Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Approximation of Bound Functions in
Algorithms for Solving Stochastic Games

Jaroslav Safar

Supervisor: Mgr. Branislav Bosansky, Ph.D.

Study program: Open Informatics

Branch of study: Computer and Informatic Science
May 2019

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 N\
Student's name: Safar Jaroslav Personal ID number: 469852

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Open Informatics
Branch of study: Computer and Information Science
4
Il. Bachelor’s thesis details
~
Bachelor’s thesis title in English:
Approximation of Bound Functions in Algorithms for Solving Stochastic Games
Bachelor’s thesis title in Czech:
Aproximace konvexnich funkci v algoritmech pro feseni stochastickych her
Guidelines:
One-Sided Partially Observable Stochastic Games are dynamic games with infinite horizon where only one player has
imperfect information and the opponent has full information. Such games can be applied in many scenarios (e.g., in
security), however, the first recently developed algorithm PG-HSVI [1] for this class of games has insufficient scalability.
One of the key steps of the algorithm is the approximation of the value function of the game using a lower-bound and an
upper-bound function. These functions are represented as an upper envelope of linear functions and as a lower convex
envelope of a set of points, respectively. Updates of these functions present one of the bottlenecks in the performance of
the algorithm. The goal of the student is to:
1. Get familiar with the algorithm PG-HSVI.
2. Analyze possibilities for fast approximation of the convex functions representing these bound functions.
3. Select and implement at least two different methods for approximation of these functions.
4. Experimentally evaluate the impact of these changes compared to the original algorithm.
Bibliography / sources:
[1] Horak, K., BoSansky, B., & Péchoucek, M. (2017). Heuristic Search Value lteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564).
[2] Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on
Mathematical Software (TOMS), 22(4), 469-483.
Name and workplace of bachelor’s thesis supervisor:
Mgr. Branislav BoSansky, Ph.D., Artificial Intelligence Center, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 11.01.2019 Deadline for bachelor thesis submission: 24.05.2019
Assignment valid until: 30.09.2020
Magr. Branislav Bo$ansky, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.
L Supervisor’s signature Head of department’s signature Dean’s signature)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my thesis supervi-
sor Mgr. Branislav Bosansky, Ph.D. for
his patient guidance and helpful advises.
The door to his office was always open
whenever I had any question.

Also, I would like to express my grati-
tude to my parents for providing me with
unfailing support and continuous encour-
agement throughout my years of study.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 23, 2019

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovani etickych principu pii priprave
vysokoskolskych zavéreénych praci.

V Praze, 23. kvétna 2019

Abstract

In this thesis, we focus on the approx-
imation of the bound functions in the
Heuristic Search Value Iteration (HSVI)
algorithm for One-Sided Partially Ob-
servable Stochastic Games (OS-POSG).
These are dynamic games with infinite
horizon where only one player has imper-
fect information, and the opponent has
full information. The bound functions ap-
proximate the value function of the game.
The lower bound is represented as an up-
per envelope of linear functions, while the
upper bound is represented as a lower con-
vex envelope of a set of points. We focus
only on the approximation of the upper
bound mainly by using the Approximate
Convex Hull algorithm. We show that
the approximation of the upper bound is
problematic and that for better results, it
is necessary to focus on the approximation
of the lower bound function as well.

Keywords: Game Theory, One-Sided
Partially Observable Stochastic Games,
Markov Decision Processes, Partially
Observable Markov Decision Processes,
Heuristic Search Value Iteration
algorithm, Convex hull, Approximate
convex hull

Supervisor: Mgr. Branislav Bosansky,
Ph.D.

Artificial Intelligence Center,

Karlovo namésti 13

12000 Praha 2

vi

Abstrakt

V této praci se soustfedime na aproxi-
maci konvexnich funkci v Heuristic Search
Value Iteration algoritmu pro reseni Jed-
nostranné Casteéné Pozorovatelnych Sto-
chastickych Her. Jedna se o dynamické
hry, kde prvni hra¢ ma netplnou infor-
maci o hre, zatimco druhy hria¢ mé in-
formaci Uplnou. Konvexni funkce tvori
odhady tzv. value funkce celé hry. Dolni
odhad je tvofen pomoci horni obalky line-
arnich funkci, zatimco horni odhad je tvo-
fen jako dolni konvexni obalka mnoziny
bodu. V praci se zamérujeme pouze na
aproximaci horniho odhadu prevazné po-
moci Aproximativniho Convex Hull algo-
ritmu. Ukazujeme, ze aproximace horniho
odhadu je problematicka a ze pro lepsi
vysledky je zapotiebi se zamérit také na
aproximaci dolniho odhadu.

Kli¢ova slova: Teorie her, Jednostranné
Céstecné Pozorovatelné Stochastické Hry,
Markovovy Rozhodovaci Procesy,
Céstené Pozorovatelné Markovovy
Rozhodovaci Procesy, Heuristic Search
Value Iteration algoritmus, Konvexni
obal, Aproximativni konvexni obal

Pfeklad nazvu: Aproximace
konvexnich funkei v algoritmech pro
feseni stochastickych her

Contents

1 Introduction 3

2 Heuristic Search Value lteration
for Partially Observable Markov
Decision Processes

2.1 Short introduction to Markov

Decision Processes [l
2.1.1 Definition of Markov Decision
Processes . ..ovvuen . 6]
2.1.2 Value Iteration [7]
2.2 Partially Observable Markov
Decision Processes 8
2.2.1 Definition of Partially
Observable Markov Decision
Processesoovuiu. 9]
2.2.2 Value iteration for POMDPs
2.3 Heuristic Search Value Iteration for
POMDPso.oo ... 12

2.3.1 Value Function Representation

2.3.2 Initialization of the HSVI

Algorithm
2.3.3 Local Updates

2.3.4 Forward Exploration Heuristic

vii

2.3.5 Summary and convergence of

the HSVI Algorithm
3 Heuristic Search Value lteration
for One-Sided Partially Observable
Stochastic Games 19
3.1 Two-Player One-Sided Partially
Observable Stochastic Games.
3.1.1 Definition of Two-Player
One-Sided Partially Observable
Stochastic Games.............. 20!

3.1.2 Value of Strategy and Value of

the Game.....................
3.2 Value Iteration Algorithm for
POSGs ... 23
3.2.1 Value Backup Operator
3.2.2 Computation of Value Backup
Operator
3.2.3 Convergence of the Value
Backup Operator
3.3 Heuristic Search Value Iteration
Algorithm for POSGs
3.3.1 Point-Based Update
3.3.2 Forward Exploration
3.3.3 Summary and Convergence of
the HSVI Algorithm

4 Approximation of the upper
bound function of the HSVI
Algorithm for OS-POSGs 31

4.1 Limitations and Basic
Modifications of the HSVI
Algorithm

4.2 Approximate Convex Hull in High
Dimensions

4.2.1 Finding the Approximate
Convex Hull 33

4.2.2 Summary of the algorithm ..

4.3 Using Approximate Convex Hull
Algorithm in HSVI Algorithm for

OS-POSGS....ooviiiiiiii 38
5 Experiments and Evaluation 41
5.1 Implementation
5.2 Description of the Games

5.3 Experimental Results of the
Approximation by Randomized Point
Deletion

5.3.1 Experiments on the Game 4 .

5.3.2 Experiments on the Game 5 .

5.4 Experimental Results of the
Approximation by Convex Hull
Algorithm

viii

5.4.1 Game 3 with Pruning 2 and

Cardinality 50.

5.4.2 Game 3 with Pruning 4 and

Cardinality 50.

5.4.3 Game 4 with Pruning 8 and

Cardinality 100

5.4.4 Game 4 with Pruning 10 and

Cardinality 100

6 Conclusion

A Bibliography

Figures
2.1 POMDP tree structure 9
2.2 Graph of POMDP with two states
2.3 Local update of bound functions

2.4 Relationship between Q(b, a;) and

HV() oo
3.1 Simple graph environment

3.2 Transitions of one stage of the

4.1 The points in the coordinate
system i 37|

5.1 Dependence of the number of
points on the iteration in the
approximation by randomized point
deletion in the Game 4

5.2 Dependence of the number of
vectors on the iteration in the
approximation by randomized point
deletion in the Game 4

5.3 Dependence of the number of
points on the iteration in the
approximation by randomized point
deletion in the Game 5 45|

ix

5.4 Dependence of the number of
vectors on the iteration in the
approximation by randomized point
deletion on the Game 5..........

5.5 Dependence of the number of
points on the iteration in the
approximation by Convex Hull
algorithm in the Game 3 with
pruning 2 and cardinality 50

5.6 Dependence of the number of
vectors on the iteration in the
approximation by Convex Hull
algorithm in the Game 3 with
pruning 2 and cardinality 50

5.7 Dependence of the number of
points on the iteration in the
approximation by Convex Hull
algorithm in the Game 3 with
pruning 4 and cardinality 50

5.8 Dependence of the number of
vectors on the iteration in the
approximation by Convex Hull
algorithm in the Game 3 with
pruning 4 and cardinality 50

5.9 Dependence of the number of
points on the iteration in the
approximation by Convex Hull
algorithm in the Game 4 with
pruning 8 and cardinality 100

5.10 Dependence of the number of
vectors on the iteration in the
approximation by Convex Hull
algorithm in the Game 4 with
pruning 8 and cardinality 100

5.11 Dependence of the number of
points on the iteration in the
approximation by Convex Hull
algorithm in the Game 4 with
pruning 10 and cardinality 100 ...

5.12 Dependence of the number of
vectors on the iteration in the
approximation by Convex Hull
algorithm in the Game 4 with
pruning 10 and cardinality 100 ...

Tables

4.1 Calculation of distance matrix .. [35

4.2 Calculation of the distance matrix
for 2nd point

4.3 Calculation of the distance matrix
for 3rd point

5.1 Experiments with approximation
by randomized point deletion on the

5.2 Experiments with approximation
by randomized point deletion on the

5.3 Experiments with approximation
by Convex Hull algorithm on the
Game 3 with pruning 2 and
cardinality 50

5.4 Experiments with approximation
by Convex Hull algorithm on the
Game 3 with pruning 4 and
cardinality 50

5.5 Experiments with approximation
by Convex Hull algorithm on the
Game 4 with pruning 8 and
cardinality 100

5.6 Experiments with approximation
by Convex Hull algorithm on the
Game 4 with pruning 10 and
cardinality 100

Chapter 1

Introduction

Game theory is the mathematical study of strategic interactions among the
players. It is applied in many diverse fields such as economics, biology,
psychology and, especially, computer science, where it can be used to model
the real-world scenarios such as security and protection of critical objects.
The security is a huge concern around the world these days, and limited
resources often prevent full protection of critical objects at all times. Game
theory can be useful in such scenarios. This was shown, for example, in
the application of a game theoretic model for security at the Los Angeles
International Airport [PJM™08|, where it helped establish a security system
around the whole airport, or in optimal resource allocations in a security of
transportation systems, computer networks, and other critical infrastructure
[KJTT09].

In the real-world security scenarios, the position of an attacker is usually
unknown until they are discovered. It is said that the defender has partial
observability or imperfect information. On the other hand, the attacker
knowing everything is the worst possible case. Typically, the defender needs
to protect the critical objects for a very long, undefined, time.

These scenarios can be modeled as Two-Player One-Sided Partially Observ-
able Stochastic Games with the infinite horizon (OS-POSGs) where only one
player (the defender) has imperfect information about the game as opposed
to his opponent (the attacker), who has full information about the game. The
expected outcome of the game is represented by a so-called value function
which returns the expected reward of the first player. This value can be both
positive (the defender stops the attacked) or negative (the attacker succeeds).

