
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Data Augmentation for Neural Networks
Training

Antonín Vobecký

Supervisor: Mgr. Radoslav Škoviera, Ph.D.
Field of study: Open Informatics
Subfield: Computer Vision and Image Processing
May 2019

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434788Personal ID number:Vobecký AntonínStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer Vision and Image ProcessingBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Data Augmentation for Neural Networks Training

Master’s thesis title in Czech:

Rozšíření dat pro trénink neuronových sítí

Guidelines:
The objective of the diploma thesis is to propose, implement, test, and document a method for data augmentation. The
target domain of the augmentation method is for image datasets dedicated to train artificial neural networks. For that
reason, the evaluation of the proposed method should be done on a neural network. The intended application is in the
area of autonomous driving. The augmentation should increase the variability of the original data and decrease the error
rate of the neural network trained on the data.
The following steps should be accomplished:
1. Research existing data augmentation methods for neural networks.
2. Obtain a suitable dataset.
3. Propose and implement the individual components of a data augmentation system.
4. Choose a suitable neural network to be trained on the dataset and compare the error of the network with and without
the augmented data.

Bibliography / sources:
[1] Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." arXiv
preprint arXiv:1711.11585, 2017.
[2] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems, 2014.
[3] He, Kaiming, et al. "Mask r-cnn." 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
[4] Johnson-Roberson, Matthew, et al. "Driving in the matrix: Can virtual worlds replace human-generated annotations for
real world tasks?." arXiv preprint arXiv:1610.01983, 2016.
[5] Duda et al. "Pattern classification." NY, USA 2001.

Name and workplace of master’s thesis supervisor:

Mgr. Radoslav Škoviera, Ph.D., Robotic Perception, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 09.01.2019

Assignment valid until: 30.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Radoslav Škoviera, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my thesis advisor
Mgr. Radoslav Škoviera, PhD. for an
excelent guidance. I would also like to
thank Ing. David Hurych, PhD. and Ing.
Michal Uřičář, PhD. for their expertise
consultations.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

V Praze, 23. May 2019

v

Abstract
The focus of this thesis is on techniques
that can be used for the augmentation of
an existing image dataset – specifically,
a dataset containing humans in the in-
dividual images. For the purpose of the
development, training, and evaluation of
these techniques, a suitable dataset is ob-
tained. First, current augmentation tech-
niques based on image processing meth-
ods are explored, and their benefits are
shown. Next, a novel framework for the
conditional generation of images contain-
ing people is proposed. The ability to gen-
erate people in arbitrary, yet admissible,
poses is beneficial for the training of any
system involving human detection. It is
especially important for the main motiva-
tion behind this work – the Autonomous
Driving industry. Firstly, because the ex-
isting datasets are quite limited in the hu-
man pose and appearance variation. Sec-
ondly, because the strict safety require-
ments in autonomous driving applications
call for the ability of validation in rare
situations. In other words, it is advanta-
geous to have the ability to sample from
the huge distribution of admissible pose
variants of pedestrians. The proposed ap-
proach allows generating images of people
in a sensible required pose, specified via
pose keypoints. It builds on top of the
recent prevailing success of Generative
Adversarial Networks [1]. The contribu-
tions comprise of a novel network archi-
tecture, as well as the novel loss terms
specifically designed to generate visually
appealing pedestrians seamlessly fitting
the surrounding environment. The result
of using such a network for augmentation
of an existing dataset shows an increase
of the resulting performance of the CNN
based human detection system.

Keywords: machine learning, neural
networks, training data

Supervisor: Mgr. Radoslav Škoviera,
Ph.D.
CTU in Prague, CIIRC, Jugoslávských
partizánů 1580/3, Praha 6

vi

Abstrakt
Tato diplomová práce je zaměřena na tech-
niky použité pro rozšíření stávajících tré-
novacích dat pro trénink neuronových sítí
se zaměřením na datasety obsahující ob-
rázky lidí. Pro účely vývoje, trénování, va-
lidace a testování byly vytvořeny vhodné
datasety. Nejprve jsou zkoumány současné
techniky na rozšiřování datasetu založené
na metodách zpracování obrazu a přínosy
těchto metod. Dále je navržen nový sys-
tém pro generování obrázků lidí. Schop-
nost generovat osoby v obecných, ale uvě-
řitelných pozach přináší výhody při učení
systémů detekce lidí. Pro oblast auto-
nomního řízení, která je hlavní motivací
této práce, je toto ještě důležitější a to
ze dvou hlavních důvodů. Zaprvé kvůli
tomu, že stávající datasety jsou velice li-
mitované co se póz lidí týče. Zadruhé je
to pak existence přísných bezpečnostních
předpisů pro aplikace autonomního řízení,
které požadují validaci systémů v kraj-
ních situacích. Z toho vyplývá, že je velice
výhodné mít systém, který umožňuje ge-
nerovat obrázek člověka v zadané poze.
Navržený systém je postaven na genera-
tivních soupeřících sítích (Generative Ad-
versarial Networks). Mezi hlavní přínosy
této práce patří inovativní architektura
síti a nové ztrátové funkce navržené za
účelem generování vizuálně přitažlivých
obrázků osob. Výsledek použití takového
systému pro rozšíření existujícího data-
setu ukazuje navýšení výsledné úspěšnosti
systému pro detekci chodců založeného na
konvolučních neuronových sítích.

Klíčová slova: strojové učení,
neuronové sítě, trénovací data

Překlad názvu: Rozšíření dat pro
trénink neuronových sítí

vii

Contents
1 Introduction 1

Part I
Theoretical part

2 Methodology 5

2.1 Machine Learning 5

2.1.1 Supervised and semi-supervised
learning . 6

2.1.2 Unsupervised learning 7

2.1.3 Semi-supervised learning 8

2.1.4 Reinforcement learning 8

2.1.5 Tasks solved in machine
learning . 9

2.2 Artificial neural networks 11

2.2.1 Perceptron 11

2.2.2 Artificial neuron 13

2.2.3 Feed-forward neural networks 13

2.2.4 Single-layer perceptron 18

2.2.5 Multi-layer perceptron 18

2.2.6 Convolutional neural networks 18

2.2.7 Learning in ANN 22

2.2.8 Feature Normalization 27

2.2.9 Regularization 30

2.2.10 Architectures 32

2.2.11 Multi-Task Learning 35

2.2.12 Transfer learning 37

2.3 Image data augmentation 38

2.4 Generative Adversarial Networks 40

2.4.1 Vanilla GANs 40

2.4.2 Wasserstein GAN 48

2.4.3 Other techniques and
architectures 54

2.5 Image Processing 59

2.5.1 Local Binary Patterns 60

2.5.2 Image histograms 61

2.5.3 Color models 64

3 State of the Art 67

3.1 Image inpainting 68

3.2 StyleGAN 69

3.3 pix2pixHD 70

3.4 GauGAN . 72

3.5 Pose Guided Person Image
Generation . 74

3.6 Disentangled Person Image
Generation . 75

Part II
Implementation and experiments

4 Datasets 81

4.1 MS COCO dataset 81

4.2 Created datasets 82

5 Experiments with augmentation
techniques 87

5.1 Pedestrian detectors in cars 87

5.2 Implemented augmentation
techniques . 88

5.2.1 Setup of experiments 89

5.3 Comparison of augmentation
methods . 90

6 Person image generator 93

6.1 Proposed networks 93

6.1.1 Topologies of generator and
discriminator 94

6.1.2 Generator 96

6.1.3 Discriminator 100

viii

6.1.4 Mask Estimation Network . . 104

6.1.5 Person style encoder 104

6.2 Used losses 105

6.3 Training procedure 107

6.3.1 Progressive growing 108

6.3.2 Normalization and weight
scaling . 108

6.3.3 Nearest Neighbor Search . . . 109

7 Experiments with person image
generator 113

7.1 Network setup 113

7.1.1 Experiment with
encoder-decoder generator 114

7.1.2 Experiment with SPADE
generator . 115

7.2 Visual evaluation 117

7.2.1 Encoder-decoder generator . 117

7.2.2 SPADE generator 117

7.2.3 Analysis of failure cases 118

7.3 Human evaluation 121

7.3.1 Image quality ranking 121

7.3.2 Comparison of real and
generated images 121

7.4 Human detector performance . . 122

7.5 Augmenting the dataset with
person generator 124

8 Conclusions 127

Appendices

A Bibliography 131

ix

Figures
2.1 Example of size-normalized
examples from MNIST dataset [2]. . 7

2.2 An example of result of the
k-means clustering algorithm [3] . . . 8

2.3 An example of segmentation by
FCN in the first column and by an
architecture called SDS [4] in the
second column. In the third column
is shown the ground truth
segmentation and in the last one is
an input image. 10

2.4 Basic structure of an artificial
neuron. 13

2.5 Sigmoid function. 14

2.6 Hyperbolic tangent. 15

2.7 ReLU function. 16

2.8 Parametric ReLU, a = 0.2. 16

2.9 Exponential linear unit (ELU),
a = 1. 17

2.10 SoftPlus function. 17

2.11 SoftPlus function vs ReLU. . . . 17

2.12 Diagram of a part of a CNN. You
can see a convolutional layer followed
by a subsampling layer [5]. The
receptive fields are denoted as red
and blue squares in the input image
and as a purple one in the
convolutional layer. 19

2.13 An example of four different
filters of size 3× 3 resulting in four
feature maps [6]. 20

2.14 An example of 3× 3 filter with
stride 2 applied to 7× 7 input
resulting in the output of size 3× 3
[7]. 20

2.15 An example of zero padding with
the value of 2 [7]. 20

2.16 An example of a convolution
operation on a 2D grid [6]. 21

2.17 An example of ReLU activation
used on a feature map [8]. 22

2.18 An example of max pooling with
filter size of 2 and stride 2 [7]. 22

2.19 Diagram of backpropagation [9]. 24

2.20 Comparison of gradient descent in
two variables with different learning
rates η [9]. 25

2.21 Comparison of feature
normalization techniques [10]. Each
of thesubplots shows a feature map
tensor, where N denotes the batch
axis, C is the channel axis and
(H,W) are the spatial axes. 30

2.22 An example of dropout applied to
a simple network architecture (top)
[5]. In the bottom we can see a mask
µi associated with each input and
hidden unit. Each unit is multiplied
with corresponding mask (either 0 or
1). 31

2.23 An architecture of LeNet-5 [2]. 32

2.24 Architecture of AlexNet [11]. . . 33

2.25 Arichitecture of VGGNet [12]. . 33

2.26 Inception module with
dimensionality reduction [13]. 34

2.27 Architecture of GoogLeNet [12]. 34

2.28 Residual block [14]. 34

2.29 Architecture of ResNet [12]. . . . 35

2.30 Architecture of U-Net [15]. 36

2.31 An example of common MTL
setup [5]. Generic parameters that
are shared by all the tasks are here
denoted as h(shared). 36

2.32 The difference between flat MTL
(left) and MTL with ROCK (right)
[16]. 37

x

2.33 Architecture of the proposed
residual block. Primary task of
object detection that is trained with
auxiliary tasks of scene class
prediction, depth prediction and
surface normal prediction [16]. The
auxiliary tasks share two
convolutional layers in encoder. . . . 37

2.34 Architecture of GAN for
generating hand-written digits [17]. 41

2.35 Examples of generated samples.
The rightmost column shows the
nearest training example of the
neighboring sample, in order to
demonstrate that the model has not
memorized the training set. In a) are
examples from MNIST dataset, in b)
examples from TFD dataset, in c)
from CIFAR-10 trained with
fully-connected network and in d)
examples from CIFAR-10 trained
with a convolutional network. 44

2.36 GAN training procedure proposed
in [1]. 44

2.37 Two examples of low dimensional
manifolds in 3D that can hardly have
overlaps [18]. 45

2.38 JS divergence for MLP generator
(left) and DCGAN generator (right).
In the example with DCGAN, you
can see that the produced samples
get better over time, but the JS
divergence increases or stays constant
[19]. 46

2.39 Structure of conditional GAN
proposed in [20]. 47

2.40 Architecture of DCGAN [21]. . . 48

2.41 Wlking the learnt manifold of
LSUN bedroom dataset [21]. 48

2.42 An example of vector arithmetic
with human faces [21]. Three vectors
for each concept were averaged. . . . 49

2.43 An example of distributions [18]. 49

2.44 Comparison of the EM distance
(left) and the JS divergence (right)
[19]. 51

2.45 WGAN training procedure [19]. 52

2.46 Discriminator of vanilla GAN
saturates and results in vanishing
gradients. On contrary, WGAN critic
provides clean gradients [19]. 52

2.47 In the training curves of WGAN,
we can see a clear correlation between
sample quality and error value [19]. 53

2.48 Comparison of value surfaces of
WGAN critics trained to optimality
on toy datasets using (top) weight
clipping and (bottom) gradient
penalty [22]. 54

2.49 An example of a conditional GAN
training to map edges to photo. . . . 55

2.50 Example of pix2pix trained to
map from Google Maps to aerial
photo (left) and from aerial photo to
Google Maps (right). 55

2.51 An architecture of generative
inpainting framework [23]. 56

2.52 Architecture of cycleGAN (a)
with cycle consistency loss showed in
(b) and (c). [24] 57

2.53 Both discriminator and generator
grow synchronously starting with low
resolution and proceeding by adding
new and new layers all the way to the
full resolution [25]. 58

2.54 An example of a fade in of a new
layer [25]. 59

2.55 Neighborhood sets specified by
different values of P and R. In the
case that the sampling point is not in
the center of a pixel, the pixel values
are bilinearly interpolated [26]. . . . 60

xi

2.56 An example of LBP computation
[26]. 61

2.57 Comparison of histograms of dark
and bright image [27]. 62

2.58 Comparison of histogram of image
with high and low contrast [27]. . . 62

2.59 Comparison of HSL and HSV
cylinders [28]. 65

3.1 Illustration of gated convolution
[29]. 68

3.2 The architecture of [29] together
with an example of learned gating
values. Note that is figure show only
the coarse part of the inpainting
framework and not the refinement
part. 69

3.3 An example of user-guided image
inpainting by sketches [29]. 70

3.4 Architecture of style-based
generator [30]. 71

3.5 Examples of generated faces [30]. 71

3.6 Architecture of the generator in
pix2pixHD [31]. 72

3.7 An example of input label map in
3.7a and resulting generated image in
3.7b [31]. 72

3.8 Design of SPADE layer [32]. 73

3.9 On the left, you can see a structure
of a SPADE residual block. (Right)
Design of SPADE generator
consisting of residual blocks [32]. In
comparison to image-to-image
translation networks (such as
pix2pixHD), this network has less
parameters and better performance. 74

3.10 The architecture of Pose Guided
Person Generation Network from
[33]. 75

3.11 Architecture of the first stage
[34]. 76

3.12 Architecture of the whole
framework of [34]. 77

4.1 An example of annotated images in
MS COCO dataset [35]. 82

4.2 An example of possitive (top) and
negative (bottom) samples from the
dataset for the detection task. 83

4.3 An example of the cropped images
from the dataset. 84

4.4 An example from the dataset. The
top row shows the original cropped
image, the second row shows a
masked version of the image, the
third image shows the original mask,
while on the fourth the estimated
mask is shown and in the last row are
shown the positions of annotated
keypoints. 85

5.1 An example of a cascade classifier. 87

5.2 An example of pedestrian detection
pipeline for candidate generation and
sequential elimination of false
positives. 88

5.3 Loss and accuracy on the training
set. 91

5.4 Loss and accuracy on the
validation set. 91

5.5 Loss and accuracy on the test set.
PO stands for Pedestrian Only and
RRC for Random Resized Crop. . . 91

6.1 An example of the upsampling
block. The input has c channels
obtained from previous block
concatenated with c_orig channels
from the original input. 95

xii

6.2 An example of the downsampling
block. 96

6.3 Topology of the SPADE residual
block. The input corresponding to
body joints are concatenated to one
channel for better visualization. . . 97

6.4 Overall structure of the generator. 97

6.5 Legend to the networks. 97

6.6 Encoder topology. 98

6.7 Core block topology. 99

6.8 Decoder topology. 99

6.9 An example of generator that
produces images up to 128× 128
resolution. The generator takes as an
input masked RGB image, mask of
the person and keypoint locations. 100

6.10 Diagram summarizing the
architecture of the SPADE
generator. 101

6.11 Topology of discriminator final
block. 102

6.12 Complete topology of the basic
discriminator. 102

6.13 An example of encoder-decoder
generator and traditional
discriminator for the maximum size
128× 128. 103

6.14 Architecture of a patch
discriminator. 103

6.15 An example of mask estimation
used for deciding which pixels take
from the input image and which from
the generated image. 104

6.16 Topology of the style encoder.. 105

6.17 Filters used for computation of
soft LBP. 106

6.18 An example of the procedure of
adding a new blocks to current
networks and therefore increasing the
resolution [25]. G denotes the
decoder part of the generator and D
stands for the discriminator. 109

6.19 An example of nearest neighbor
search among the skeletons. 112

7.1 Topology of the framework with
SPADE generator. The blocks drawn
in blue are traditional parts of GANs.
The image encoder drawn in yellow is
a convolutional neural network and
mask estimation network drawn in
pink has a U-Net architecture. . . . 117

7.2 Comparison of ground-truth (first
and third row) and generated images
by the encoder-decoder generator. 118

7.3 Comparison of the original samples
with the samples generated with the
proposed framework. 119

7.4 Comparison of the original samples
with the samples generated with the
SPADE generator. 120

7.5 An example of the inconsistent
clothing and wrongly handled
occlusion. 120

7.6 An example of the generation in
rare pose. 121

7.7 A bar plot showing an average
ranking and stadard deviation of real
samples (in red) and of generated
samples (blue). 122

7.8 From left to right: two best
generated images, two worst real
images. 122

7.9 A bar plot showing the preference
of the real sample over the generated
one. 123

xiii

7.10 Two most preferred generated
images (in pairs on right) with their
real counterparts. 123

7.11 Comparison of detections on both
original (first and third columns) and
generated (second and fourth
columns) person images. You can see
a value of IoU above every image.
The ground-truth bounding box is
drawn in red. 124

7.12 Randomly taken examples of
augmentation by person generator. 125

7.13 Loss and accuracy on the training
set. 126

7.14 Loss and accuracy on the
validation set. 126

7.15 Loss and accuracy on the testing
set with respective standard
deviation. 126

Tables
4.1 Size of the dataset for classification
with heightmin set to 100px. 83

5.1 Table containing names of
performed experiments together with
their setup. 90

5.2 Table showing the loss and
accuracy of individual experiments
on the test set. 92

7.1 An example of a table with an
experiment setup and explanations. 114

7.2 An example of a table with used
losses and explanation. 114

7.3 Setup of the experiment with
encoder-decoder generator. 115

7.4 Losses used in the setup with
encoder-decoder generator. 115

7.5 Setup of experiment with SPADE
generator. 116

7.6 Losses used in setup with SPADE
generator. 116

7.7 Mean and standard deviation of
ranking of original and generated
images. 121

7.8 Mean IoU of detections given by
YOLO v3 detector. 124

7.9 Table containing names of
performed experiments together with
their setup. 125

xiv

Chapter 1

Introduction

Good data quality is the basis of every system based on statistical machine
learning. These data should be a representative sample of the world, i.e., of
all intended cases and scenarios. However, the data usually fail to meet these
requirements. There are many reasons for such failure: limited time and
resources for capturing and annotation, inability to identify all the use cases
in advance, or just an inability to capture all the specific and rare situations
that might arise.

The need for high-quality datasets is essential, especially in the autonomous
driving industry, where there are high expectations to handle complex situa-
tions under all conditions, changing weather, time of the day, glare, etc. This
is to ensure high safety and reliability of automated driving assistance systems
(ADAS). Even nowadays, it is unfortunately not possible to capture all the
required scenarios and conditions to train such a system. For autonomous
driving and ADAS, it is very important to detect people in the car trajectory
or in its close neighborhood. When capturing a suitable dataset for training
such detector of pedestrians in driving scenarios, we will get very limited
amount of real-world samples and almost zero situations where the pedestrian
would be endangered by the car. One of the possible ways to solve this
problem is to use data augmentation.

The goal of this thesis is to tackle the problems described above. First, the
existing datasets and data augmentation techniques will be researched, and
a suitable dataset for training and testing will be obtained. The next step
will be a proposition and implementation of individual components of a data
augmentation system. Finally, a suitable neural network to be trained on the
dataset will be chosen, and it will be trained on the dataset with and without
the use of the proposed augmentation techniques. The network trained on a
dataset with the use of data augmentation should yield better results when
compared to the network trained on a dataset without it.

1

2

Part I

Theoretical part

3

4

Chapter 2

Methodology

In this chapter, I will cover the underlying methodology used in this diploma
thesis. First, I will talk about machine learning in general. This is well
covered in books [36, 3, 37] and in [5]. Then I will follow with a more in-depth
description of one of the branches of machine learning - artificial neural
networks. Neural networks span a huge variety of models and; I will focus on
Generative Adversarial Networks later in the chapter.

2.1 Machine Learning

Since the dawn of time, people try to make their life easier by using various
tools and machines. Starting from firelock and the wheel, followed by plow
and compass to more recently invented steam machines and airplanes, we,
as mankind, arrived in the digital era with the invention of computers and
the Internet. We can use computers to predict weather or stock prices, to
recognize numbers or cat species or even to play computer games, compose
music [38] and generate faces of nonexistent persons [30]. However, computers
do not just know all of this. One of the ways to teach them these tasks is
with the help of machine learning.

The term Machine Learning was first used by an American artificial intelli-
gence researcher Andrew Samuel [39] back in 1959. A well-known definition
is provided by Tom M. Michell [mitchell97mach]:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with
experience E.

To show these three components in an example, let us imagine a system for
reading words from a scanned document. The task T in this system would
be to read the words correctly, performance measure P can be for example

5

2. Methodology.....................................
an accuracy of read words compared to the ground truth and experience E
would be pair of a scanned document and correct expected output of the
system.

Another and more specific definition can be found in [5]:

Machine learning is essentially a form of applied statistics with
increased emphasis on the use of computers to statistically esti-
mate complicated functions and a decreased emphasis on proving
confidence intervals around these functions.

Therefore, the author says that it presents the two central approaches to
statistics: frequentist estimators and Bayesian inference.

In general, the machine learning algorithms can be divided into three major
categories: supervised learning, unsupervised learning and reinforcement
learning.

2.1.1 Supervised and semi-supervised learning

In supervised learning, the algorithm is provided with both inputs and desired
outputs. In the case when some inputs do not come along with target outputs
we talk about semi-supervised learning.

In the mathematical model of supervised learning, each training example
is represented by a vector/matrix/tensor, and all the samples are represented
by a design matrix. In the case when examples are represented as vectors,
the design matrix has a shape of N ×D, where N is a number of samples
and D is the dimensionality of examples. In other words, each row represents
one example of the training dataset. Through an iterative optimization of
an objective function (performance measure), supervised learning algorithms
learn a function that can be used to predict the output associated with new
inputs [37]. The goal of such learning is for the algorithm to be able to
correctly determine the outputs for inputs that were not included in the
training data. This ability is often called generalization.

One can divide the tasks solved with supervised learning algorithms to
classification and regression.

Classification

In the task of classification, the goal of the algorithm is to assign each input
vector to one of a finite number of discrete categories [3]. This task can be
specified as learning a function f : Rn → {1, . . . , k} where n is the dimension
of input vectors and k is number of categories.

6

.................................. 2.1. Machine Learning

A well-known classification task is the task of classifying images of numbers.
A well known MNIST dataset [40] is usually used for as a training dataset for
these tasks. An example of images from this set can be seen in Figure 2.1.

Figure 2.1: Example of size-normalized examples from MNIST dataset [2].

Regression

Regression differs from the classification in the fact that it learns to predict a
numerical value. This can be described as a function f : Rn → R where n is
the dimensionality of input samples.

