

020 = 000
8 00000
—
® 0.15
Q
O
[m)
Z 0.10 -

0.05

000
I I I I I I
(\ A\ (99 0(< ‘d
&° ° qcoe \© < & S _"_\@\
Q © © &6/ D7 Q‘O
& 09")(&7
o7 @ &
2
&

loss_function
Figure 4.5: NDCG@100 for different loss functions

It is interesting to see that squared hinge loss function leads to very poor
results. It is clearly not well suited for this problem. That is not surprising,
since it is primarily used for binary classification in Support Vector Machines.
It focuses on the largest difference between vectors, which is not well suited
for long vectors of zeros and ones.

35

4. EXPERIMENTS

Other tested functions have performed much better. The best option seems
to be either Poisson loss function or the log loss. Both are variants of mea-
suring the difference of two statistical distributions. Since most experiments
have already been using log loss, this will remain the default option.

4.3.2.4 Results

After all relevant parameters were optimized, new models were trained on
both datasets. The performance has generally improved for all metrics by
about 10%. The only exception is recall on Netflix dataset, which dropped
slightly.

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.28019 0.45730 0.25018 0.13520
Netflix 0.23253 0.38753 0.23734 0.20995

Table 4.3: Results of AE with one hidden layer applied to two datasets

In conclusion, it seems that adding one hidden layer has been beneficial to
the ability of this type of model to generate predictions.

4.3.3 AE with multiple hidden layers

The last thing that should be attempted in order to improve to performance
of the model is to add more hidden layers. This can be both beneficial and
detrimental.

In many cases the extra layers allow the model to ultimately learn a better
representation of the dataset. However, the complexity of the training process
increases quickly and it might not even be realistic to train the model once it
reaches certain level complexity.

0.254 o 0359477

0.30 1

0.20 +
0.25 4

8 ()
S 0.15 ©0.20 -
@ o
[G] [
o 3 0.15 e
A 0.10 1 S
S o e
0.10 4
0.05 +
0.05 4 e
0.00 o 0.00 .
T T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
hidden_layers hidden_layers

Figure 4.6: NDCG@100 and coverage for different number of hidden layers

Both effects are visible in graph @ At first more hidden layers help the
model. However soon the complexity of the training process wins over. In

36

4.3. Autoencoders

this experiment the model with three hidden layers (three in the encoder and
three in the decoder) collapsed completely. It always recommended only a
couple of items.

This could be improved, if special attention was paid to this model. For
example, all layers in this experiment were of the same size. That is most
likely not a good idea for a model of this complexity. Further tuning and long
training could almost likely eventually make it competitive with the simpler
models.

The graph shows one interesting property. Coverage only decreases. Since
it tends to be negatively correlated to NDCG@100, that is understandable
at the begging. Overall it seems that the models with more hidden layers
were recommending fewer items even when NDCG@100 also dropped. That
suggests, that using deeper model than necessary simply isn’t good for the
final recommendations.

4.3.4 L1 normalization in the latent layer

L1 normalization applied to the latent layer creates a sparse autoencoder.
The loss function now contains an element, which leads the learning process
to create latent vectors with as many zeros as possible.

It is possible to apply the normalization to every layer, but the results for
the problem of recommendation appear to be the same.

0.24 °

NDCG@100
o o
N N
o N
| |

©
[
(o]
|
(ol @

0.16

I I I I
—0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
1 rate

Figure 4.7: NDCG@100 for L1 normalization
This new element of the loss function has a weight associated with it called

the L1 rate. Graph shows the performance of models with different rates.
The models used in this experiment had one hidden layer.

37

4. EXPERIMENTS

Very small values (around 1077) lead to a performance comparable to
models with no normalization. Higher values lead to performance degradation.
L1 normalization doesn’t seem to benefit models developed in this chapter.

The results are even worse, when dropout is applied to hidden layers of
the network at the same time. This is likely because both methods are regu-
larization methods and they ultimately interfere with each other. The same
is true for the L2 normalization in the next section.

Even the best model in this section doesn’t perform better than previ-
ous models with dropout only. One of the contributing factors may be the
fact, that the size of the hidden layer has already been optimized. As a re-
sult, not many of the values in the latent vector can be zero without hurting
performance.