1

1. Introduction

The goal in such games is to find the optimal strategy for the first player,
which maximizes his expected reward. Finding such a strategy can often be
computationally challenging.

One-Sided POSGs have been used in the past in specific domains such as
patrolling games [VATS14], where patrolling units have imperfect information
about the game, or pursuit-evasion games [HB16], where only the evader knows
the positions of the pursuing units. In 2014 the first domain-independent
Heuristic Search Value Iteration algorithm for One-Sided Partially Observable
Stochastic Games [HBP17] was introduced. It is a generalization of the
Heuristic Search Value Iteration algorithm (HSVT) for Partially Observable
Markov Decision Processes (POMDPs) [SS04al, which deals with only one
agent. The algorithm approximates the value function of the game with lower
and upper bound convex functions. The lower bound is represented by a set
of vectors representing hyperplanes, and the upper bound is represented by a
lower convex envelope of a set of points. Unfortunately, the HSVI algorithm
for POSGs has insufficient scalability in bigger games.

The focus of this thesis is to analyze possible approximations of the upper
bound convex function to potentially improve the scalability of the algorithm.
We will start with the following chapter by describing Partially Observable
Markov Decision Processes and the original HSVI algorithm for POMDPs,
which is the bases for the HSVI algorithm for POSGs. Two-Player One-Sided
Partially Observable Stochastic Games are the main topic of the third chapter,
together with a detailed description of the HSVI algorithm for POSGs. The
next chapter will focus on the limitations of the HSVI algorithm for POSGs
and some possible adjustments. The main modification of the upper bound
function will focus on Approximate Convex Hull algorithm, which removes
the points from the upper bound that can be well approximated by the rest
of them. Last two chapters will be focused on experimental results and the
conclusion.

Chapter 2

Heuristic Search Value lteration for
Partially Observable Markov Decision
Processes

This chapter introduces HSVI algorithm for POMDPs, which is the basis for
the HSVT algorithm for POSGs. The first section introduces Markov Decision
Processes which are necessary to understand Partially Observable Markov
Decision Processes described in the second section. The last section is focused

on describing the HSVI algorithm for POMDPs itself.

. 2.1 Short introduction to Markov Decision
Processes

Markov Decision Processes [RN09] model a single agent making decisions
in a stochastic environment. It is assumed that the environment is fully
observable, i.e., the agent always knows in which state he is. The goal for
the agent starting from the initial state is to reach one of the goal states. If
the environment were deterministic, a solution would consist of a sequence of
actions that would lead the agent to one of the goal states. Unfortunately,
the environment is stochastic; i.e., each action has only a certain probability
of achieving the intended effect. Therefore a different approach must be
introduced.

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

B 2.1.1 Definition of Markov Decision Processes

Definition 2.1. Markov Decision process (MDP) is a tuple (S, A, T, R), where
S is the set of states, A is the set of actions, T : SxAxS — R is the stochastic
transition function such that 7(s'|a,s) = Pr[si11 = §'|ar = a,s; = s] and
R : S — R is the reward function.

The transition function 7 (s'|a, s) determines the probability of reaching
the state s’ from the state s by action a. These probabilities depend only on
the current state s and not on the earlier states visited by the agent. It is
said that the transitions are Markovian. In each state s, the agent receives
a reward R(s), which can be both positive or negative.

Denote [sg, $1, S2, . ..] the sequence of states s; € S visited by the agent.
If the sequence is infinite we talk about MDP with an infinite horizon.
Standard way of assigning utility to the agent visiting the sequence of states
is by discounted rewards:

U([s0, 81,52, --]) —i’th(st) (2.1)

where v € (0,1) is called the discount factor. The discount factor describes
the preference of an agent for current rewards over future rewards.
Suppose that the rewards are bounded by Rp,qz, i-e. for all states s €

S |R(S)’ < Rmax- Then U([SO,Sl,SQ,...]) = §’yt7€(5t) < § ’YtRmax =

Romaz Z = T 17Rmm, due to the sum of an infinite geometric series.

Therefore the utility of an infinite sequence of states is finite.

As it was already stated the solution to MDP cannot be a fixed sequence of
actions because the agent might possibly end up in a different state than the
desired goal. The solution to MDP is so called policy 7 which determines
which action the agent should play at any state. The recommended action for
the state s is denoted by 7(s). The quality of a given policy can be measured
by the expected utility:

Definition 2.2. The expected utility obtained by an agent starting in the
initial state s € S and reaching the state s; € S at time ¢ (assuming sg = s),
while executing policy 7, is given by

- [i We(st)] (22)
t=0

where the expectation is with respect to the probability distribution over
state sequences determined by s and .

4

2.1. Short introduction to Markov Decision Processes

Naturally, an optimal policy 7}, which does not have to be unique, is

the policy that yields the highest expected utility for an agent starting from
the state s € S and following the policy 7, formally:

T, = arg max V7™ (s). (2.3)

The consequence of discounted utilities with infinite horizon is that the
optimal policy is independent of the starting state [RN09]. Therefore, we
can write 7* for an optimal policy and V*(s) = V™ (s) as the utility or the
value of the state s.

Assuming the utility V*(s) of any reachable state s € S is known, the
optimal policy 7* depends only on the current state s. The agent can choose
an action that maximizes the expected utility of the subsequent state by:

7*(s) = arg max Y _ T(s'|a,s)V*(s). (2.4)
a€ s'esS

where A(s) is a set of actions available to the agent in the state s.

B 2.1.2 Value lteration

From the definition of the utility of the state s as the expected sum of
discounted rewards from that point onward while executing the optimal policy
(Equation 2.2)) follows a relationship between the utility of a state s and the
utility of its neighbors:

V*(s) = R(s) + v max T(s|a,s)V*(s). 2.5
(5 = R(s) + e 3 T,V () (25)
This equation is called the Bellman equation. It says that the utility of
a state s is the sum of the immediate reward R(s) for that state and the

expected discounted utility of the next state, assuming that the agent follows
the optimal policy 7* and therefore chooses the optimal action 7*(s).

Suppose that there are n possible states. For every single one of them, there
is one Bellman equation. Therefore, there are n Bellman equations with n
unknown utilities of the states. To find these unknown utilities, it is necessary
to solve this system of equations, which are unfortunately nonlinear.

One way to solve this system of nonlinear equations is an iterative approach
called The value iteration algorithm [RNQ9]:

1. Let U;(s) be the utility value for state s at the i-th iteration.
Set the initial values for the utilities Up(s) to arbitrary values.

5

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

2. Calculate the right-hand side of every Bellman equation and use these
new-found utilities for next iteration, formally:

Uit1(s) « R(s) + v max Z T(s|a,s)U(s"). (2.6)
acA(s) Jes

This iteration step is called a Bellman update.

3. Repeat the previous step until the change in the values between the
iterations is smaller than the desired precision.

The Value iteration algorithm is formally described in the (Algorithm [1).

Algorithm 1: Value Iteration for MDP
Result: Optimal utility function V*
Input :MDP, desired precision ¢
Output: V*
for s € S do

L V'(s) + 0

N =

3 repeat

4 V<V

5 0+ 0

6 for s € S do
7

V/(s) < R(s) ++v max_ > T(s|a,s)V(s)
a€A(s) s'es

8 if |V/(s) — V(s)| > § then
| 5 |V/(s) = V(s)

10 until § < 1%6;

11 return V

It can be proven that the Value iteration algorithm converges. The proof
can be found in [RN0Q9]. The corresponding policy obtained by (Equation
2.4)) is therefore optimal.

.) Partially Observable Markov Decision
Processes

In previous section Markov Decision Processes assumed that the environ-
ment was fully observable, i.e., the agent always knew in which state he
was. On the other hand, Partially Observable Markov Decision Processes

6

2.2. Partially Observable Markov Decision Processes

Figure 2.1: POMDP tree structure. Source: [SS04a]

[RN0O9] [SS04a] model a single agent acting under uncertainty in a partially
observable environment, where the agent does not know the current state
of the game. Therefore, he cannot execute the action 7(s) recommended for
that state.

B 2.2.1 Definition of Partially Observable Markov Decision
Processes

Because the agent does not directly observe the environment’s state, he
only knows the probabilities of being in a certain state. These probabilities
are called belief states. The initial probability distribution is called the
initial belief. The effects of the actions are again stochastic, i.e. the actions
have only a certain probability to achieve the intended effect. At any belief
state, the agent takes an action. Then he receives a reward and, unlike in
MDP, a noisy observation. After that he moves to a new belief state. Formally
POMDPs can be defined as follows:

Definition 2.3. Partially Observable Markov Decision Process is a tuple
(8, A,0,T,0,R,,by) where S is the set of states, A is the set of actions, O is
the set of observations, 7 : S x A xS — R is the stochastic transition function
such that T (s'|a,s) = Pr(si11 = §'las =a,s: =], 0: O x Ax S — R is the
stochastic observation function such that O(o|a, s) = Prlo; = tla; = a, s¢4+1 =
sl, R : S x A — R is the reward function, v < 1 is the discount factor and by
is the initial belief where by(s) = Pr[so = s].

Suppose the agent selects an action a at belief point b, receives a noisy
observation o and moves to a new belief ¥'. This process can naturally be
viewed as a tree structure (Figure 2.1). Nodes of the tree represent beliefs
where the agent must make a decision. The root of the tree corresponds

7

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

to the initial belief by. The directed edges starting from the node labeled
with the belief b corresponds to the available actions. These edges branch
to several others based on the observations that the agent can receive after
choosing that action.

Denote b(s) the actual probability of being in the state s given by the
belief state b. Assume that the agent knows the history of his actions
al = {ag,ai,...,a;} and history of his observations o' = {0, 01,...,0;} up
to time ¢. Using this histories and the initial belief b9 the agent can recursively
calculate its current belief state at time ¢ + 1, denoted as

biy1 = 7(bs, az, 0f) (2.7)

If b was the previous belief state where the agent chose an action a and
received an observation o, then the new belief state b’ = 7(b, a, 0) is given by

v (s') = nO(ola,s") Z T(s'|a, s)b(s), (2.8)

seS

where 7 is a normalizing constant that makes the belief state sum to 1.

The fundamental insight is that the optimal action, which should be
performed at any time, depends only on the agent’s current belief state. This
optimal action is specified by a policy m which maps the current belief state
b to a recommended action 7(b).

The quality of a policy 7 starting from a belief b can be measured by the
expected utility:
Definition 2.4. The expected utility obtained by an agent following a policy
7w and starting from a belief b is defined as

Vi) =F li 'th(st,at)] . (2.9)
t=0

The goal is to find an optimal policy 7* which maximizes the expected
utility for an agent starting from the belief state bg:

T = arg max V™ (bo) (2.10)

Example 2.5. Consider POMDP with two states. The agent has two actions
available: either to stay in the current state, or move to the other one. These
actions have 80% chance to succeed. The observations do not depend on the
performed action, they only help determine the current state, correctly with
probability of 70%. Formally:

2.2. Partially Observable Markov Decision Processes

S = {s1,s2}, A = {stay, go}, O = {01, 02}, T (si|stay, s;) = 0.8,
T (silgo, si) = 0.2, O(0;]go, s;) = O(o4|stay, s;) = 0.7, Vi € {1,2}.
R(s1) =0, R(s2) =1,v=0.95.

The following graph is a visualization of this example:

Figure 2.2: Graph of POMDP with two states

B 2.2.2 Value iteration for POMDPs

In MDP the value iteration algorithm founds utility for each one of the finite
number of states. In POMDPs, there are infinitely many belief states repre-
senting any possible probability distribution over the set of states. Therefore,
a similar approach is not possible.