Some examples of regression tasks are stock value prediction, house price
prediction or temperature prediction.

2.1.2 Unsupervised learning

In unsupervised learning, the algorithm is provided with the inputs only and
has no information about desired outputs. The goal of the unsupervised
learning algorithms is mostly to find structure in the provided data. We
can divide such algorithms to three basic categories: clustering and density
estimation.

Clustering

The learning problem where the goal is to find groups of similar examples
within the data is called clustering. Objects that belong to the same cluster
are in some sense more similar to each other than to the objects in other
clusters.

A well-known example of clustering is called k-means clustering. The goal
of k-means clustering is to divide n samples to k clusters. Each cluster is

7

2. Methodology.....................................
specified by the mean of samples belonging to that cluster. This mean is
called centroid. All the samples are classified to the cluster with the nearest
centroid. Such a partitioning of space corresponds to the partitioning into
Voronoi cells. An example of k-means clustering into two classes (k = 2) is
shown in Figure 2.2.

.
Figure 2.2: An example of result of the k-means clustering algorithm [3]

Density estimation

The task of density estimation can be seen as the construction of an estimate
of an unobservable underlying probability distribution given observed data.

2.1.3 Semi-supervised learning

As one can imagine, in semi-supervised learning, the algorithm is provided
with incomplete data. This means that a portion of inputs is missing the
ground truth inputs.

2.1.4 Reinforcement learning

Reinforcement learning is concerned with the problem of finding suitable
actions to take in a given situation in order to maximize a reward. A nice
description of reinforcement learning can be found in [41]:

Reinforcement learning is learning what to do—how to map situa-
tions to actions—so as to maximize a numerical reward signal. The
learner is not told which actions to take but instead must discover
which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the
immediate reward but also the next situation and, through that,
all subsequent rewards. These two characteristics—trial-and-error

8

.................................. 2.1. Machine Learning

search and delayed reward—are the two most important distinguish-
ing features of reinforcement learning.

Reinforcement learning algorithms are well-known these days mostly be-
cause of their ability to play and solve various games and often even beat hu-
man players. The most famous are currently AlphaGo [42] and AlphaGoZero
[43]

2.1.5 Tasks solved in machine learning

There are many other tasks solved in machine learning [5]. Here I will show
a few more examples of such tasks.

Machine translation

The machine translation task aims to translate text or speech formulated
in a source language into some other (target) language. The basic machine
translation system would just translate each word in a sentence on its own
without any context. This usually does not produce good results, e.g. because
of the phrases contained in a language. Also, the word ordering in source and
target language can be different. The training dataset in machine translation
is often called corpus.

Statistical machine translation was one of the main approaches in the past.
Just as the name says, it tries to generate translation using statistical methods
based on bilingual text corpora.

In recent years, the area of machine translation research was overtaken by
the rise of neural networks. Most of the translation systems (e.g. the one
provided by Google) are nowadays implemented using neural networks.

Structured output

Structured output tasks involve any task where the output is a vector (or
other data structure containing multiple values) with important relationships
between the different elements [5].

An example of such a task is pixel-wise segmentation of images. In a
pixel-wise segmentation, the algorithm is given an input image and is asked to
assign one of categories to every pixel. This segmentation can be for example
used to annotate the locations of roads in aerial photographs [44].

Neural networks overtook the area of image segmentation in recent years.
One of the most suitable types of a neural network system for image segmen-
tation are Fully Convolutional Networks (FCN) for Semantic Segmentation

9

2. Methodology.....................................
[45]. You can find an example of resulting segmentation by this system in
Figure 2.3.

Figure 2.3: An example of segmentation by FCN in the first column and by an
architecture called SDS [4] in the second column. In the third column is shown
the ground truth segmentation and in the last one is an input image.

However, the tasks are not limited to have the same structure as the input.
For example, in image captioning, the system is given an image as an input
and is asked to describe its content by a natural sentence [46].

Synthesis and sampling

In the task of synthesis and sampling, the algorithm is asked to generate new
samples that resemble those in the training data. Synthesis and sampling
via machine learning can be useful for media applications where it can be
expensive or tedious for an artist to generate large volumes of content by
hand [5]. We can find such algorithms for example in computer games where
they are used to generate for example textures for large landscapes.

Approaches that explicitly or implicitly model the distribution of inputs,
as well as outputs, are known as generative models, because by sampling
from them it is possible to generate synthetic data points in the input space
[3]. Given an observable variable X and a target variable Y , generative model
is a model of the joint probability distribution on X × Y , P (X,Y).

One of the major ways in synthesis and sampling these days are Generative
Adversarial Networks, GANs for shorts. GANs learn to mimic the distribution
of training data via competitive game between two neural networks. One
network aims to generate as realistic outputs as possible (usually called
generator) and the goal of the other one is to tell the real samples from
generated ones (this network is called the discriminator). I will describe
GANs more deeply later on. GANs can be used for domain transfer [24] or
super-resolution [47].

10

............................... 2.2. Artificial neural networks

Denoising

In this type of task, the machine learning algorithm is given an input a
corrupted example x̃ ∈ Rn obtained by an unknown corruption process from
a clean example x ∈ Rn. The learner must predict the clean example x from
its corrupted version x̃, or more generally predict the conditional probability
distribution p(x|x̃) [5].

2.2 Artificial neural networks

Artificial neural network (ANN for short) is a widely used machine learning
approach. Many of the current computer vision (CV) systems are based
on ANNs. The research in CV is heavily focused on ANNs. The proposed
solution in this thesis is not an exception.

Nowadays, this field is often connected with deep learning. Deep learning
only appears to be new, because it was unpopular in the years that preceded
its rise. In fact we can track deep learning back to 1940s when it was known
as a subfield of cybernetics and in 1980s when it was called connectionism. It
is known under the current name of deep learning since the year 2006.

The term neural network itself has origins in the attempts to find a math-
ematical model that would represent information processing in biological
systems back in 1943 [48]. Despite the initial motivation behind constructing
such models, artificial neural networks are not designed to be realistic models
of biological function. They are most commonly used as models for statistical
recognition.

The McCulloch-Pitts Neuron [48] was an early model of a biological neural
network. The model was a linear one capable of recognizing two categories of
inputs based on the test whether a function f(x,w), where x is an input and
w are weights, is positive or negative. The big disadvantage of this model
was that the weights had to be set manually by a human.

2.2.1 Perceptron

In the year 1958, Rosenblatt [49] described a model of perceptron. Perceptron
is a two-class model in which the input x is first transformed using a fixed
nonlinear transformation to give a feature vector φ(x), and then used to
construct a generalized linear model of the form of equation 2.1

y(x) = f (w>φ (x)) (2.1)

where the nonlinear activation f(.) is given by a step function of the form 2.2

f(a) =
{

+1,
−1,

a ≥ 0
a < 0 (2.2)

11

2. Methodology.....................................
The vector φ(x) typically includes a bias component φ0(x) = 1 [3]. The output
of +1 in the nonlinear activation described in equation 2.2 corresponds to
the first class C1 and the output value of −1 corresponds to the other class
C2. This implies the use of the t ∈ {±1} encoding of the target value.

In the training of perceptron, an error function called perceptron criterion
is used. We seek a weight vector w such that patterns xn in class C1 will
have wTφ(xn) > 0 and patterns in class C2 will have wTφ(xn) < 0. With the
use of the previously defined target encoding t ∈ {±1} we want all patterns
to satisfy 2.3

w>φ(xn)tn > 0 (2.3)

The perceptron criterion associates zero error with any pattern that is correctly
classified, whereas for a misclassified pattern xn it minimizes the quantity
wTxntn. This results in perceptron criterion in the form 2.4

EP (w) = −
∑
n∈M

w>φ(xn)tn (2.4)

where M is the set of misclassified patterns [3]. The contribution of the
error associated with a misclassified pattern is a linear function of w in those
regions of w where the pattern is misclassified - 2.3 is less than or equal to 0
- and is zero in regions where the pattern is classified correctly. This implies
that the error function is piecewise linear [3].

To update the weights w of the perceptron, we apply the gradient descent
(GD) to error function 2.4. In practice a stochastic gradient descent (SGD)
is used. SGD and its modifications are commonly used for optimization in
majority of neural networks. The update of weight vector w is given by
equation 2.5

w(τ+1) = wτ − ν∆Ep(w) = wτ + νφntn (2.5)

where ν is the learning rate parameter that controls the speed of parameters
change and τ is an integer corresponding to the step of algorithm. The
learning rate parameter can be set equal to 1 since the perceptron function
2.1 is not affected by multiplication of weight vector w by a constant.

The perceptron algorithm follows these steps [50]..1. τ = 0, wτ = 0..2. Find a misclassified pattern xi. This corresponds to wτxi ≤ 0...3. If there are no misclassified petterns then terminate. Otherwise perform
a weight update:

w(τ+1) = wτ + φ(xi) ∗ ti (2.6)..4. Go to step 2.

The perceptron convergence theorem says that if there exists an exact solu-
tion (this means that the data set is linearly separable), then the perceptron

12

............................... 2.2. Artificial neural networks

learning algorithm is guaranteed to find an exact solution in a finite number
of steps.

Perceptron belongs to the family of linear models and thus inherits many
limitations that these models have. The most famous problem is the fact,
that these models are not able to learn the XOR function. This inability
caused a backslash against biologically inspired learning in general [51] and
was the first reason for the drop of the popularity of neural networks.

2.2.2 Artificial neuron

An artificial neuron is a name for a mathematical function that is used as
a model of biological neurons. These neurons are building blocks of ANNs.
Each neuron receives one or more inputs, weights them, sums them and then
passes them through a non-linear function that is often called an activation.
Different types of activation functions are shown in the later section 2.2.3.

The basic structure of an artificial neuron consists of a weight vector w
and an activation function ϕ. The output of a neuron is then given by

y = ϕ (w>x) (2.7)

where usually x0 = 1 and then the weight w0 corresponds to bias. This
structure is show in Figure 2.4

Figure 2.4: Basic structure of an artificial neuron.

2.2.3 Feed-forward neural networks

Feed-forward neural networks are the quintessential deep learning models.
Their goal is to approximate some function f∗ [5]. For a classifier, this
means that function f maps input x to a category y. This can be written as
y = f∗(x). Feed-forward neural network aims to find such function f(x,θ),
where x is input and θ represents parameters of the function, that would
approximate the real function f∗ the best.

The reason why are these models called feed-forward is in the fact that
the information flows through the function being evaluated from an input

13

2. Methodology.....................................
x, through the intermediate computations, i.e., the hidden layers used to
approximate the function f , and finally to the output y. There is no feedback
in these networks.

One of the most important parts of every neural network are the activations.
In section 2.2.3 I briefly introduce the most common ones.

Feed-forward neural networks include models such as single-layer perceptron
(section 2.2.4), multi-layer perceptron (section 2.2.5) and convolutional neural
networks (section 2.2.6). There are many more neural network models such as
recurrent neural networks. However, such models are not used in this thesis
and are not therefore described in the following sections.

Activation functions

An activation function is a function that is applied to a weighted sum of
neuron inputs. The resulting value is then passed to the next node. There
are many different activation functions and I will briefly describe few such
functions that are most commonly used in neural networks. I will always
show definition of the function, its derivative with respect to the input x and
a plot of this function. The derivative of the activation function is important
in the learning algorithm as I will show in the later section.

. Sigmoid
Sigmoid (or logistic regression) is one of the first activations used in
neural networks. It is a function described in equation 2.8, derivative
w.r.t. x is in equation 2.9 and has a shape shown in Figure 2.5.

f(x) = 1
1 + e−x

(2.8)

f ′(x) = f(x) (1− f(x)) (2.9)

Figure 2.5: Sigmoid function.

14

............................... 2.2. Artificial neural networks

. Hyperbolic tangent
Hyperbolic tangent (tanh) is quite similar to the sigmoid function. Its
range is [−1, 1] instead of [0, 1] for sigmoid. The advantage over the
sigmoid is that he negative inputs will be mapped strongly negative and
the zero inputs will be mapped near zero with the tanh.

f(x) = tanh (x) = ex − e−x

ex + e−x
(2.10)

f ′(x) = 1− f(x)2 (2.11)

Figure 2.6: Hyperbolic tangent.

. Rectifier linear unit (ReLU)
This activation function was first introduced in 2000 by Hahnloser [52]
In the context of deep learning it was used for the first time in the year
2011 by Xavier Glorot, Antoine Bordes and Yoshua Bengio [53]. Deep
sparse rectifier neural networks]. These days, it is the most commonly
used activation function in the deep networks, mainly for its simplicity
and because it does not saturate when activated.

f(x) = max (0, x) (2.12)

f ′(x) =
{

0
1

x < 0
x ≥ 0 (2.13)

. Parametric ReLU
Parametric ReLU (PReLU) is a modification of ReLU. It differs in a way
it deals with negative inputs. In the classic ReLU, the output for all
negative inputs is 0. In the case of PReLU, the output for the negative
input is the original input multiplied by a predefined coefficient a as it
can be seen in the equation 2.14.

f(a, x) =
{
ax
x

x < 0
x ≥ 0 (2.14)

15

2. Methodology.....................................

Figure 2.7: ReLU function.

f ′(a, x) =
{
a
1

x < 0
x ≥ 0 (2.15)

Figure 2.8: Parametric ReLU, a = 0.2.

. Exponential linear unit (ELU)
ELUs try to make the mean activations closer to zero which speeds up
learning. It has been shown that ELUs can obtain higher classification
accuracy than ReLUs [54].

f(a, x) =
{
a(ex − 1)
x

x ≤ 0
x > 0 (2.16)

f ′(a, x) =
{
f(a, x) + a
1

x ≤ 0
x > 0 (2.17)

. SoftPlus
SoftPlus is a smooth approximation to ReLU and is defined by equation
2.18. The comparison of these two functions can be seen in the Figure
2.11. The interesting thing about SoftPlus is that its derivative (eq. 2.19)
is the sigmoid function (eq. 2.8).

f(x) = ln (1 + ex) (2.18)

16

............................... 2.2. Artificial neural networks

Figure 2.9: Exponential linear unit (ELU), a = 1.

f ′(x) = 1
1 + e−x

(2.19)

Figure 2.10: SoftPlus function.

Figure 2.11: SoftPlus function vs ReLU.

. Softmax
Softmax is used in the case of multinominal classification where do
we have K mutually exclusive classes. It is defined as 2.20 with the

17

2. Methodology.....................................
derivative written in 2.21

ŷk = σ(s) = esk∑K
c=1 e

sc
(2.20)

ŷ′k = ∂yk
∂si

=
{
yi(1− yi)
−yiyk

for i = j
for i 6= j

(2.21)

where s = (s1, ..., sK) is the input vector and ŷ = (ŷ1, ..., ŷK) is the
output vector.
Notice that the softmax function represents a probability distribution.
This means that σk ∈ (0, 1) for k ∈ {1, ...,K} and ∑K

c=1 σc(s) = 1.

2.2.4 Single-layer perceptron

The simplest possible neural network is a single-layer perceptron network
(SLP for short). In this network, the inputs are fed directly to the outputs
via a series of weights. The input is first multiplied by weights and then
thresholded so that the neuron returns either +1 or −1. As it was written in
section 2.2.1, such a network can learn linearly separable patterns.

A single-layer perceptron network can be used even for regression. The
difference is in the activation function. One of the common activation functions
is called logistic function or sigmoid function.

2.2.5 Multi-layer perceptron

A more complex network capable of distinguishing linearly inseparable data
is called multilayer perceptron (or MLP for short). The biggest advantage
of MLP over SLP is its ability to approximate more complex functions and
can distinguish linearly non-separable data. As the name already says, this
network consists of at least three layers of nodes..1. an input layer,..2. a hidden layer,..3. and an output layer.

2.2.6 Convolutional neural networks

All the previously described types of neural networks used fully-connected
layers. The main difference in the convolutional neural networks (CNNs) is
that it replaces those fully-connected layers by convolutional ones. CNN is a
type of deep neural network that is usually used in computer vision and is
used in this thesis as well. These networks have three basic mechanisms:

18

............................... 2.2. Artificial neural networks..1. local receptive fields..2. weight sharing..3. subsampling

The structure incorporating the mechanisms written above is shown in Figure
2.12.

Figure 2.12: Diagram of a part of a CNN. You can see a convolutional layer
followed by a subsampling layer [5]. The receptive fields are denoted as red and
blue squares in the input image and as a purple one in the convolutional layer.

Convolution layer

As one might guess, the basic mechanism in convolutional neural networks is
convolution. This convolution is implemented by filter applied to the input
that results in a feature map. The fact that the same filter is used for the
whole feature map results in translation equivariance. Usually there is more
then one filter and therefore we get multiple feature maps as can be seen in
Figure 2.13.

Each convolutional layer has two more hyperparameters (similar to standard
mathematical convolution):..1. Stride - amount by which the filter shifts. An example is shown in Figure

2.14...2. Padding - Zero padding pads the input volume with zeros around the
border. This is often used in order to get the resulting output of the
same spatial dimensions as the input. An example of zero padding is in
Figure 2.15. For example, if we want to keep the spatial dimensions and

19

2. Methodology.....................................

Figure 2.13: An example of four different filters of size 3× 3 resulting in four
feature maps [6].

Figure 2.14: An example of 3 × 3 filter with stride 2 applied to 7 × 7 input
resulting in the output of size 3× 3 [7].

Figure 2.15: An example of zero padding with the value of 2 [7].

the convolution has a stride of 1, we set the zero padding to P = F−1
2 ,

where F is the size of a side of the filter.

Knowing size of filter F , input width WIN , stride S and padding P , we

20

............................... 2.2. Artificial neural networks

can compute the output width WOUT as shown in equation 2.22.

O = W − F + 2P
S

+ 1 (2.22)

An example of a convolution operation performed on a 2D grid is shown in
Figure 2.16. In this example, the input is of size 5× 5× 3, there is a single
3× 3 filter and a bias. This results in 3× 32 = 27 parameters of the filter plus
one parameter of bias. Each input channel is first convolved with respected
filter weight matrix. Resulting intermediate feature maps are then summed
up to form one feature map and the value of bias is added to each output.
This results in the final feature map to which is then applied some activation
function. An example of using ReLU activation to a feature map is show in
Figure 2.17.

Figure 2.16: An example of a convolution operation on a 2D grid [6].

Pooling layer

A pooling function replaces the output of the net at a certain location with a
summary statistic of the nearby outputs [5]. It has hyperparameters stride,
padding, and filter size that have the same meaning as in the case of a
convolutional layer. There are multiple types of pooling functions...1. Max pooling takes as an output a maximum over the input values.

Example of this operation is in Figure 2.18

21

2. Methodology.....................................

Figure 2.17: An example of ReLU activation used on a feature map [8].

Figure 2.18: An example of max pooling with filter size of 2 and stride 2 [7]...2. Average pooling outputs the average of input values...3. l2-norm pooling computes the euclidean norm of inputs. This means
that for inputs x1, ..., xn it outputs y =

√
x2

1 + ...+ x2
n.

The most common pooling filters are those of size 2 with stride 2. These
filters downsample both width and height by a factor of 2. The pooling
operations does not affect the depth of feature maps.

2.2.7 Learning in ANN

In this section, I will show you the basics of learning in ANNs. First, I will
show common loss functions used for training, then introduce the idea of
backpropagation, and finally describe optimization techniques used during
the training.

Loss function

A loss function (or error function) is a function we want to minimize and
gives us some notion about a quality of the output. This function compares
the output ŷ of the neural network to the real target y. There are many

22

............................... 2.2. Artificial neural networks

different loss functions used in the training of neural networks. Here are the
common ones:. Binary cross-entropy

The binary cross-entropy is often used in the case of binary classification.
It is defined as in equation 2.23

L(w) = −
N∑
i=1

[yi ln (ŷi) + (1− yi) ln (1− ŷi)] (2.23)

where ŷi = f(xi,w) is the output of neural network represented as a
function f with weights w and yi is the corresponding ground truth
value..Multinominal cross-entropy
Multinominal cross-entropy is a modification of binary cross-entropy that
can be used for multinominal classification. It is defined as 2.24

L(w) = −
N∑
i=1

K∑
c=1

yic ln (ŷic) (2.24)

where ŷi = (ŷi1, ..., ŷik) is the output of the neural network, ŷic cor-
responds to the output for c-th class where c ∈ {1, ...,K} and yi =
(yi1, ..., yik) is the ground truth vector that is often represented as a
one-hot vector.. Squared error (L2 loss)
Squared loss defined as 2.25 is often used in regression task and can be
even used to compare images.

L(w) =
m∑
i=1

(ŷi − yi)2 (2.25)

where ŷ = (ŷ1, ..., ŷm) is the output of the neural network and y =
(y1, ..., yk) is the vector of ground truth values.. L1 loss
L1 loss is quite similar to the squared loss and is defined as 2.26

L(w) =
m∑
i=1
|ŷi − yi| (2.26)

where once again ŷ = (ŷ1, ..., ŷm) is the output of the neural network
and y = (y1, ..., yk) is the vector of ground truth values.

Backpropagation

Backpropagation is a method used to compute a gradient of a loss function
with respect to the parameters (weights w) ∇L(w). This gradient is then
used by optimization methods such as gradient descent.

23

2. Methodology.....................................
The computation of a gradient ∇L(w) involves repetitive use of a chain

rule. This computation can be further decomposed to the simplest possible
modules [9].

Let δl = ∂L
∂zl be the sensitivity of the loss to the module input for layer l,

then

δli = ∂L

∂zli
=
∑
j

∂L

∂zl+1
j

·
∂zl+1

j

∂zli
=
∑
j

δl+1
j

∂zl+1
j

∂zli
(2.27)

where zl is the output of the l-th layer and zl = (z1
l , ..., z

n
l). From the equation

2.27 we see that we need to compute only the derivatives with respect to
inputs [9].

In the case that the layer has some parameters, we want to know how does
the loss change with respect to them. This can be computed as

∂L

∂wli
=
∑
j

∂L

∂zl+1
j

·
∂zl+1

j

∂wli
=
∑
j

δl+1
j

∂zl+1
j

∂wli
(2.28)

where wl = (wl1, ..., wlm) are parameters of the l-th layer.

We can see an example of the diagram capturing these computations in Figure
2.19.

Figure 2.19: Diagram of backpropagation [9].

Optimization

In the optimization of neural network, the goal is to find such parameters θ∗
that would minimize the loss function. We can write this as 2.29

θ∗ = arg minL(θ) (2.29)

This optimization is most commonly performed via gradient descent. In
general, gradient descent is a first-order iterative optimization algorithm that

24

............................... 2.2. Artificial neural networks

Figure 2.20: Comparison of gradient descent in two variables with different
learning rates η [9].

aims to find the minimum of a given function. This algorithm is iteratively
moving in the direction of steepest descent as defined by the negative of the
gradient 2.30.

θ(t+1) = θ(t) − η(t)∇L(θ(t)) (2.30)
where η(t) > 0 is is a hyperparameter used to control the speed of change
of the parameters in iteration t. It is often called learning rate or step size.
In the Figure 2.20 you can see an example of gradient descent with N = 15
steps and 2 parameters θ1 and θ2 that should be optimized. The three plots
that are shown differ in the learning rate η. In the first case η = 0.1 and
we can see that the algorithm descents the space of the loss function nicely
however quite slowly. On contrary, in the third case, the learning rate η is
set to 0.55 which results in too drastic updates and the algorithm is not able
to converge to the optima well. In the second case η = 0.4 and we can see a
good trade-off between the update speed and precision.

There are multiple times when the weights can be updated [9].. (Full) Batch learning
In batch learning, the weights are updated once all the patterns are
used (this defines an epoch). However, this approach is insufficient for
redundant datasets.. Online learning
Online learning is a complete opposite to batch learning since in online
learning the weights are updated after each training pattern. The noise
can help overcome local minima but can also harm the convergence
in the final stages while fine-tuning [9]. This update rule converges
almost surely to local minimum when the learning rate η(t) decreases
appropriately in time..Mini-batch learning
In mini-batch learning, the weights are updated after a small sample of
patterns.

