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Abstract
We developed a method to recognize

changes of the land cover in sequences of
satellite images with high temporal reso-
lution. Two machine learning approaches
are proposed: one based on a combina-
tion of several hidden Markov models, the
other based on a single bidirectional re-
current neural network. Both methods
were tested on real data from the Landsat
satellites.

Keywords: povrch krajiny, satelit,
HMM, RNN, body změny, Landsat,
Sentinel

Supervisor: doc. Boris Flach

Abstrakt
Vyvinuli jsme metodu na rozpoznávání

změn povrchu krajiny v posloupnostech
satelitních snímků s vysokým časovým
rozlišením. Představujeme dva postupy
strojového učení: Jeden založený na skry-
tých Markovových modelech, druhý zalo-
žený na obousměrné rekurentní neuronové
síti. Obě metody byly otestovány na sku-
tečných datech ze satelitů Landsat.

Klíčová slova: land cover, satellite,
HMM, RNN, breakpoints, Landsat,
Sentinel

Překlad názvu: Pravděpodobnostní
model pro rozpoznání druhu využití
krajiny v časových sekvencích satelitních
snímků
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Chapter 1
Introduction

The motivation for the proposed methods is to find changes in the land cover
types based on data obtained from Sentinel-2 satellites [4]. The satellites
provide optical measurements of the whole planet with both high temporal
resolution (approximately one measurement per five days for any location on
earth) and spatial resolution (from 10 meters per pixel) in 13 spectral bands.

Not every measurement is useful, because in some of them the land is
occluded by clouds. The clouds need to be masked with a different algorithm
that is not in the scope of this work. Consequently, the algorithms for
breakpoint detection and land cover type classification need to be able to
handle data with missing entries.

The input of the proposed algorithm is a set of temporal sequences of
measurements for individual locations. If we interpret the sequence of satellite
images as video, each of these sequences contains the sequence of changing
colors on individual coordinates of the frame.

The output is a classification for every combination of time and location.
The classification can be also interpreted as a segmentation of the individual
temporal sequences and the classification of the individual segments.

The classification should be consistent in time for any location, unless
sudden changes of the land cover type occur in the location. In such case, the
time of the change needs to be precisely recognized. The recognizer should
not get confused by changes of land cover appearance caused by seasonal
changes and it needs to handle input sequences with missing entries.

1.1 Challenges in the task

The data obtained from Landsat or Sentinel-2 satellites have interesting
properties. The very high temporal resolution allows to recognize changes in
the past with high precission. However the spatial resolution is much lower
than it would be for example in aerial images. For this reason, recognition with
precission to individual pixels is desired. Recognizing the spatial boundary of
a land cover type with an error of one pixel is an error of ten meters in real
world, which is significant.

For this reason, we did not classify patches of the images, but rather
individual pixels. To reduce the risk of misclassification on the boundaries,
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1. Introduction .....................................

Figure 1.1: Example of a classification. On the right, there is one of the
sequence of satellite images. Some of the pixel values were removed, because the
land was covered by clouds in them. On the left, there is a classification of the
pixels - the output of a classifier.

we recognized the classes in individual locations, which each had a single
corresponding pixel in every satellite image, separately. So all of the proposed
algorithms do not take a sequence of images as input, but rather sequences
of individual pixel values corresponding to some location changing in time.

Although we classify the sequences for individual pixels, it is trivial to
compile the classifications to classifications of images for the dates, when the
satellite images were taken and visually compare them. Figure 1.1 shows a
possible classifier output and input.

Two kinds of tasks were considered. First, we propose breakpoint detection
agnostic to the classes by an unsupervised algorithm. The detected temporal
segments can then be classified with another algorithm.

Second, we propose a breakpoint detection algorithm that uses models for
the individual classes to reconize breakpoints and classify the segments at
the same time.

2



Chapter 2
Breakpoint detection

2.1 Problem definition

The core problem that we are solving in this work is detecting breakpoints
in a sequence. Consider a sequence of vectors x1, . . . , xn. Breakpoints are a
growing sequence of k indices T = τ1, . . . , τk from the interval 1 to n. The
sequence of breakpoints may be empty.