4.3.5 L2 normalization in the latent layer

L2 normalization is an alternative regularization method. It doesn’t produce
sparse latent vectors, but it can be used to prevent over-fitting.

When added to model without dropout, the L2 normalization improves
performance. The optimal values of the L2 rate appear to be around 0.0001.
Graph shows the performance of models with different values of the pa-
rameter.

0.23 .:‘..

NDCG@100

© o © ©
[N N))
(] o = N
1 1 1 1

0.18

I I I I
—-0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
[2_rate

Figure 4.8: NDCG@100 for L2 normalization

The results of the best found models are summarized in table @ The
values of all the metrics are lower (by several percent) then the values of a
similar model, which uses dropout instead of L2 normalization.

38

4.4. Variational autoencoders

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.26053 0.41577 0.23589 0.08142
Netflix 0.21857 0.36832 0.22358 0.24828

Table 4.4: Results of AE with 12 normalization rate 0.000062

This regularization method does improve performance, but overall doesn’t
outperform dropout when used for the same task.

4.4 Variational autoencoders

The basic idea of the variational autoencoder (VAE) was described in .
Unlike the standard autoencoder, its learned latent representation represent
parameters of a probability distribution. This means that despite a similar
name, it is a very different model. This section will study its potential use for
generating recommendations.

4.4.1 VAE with no hidden layer

The first evaluated version is the simplest one. Similarly to the experiments
with the standard autoencoder, first a parameter search was performed to find
the optimal values of the basic parameters. The optimal parameters seem to
be:

e Number of epochs: 60
o Size of the latent vector: 32 (for each of the two vectors)

e Learning rate: 0.0015

When compared to the basic autoencoder, the biggest difference was the
number of epochs required to train the best model. This is a result of the
fact, that the basic variational autoencoder is already more complex model,
that the simplest standard autoencoder. The loss function is more complex
and the latent representation in larger.

In case of the standard autoencoder, the optimal size of the latent vector
was also 32, but it was only one vector. In case of the variational autoencoder,
it is one vector representing the mean of a multivariate normal distribution
and second vector to represent the standard deviation.

Graph @ shows the tested options for the size of latent vectors. Size
around 30 seems to be ideal, but smaller vectors would likely work similarly.
The size 32 was therefore chosen to correspond with previously performed
experiments.

39

4. EXPERIMENTS

0.187 -
0.186 -

0.185

2 0.184 -
®

e o (oo

O -

3 0.183

(@]

Z 0.182 -
0.181 A
0.180 -

0.179

10 20

I I
30 40
latent_dim

50

60

Figure 4.9: NDCG@100 for different size of the latent vectors (each compo-

nent)
0.190
0.32
s,
0.188 ° - ®e e 0.30
M . . . C H @ o® 0 .
(] Pl 0.28
g 0186 . o3 o o . .
-—@4 o o0 o 20.26
9 0.184 S e ° g
o0 R 2 0.24
% o
01821 0221 °
0.20
o .
0.180 018{ ,°
o ® °
0.16 :

80 100 120
epochs

20 40 60

140

60

80
epochs

100

120 140

Figure 4.10: NDCG@100 and coverage for different number of epochs

Graph shows the dependence of NDCG@100 and coverage on the
number of epochs used to train the model. This dependence is interesting,
because NDCG@100 and coverage tend to be negatively correlated.

The optimal value seems to be around 60. NDCG@100 value doesn’t
improve significantly past this point, but coverage begins to decrease signifi-
cantly. This is most likely caused by over-fitting. Since generally the goal is to
improve the value of coverage as well if possible, there is no point in training
the model past approximately 60 epochs.

Table @ shows the metrics for models trained on both datasets with
the best parameters. The values are generally worse than for the standard
autoencoder with no hidden layers. Only the values of coverage have improved.

40

4.4. Variational autoencoders

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.18608 0.31365 0.18549 0.24724
Netflix 0.14410 0.26022 0.17178 0.33873

Table 4.5: Results of VAE with no hidden layers applied to two datasets

4.4.2 VAE with one hidden layer

To improve potential performance of the model, a hidden layer can be added.
This should allow the training process to generate a more complex model, but
it also increases the training time significantly. In order to use the hidden
layer efficiently, appropriate size needs to be selected.