One of a commonly used improvements to gradient descent is called mo-
mentum. It simulates inertia that helps to overcome possible plateaus in the

25

2. Methodology.....................................
error landscape. The update rule is then performed in two steps

v(t+1) = µv(t) − η(t)∇L
(
θ(t)

)
θ(t+1) = θ(t) + v(t+1) (2.31)

where µ ∈ [0, 1] is the momentum parameter.

Adagrad. Adagrad is a shortcut of Adaptive Gradient Algoritm. This algo-
rithm was first proposed in [55]. The motivation behind is that a magnitude of
gradients differs a lot for different parameters. Thus this algorithm adapts the
learning rate to the parameters, performing smaller updates for parameters
associated with frequently occurring features, and larger updates for parame-
ters associated with infrequent features. For this reason, it is well-suited for
dealing with sparse data [56]. The update rule can be expressed as

g
(t+1)
i = g

(t)
i +

(
∂L
∂θ

(t)
i

)2

θ
(t+1)
i = θ

(t)
i −

η√
g

(t+1)
i +ε

· ∂L
∂θ

(t)
i

(2.32)

where gi accumulates squared partial derivatives w.r.t. the parameter θi, ε is
a small positive number to prevent division by zero. The main disadvantage
of Adagrad is that the ever-increasing gi can lead to infinitesimally small
learning rate and thus to slow convergence.

RMSProp. Root Mean Squared Propagation (RMSProp) is similar to Ada-
grad with the implementation of a moving average. It changes the way of
computing gi to

g
(t+1)
i = γg

(t)
i + (1− γ)

(
∂L
∂θ

(t)
i

)2

(2.33)

which doesn’t get the updates infinitesimally small as in the case of Adagrad.

Adam. Adaptive Moment Estimation (Adam) [57] is currently the most
commonly used optimization algorithm in the training of neural networks.
Adam combines the advantages of Adagrad and RMSProp.

Instead of adapting the parameter learning rates based on the average
first moment as in RMSProp, Adam also makes use of the average of the
second moments of the gradients. Specifically, the algorithm calculates an
exponential moving average of the gradient and the squared gradient, and
the parameters β1 and β2 control the decay rates of these moving averages
[58]. The algorithm is described in the original paper [57] as..1. gt = ∇ft(θt−1), get gradients..2. mt = β1 ·mt−1 + (1− β1) · gt, update biased first moment estimate

26

............................... 2.2. Artificial neural networks..3. vt = β2 · vt−1 + (1− β2) · g2
t , update biased second raw moment estimate..4. m̂t = mt

1−βt1
, compute bias-corrected first moment estimate..5. v̂t = vt

1−βt2
, compute bias-corrected second raw moment estimate..6. θt = θt−1 − α · m̂t√

v̂+ε , update parameters

The authors of [57] say the following about the algorithm: “The algorithm
updates exponential moving averages of the gradient (mt) and the squared
gradient (vt) where the hyper-parameters β1, β2 ∈ [0, 1) control the exponen-
tial decay rates of these moving averages. The moving averages themselves
are estimates of the 1st moment (the mean) and the 2nd raw moment (the
uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased
towards zero, especially during the initial timesteps, and especially when the
decay rates are small (i.e. the βs are close to 1). The good news is that
this initialization bias can be easily counteracted, resulting in bias-corrected
estimates m̂t and v̂t.”

Authors also claim that “empirical results demonstrate that Adam works
well in practice and compares favorably to other stochastic optimization
methods” and conclude that “using large models and datasets, we demonstrate
Adam can efficiently solve practical deep learning problems.”

2.2.8 Feature Normalization

Feature normalization is an important part of the training of artificial neural
networks and is often crucial for effective training. In this section, I will
briefly describe a few commonly used techniques of feature normalization.

Batch Normalization

Batch normalization [59] is a method of adaptive reparametrization, signifi-
cantly reduces the problem of coordinating updates across many layers and
can be applied to any input or hidden layer in the network.

It was initially proposed to solve internal covariate shift [59]. Recently, the
authors of [60] showed that the batch normalization does not reduce internal
covariate shift, but rather smooth the objective function which leads to the
improved performance. The batch normalization also works as a regularizer
in a network, helps it to generalize better and therefore it is unnecessary to
use dropout.

Let us have a minibatch B = {x1, ..., xn} of training samples. The batch
normalization works as follows:

27

2. Methodology.....................................
. Compute minimatch mean µB

µB = 1
m

m∑
i=1

xi (2.34)

. Compute minibatch variance σ2
B

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (2.35)

. Normalize samples
x̂i = xi − µB√

σ2
B + ε

(2.36)

where ε is a small constant added for numerical stability.. Scale and shift
yi = γx̂i + β (2.37)

where γ and β are parameters that are learnt during the optimization
process.

Layer Normalization

Layer normalization [61] addresses the problem of batch normalization that
lies in need for large mini-batches for an accurate statistics estimation.

In layer normalization, the features are normalized within each sample
instead across mini-batch (as in batch normalization). Like in the batch
normalization, each neuron is given its own adaptive bias and scale.

The layer normalization statistics over all hidden units in the same layer
are computed as:

µl = 1
H

H∑
i=1

xli (2.38)

σl =

√√√√ 1
H

H∑
i=1

(
xli − µl

)2 (2.39)

where xli denotes the input to the i-th hidden unit in the l-th layer and H
denotes the number of hidden units in a layer. The normalized inputs are
then computed as:

x̂li = xli − µl√
σ2 + ε

(2.40)

where ε is a small constant used for the numerical stability.

28

............................... 2.2. Artificial neural networks

Instance Normalization

Instance normalization [62] is similar to the layer normalization. It normalizes
the features within each channel in each training example.

For an input tensor of a shape x ∈ RT×C×W×H , where xtijk denotes its
tijk-th element (k and j are spatial dimensions, i is the feature channel and
t is the index of the image in the mini-batch), we first compute the statistics
for each instance and channel as:

µti = 1
HW

W∑
l=1

H∑
m=1

xtilm (2.41)

σ2
ti = 1

HW

W∑
l=1

H∑
m=1

(xtilm −muti)2 (2.42)

The normalized inputs are then computed as:

ytijk = xtijk − µti√
σ2
ti + ε

(2.43)

Group Normalization

Another feature normalization technique is called group normalization (GN)
[10]. GN divides the channels into groups and computes within each group
the mean and variance for normalization.

GN performs the normalization in the standard way:

x̂i = 1
σi

(xi − µi) (2.44)

where the index i = (iN , iC , iH , iW) with N denoting the order in the batch,
C in the channel and H and W are the spatial height and width. Parameters
µi and σi are computed as:

µi = 1
m

∑
k∈Si

xk (2.45)

σi =
√√√√ 1
m

∑
k∈Si

(xk − µi)2 + ε (2.46)

where S〉 is the set of size m of pixels over which the mean and standard
deviation are computed. The set Si is determined as:

Si =
{
k|kN = in,

⌊
kC
C/G

⌋
=
⌊
ic

C/G

⌋}
(2.47)

The comparison of these feature normalization techniques can be seen in
Figure 2.21.

29

2. Methodology.....................................

Figure 2.21: Comparison of feature normalization techniques [10]. Each of
thesubplots shows a feature map tensor, where N denotes the batch axis, C is
the channel axis and (H,W) are the spatial axes.

2.2.9 Regularization

Machine learning in general aims to create such an algorithm that would
perform well not only on training data but more importantly it will perform
well on unseen data. The error of an algorithm on unseen data is called test
error. Many strategies aim to reduce test error and are collectively known as
regularization.

A technique that penalizes the size of a weight vector w is called L2 regu-
larization. This regularization adds term λ ‖w‖22 to the loss function, where
λ is a parameter that controls the importance of regularization compared
to other elements of the loss function. Very similar to L2 regularization is
L1 regularization that penalizes sum of absolute values of weight’s compo-
nents, i.e. λ ‖w‖1, where λ is once again a hyperparameter controlling the
importance of this regularization.

To prevent overfitting of an algorithm to the training data, we often split
the data available to training set and validation set. Once this is done, we
train the algorithm with training set and validate it on validation set. We
stop the algorithm once the validation loss starts to grow. This technique is
often called early stopping.

All of the regularizations aim to solve the problem of overfitting of neural
networks to the training data. One of the possible ways to tackle this is
an ensemble of neural networks with different configurations. However, this
comes at the cost of having to train multiple models (which takes time) and
maintain them (which might occupy quite some memory). Dropout [63]
provides a computationally effective way of how to use a single model to
simulate a large number of different network architectures. It allows training
the ensemble of all possible sub-networks that can be formed by removing
non-output units from an underlying base network [5]. During the training,
dropout randomly drops out (removes) certain units. During each iteration
of a neural network, a different binary mask µ is sampled and applied to all
hidden and input units of the neural network. The mask µi for each unit is
sampled independently of the others. The probability of a mask for certain
unit being 0 (which causes the unit to be removed for computing during this

30

............................... 2.2. Artificial neural networks

Figure 2.22: An example of dropout applied to a simple network architecture
(top) [5]. In the bottom we can see a mask µi associated with each input and
hidden unit. Each unit is multiplied with corresponding mask (either 0 or 1).

iteration) is a fixed hyperparameter. This hyperparameter can be different
for hidden and input units. This is illustrated in Figure 2.22.

Another thing that can help the network to generalize better is to train
it on a larger amount of data. However, in practice, we have only a limited
number of data. One way to overcome this problem is to perform various
transformations to the original data. This is called dataset augmentation.
For example, in the case of image classification, we might perform a horizontal
flip of the image, apply small rotations, translate the image a few pixels or
inject noise.

31

2. Methodology.....................................
2.2.10 Architectures

In this section I will go through most common architectures of convolutional
neural networks starting from LeNet-5 in section 2.2.10 and going all the way
to more recent ResNet in section 2.2.10.

LeNet-5

LeNet-5 is a pioneering 7-layer convolutional neural network by LeCun in 1998
[2]. It was designed to recognize hand-written numbers of 32× 32 gray-scale
images.

The architecture of LeNet is shown in Figure 2.23. It consists of three
5 × 5 convolutional layers, two 2 × 2 pooling layers with stride 2 and two
fully-connected layers at the end of the network.

Figure 2.23: An architecture of LeNet-5 [2].

AlexNet

AlexNet [64] was a huge breakthrough back in 2012 when it outperformed all
the prior competitors and reduced the top-5 loss from 26% to 15.3% in the
computer vision challenge imagenet [65, 66]. The architecture was similar to
LeNet-5, but it was deeper, with more filters and with stacked convolutional
layers. The convolutions were of size 11× 11, 5× 5 and 3× 3. Max pooling
was used as a subsampling layer. It further applied data augmentation, used
ReLU activations, and was trained with SGD with momentum. The detail of
this architecture can be seen in Figure 2.24.

VGGNet

VGGNet [67] is one of the most appealing neural networks because of its
simple and uniform architecture that can be seen in Figure 2.25. There are
two basic rules:

32

............................... 2.2. Artificial neural networks

Figure 2.24: Architecture of AlexNet [11].

. Every convolutional layer has a kernel of size 3× 3, stride 1, and zero
padding 1. This means that the spatial size of the input is preserved.. Every max pooling layer has a window of size 2× 2 and stride 2. This
results in halving the size with every such layer.

On top of convolutional and max-pooling layers are three fully connected
layers. These layers have the majority (123M) of the total number parameters
(138M). This network is commonly used for feature extraction from images.

Figure 2.25: Arichitecture of VGGNet [12].

GoogLeNet/Inception

GoogleNet [13] (also known as Inception v1) was the winner of imagenet
competition in 2014 when it achieved a top-5 error of 6.67% which is near the
human-level performance. In [13], authors proposed a novel concept dubbed
inception module shown in Figure 2.26 that used smaller convolutions and
allowed the network to have 4 million of parameters only while having 22
layers.

It uses batch normalization (2.2.8), image distortions, and is trained with
RMSProp. The architecture of the whole network can be seen in Figure 2.27.

ResNet

Residual Neural Network [14] (or ResNet for short) introduces a novel concept
of so-called skip connections shown in Figure 2.28 and uses batch normalization

33

2. Methodology.....................................

Figure 2.26: Inception module with dimensionality reduction [13].

Figure 2.27: Architecture of GoogLeNet [12].

heavily. Thanks to this, the authors were able to train a neural network
that consisted of 152 layers while the network was still less complex than
VGGNet. It achieved top-5 error of 3.57% which is better than human-level
performance. The architecture of ResNet is shown in Figure 2.29.

Figure 2.28: Residual block [14].

U-Net

U-Net is a convolutional neural network that was developed for biomedical
image segmentation [15]. The architecture of U-Net is fully convolutional,
which means that it uses only convolutional and no fully-connected layers.

34

............................... 2.2. Artificial neural networks

Figure 2.29: Architecture of ResNet [12].

The network consists of two paths:..1. Contraction path (also called encoder)
The architecture of contraction path is a traditional one with convolu-
tional layers followed by ReLU activations and max-pooling layers. In
this path, the spatial information is reduced while the feature information
(the number of channels) is increased. That is the reason why this path
is also called a encoder since it encodes the information from the input...2. Expanding path (decoder)
The expanding path is symmetric to the contraction path with max pool-
ing layers replaced by transposed convolutions. Transposed convolution
is a technique used for upsampling that has trainable parameters. The
expanding path concatenates the features obtained with convolutions
and transposed convolutions in this path with high-resolution features
from the contraction path as it can be seen in Figure 2.30.

The architecture of U-Net can is shown in Figure 2.30.

2.2.11 Multi-Task Learning

Multi-Task learning (MTL) is an inductive transfer mechanism whose principle
goal is to improve generalization performance. MTL improves generalization
by leveraging the domain-specific information contained in the training signals
of the related task. This is done by training tasks in parallel while using a
shared representation. In Figure 2.31 you can see a common form of MTL,
where different tasks (that predict y(i) given x) share the input x and along
with this, they share part of the computation network as well. This way, the
parameters of a model can be divided into two main parts [5]:..1. Task-specific parameters. These parameters benefit from the samples of

their task only...2. Generic parameters are shared across all the tasks and benefit from the
pooled data of all the tasks.

35

2. Methodology.....................................

Figure 2.30: Architecture of U-Net [15].

.
Figure 2.31: An example of common MTL setup [5]. Generic parameters that
are shared by all the tasks are here denoted as h(shared).

Let us show an example. Imagine a neural network with the primary task
of object detection. The secondary tasks used can be e.g., scene classification
task or depth estimation.

The idea of Multi-Task Learning in the context of deep neural networks
is extended in the work “Revisiting Multi-Task Learning with ROCK: a
Deep Residual Auxiliary Block for Visual Detection” [16]. The authors
propose a new architecture with a residual block where the features used for
a secondary task are fused back with the features used for the primary task.
This architecture is shown in Figure 2.33. As the authors say: “(residual

36

............................... 2.2. Artificial neural networks

block) explicitly merges intermediate representations of the primary and
auxiliary (secondary) tasks, making the latter ones have a real effect on the
former in the forward pass, not just through shared feature learning” [16] -
the difference is depicted in Figure 2.32. They show this architecture with
the primary task of object detection that is trained with auxiliary tasks of
scene class prediction, depth prediction, and surface normal prediction.

.
Figure 2.32: The difference between flat MTL (left) and MTL with ROCK
(right) [16].

.
Figure 2.33: Architecture of the proposed residual block. Primary task of object
detection that is trained with auxiliary tasks of scene class prediction, depth
prediction and surface normal prediction [16]. The auxiliary tasks share two
convolutional layers in encoder.

2.2.12 Transfer learning

Transfer learning is a commonly used technique in deep learning. It refers
to the situation where what has been learned in one setting (e.g., a network
trained on dataset 1) is exploited to improve generalization in another setting
(e.g., performing the same task but on a different dataset) [5].

It is common to use some deep network that is pretrained on some large
dataset (e.g., on ImageNet with 1000 classes) for classification. These pre-
trained networks provide a good starting point for further training since they
were trained on a large dataset with many classes and therefore effectively
extract features from the input images in order to classify well.

In general, the transfer learning provides a shortcut that can save training

37

2. Methodology.....................................
time and lead to better results. Models that are initialized with some
pretrained network often converge faster and achieve better results.

There are two possible ways of how to use some pretrained network:..1. use pretrained network as a feature extractor..2. retrain the complete network

In the first approach, the pretrained network is used as a feature extractor.
In the classification task, this is done by removing the final layer of the
original network that is used for classification and replacing it with a new one
that has n outputs, where n is the number of classes. In the case of a VGG
network, this would mean that we get a 4096-D vector after removing the
last layer and use this vector as an input to a new final classification layer.
During this setup, only the weights of the final layer are changed, and the
rest of the network serves just as a feature extractor.

The second approach also replaces the final layer with a new one, but in
contrast to the previous approach, it fine-tunes the weights in the whole
network (or at least a significant part of it). The motivation behind this
approach is in the observation that the early layers of a CNN contain general
features such as edges and colors and can, therefore, be used for almost any
task.

In both approaches, it is a common practice to use a smaller learning rate
since the general features are already learned, and the network only needs to
be finetuned.

2.3 Image data augmentation

Data augmentation is a technique that is used to enlarge the size of a dataset
by creating a modified version of images from the dataset. Using image data
augmentation often results in better performance and better generalization
of the trained models since it is a common knowledge that in general deep
learning models achieve better results when trained on more data.

In general, these methods increase the variability of the data in the final
augmented dataset when compared to the original one. The methods based
on image processing do not add any new information to the dataset.

The image data augmentation involves creating of transformed images from
the original dataset. In general, the dataset augmentation methods can be
divided into two classes:..1. Offline: In offline dataset augmentation, the various augmentation meth-

ods are performed on the images from the training split of the given
dataset and are added to them. This results in a larger dataset.

38

............................... 2.3. Image data augmentation..2. Online: In online dataset augmentation, the augmentation methods are
performed on the fly. This means that random augmentations are applied
to the image during loading and are not stored.

The advantage of the offline method is that the transformations to the
images in the training set are done only once and does not slow the data
loading during the training. On the contrary, the online method requires that
the image transformation is performed every time that the image is loaded
and therefore leads to increased complexity of image loading.

On the other hand, more samples are created with the online method since
the transformations on the image are different in each iteration.

The most common image transformations are:. Translation: Each pixel is moved in the same direction. In the case that
this transformation is applied to the whole image, it happens that some
pixels get out of the image and some parts of the image that needs to be
filled with a new value. In the case of pure horizontal/vertical shift, the
pixels on the border can be copied to the created holes. If the translation
is performed in both horizontal and vertical direction, one of the possible
solutions is to rescale the valid pixels of the image to the size of the
original image.. Horizontal and vertical flip: Image is flipped either horizontally or
vertically. The horizontal flip makes sense in almost every situation, but
it does not hold for the vertical flip where one needs to pay attention.
It does not, for example, make much sense to flip an image of a person
vertically.. Rotation: All pixels are rotated by the same random value. This once
again results in a situation when some pixels get out of the image, and
some parts of the image are empty. This can be tackled by nearest-
neighbor fill.. Brightness change: The brightness change is intended to allow the model
to better generalize across images with various lighting conditions. All
the pixels are either darkened or brightened.. Zoom: An image is randomly either zoomed-in or zoomed-out, and the
new pixel values are either added (e.g., with nearest-neighbor fill) or
interpolated.. Gaussian Noise: In Gaussian Noise augmentation, one adds a randomly
sampled value from a Gaussian distribution to each pixel in the image.
This is intended to tackle the problem of network overfitting to high-
frequency features.

Each of the augmentation techniques mentioned above can either be used
alone, or they can be combined together.

39

2. Methodology.....................................
Recently, a new type of neural networks called Generative Adversarial

Networks was proposed, and it can be used for image data augmentation as
well. This technique is introduced in the following section.

2.4 Generative Adversarial Networks

Generative Adversarial Network (GAN) belongs to the class of generative
algorithms 2.1.5 and thus can be used for data generation. One of the
augmentation methods proposed in this thesis is based on such a network.
Authors of [1] define GANs as follows:

GAN is a new framework for estimating generative models via
an adversarial process, in which we simultaneously train two models:
a generative model G that captures the data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than G. The training procedure
for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the
space of arbitrary functions G and D, a unique solution exists,
with G recovering the training data distribution and D equal to 1/2
everywhere [1].

As written above, this framework consists of two neural networks: discrim-
inator D and a generator G.

. Discriminator is a discriminative model that learns to determine whether
the input data come from the real data distribution or whether the data
were generated by a generator.. The opponent to the discriminator is called generator and it is a kind
of a generative model. The goal of the generator is to generate data
that would resemble the real data as much as possible. The generator,
therefore, learns the distribution of training samples.

The architecture of this framework is shown in Figure 2.34

2.4.1 Vanilla GANs

In the original paper by Goodfellow [1] both networks, discriminator D
and generator G, are multilayer perceptrons. I will show in the following
sections that these networks are not restricted to be MLP only but can be
convolutional neural networks witch yields much better results compared to
the basic setup with MLP.

40

............................ 2.4. Generative Adversarial Networks

Figure 2.34: Architecture of GAN for generating hand-written digits [17].

In order to learn generator’s distribution pg over data x, let us define a
prior on input noise variables pz(z) that represents a mapping to data space as
G(z, θg). Differentiable function G is a multilayer perceptron with parameters
θg that learns to map from the space of random input noise variables z to
the space of target data distribution and tries to match this distribution as
accurately as possible.

The discriminator is modeled as an MLP D(x, θd) that outputs a single
scalar representing the probability that the input x came from the real data
rather then from pg [1].

We train these two networks to compete against each other. The goal
of the discriminator D is to assign the correct labels to both real training
examples (to which it should assign 1) and to samples generated by G (to
which it should assign 0). The generator is simultaneously trained to fool the
discriminator in believing that all the generated samples come from the real
training distribution. The generator wants the discriminator to output 1 for
all the generated samples, i.e. D (G(z)) = 1. This corresponds to minimizing
log (1−D (G(z))). In other words, D and G play a two-player minimax game
with the values function V (G,D) 2.48.

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x)] + Ez∼pz (z)[log(1−D(G(z))))
(2.48)

In practice, using the equation 2.48 doesn’t necessarily have to provide a
good gradient to G, and it thus doesn’t have to learn well. This can be seen
early in the training when the generator is poor in generating believable data
and discriminator, therefore, rejects the generated samples with high confi-
dence. This results in a saturation of the term log(1−D(G(z))). Therefore
it is better to rather maximize logD(G(z)) which results in the same fixed
point of the dynamics of G and D but provides much stronger gradients early
in the training [1].

We may rewrite the loss function 2.48 as an integral over inputs x as in

41

2. Methodology.....................................
equation 2.49

L(D,G) =
∫
x

(pr(x) log(D(x)) + pg(x) log(1−D(x))) dx (2.49)

Having this form, let us label x̃ = D(x), A = pr(x), B = pg(x), where pg is
the distribution of the generator and pr is the distribution of the training
data. Using this notation we get 2.50

f(x̃) = A log x̃+B log(1− x̃) (2.50)

The derivative of the function 2.50 with respect to x̃ is 2.51

∂f(x̃)
dx̃ = 1

ln 10
A− (A+B)x̃
x̃(1− x̃) (2.51)

Thus, we obtain an optimal value by setting the result of 2.51 equal to zero

D∗(x) = x̃∗ = A

A+B
= pr(x)
pr(x) + pg(x) ∈ [0; 1] (2.52)

In the case that the generator is trained to its optimal, its distribution pg gets
very close to the real distribution pr. Therefore, in the case when pg = pr we
get for the optimal value of the discriminator D

D∗(x) = pr(x)
pr(x) + pr(x) = pr(x)

2pr(x) = 1
2 (2.53)

Now we can see that for G and D at their optimal values we have

. pg = pr.D∗(x) = 1
2

and we can show that the loss function 2.49 evaluates for these values to

L(D,G) =
∫
x

(pr(x) log (D∗(x)) + pg(x) log (1−D∗(x))) dx

= log 1
2

∫
x
pr(x)dx+ log 1

2

∫
x
pg(x)dx = 2 log 1

2 = −2 log 2
(2.54)

In order to better understand what does the loss function represents, there
needs to be shown two metrics of similarity first. The first metric is called
Kullback-Leibler (KL) divergence and it measures how much does one
probability distribution p diverge from the other distribution q. The KL
divergence is defined as

DKL(p‖q) =
∫
x
p(x) log p(x)

q(x)dx (2.55)

42

............................ 2.4. Generative Adversarial Networks

The minimum of 2.55 is at 0 and is achieved when the probability distributions
p and q are equal, i.e. p(x) = q(x)∀x. The disadvantage of KL divergence is
that it is assymetric.