To the sequence of breakpoints corresponds unambiguously a segmentation
S(T ) = {(1, τ1), (τ1, τ2), . . . , (τk, n)} = {s1, s2, . . . , sk+1}. Every si is an
interval and we will call it a temporal segment and it defines a subsequence
of x, we will denote it xsi .

In breakpoint detection, we seek breakpoints for a given sequence of vectors
x that maximize some probability PB(x, T ). In general, the loss function
should enforce that in every segment si, xsi fits some model (possibly with dif-
ferent parameters for every segment, while keeping the number of breakpoints
k as low as possible.

Let us suppose that we have a probabilistic model that can evaluate the
probability PS(x) of any subsequence of x in that model, assuming that there
are no breakpoints in it. We will call such model a segment model.

We can use the segment model to define a more complex probabilistic
model describing sequences with breakpoints. We will call it a breakpoint
model. It will be defined as follows:

PB(x, T ) = p−|T |
∏
s∈S

PS(xs), (2.1)

where p is a constant parameter called a breakpoint penalty. We will show
an algorithm that maximizes likelihood with efficiently.

3



2. Breakpoint detection .................................
2.2 loss optimization algorithm

The breakpoints minimizing equation (2.1) can be found also by maximizing
the negative logarithm of the loss, that is

max
T

− log(p)|T |+
∑

s∈S(T )
log(PS(xs))

 . (2.2)

Notice that we can split the minimization to two steps:

max
k

 max
T :|T |=k

− log(p)|T |+
∑

s∈S(T )
log(PS(xs)

 =

max
k

−k log(p) + max
T :|T |=k

∑
s∈S(T )

log(P (xs))

 .
(2.3)

Let us define auxiliary function that will represent the log-probability of
the most likely model on a segment. d(m, i, j) will be the log-probabilities on
the interval (ti, tj) if there are m breakpoints allowed in the interval, with no
breakpoint penalty.

The function can be defined recursively:

d(0, i, j) = log(PS((xi, . . . , xj))), (2.4)

d(m, i, j) = max
b∈(i,j)

d(m− 1, i, b) + d(0, b, j), (2.5)

It is easy to see that

d(k, 0, n) = max
T :|T |=k

∑
s∈S(T )

log(P (xs))). (2.6)

We can compute the values d(k, 0, n) for all possible values of k efficiently
using dynamic optimization as described in [2]. If some upper bound for the
number of breakpoints is assumed, we can examine only those values of k.

First compute all of the values d(0, i, j) for every 1 ≤ i ≤ j ≤ n. This step
depends on the model used. Then use the definition (2.5) to compute the
values d(1, 0, j) for every possible j, then continue with d(2,0,j) and so on up
to the upper bound for the number of breakpoints.

It is trivial to modify the algorithm to find not only the value of d(k,0,j),
but also the position of the breakpoints that achieved it: For every computed
value of d(k,0,j), we will remember also the last breakpoint b that achieved
that maximum. It is the last breakpoint in the desired sequence of breakpoints
T for d(k,0,j). the previous members of the sequence are the breakpoints
optimizing d(k-1, 0, b) or none, if k = 1.

The time complexity of the dynamic optimization algorithm is O(kn2),
where k is the upper bound for the number of breakpoints. Note that this

4



.............................. 2.2. loss optimization algorithm

time complexity does not incorporate the time needed to compute the values
of d(0, i, j). The time complexity depends on the model used.

Once the values of (2.6) are known, it is trivial to optimize the equation
(2.3).

The values that perform best on any given task and area can be found
experimentally.

In the subsequent sections, we will show three different models for comput-
ing the log-probability of any segment.
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Chapter 3
Baseline method

In the baseline method, a very simple segment model is used. The model
is agnostic to the classes. It can model any land cover type, but it does
not model changes of land cover type. The model needs only to provide the
probabilities PS of the data for different segments (i, j), assuming that they
contain no change of cover. These values will be then used as an input for
the breakpoint detection algorithm proposed in chapter 2.