Consider a fixed optimal policy 7* which generates an action 7*(b) in a
specific belief state b. Then the belief state is updated, and the process
repeats. The policy is equivalent to a so-called conditional plan dependent
on future observations.

Example 2.6. Consider the same POMDP as in Example An example
of a plan of length 2 could be: [stay, if O = o1 then go else stay].

Let ay(s) be the utility of a fixed plan p starting from a state s. Then the
utility of the same plan p executed from the belief state b is only a sum of
utilities a,(s) weighted by the probabilities b(s):

> ap(s)b(s) = {ap,b) (2.11)

seS

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

where (-,) denotes an inner product. From this expression follows that the
expected utility of a fixed conditional plan p is linear in belief state b and
corresponds to a hyperplane.

The optimal policy 7* can now be expressed in terms of plans as the policy
which will choose to execute the plan with highest expected utility at any
belief state b:

Vb)) =V (b) = max(ap, b). (2.12)

It is reasonable to expect that there will be a very similar utility and
identical policy in belief states which are close to a certain belief state b.
These observations lead to the following statement: The utility function V*(b)
is piecewise linear and convex in the belief b.

Consider step plans of depth 1. These plans would receive the reward for
the current state plus the discounted reward for the state reached after the
action. Once these utilities are known, the utilities for plans of depth 2 can be
computed by considering each possible first action, each possible subsequent
observation, and then each way of choosing a plan of depth 1 to execute for
each observation. In general, for plan p of depth d with initial action a and a
subplan of depth d — 1 belonging to an observation o denoted as p,, holds:

ap(s) =R(s) +~ (Z T (s']a, s) Z O(ola, s/)apo(s’)) . (2.13)
s'eS 0ocO

This recursive equation is a foundation of a value iteration algorithm which
can be found in [RNQ9].

Value iteration algorithm is computationally intractable for large state
spaces, therefore, the approximate solutions are usually used. The usual goal
of the approximate solution is to minimize the regret of the returned policy
7 for the initial belief by, which is defined as

regret(m,by) = V*(by) — V" (bg) (2.14)

. 2.3 Heuristic Search Value lteration for POMDPs

Heuristic Search Value Iteration for Partially Observable Markov Decision
Processes [SS04al is an approximate algorithm that approximates the optimal

10

2.3. Heuristic Search Value Iteration for POMDPs

value function V* by lower and upper bounds which are denoted as V and V,
respectively. Interval function V refers to them collectively:

V(b) = [V(b), V(b)] (2.15)

width(V (b)) = V(b) — V(b) (2.16)

The HSVI makes a local update at a specific belief, which is chosen by a
forward explore in the search tree using heuristic that selects optimal actions
and observations. The goal of the algorithm is to find a policy 7 such that
regret(m,by) < e for the desired precision e.

B 2.3.1 Value Function Representation

From (Equation [2.12)) in the previous section follows that value function
V* can be represented by a (possibly infinite) set of vectors. In real-world
applications, it is, of course, impossible to work with an infinite set of vectors,
but for the discounted infinite-horizon case, a finite set can approximate V*
arbitrarily close.

This finite vector set formulation is used for the representation of the lower
bound function V as the finite set I of a-vectors. The value at a belief point
b can be calculated as:

V(b) = max(«, b) (2.17)
acl’
With this representation it is easy to perform local update on the vector set
by adding a new vector.

For the upper bound, the representation by a finite set T of belief/value
points (b;, ;) is used. Before describing the representation itself, the basic
terminology of convex sets is required. This terminology will also be used
frequently in the following chapters.

Definition 2.7. The set X C R" is called convex if for all x € X, y € X and
a € (0,1), the ax 4+ (1 — a)y € X.

Definition 2.8. The convex combination of points x1, ..., xx € R" is the linear

k k

combination Y a;z; such that Y a; =1and a; >0 Vi€ {1,2,...,k}
i=1 i=1

Definition 2.9. The convex envelope (hull) of a finite set of points X is the

set of all convex combinations of its points.

11

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

Having defined the convex hull of points, the value at belief point b is
calculated by a linear program as the projection of b onto the convex hull of
T. The local update is performed by adding a new point to the set.

B 2.3.2 Initialization of the HSVI Algorithm

The initialization of the lower bound is done by a blind policy method:
consider m, to be the policy of always selecting an action a. The lower bound
R, on the long-term reward of policy 7, can be calculated by assuming that
the action a is always chosen in the worst possible state, formally:

oo
: 1 :
R, = ;)'yt min R(s,a) = T mig R(s,a) (2.18)
Let
= . 2.1
R = max R, (2.19)

Then the lower bound V is initialized by a single a-vector such that a(s) = R.

The initialization of the upper bound is done by assuming full observabil-
ity and solving the MDP version of the problem. This solution provides upper
bound values at the corners of the belief simplex. These points initialize the
upper bound function V.

B 2.3.3 Local Updates

The Bellman equation says that the value of choosing an action a in a
belief b is

QY (b,a) = Z R(s,a)b(s) +~ Z Pro|b,a] V(7(b,a,0)) (2.20)

SES 0e®

The Bellman update H is the fundamental operation of value iteration. It
is defined as follows:

Definition 2.10. The Bellman update H is defined as
HV (b) = max Q" (b, a) (2.21)

acA

HSVI uses local update at belief b based on operator H. The lower
bound vector set I' is updated by adding a vector which is result of Backup

12

2.3. Heuristic Search Value Iteration for POMDPs

Figure 2.3: Local update of bound functions. Source: [SS04al

Algorithm described in (Algorithm |2). The upper bound point set T is
updated by adding a point (b, HV (b)). Formally:

I« T"Ubackup(V,b) (2.22)

T < YU (b, HV (b)) (2.23)

Algorithm 2: Backup Algorithm
Result: New vector to update I
Input :Lower bound V, belief b
Output : vector 3
for a € A and 0o € O do

t Bao < argmax(a, (b, a,0))
ac

N =

3 for a € A do
4 L Ba(s) < R(s,a) +v > > Bao(s)O(ola,s)T(s|a,s)

0€0 s'eS

(S

8+ arg Irbaxwa, b)

return

=]

The (Figure 2.3) shows the process of locally updating the lower and upper
bound functions in belief b.

B 2.3.4 Forward Exploration Heuristic

The HSVI algorithm needs to find the belief points which contribute to
the insufficient approximation of the value function V* in the initial belief.
Following heuristic provides a guideline for choosing an optimal action a*
and observation o* in a belief b while searching the POMDP tree for such
belief points. The resulting child node to visit will be 7(b,a*,0*). This
heuristic needs to ensure that the Bellman update H at the chosen child

N

7(b,a*, 0*) will reduce the uncertainty width(V' (b)) at the root b.

13

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

| | | |
I |
O(ba,;) Q(bay Qba;) HV(b)

Figure 2.4: Relationship between Q(b,a;) and HV (b). Source: [SS04a]

1. Choosing an action
Define the interval functions @) and HV (b) as follows:

Q(b.a) = [Q¥(b,a), Q" (b,a)| (2:24)

HV (b) = [HV(b), HV (b)] (2.25)
The (Figure [2.4) shows the relationship between the bounds Q(b,a) on
each potential action and the bounds HV'(b) at belief b after the Bellman
update.

From the definition of Bellman update H (Definition 2.10)) follows that
only the two Q(b, a) intervals, one with the maximal upper bound and
the other with maximal lower bound, determine the HV (b) interval.
Therefore, one of these actions should be pursued. But witch one? The
action with greatest upper bound is better because if a sub-optimal
action a* were chosen, then the upper bound of a* would eventually drop
below the upper bound of another action. The similar thing does not
work for the lower bound. Therefore, the optimal action can be found
by:

* V(b,a) 29
a” = argmax Q (2.26)

2. Choosing an observation
For a fixed optimal action a*, consider the relationship between (:Q(b7 a*)
and the bounds at the child nodes 7(b, a*, 0) for any observation o. From
the Bellman equation (Equation 2.20) follows that

width(Q(b,a*)) = ~ Z Pro|b, a) width(T(b, a,0)) (2.27)
0€0
From this follows that the uncertainty width(V (b)) at a belief b after
an update is at most v times a weighted average of its child nodes
uncertainties and that the termination criterion for this search with the
desired precision ¢ will be width(V (b)) < ey~*.

14

2.3. Heuristic Search Value Iteration for POMDPs

Definition 2.11. Let ¢ be the desired precision. The excess uncertainty
at belief b in depth t is defined as

excess(b,t) = width(V (b)) — ey (2.28)

The node with negative excess uncertainty satisfies the termination
condition. It holds that the excess uncertainty at belief b is at most a
probability-weighted sum of the excess uncertainties at its childern:

excess(b,t) Z Pro|b,a*| excess(T(b,a”,0),t + 1). (2.29)
ocO

Therefore, the child that contributes the most to the excess uncertainty
at b gives the optimal observation:

0" = arg max (Pr [o]b,a*] excess(T(b,a*,0),t +1)). (2.30)

B 2.3.5 Summary and convergence of the HSVI Algorithm

The HSVT algorithm takes desired precision € and the initial belief point

by and returns a policy 7 such that regret(m, by) < e.

It stores the upper and lower bounds on the optimal value function and

locally updates them at specific beliefs which are chosen by exploring for-
ward in the search tree according to a heuristic that selects optimal actions
and observations. The forward exploration heuristic and local update are
summarized in the following Explore Algorithm (Algorithm |3)).

Algorithm 3: Explore Algorithm: explore(b, e, t)

Result: Updates the bound functions in specific beliefs which are

found by forward exploration

Input :the root belief b, desired precision e, depth ¢ of belief b
Output : Updated sets I' and T

1 if width(V (b)) < ey~t then

2
3
4

5

‘ return
else

b,a)
olb, a*)excess(T(b,a*,0),t + 1)]
+1)

a* argmax V(
acA

0" argmax[7(

explore(T (¥ 0%), et

'«~Tu back:up(i, b

T < YU (b, HV (b))

15

2. Heuristic Search Value Iteration for Partially Observable Markov Decision Processes

The complete HSVI Algorithm for POMDPs is described in (Algo-
rithm |4)).

Algorithm 4: HSVI for POMPDs

Result: Policy 7 such that regret(m,b,) < e
Input :POMDP, desired precision ¢, initial belief b
Output : Policy 7

1 Initialize the bounds V.

A

2 while width(V (b)) > ¢ do
3 L explore(by, €, 0)

4 Having achieved the desired precision, return the policy «
corresponding to the lower bound V.

The following theorem provides some of the most important theoretical
results. Full theoretical discussion is presented in [SS04a].

Theorem 2.12. For the HSVI Algorithm it holds that:

® The regret(m,by) of the policy m returned by HSVI Algorithm is at most
E.

® There is a finite depth t,,,, such that all nodes with depth t > t,,4.
have negative excess uncertainty and therefore satisfy the termination
condition for the explore algorithm. This finite depth is equal to

tmaz = [logy (—=———7—)] (2.31)

where Vp and Vo are the initial bound functions.

® HSVI Algorithm is guaranteed to terminate after performing at most
Umaz Updates, where

(A O] et — 1

Umaz = tmaz (232)
A0 -1

16

Chapter 3

Heuristic Search Value Iteration for
One-Sided Partially Observable Stochastic
Games

The previous chapter discussed theory and algorithms for a single agent acting
in a stochastic environment. The presented HSVI algorithm for POMDPs is
the basis for the HSVI algorithm for POSGs described in this chapter. The
first section focuses on basic terminology of Two-Player One-Sided Partially
Observable Stochastic Games, which generalize POMDPs. The second section
describes Value Iteration algorithm for POSGs, which unfortunately cannot
scale for bigger problems. The last section finally presents the HSVI algorithm
for POSGs.