Jensen-Shannon (JS) divergence is yet another similarity measure
between two probability distributions p and q and is bounded by [0, 1]. It is
defined as

DJS(p‖q) = 1
2DKL

(
p‖p+ q

2

)
+ 1

2DKL

(
q‖p+ q

2

)
(2.56)

JS divergence is symmetric and more smooth then KL divergence. We can
now write the JS difference between pr and pg

DJS (pr‖pg) = 1
2DKL

(
pr‖

pr + pg
2

)
+ 1

2DKL

(
pg‖

pr + pg
2

)
=

= 1
2

(
log 2 +

∫
x
pr(x) log pr(x)

pr(x) + pg(x)dx
)

+ 1
2

(
log 2 +

∫
x
pg(x) log pr(x)

pr(x) + pg(x)dx
)

=

= 1
2 (log 4 + L (G,D∗))

(2.57)

Thus:
L (G,D∗) = 2DJS (pr‖pg)− 2 log 2 (2.58)

Essentially the loss function 2.58 quantifies the similarity between the genera-
tor data distribution pg and the real sample distribution pr by JS divergence
when the discriminator is optimal. The optimal generator G∗ that replicates
the real data distribution leads to the minimum value of zero Jensen-Shannon
divergence and thus to

L(G∗, D∗) = −2 log 2 (2.59)

In the setup from original paper [1], the authors did experiments with
MNIST, TFD, and CIFAR-10. Examples of results of experiments with these
datasets can be seen in Figure 2.35

The training procedure proposed in [1] can be seen in 2.36.

There are quite a few problems of GANs in this basic setup. To begin
with, it is hard to achieve Nash equilibrium which is a solution concept of
a non-cooperative game involving two or more players in which each player
is assumed to know the equilibrium strategies of the other players, and no
player has anything to gain by changing only their own strategy [68]. In
GANs, each model updates its cost independently with no respect to another
player in the game and updating the gradient of both models concurrently
cannot guarantee convergence.

Another problem is in the fact that the dimensions of many real-world
datasets, as represented by the data distribution pr, only appear to be

43

2. Methodology.....................................

Figure 2.35: Examples of generated samples. The rightmost column shows the
nearest training example of the neighboring sample, in order to demonstrate
that the model has not memorized the training set. In a) are examples from
MNIST dataset, in b) examples from TFD dataset, in c) from CIFAR-10 trained
with fully-connected network and in d) examples from CIFAR-10 trained with a
convolutional network.

Figure 2.36: GAN training procedure proposed in [1].

44

............................ 2.4. Generative Adversarial Networks

artificially high. They have been found to concentrate in a lower dimensional
manifold. In example of the real-world images, once the theme or the contained
object is fixed, the images have a lot of restrictions to follow, i.e., a cat should
have two ears and a tail, and a human face contains two eyes with nose
between them and a mouth below the nose, etc. These restrictions keep
images away from the possibility of having a high-dimensional free form. The
generator distribution pg over data lies in a low dimensional manifold, too.
Whenever the generator is asked to a much larger image like 64 × 64 with
3 channels given a small dimension, such as 128, noise variable input, the
distribution of colors over these 64× 64× 3 = 4096 pixels has been defined
by the small 128-dimension random number vector and can hardly fill up the
whole high dimensional space. Because these two distributions rest in low
dimensional manifolds, they are almost certainly going to be disjoint as seen
in the figure in Figure 2.37 [18].

Figure 2.37: Two examples of low dimensional manifolds in 3D that can hardly
have overlaps [18].

Then we have a typical problem with neural networks – vanishing gradient.
In the case of the perfect discriminator, we are guaranteed with discriminator
outputting 1 for all real samples and 0 for the generated ones. In this case, the
loss function falls to zero, and there is no gradient to update with. Therefore,
we face a dilemma:

. If we have a poor discriminator, the generator has no accurate feedback.On the other hand, if we have a very good discriminator, the gradient
of the loss function goes to 0, and this results in slow or even jammed
learning.

The common problem in the training of GANs is called mode collapse.
This is the state of the generator when it collapses to a setting where it
always produces the same outputs. For example, a generator might be able
to reproduce one of the training samples with 100% accuracy and therefore
be able to fool the discriminator but would fail to capture the complex
distribution of the complete dataset.

45

2. Methodology.....................................
Another of the problems is one of the evaluation metrics. GAN objective

function does not give good feedback about when to stop as can be seen in
Figure 2.38. You can see that the objective function does not change much,
but the difference in the quality of generator outputs can be quite huge.

Figure 2.38: JS divergence for MLP generator (left) and DCGAN generator
(right). In the example with DCGAN, you can see that the produced samples
get better over time, but the JS divergence increases or stays constant [19].

Improvements to GAN training

There are various modifications [69, 70, 18] that help to stabilize and improve
GAN training.

Feature matching. Feature matching [69] is a technique that suggests to
optimize the discriminator to inspect whether the generator output matches
expected statistics of the real samples [18]. In this case, the loss function
is in the form

∥∥∥Ex∼prf(x)− Ez∼pz(z)f (G(z))
∥∥∥2

2
, where f(x) can be any com-

putation of statistics of features. One common way in image generation is
to match features of certain intermediate layer of a pretrained network (e.g.
VGG). Another approach is to try to match directly features obtained from
intermediate layer of discriminator.

Historical averaging. Historical averaging [69] enforces the parameters of
both models not to change their waights too dramatically over time. This is
done by adding a term

∥∥∥Θ− 1
t

∑t
i=1 Θi

∥∥∥2
to loss function of both networks

where θ are the parameters of current model and Θi is how the parameters
were configured in a previous time step i.

One sided label smoothing. One sided label smoothing [69] suggests to use
softened values for target class, such as 0.9 (for real samples) and 0.1 (for
generated ones) instead of 1 and 0.

46

............................ 2.4. Generative Adversarial Networks

Adding noises. As it was stated among problems, the distributions pr and
pg are most probably disjoint in a high dimensional space and it causes the
problem of a vanishing gradient. In [70] they propose to add continuous noise
to the input of the discriminator in order to get a higher chance for these two
probability distributions to have overlaps.

Better metric. Since one of the biggest problems of training of GANs is
in the fact that vanilla GANs measure the JS divergence between pr and
pg distributions which fails to provide a meaningful values in the case of
disjoint distributions, authors of [70] propose to use another metric such as
Wasserstein distance (will be discussed in 2.4.2).

Conditional GAN

We can get a conditional GAN [71] by a simple modification. It is constructed
by simply feeding the data, denoted as y, that we wish to condition on to
both the generator and the discriminator. You can see the structure proposed
in [20] in the Figure 2.39. We have noise input z and data y that we want to
condition on as inputs to the generator. The same data y will then be fed to
the discriminator.

Figure 2.39: Structure of conditional GAN proposed in [20].

DCGAN

DCGAN [21] is an all-convolutional network that eliminates fully-connected
layers on top of the convolutional network. The architecture can be seen in
Figure 2.40. In all but the last layers of the generator and in all but the first
layers of the discriminator the batch normalization (sec. 2.2.8) is used. As
activations, the generator uses ReLU (except for the last layer where there is
sigmoid activation), and discriminator uses Leaky ReLU.

Walking on the learned manifold can usually tell us about signs of memo-
rization (if there are sharp transitions). If walking in this latent space results
in semantic changes to the image generations (such as objects being added and
removed), we can reason that the model has learned relevant and interesting

47

2. Methodology.....................................

Figure 2.40: Architecture of DCGAN [21].

representations [21]. An example from [21] of such a manifold walk is shown
in figure 2.41.

Figure 2.41: Wlking the learnt manifold of LSUN bedroom dataset [21].

Authors of [72] demonstrated that simple arithmetic operations reveal rich
linear structure in learned space. They showed a canonical example that the
vector("King") - vector("Man") + vector("Woman") resulted in a vector whose
nearest neighbor was the vector for "Queen" which follows the basic human
intuition. The authors of [21] investigated whether this linear arithmetic
holds in the Z space (random input noise) of the generator. They observed
that experiments with only one sample per concept were unstable. However,
a simple averaging of three vectors from the Z space produced results that
were stable and obeyed the intuition and arithmetic. An example of such
arithmetic can be seen in Figure 2.42.

2.4.2 Wasserstein GAN

Before diving into Wasserstein GANs, it is important to introduce the Wasser-
stein distance first. It is yet another measure between two probability distri-
butions. It is also known as the Earth Mover’s distance (EM for short).

Wasserstein distance denotes how much "mass" must be transported from
x to y in order to transform the distribution pr into the distribution pg. The
EM distance then is the "cost" of the optimal transport plan and can be
formulated as

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ [‖x− y‖] (2.60)

48

............................ 2.4. Generative Adversarial Networks

Figure 2.42: An example of vector arithmetic with human faces [21]. Three
vectors for each concept were averaged.

where Π (pr, pg) denotes the set of all possible joint probability distributions
γ(x, y) between pr and pg. As one might guess, γ(x, y) indicates how much
"mass" must be transported from x to y in order to transform the distribution
pr into the distribution pg [19].

Compared to the already introduced KL and JS divergences, the Wasserstein
distance behaves better in the case of non-overlapping distributions and
provides a smooth and meaningful representation of the distance in-between.
This comparison can be demonstrated on a small example showed in 2.43
[18]. There are two distributions which you can see in Figure 2.43

Figure 2.43: An example of distributions [18].

. In red we have distribution p which has x coordinate fixed at 0 and y
coordinate is sampled uniformly from the interval from 0 to 1. In blue we have the second distribution q that is parametrized by θ that
denotes its x coordinate that lies in the range [0, 1] and its y coordinate
is again sampled uniformly from 0 to 1.

49

2. Methodology.....................................
Let us compare different metrics on the example showed in 2.43. In the

case when θ 6= 0

. For KL divergence we obtain:

DKL(p‖q) =
∑

x=0,y∼U(0,1)
1 · log 1

0 = +∞

DKL(p‖q) =
∑

x=θ,y∼U(0,1)
1 · log 1

0 = +∞
(2.61)

. For the JS divergence we get:

DJS(p, q) = 1
2

 ∑
x=0,y∼U(0,1)

1 · log 1
1/2 +

∑
x=0,y∼U(0,1)

1 · log 1
1/2

 = log 2

(2.62). However, for EM (Wasserstein) distance W we get:

W (p, q) = |θ| (2.63)

In the case when θ = 0

. For KL and JS divergence:

DKL(p‖q) = DKL(q‖p) = DJS(p, q) = 0 (2.64)

. For EM (Wasserstein) distance:

W (p, q) = 0 = |θ| (2.65)

From this, we can see that DKL is ∞ when the two distributions are
disjoint. The comparison of EM distance and JS divergence is in Figure 2.43.
In the case of JS divergence DJS , there is a sudden jump from and to log 2,
and it is not differentiable at 0. On the contrary, the Wasserstein metric
provides a smooth measure.

A Wasserstein GAN (WGAN for short) is a form of GAN that minimizes
a reasonable and efficient approximation to the EM distance. The infimum in
2.60 is highly intractable. On contrary, the Kantorovich-Rubinstein duality
tells that

W (pr, pθ) = sup
‖f‖L≤1

Ex∼pr [f(x)]− Ex∼pθ [f(x)] (2.66)

where the supremum is over the all 1-Lipschitz functions f : X → R. In the
case that we replace ‖f‖L ≤ 1 for ‖f‖L ≤ K (that corresponds to K-Lipschitz
functions for some constant K) we end up with K ·W (pr, pg). Therefore, if we

50

............................ 2.4. Generative Adversarial Networks

Figure 2.44: Comparison of the EM distance (left) and the JS divergence (right)
[19].

have a parameterized family of functions {fw}w∈W that are all K-Lipschitz
for some constant K, we can consider to solve the problem

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z) [fw (gθ(z)] (2.67)

and if the supremum in 2.66 is attended for some w ∈ W , this process fill yield
to a calculation of a Wasserstein distance W (pr, pθ) (up to a multiplicative
constant) [19]. The differentiation of W (pr, pθ) by backpropagating through
equation 2.66 gives us (up to a constant)

Ez∼p(z) [∇θfw (gθ(z))] (2.68)

Therefore we have a loss function in the form

L (pr, pg) = W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pr(z) [fw (gθ(z))] (2.69)

We should note a difference in the role of a discriminator known from
the vanilla GAN. The "discriminator" in Wasserstein GAN does not aim to
tell the real and fake samples apart, but it is trained to learn K-Lipschitz
function to help to compute EM distance instead. Therefore, the former
GAN’s discriminator is now called critic in WGANs.

There arises one more problem of enforcing the K-Lipschitz continuity of
function fw during the training procedure. In the original paper [19] they
propose a simple trick of clamping the weights w to a small window, e.g., to
[−0.01, 0.01], after every gradient update, which results in a compact space
W leading to fw with its upper and lower bound to preserve the Lipschitz
continuity.

The original training procedure of WGAN training proposed in [19] is
shown in 2.45. The fact that the EM distance is continuous and differentiable
a.e. means that we can (and should) train the critic till optimality. The reason
is simple: the more we train the critic, the more reliable gradient we get. In
Figure 2.46, you can see the difference between GAN discriminator andWGAN

51

2. Methodology.....................................
critic when trained to optimality. The discriminator learns very quickly to
distinguish between fake and real, and as expected, provides no reliable
gradient information. The critic, however, can’t saturate, and converges to
a linear function that gives remarkably clean gradients everywhere [19]. In
contrary to training of GAN, we can see in Figure 2.47 that the Wasserstein
distance correlates well with the sample quality.

Figure 2.45: WGAN training procedure [19].

Figure 2.46: Discriminator of vanilla GAN saturates and results in vanishing
gradients. On contrary, WGAN critic provides clean gradients [19].

The difference to the original GAN training procedure 2.36 is that:

. Use of RMSProp in WGAN training.. In WGAN training, after every gradient update of the critic function, the
weights are clamped to a fixed range [−c, c] where c is a hyperparameter.

The advantages of WGAN over GAN include:

52

............................ 2.4. Generative Adversarial Networks

Figure 2.47: In the training curves of WGAN, we can see a clear correlation
between sample quality and error value [19].

. Earth Mover’s (Wasserstein) distance is continuous and differentiable,
which results in the fact that we can (and should) train the critic till
optimality.. The WGAN training does not require maintaining a careful balance in
training of the discriminator (critic) and the generator since the more
we train the critic, the more reliable gradients we get.. The mode collapse that is typical in GANs is also reduced.

Despite the many advantages of WGAN, there is also a problem that was
already mentioned by the authors [19]. This problem is in the enforcing of
K-Lipschitz continuity by weight clipping about which the authors say the
following: “Weight clipping is a clearly terrible way to enforce a Lipschitz
constraint”. A possible replacement for the weight clipping is gradient penalty
that will be introduced in the following section.

Gradient penalty

Gradient penalty [22] is an alternative way to enforce Lipschitz constraint. A
differentiable 1-Lipschitz function is a function that has gradients with the
norm at most 1 everywhere. Therefore, the authors of [22] propose to directly
constrain the gradient norm of the critic’s output with respect to its input.

The gradient penalty is enforced as a soft version of a constraint with a
penalty on the gradient norm for random samples. The new objective can
be seen in equation 2.70. The first two terms are just the same as in the
original loss, and the remaining term is the new gradient penalty weighted
by a penalty coefficient λ that is set to 10 in the original paper.

L = E
x̃∼pg

[D(x̃)]− E
x∼pr

[D(x)] + λ E
x̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(2.70)

53

2. Methodology.....................................
The samples x̂ for computing the gradient penalty are sampled from the

distribution px̂ that is defined by uniform sampling along straight lines
between pairs of points sampled from the real distribution pr and generated
points from generator distribution pg.

The weight clipping biases the critic towards much simpler functions as
you can see in the top row in Figure 2.48 . In the bottom row, you can see
that training with gradient penalty does not suffer from this problem.

Figure 2.48: Comparison of value surfaces of WGAN critics trained to optimality
on toy datasets using (top) weight clipping and (bottom) gradient penalty [22].

2.4.3 Other techniques and architectures

There are multiple other techniques and architectures that are used with
Generative Adversarial networks. In this section, I will briefly describe a few
important ones.

Image-to-image translation

In [73], the authors investigate conditional networks as a general-purpose
solution to image-to-image translation problems. The advantage of these
networks is that they do not only learn the mapping from input to output
image, but they also learn a loss function that is used to train such networks.

Vanilla version of GANs 2.4.1 is trained to learn to map a random noise
vector z to an output image y by generator G : z → y. Conditional GANs
2.4.1 learn a mapping from observed input image x and random noise vector
z, to output image y, i.e. G : x, z → y. An example of image-to-image
translation with the network named pix2pix is depicted in Figure 2.49. For
the case of conditional GANs, the loss function becomes

L(G,D) =Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z))] (2.71)

The authors also propose to add L1 loss 2.26 to 2.71 as it forces the generator
to reconstruct the ground truths and encourages less blurring compared to

54

............................ 2.4. Generative Adversarial Networks

Figure 2.49: An example of a conditional GAN training to map edges to photo.

L2 loss used in [74]. This L1 loss has a form of

LL1(G) = Ex,y,z [‖y −G(x, z)‖1] (2.72)

Incorporating the L1 loss to the general conditional GAN loss we arrive to

G∗ = arg min
C

max
D
LcGAN (G,D) + λLL1(G) (2.73)

An example of pix2pix trained to map from Google Maps to aerial photo
and from aerial photo to Google Maps can be seen in Figure 2.50

Figure 2.50: Example of pix2pix trained to map from Google Maps to aerial
photo (left) and from aerial photo to Google Maps (right).

Image inpainting. A task of filling missing pixels of an image is often known
under the name image inpainting and can be seen as a part of the image-to-
image translation. The main challenge in this task is to generate realistic and
semantically plausible pixels for the missing regions. These newly synthesized
pixels should be coherent with the existing ones. In the early works [75, 76],
it was attempted to tackle this task by ideas similar to texture synthesis
[77, 78], i.e. by matching and copying background patches into holes starting
from low- to high-resolution or propagating from hole boundaries [23]. These

55

2. Methodology.....................................
approaches may work well for stationary textures but usually fail for more
difficult scenarios as inpainting to the natural images.

The first efforts to solve this task with deep neural networks were made
by [79, 80], where the authors aimed to denoise the input and inpaint small
regions in the image. In Context Encoders [74] they train a deep network for
inpainting large holes first. More specifically, they train the network to fill a
centered region of 64× 64 pixels in a 128× 128 pixels large image. As the
objective function, they combine a standard GAN loss with L2 reconstruction
loss. Further improvements were proposed in [81] by incorporating global
and local discriminators. The job of the global discriminator is to assess that
the whole image is coherent, while the goal of local discriminator enforces
local consistency by focusing on a small area of the generated region only.

Authors of [23] propose a generative inpainting framework with the archi-
tecture showed in 2.51. They use a coarse-to-fine network architecture. The
generator network takes an image with white pixels filled in the holes and a
binary mask indicating the hole regions as input pairs, and outputs the final
completed image, just as in [81]. They pair the input with a corresponding
binary mask to handle holes with variable sizes, shapes and locations [23].

Figure 2.51: An architecture of generative inpainting framework [23].

In the task of image inpainting, the size of the receptive fields in the
network should be sufficiently large [23]. Iizuka [81] proposes to use dilated
convolution in order to tackle this. To further enlarge the receptive fields,
the authors of [23] propose a two-stage coarse-to-fine architecture, where
the first stage makes an initial coarse prediction and works as an input to
the second stage that produces the final results. There is a difference in the
losses that are used in the first (coarse) and second (refinement) stage. In the
coarse stage, the network is trained with the reconstruction loss only, while
the refinement stage adds to this loss a GAN loss. However, this network is
trained mainly for the task of filling rectangular holes.

Cycle consistency

In work [24] they propose a novel approach to image-to-image translation,
specifically to domain transfer, for learning to translate an image from some
source domain X to a target domain Y in absence of paired data. The goal is
therefore to learn a mapping G : X → Y such that the distribution of images
from G(X) would be indistinguishable from the distribution of images in Y

56

............................ 2.4. Generative Adversarial Networks

with the use of an adversarial loss. To deal with such an under-constrained
problem, they propose to add an inverse mapping F : Y → X and to use
so-called cycle consistency to enforce F (G(x)) ≈ X and G (F (y)) ≈ y.

The model is described in Figure 2.52. As shown in (a), the model consists
of two mapping functions X and Y that are associated with corresponding
adversarial discriminators denoted as DX and DY . DY encourages G to
translate samples from X domain in such a way that they would be indistin-
guishable from samples from Y domain. The same holds for discriminator DY

and mapping function F . In (b) and (c) is shown the idea of cycle consistency
loss. In (b) you can see forward cycle-consistency when a sample x ∈ X
is mapped by function G as ŷ = G(x) to Y domain and mapped back by
function F as x̂ = F (ŷ). The cycle-consistency aim to arrive to the point
when the x ≈ x̂. The cycle-consistency loss then penalizes the L1 difference of
original sample x and the generated sample x̂. The same holds for backward
cycle-consistency for y ∈ Y in (c). The overall cycle consistency is then given
by

Lcyc(G,F) = Ex pdata(x) [‖F (G(x))− x‖1] + Ey pdata(y) [‖G(F (y))− y‖1]
(2.74)

The adversarial loss for the mapping G : X → Y is expressed as in equation
2.75 and vice versa for F .

LGAN (G,DY , X, Y) = Ey∼p data (y) [logDY (y)]+Ex∼p data (x) [log (1−DY (G(x)))]
(2.75)

The overall loss function then adds typical GAN loss for both G and F
mappings as in the form

L(G,F,DX , DY) = LGAN (G,DY , X, Y) +LGAN (F,DX , Y,X) +λLcyc(G,F)
(2.76)

where λ is a parameter controlling the relative importance of the objective.
The goal is then to solve the problem in the form

G∗, F ∗ = arg min
G,F

max
Dx,DY

L (G,F,DX , DY) (2.77)

Figure 2.52: Architecture of cycleGAN (a) with cycle consistency loss showed
in (b) and (c). [24]

57

2. Methodology.....................................
Progressive growing

The key idea of progressive growing [25] is that the networks (discriminator
and generator) are not trained with the full resolution. In progressive growing
the networks are progressively growing, starting from a low resolution and
adding new and new layers so that the model outputs more and more detailed
results as training progresses. This technique is used in the approach proposed
in this thesis.

In the early stages of the training, when training with low-resolution images,
the networks learn the large-scale structure of the image distribution. As the
training progresses, new layers are added to both discriminator and generator,
higher resolution is used, and the networks learn finer and finer details. In an
example of generating faces, this would mean that the network would learn
how does a face look in general (positioning of eyes, nose, mouth,...) and
later learn different hairstyles, eyelashes, etc.

Discriminator and generator are mirror images of each other and grow
synchronously. The layers that are already in the networks remain trainable
even after the addition of new layers.