3.1 Models

Let us have n observations of land cover at times t0, t1, . . . , tn. The times
need not to be evenly distributed.

As in [3], we fit a model to each location (pixel) individually. The model
fits the values in all bands of the satellite image in the given location in
relation to time. Let us call the vector of values measured in time t in some
particular location Y (t). The model can be then written as:

Y (t) = S(t) + T (t) + e(t). (3.1)

The model consists of the following components:

. T (t): trend component representing linear gradual changes over time. S(t): seasonal component representing periodic annual changes caused
by the change of the season. e(t): the remainder component, assumed to be noise sampled from
normal distribution.

We assume that T (t) is a linear function.
The seasonal component St represents the periodic changes in the measured

values Y (t) caused by the changes of the season. Let us split the year to p
equally long intervals. We will call each of these intervals a season, each of
the seasons has a number from 0 to p− 1. Define function s(t) that assigns
the number of the appropriate season to t.

7



3. Baseline method ...................................

Figure 3.1: sequence of measurements, with a correctly recognized land cover
type change detected. In red are the observed values for the six bands in the
data, in blue are the models that were fit to the individual segments. Notice the
periodic seasonal changes and the linear trends apparent from the fitted models.
The black and yellow dots are the reference classifications in the five reference
dates, with the colors meaning forest and clear-cut respectively.

Then S(t) is a function of s(t) on any segment.

∀t : S(t) = S(t) = f(s(t)). (3.2)

where f(j) is a function that assigns a vector of the seasonal change to
every season j.

The remainder component e(t) is assumed to be sampled from normal
distribution with zero mean and fixed variance σ2. We will assume that this
variance is common for all modeled classes.

An example of a sequence, where such model was used to detect a break-
point, is on image 3.1.

3.2 Fitting the model

3.2.1 Segment models

We will need to efficiently compute estimates of the log-probabilities P (i, j)
for every interval in the seqeuence. If the parameters of the trend, seasonal
and remainder component are known, then we can define the expected value
for any time t as ŷ(t) = T (t) + S(t)

8



...................................3.2. Fitting the model

the probability density to observe a sequence of measurements y is:

PS(y) =
∏

t

( 1√
2πσ2

e
−(y(t)−ŷ(t))2

σ2

)
. (3.3)

We are interested in the log-probabilities:

log(PS(y)) =
n∑

i=1

(
−1

2 log(2πσ2)− (y(t)− ŷ(t))2

σ2

)
=

= −n2 log(2πσ2)− 1
σ2

∑
t

(y(t)− ŷ(t))2.

(3.4)

Let us compute the sums of squared residuals:∑
t

(y(t)− ŷ(t))2. (3.5)

Let us rewrite S(t) as a linear function of vector es(t), which is a vector
that has all components zero except for the s(t)-th component, where s(t) is
the number of the season. Then S(t) = Ses(t), where S is a matrix such that
j-th column of S is the seasonal change of Y for the season j.

Then the function T (t) + S(t) is a linear function of the vector X(t) and
there is a matrix A such that T (t) + S(t) = A[t, 1, es(t)].

We can construct a matrix X ∈ Rn,p+2 such that i-th row of X is X(ti).
The matrix has linearly dependent columns, specifically the second column

(column of ones) can be expressed as a sum of the columns indicating the
season. Thus omitting the column of ones will not decrease the accuracy of
the model.

Let us do that and redefine X(t):

X(t) = [t, es(t)]. (3.6)

This makes X ∈ Rn,p+1.
Then, we can simply find A ∈ Rl,p+1 minimizing the sum of squared

residuals, where l is the length of the vectors Y (t) (the number of bands in
the satellite photographs) and p is the number of seasons.

SSR(si) = min
Ai

∑
t∈si

‖AiX(t)− Yi(t)‖2. (3.7)

This is easy to do as Yi(t) are known and X(t) can be constructed directly
from t. The optimal value can be found by solving the equation XTXA =
XTY , which takes O(np(p+ l)) assuming n� p, l.

Note that this method can be used even if some measurements are missing
(for example if some measurements were excluded because of occlusion of the
land by clouds).