B 31 Two-Player One-Sided Partially Observable
Stochastic Games

The presence of the second player in a stochastic environment is a gen-
eralization of POMDPs from the previous chapter. Such environment with
two players, where only the first player has imperfect information about
the environment, is called Two-Player One-Sided Partially Observable
Stochastic Game [HBP17].

17

3. Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games

B 3.1.1 Definition of Two-Player One-Sided Partially
Observable Stochastic Games

Definition 3.1. Two-Player One-Sided Partially Observable Stochastic Game
G is a tuple G = (S, A1, A3, O, T, R,~,by) where S is the set of states, A; is
the set of actions of the first player, As is the set of actions of the second player,
O is the set of observations, 7 : OxS xS x A; x Ay — R is the transition func-
tion such that 7 (o, s'|s, a1,a2) = Pr [0 = 0,57t = §/|s! = s,a! = a1,a} = ay],
R:S x A1 x Ay — R is the reward function, v < 1 is the discount factor
and by € A(S) is the initial belief where by(s) = Pr [so = s].

The game is played for infinite number of stages. At each stage the game
is in one of the states s € S where players choose their actions a; € A; and
az € Ay to be played. Initial state by € A(S) is a probability distribution
over the set of states S.

After both players played their respective actions, the first player, who
has imperfect information about the game, receives an observation o € O,
the game moves to a state s’ € S with probability 7T (o, s'|s, a1, a2) and the
first player receives a reward R(s,ar,az2). It is assumed that the game is
zero-sum game, i.e. the second player receives —R(s, a1, az). The rewards
are again discounted over time with discount factor v < 1. Players do not
observe their rewards during the game.

Perfect recall is also assumed, therefore, each player remembers every-
thing they did in the past. A history of the first player with imperfect
information is limited to a set (A; x O)!. The second player has full infor-
mation about the game, therefore S x (A; x Ay x O x S)! is a set of her
history.

The strategies o1, 02 of both players are mappings from the set of their
respective histories to the set of their respective actions.

Example 3.2. Consider an environment defined as the following simple graph
with only two vertices joined by an edge:

(D)

Figure 3.1: Simple graph environment

This environment defines the following OS-POSG with two players, who
can move between the vertices:

18

3.1. Two-Player One-Sided Partially Observable Stochastic Games

States of this game are tuples representing the position of each player: S =
{(A,A),(A,B),(B,A),(B,B)}. The actions for both players are either to
stay in the current vertex or to move to the other one: A; = Ay = {stay, go}.
The first player has imperfect information about the game whereas the second
player has full information. The observations for the first player determines
whether he sees the second player in the same vertex or not: O = {yes, no}.
The first player repeatedly tries to catch the second player. This situation is
represented by the states where both players are in the same vertex. Every
time the game gets into such a state, the first player receives a reward of 1.
On the contrary, for states where both players are in the different vertices, he
receives a reward of -1. The game is zero-sum. Therefore, the second player
receives a reward -1 for being caught and 1 otherwise. This rewards also
demonstrates the fact that the goal for the second player is to avoid the first
player as much as possible. Let us assume the discounted rewards by a factor
~v = 0.95 and the initial belief for the first player by = (0.20,0.30,0.40,0.10).
The transition function has 5 parameters. To define the whole transition
probability function it would require to define all 4-2-4-2 -2 = 128 possible
transitions.

To demonstrate transitions for one stage of the game, suppose that the game
is in a state (A, A) and both players chose the action go: a1 = ag = go. Then
the transitions of this stage of the game can be graphically demonstrated as
follows:

Figure 3.2: Transitions of one stage of the game

19

3. Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games

B 3.1.2 Value of Strategy and Value of the Game

The value of strategy oy of the first player is the expected reward of the
first player playing o1 while the opponent plays her best response, formally:

Definition 3.3. The value of the strategy o1 of the first player is a function
Vo, + A(S) — R which, given the initial belief by € A(S), returns the
expected utility V5, (bg) of the first player playing o1 and the second player
her best-response.

The value of the game G, or the value function, represents the expected
outcome of the game. It is the value of the best strategy available for each of
the initial beliefs by € A(S), formally:

Definition 3.4. The value function of the game G is a function V* : A(S) - R
which, given the initial belief by € A(S), returns the value of the best strategy
of the first player for that initial belief, i.e. V*(bo) = sup,, Vo, (bo).

Definition 3.5. The pure belief of the state s is defined as

bo(s') = {(1] j ; z, (3.1)

Consider a value of a fixed strategy o1 of the first player evaluated in the
pure belief by of the state s. Denote the vector of such values as oy, i.e.
A, (s) = Vi, (bs). Then the following lemma holds

Lemma 3.6 (Lemma 1 in [HBP17]). Let oy, be the vector corresponding to
a fixed strategy oy of the first player defined as above. Then the value V,, of
strategy o1 is linear in the initial belief and it holds that

V01 (bO) = Z Qo (S)bo(s) = <a01ab0> (3'2)
seS

Proof. The proof relies on the fact that the second player knows the initial
state of the game. Therefore, the value of a fixed strategy oy is sum of values
of vector a,,, weighted by probabilities bg.]
Example 3.7. Consider the game from (Example 3.2)) with the initial belief
bp = (0.20,0.30,0.40,0.10) and the vector ay, = (—1,0,1,2) representing
values of the fixed strategy o; in the pure beliefs. Then value of strategy o
executed from the initial belief by is

Vi (b0) = (@, bo) = —1-0.20+0-0.30 + 1-0.40 + 2 - 0.10 = 0.4.

Definition 3.8. A real function f is called K-Lipschitz continuous if there
exists a real constant K > 0 such that, for all 1,29 € D(f) : |f(z1)— f(z2)| <
K”l’l — I H .

20

3.2. Value Iteration Algorithm for POSGs

Denote
(e} (e e}
L= min "R(s,a1,a U= max "R(s,a1,a 3.3
(s’ah@);’y (s, a1, a2) (smm);’y (s,a1,a2) (3.3)

then the following lemma holds.

Lemma 3.9 (Lemma 2 in [HBP17]). Value function V,, of a fixed strategy o
of the first player is (U — L)-Lipschitz.

Theorem 3.10 (Theorem 1 in [HBP17]). The value function V* of the game
G is convex in the initial belief and (U — L)-Lipschitz.

Proof. From the definition of the value function V* (Definition 3.4) follows
that V* is supremum of a set of (U — L)-Lipschitz functions (Lemma 3.9).
Supremum taken over the set of bounded (U — L)-Lipschitz functions is also
(U — L)-Lipschitz function. These functions are also linear (Lemma 3.6),
therefore, supremum over the set of linear functions is convex function. [

B 3.2 Value Iteration Algorithm for POSGs

The Value Iteration Algorithm [HBP17] for solving one-sided POSGs
approximates the value function V* of the game G with infinite horizon by
value functions of the same game with finite horizon. Each iteration of the
algorithm improves the approximation by increasing the horizon using the
value backup operator H.

Bl 3.2.1 Value Backup Operator

One iteration of the algorithm can be represented by evaluating value
backup operator H at belief point b, which is denoted as [HV](b). This
evaluation corresponds to solving one stage of the game: players choose their
Nash equilibrium strategies while assuming that the value of the subsequent
game is represented by the value function from the previous iteration. Denote
the strategy of the first player in the current stage as m; € A(A;) and the
strategy of the second player in the current stage as m2 : & — A(Ag).

The utilities in the current stage depend both on immediate rewards R and
on the discounted value of subsequent game represented by value function V.

21

3. Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games

The immediate reward depends only on actions played by the players:

R =3 3" 3T b(s) - mi(ar) - mo(s az) - Ris,ar,a2) (3.4)

s€Saj€A az€A2

After both players played their respective actions, the first player needs to
update his belief for the subsequent game using an action a; € A; he
played and an observation o € O he received:

be0(s') = Z Z T (s |o,5,a1,az) - b(s) - ma(s,az) (3.5)

Pr| O’al’ﬁz SES as€Aa

The value of the subsequent game is the expectation taken over actions

and observations of the first player from the values of a game starting in
belief b7:”:

Rf:ff’ﬁz (V)= Z Z m1(ay) - Prolay, ms] - V(bzy) (3.6)
a1€A, 0O

Then the Nash equilibrium strategy is solved by Minimax theorem [SLBO0S],
which represents the Bellman equation for one-sided POSGs:

[HV](b) = mmmax(wmm + YRS (V) (3.7)

P Ty, Ty,

Bl 3.2.2 Computation of Value Backup Operator

Consider a strategy o; of the first player. From (Lemma 3.6) follows that
the value V,, of such strategy can be represented by an a-vector such that
for any belief point b it holds that V,, (b) = (o, b).

If the value function V of the game G is piecewise linear and convex
(PWLC) it can be represented by a set I' of a-vectors corresponding to the
value functions of the fixed strategies V,,. Therefore, the value function V'
evaluated at any belief point b is

V(b) = rggg(a b) (3.8)

The value backup [HV](b) can now be evaluated using linear programming.

22

3.2. Value Iteration Algorithm for POSGs

B Strategy of the Second Player

In the current stage represented by the value backup [HV](b) the second
player needs to choose her strategy 7o to minimize the utility V of the first
player who plays his best response a; € A;. The value of playing strategy o
against an action a; € Aj is

Rimm —i—’yRsuCC (v) (3.9)

ay,m2 ay,m2

From this equation, a set of best-response constrains can be constructed,
one for each action aj:

v > Z Z b(s)-ma(s,az) R(s,a1,a2)+y Z Prolay, m] -V (by)) (3.10)
s€ES as Ay ocO

If the value function V is represented by a set I' of a-vectors such that
V(b) = magc(a, b), then Vo € T*:
ac

V(b)) > Z a(s’) - b2 (s') (3.11)

s'eS

where b%°(s') is represented by linear constraints in (Equation 3.5).

B Strategy of the First Player

As it was already mentioned the value function V' can be approximated by
a PWLC function represented by a finite set I" of a-vectors which correspond
to a finite subset of linear value functions of the fixed strategies of the first
player.

The dual linear program is used to find the optimal strategy of the first
player. Duals of (Equation corresponds to the strategy to play in the
first stage when the history of the first player is empty. Duals of (Equation
corresponds to the strategy to follow when (a,0) was observed in the
first stage.

B 3.2.3 Convergence of the Value Backup Operator

The last thing to show is that a repetitive application of the value backup
operator H always converges to the value function V*. The convergence

23

3. Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games

can be shown by proving that the value backup operator H is a contraction
mapping with a factor v < 1.

Lemma 3.11 (Lemma 3 in [HBP17]). Let V, V' be value functions, b € A(S)
be a belief point and w1, o (resp. w,) be Nash equilibrial strategies in the
stage [HV'|(b) (resp. [HV'](D)). Assume that for every action-observation pair
(a,0) of the first player, |V (b%) = V' (b%°)| < p. Then [[HV](b) — [HV'](b)| <
v, where v < 1.

Theorem 3.12 (Theorem 2 in [HBP17]). The value backup operator H is
a contraction mapping under the norm ||V — V'|| = bénﬁa()é) [V (b) — V'(b)].

Therefore, it has a unique fixpoint: the value function of the infinite horizon
game.

Proof. Let ||V —V'|| < p. Then for every b%° from (Lemma [3.11) follows
that |V (b3?) — V'(b%?)| < p and for every belief b it holds that [[HV](b) —
[HV'](b)| < yu. From the Banach’s fixed point theorem [K.C07] follows the
uniqueness of the fixpoint and the convergence of the algorithm. O

B 3.3 Heuristic Search Value lteration Algorithm for
POSGs

Similarly to POMDPs, the value iteration algorithm cannot scale for
practical problems with a bigger set of states. This point based Heuristic
Search Value Iteration Algorithm [HBP17] is a generalization of HSVI
algorithm for POMDPs described in the previous chapter. Therefore, many
parts of the algorithm will be the same or similar.