0.055
0.202 L)

0.050 .
0.200 ©

L 0.045 .
o 0.198 e S .

o
= 0.196
3 0.194 -
[a)]
Z 0.192
0.190

0.188

Coverage
o
o
H
o
1
L]

0.035 .

0.030

0.025- e *

T
300

T
400

T
500

T
600

intermediate_dim

T
700

T
300

T
400

T
500

T
600

T
700

intermediate_dim

Figure 4.11: NDCG@100 and coverage for different number of neurons in the
hidden layer

Graph shows how NDCG@100 and coverage change with the number
of neurons in the hidden layer. It is interesting to see both metrics grow-
ing with the number of neurons. It is much more common for them to be
negatively correlated.

That observation suggests, that the models with higher number of neurons
can predict user preferences better without over-fitting. For further experi-
ments the size of the hidden layer was set to 640, because the improvements
past this point don’t warrant the increased time and complexity of training.

4.4.2.1 Activation function

As was already discussed, when appropriate activation function for the stan-
dard autoencoder was chosen, different neural networks can benefit from dif-
ferent choices. Since variational autoencoder can behave very differently from
the standard one, the options should be evaluated separately.

Graph shows the results of the experiment. ReLLU was the best option
for the standard autoencoder. In this case it also performed very well, but it
was outperformed by sigmoid function. As a result, the sigmoid function will
be used in further experiments.

41

4. EXPERIMENTS

0.210
0.205

0.200 °

S 0.195 -

S

3 0.190

a)

Z 0.185 -
0.180 -

[)

0.175 i'.

0.170 .

I I I I
tanh sigmoid softmax elu selu relu
activation

Figure 4.12: NDCG@100 for different activation functions in the hidden layer

4.4.2.2 Dropout

In keeping with the optimization methodology used for standard autoencoders,
dropout was also experimented with. Unlike in the previous case, the best val-
ues (according to graph) seem to be relatively low. Since the NDGC@100
stays approximately the same as the dropout rate increases and coverage only
decreases, the optimal value seems to be around 0.25.

0.220 1 0.304

02151 o 0251

NDCG@100
o
N
=
o
Coverage
kL
.

0.205 .

0.200 0.05 4 .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
dropout_rate dropout_rate

Figure 4.13: NDCG@100 and coverage for values of dropout

4.4.2.3 Loss function

The loss function is composed of two parts. One is called the reconstruction
loss, which is the standard loss function penalising the difference between ex-
pected and actual output. The other is the Kullback—Leibler divergence. It

42

4.4. Variational autoencoders

leads the model to find a probability distribution, which matches the distri-
bution of the underlying data. The loss function in graph represents the
reconstruction loss.

0.23

0.22 o® 000

0.21 4
3
S 0.20
% 0.19 S
a
2 0.18

0.17

0.16 - o

'.:..0 oo
0.15 H
T T T T T T
\\ S\ . (4 <
& &’ ‘ \((*c\ N \{\\QQ &
QO \Og <O+ \OQ e (<% Q/b s
e &)
e < >
C @O/
(2
&

loss_function

Figure 4.14: NDCG@100 for different loss functions

Loss functions behave very similarly in the case of the variational autoen-
coder and they did for the standard autoencoder. This seems reasonable,
because loss function processes the expected and the actual output of the
model. And those are the same for both models. Therefore, the choice of a
loss function depends more on the data used for the experiments, then the
models used.

Poisson and log loss function were the most successful in both cases. In-
terestingly enough they also produce models with high coverage compared to
most other tested functions.

Paper [L0] proposes interesting extension of the loss function of the vari-
ational autoencoder. It interprets the reconstruction loss as the loss function
and the KL-divergence as a regularisation mechanism. This perspective then
naturally leads to adding parameter 5 between the two components of the loss
function, so that the extent of the regularisation can be regulated. Further
reasoning behind this modification can be found in the paper itself.