The naive computation of these values has time complexity O(p(p+ l)n3).
Computing the sums of squared residuals can be done more efficiently than
just by computing the values for every interval separately. An efficient
algorithm, that computes the sum of squared residuals iteratively, is proposed

9



3. Baseline method ...................................
in [1]. With the iterative algorithm, computing the values for all intervals
has time complexity O(n2p(p+ l)).

With the SSR computed for each interval, let us compute the log-probability
densities.

All that remains to compute them is the estimate of σ2 - the variance
of the random noise. If we knew the true number of breakpoints and also
the segmentation of the sequence optimal with that number of breakpoints,
we could find σ2 directly as the average of squared residuals. Notice that if
we had an optimal segmentation of the sequence with a higher number of
breakpoints than the true number, the average of squared residuals would
still be affected only by the remainder component, so we could still use it to
compute σ2.

If we fix some number of breakpoints k higher than the maximum expected
number of breakpoints, then we can find the segmentation by maximizing:

arg max
T :|T |=k

∑
s∈S(T )

log(PS(xs)) =

arg min
T :|T |=k

∑
s∈S(T )

∑
t

(y(t)− ŷ(t))2.
(3.8)

This way, we can find the optimal segmentation without the knowledge
of σ2 and compute it as the average of squared residuals in the optimal
segmentation.

With the σ estimated and the sums of squared residuals known for any
interval, it is straightforward to compute the log-probability density (3.4).

3.3 Segment classification

The linear models described above can be fitted to any any data and used
to recognize breakpoints in unsupervised manner. This is an advantage over
the other proposed models, that require classified training data. However,
the linear model itself does not provide any information about the segment
classes, such as forest or clear-cut.

To assign labels to the segments, we use a classifier that classifies models
based on their parameters.

3.3.1 Describing the models

To classify the models, we first need to describe each segment model by some
vector of its features. The segment model described above is fully described
by it’s matrix A. Let us use the values in matrix A as the features used for
the classification of the models.

3.3.2 Obtain the training labels

To train the classifier, we need some ground truth labels. We will show a
method to assign labels to individual segments using labeling with lower

10



....................................... 3.4. Results

temporal resolution than we use. Figure 3.1 shows an example of such
situation. The breakpoint is found and the reference labels are available.

Let us have labelings for each location covering sparsely the whole time
period that we are studying.

We will say that a breakpoint is confirmed by the reference, if the last
reference label before the breakpoint is of different class than the first reference
label after the breakpoint.

We will say that the model is strictly confirmed by the reference, if all of
the following conditions hold:..1. every segment in the model contains at least one reference label..2. all reference labels in any segment are of the same class..3. every breakpoint of the model is confirmed by the reference.

Segments of models that are strictly confirmed by the reference can be
unambiguously labeled. We can use the features of the models of every
segment with their labels to train the classifier. We used a linear KNN with
as the classifier.

3.3.3 Down-scaling the labeling from higher resolution

If the labeling is obtained by down-scaling from higher resolution, for every
location, there are n labeled high-resolution pixels corresponding to that
location. If k of them are labeled as class c, we will interpret the value k/n
as the probability that the location is of class c.

There are two possible approaches to validate model with such data. The
simplest approach is to choose the most likely label for every location sepa-
rately, fix them and do the validation with fixed labels as described above.

Another method is to use all possible reference labels (all labeling with
non-zero likelihood). We will say that a model is softly confirmed by reference,
if there is any labeling with non-zero likelihood that confirms the model.

The second method is less strict - it is more likely to confirm a model.
However, it is more robust to sub-pixel errors in alignment of the reference
data.

3.4 Results

We tested the method on one particular region in Czech Republic. We
divided the studied region in two parts, one used to tune the parameters of
the breakpoint estimator and to train the segment classifier, the other to
evaluate the accuracy.

We used measurements from the year 2000 to 2015 obtained from Landsat[5]
and selected a grid of 100 × 100 measured locations (pixels of the satellite
images). The measurements, where the land was occluded by clouds, were
masked by a different algorithm prior to the application of the breakpoint
detector. We used all six bands of the satellite measurements.