The HSVI algorithm bounds and approximates the true value function
V* by a pair of PWLC functions: lower bound V and upper bound V.
The lower bound V is represented by finite set I' of a-vectors and the upper
bound V is represented as a lower convex envelope of a set T of points. The
interval function V refers to both bound functions collectively:

V(b) = [V(b), V()] (3.12)

gap(V (b)) = V(b) — V(b) (3.13)

The goal of the algorithm is to find these functions V such that gap(V (b)) <

€, where ¢ is the desired precision. The algorithm alters the functions 1% by
adding new elements to their sets. It is done by point-based updates of op-
erator H at a belief point b which is selected by froward exploration heuris-

A

tic. These selected belief points contribute to the fact that the gap(V (b))

24

3.3. Heuristic Search Value Iteration Algorithm for POSGs

is not sufficiently small. Therefore, the approximation in these belief points
needs to be improved.

The initial V' corresponds to the value of a uniform strategy of the first
player, and the initial V' is a result of solving a perfect information refinement
of the game.

B 3.3.1 Point-Based Update

A point-based update at belief point b can improve approximation at
this point by updating V and V functions. After the update these functions
needs to stay (U — L)-Lipschitz, which is required for proving the convergence
of the algorithm.

The update of V adds an a-vector to the set I' which corresponds to the
value function of a Nash equilibrium strategy of the first player in [HV](b)
(denoted LT'(b)) computed from dual linear program (Equations |3.10, [3.11)
mentioned before. This value function is linear and (U — L)-Lipschitz (Lemma
3.9), therefore, adding this a-vector to the set I' preserves (U — L)-Lipschitz
continuity of V.

The update of V adds one point to the set T which corresponds to the
evaluation of the value backup [HV](b) at belief point b. Denote this new
point as UY(b). Computation of [HV](b) cannot be done directly by solving
linear program (Equations [3.10, 3.11) mentioned before because V is not
represented by a-vectors. The projection of beliefs to the lower envelope
of V presented in [HBI16] is used. Adding a point to Y generally does not
preserve (U — L)-Lipschitz continuity of V but it can be fixed by the following
approximation:

V() = inf {V(') + (U = L) b= V'l|2} (3.14)

The (Figure [2.3) shows the process of updating the lower and upper bound
functions.

B 3.3.2 Forward Exploration

The HSVI algorithm needs to find the belief points which contribute to
the insufficient approximation of the value function V* in the initial belief.

25

3. Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games

Following heuristic provides a guideline for choosing such belief points.

The value backup operator H expresses the value at belief point b in terms
of values of subsequent belief points b7;’. When the value backup operator H
is applied to the value functions V at belief point b, it also propagates the
approximation error, therefore, the sufficient accuracy needs to be achieved
also in beliefs encountered later.

The forward exploration simulates a play between the players where
the second player follows a strategy obtained from the application of H on
V. If the approximation V (b) in belief b at time ¢ (denoted as (b, t)) is not
sufficient, it is said that it has positive excess gap:

Definition 3.13. Let ¢ be the desired precision and R > 0 be a neighborhood
parameter. Let

p(t) =ey ! — Z 2R(U — L)y~ (3.15)

The excess gap of in (b,) is defined as

excess(b,t) = gap(V (b)) — p(t) (3.16)

The positive excess gap in (b,t) contributes to the insufficient approxi-
mation in the initial belief. In (b,t) the forward exploration chooses the
subsequent belief (denoted as (b%’,t 4 1)) which has the highest positive
observation/m-probability-weighted excess gap, i.e. the one which contributes
to the insufficient approximation in the initial belief the most. If all subsequent
beliefs have a negative excess gap, the forward exploration terminates because

the point-based update will make the excess gap in (b,t) also negative.

B 3.3.3 Summary and Convergence of the HSVI Algorithm

The HSVI algorithm takes desired precision €, neighborhood parameter
R, and initial belief by and returns an approximation of the optimal value
function represented by upper and lower bound functions V. The algorithm
locally updates these bounds in specific beliefs, which are chosen by for-
ward exploration heuristic. The forward exploration and local updates are

26

3.3. Heuristic Search Value Iteration Algorithm for POSGs

summarized in the following (Algorithm |5)).

Algorithm 5: Explore Algorithm for POSGs: explore(b, e, R,t)
Result: Updates the bound functions in specific beliefs which are
found by forward exploration
Input :the root belief b, desired precision €, neighborhood parameter
R, depth t of belief b
Output : Updated sets I' and T
1 79 < optimal strategy of the second player in [HV](b)
2 (a,0) < according to forward exploration heuristic

3 if excess(V(b%°),t + 1) > 0 then

4 L explore(by’),e, R,t + 1)

5 D« TU{LT'(b)}

6 T+ YU{UY(b)} and make V (U — L)-Lipschitz.

The complete HSVT algorithm for POSGs is described in the following
(Algorithm 6)).

Algorithm 6: HSVI Algorithm for OS-POSGs: HSVI(G,e, R)

Result: Approximate value functions V such that gap(V (b)) < e
Input :Game G = (S, A1, A2,0,T,R,~,bp), desired precision ¢,
neighborhood parameter R
Output: 1%
1 Initialize the bounds V'

A

while gap(V (bo)) > € do
3 L explore(by, e, R, 0)

4 return V

N

The HSVTI algorithm makes the excess gap negative in all reachable time
beliefs, therefore, decreases the gap in the initial belief by. The following
theorem provides theoretical results of the HSVI algorithm. Full theoretical
discussion can be found in [HBP17].

Theorem 3.14 (Theorem 3 in [HBP17]). HSVI algorithm for POSGs converges
to the precision €.

27

28

Chapter 4

Approximation of the upper bound
function of the HSVI Algorithm for
OS-POSGs

The HSVI algorithm for OS-POSGs has insufficient scalability for games with
a bigger set of states. The algorithm approximates the true value function V*
by a pair of convex functions. The lower-bound function is a PWLC function
represented by a set of a-vectors and the upper-bound function is a lower
convex envelope of a set of points. The updates of these functions present
significant technical challenges.

This chapter discusses two possible modifications of the upper bound
function: the first one rather basic, the other, using the Approximate Convex
Hull algorithm.

. 4.1 Limitations and Basic Modifications of the
HSVI Algorithm

The original algorithm periodically removes dominated vectors and points
from their respective sets whenever their size grows by 20%. The removing
of elements, of course, reduces the size of the sets, but also the size of the
linear programs, therefore, the computation time. For the lower bound, the
pruned vectors are the ones which are pointwise dominated by a single another
vector. For the upper bound, the points (b;, v;) are dominated if and only if

29

4. Approximation of the upper bound function of the HSVI Algorithm for OS5-POSGs

V(b;) < ;. For any possible modification of the algorithm, it is necessary to
preserve convexity of these upper and lower bound functions.

The first modification, which comes to mind, is an adjustment of the
parameters of the pruning process. We can change how frequently is the
pruning process called and also remove some additional elements selected
at random apart from the dominated elements. Then we can observe how
it affects the convergence of the algorithm. We will focus only on random
deleting of the points from the upper-bound function because each vector
from the lower-bound function represents the strategy of the first player;
therefore, the constraint for the linear programs. Removing such vectors
would require even more changes in the original algorithm, which creates an
opportunity for further work.

Another way of modifying the upper-bound can be by removing the points
which do not bring much value to the convex envelope of the upper-bound
points. In computational geometry, the problem of finding a convex envelope
of a finite set of points has been studied for a long time [BDH96]. The convex
hull algorithms are usually quite effective only in spaces of lower dimension.
Finding the convex envelope of a finite set of points in general dimension n is,
on the other hand, a difficult task. General dimension algorithm is precisely
what we need for constructing the upper-bound function. The reason for
this is that the dimension corresponds to the number of states |S| + 1, where
the additional 1 is for the value of the upper-bound function in some belief
b. Time complexity is another feature that we need to consider. The usual
trade-off for a faster algorithm is accuracy. The next section describes an
algorithm where the convex hull of a finite set of points is only approximated.

B a2 Approximate Convex Hull in High Dimensions

The Approximate Convex Hull Algorithm in High Dimensions
[SV16] is an effective method for computing the approximate convex hull of the
finite set of points in high dimensions with time complexity of O(K3/2N? log(g)),
where N is a number of points and K is the number of iterations of the
algorithm, which is usually significantly smaller than N.

The main task of the algorithm is to find a subset of points which defines
the entire convex hull. These points are called extreme:

Definition 4.1. Let X = {x1,...,x,} be a finite set of points. The point z; is
called extreme point of X if it cannot be represented as a convex combination
of points from the set X \ z;.

30

4.2. Approximate Convex Hull in High Dimensions

The set of extreme points £ represents the convex hull of X is a sense that
Conv(E) = Conv(X), where Conv(-) denotes convex hull of a set of points.
The basic operation needed in this algorithm is the euclidean distance of a
point z € R™ to Conv(X), which can be computed by a following quadratic
program:

X Ry
d(z,X)? = min ||z — Zaixi||2 s.t. a; >0, Zai =1 (4.1)
o
i=1 i=1

Note that x € Conv(X) if and only if d(z, X) = 0.

Naturally, the key of the algorithm is to find smallest subset £ C X such
that d(z,€) = d(z,X) Vz € R™. Such subset £ C X would be accurate
approximation if d(z,&) = 0 Vo € Conv(X), but that is not needed for an
approximate representation:

Definition 4.2. An ec-approximate convex hull of finite set X is the convex
hull of minimal subset £ C X such that Vz € X, d(z,&) <e.

B 4.2.1 Finding the Approximate Convex Hull

Denote Pc(X) as the set of all subsets of X with cardinality C or less.
The basic approach for finding an e-approximate convex hull of finite set X is
to minimize € for a fixed number of points, which can be formulated as the
following optimization problem: find the subset £ € Po(X) which minimizes
worst case distance of a point in X to the Conv(E), formally:

min maxd(x, &) (4.2)
EEPo(X) z€X

This is a combinatorial optimization problem which requires searching over
each element of Po(X). The greedy version will provide suboptimal solution
but it will still achieve desired precision € with a potentially larger cardinality
than optimal. It finds each element of £ sequentially, i.e. suppose that at
step k we have found a set &, with k elements. Then &1 = £ U &, where

= i d(z', &, U 4.3
@=arg min, max, d@,6U) (43

The greedy algorithm is initialized by & = () and terminates either after fixed
number of steps, or after reaching desired precision €. Time complexity of
the algorithm is O(CN?) in order to reach cardinality of C. This is huge
improvement. The following improved greedy algorithm reduces the
search space even further.

31

4. Approximation of the upper bound function of the HSVI Algorithm for OS5-POSGs

B Improved Greedy Algorithm

Let E be a matrix defined as follows:
Ei,j = d(a:i, EU a;j)2 (4.4)

Then the index of the optimal point & defined in (Equation |4.3) can be
obtained by:

j = arg min max F (4.5)

j i

In other words, the maximum value of each column of E is evaluated and
then the minimum among those maximums is found. The matrix £ has N2
elements, i.e. N2 evaluations of the distance function, but not all elements
need to be found. Observe that the maximum of any subset of elements in
a column provides a lower bound on the maximum over the entire column.
The following method describes the entire process of finding the index j:

1. Calculate the first row of E.

2. Find the minimum value of the first row and select the corresponding
column as the potential candidate for 3

3. Compute the next element of that column and reevaluate which column
has the smallest maximum. Set that column as the new potential
candidate. If two columns have the same maximum, select one at
random.