The main benefits of progressive growing are:

.Generation of small images early in the network is more stable.. Increasing the resolution step by step is an easier task then to generate
the full resolution straight on.. The training time is reduced.

Figure 2.53: Both discriminator and generator grow synchronously starting with
low resolution and proceeding by adding new and new layers all the way to the
full resolution [25].

When a new layer is added and the resolution of both generator and
discriminator doubles, this new layer is faded in smoothly. In the example
in Figure 2.54 you can see a transition from 16 × 16 resolution in (a) to

58

...................................2.5. Image Processing

32× 32 resolution in (c). The transition phase is depicted in (b). During this
translation the layers that operate on the higher resolution are treated like
residual blocks, whose weight increases linearly from 0 to 1, meaning that in
the early stages of the transition they have no or just a little effect. In Figure
2.54 2 and 0.5 refers to doubling and halving the image resolution using
nearest neighbor filtering and average pooling, respectively. The toRGB block
consists of 1 × 1 convolutions and is used for mapping the feature vectors
to the RGB space. The fromRGB block does the reverse and uses the 1× 1
convolutions as well.

Figure 2.54: An example of a fade in of a new layer [25].

Other contributions by paper [25]:

.Minibatch standard deviation layer
This is a parameter-free alternative to the Minibatch discrimination layer.
The authors say that it “is implemented by adding a minibatch layer
towards the end of the discriminator” [25].. Equalized learning rate.
The idea of equalized learning rate is to scale the weights dynamically
scaled layer-wise by a constant from He’s initializer [14]. This ensures
that the dynamic range, and thus the learning speed, is the same for all
weights [25].. Pixelwise Feature Vector Normalization in Generator
The goal of the pixelwise feature vector normalization is to prevent the
scenario where the weights of generator and discriminator blow out.
Thus, the authors propose to normalize the feature vector in each pixel
to unit length in the generator after each convolutional layer.

2.5 Image Processing

In this section, I will briefly describe few commonly used techniques in image
processing.

59

2. Methodology.....................................
First, in section 2.5.1, I will describe the local binary patterns. Then, in

the section 2.5.2, I will give a short introduction to how the histograms can
be used in image processing along with examples of a few commonly used
distance measures for comparison of image histograms.

Since the image processing is tightly connected to the notion of color, I
give a brief introduction to a few standard color models in section 2.5.3

2.5.1 Local Binary Patterns

Local Binary Patterns [82] (LBP for short) is a type of image descriptor. It
is defined as a gray-scale invariant texture measure. LBP is made invariant
against the rotation of the image domain and supplemented with a rotation
invariant measure of local contrast.

LBP is a simple yet powerful texture operator which labels the pixels of
given image by thresholding the 3× 3 neighborhood of each pixel with the
value of the center pixel and considers the result as a binary number [26].
The resulting decimal number is given as

LBPP,R =
P−1∑
p=0

s(x)2p, x = gp − gc (2.78)

where gc corresponds to the gray value of the center pixel at position (xc, yc),
gp is a gray value that corresponds to the one of P equally spaced pixels on a
circle of radius R. Examples of different neighborhood sets can be seen in
Figure 2.55. The operator s defines a thresholding function specified as

s(x) =
{

1
0

if
if

x ≥ 0
x < 0 (2.79)

Figure 2.55: Neighborhood sets specified by different values of P and R. In the
case that the sampling point is not in the center of a pixel, the pixel values are
bilinearly interpolated [26].

An example of an LBP computation can be seen in Figure 2.56.

As it has been shown in [83], some bins contain more information than
others and are called uniform patterns by authors. These patterns are specified
by the fact that they contain 2 transitions 0 → 1 or 1 → 0. For example,

60

...................................2.5. Image Processing

.
Figure 2.56: An example of LBP computation [26].

pattern 00000110 contains 2 such transitions and is therefore considered to
be a uniform pattern, but 00100110 contains 4 transitions, which mean that
it is not uniform. A standard LBP with 8 neighboring pixels has 256 different
patterns and 59 patterns in "uniform" version.

2.5.2 Image histograms

In a computer vision, it is common to compare the image histograms. An
image histogram is a histogram of color intensities or of grayscale values. The
x axis is divided into bins such that each bin corresponds to a certain range
of intensity. The y axis then depicts the (relative) occurrence of intensities in
a certain bin.

Based just on the histogram, we can say whether the image is bright or
dark (figure 2.57), whether it has a high contrast (figure 2.58) or not or
whether there are any (either dark or bright) saturated colors.

One of the main drawbacks of image histograms is that they encode
no spatial information. Let us imagine two images. The first one has a
checkerboard pattern of white and black squares. The other one has one half
completely black and the other half completely white. These two images look
very different, yet they would have the exact same image histogram.

Image histograms can be used e.g., for image enhancement. The goal of
image enhancement is to make the image more visually appealing by using
techniques as contrast stretching or histogram equalization.

However, we do not want to just look at a single image, but we would also
like to use histograms for comparisons between different images. For this
purpose, I will show a few commonly used distance measures for comparing
the similarity of image histograms in the following sections.

61

2. Methodology.....................................

(a) : Histogram of a dark image.

(b) : Histogram of a bright image.

Figure 2.57: Comparison of histograms of dark and bright image [27].

(a) : Histogram of an image with high contrast.

(b) : Histogram of an image with low contrast.

Figure 2.58: Comparison of histogram of image with high and low contrast [27].

Bhattacharyya distance

The Bhattacharyya distance is a measure between two probability distributions.
This implies that the input histograms need to be normalized such that the
values in the bins sum up to 1.

This distance is closely related to the Bhattacharyya coefficient, which

62

...................................2.5. Image Processing

measures the overlap of two statistical samples and is used to measure the
separability of classes in the problem of classification.

The Bhattacharyya distance is defined for two probability distributions p, q
of the domain X as

DB (p, q) = − ln (BC(p, q)) (2.80)
where the BC is the Bhattacharyya coefficient which is defined for discrete
distributions as

BC(p, q) =
∑
x∈X

√
p(x)q(x) (2.81)

and for continuous distributions as

BC(p, q) =
∫ √

p(x)q(x)dx (2.82)

In both cases it holds that 0 ≤ BC ≤ 1 and 0 ≤ DB ≤ ∞. This distance
does not obey the triangle inequality.

Hellinger distance

The Hellinger distance is other measure of similarity and is closely related to
the Bhattacharyya distance since it can be defined using the Bhattacharyya
coefficient (eq. 2.81 and 2.82) as

H(p, q) =
√

1−BC(p, q) (2.83)

where p and q are probability distributions.

The Hellinger distance obeys the triangle inequality (in contrast to the
Bhattacharyya distance), and it holds that 0 ≤ H(p, q) ≤ 1.

Earth mover’s distance

The Earth mover’s distance (EMD for short) is yet another measure of the
distance between two probability distributions. It reflects the minimal amount
of work that must be performed in order to transform one distribution into
the other moving "distribution mass" around [84].

Given two distributions, one can be seen as a mass of earth spread ade-
quately in space, the other as a collection of holes in that same space. We
can always assume that there is at least as much earth as needed to fill all
the holes to capacity by switching what we call earth and what we call holes
if necessary. Then, the EMD measures the least amount of work needed to
fill the holes with the earth. Here, a unit of work corresponds to transporting
a unit of the earth by a unit of (ground) distance [84].

The computation of EMD is based on a solution to transportation problem.
Transportation problem is can be defined as the linear program where I is

63

2. Methodology.....................................
the set of suppliers, J is a set of customers and cij is the cost of shipping
a unit supply from supplier i ∈ I to a customer j ∈ J . The goal is to find
such a flow fij that minimizes the overall cost∑

i∈I

∑
j∈J

cijfij (2.84)

subjected to these constraints

fij ≥ 0, i ∈ I, j ∈ J∑
i∈I

fij = yj , j ∈ J

∑
j∈J

fij ≤ = xi, i ∈ I
(2.85)

where where xi is the total supply of supplier i and yj is the total capacity of
consumer j. Once the solution is found, the EMD distance is computed as

EMD(x,y) =
∑
i∈I

∑
j∈J cijfij∑

i∈I
∑
j∈J fij

=
∑
i∈I

∑
j∈J cijfij∑

j∈J yj
(2.86)

In the case of one-dimensional histograms, the EMD can be computed by
dynamic programming as

EMD0 = 0
EMDi+1 = Pi + EMDi −Qi

Total Distance =
∑
|EMDi|

(2.87)

where P and Q are two histograms/distributions.

2.5.3 Color models

A color model is a mathematical model that describes the way of how colors
can be represented as tuples of numbers. These tuples have most often three
or four values.

When the model is associated with the interpretation of color components
(conditions,...), the resulting set of colors is called color space. This space
can be viewed as a region in n-D space, where n is the number of color
components. In the case that the x, y, z axes are identified to the stimuli of
long- (L), medium- (M) and short-wavelength (S) light receptors, then the
origin, (S,M,L) = (0, 0, 0) corresponds to the black color.

RGB

RGB color model is one of the best-known color models. This is mainly due
to the fact that a lot of electrical devices used or are still using this model,
such as televisions.

64

...................................2.5. Image Processing

RGB is an additive model. This means that it uses additive color mixing
with three primary colors: red (R), green (G) and blue (B). With a mixture
of these three colors, one can cover a large part of the human color space.

HSV and HSL

HSV and HSL are two alternative representations to RGB model. The
shortcut HSL comes from the tree components: hue, saturation and lightness.
In the HSV model, the third component is different – it is called value. These
two models were designed to better match the way of how people perceive
color [28].

Both HSV and HSL have cylindrical geometries as can be seen in Figure
2.59. The hue component corresponds to the angular dimension. It starts
with the red primary at 0°, continues through the green primary at 120° and
through the blue primary at 240°.

In both HSV and HSL, the additive primary and secondary colors (red,
yellow, green, cyan, blue and magenta) and linear mixtures between adjacent
pairs of them are arranged around the outside edge of the cylinder with
saturation 1 [28]. These colors have value 1 in HSV model and lightness 0.5
in the HSL model. You can see the HSV and HSL color cylinder in Figure
2.59.

(a) : HSL cylinder. (b) : HSV cylinder.

Figure 2.59: Comparison of HSL and HSV cylinders [28].

The four components of HSV and HSL are defined in [85] as follows:

. Hue: The "attribute of a visual sensation according to which an area
appears to be similar to one of the perceived colors: red, yellow, green,
and blue, or to a combination of two of them".. Saturation: The "colorfulness of a stimulus relative to its own brightness".. Lightness / value: The "brightness relative to the brightness of a similarly
illuminated white".

65

2. Methodology.....................................
Conversion from RGB. The conversion of H component is the same for
HSV and HSL. However, the conversion from RGB to S component differs.
This conversion to H is defined as:

H =



0, if MAX = MIN ⇔ R = G = B

60◦ ·
(
0 + G−B

MAX−MIN

)
, if MAX = R

60◦ ·
(
2 + B−R

MAX−MIN

)
, if MAX = G

60◦ ·
(
4 + R−G

MAX−MIN

)
, if MAX = B

(2.88)
The conversion to S for HSV is defined as:

SHSV =
{

0, if MAX = 0⇔ R = G = B = 0
MAX−MIN

MAX , otherwise (2.89)

and for HSL as:

SHSL :=


0, if MAX = 0⇔ R = G = B = 0
0, if MIN = 1⇔ R = G = B = 1

MAX−MIN
1−|MAX+MIN−1| = 2MAX−2L

1−|2L−1| = MAX−L
min(L,1−L) , otherwise

(2.90)
The value component V and lightness component L are defined as:

V = MAX (2.91)

L = MAX +MIN

2 (2.92)

66

Chapter 3

State of the Art

In this section, I will briefly cover the state-of-the-art methods in relevant
fields for this diploma thesis.

First, in the section 3.1, I will describe the most recent techniques used
for image inpainting [77, 78, 86, 87, 88, 89, 81, 23, 90]. The goal of image
inpainting is mainly in filling the holes in image such that the image would
seem natural as a whole. This is relevant to the primary goal of this thesis.
The only difference is in the fact that image inpainting tries to fill the gaps
with the structures similar to the surroundings of the gap, while the goal
of the thesis is to paint people into the given region and these people don’t
usually have the same texture as their surroundings. In this thesis, the
information about the surroundings of the hole (where the person should be
painted) can also be used, since it can, for example, bring information about
the light conditions.

In the next section 3.2, I will describe a style-based architecture for GANs.
The authors of the referred paper show the results of their approach on
the example of face generation where they show the ability of the proposed
solution to modify the output based on a given style. It uses the progressive
growing of GANs (explained in section 2.4.3), which is one of the cornerstone
techniques in this thesis. The proposed solution is a kind of conditional
generation that is closely related to this thesis just as the section 3.3, where
I describe a solution to image generation conditioned on input label maps
that specify the classes of painted objects. These ideas are further improved
by the network called GauGAN that is described in section 3.4 and which
proposes a novel normalization layer that has the conditioned label map as
an input.

In the last two sections 3.5 and 3.6, I present two approaches in generating
person images. The paper presented in section 3.5 deals with pose guided
image generation. This approach is used to generate a person in a given
image in a novel pose. In the following section 3.6, the authors propose a
framework that is able to manipulate the foreground, background, and person
pose in the image.

67

3. State of the Art
3.1 Image inpainting

One of the most recent works in the field of image inpainting comes from the
paper called Free-Form Image Inpainting with Gated Convolution [29], where
the authors further improve the architecture of [23] and propose a solution
to free-form inpainting, i.e. to filling the holes of non-rectangular shape in
the image. Their solution is based on gated convolutions that, in contrast to
vanilla convolutions, provide a learnable feature selection mechanism. The
motivation behind introducing gated convolution is that in the case of vanilla
convolutions all the pixels (disregarding whether they should be generated
or not) are treated the same. This is not well suited for the task of image
inpainting since the input features are composed of both regions with valid
pixels outside holes and invalid pixels (shallow layers) or synthesized pixels
(deep layers) in masked regions [29]. The proposed gated convolution learns
a soft mask that is applied to the result of convolutional operation. This can
be expressed as:

Gatingy,x =
∑∑

Wg · I

Featurey,x =
∑∑

Wf · I

Oy,x = φ (Featurey,x)� σ (Gatingy,x)

(3.1)

where σ is a sigmoid activation making sure that the gating values are in
range [0, 1], φ can be any activation, Gating are gating values applied as a
soft filters to Features and Wg and Wf are two different convolutional filters.
The procedure can be seen in 3.1.

Figure 3.1: Illustration of gated convolution [29].

In addition to the input channel that denotes the mask, one additional
channel corresponding to the sketch that the network should condition on

68

...................................... 3.2. StyleGAN

can be used. The overall architecture is shown in 3.2 along with visualization
and interpretation of learned gating values. You can see that the network
learns to attend more to sketch or mask in different depths of network and
even to perform foreground/background semantic segmentation.

Figure 3.2: The architecture of [29] together with an example of learned gating
values. Note that is figure show only the coarse part of the inpainting framework
and not the refinement part.

This work provides an extension to User-Guided Image Inpainting by the
use of sketches. The network is trained to be guided by these sketches during
inpainting of missing regions. The authors showed this extension on the
example of natural images which can be seen in 3.3. To obtain training data
for this task, they use the HED edge detector [91] and then set all values that
are above some predefined threshold to ones. These binary edge images then
serve as training sketches.

3.2 StyleGAN

In the paper called “A Style-Based Generator Architecture for Generative
Adversarial Networks” [30], the authors further improve the idea of progres-
sive growing of Generative Artificial Networks used for face generation by
proposing a generator architecture that is able to learn an unsupervised
separation of high-level attributes (such as pose and identity) and stochastic
variation (e.g., changes in hairstyle, position of freckles,...). The proposed
architecture enables to control these attributes intuitively.

In the previous works, the input to the first layer of the generator is a
latent code. In this work, they depart from this approach and use a learned
constant input straight on. The style of the figure is encoded by a non-linear
mapping network f : Z → W that maps the latent vector z coming from
the latent space Z to a vector w ∈ W, where W is another latent space.
The vector w is then transformed by learned affine transformations to styles
encoded as y = (ys, yb) that control adaptive instance normalization (AdaIN
for short) operations after each convolution layer of the synthesis network g

69

3. State of the Art

Figure 3.3: An example of user-guided image inpainting by sketches [29].

[30]. The AdaIN operation is defined as

AdaIN (xi,y) = ys,i
xi − µ (xi)
σ (xi)

+ yb,i (3.2)

where each feature map xi is first normalized, then scaled by ys and biased
with yb.

The mapping network f together with the affine transformations A and
AdaIN operation controls the styles of the generated image. The stochasticity
is injected to the image from single-channel noise images. This noise input is
broadcasted to all feature maps by learned per-feature scaling factors and
added to the output of the corresponding convolution [30]. The architecture
is shown in Figure 3.4 and a few examples can be seen in Figure 3.5.

3.3 pix2pixHD

In the paper “High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs” [31], the authors present a new image-to-image
method for synthesizing high-resolution images from semantic label maps.

70

......................................3.3. pix2pixHD

Figure 3.4: Architecture of style-based generator [30].

Figure 3.5: Examples of generated faces [30].

To achieve this, the use of coarse-to-fine generator that is decomposed to

71

3. State of the Art
two generators. These two generators finally produce 2048× 1024 image from
a given label map. This structure is shown in Figure 3.6.

Figure 3.6: Architecture of the generator in pix2pixHD [31].

They use a multi-scale version of discriminator that operates at different
levels of detail. This multi-scale discriminator consists of 3 identical discrim-
inators. The first discriminator works with the original input (the finest
details) and encourages the generator to produce finer details. The two other
discriminators work with coarser images that are downsampled by the factor
of 2 and factor of 4 respectively.

They also add a feature-matching loss (2.4.1) on features obtained from
the discriminator – this loss is optimized by the generator only, and the
discriminator serves just as a feature extractor.

Another feature that helps the model to generate better results is an
addition of the boundary map to the input label map. This enforces clear
boundaries between instances.

(a) : label map (b) : generated image

Figure 3.7: An example of input label map in 3.7a and resulting generated
image in 3.7b [31].

3.4 GauGAN

The main novelty of paper called “Semantic Image Synthesis with Spatially-
Adaptive Normalization” [32] is in the proposed spatially-adaptive normaliza-
tion (SPADE in short), which is a normalization layer that should help to
produce better images given an input semantic layout. They claim that most
of the previous methods that directly feed the semantic layout as input to

72

...................................... 3.4. GauGAN

the deep network and process this input with a stack of convolution, normal-
ization, and nonlinearity layers are at most suboptimal as the normalization
layers used in such networks tend to wash away the semantic information.
Note that this can be different from the approach used in this thesis since the
"semantic information" used in this work consists only of values in range [0, 1]
and should only be used for guidance of which pixels should be changed.

Proposed normalization layer SPADE applies spatially-varying affine trans-
formation and is therefore well-suited for the task of image synthesis from
semantic mask. In this layer, the input activations are first normamalized in
channel-wise manner and then modulated with learned scale and bias [32].
The design of spade in shown in Figure 3.8. Input semantic segmentation
mask is m ∈ LH×W , where L is a set of integers denoting the semantic labels,
and W and H are image width and height. This layer can be mathematically
described as follows:

γic,y,x(m)
hin,c,y,x − µic

σic
+ βic,y,x(m) (3.3)

where hin,c,y,x is the input activation and µic and σic are the mean and standard
deviation of the activation in channel c.

Figure 3.8: Design of SPADE layer [32].

The important thing to note in equation 3.3 is that the variables γ(m) and
β(m) of the normalization are learned and depend on the input semantic
mask and position. These variables are, in fact, functions that convert the
input semantic mask m into scaling and bias values and are implemented as
a simple two-layer convolutional networks.

The difference of generator trained with SPADE compared to the classic
conditional generator is in fact that it is no longer needed to feed the segmen-
tation map to the first layer. Therefore, the encoder part of the generator
is discarded since the learned modulations in SPADE contain enough infor-
mation about the layout. The generator can take a random noise vector as

73

3. State of the Art
an input, which results in stochasticity of outputs. The architecture of a
generator with SPADE is shown in Figure 3.9

Figure 3.9: On the left, you can see a structure of a SPADE residual block.
(Right) Design of SPADE generator consisting of residual blocks [32]. In compar-
ison to image-to-image translation networks (such as pix2pixHD), this network
has less parameters and better performance.

3.5 Pose Guided Person Image Generation

In the paper called “Pose Guided Person Image Generation” [33], the authors
propose a novel network called Pose Guided Person Generation Network that
synthesize person images in arbitrary poses, based on the image of that person
and a novel pose. This network consists of two stages: pose integration and
image refinement.

In the first stage, they use a variant of U-Net (2.2.10) to integrate the
target pose with the person image. There is a fully-connected layer in the
bottleneck of this network as you can see in Figure 3.10. The input to this
network consists of a conditioned image and a pose encoded by 18 heatmaps
(one heatmap per joint/keypoint). In each of those heatmaps, the keypoint is
represented as a radius of 4 pixels around the keypoint position. The input is
then a concatenation of conditioned image and these heatmaps. The output
is a coarse image that captures the global structure of the human pose in the
given target image. The change of the background between conditioned and
target image is enforced through L1 loss. Using the L1 loss results in blurry
images since it encourages the outputs to be an average of all possible cases
[73].

The output of the first stage serves as an input to the second stage. In that
stage, they use a variant of DCGAN (2.4.1) to improve the results further.
Here, the refining generator takes as an input the image conditioned on and
the coarse image generated in the first stage. The goal of this generator is
to output an appearance difference map that would bring the coarse and
blurry result closer to the conditioned image. There is no fully-connected
layer in this generator (opposed to the generator in stage one) which helps to
preserve more details. The use of difference maps is claimed to speed up the
convergence since the network only focuses on learning the missing details.

74

......................... 3.6. Disentangled Person Image Generation

The architecture of both generators is shown in Figure 3.10.

The discriminator is trained to recognize between real and fake pairs. The
real pair consists of condition image and the target image. The fake pair
contains the output of the second generator instead of the target image. This
pairwise input to the discriminator encourages it to learn the distinction
between the generated and target image instead of just to distinguish between
real and synthesized images. This process can be seen in Figure 3.10.

Figure 3.10: The architecture of Pose Guided Person Generation Network from
[33].

3.6 Disentangled Person Image Generation

The paper “Disentangled Person Image Generation” [34], the authors aim at
generating novel, yet realistic, images of persons. To achieve this, they use a
two-stage reconstruction pipeline that learns a disentangled representation of
image factors and generates novel person images.

In the first stage, they propose a multi-branch reconstruction architec-
ture – there is a branch for foreground, background, and pose. Using this
architecture, the goal is to disentangle the foreground, background, and pose
factors from each other. In the foreground branch, they apply the corse
pose mask to the feature maps first, then arrange the body part feature
embeddings according to seven region-of-interest (ROI for short) bounding
boxes obtained from pose keypoints. These ROIs are of size 48× 48 and are
fed to encoders with shared weights. This results in a set of 32D feature
vectors that are concatenated to one 224D feature vector for the foreground.
In the background branch, they inverse the pose mask and obtain one 128D
feature vector that is then concatenated and tiled with a foreground feature
vector to one 128 × 64 × 352 appearance feature map. In the pose branch,
they concatenate the 18-channel heatmaps that correspond to the locations
of keypoints with the appearance feature maps. This input is passed into
the “U-Net”-based architecture, i.e., convolutional autoencoder with skip

75

3. State of the Art
connections, to generate the final person image following [33] (sec. 3.5).

Figure 3.11: Architecture of the first stage [34].