11



3. Baseline method ...................................
Five reference images labelled by an expert were used to train the recognizer

to recognize three classes: class 0: forest, class 1: growing forest, class 2:
forest. The reference labelings were obtained by labeling aerial photographs
in high resolution and georeferencing them to the satellite measurements.
The reference photographs were taken in the years 2000, 2005, 2008, 2011
and 2015.

3.4.1 Variables

The following parameters of the algorithm needed to be tuned: The number
of seasons and penalties for the numbers of breakpoints. Two parts of the
recognizer were tested. The first part is the breakpoint estimator, the second
part is the segment classifier.

To measure the quality of the breakpoint estimator, two alternative mea-
sures can be used. Consistency is the ratio of the models that were strictly
confirmed by the reference. Soft consistency is the ratio of the models that
were softly confirmed by the reference.

The classifier was trained from a training dataset and applied to a testing
dataset. The classifier labeled every segment in every location in the testing
dataset. We will say that the classifier was correct on a location if the labeling
that it provided matched all of the reference labelings.

The ratio of the locations where the classifier was correct is the classification
accuracy of the classifier.

The classifier was trained and applied only on the models consistent with
the reference. So a combined measure, the product of classification accuracy
and consistency, is the most informative about the recognizer quality. This
value is the probability that the recognizer detects breakpoints and segments
consistent with the reference. We will call this value the total accuracy.

3.4.2 Grid search

We compared the consistency and classifier accuracy of the models with
various values of the parameters using the grid-search method. The following
parameters were examined.. number of seasons p: 1, 2, . . . , 10.. breakpoint penalty q: 60, 100, 140, . . . , 600.

The penalty for k breakpoint is qk = qk.
Moreover, the parameters were used in two different setups: One with the

trend component of the model, T (t), as described in section 3.1, and the
other without the trend component, for example with seasonal and remainder
component only.

Figure 3.2 shows the performance of the recognizer with different parame-
ters, if fitting both seasonal and trend component. The plot suggests that
the total accuracy grows slightly with growing number of seasons, but the
effect is almost negligible. The best total accuracy was measured with model

12



....................................... 3.4. Results

Figure 3.2: recognizer accuracy if using both trend and seasonal components.
Models with different number of seasons have similar total accuracy, if the
breakpoint penalty is properly adjusted.

using parameters p = 10, q = 260. The total accuracy was 62.7%. That is a
slight improvement over p = 3, which had accuracy of 62.1% or p = 1 with
accuracy 60.2%

Figure 3.3 shows the results of the models that did not use the trend
component. It outperformed the more complex model both in breakpoint
recognition (consistency) and in segment classification accuracy. The models
without the trend component also perform slightly better with higher values
of the parameter p, the best result was achieved with 9 seasons (p = 9) and
the penalty q = 580. The accuracy with these parameters was 68%. But even
with p=1 (a model that fits a constant function to every segment), the total
accuracy with suitable q was 66.6%.

3.4.3 Soft validation results

The consistency score in all of the setups mentioned was below 70%. That
was so low mainly because of locations on the boundary of a forest, where the
labeling was not clearly determined. To assess the recognizer performance
better, the soft confirmation method can be used.

The best performing model (with no trend component, 9 seasons and
q = 580), achieved soft consistency of 94.5% and classification accuracy
(among the segments of the softly confirmed models) of 95.2%, which is
together a total accuracy of 89,9%.

The much simpler and faster model, with no trend component, 1 season

13



3. Baseline method ...................................

Figure 3.3: models with different number of seasons have similar total accuracy,
if the breakpoint penalty is properly adjusted. Not modeling the trend component
improved the accuracy of the model.

and q = 140 achieved soft consistency 93.4%, classification accuracy 93.5%
and total accuracy with soft validation of 87.3%.
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....................................... 3.4. Results

Figure 3.4: Classes detected based on the linear models for the date June 1st
2011 (top-left), compared to the reference classification, obtained from a human
classification of an image in higher resolution. Clear-cut in green, growing forest
in blue and forest in dark purple. Bottom left shows where the recognized class
differs from the most common subpixel class in higher resolution. Bottom right
shows where the classification differs from all of the subpixel classes.
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Chapter 4
Combination of Hidden Markov Models

The breakpoint detection algorithm described in section 3 consists of two
steps. The first step computes the likelihood of any temporal interval in a
model that does not allow breakpoints. The second step finds the most likely
segmentation.