4. Continue until all elements of one of the columns have been found, and
its maximum is less than or equal to the maximum of the other columns
over the computed elements. In this case, j is the index of that column
and the optimal value € is the maximum value of that column.

Example 4.3. Consider a square matrix F with 16 elements in (Table |4.1]).
The first matrix shows all values that would normally need to be evaluated.
Using the method just described, it is not necessary to evaluate all elements, as

it is shown in the tables starting from left to right. In this case, min max E; ; =
7 %

2 and J = arg min max E;;=4.
J 7

The number of elements computed by this method ranges from 2N — 1 in
the best case to N2 in the worst case. This method is formally described in

32

4.2. Approximate Convex Hull in High Dimensions

311142
813121
11212
511412
3111412131423]1]|4 311142
3 1 1
2
311142
3 1
2
2

Table 4.1: Calculation of distance matrix E; ;

the following (Algorithm |7)).

Algorithm 7: Min Max of Matrix: MinMaxO f Matrixz(S,E)

Result: Finds the index j of the point from S to add as the next
element of convex hull £
Input :the set S of points from which to choose the new one, the set
& of points of convex hull
Output :index j and min max distance &
Data: size of the matrix N, E stores current maximum for each
column, C stores row indices of currently evaluated elements

for each column

N« |S§\ €|
Calculate the first row of E
FE « first row of E
C + 11N
J + index of minimum of F
C’j — C'j +1
while maxC < N do

Calculate EC‘;,}

o N & s W N

9 Ej — HlaX(Ej, ECV]JA))
10 7 < index of minimum of F
11 Cj. — Cj. +1
12 é=FE;

J
13 return j,¢&

The algorithm can be further improved by finding and eliminating interior
points.

33

4. Approximation of the upper bound function of the HSVI Algorithm for OS5-POSGs

Definition 4.4. A point z € X\ & is an interior point of Conv(€) if d(x,E) = 0.

These interior points can be removed from the set X during the iteration
without compromising the approximate convex hull. The interior points of
Ep41 can be found via zeros in the j-th column of the matrix E: Let 1} be
a set of the interior points of & from previous steps. At k-th iteration the
search over (X \Z;)\ & is performed and these interior points of &, identified
from zeros in the j-th column, are placed in the set Z;. Then Ti =1 ULy
is defined and next iteration is performed. Also, some elements of from &
may become interior points in future iterations. These points can be removed
either at the end of each iteration or at the completion of the algorithm,
which reduces the cardinality of the returned set of points.

The algorithm is initialized from an extreme point of Conv(X), which can
be obtained by the following theorem:

Theorem 4.5 (Theorem 1 in [SV16]). Let X be a set of N points in R™. Any
element of X, which has a minimum or maximum in one of its components,
is an extreme point of Conv(X).

B 4.2.2 Summary of the algorithm

This algorithm computes the approximate convex hull for a given set of
points, the desired precision and the maximum size of the convex hull. The

34

4.2. Approximate Convex Hull in High Dimensions

complete algorithm is formally described in the following (Algorithm).

Algorithm 8: ApproximateConvex Hull(S, C, e ges)

Result: Finds the approximate convex hull for a given set of points
Input :the set of points S, the maximum size of the convex hull C,
desired precision of the approximation &geg
Output : Convex hull £ of § and the error of approximation ¢
Initialize £
S8
while || < C and € > €405 do
for z; € S\ € and z; € §'\ € do
Find j and € by Algorithm |7/ where j = arg mjin max E;;

[B Y U R

6 Using E; 5 from previous step, find Z; so that if
d(z,EU l’j) = 0 then z; € 7,

S 5 \Ik

E+—EU 375

9 for p € £ do

10 if d(p,€\ p) =0 then
11 LS%E\p

12 return &£, ¢

Example 4.6. Consider the following set of points § = {A = [2,3],B =
[2,0],C = [1,1], D = [0, 1]} visualized in the following (Figure 4.1)).

Y,
4

D C

0

0 1 2B 3 4 T

Figure 4.1: The points in the coordinate system

The task is to find the convex hull of & with 4.5 = 0 and arbitrary
cardinality. The algorithm is initialized by a point which has a minimum or
maximum in one of its components, for example, A. The initial convex hull
& = {A}. Now we need to find the second point using the matrix algorithm.
The computation is presented in (Table |4.2). The elements of the matrices

35

4. Approximation of the upper bound function of the HSVI Algorithm for OS5-POSGs

are calculated by (Equation 4.4).

B|C|D B|C|D B|C|D
B|0 |2 |45(|B |0 |2 |45 || B |0 |2 |45
C C |1 C |1
D D D |4

B|C| D B|C| D
B|0 |2 |45||B |0 |2 |45
C|1 10 Cc|1]0
D |4 D|4 |1

Table 4.2: Calculation of the distance matrix for the 2nd point

From the last table, we can see that the second point to add to the convex
hull is C' and that the current min max distance &, which is the maximum value
of the column C, is 2. No points became interior in this iteration, therefore,
&1 = {A,C}. The third point is found again by the matrix algorithm in
(Table 4.3).

B | D B | D
B|0 |2 B |0 |2
D D |1

Table 4.3: Calculation of the distance matrix for the 3rd point

From the last table, we can see that the third point to add is B and that
the min max distance ¢ = 1. No points became interior in this iteration,
so the convex hull is & = {A, B, C'}. The last iteration adds the remaining
point D and so € must be 0. Adding D to the convex hull makes C interior.
Therefore, &3 = & = {A, B, D} and the algorithm is complete.

B a3 Using Approximate Convex Hull Algorithm in
HSVI Algorithm for OS-POSGs

This section will describe how is the Approximate Convex Hull Algorithm
from the previous section (Algorithm §)) used in the original HSVI Algorithm
for OS-POSGs.

Every time the pruning of dominated points from the set T occurs, we
call the Approximate Convex Hull Algorithm on the remaining set of non-

36

4.3. Using Approximate Convex Hull Algorithm in HSVI Algorithm for OS5-POSGs

dominated points to decrease the cardinality of T even further. In this case,
the Approximate Convex Hull Algorithm is not initialized by a single point
but by a set of points that correspond to the pure beliefs. Such points will
always be in the convex hull. The returned set of points forms an approximate
convex hull of the original set of non-dominated points, and it is used as the
new set T for the upper-bound function.

This modification gives us a total of three parameters to experiment with.
The first one remains from the original algorithm: how frequently is the
pruning part called. The other two are the parameters of the Approximate
Convex Hull Algorithm: maximum size of the approximate convex hull and
the desired precision of the approximation.

37

38

Chapter 5

Experiments and Evaluation

This chapter presents the experimental results of two modifications of the
upper bound function from the previous chapter. We compare the modified
algorithms to the original one. The first section is a brief introduction to
the implementation of the approximations. Then the description of the
games used in the experiments follows. The last two sections provide the
experimental results of approximation by randomized point deletion and
Convex Hull algorithm.

B 51 Implementation

The original HSVI algorithm is implemented in C++ language. The linear
programs that occur in the algorithm are solved by IBM ILOG CPLEX. For
the first approximation of the upper bound using randomized point deletion,
we only modified the remove-dominated-points function to remove additional
points. For the second approximation of the upper bound function, we
implemented the Approximate Convex Hull algorithm also in C++ language.
The quadratic programs for distance function are solved again by IBM ILOG
CPLEX. The Approximate Convex Hull algorithm is then called by the
remove-dominated-points function in the original algorithm. Note that the
implementation part has not been deeply optimized since it was not the
primary goal of this task.

39

5. Experiments and Evaluation

B 52 Description of the Games

The experiments were performed on the series of games included in the
original algorithm. These games are defined as follows.

B Game3

The Game 3 (peg3.posg) has 143 states, 21 partitions (the first player
always knows the partition he is currently in. Partitions typically correspond
to the perfectly observable components of the state description), 145 actions
of the first player, 13 actions of the second player, 2 observations, 2671
transitions, 2671 rewards and discount factor 0.9500.

B Game 4

The Game 4 (peg4.posg) has 363 states, 37 partitions, 290 actions of the
first player, 18 actions of the second player, 2 observations, 8123 transitions,
8123 rewards and discount factor 0.9500.

B Game5

The Game 5 (pegb.posg) has 731 states, 57 partitions, 485 actions of the
first player, 23 actions of the second player, 2 observations, 18335 transitions,
18335 rewards and discount factor 0.9500.

B 53 Experimental Results of the Approximation by
Randomized Point Deletion

This section presents the experimental results of the approximation by
randomized point deletion. The experiments were performed on the two
following games. The goal of every presented setting of the algorithm is to

A,

achieve the precision gap(V (bg)) < 0.5.

40

5.3. Experimental Results of the Approximation by Randomized Point Deletion

Bl 5.3.1 Experiments on the Game 4

The experiments on the Game 4 were performed with 5 different following
settings: while deleting dominated points, every i-th point will be deleted as
well, where i € {3,5,10,25,50}. The following table (Table 5.1) shows the
results of the experiments compared to the original algorithm.

. Number Number
Number Average Time Total of of

i f f . isi .
Algorithm Convergence of of Time Precision Vectors Points
Iterations Iteration

in LB in UB

Original YES 212 0,0974 25,3830 0,49653 3719 3529
Random 3 NO 2108 0,2988 634,5780 1,86705 21290 718
Random 5 YES 1586 0,3302 528,3660 0,49488 25234 1752
Random 10 YES 255 0,1082 32,4770 0,49852 4742 2776
Random 25 YES 217 0,1012 26,8540 0,49536 4023 3159
Random 50 YES 221 0,1001 26,9770 0,49666 3959 3379

Table 5.1: Experiments with approximation by randomized point deletion on
the Game 4. In the Algorithm column, the Random ¢ algorithm deletes every
i-th point. The Convergence column presents weather the algorithm converged
(precision < 0.5) in the Total Time seconds. Average Time of Iteration is again
in seconds. Precision column shows the achieved precision of the algorithm in
Total Time. The last two columns present the number of elements of the lower
bound (LB) and upper bound (UB) functions.

We can see that in the case of Random 3, the algorithm did not converge
in the presented time. The amount of deleted points was too high for it to
converge. In the rest of the examples, the algorithm converged. The number
of iterations is higher in the cases with more frequent deletion of the points.
This makes sense because some essential points could be removed in the
iteration and the approximation got worse. None of the examples converged
faster than the original algorithm. In the cases where the number of removed
points was high enough, the algorithm tried to compensate for the loss of the
points by significantly increasing the number of vectors in the lower bound.

The following figures (Figure 5.1, |5.2) show dependence of the number of
points and vectors on the iteration of the algorithms.

41

5. Experiments and Evaluation

Dependence of the Number of Points on the Iteration

4000

3500

3000

2500

2000

1500

Number of Points

1000

500

R A T S 0 T 0 T e T TN e 0 B N) T s 0 0 TN B D T ¥ B e B @) T A T 0 B @ T D ¥ 0 B 0 e B @ N B ¥ TR 0 0 B e B)
N AN NSO OUNMOAOWANNXTOOWANMAOW O ONQS W S mMmR
HEH AN NN ST NN OO0 A A NN S N0 OSSN QOO
R B B B B I B B B I B I e B B eV o)
Iteration
e Original esss=Random 3 ssss=Random 5 Random 10 e=s=mRandom 25 e=smRandom 50

Figure 5.1: Dependence of the number of points on the iteration in the approxi-
mation by randomized point deletion in the Game 4

Dependence of the Number of Vectors on the Iteration

30000
25000
20000
15000

10000

Number of Vectors

5000

SO MO AN N TN AN LN AN N AN MO AN OMAD
WA NN AT O O NOMAWLM AN ANOTO O ANMNMODWMO ONOT O W HdNn
HEH AN NN T NN O OMN0ODNDNDNO A A AN NMOMST NDWMOWONNOOOOO OO
R B I T I I B T T I B I R I B I I oV I oY}
Iteration
@ Original ess==Random 3 sss==Random 5 Random 10 esss==Random 25 essssmRandom 50

Figure 5.2: Dependence of the number of vectors on the iteration in the approx-
imation by randomized point deletion in the Game 4

B 5.3.2 Experiments on the Game 5

The experiments on the Game 5 were performed with 5 different following
settings: while deleting dominated points, every i-th point will be deleted as
well, where i € {5,6,10,25,40}. The following table (Table shows the
results of the experiments compared with the original algorithm.