It is known that images can be represented by a low-dimensional, continuous
feature embedding space since they lie on or near a low-dimensional manifold
of the original high-dimensional space [33] [92, 93]. Based on this observation,
the authors suppose that the distribution of such feature embedding space
should be more continuous and easier to learn and propose a two-step mapping
technique that is illustrated in Figure3.12. In the first step, they learn a
mapping function Φ that maps from Gaussian space Z into a continuous
embedding space E and then use the pretrained decoder from the first stage
to map from the embedding space E to the space of real images X [33]. As
was written earlier and as can be seen in Figure 3.11, the encoder in the
first stage encodes the foreground, background and pose to lower dimensional
vector embeddings e. The mapping function Φ then learns to map from
Gaussian noise z ∈ Z to the space of embeddings E in an adversarial manner.
Using this, we can sample fake embedding features from Gaussian noise and
map them to the space of real images by the encoder learned in the first
stage.

76

......................... 3.6. Disentangled Person Image Generation

Figure 3.12: Architecture of the whole framework of [34].

77

78

Part II

Implementation and experiments

79

80

Chapter 4

Datasets

For the purpose of this thesis, two datasets were created. One is used for
classification (section 4.2) and is based on the Cityscapes dataset [94] and the
other one based on the MS COCO [35] (described in the section 4.2) dataset
is intended for the training of person image generation.

The reason behind the creation of the dataset for person image generation
is mainly the lack of suitable datasets that can be used for such a task. The
current datasets available are either small in size, small in resolution, or do
not provide important information such as person segmentation and keypoint
locations.

In the first section of this chapter, the MS COCO dataset is briefly intro-
duced. In the next sections, I describe the process of the two datasets.

4.1 MS COCO dataset

The Common Objects in Context (COCO) is a large-scale dataset that tackles
the problems in scene understanding from detection to localization [35]. In
contrast to other datasets, this one contains objects in various poses, from
multiple views, in different backgrounds and even partially occluded.

The dataset was created with extensive use of Amazon Mechanical Turk.
First, the authors needed to gather a broad set of images that would contain
contextual relationships and non-iconic object views. Then, each of the
images was labeled as containing particular object categories, and for each
such category found, the individual instances of the category in the image
were labeled and segmented [35].

The dataset contains 91 common object categories and out of those 82 have
more than 5000 labeled instances. In total, the dataset contains 2.5 million
instances in 328 thousand images.

The categories labeled in the dataset are only "thing" categories and not

81

4. Datasets.......................................
"stuff". A "thing" categories contain objects whose instances can be easily
labeled (humans, bicycles, dogs,...) where "stuff" categories contain objects
with no clear boundaries (sky, road,...).

One of the most significant advantages of this dataset is that it does not
contain object instances in the iconic situations only, i.e., image with a single
dominant object in the center of the image. It contains the instances in
non-iconic situations and therefore helps the algorithms trained on it to
generalize better. Examples of annotated images can be seen in Figure 4.1.
It also contains keypoints of person pose, which comes handy while creating
the dataset described in the following section.

Figure 4.1: An example of annotated images in MS COCO dataset [35].

4.2 Created datasets

As it was mentioned in the introduction, for the purposes of this thesis,
two datasets were created. The first dataset was created for the task of
classification, and the second dataset was created for the task of person
generation.

Dataset for classification

This dataset is intended for the evaluation of an impact of various data
augmentation methods on image classification and is created for the task of
determining whether the given image contains a person or not.

The dataset is based on the Cityscapes dataset [94] that provides informa-
tion about instance segmentation of the scene. From these segmentations,
pedestrian positions are determined and cropped. The pedestrian must be at
least heightmin high (can vary, 100px in the experiments) and the resulting
crops are resized to 224 × 224px. By this process, a total of n samples is
obtained. However, all these samples belong to the positive class, i.e., contain

82

................................... 4.2. Created datasets

a pedestrian. In order to have a balanced set, n random crops that do not
contain pedestrian are created and added to the dataset.

The dataset is split to the tree traditional splits used for training, validation,
and testing. The size of the dataset splits for heightmin = 100 is show in
table 4.1.

split number of samples

train 10976
val 1100
test 1100

Table 4.1: Size of the dataset for classification with heightmin set to 100px.

Exemplary samples for both positive and negative class are shown in Figure

Figure 4.2: An example of possitive (top) and negative (bottom) samples from
the dataset for the detection task.

Dataset for person generation

As it was already mentioned earlier, the dataset created for the purpose of
person image generation is based on the MS COCO dataset described in the
previous section 4.1. This section describes the process of creation.

First, only the images with person label are chosen. This is quite simple
with the use of API that is provided by the authors of the dataset.

Each annotated person in the image must suffice multiple criteria in order
to be included in the dataset. First, it is checked whether it is at least as high
as the predefined minimal threshold. If not, such an annotation is discarded
and not taken into account later. It is important to note that the bigger
threshold will allow learning to generate images in higher resolution, but

83

4. Datasets.......................................
the resulting dataset will contain fewer samples. Another criteria that the
annotated person must suffice is that it must be standing. This is determined
just based on the ratio of the height and width that should be at least as
high as the predefined ratio. This ratio was empirically set to 2. Another
important thing is that it is required that at least one keypoint on the head,
shoulder, elbow, hip, and knee is visible.

The dataset contains cropped images from the original ones with person
annotations. An example of the cropped images can be seen in Figure 4.3.
From these examples, it can be clearly seen that the variety of poses, situations,
lighting conditions, occlusions, and human clothing is enormous. This makes
the dataset very challenging.

Figure 4.3: An example of the cropped images from the dataset.

Each such samples comes along with other usable content:..1. Masked image: it is the same cropped image just with the person masked
out...2. Mask is a binary (or grayscale) one-channel image corresponding to the
segmentation mask of the masked-out person...3. Estimated mask is a mask estimated from the keypoints. The estimated
mask is not just binary with {0, 1} values. This is because the estimation
from the keypoints cannot capture the person segmentation perfectly
and therefore, a kind of a soft mask with values in the range [0, 1] is
used...4. Keypoint locations are given as a 17-channel tensor with each channel
corresponding to the location of a single keypoint in the image.

An example of the entire batch from the dataset is shown in Figure 4.4.

The dataset is further enlarged by random horizontal flips and random
grayscale conversion. The split to training and validation split follows the
original split of MS COCO dataset n the version from the year 2017.

84

................................... 4.2. Created datasets

Figure 4.4: An example from the dataset. The top row shows the original
cropped image, the second row shows a masked version of the image, the third
image shows the original mask, while on the fourth the estimated mask is shown
and in the last row are shown the positions of annotated keypoints.

Mask estimtion. The process of mask estimations is based only on the
information about keypoints position and visibility. The first step is drawing
the connections between neighboring keypoints in the skeleton. A connection
is drawn if and only if at least one of the neighboring keypoints is annotated.
The process of mask creation is described in algorithm 1. The results can be
seen in the fourth row in Figure 4.4.

Cityscapes dataset. The dataset for person generation can even contain
data form the Cityscapes dataset. This dataset contains instance-level seg-
mentation that was used to obtain ground-truth person masks. However, it
does not contain any information about keypoint locations. To deal with this
missing part, I use the OpenPose [95] detector for keypoint estimation. It
needs to be noted that this detector doesn’t have to produce very accurate
results. This is one of the reasons why this part of the created dataset was
not used during the experiments.

85

4. Datasets.......................................

Result: Estimated maskM
input: skeleton edges E, keypoint locations x, keypoint visibility v;
initializeM with zeros;
initialize the widest, medium and the narrowest line width w with line
values determined by function f(width) : w→ [0, 1] ;

for line width w in [widest, medium, narrowest] do
for (i, j) ∈ E do

if both keypoints i and j are annotated then
if not both keypoints are visible and w==“narrowest” then

continue;
end
draw line from xi to xj of width w and value f(w) to mask
M;

end
end

end
Algorithm 1: An algorithm for drawing a mask based only keypoint
locations only.

86

Chapter 5

Experiments with augmentation techniques

In this section, I will describe the experiments with data augmentation
technique. These experiments will be evaluated on a patch classifier which
can be run on top of the pedestrian detection pipeline. This is a common
approach in autonomous driving when CNN-based methods are used only
in the last stage of a pipeline when there is only a small amount of samples
since the hardware used in the cars is often too slow.

5.1 Pedestrian detectors in cars

The pedestrian detection (PD) systems used in the cars have to be really
fast and have only small computational requirements. This implies that the
CNN-based methods cannot be used on the whole image since they would
require too much computational power. Instead, the CNN model is used at
the end of the PD pipeline. This is done mostly because the CNN inference
generally takes more time than, e.g., boosting methods used in previous parts
of the pipeline.

PD pipeline used in cars is often a cascade classifier [96] that sequentially
reject false positive samples as it can be seen in Figure 5.1.

Figure 5.1: An example of a cascade classifier.

Each layer of it can be configured independently and can use a different
classifier. It can look for example as follows (Figure 5.2):..1. AdaBoost cascade: A cascade of AdaBoost [97] detectors that sequentially

87

5. Experiments with augmentation techniques........................
reject samples. Such a cascade of AdaBoost classifiers is very fast...2. Dense HOG reginement: By using stronger features such as Histogram
of Oriented Gradients (HOG) [98], it is possible to make the localization
accuracy more robust...3. Tracking: A tracking of pedestrians can be used. This results in more
accurate and robust localization and can be used in a loop with a final
CNN-based classifier...4. CNN classifier : A CNN is run at the end of the pipeline only over a
small number of image patches that were not rejected in the previous
stages of the cascade.

Figure 5.2: An example of pedestrian detection pipeline for candidate generation
and sequential elimination of false positives.

The goal of the following experiments is to evaluate the contribution of
different augmentation techniques on a CNN classifier of image patches that
either do or don’t contain a pedestrian. Such a classifier can be used in a PD
pipeline, as mentioned above.

5.2 Implemented augmentation techniques

Most of the implemented and tested augmentation techniques were already
described in section 2.3.

The used techniques can be divided into the ones that are applied to the
whole image and to the ones that are applied only to pedestrian instances.
These augmentations are applied to the whole image are:

. Translation: Translation of given patch in the image by a random value
within a specified range.. Rotation: Rotation of an image patch by a random angle drawn randomly
from a predefined interval.

88

......................... 5.2. Implemented augmentation techniques

. Random resized crop: This technique first crops a random image (of size
from predefined range) from the original patch, then randomly changes
the aspect ratio of the cropped image and finally resizes it to a size of
the original patch.. Flip: Horizontal flip is applied with a probability p ∈ [0, 1].. Random noise addition: A random value drawn from a Normal distribu-
tion with zero mean is added to each pixel.. Color jitter : Randomly change the brightness, contrast, saturation, and
hue of an image.

On top of these augmentations that are standardly applied to the whole
image, I experimented with augmentations to the pedestrian instances only.
This requires to have an instance segmentation of the pedestrians in the
image. If such segmentation is available, the image transformation is applied
only to the pixels that belong to the chosen instance. I experimented with
random noise addition and changes of brightness, contrast, saturation and
hue.

5.2.1 Setup of experiments

Each row of the table 5.1 contains a name of the experiment and augmentations
that were performed in this setup. The range specified with some of the
methods stands for the parameters of the uniform distribution from which
the random values are drawn. The shortcuts in the settings stand for:. t [px]: maximal translation in pixels. r [deg]: maximal rotation in degrees. scale: scaling range as a ratio of the new size to the original size. aspect: the range of change of the aspect ratio of the image. flip: the probability of a horizontal flip. br : the fraction of maximal brightness change. contr : the fraction of maximal contrast change. sat: the fraction of maximal saturation change. hue: fraction of maximal hue change.N (µ, σ): parameters of the normal distribution used for noise addition. instance only: denotes whether the augmentation was applied to the

whole image or to the pedestrian instance only.

89

5. Experiments with augmentation techniques........................
experiment name setting

t [px] r [deg] scale aspect flip br contr sat hue N (µ, σ) instance only

baseline 0 0 (1.0, 1.0) (1.0, 1.0) 0 0 0 0 0 (0,0) ×
translation 50 0 (1.0, 1.0) (1.0, 1.0) 0 0 0 0 0 (0,0) ×
rotation 0 10 (1.0, 1.0) (1.0, 1.0) 0 0 0 0 0 (0,0) ×
random resized crop 0 0 (0.8, 1.2) (0.9,1.0) 0 0 0 0 0 (0,0) ×
flip 0 0 (1.0, 1.0) (1.0, 1.0) 0.5 0 0 0 0 (0,0) ×
jitter, whole 0 0 (1.0, 1.0) (1.0, 1.0) 0 0.1 0.1 0.1 0.1 (0,0) ×
jitter, person 0 0 (1.0, 1.0) (1.0, 1.0) 0 0.1 0.1 0.1 0.1 (0,0)
noise, whole 0 0 (1.0, 1.0) (1.0, 1.0) 0 0 0 0 0 (0,3) ×
noise, person 0 0 (1.0, 1.0) (1.0, 1.0) 0 0 0 0 0 (0,3)
complete 50 10 (0.8, 1.2) (0.9, 1.0) 0 0.5 0.1 0.1 0.1 (0,3) both

Table 5.1: Table containing names of performed experiments together with their
setup.

5.3 Comparison of augmentation methods

In this section, I will compare the performance of a CNN classifier when
trained in the same setup just with different augmentation methods applied
to the training dataset. The goal of this classifier is to classify whether the
given patch contains a pedestrian or not. For this, I use the created dataset
explained in 4.2.

As a CNN, I choose a VGG-like network pretrained on a classification task
with ImageNet dataset. Note that this dataset does not have a label for
humans or for pedestrians. I use a transfer learning to retrain this network to
the specified task. To be precise, I remove the final classification layer of the
original network that classifies based on a 4096-D feature vector and replace it
with a new layer that takes the same number of features and outputs just one
value. This one value is then passed to the sigmoid function and represents
confidence of a network that the given image contains a pedestrian.

For each setup, I train this network with binary cross entropy loss for 50
epochs with Adam optimizer with learning rate 0.0001 and with a batch size
64. During the training, I save the network weights in the case that the
loss/accuracy on the validation set decreases. After the training is complete,
I load the network with weights that performed the best on the validation
set and test its performance on the test set.

The learning curves for the training are shown in Figures 5.3and for
validation in Figures 5.4. The performance on the test set is shown as a bar
plot in Figure 5.5 with numerical values in table 5.2.

90

..........................5.3. Comparison of augmentation methods

(a) : Loss. (b) : Accuracy.

Figure 5.3: Loss and accuracy on the training set.

(a) : Loss. (b) : Accuracy.

Figure 5.4: Loss and accuracy on the validation set.

(a) : Loss. (b) : Accuracy.

Figure 5.5: Loss and accuracy on the test set. PO stands for Pedestrian Only
and RRC for Random Resized Crop.

From these results, it is clear that the baseline method with no augmentation
applied to the training set is already pretty strong. This is due to the use
of transfer learning with a network pretrained on a large ImageNet dataset.
This network provides strong features that can be well distinguished by the
classification layer. Another reason is that the dataset is not very challenging

91

5. Experiments with augmentation techniques........................
experiment name loss accuracy

baseline 0.2834 0.8847
translation 0.2408 0.8964
rotation 0.2461 0.8964
random resized crop 0.2404 0.8978
flip 0.2346 0.9014
jitter, whole 0.2398 0.8960
jitter, pedestrian only 0.2343 0.8987
noise, whole 0.2378 0.8978
noise, pedestrian only 0.2340 0.8969
multiple 0.2420 0.8969

Table 5.2: Table showing the loss and accuracy of individual experiments on
the test set.

by itself. The lighting conditions do not change too much, and the variance of
pedestrian poses and clothing is not very huge, and the benefit of the network
from augmenting this dataset is therefore not that large.

Despite this, we can see improvements to the baseline method in the
experiments using data augmentation to the training data. All the experiments
using some kind of augmentation methods achieve better results on both
validation (Figure 5.4) and test set (Figure 5.5). The best accuracy is achieved
with just simple horizontal flipping and the best loss with adding noise just
to the instance of the pedestrian. It is interesting that such a simple method
as horizontal flipping yields the best results. This is most probably caused by
the fact that it enlarges the variance of the samples of the training set very
well.

From the training learning curves shown in Figure 5.3, we can see that the
baseline method trains much faster and has a higher loss and lower accuracy.
However, this does not hold true for the validation accuracy and loss shown
in Figure 5.4, where it can be seen that the loss of the baseline experiment
is higher compared to the experiments using some augmentation and the
accuracy of baseline experiment is lower.

To sum up, the performed experiments clearly show the benefits of using
data augmentation for enlarging the training data set. The models trained
with the use of such techniques yield better results and are able to generalize
better to unseen data.

92

Chapter 6

Person image generator

The goal of the artificial neural network proposed in this chapter is to
generate people in a given pose and in the given background. For this task,
I experimented with multiple architectures based on the idea of Generative
Adversarial Networks. First, I give an overview of the proposed network
architectures in 6.1 and then describe more in detail the topology of generators
and discriminators that I experimented with in section 6.1.1. In section 6.2, I
continue with the enumeration of losses used for the training of the whole
framework and then describe the training procedures in 6.3.

6.1 Proposed networks

The goal of this thesis is a data augmentation for neural networks training.
As a domain for data augmentation, I chose the dataset that contains people
in various positions and poses. However, these positions and poses do not
cover the whole wanted spectrum of possible configurations.

As it was presented in the abstract, having the ability to generate people im-
ages in arbitrary, yet admissible, pose is a crucial prerequisite for Autonomous
Driving applications. Firstly, because the existing datasets are quite limited
in human pose variation and appearance. Secondly, because the strict safety
requirements call for the ability of validation in rare situations. In other words,
there is a need to have a possibility to sample from the huge distribution
of admissible pose variants of pedestrians. Generating realistically looking
people images is a very challenging problem due to various transformations
of individual body parts [99, 100] self occlusions, etc.

In this section, I propose a novel approach for person image generation.
This approach allows generating people images in a required pose, indicated
by specific pose keypoints. It builds on top of the recent prevailing success
of Generative Adversarial Networks described previously in the section 2.4.
The contributions of this work comprise of the networks architecture, as well
as the novel loss terms specifically designed to generate visually appealing

93

6. Person image generator
pedestrians seamlessly fitting the surrounding environment.

The framework consists of two essential components of each GAN - genera-
tor and discriminator. The goal of the generator is to generate realistic-looking
images, and the discriminator goal is to provide a usable feedback about how
good these images are. The structures of used generators are described in
section 6.1.2 and of the discriminators in section 6.1.3.

There are two different topologies of the final framework that I experiment
with. They mainly differ in the topology of the generator. Both generators
and discriminators used are based on the ideas of progressive growing of
GANs (section 2.4.3), conditional image inpainting (section 3.1) and person
image generation (sections 3.5 and 3.6).

The first generator combines the encoder-decoder architecture used in
[31, 29], and the second one is built upon the ideas of semantic image
synthesis with spatially-adaptive normalization (SPADE) from [32].

For the purposes of the training of the proposed framework tackling this
task, the dataset described in section 4.2 was created.

6.1.1 Topologies of generator and discriminator

Building blocks

There are three basic blocks in the networks - upsampling block, downsampling
block and SPADE residual block. The first two blocks form the skeleton of
both the traditional discriminator and the encoder-decoder generator and the
third one of the SPADE generator.

Upsampling block. The upsampling block consists of two convolutional
layers followed by an upsampling layer and can be found in generator only.
Its input consists of the feature map obtained from the previous layer concate-
nated with an original input to the generator network. Having the original
input injected into the input of each block should help the network to learn
to preserve the background and modify the foreground (person) only.

The first convolutional layer has 3× 3 filters with padding of size 1, stride
1, and reduces the number of filters by half.

The second convolutional layer has the same filter size, padding, and stride
(as the first one) and keeps the number of input filters.

Each of the convolutional layers is followed by Leaky ReLU 2.2.3 activation
with negative slope 0.2.

After the input is propagated through the convolutional layers and nonlin-
earities, it is upsampled by a bilinear interpolation layer.

94

.................................. 6.1. Proposed networks

To sum up, the layer takes an input of size (c+ cinput)× w × h, where c
is the number of channels from the previous block, cinput is the number of
channels of the network input, w is the input width and h is the input height.
The resulting output has a shape c/2× 2w × 2h. This block is depicted in
Figure 6.1.

Figure 6.1: An example of the upsampling block. The input has c channels
obtained from previous block concatenated with c_orig channels from the original
input.

Downsampling block. The downsampling block can be found in the encoder
part of the generator and in the discriminator. It consists of two convolutional
layers, each followed by a nonlinearity, and of a downsampling layer.

The first convolution has a 3× 3 kernel, padding of size 1 and a stride of 1
and keeps the number of the input channels from the previous block.

The second convolution has the same kernel size, padding, and stride as
the first convolutional layer. The difference is that this layer doubles the
number of the input channels.

Each of these layers is, just as in the upsampling block, followed by a
nonlinearity.

These two convolutional layers are followed by a downsampling layer. The
downsampling is performed by bilinear interpolation and reduces the spatial
dimensions to a half.

To sum up the downsampling block, it takes an input of size c × w × h,
where c is the number of channels, w is the width, and h is the height and
outputs a tensor of size 2c× w/2× h/2.

95

6. Person image generator

Figure 6.2: An example of the downsampling block.

SPADE residual block. SPADE residual block is used in the SPADE version
of the generator. The structure of this residual block can be seen in Figure
6.3. It consists of two subblocks each with SPADE 3.4 normalization followed
by ReLU activation and 3× 3 convolution. The skip connection (dashed box)
can also be learned with the subblock of the same structure. The number of
channels reduces to a half after the pass through this block. Each of these
residual blocks takes a different input resolution, and the conditional input
to the SPADE normalization, therefore, needs to be downsampled to match
it. The conditional input in the case of the proposed network consists of 17
channels that correspond to the location of 17 body joints and of 3 channels
of the RGB background image.

6.1.2 Generator

Encoder-decoder generator

The generator has an encoder-decoder architecture with a core block between
them. The overall structure of the generator can be seen in Figure 6.4. The
convolutions in the generator were replaced by gated convolutions (section
3.1) in some of the experiments.

In the following text, there will be multiple topologies of different networks
drawn. The legend to these figures is in Figure 6.5.

Encoder. The encoder is fed with an RGB image with a masked person. This
input can be accompanied by additional information as keypoint locations or
person shape. It reduces the spatial dimension of the input and increases the
number of channels.

It is built from multiple donwnsampling blocks in order to arrive to the
spatial resolution of hcore × wcore pixels which is an input to the core block.

96

.................................. 6.1. Proposed networks

Figure 6.3: Topology of the SPADE residual block. The input corresponding to
body joints are concatenated to one channel for better visualization.

Figure 6.4: Overall structure of the generator.

Figure 6.5: Legend to the networks.

Both width (wcore) and height hcore should be the same and must be a power
of 2. Since each of the downsampling blocks reduces the spatial resolution by

97

6. Person image generator
half, the number of downsampling blocks can be computed as:

ndown = log2

(
win
wcore

)
(6.1)

where win is the input width that is the same as the input height hin. The
topology of the encoder is show in the Figure 6.6.

Figure 6.6: Encoder topology.

Core block. Core block forms a connection between the encoder and the
decoder. It is inspired by the topology proposed in [23]. It consists of
downsampling, residual and upsampling part - so it has a kind of encoder-
decoder topology too.

The downsampling part consists of ndown blocks with each block consisting
of a convolutional layer with 3× 3 kernel, pad 1 and stride 1, followed by a
2× 2 max pooling, normalization layer, and a nonlinearity.

The residual part consists of 3 residual blocks, each with a predefined
number of subblocks. The only difference between those blocks is that the
second block uses strided convolutions instead of normal ones.

The upsampling part is mirrored version of the downsampling part and
therefore contains ndown blocks with each block consisting of upsampling
layer, convolutional layer with 3× 3 kernel, pad 1 and stride 1, normalization
layer and a nonlinearity.

This block is followed by the last convolutional layer that takes as an
input the output of the upsampling part concatenated with the downsampled
network input. This should enforce the network to preserve the information
about the background that should not be changed.

The topology of the core block is depicted in Figure 6.7.

98

.................................. 6.1. Proposed networks

Figure 6.7: Core block topology.