Experimenting with this parameter leads to an interesting result. It is the

43

4. EXPERIMENTS

.
0.230 1 o %
o ° .‘:'.. . - °
0.225 1 . .o 0.354
L]
S ° e ﬂ) L]
o
5 0220 . . § 0301 .
o 0 g %
Q .
0.215 3 .
E © 0251
L]
0.210 ® ®ee
.
0.20
L]
0.205 1 s
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
beta beta
N 0.245 4
0.41 - o C 2o
. Seo 0.240 1 oo o
o o C e oo
o 0401 e ° o 0.2351 .
® e © °
=039 . = 0.230 o °
8 N 8
(7 .o [L -
o« ° & 0.225 3
0.38 1
o 02201 °
L]
0.37 . 0.215 4

0.6 0.8 1.0
beta

0.6 0.8 1.0
beta

0.0 0.4

Figure 4.15: Metrics for different values of the 5 parameter of the loss function

first parameter in these experiments, which influences each of the used metrics
differently. Even for Recall@20 and Recall@50 the correlation isn’t as high as
usual. The best value seems to be around 0.25. Ultimately, introducing this
parameter improved the results by several percents.

4.4.2.4 Results

After the optimal parameters found in the previous section were used to train
models on both datasets, the measured results are summed up it the following
table @

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.24138 0.40965 0.22654 0.32164
Netflix 0.20216 0.35102 0.21503 0.58889

Table 4.6: Results of VAE with one hidden layer applied to two datasets

The three metrics related to accuracy of the predictions are all consistently
about 5-10 % worse than the best results of the standard autoencoder. How-
ever, coverage is significantly better. It is more than a double of the previous
values.

This is an interesting result. It suggests that these two models could be
used differently under different circumstances. In some use cases the accuracy
of the predictions might be more important, but in some the slightly worse
accuracy could be well compensated by the ability to recommend much larger
subset of the overall catalogue.

44

4.5. Latent space visualizations

4.4.3 VAE with multiple hidden layers

In some cases adding extra layers to a model can help improve performance.
In section it was shown, that in the case of the standard autoencoder
that wasn’t true. The same experiment was performed with the variational
autoencoder.

Dataset Recall@20 | Recall@50 | NDCG@100 | Coverage@50
MovieLens | 0.25658 0.42078 0.23977 0.29387
Netflix 0.20855 0.35151 0.22172 0.49630

Table 4.7: Results of VAE with two hidden layers applied to two datasets

Table @ shows the results for two hidden layers in the encoder and de-
coder. The accuracy related metrics were improved by a few percent compared
to one hidden layer.

As could have been expected, coverage drops by several percents. These
results are very interesting. The accuracy is approaching the best results of
the standard autoencoder, but the coverage is significantly higher. This means
there is a real potential for trade off based on the demands for specific use
case.

Adding more layers leads to a significant decrease in all metrics. It is possi-
ble that further tuning of these complex models would make them competitive,
but the potential added value appears to be limited.

4.5 Latent space visualizations

This section presents visualizations of the latent space for both types of models
described in the previous sections. The visualizations have been created by
training a model and generating the latent vectors for each input vector in the
test set.

The latent vectors are high-dimensional and need to be projected to a 2D
space in order to be plotted. Visualizations in this section have been created
using the t-SNE [18] method.

One of the main goals of this method is to place vectors, which are close in
the original high-dimensional space, close in the new low-dimensional space.
That means, that if vectors tend to cluster in the original space, they should
also cluster in the new space.

4.5.1 User-based models

The following visualizations show latent representation of the user ratings
vectors from the MovieLens dataset. The models used in this section have
been trained with the best parameters found in the previous sections.

45

4. EXPERIMENTS

The dataset doesn’t contain any information about the users. That is why
the visualizations only show the number of ratings created by a given user.

4.5.1.1 AE

604

404

20
o

ratings
0.0
400.0
800.0
1200.0

% o
e 1050
~20 e 4 ¥
a0/
6o
-80 7(‘50 74‘l0 7‘20 6 2‘0 4‘0 éO Sb
x_1
(a) Standard autoencoder
80
RS ratings
60 4 3 2 0.0
> ® 400.0
404 ® 800.0

® 1200.0

—‘ZD 6 Zb 4‘0 G‘O Sb
(b) Variational autoencoder

Figure 4.16: Projections of latent space representation of users and their num-
ber of ratings

The latent space of the autoencoder doesn’t seem to contain any clearly
defined clusters. There is one subset of the latent vectors on the right side of
the visualization , which seems partially separated from the rest.