42

5.3. Experimental Results of the Approximation by Randomized Point Deletion

. Number Number
Number Average Time Total of of

Algorithm Convergence of of Precision

. . Time Vectors Points

Iterations Iteration in LB in UB

Original YES 573 0,2897 175,809 0,49894 13283 13052
Random 5 NO 2266 0,5917 1351,397 1,20504 48672 3529
Random 6 YES 1250 0,4267 543,0450 0,49844 29465 6277
Random 10 YES 650 0,3107 211,9350 0,49531 16409 9070
Random 25 YES 572 0,3331 202,0990 0,49675 14077 11229
Random 40 YES 578 0,3041 185,4940 0,49558 13700 12378

Table 5.2: Experiments with approximation by randomized point deletion on
the Game 5. In the Algorithm column, the Random ¢ algorithm deletes every
i-th point. The Convergence column presents weather the algorithm converged
(precision < 0.5) in the Total Time seconds. Average Time of Iteration is again
in seconds. Precision column shows the achieved precision of the algorithm in
Total Time. The last two columns present the number of elements of the lower
bound (LB) and upper bound (UB) functions.

Similarly to the previous experiment, we can see that in the case of Random
5, the algorithm did not converge in the presented time. The amount of
deleted points was too high for it to converge. In the rest of the examples,
the algorithm converged. The number of iterations is higher in the cases with
more frequent deletion of the points. None of the examples converged faster
than the original algorithm. In the cases where the number of removed points
was high enough, the algorithm tried to compensate for the loss of the points
by significantly increasing the number of vectors in the lower bound.

The following figures (Figure [5.3, show dependence of the number of
points and vectors on the iteration of the algorithms.

Dependence of the Number of Points on the Iteration

14000

12000
., 10000
8000

6000

Number of Point:

4000

2000

e (Original ess==Random 5 Random 6 Random 10 esssmRandom 25 esssmRandom 40

Figure 5.3: Dependence of the number of points on the iteration in the approxi-
mation by randomized point deletion in the Game 5