We propose an improvement of this algorithm that can be used if the
classes are known in advance and if we have training data for them. The
breakpoint detection works the same way as described above, only a different
approach to get the likelihood of an interval is used.

A model is trained and fitted for every class separately. The likelihood
of an interval is the likelihood of the most likely model (the model of the
most likely class on that interval). Note that this approach provides not only
likelihood for any segment, but also a classification. The likelihoods obtained
this way are then used to find the most likely segmentation.

4.1 Models

For the linear model, we used a sequence of vectors xi describing the observed
measurements (pixel values in six bands) for a given location and the vector
yi describing the season or time. For HMM, we need only a single sequence.
A concatenation of the vector describing the measurements and the vector
describing the season is used. From now on we will call such vector xi. It
will be used for both training and fitting the models.

Some measurements in the sequence are missing because of the occlusion by
clouds. Such measurements can simply be omitted before training or fitting
the model, so that the model deals only with relevant data.

4.1.1 Training

To train the Hidden Markov Models for some class (for example forest),
sequences x that are known to belong to this class are needed. We used
the baseline method to detect breakpoints and classify segments. Only the
locations that were classified consistently with the reference were used. Strict
validation was used for the consistency check, as described in chapter 3. From
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4. Combination of Hidden Markov Models .........................
each validated segmentation, the segments were used as training data for the
appropriate HMM.

Training data can be obtained even from the locations where breakpoints
were not detected consistently with the reference. We can assume that if two
reference classifications are the same class for some location, then there is
no breakpoint between them and the inteval between them can be used as
a training segment for the reference class. The interval between reference
classifications with different classes can have breakpoint anywhere in it and
we cannot assume anything about that interval.

4.1.2 Model fitting

Once the separate models for the classes are trained, the models are fitted
on every interval. We need to find the likelihood of every model on every
possible interval in the sequence. We show an efficient method to do that.

We need to compute the probability of the sequence xi,...,j = xi, xi+1, . . . , xj

for every interval (i, j) for every model (each class has one model).
With some of the models fixed, for every starting time i, we can iteratively

compute the likelihoods of all the intervals starting at i. We will do a forward
pass with the model on the sequence xi,...,j . Then the forward message in the
forward pass ϕ(k, s) represents the probability of reaching the state s on xi+k.
If we sum over all states, we get the probability of the subsequence xi,...,j :

P ((i, j)) =
∑

s

ϕ(k, s). (4.1)

This implies that computing the probabilities of every subsequence of x
starting in i, is asymptotically not harder than just computing the probability
of the sequence xi, . . . , xn, which requires the same forward pass.

The time complexity to compute the probability of all intervals (i, j) for
some model is O(n2m2), where m is the number of states in the model.
Obviously this needs to be done for every model.

Once the likelihoods for every interval for every class model are known, we
apply the dynamic algorithm for breakpoint detection described in chapter
2. The likelihood of an interval will be the likelihood of the most likely class
model. The classification of the resulting segmentation will be the classes of
the most likely models for the respective segments.

4.2 Results

The algorithm was applied on the same dataset as the baseline method. We
used hmm with 12 hidden states for every of the three recognized classes.
The input features x contained the measured data and encoded season.

The measured data were for any time and location six vaues from the six
bands of the photographs. The inputs where the measurements were not
informative because of cloud occlusion,were simply removed from the sequence.
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....................................... 4.2. Results

The encoded season were four binary values indicating which quarter of the
year was when that measurement was taken.

The total accuracy improved to 96% with soft validation and to 75.4% with
strict validation. The errors can be attributed mostly to locations containing
the class "growing forest," which was never detected by this algorithm and to
locations on the boundaries of forests, see illustration 4.1.