This potential cluster doesn’t exhibit any straightforward reason for being
distinct. The users in this part of latent space have created about the same
number of ratings as the rest.

There could be a certain subset of movies, which these users have rated sig-
nificantly differently from the rest. However, the original user ratings vectors
don’t exhibit any obvious differences from the rest.

When PCA was applied to the original high-dimensional data instead of t-
SNE, no clearly defined clusters appeared. That means that either the subset
visible in forms more complex manifold, which PCA didn’t transform
well into the low-dimensional space, or it is a property of the t-SNE algorithm
itself.

46

4.5. Latent space visualizations

4.5.1.2 VAE

The visualization of the latent space of the variational autoencoder
differs from the previous one in the general shape. The latent vectors are
“huddled” together.

This is commonly seen in visualizations of the latent space of variational
autoencoders. It can be explained in the following way. If only one input
vector was sent through the network repeatedly, the resulting latent vectors
would be normally distributed. This would plot as a circular cluster with more
vectors near the centre.

If several similar vectors were used as the input, it would lead to multiple
clusters laid over each other with slightly different centres. This effect par-
tially persists when more and more input vectors are used. That is why the
visualizations tend to be more circular.

4.5.2 Movie-based models

30 8% ST
x

20 00 x

10 3 x

0 x
N X P
x

—-10 4 X
—-204

—30 4

—404

T T T T T v v
-30 -20 -10 0 10 20 30
x_1

(a) Standard autoencoder

40

20 A X x

x

—20 4 * x

=30 =20 -10 0 10 20 30
x_1

(b) Variational autoencoder

Figure 4.17: Projections of the latent space representation of movies. Red
crosses represent the Animation genre.

47

4. EXPERIMENTS

Models in this thesis were focused on the user ratings vectors. However,
the MovieLens dataset doesn’t contain any information about the users, but
it does contain some information about movies — their titles and genres.

This section presents visualizations of the latent space for the movie vec-
tors. The input matrix has been inverted. The models used to generate the
visualizations haven’t been tuned nearly as well as the ones in the previous
section, but they did produce some interesting patterns.

4.5.2.1 AE

301 %

20 A %

101

x_2

-20

-304

—40

T T T T T v v
-30 -20 -10 0 10 20 30
x_1

(a) Standard autoencoder

40

20 A

x_2
o
x

-20

—404

-30 =20 -10 0 10 20 30
x_1

(b) Variational autoencoder

Figure 4.18: Projections of the latent space representation of movies. Red
crosses represent the Three Colours series.

The first visualization for the standard autoencoder () highlights an-
imated movies. Similar patterns could be shown for all the other genres. This
could have been expected, because it is not typical for consumers to choose
movies strictly based on genres.

The hope was that animated movies are much more popular among chil-
dren and their pattern of ratings could be different. This may or may not be

48

4.6. Discussion of results

true, but children likely use their parents’ accounts and therefore the ratings
would be mixed with others anyway.

The second visualization () highlights a trilogy of movies named
Three Colours. This result does match the expectation. Their corresponding
latent vectors are close together in the latent space, because users are likely
to watch all of them or none.

4.5.2.2 VAE

Similarly to visualizations of the user vectors, the variational autoencoder
produces more circularly arranged latent vectors. The situation here is very
similar to the standard autoencoder.

The animated movies don’t form any distinct cluster. However, the latent
vectors of the Three Colours trilogy are again relatively close to each other.

4.6 Discussion of results

The previous sections have focused on improving two basic models (standard
and variational autoencoder) as much as possible. For each model a configu-
ration was found, which produced the best results.

This "simplicity” of finding the clearly "best” configuration for each model
may be partially caused by the limitations of the metrics used to evaluate
the results. As was discussed earlier, recall and NDCG are usually highly
correlated.