Decoder. The decoder is a mirrored version of the encoder. It uses upsam-
pling blocks instead of the downsampling ones. The number of these blocks
is just the same as in the case of the downsampling blocks in the encoder. It
takes output from the core block as its input and outputs RGB image.

It is built from multiple upsampling blocks. Its goal is to arrive at the
spatial resolution of the original input (although this does not necessarily
hold true in the case of progressive growing as it will be shown later). The
topology of the decoder is shown in Figure 6.8.

Figure 6.8: Decoder topology.

An example of the complete generator can be seen in Figure 6.9.

SPADE generator

In contrast to the previous encoder-decoder generator, the SPADE generator
has no encoder part and therefore results in a more lightweight network. It
takes a latent vector z ∼ N (0, I) just as in the original GANs. Note that
there can be learned an additional encoder network that maps from a given

99

6. Person image generator

Figure 6.9: An example of generator that produces images up to 128 × 128
resolution. The generator takes as an input masked RGB image, mask of the
person and keypoint locations.

input image of a person to N (0, I). This allows to have more control over
the generated person since the generation can be guided by this encoder.

At first, the generator takes z ∈ Rd as an input, runs it through a linear
layer and the output reshapes to C × 4 × 4, where C is the number of the
channels, so it can be further passed to the convolutional layers. Then it
applies n SPADE residual blocks each followed by a bilinear upsampling.
This allows performing the progressive growing. The resulting image size s
can be computed as

s = 4 · 2n (6.2)

After these n upsampling blocks, the N resulting feature maps are passed to
a 3×3 convolutional layer that maps it from N to 3 channels that correspond
to R,G and B color channels of an image. Finally, a hyperbolic tangent (Tanh)
activation is applied to this result in order to have the values in a valid range.

The main difference of this architecture in comparison to the encoder-
decoder architecture is that the conditional input (background and keypoint
locations) is passed to the network through SPADE blocks and is not fed to
the generator as an input. The overall architecture of the SPADE generator
is shown in Figure 6.10.

6.1.3 Discriminator

The goal of the discriminator is to provide feedback to the generator on how
good the generated samples are.

The input to the discriminator is an RGB image. It is either the synthesized
one from the generator or the real one from the dataset.

In this thesis, two discriminator architectures are tested. The first one
resembles the discriminator from [25] and outputs only one number as tradi-
tional discriminators. The second discriminator architecture is often called
PatchGAN.

100

.................................. 6.1. Proposed networks

Figure 6.10: Diagram summarizing the architecture of the SPADE generator.

Traditional discriminator

The topology of the discriminator is quite similar to the topology of the
generator decoder. It consists of multiple downsampling blocks and has an
extra layer in the end that produces the final output number.

The downsampling blocks are used to reduce the spatial dimension to 4× 4
pixels while increasing number of feature maps. After that, the intermediate
result is fed into the final block.

The final block takes as an input n feature maps obtained from the previous
block concatenated with an extra channel with values corresponding to the
standard deviation of the input batch as in [25]. The intuition behind this mini
batch standard deviation channel is that it should encourage the minibatches
of generated and training images to show similar statistics. These n + 1
feature maps form the input to the final discriminator block.

In this final block, the input is first fed into 3× 3 convolution with stride 1
and padding 1, which reduces the number of input feature maps by one to n.
The second convolution has a 4× 4 kernel, zero padding and stride 1. This
means that the input of size n× 4× 4 is transformed to the size n× 1× 1.
As an activation after both of these convolutions is used Leaky ReLU with
negative slope of 0.2. Finally, to arrive at only one number per sample, a
fully-connected layer is added on top of the convolutional layers. The final
block is shown in Figure 6.11 with the complete discriminator in Figure 6.12.

101

6. Person image generator

Figure 6.11: Topology of discriminator final block.

Figure 6.12: Complete topology of the basic discriminator.

The topology of the whole framework with both generator and discriminator
network can be seen in Figure 6.13.

Patch discriminator

Patch discriminator (called Markovian discriminator or PatchGAN) was
proposed in [73] where authors argue that the reconstruction losses such as
L1 and L2 usually fail to encourage high frequencies but are often able to
capture the low frequencies well. With the knowledge of this, it is not needed
for the discriminator to enforce the low frequencies and it is desirable that it
only models high-frequency structure well. Authors of [73] therefore propose
to restrict the discriminator attention to the structure in local image patches
only and design an architecture that only penalizes structure at the scale
of patches. The goal of this discriminator is to classify each N ×N image
patch. This discriminator is run convolutionally across the input image, and

102

.................................. 6.1. Proposed networks

Figure 6.13: An example of encoder-decoder generator and traditional discrimi-
nator for the maximum size 128× 128.

the responses are then averaged to provide the output.

The patch generator has n blocks, where n is the number of upsampling
blocks in the generator, and each such a block consists of 4× 4 convolution
with stride 2 followed by a Leaky ReLU activation. After these n blocks,
the resulting feature maps are passed to the Instance Normalization layer
followed by Leaky ReLU activation and finally passed to a 4× 4 convolutional
layer that maps to just one output channel. This is shown in Figure 6.14.

Figure 6.14: Architecture of a patch discriminator.

A traditional discriminator can be converted to patch discriminator quite
easily. We can, for example, just replace the final discriminator block by a
convolutional layer that will result in the one-channel output of responses.

103

6. Person image generator
6.1.4 Mask Estimation Network

Mask estimation network is used for predicting which pixels should be taken
from the generated images and inserted to the original one. The input to this
network consists of keypoint locations that are encoded in multiple channels.
This network has a U-Net architecture (section 2.2.10). Since the resulting
output image keeps on growing, this network has to grow too. It is done
once again by progressive growing (section 2.4.3) of the upsampling (decoder)
part. The output of this network is a one-channel mask M ∈ [0, 1]H×W ,
where (H,W) are the height and the width of the resulting image. Having
the ability to output the values in the range of [0, 1] brings the possibility to
control borders of the painted person better and it should, therefore, result in
more realistic-looking images than in the case of a simple crop of a generated
person by the original mask.

Once the maskM is computed, it is used for merging the generated image
IG and input image IIN into the resulting one IRES . The resulting image is
created as:

IRES =M� IG + (I −M)� IIN (6.3)

An example of the estimated mask based on the input that consists of
keypoint locations can be seen in Figure 6.15.

Figure 6.15: An example of mask estimation used for deciding which pixels take
from the input image and which from the generated image.

You can see that the estimated mask does not precisely match the original
one. However, one cannot expect it to do so since the network does not have
any information about clothing and other things that can be included in the
original mask. It serves mainly as a guidance to the generator in what pixels
it should focus on.

6.1.5 Person style encoder

The random input to the SPADE generator should provide a way for multi-
modal synthesis. However, this input does not need to be completely random.
One can attach an image encoder that will encode the style of a given person
and map it to a normal distribution. This style encoder and SPADE generator
therefore form a variational autoencoder [101] where the encoder captures

104

..................................... 6.2. Used losses

the style of the input person, and the generator then combines encoded style
and conditional input to the final image.

This encoder is implemented as a CNN with n blocks of 3× 3 convolutions
with stride 2 followed by an instance normalization and LReLU activation.
These n convolutional blocks are followed by two fully-connected layers which
produce the mean and variance of the output distribution as in [32]. The
topology of such a network is shown in Figure 6.16.

Figure 6.16: Topology of the style encoder..

6.2 Used losses

Wasserstein loss. Wasserstein loss is one of the most commonly used losses
in GAN training. This loss is previously described in section 2.4.2. It is used
in this thesis for its good results and stability.

Identity loss. Identity loss enforces the generator to generate similar images
to the target ones. In experiments, this loss is implemented as either the L1
and L2 loss 6.2. There can be multiple identity losses in the training setup.
One can, for example, have L1 loss that enforces the generator not to change
the background and then L2 loss that only focuses on the foreground (painted
person).

105

6. Person image generator
Feature matching loss. Feature matching loss is yet another commonly
used loss in the GAN training. It aims to match the features obtained from
some network. In the experiments, this network was chosen to either be the
discriminator network or the VGG network or both.

LBP loss. The LBP loss (mainly the soft version) is a novel (to the best of my
knowledge) loss that I propose in this thesis. It should enforce the generated
input and ground truth input to have similar edges. This is done by computing
the difference of the LBP descriptors computed on the original person and
on the generated one. This difference can be, for example, computed with L1
loss, which is equal to the computation of Hamming distance.

The drawback of the computation with the LBP features 2.5.1 is that the
process of computing such features is not differentiable due to the thresholding
used in the computation.

To tackle this, I propose a soft version of LBP. The feature vectors of
such soft version are obtained simply by taking the 8-dimensional vector just
before the thresholding in the computation of traditional LBP. Therefore,
in the soft version, we obtain for each pixel a feature vector f ∈ [−1, 1]8
which corresponds to the image gradient in that pixel instead of a decimal
number as in classical LBP. When using this version, the computation is fully
differentiable since no thresholding is used.

The most significant advantage of this loss is that it does not by itself
try to preserve original colors as other identity-preserving losses do. It only
keeps the local information about the image gradient. This implies that the
results obtained when trained with this loss should generalize better than
when using traditional identity losses such as L1 or L2 loss.

The soft version can be efficiently implemented with the use of convolutions.
The convolution filter is of size 1×8×3×3 and maps from a gray-scale image
(1 channel) to an 8-D feature vector that corresponds to the image gradient
in a given pixel. Each of those 8 kernels of the filter has −1 in the center and
exactly one 1 in the rest. Convolving the input grayscale image with such
filters results in a soft version of LBP. These filters are shown in Figure 6.17.

Figure 6.17: Filters used for computation of soft LBP.

106

.................................. 6.3. Training procedure

Illumination loss. The illumination loss is another newly proposed loss in
this thesis. It is a loss based on the difference of image histograms (section
2.5.2). The image histograms can be computed over various inputs, in this
work are used these

. grayscale image - it is a common choice to compute image histogram
over the grayscale image. value component of the HSV color model (sec. 2.5.3). lightness component of the HSL color model (sec. 2.5.3)

Once the histograms of the original image and of the generated one are
computed, they are compared by the use of one of the distance measured
shown in section 2.5.2.

The intuition behind this loss is that the original and generated person
should obey the lighting conditions of the image. If this was not taken into
account, there might be a very bright person generated to a very dark scene
which might not seem natural.

KLD loss. Kullback–Leibler divergence (KLD, section 2.4.1) is used to
estimate how much does one distribution differs from another. In neural
networks, this is commonly used in such cases when one wants to model a
Gaussian distribution, e.g., in Variational Autoencoders [101, 102].

This loss can be written as:

LKLD = DKL(q(z|x)‖p(z)) (6.4)

where p(z) is a prior distribution chosen to be a standard Gaussian distribution
and and the variational distribution q is fully determined by a mean vector
and a variance vector [101] outputed by Style Encoder 6.1.5 [32].

To allow the gradient backpropagation to the Style Encoder, the reparametriza-
tion trick [101] is used.

6.3 Training procedure

In this section, I will describe the techniques used for the training of the
proposed framework and the overall training procedure. The training is based
on the progressive growing proposed in the [25], which includes growing of
the input/output resolution, layer blending, and a few other techniques.

107

6. Person image generator
6.3.1 Progressive growing

The idea of progressive growing was described in section 2.4.3 and is used
in training. With the generator, the progressive growing is either used in
both encoder and decoder or in decoder only. In the discriminator, it is used
always.

As it can be seen in Figure 6.9, the generator does not necessarily output
3 channels that would correspond to the RGB channels. The same holds for
the discriminator (Figure 6.12), where there might be more than 3 channels
required in the input layer. To tackle this issue, temporary layers that
either match from multiple feature maps to RGB (called toRGB, used in
generator) and from RGB to feature maps (called toFeatures or fromRGB,
used in generator encoder and in the discriminator) are used. These layers
are implemented by 1× 1 convolutions which correspond to either reducing
or enlarging the number of feature maps.

In the setup of the experiment, it is required to specify the number of
epochs of the training for each resolution together with a fade-in percentage
that controls the transition to the higher resolution.

The fade-in percentage specifies the number of epochs when the output
from the previous resolution will be upsampled and blended with the output
of the newly trained layer. This procedure can be seen in the example in
Figure 6.18. The figure shows the decoder part of the generator and the
discriminator in the case of growing the resolution from 16× 16 to 32× 32.
In (a) the initial setup before the resolution growth is shown. In (b) the
transition is shown. During this transition, the layers that work on higher
resolutions are treated like residual blocks, whose weight α linearly increases
from 0 to 1 during the predefined number of epochs. The blocks 2× refers to
doubling the resolution, and 0.5× corresponds to halving the input resolution.
Finally, you can see the newly blended-in layer after the transition phase in
(c).

6.3.2 Normalization and weight scaling

The used normalization and weight scaling during the runtime is motivated
by the work [25].

The dynamic scaling of weights is performed by setting ŵi = wi/c, where
wi are the weights and c is the per-layer normalization constant from He’s
initializer [103, 25]. In the case when some parameters have a larger dynamic
range than others, they will take longer to adjust. The benefit of performing
the weight scaling dynamically is that the dynamic range, and therefore the
learning speed too, is the same for all weights.

It is often needed to use some kind of normalization on order to avoid the
magnitudes in generator and discriminator to blow out. In order to avoid

108

.................................. 6.3. Training procedure

Figure 6.18: An example of the procedure of adding a new blocks to current
networks and therefore increasing the resolution [25]. G denotes the decoder
part of the generator and D stands for the discriminator.

this, the authors of [25] propose a pixelwise normalization that is a variant of
local response normalization [64]. The formula describing this normalization
is written in the equation 6.5 where ax,y and bx,y are original and modified
feature vector at spatial position (x, y) and ε = 10−8 is an additional constant
term used for numerical stability.

bx,y = ax,y√
1
N

∑N−1
j=0

(
ajx,y

)2
+ ε

(6.5)

The authors claim that with the use of this normalization, the escalation of
signal magnitudes is effectively prevented. Pixelwise normalization is used in
the generator in this work.

6.3.3 Nearest Neighbor Search

A question of whether the generator will be able to generalize well arises
when it is trained only to paint one possible person per training sample.

To tackle this issue, I propose to alternate between multiple persons that
can be painted in the image with the given pose. This requires to find such a
person that would have a pose similar to the pose of the original person.

A proposed solution therefore performs the nearest neighbor search with
respect to the pose (skeleton) given by keypoint locations.

First, all the skeletons needed to be normalized. This is done by centering
all the skeletons to the center of their torso. This center, denoted as t, is
computed as mean of the point in between the shoulders and of the point

109

6. Person image generator
between the hips:

thips = 1∑
i∈idhp

vi

∑
i∈idhp

xi · vi

tshoulders = 1∑
i∈idsh

vi

∑
i∈idsh

xi · vi

t = 1
2 (thips + tshoulders)

(6.6)

where x = (x1, ...,xN) are keypoint locations xi = (xi, yi) of a skeleton,
v = (v1, ..., vN), vi ∈ {0, 1} is a visibility variable with 0 denoting invisible
keypoint and 1 denoting a visible one and idhp and idsh are indices from
(1, ..., N) that denote the indices of hips and shoulders in x and v. N denotes
number of all possibly annotated keypoints.

Second, the skeletons are rescaled. This is done by enforcing that the
height of the torso ht takes a predefined ratio rt of the person height. The
torso height is computed as

ht = thips(y)− tshoulders(y) (6.7)

where thips(y) and tshouders(y) denote the y-coordinate of the middle point
of hips and shoulders respectively. Having the height of the torso, the scale s
is computed as

s = ht
rt

(6.8)

The transformed keypoint locations x̂ are obtained with the computed
torso center t and the scale s from the original keypoint locations x as

x̂ = s · (x− t) (6.9)

Afterward, a feature vector for skeleton x̂ is computed. These features are
computed similarly to the approach proposed in [104]. The feature vector is
computed with the Algorithm 2, where E is a set of index pairs of keypoints

110

.................................. 6.3. Training procedure

that are connected to form the skeleton.
Result: A feature vector f
initialize f to be an empty vector;
for (i, j) ∈ E do

if vi > 0 and vj > 0 then
dx = |xi − xj | ;
dy = |yi − yj |;
fi,j = (dx,dy,dx2,dy2);

else
fi,j = (0, 0, 0, 0)

end
append fi,j to f

end
Algorithm 2: An algorithm for computing a feature vector from keypoints
of the skeleton.

This algorithm gives us a fixed-size vector f ∈ R4|E|, where |E| denotes the
number of all possible connections in the skeleton, for each skeleton regardless
of the number of annotated keypoints.

Once we have such a feature vector for all the skeletons from the dataset
of size M , we stack them to the matrix F ∈ R4|E|×M . We can now query any
skeleton represented by a feature vector fq. The distance used for comparison
of the feature vectors is chosen to be a squared Euclidean loss. With the use
of matrix F, this can be simply done as

score = (F− fq)T (F− fq) (6.10)

and then taking the top score in order to obtain the nearest skeleton in the
dataset (note that in the case that the query feature vector is in the dataset,
the nearest skeleton will always be the query one and should be therefore
discarded). The operation F− fq means subtracting the vector fq from each
column of the matrix F.

Another way of obtaining scores is to measure the cosine distance between
the query feature vector and the column vectors of the matrix F.

Despite the simplicity of this approach, it yields good results as it can be
seen in Figure 6.19.

Using this technique, it is possible to find a person in the dataset that has
a similar pose to the ground truth person and can therefore be used quite well
for the training. It is also possible to retrieve not just the nearest neighbor
but also k nearest neighbors. One can then choose to for example alternate
between 4 possible persons that should be generated in a given pose.

111

6. Person image generator

Figure 6.19: An example of nearest neighbor search among the skeletons.

112

Chapter 7

Experiments with person image generator

In this chapter, I will show results of pedestrian generation of the experiments
described in the previous chapter. In section 7.2, I show the generated samples
and discuss the results from both experiments. In the following sections,
I discuss and evaluate only the results of the experiment with the SPADE
generator since it yields better results. I give an analysis of failure cases in
7.2.3, show results of human evaluation of generated samples in 7.3 and show
results of the human detector on generated images in comparison to the real
ones in section 7.4. Furthermore, in section 7.5, I perform experiments with
augmenting an existing dataset with images generated with the proposed
method.

In order to be fair, I fixed the samples that will show here for a better
comparison. Note that these samples are randomly drawn from the validation
set and are not cherry-picked in order to show just a few nice results.

7.1 Network setup

In this section, I will show the setups and results of some of the performed
experiments. Each experiment will be described by two tables. The first table
contains the general setup of the experiment such as the maximal resolution
of the generated person, number of layers, and whether gated convolutions
were used. An example of such a table can be seen in table 7.1 along with
the explanations. The second table provides an overview of used losses along
with the information whether they were computed over the background,
foreground, or over the whole image. This table also shows in which stages of
the training was each loss used. An exemplary table with explanations can
be seen in 7.2.

I will show the results of one experiment with encoder-decoder generator and
one experiment with SPADE generator. Note that many more experiments
were performed but only those with best results with each one of these
generator architectures are shown.

113

7. Experiments with person image generator
feature setting (explanation)

generator SPADE Which generator is used. Either
encoder-decoder or SPADE.

discriminator patch Which discriminator is used. Either
traditional or patch.

starting resolution 16x16 Starting (minimal) resolution of the
progressive growing.

maximal resolution 64x64 highest generated resolution
number of up/downsampling layers 2 number of growings of the generator

and the discriminator
blend-in percentages X,X,X Fraction of epochs during which un-

dergoes the transition to a higher
resolution. First value is not used
(since first layer is not blended).

Dynamic weight scaling generator If and eventually where is dynamic
weight scaling used

gated convolutions Shows whether the gated convolu-
tions were used.

learning background/mask × Shows whether the person was just
cropped according to the ground-
truth mask or whether this region
was learned.

Table 7.1: An example of a table with an experiment setup and explanations.

loss region depths (explanation)

0 1 2

L1 foreground Name of the loss, region where this
loss is applied, training stages where
this loss is used.

Table 7.2: An example of a table with used losses and explanation.

7.1.1 Experiment with encoder-decoder generator

In this experiment, I use the encoder-decoder generator and a traditional
discriminator. The complete setup of the network is shown in table 7.3. The
overall topology of the network is similar to the one in Figure 6.13 except for
the dimensions.

As the reconstruction loss used to train the generator, I use the edge (soft

114

.................................... 7.1. Network setup

feature setting

generator enc.-dec.
discriminator traditional
starting resolution 8x8
maximal resolution 64x64
number of up/downsampling layers 4
blend-in percentages x,20,20,20
Dynamic weight scaling generator
gated convolutions
learning background/mask ×

Table 7.3: Setup of the experiment with encoder-decoder generator.

LBP) loss (section 6.2) with L1 distance used to measure the difference of the
features obtained from the ground-truth image and from the generated one.
As a GAN loss, I used a masked version of WGAN with gradient penalty.
The setup of losses is summarized in table 7.4.

loss region depths

0 1 2 3

WGAN-GP foreground
edge loss foreground

Table 7.4: Losses used in the setup with encoder-decoder generator.

7.1.2 Experiment with SPADE generator

This experiment uses SPADE generator and patch discriminator. Both of
these networks are trained in the progressive fashion from the resolution 8× 8
pixels all the way to the final resolution of 128 × 128 pixes. The complete
setup is shown in table 7.5. The conditional input to the SPADE layers
consists of keypoint masks and of the masked background image.

Used losses are shown in table 7.6. In this experiment, the only reconstruc-
tion loss used is the edge loss based on the soft LBP proposed in section 6.2.
With the use of this loss, I hope to achieve better results in terms of image
quality and diversity. As a GAN loss, I used WGAN with gradient penalty.

On top of these losses, two feature matching losses are used. The first one
measures the L1 distance of discriminator features obtained with the real and
the generated samples. The second one compares the features in a similar

115

7. Experiments with person image generator
feature setting

generator SPADE
discriminator patch
starting resolution 8x8
maximal resolution 128x128
number of up/downsampling layers 5
blend-in percentages x,50,30,20,15
Dynamic weight scaling none
gated convolutions ×
learning background/mask

Table 7.5: Setup of experiment with SPADE generator.

fashion but obtains them from a pretrained VGG19 network. The benefits of
using pretrained network to get features for matching compared to the ones
trained from scratch are mainly at the beginning of the training. In the early
stages, the discriminator is not able to discriminate well between the real and
fake samples and therefore its features for real and fake samples do not differ
that much. However, this is not the case when using pretrained network.

loss region

discriminator feature-matching foreground
VGG feature-matching foreground
Edge loss (soft LBP) foreground
WGAN-GP all

Table 7.6: Losses used in setup with SPADE generator.

The topology of the whole framework that captures the training procedure
is shown in Figure 7.1. It consists of 3 basic parts:..1. Generator and discriminator : building block of the GAN setup (details

in Figures 6.10 and 6.14),..2. image encoder : a convolutional neural network outputting the parameters
µ and σ2 of the normal distribution (detail in Figure 6.6) and..3. mask estimation network: U-Net network (detail in Figure 6.15) that
has keypoint masks as input and outputs an estimation of the mask.

116

................................... 7.2. Visual evaluation

Figure 7.1: Topology of the framework with SPADE generator. The blocks
drawn in blue are traditional parts of GANs. The image encoder drawn in yellow
is a convolutional neural network and mask estimation network drawn in pink
has a U-Net architecture.

7.2 Visual evaluation

7.2.1 Encoder-decoder generator

In Figure 7.2 are shown examples of images generated by the encoder-decoder
generator in comparison to the original ones. It is clear that despite the fact
that at some images (e.g., in the third row) the network managed to produce
quite good results, the overall image quality is low. The reasons behind these
poor results can be in the fact that all the information is fed to the network
at one input and it is difficult for the network to preserve the information
about the pose from the input all the way to the output.