Figure 4.1: Detected classes for the date June 1st 2011 (top-left), compared
to the reference classification, obtained from a human classification of an image
in higher resolution. Clear-cut in green, growing forest in blue and forest in
dark purple. Bottom left shows where the recognized class differs from the
most common subpixel class in higher resolution. Bottom right shows where the
classification differs from all of the subpixel classes.
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Chapter 5
Recurrent Neural Network

In this section we propose an alternative method. The method is based on
a recurrent neural network. RNNs have been used successfully for satellite
data in [6], [7], [8]. We propose a single recurrent neural network that takes
a sequence of xi, describing the measured values for a location together with
the encoded season. The network is trained to output classification for each
of the vectors.

The missing data were not omitted when training and fitting the neural
network. They were replaced with zeros. To disambiguate between missing
values and pixels where the zeros were truly measured, another feature can be
added to the input feature vector indicating that the measurement is removed
for xi.

5.1 Architecture of the network

From the total of 10000 locations (pixels), We used 100 randomly selected
locations for validation, the other were used for training.

The network consists of an input filter, rectified linear unit, gated recurrent
unit for the forward pass, gated recurrent unit for the backward pass and an
output filter.

Every vector in the input sequence is processed with input filter, and
continues to both forward GRU and backward GRU. The outputs of both
forward GRU and backward GRU are concatenated and passed to the output
filter.

The input filter consists of a fully connected linear layer and a ReLU. The
output filter consists of a fully connected linear layer and softmax.

5.1.1 Training

The classification used for training were the fully and partially classified
sequences obtained from two sources: first, the segmentations detected by the
breakpoint detector with the linear model, if they were found to be strictly
consistent with the reference. Second, on locations, where such segmentation
is not strictly consistent, a partial classification obtained from the aerial
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5. Recurrent Neural Network ...............................
photographs is used. This is the same approach that was used to get the
training data for HMMs. It described in more detail in section 4.1.1.

The difference from the HMM training is that while HMMs were trained
as separate models for the individual classes, here we train a single network
modelling the whole sequence including the breakpoints. Note that in some
sequences in the training dataset, some of the classifications are missing. We
propose a loss function that handles such inputs.

5.1.2 Architecture of the network

Recurrent neural networks are a type of neural network that can process
sequences of inputs and update some inner state vector. The state vector
can be then sent to a classifier that outputs some class prediction for every
inner state, which is a classification of the corresponding network input. This
way, the classification is based not only on the given input, but also on the
preceeding inputs in the sequence. Information from them is passed via the
inner state.

A bidirectional RNN does this pass twice: once forward and once backward.
Each of the two passes maintains a separate hidden state. To classify an
input, one can concatenate the corresponding inner states from the backward
and forward pass.

Gated recurrent unit (GRU) was used as the recurrent cell for both the
forward and backward pass. The size of the hidden state for both forward
and backward pass was 64.

To improve the expressiveness of the network, an additional filter consisting
of a fully connected linear layer and ReLU is applied to the input prior to
passing it to GRU. The filter outputs a vector of size 12. The classifier
consists of a linear layer and softmax.

The architecture of the network is depicted on the figure 5.1

5.1.3 Loss function

A special loss function is used to enforce correct classification only in positions
where the reference classification is known and to enforce low number of
breakpoints at the same time.

The loss function can be written as

l(y′, y) =
n∑

i=1
1(yi 6= unknown)H(y′i, yi) + q ·

n−1∑
i=1

H(y′i, y′i+1). (5.1)

where y′ is the sequence of network outputs, y are the correct classifications,
q is a metaparameter weighing the cost of a breakpoint and H(x, y) is the
cross entropy.

The first sum in the loss function enforces that the network predicts
consistently with the training data. The second sum enforces that the
adjacent predictions are similar. This reduces the number of breakpoints
recognized in the sequence.
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.............................. 5.1. Architecture of the network

Figure 5.1: The architecture of the RNN

5.1.4 Predicting

The network, given an input sequence, outputs a sequence of values that can
be interpretted as likelihoods for the respective classes. Although the training
loss function optimizes that the predictions are consistent, in some cases it
still predicted breakpoints that were not a true change of land cover, but only
noise on the forest boundaries caused by the improper alignment of the data.