Coverage tends to be inversely correlated. At least for very similar mod-
els. Seemingly simple conclusion could be the following: As accuracy of the
predicted ratings increases, the number of recommended items decreases.

However, this is only true for very similar models. When the configura-
tion is changed more significantly (for example new hidden layer is added),
all metrics can improve together. This change can then be considered clear
improvement (within the limited relevancy of these metrics).

The following tables also include matrix factorization results.

Model | Recall@20 | Recall@50 | NDCG@100 | Coverage@50 Time
(hh:mm)
SVD | 0.16036 0.30237 0.15459 0.04686 39:16
AE 0.28019 0.45730 0.25018 0.13520 00:19
VAE | 0.25658 0.42078 0.23977 0.29387 00:35

Table 4.8: Results of the best models for MovieLens dataset

Comparison of the models used on the MovieLens dataset shows, that the
autoencoders outperform matrix factorization. It is important to point out,

49

4. EXPERIMENTS

that the SVD method wasn’t tuned nearly as much as the autoencoders. Its
result could likely be improved.

The most interesting part of the comparison with SVD is very small cover-
age demonstrated by SVD. This is an example of how all metrics can increase
or decline together, when the models are significantly different.

Between the standard and variational autoencoder, the recall and NDCG
are similar. The most interesting part is the more than twice as large coverage
generated by the variational autoencoder.

That strongly suggests that in practice the user experience of these two
models would be very different. The variational autoencoder would likely
recommend significantly larger range of items.

Table also shows the time it took to train each model. SVD is a time-
consuming operation especially with a large matrix. Standard autoencoder is
simpler to train than variational autoencoder and it also requires fewer epochs.

Times for the Netflix dataset (@) reflect the fact, that the dataset is
larger. The SVD was faster, because it used only a fraction of the entire
dataset. The full dataset would be too memory-consuming.

Model | Recall@20 | Recall@50 | NDCG@100 | Coverage@50 Time
(hh:mm)
SVD 0.17015 0.31099 0.17333 0.05984 06:19
AE 0.23253 0.38753 0.23734 0.20995 00:51
VAE | 0.20855 0.35151 0.22172 0.49630 01:44

Table 4.9: Results of the best models for Netflix dataset
Results of all three models applied to Netflix dataset lead to the same

conclusions. This supports the results. The observed differences are very
likely caused by the models themselves.

20

Conclusion

During the work on this thesis, I have surveyed the relevant literature and
analysed potential algorithms for generating recommendations. Based on the
state-of-the-art literature, I have chosen the most promising models.

I have prepared data for evaluation using publicly available datasets and
chosen the metrics, which allowed me to analyse behaviour of different models.

I have implemented the two basic types of models and experimented with
them to improve their performance. By the end both models reached compa-
rable performance, but the specifics of their generated recommendations were
different.

Standard autoencoder is easier to train and becomes accurate in predicting
user preferences. It learns faster and requires fewer computational resources.
However, ultimately variational autoencoder can be trained to a similar level of
accuracy, but it also maintains the ability to recommend much larger fraction
of the catalogue.

This, in my opinion, makes it a better choice for many use cases, because
the larger variability of the recommended items increases the chance, that
some of the items will be interesting to the user.

In order to gain better understanding of how the two models differ in
realistic situations, it would be beneficial to perform A/B testing with a real
online service and real users.

This thesis has focused on the problem of processing the user-item ratings
matrix, specifically on implicit feedback. I believe that in practical application
it could be very interesting to incorporate other available data about users and
items into the recommendation process.

Neural networks provide a good framework for integrating different types
of data. More complex networks or an ensemble of different models could be
used for this purpose.

o1

Bibliography

Ghosh, S. Simple Matrix Factorization example on the Movielens dataset
using Pyspark. https://medium.com/@connectwithghosh/simple-
matrix-factorization-example-on-the-movielens-dataset-
using-pyspark-9b7e3f567536, [cit. 2019-02-04].