The results obtained by using SPADE generator (as shown in the next
section) are superior to results from the encoder-decoder generator. This is
the reason why further evaluations are only with the samples generated with
SPADE version.

7.2.2 SPADE generator

Figure 7.3 shows a comparison of the original samples and final samples
generated with the SPADE generator. The results are clearly superior to the
results obtained with the encoder-decoder generator. One of the reasons for
this is that with the use of SPADE layers, the network is able to focus more
on the given input pose since it is fed to the network at multiple points.

In the upper left pair, we can see that the network is able to generate even
the faces quite well. However, it still has problems with drawing the clothing
consistently over the whole person. In the middle pair in the second row

117

7. Experiments with person image generator

Figure 7.2: Comparison of ground-truth (first and third row) and generated
images by the encoder-decoder generator.

and in the first pair in the last one, we can see that the network generated
humans that are standing with their backs to the camera. This demonstrates
its ability to incorporate the input pose information to the final result.

In these two cases, there is an occlusion of the generated person, and the
network is able to keep the objects occluding the person. This is possible due
to the fact that the conditional input consists of the background, and the
network was able to learn to redraw only the foreground pixels corresponding
to the chosen person.

In Figure 7.4, we can see ground-truth masks compared to the masks
estimated from the conditional input that consists of keypoint locations. We
can see that the network generating the mask is able to estimate it quite
well. This mostly helps to achieve a more natural blending of the generated
image to the original one. This network is, of course, not able to capture
the overlapping objects as it can be seen in some of the examples. However,
the most interesting part is that this network is able to generate these mask
estimation without any loss that would be straight used to train it.

7.2.3 Analysis of failure cases

I show and describe a few of the common failure cases that can be seen in
Figure 7.3 shown above. From left to right I will show the result of the

118

................................... 7.2. Visual evaluation

Figure 7.3: Comparison of the original samples with the samples generated with
the proposed framework.

generating part of the framework, result of the mask estimator, final blending
to the original image and the ground-truth image.

In Figure 7.5 is shown the case of inconsistently drawn clothing. In the
first row, the bottom of the left leg of the generated person is not covered
with the trousers despite the fact that the right one is. One might say that it
can be some kind of style, but it most surely was not intended. The example
shown in the second row has a similar problem with the left leg where there is
an occlusion with the right leg of the player standing nearby, and the network
does not manage to capture this well. This degenerates the overall generated
image considerably since the upper half of the generated person looks pretty
well.

A failure case related to a rare pose can be seen in Figure 7.6. In this
example, the pose of the original person is pretty non-standard and therefore
there are not many examples of people in such poses in the training set. This
results in a poorly generated image where there is no big variance in the color

119

7. Experiments with person image generator

Figure 7.4: Comparison of the original samples with the samples generated with
the SPADE generator.

Figure 7.5: An example of the inconsistent clothing and wrongly handled
occlusion.

of the clothing. However, one can observe that the network managed to draw

120

.................................. 7.3. Human evaluation

a quite good face and that it almost succeeded in drawing crossed legs.

Figure 7.6: An example of the generation in rare pose.

7.3 Human evaluation

Two different user studies with surveys were done. The goal of the first one
is to rank the quality of the shown image and the goal of the second one is to
compare the quality of a generated image with respect to the original image.

7.3.1 Image quality ranking

The first survey asks the participants to rank the quality of the shown image
on the scale from 1 to 10 where 1 is completely unrealistic image and 10 is
the image indistinguishable from the real one. There are 18 images in total
out and half of those are fake images generated with the proposed framework.
This survey was filled by 150 volunteers. The results of this survey are shown
in Figure 7.7 with the mean and standard deviation of the ranking of both
original and generated samples in table 7.7.

input mean standard deviation

original 7.732 0.612
generated 3.417 1.180

Table 7.7: Mean and standard deviation of ranking of original and generated
images.

In Figure 7.8 are shown the best ranked generated images and the worst
ranked real images.

7.3.2 Comparison of real and generated images

The second survey asks the volunteers to compare the original and the
generated image and give points according to which image they prefer. The
scale of the possible values is once again from 1 to 10 where 1 and 10 mean

121

7. Experiments with person image generator

Figure 7.7: A bar plot showing an average ranking and stadard deviation of
real samples (in red) and of generated samples (blue).

Figure 7.8: From left to right: two best generated images, two worst real images.

that one image is strictly better and the other one is complete nonsense. In
total, 106 people participated in this survey and compared 12 given image
pairs. The results are shown in Figure 7.9.

In Figure 7.10 are shown the image pairs where the volunteers preferred
the generated images the most.

From both of these surveys, it is clear that the generated samples are yet
not good enough to fool humans. However, the results are not completely
pessimistic and give a lot of room for improvement.

7.4 Human detector performance

In order to test how well are the generated samples detected by the object
detector, I run YOLOv3 detector [105] on images from the validation set.
First I run the detector with real humans and then compare it with the results

122

............................. 7.4. Human detector performance

Figure 7.9: A bar plot showing the preference of the real sample over the
generated one.

Figure 7.10: Two most preferred generated images (in pairs on right) with their
real counterparts.

of this detector on the generated images.

The detections are compared by the Intersection over Union of the ground-
truth bounding box and the detected one. Comparisons of detections can be
seen in Figure 7.11. The first row shows examples where the detector works
relatively well when compared to its performance on the original image. The
first pair on the second row is very interesting in the fact that the detector
was not able to detect the person on the original image, but it detected the
generated one which does not look very appealing to a human eye. Finally,
the last pair shows an example when a badly generated person is not even
detected.

The average IoUs for original and generated images are shown in table 7.8.
It is clear that the detector achieves better results on the original images.
However, the mean IoU on the generated person images is not very low when
compared to the mean IoU on the originals. It follows that the generated
images can serve for the augmentation of the current datasets well even at

123

7. Experiments with person image generator

Figure 7.11: Comparison of detections on both original (first and third columns)
and generated (second and fourth columns) person images. You can see a value
of IoU above every image. The ground-truth bounding box is drawn in red.

the cost that some of the produced persons might not look well.

input mean IoU

original 0.76535
generated 0.65729

Table 7.8: Mean IoU of detections given by YOLO v3 detector.

7.5 Augmenting the dataset with person
generator

As a use-case of the proposed person generator, I show how it can be used to
augment a dataset for person detection.

To evaluate the influence of such an augmentation, I train a classifier similar
to the one used in 5.3 on a small dataset. I evaluate the performance of
the classifier in 6 different experiments where each augments the dataset in
a different way. The basic experiments are described in table 7.9 and the
resulting 6 experiments are created by their combination. The shortcuts used
in the table are the same that were used previously in table 5.1 and GAN
denotes whether the person images were augmented by generator from GAN.
This augmentation is done by picking one person and changing its appearance
by person generator. Randomly picked examples of augmented images by
person generator are shown in Figure 7.12.

For each experiment, I used a pretrained VGG network with changed

124

...................... 7.5. Augmenting the dataset with person generator

experiment name setting
flip br contr sat hue N (µ, σ) GAN

baseline (base) 0 0 0 0 0 (0,0) ×
augmented (A) 0.5 0.1 0.1 0.1 0.1 (0,3) ×
GAN (G) 0 0 0 0 0 (0,0)

Table 7.9: Table containing names of performed experiments together with their
setup.

Figure 7.12: Randomly taken examples of augmentation by person generator.

classification layer and trained it for 100 epochs, with Adam optimizer, binary
cross entropy loss and learning rate of 5 · 10−5. The training and testing
process is repeated 10 times, and the results are averaged to suppress the
stochasticity of the training". Curves for training are drawn in Figures 7.13,
for validation in Figures 7.14 and average test results are shown in bar plots
in Figures 7.15.

The results show that the use of dataset augmentation with person generator
improves the loss and accuracy on the test set when compared to the setups
without it. In Figure 7.14, where loss and accuracy validation curves are
shown, is clearly visible that training with the use of this augmentation
technique speeds up the training mostly in the earlier stages of the training
despite the fact that the produced results are not perfect. However, for
the purposes of use of such a network in a pedestrian detection pipeline in
autonomous cars, every increase (no matter how small) of the performance
counts since it might make the difference between detecting and not detecting
a pedestrian in the end.

From the results it follows that the dataset augmentation with GANs can
lead to improved performance of the classifiers trained on such datasets.

125

7. Experiments with person image generator

(a) : Loss. (b) : Accuracy.

Figure 7.13: Loss and accuracy on the training set.

(a) : Loss. (b) : Accuracy.

Figure 7.14: Loss and accuracy on the validation set.

(a) : Loss. (b) : Accuracy.

Figure 7.15: Loss and accuracy on the testing set with respective standard
deviation.

126

Chapter 8

Conclusions

In the first part of this thesis, I described the theoretical background behind
the methods used in this thesis. I started with the general overview of machine
learning 2.1 followed by a description of artificial neural networks (section 2.2)
and finally provided a more in-depth description of Generative Adversarial
Networks in section 2.4.

In the second part, I explained the implementation of proposed methods
and corresponding experiments. First, in chapter 4.2, I described the newly
created datasets for the purposes of this thesis. There are two of these
datasets. One is for the classification of image patches into one of the
classes {contains person, doesn’t contain person} and the second one serves
as a training set for the proposed person image generator and contains rich
additional information such as the location of person keypoints.

In chapter 5, I experimented with various classical image augmentation
techniques. I even proposed to augment only the parts of the images containing
the target instances (humans in this setup) in order to increase the variance of
the samples in the dataset even more. This method is not commonly used in
practice. I showed that using it can lead to even better results. I experimented
with training of CNN classifier with differently augmented datasets. For the
given setup, I found that a simple horizontal flipping resulted in the most
significant improvement of the accuracy in the trained classifier and the
addition of noise to the person instances only led to the biggest decrease in
the loss.

In the chapter 6, I described the proposed person image generator based
on the idea of GANs and their progressive growing. I explained traditional
losses that are used to train such networks and proposed a novel loss called
edge loss that enforces the identity preservation in the domain of local image
gradients instead of in the color domain. Later in the chapter, I gave an
overview of the training procedure used to train the network.

In chapter 7, I performed experiments with the person image generator.
First, I described the setup of the experiments. In the next section, I evaluated

127

8. Conclusions
the samples generated with two of the proposed methods and found out that
the setup with the SPADE generator yielded better result most probably due
to the better-used normalization that uses more of the input information.
The proposed framework has novel ideas in its architecture. For example,
a mask estimation network is used. I also performed an analysis of failure
cases. To obtain a more elaborate evaluation of the quality of the generated
samples, I did two surveys and obtained more than one hundred responses in
each of them. From these surveys, it follows that the generated images are
quite good, but humans are still able to distinguish between the original and
generated image without any big problems. Further evaluation is done with
the use of a human detector. I compared its performance on the generated
images to the performance on the real ones. The average intersection over
union of the generated person was overall smaller. However, the difference
was not that dramatic (0.657 on generated images vs. 0.763 on the real ones).
On some of the generated samples, the detector performed even better than
on their original counterparts. In the last section of this chapter, I performed
an experiment with augmenting a dataset for person detection with the use
of this person generator. I showed that the performance of the classifier
improves when it is trained on the dataset augmented with person generator
despite the fact that the overall quality of the generated samples might not
be that good. This leads to the conclusion that the increased quality of the
generated samples might possibly lead to even better increase in the classifier
performance in the future.

To sum up, I can state that all the steps that were required to be done in
this thesis were successfully completed...1. I researched existing data augmentation methods for neural networks

and even proposed ones that are not commonly used...2. I obtained two rich datasets for the training of the neural networks...3. I proposed and implemented the individual components of a data augmen-
tation system, proposed new ones, and performed various experiments
evaluating the impact of these components...4. I proposed and implemented a person generation network that can serve
for image data augmentation. This network contains novel ideas such as
mask estimation network and edge loss...5. I chose a suitable neural network and trained it in the augmented
dataset. I showed that the accuracy of the network trained on the
dataset augmented with the proposed method increases.

128

Appendices

129

130

Appendix A

Bibliography

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[3] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[4] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
Simultaneous detection and segmentation. In European Conference on
Computer Vision, pages 297–312. Springer, 2014.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[6] Jan Drchal. Statistical machine learning, lecture 8: Deep neural net-
works, 2017.

[7] Adit Deshpande. A beginner’s guide to under-
standing convolutional neural networks part 2, 2016.
URL https://adeshpande3.github.io/A-Beginner%
27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/.

[8] Bob Fergus. Neural networks, mlss 2015 summer school,
2015. URL http://mlss.tuebingen.mpg.de/2015/slides/fergus/
Fergus_1.pdf.

[9] Jan Drchal. Statistical machine learning, lecture 5: Artificial neural
networks, 2017.

[10] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 3–19, 2018.

131

http://www.deeplearningbook.org
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf
http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

A. Bibliography.....................................
[11] Faisal Shahbaz. Five powerful cnn architectures,

2018. URL https://medium.com/datadriveninvestor/
five-powerful-cnn-architectures-b939c9ddd57b.

[12] Siddharth Das. Cnn architectures: Lenet, alexnet, vgg, googlenet,
resnet and more, 2017. URL https://medium.com/@sidereal/
cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5.

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241. Springer, 2015.

[16] Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu Cord.
Revisiting multi-task learning with rock: a deep residual auxiliary block
for visual detection. In Advances in Neural Information Processing
Systems, pages 1310–1322, 2018.

[17] Thalles Silva. A short introduction to generative adversarial networks,
2017. URL https://sthalles.github.io/intro-to-gans/.

[18] Lilian Weng. From gan to wgan, 2017. URL https://lilianweng.
github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html.

[19] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

[20] Jon Gauthier. Conditional generative adversarial nets for convolutional
face generation.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

[22] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages 5767–5777,
2017.

132

https://medium.com/datadriveninvestor/five-powerful-cnn-architectures-b939c9ddd57b
https://medium.com/datadriveninvestor/five-powerful-cnn-architectures-b939c9ddd57b
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
https://sthalles.github.io/intro-to-gans/
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

..................................... A. Bibliography

[23] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S
Huang. Generative image inpainting with contextual attention. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5505–5514, 2018.

[24] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE international conference on computer vision,
pages 2223–2232, 2017.

[25] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

[26] Abdenour Hadid. The local binary pattern approach and its applications
to face analysis. In 2008 First Workshops on Image Processing Theory,
Tools and Applications, pages 1–9. IEEE, 2008.

[27] Sneha H.L. Pixel intensity histogram characteristics: Ba-
sics of image processing and machine vision, 2017. URL
https://www.allaboutcircuits.com/technical-articles/
image-histogram-characteristics-machine-learning-image-processing/.

[28] Wikipedia. HSL and HSV — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=HSL%20and%
20HSV&oldid=890683083, 2019. [Online; accessed 30-April-2019].

[29] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S
Huang. Free-form image inpainting with gated convolution. arXiv
preprint arXiv:1806.03589, 2018.

[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based genera-
tor architecture for generative adversarial networks. arXiv preprint
arXiv:1812.04948, 2018.

[31] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. High-resolution image synthesis and semantic
manipulation with conditional gans. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 8798–8807,
2018.

[32] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu.
Semantic image synthesis with spatially-adaptive normalization. arXiv
preprint arXiv:1903.07291, 2019.

[33] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and
Luc Van Gool. Pose guided person image generation. In Advances in
Neural Information Processing Systems, pages 406–416, 2017.

133

https://www.allaboutcircuits.com/technical-articles/image-histogram-characteristics-machine-learning-image-processing/
https://www.allaboutcircuits.com/technical-articles/image-histogram-characteristics-machine-learning-image-processing/
http://en.wikipedia.org/w/index.php?title=HSL%20and%20HSV&oldid=890683083
http://en.wikipedia.org/w/index.php?title=HSL%20and%20HSV&oldid=890683083

A. Bibliography.....................................
[34] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt

Schiele, and Mario Fritz. Disentangled person image generation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 99–108, 2018.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[36] Tom M Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997. ISBN 978-0-07-042807-2. URL http:
//www.worldcat.org/oclc/61321007.

[37] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of machine learning. MIT Press, 2012.

[38] Allen Huang and Raymond Wu. Deep learning for music. arXiv preprint
arXiv:1606.04930, 2016.

[39] Arthur L Samuel. Some studies in machine learning using the game
of checkers. ii—recent progress. In Computer Games I, pages 366–400.
Springer, 1988.

[40] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2018.

[42] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[43] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew
Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[44] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images
from noisy data. In Proceedings of the 29th International conference on
machine learning (ICML-12), pages 567–574, 2012.

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3431–3440,
2015.

134

http://www.worldcat.org/oclc/61321007
http://www.worldcat.org/oclc/61321007

..................................... A. Bibliography

[46] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048–2057, 2015.

[47] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4681–4690, 2017.

[48] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[49] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[50] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the
theory of brain mechanisms. Technical report, Cornell Aeronautical
Lab Inc Buffalo NY, 1961.

[51] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction
to computational geometry. MIT press, 2017.

[52] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rod-
ney J Douglas, and H Sebastian Seung. Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit. Nature, 405
(6789):947, 2000.

[53] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 315–323, 2011.

[54] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

[55] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

[56] Sebastian Ruder. An overview of gradient descent op-
timization algorithms, 2016. URL http://ruder.io/
optimizing-gradient-descent/index.html.

[57] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

135

http://ruder.io/optimizing-gradient-descent/index.html
http://ruder.io/optimizing-gradient-descent/index.html

A. Bibliography.....................................
[58] Jason Brownlee. Gentle introduction to the

adam optimization algorithm for deep learning,
2017. URL https://machinelearningmastery.com/
adam-optimization-algorithm-for-deep-learning/.

[59] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015. URL http://arxiv.org/abs/1502.03167.

[60] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Madry. How does batch normalization help optimization? In Advances
in Neural Information Processing Systems, pages 2483–2493, 2018.

[61] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.

[62] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance
normalization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[63] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[64] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[65] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[66] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[67] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[68] Martin J Osborne and Ariel Rubinstein. A course in game theory. 1994.

[69] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. In
Advances in neural information processing systems, pages 2234–2242,
2016.

[70] Martin Arjovsky and Leon Bottou. Towards principled methods for
training generative adversarial networks. 2017.

136

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
http://arxiv.org/abs/1502.03167

..................................... A. Bibliography

[71] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

[72] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[73] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1125–1134, 2017.

[74] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and
Alexei A Efros. Context encoders: Feature learning by inpainting. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2536–2544, 2016.

[75] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Gold-
man. Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. In ACM Transactions on Graphics (ToG), vol-
ume 28, page 24. ACM, 2009.

[76] James Hays and Alexei A Efros. Scene completion using millions of
photographs. ACM Transactions on Graphics (TOG), 26(3):4, 2007.

[77] Alexei A Efros and William T Freeman. Image quilting for texture
synthesis and transfer. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 341–346. ACM,
2001.

[78] Alexei A Efros and Thomas K Leung. Texture synthesis by non-
parametric sampling. In Proceedings of the seventh IEEE international
conference on computer vision, volume 2, pages 1033–1038. IEEE, 1999.

[79] Rolf Köhler, Christian Schuler, Bernhard Schölkopf, and Stefan Harmel-
ing. Mask-specific inpainting with deep neural networks. In German
Conference on Pattern Recognition, pages 523–534. Springer, 2014.

[80] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural
network for image deconvolution. In Advances in Neural Information
Processing Systems, pages 1790–1798, 2014.

[81] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and
locally consistent image completion. ACM Transactions on Graphics
(ToG), 36(4):107, 2017.

[82] Timo Ojala, Matti Pietikainen, and David Harwood. Performance
evaluation of texture measures with classification based on kullback
discrimination of distributions. In Proceedings of 12th International

137

A. Bibliography.....................................
Conference on Pattern Recognition, volume 1, pages 582–585. IEEE,
1994.

[83] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24
(7):971–987, July 2002. ISSN 0162-8828. doi: 10.1109/TPAMI.2002.
1017623.

[84] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for dis-
tributions with applications to image databases. In Sixth International
Conference on Computer Vision (IEEE Cat. No. 98CH36271), pages
59–66. IEEE, 1998.

[85] Computer Graphics staff. Status report of the graphic standards
planning committee. SIGGRAPH Comput. Graph., 13(3):1–10, Au-
gust 1979. ISSN 0097-8930. doi: 10.1145/988497.988498. URL
http://doi.acm.org/10.1145/988497.988498.

[86] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Sum-
marizing visual data using bidirectional similarity. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8.
IEEE, 2008.

[87] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and
Pradeep Sen. Image melding: Combining inconsistent images using
patch-based synthesis.

[88] Kaiming He and Jian Sun. Image completion approaches using the
statistics of similar patches. IEEE transactions on pattern analysis and
machine intelligence, 36(12):2423–2435, 2014.

[89] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative
face completion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3911–3919, 2017.

[90] Yinan Zhao, Brian Price, Scott Cohen, and Danna Gurari. Guided
image inpainting: Replacing an image region by pulling content from
another image. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1514–1523. IEEE, 2019.

[91] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In
Proceedings of the IEEE international conference on computer vision,
pages 1395–1403, 2015.

[92] Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of
image manifolds by semidefinite programming. International journal
of computer vision, 70(1):77–90, 2006.

138

http://doi.acm.org/10.1145/988497.988498

..................................... A. Bibliography

[93] Lawrence K Saul and Sam T Roweis. Think globally, fit locally: un-
supervised learning of low dimensional manifolds. Journal of machine
learning research, 4(Jun):119–155, 2003.

[94] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[95] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime
multi-person 2d pose estimation using part affinity fields. In CVPR,
2017.

[96] Paul Viola, Michael Jones, et al. Rapid object detection using a boosted
cascade of simple features.

[97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer
and system sciences, 55(1):119–139, 1997.

[98] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In international Conference on computer vision
& Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE
Computer Society, 2005.

[99] Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Fredo Durand, and
John Guttag. Synthesizing images of humans in unseen poses. In CVPR,
2018.

[100] Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, and Jian
Yin. Soft-gated warping-gan for pose-guided person image synthesis.
In NeurIPS, 2018.

[101] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[102] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther. Autoencoding beyond pixels using a learned similarity
metric. arXiv preprint arXiv:1512.09300, 2015.

[103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[104] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627–
1645, Sep. 2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.167.

139

A. Bibliography.....................................
[105] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767, 2018.

140

	Introduction
	Theoretical part
	Methodology
	Machine Learning
	Supervised and semi-supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning
	Tasks solved in machine learning

	Artificial neural networks
	Perceptron
	Artificial neuron
	Feed-forward neural networks
	Single-layer perceptron
	Multi-layer perceptron
	Convolutional neural networks
	Learning in ANN
	Feature Normalization
	Regularization
	Architectures
	Multi-Task Learning
	Transfer learning

	Image data augmentation
	Generative Adversarial Networks
	Vanilla GANs
	Wasserstein GAN
	Other techniques and architectures

	Image Processing
	Local Binary Patterns
	Image histograms
	Color models

	State of the Art
	Image inpainting
	StyleGAN
	pix2pixHD
	GauGAN
	Pose Guided Person Image Generation
	Disentangled Person Image Generation

	Implementation and experiments
	Datasets
	MS COCO dataset
	Created datasets

	Experiments with augmentation techniques
	Pedestrian detectors in cars
	Implemented augmentation techniques
	Setup of experiments

	Comparison of augmentation methods

	Person image generator
	Proposed networks
	Topologies of generator and discriminator
	Generator
	Discriminator
	Mask Estimation Network
	Person style encoder

	Used losses
	Training procedure
	Progressive growing
	Normalization and weight scaling
	Nearest Neighbor Search

	Experiments with person image generator
	Network setup
	Experiment with encoder-decoder generator
	Experiment with SPADE generator

	Visual evaluation
	Encoder-decoder generator
	SPADE generator
	Analysis of failure cases

	Human evaluation
	Image quality ranking
	Comparison of real and generated images

	Human detector performance
	Augmenting the dataset with person generator

	Conclusions

	Appendices
	Bibliography