43

5. Experiments and Evaluation

Dependence of the Number of Vectors on the Iteration
60000

50000
40000

30000

Number of Vectors

20000

10000

~~~~~~~~~~~~~~~~~~~~~~~~~~

Iteration

e Original essssRandom 5 Random 6 Random 10 dom 25 dom 40

Figure 5.4: Dependence of the number of vectors on the iteration in the approx-
imation by randomized point deletion on the Game 5

B 54 Experimental Results of the Approximation by
Convex Hull Algorithm

This section presents the experimental results of the approximation by
the Convex Hull algorithm. The experiments were performed on the four
following instances. The goal of every presented setting of the algorithm is to

A

achieve the precision gap(V (by)) < 0.5.

B 5.4.1 Game 3 with Pruning 2 and Cardinality 50

In this case, the experiments were performed on the Game 3 with fixed
pruning parameter 2 (the pruning is called when upper and lower bounds
grow by a factor of 2) and maximal cardinality of the upper bound in every
partition set to 50.

The experiments were performed with the precision of the Approximate
Convex Hull algorithm ¢ € {0.1,0.2,0.3,0.5,0.10,0.20}. The following table
(Table shows the results of the experiments.

44



5.4. Experimental Results of the Approximation by Convex Hull Algorithm

. Time of Number Number
Number Average Time
. Total the .. of of
Algorithm of of . . .. Precision .

Tterations One Tteration Time Original Vectors Points

crations une feratio Part inLB in UB
Original 30 0,0215 2,33 2,33  0,49144 292 409
Approx 0,01 29 0,4144 13,22 2,28 0,48707 330 347
Approx 0,02 30 0,6735 21,18 2,44 0,48063 413 358
Approx 0,03 34 0,9749 20,76 2,68 0,45511 416 325
Approx 0,05 35 0,4956 18,52 2,62 0,45921 432 368
Approx 0,10 44 0,3381 16,32 3,15 0,47999 573 332
Approx 0,20 171 0,2985 52,57 11,19 0,3832 2129 318

Table 5.3: Experiments with approximation by Convex Hull algorithm on the
Game 3 with pruning 2 and cardinality 50. In the Algorithm column, the Approx
¢ algorithm is called with the previously described settings: pruning 2, cardinality
50 and desired precision of the convex hull €. Every algorithm converged to
the precision < 0.5 in the presented Total Time seconds. Average Time of One
Iteration is in seconds. Time of the Original Part shows the fraction of the Total
Time overlooking the time needed to compute the Approximate Convex Hull; the
difference of these two columns is the time needed to compute the Approximate
Convex Hull. Precision column presents the achieved precision of the algorithm
in Total Time. The last two columns present the number of elements of the
lower bound (LB) and upper bound (UB) functions

The following figures (Figure show dependence of the number of
points and vectors on the iteration of the algorithms.

Dependence of the Number of Points on the Iteration

Number of Points

HOW O NN EHW M SN AN OMN=NOMN SN OMMN = W00 m
NANANMO TS ITINWNOOONRNKONVODNNOOOA—ANNNM®M T T T D
= I IS ISR B R R I I I B |

157
161
165
169
173

Iteration
e Original esss=Approx 0,01 Approx 0,02 Approx 0,03 e Approx 0,05 s Approx 0,10 esssApprox 0,20
Figure 5.5: Dependence of the number of points on the iteration in the approxi-

mation by Convex Hull algorithm in the Game 3 with pruning 2 and cardinality
50

45



5. Experiments and Evaluation

Dependence of the Number of Vectors on the Iteration

2500
2000
1500

1000

Nuber of Vectors

500

Iteration

e Original sssApprox 0,01 Approx 0,02 Approx 0,03 s Approx 0,05 sssssApprox 0,10 esssApprox 0,20

Figure 5.6: Dependence of the number of vectors on the iteration in the approx-
imation by Convex Hull algorithm in the Game 3 with pruning 2 and cardinality
50

In every example, the algorithm converged in the presented time. The time
needed to compute the Approximate Convex Hull causes the algorithm to be
significantly slower than the original one. In every case, the number of points
was decreased compared to the original algorithm, but the number of vectors
increased. If we overlook the time needed to compute the convex hull, we can
see that the time devoted to the original part of the algorithm is very similar
to the original algorithm. In the case of Approx 0,01, we can see that this
time is even slightly smaller. This can, of course, be caused by a statistical
error.

B 5.4.2 Game 3 with Pruning 4 and Cardinality 50

In this case, the experiments were performed on the Game 3 with fixed
pruning parameter 4 (the pruning is called when upper and lower bounds
grow by a factor of 4) and maximal cardinality of the upper bound in every
partition set to 50.

The experiments were performed with the precision of the Approximate
Convex Hull algorithm ¢ € {0.2,0.4,0.8,0.15,0.30,0.60}. The following table
(Table shows the results of the experiments.

46



5.4. Experimental Results of the Approximation by Convex Hull Algorithm

Number Average Time Total Tl?;; of Number Number
Algorithm of of Precision  of of

T oinal
Iterations One Iteration ime Origina Vectors Points

Part

Original 30 0,0215 2,33 2,33  0,49144 292 409
Approx 0,02 31 0,4062 13,82 2,26 0,49103 346 407
Approx 0,04 33 0,4295 15,55 2,56 0,42856 370 410
Approx 0,08 31 0,3445 12,25 2,65 0,45211 372 402
Approx 0,15 37 0,3013 12,67 2,81 0,42825 467 399
Approx 0,30 35 0,1655 7,47 2,75 047024 413 392
Approx 0,60 44 0,1433 7,96 3,31 0,43933 621 425

Table 5.4: Experiments with approximation by Convex Hull algorithm on the
Game 3 with pruning 4 and cardinality 50. In the Algorithm column, the Approx
¢ algorithm is called with the previously described settings: pruning 4, cardinality
50 and desired precision of the convex hull €. Every algorithm converged to
the precision < 0.5 in the presented Total Time seconds. Average Time of One
Iteration is in seconds. Time of the Original Part shows the fraction of the Total
Time overlooking the time needed to compute the Approximate Convex Hull; the
difference of these two columns is the time needed to compute the Approximate
Convex Hull. Precision column presents the achieved precision of the algorithm
in Total Time. The last two columns present the number of elements of the
lower bound (LB) and upper bound (UB) functions

The following figures (Figure 5.7, show dependence of the number of

points and vectors on the iteration of the algorithms.

Dependence of the Number of Points on the Iteration

Number of Points

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Iteration
e Original === Approx 0,02 Approx 0,04 Approx 0,08 s Approx 0,15 s Approx 0,30 esApprox 0,60
Figure 5.7: Dependence of the number of points on the iteration in the approxi-

mation by Convex Hull algorithm in the Game 3 with pruning 4 and cardinality
50

47



5. Experiments and Evaluation

Dependence of the Number of Vectors on the Iteration

700
600
500
400

300

Number of Vectors

200

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Iteration

e Original essApprox 0,02 Approx 0,04 Approx 0,08 sssssApprox 0,15 s Approx 0,30 e Approx 0,60

Figure 5.8: Dependence of the number of vectors on the iteration in the approx-
imation by Convex Hull algorithm in the Game 3 with pruning 4 and cardinality
50

The results are very similar to the previous example. In every case, the
algorithm converged in the presented time. The time needed to compute
the Approximate Convex Hull causes the algorithm to be significantly slower
than the original one. In every case, the number of points was very similar to
the number of points in the original algorithm, but the number of vectors
increased. If we overlook the time needed to compute the convex hull, we
can see that the time devoted to the original part of the algorithm is very
similar to the original algorithm. In the case of Approx 0,02, we can see that
this time is even slightly smaller. This can, of course, be caused again by a
statistical error.

B 5.4.3 Game 4 with Pruning 8 and Cardinality 100

In this case, the experiments were performed on the Game 4 with fixed
pruning parameter 8 (the pruning is called when upper and lower bounds
grow by a factor of 8) and maximal cardinality of the upper bound in every
partition set to 100. We chose this setting to show the behavior of the
algorithm depending on the desired precision of the Approximate Convex
Hull algorithm because, in this game, the number of points in each partition
rarely reaches 100.

The experiments were performed with the precision of the Approximate
Convex Hull algorithm ¢ € {0.2,0.5,0.8}. The following table (Table
shows the results of the experiments.

48



5.4. Experimental Results of the Approximation by Convex Hull Algorithm

Number Average Time Total Tl?;; of Number Number
Algorithm of of Precision  of of

T ioinal
Iterations One Iteration ime  Origina Vectors Points

Part
Original 212 0,0974 25,38 25,38 0,49653 3719 3529
Approx 0,02 222 13,0304  2884,59 25,90 0,49524 4632 4230
Approx 0,05 239 12,1074  2886,44 28,54 0,48571 5052 3570
Approx 0,08 267 9,4436 2516,80 34,69 0,49077 6104 3289

Table 5.5: Experiments with approximation by Convex Hull algorithm on the
Game 4 with pruning 8 and cardinality 100. In the Algorithm column, the
Approx e algorithm is called with the previously described settings: pruning
8, cardinality 100 and desired precision of the convex hull e. Every algorithm
converged to the precision < 0.5 in the presented Total Time seconds. Average
Time of One Iteration is in seconds. Time of the Original Part shows the fraction
of the Total Time overlooking the time needed to compute the Approximate
Convex Hull; the difference of these two columns is the time needed to compute
the Approximate Convex Hull. Precision column presents the achieved precision
of the algorithm in Total Time. The last two columns present the number of
elements of the lower bound (LB) and upper bound (UB) functions

The following figures (Figure 5.10) show dependence of the number of
points and vectors on the iteration of the algorithms.

Dependence of the Number of Points on the Iteration
4500

4000

3500 = - - A
2 3000 e .’
£ v
£ W/
< 2500
° /
3 2000 /
£ -

2 1500 e
1000 o
500 e

e Points s Approx 0,02 Approx 0.05 Approx 0,08

57
64
71
78
85
92
99
106
113
120

~
o~
Ea|

134
141
148
155
162
169
176
183
190
197
204
211
218
225
232
239
246
253
260
267

Iteration

Figure 5.9: Dependence of the number of points on the iteration in the approxi-
mation by Convex Hull algorithm in the Game 4 with pruning 8 and cardinality
100

49



5. Experiments and Evaluation

Dependence of the Number of Vectors on the Iteration

7000
6000 — -

5000

mber of Vectors
IS
S
(=)
Q

w
=]
=]
s]

]

Z 2000

1000

e Original s Approx 0,02 Approx 0,05 Approx 0,08

Figure 5.10: Dependence of the number of vectors on the iteration in the
approximation by Convex Hull algorithm in the Game 4 with pruning 8 and
cardinality 100

The results are very similar to the previous examples. In every case, the
algorithm converged in the presented time. The number of points decreased
only in the Approx 0.08 case. In all examples, the number of vectors increased.
The number of iterations is roughly the same. Total time needed to compute
the Approximate Convex Hull causes the algorithm to be significantly slower
than the original.

B 5.4.4 Game 4 with Pruning 10 and Cardinality 100

In this last example, the experiments were performed on the Game 4 with
fixed pruning parameter 10 (the pruning is called when upper and lower
bounds grow by a factor of 10) and maximal cardinality of the upper bound
in every partition set again to 100.

The experiments were performed with the precision of the Approximate
Convex Hull algorithm ¢ € {0.1,0.2,0.3,0.4,0.5} The following table (Table
shows the results of the experiments.

50



5.4. Experimental Results of the Approximation by Convex Hull Algorithm

. Time of Number Number
Number Average Time
. Total the .. of of
Algorithm of of . . .. Precision .
Tterations One Tteration Time Original Vectors Points
crations ne Heratio Part in LB in UB
Original 212 0,0974 25,38 25,38 0,49653 3719 3529
Approx 0,01 220 8,8211 1937,15 27,17 0,49092 4532 4638
Approx 0,02 222 8,3002 1839,14 25,01 0,49819 4256 4131
Approx 0,03 242 7,4079 1790,32 29,07 0,49167 4863 4529
Approx 0,04 224 6,4484 1442,85 26,46 0,49928 4549 4176
Approx 0,05 242 6,3036 1517,62 28,48 0,49759 4925 4214

Table 5.6: Experiments with approximation by Convex Hull algorithm on the
Game 4 with pruning 10 and cardinality 100. In the Algorithm column, the
Approx e algorithm is called with the previously described settings: pruning
10, cardinality 100 and desired precision of the convex hull . Every algorithm
converged to the precision < 0.5 in the presented Total Time seconds. Average
Time of One Iteration is again in seconds. Time of the Original Part shows
the fraction of the Total Time overlooking the time needed to compute the
Approximate Convex Hull; the difference of these two columns is the time
needed to compute the Approximate Convex Hull. Precision column presents
the achieved precision of the algorithm in Total Time. The last two columns
present the number of elements of the lower bound (LB) and upper bound (UB)
functions

The following figures (Figure [5.11} |5.12) show dependence of the number
of points and vectors on the iteration of the algorithms.

Dependence of the Number of Points on the Iteration

Number of Points

Iteration

o Original  sss—Approx 0,01 Approx 0,02 Approx 0,03  wessssApprox 0,04  essmApprox 0,05
Figure 5.11: Dependence of the number of points on the iteration in the

approximation by Convex Hull algorithm in the Game 4 with pruning 10 and
cardinality 100

o1



5. Experiments and Evaluation

Dependence of the Number of Vectors on the Iteration

6000
5000

4000

Number of Vectors
w
(=]
(=]
(=)

o
=]
o
S

1000

145
151
157
163
169
175
181
187
193
199
205
211
217
223
229
235
241

e I BN )
QO NN MM
IR IR Bl il ppit

Iteration

e Original s Approx 0,01 Approx 0,02 Approx 0,03 essssApprox (0,04 — esssApprox 0,05

Figure 5.12: Dependence of the number of vectors on the iteration in the
approximation by Convex Hull algorithm in the Game 4 with pruning 10 and
cardinality 100

As we can see, the number of points and vectors increased in every case
compared to the original algorithm. The number of iterations is roughly the
same. Total time needed to compute the Approximate Convex Hull causes the
algorithm to be significantly slower than the original. In the Approx 0.02 case,
the time devoted to the original part of the algorithm was slightly smaller
than in the original algorithm, but this can be caused by the statistical error.

52



Chapter 6

Conclusion

The Heuristic Search Value Iteration algorithm for POSGs approximates the
true value function with upper and lower bound functions represented by
points and vectors, respectively. These functions are updated by adding new
elements to their sets, which is the key operation of the whole HSVI algorithm.
Unfortunately, these updates present a bottleneck in the performance of the
algorithm. We analyzed two possible approximations of the upper bound
function represented by a set of points.

The first approximation focused on the randomized deletion of the points.
The experimental results of this approximation are presented in Section [5.3.
This approximation did not reduce the total computation time compared
to the original algorithm but provided some interesting results. When the
amount of deleted points were high enough, the algorithm tried to compensate
for the loss of the points by significantly increasing the number of vectors in
the lower bound. From this observation, we can deduce that further work
should focus on the approximation of both bounds simultaneously.

The second approximation focused on the approximation by Convex Hull
algorithm. The experimental results of this approximation are presented in
Section |5.4. This approximation did not reduce total computation time as
well; on the contrary, it significantly increased the computation time. The
main reason for this is that at this moment, the methods for solving quadratic
programs presented in the Approximate Convex Hull algorithm are not very
effective. If we overlook the time that is needed for the solution of these
quadratic programs, we got some interesting results. In three cases (Table 5.3
- Approx 0.01, Table 5.4 - Approx 0.02 and Table |5.6/- Approx 0.02) we got

53



6. Conclusion

slightly smaller computational time on the original part of the program. This
is most likely caused by the statistical error. This result suggests that this
approximation might be useful in the future when new methods for solving
quadratic programs are possibly developed or for future research, which could
focus on replacing the quadratic programs by different methods.

The overall results of the upper bound approximation are rather negative.
The approximation of the upper bound is complicated. We can conclude that
no matter how we approximate the upper bound function, we cannot get
better results unless we also focus on the approximation of the lower bound
function.

o4



Appendix A

Bibliography

[BDHY6]

[HB16]

[HBP17]

[K.CO7]

[KJT+09]

[PIM*08]

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull
algorithm for convex hulls, ACM Transactions on Mathematical
Software 22 (1996), no. 4, 469-483.

K. Hordk and B. Bosansky, A Point-Based Approzimate Algo-
rithm for One Sided Partially Observable Pursuit-Evasion Games,

Proceedings of the Conference on Decision and Game Theory for
Security (2016), 435-454.

K. Hordk, B. Bosansky, and M. Péchoucek, Heuristic Search Value
Iteration for One-Sided Partially Observable Stochastic Games,
AAAT (2017), 558-564.

K.Ciesielski, On Stefan Banach and some of his results, Banach
Journal of Mathematical Analysis 1(1) (2007), 1-10.

C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordoénez, and
M. Tambe, Computing optimal randomized resource allocations for
massive security games, Proceedings of the 8th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS)
(2009), 689-696.

J. Pita, M. Jain, J. Marecki, F. Ordonez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus, Deployed ARMOR pro-
tection: the application of a game theoretic model for security
at the Los Angeles International Airport, Proceedings of the 7th

International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) (2008), 125-132.

55



A. Bibliography

[RN0Y]

[SLBOS]

[SS04a]

[SS04b)

[SV16]

[VATS14]

S. J. Russell and P. Norvig, Artificial Intelligence A Modern
Approach, 3 ed., Pearson, December 2009.

Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorith-
mic, game-theoretic, and logical foundations, Cambridge University
Press, New York, NY, USA, 2008.

T. Smith and R. Simmons, Heuristic search value iteration for
POMDPs, Proceedings of the 20th conference on Uncertainty in
artificial intelligence (2004), 520-527.

, Heuristic search value iteration for POMDPs: Detailed
theory and results, Technical report, Robotics Institute, Carnegie
Mellon University (2004).

H. Sartipizadeh and T. L. Vincent, Computing the Approzi-
mate Convex Hull in High Dimensions, arXiv e-prints (2016),
arXiv:1603.04422.

Y. Vorobeychik, B. An, M. Tambe, and S. P. Singh, Computing
Solutions in Infinite-Horizon Discounted Adversarial Patrolling
Games, Proceedings of the 24th International Conference on Au-
tomated Planning and Scheduling (ICAPS) (2014), 314-322.

56



	Introduction
	Heuristic Search Value Iteration for Partially Observable Markov Decision Processes
	Short introduction to Markov Decision Processes
	Definition of Markov Decision Processes
	Value Iteration

	Partially Observable Markov Decision Processes
	Definition of Partially Observable Markov Decision Processes
	Value iteration for POMDPs

	Heuristic Search Value Iteration for POMDPs
	Value Function Representation
	Initialization of the HSVI Algorithm
	Local Updates
	Forward Exploration Heuristic
	Summary and convergence of the HSVI Algorithm


	Heuristic Search Value Iteration for One-Sided Partially Observable Stochastic Games
	Two-Player One-Sided Partially Observable Stochastic Games
	Definition of Two-Player One-Sided Partially Observable Stochastic Games
	Value of Strategy and Value of the Game

	Value Iteration Algorithm for POSGs
	Value Backup Operator
	Computation of Value Backup Operator
	Convergence of the Value Backup Operator

	Heuristic Search Value Iteration Algorithm for POSGs
	Point-Based Update
	Forward Exploration
	Summary and Convergence of the HSVI Algorithm


	Approximation of the upper bound function of the HSVI Algorithm for OS-POSGs
	Limitations and Basic Modifications of the HSVI Algorithm
	Approximate Convex Hull in High Dimensions
	Finding the Approximate Convex Hull
	Summary of the algorithm

	Using Approximate Convex Hull Algorithm in HSVI Algorithm for OS-POSGs

	Experiments and Evaluation
	Implementation
	Description of the Games
	Experimental Results of the Approximation by Randomized Point Deletion
	Experiments on the Game 4
	Experiments on the Game 5

	Experimental Results of the Approximation by Convex Hull Algorithm
	Game 3 with Pruning 2 and Cardinality 50
	Game 3 with Pruning 4 and Cardinality 50
	Game 4 with Pruning 8 and Cardinality 100
	Game 4 with Pruning 10 and Cardinality 100


	Conclusion
	Bibliography