Axon. Jan 2019. Available from: https://en.wikipedia.org/wiki/Axon

Spinner, T.; Korner, J.; et al. Towards an Interpretable Latent Space
— An Intuitive Comparison of Autoencoders with Variational Autoen-
coders. Sep 2018. Available from: https://thilospinner.com/towards-
an-interpretable-latent-space/

Scrapehero. How Many Products Does Amazon Sell Worldwide - Jan-
uary 2018. Feb 2018. Available from: https://www.scrapehero.com/
how-many-products-amazon-sell-worldwide-january-2018/

Aggarwal, C. C.; et al. Recommender systems. Springer, 2016.

Resnick, P.; Iacovou, N.; et al. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW ’94, New
York, NY, USA: ACM, 1994, ISBN 0-89791-689-1, pp. 175-186, doi:
10.1145/192844.192905. Available from: http://doi.acm.org/10.1145/
192844.192905

Netflix Prize homepage. http://www.netflixprize.com/index.html,
[cit. 2019-02-03].

Toéscher, A.; Jahrer, M.; et al. The bigchaos solution to the netflix grand
prize. Netfliz prize documentation, 2009: pp. 1-52.

93

https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536
https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-the-movielens-dataset-using-pyspark-9b7e3f567536
https://en.wikipedia.org/wiki/Axon
https://thilospinner.com/towards-an-interpretable-latent-space/
https://thilospinner.com/towards-an-interpretable-latent-space/
https://www.scrapehero.com/how-many-products-amazon-sell-worldwide-january-2018/
https://www.scrapehero.com/how-many-products-amazon-sell-worldwide-january-2018/
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://www.netflixprize.com/index.html

BIBLIOGRAPHY

o4

Rehorek, T.; Kordik, P.; et al. Comparing Offline and Online Evaluation
Results of Recommender Systems. In In Proceedings of RecSyS conference
(RecSyS’18), New York, NY, USA: ACM, 2018.

Liang, D.; Krishnan, R. G.; et al. Variational Autoencoders for Collabo-
rative Filtering. arXiv preprint arXiv:1802.05814, 2018.

Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, volume 65,
no. 6, 1958: p. 386.

Russell, S. J.; Norvig, P. Artificial intelligence: a modern approach. Pren-
tice Hall, 2010.

Ng, A.; et al. Sparse autoencoder. CS294A Lecture notes, volume 72, no.
2011, 2011: pp. 1-19.

MovieLens. Jan 2019. Available from: https://grouplens.org/
datasets/movielens/

Frazier, P. I. A tutorial on Bayesian optimization. arXiv preprint
arXiw:1807.02811, 2018.

Scikit-Optimize library. Available from: https://scikit-
optimize.github.io/

Pedamonti, D. Comparison of non-linear activation functions for
deep neural networks on MNIST classification task. CoRR, volume
abs/1804.02763, 2018, 1804.02763. Available from: http://arxiv.org/
abs/1804.02763

Maaten, L. v. d.; Hinton, G. Visualizing data using t-SNE. Journal of
machine learning research, volume 9, no. Nov, 2008: pp. 2579-2605.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://scikit-optimize.github.io/
https://scikit-optimize.github.io/
1804.02763
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763

APPENDIX A

Contents of CD

README.md.....covvviiiiiniinnnnn.. the file with CD contents description
s - o7 the data files directory
resultsS....ooieeiinnnnn. the examples of recorded parameter searches
KOSV e et et ettt e the stored results
datasets.........cevnn... the preprocessed datasets as sparse matrices

= ol o the directory of source codes
tpython the directory with python code
thesis............... the directory of IXTEX source codes of the thesis
doCUMENTS v vvvvveiniie e, the thesis documents directory

Images .. ovvviiii i the thesis figures directory

I -5 S the IXTEX source code files of the thesis

I] =5 P the thesis text directory
LDP_Baj er_Michal_2019.pdf....... the Diploma thesis in PDF format

	Introduction
	Research background
	Recommender systems
	Neural networks
	Autoencoders

	Analysis and design
	Datasets
	Preprocessing
	Methodology of experiments
	Hyperparameter optimization

	Implementation
	Libraries

	Experiments
	Metrics
	Matrix Factorization
	Autoencoders
	Variational autoencoders
	Latent space visualizations
	Discussion of results

	Conclusion
	Bibliography
	Contents of CD