To obtain a temporal segmentation of the sequence, that enforces low
number of breakpoints better, we will use the same breakpoint detection
algorithm as in the previously described methods. The likelihood of an
interval for a class will be the product of the likelihoods of that class in the
interval.

5.1.5 Results

The evaluation process was the same as was used for the other approaches.
The accuracy with soft validation was 97.6%. Accuracy with the scrict
validation was 78.9%.

Figure 5.2 shows a visualization of the method. Notice that there are
obviously much less errors compared to the approach with multiple HMMs.
Also note that this algorithm was able to recognize the class "growing forest",
which was not detected by the other approaches.
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Figure 5.2: compilation of classes detected by rnn for the date June 1st 2011
(top-left), compared to the reference classification, obtained from a human
classification of an image in higher resolution. Clear-cut in green, growing forest
in blue and forest in dark purple. Bottom left shows where the recognized class
differs from the most common subpixel class in higher resolution. Bottom right
shows where the classification differs from all of the subpixel classes.
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Chapter 6
Conclusion

6.1 Comparison of the models

On the testing data that we used, the recurrent neural network performed with
the highest accuracy from the three examined approaches, with comparable
training and execution times.

6.2 Unsolved problems

For the algorithms to work sufficiently, some challenges still need to be
overcome. One of the problems to solve is the spatial alignment of the
measurements. Although the measurements from Landsat were georeferenced,
the precission is not good enough for the proposed algorithms to work reliably
on the boundaries of different land covers. Some further preprocessing of the
sequence, that would ensure that all of the images are consistently aligned,
would be necessary.

Second, the individual images in the six bands of the measurements had
inconsistent colors, each of them was tinted in different shade. This effect
could be either removed by normalizing the data or by modelling the tint.

However none of those problems were in the scope of this work.

6.3 Attributions

The following third-party software was used to implement the mentioned
approaches:. hmmlearn - a python open-source library for HMM. tensorflow - a python open-source library for neaural networks. implementation of an example RNN was kindly provided by Jindrich

Libovicky.

25



26



Bibliography

[1] Brown et al. Techniques for Testing the Constancy of Regression Rela-
tionships Over Time Journal of the Royal Statistical Society: Series B
(Methodological), 1975

[2] Jushan Bai and Pierre Perron Computation and analysis of multiple
structural change models Journal of applied econometrics, 2003

[3] Verbesselt, Jan, et al. Detecting trend and seasonal changes in satellite
image time series. Remote sensing of environment, 2010

[4] Drusch, M., et al., Sentinel-2: ESA’s optical high-resolution mission for
GMES operational services. Remote Sensing of Environment, 2012

[5] ,

[6] P. Benedetti et al., M3Fusion: A Deep Learning Architecture for Multi-
Scale/Modal/Temporal satellite data fusion, arXiv:1803.01945, 2018

[7] D. H. T. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F.
Osman, and P. Maurel, Deep recurrent neural networks for winter vegeta-
tion quality mapping via multitemporal sar sentinel-1, , IEEE GRSL, vol.
Preprint, no. -, pp. –, 2018.

[8] L. Mou, P. Ghamisi, and X. X. Zhu, Deep recurrent neural networks
for hyperspectral image classification, IEEE TGRS, vol. 55, no. 7, pp.
3639–3655, 2017.

27


	Introduction
	Challenges in the task

	Breakpoint detection
	Problem definition
	loss optimization algorithm

	Baseline method
	Models
	Fitting the model
	Segment models

	Segment classification
	Describing the models
	Obtain the training labels
	Down-scaling the labeling from higher resolution

	Results
	Variables
	Grid search
	Soft validation results


	Combination of Hidden Markov Models
	Models
	Training
	Model fitting

	Results

	Recurrent Neural Network
	Architecture of the network
	Training
	Architecture of the network
	Loss function
	Predicting
	Results


	Conclusion
	Comparison of the models
	Unsolved problems
	Attributions

	Bibliography

