FACULTY

OF ELECTRICAL
ENGINEERING
CTU IN PRAGUE

Bachelor’s thesis

Design and implementation of a scalable
server for parallelization of optimization
algorithms execution

Lukas Forst

Department of Computer Science

Supervisor: Ing. Ondrej Vanék, Ph.D.

May 22, 2019

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
PFijmeni: Forst Jméno: Lukas Osobni ¢islo: 465806

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Studijni obor: Software
\ J
Il. UDAJE K BAKALARSKE PRACI
~
Nazev bakalarské prace:
Navrh a vyvoj Skalovatelného serveru pro paralelizaci béht optimalizacnich algoritmu
Nazev bakalafské prace anglicky:
Design and implementation of a scalable server for parallelization of optimization algorithms execution
Pokyny pro vypracovani:
Large-scale optimization problems are non-trivial to solve and require a significant amount of computational resources as
well as computational time to find a solution. The challenge is to solve not only a single task but a multitude of them in a
parallel manner. Additionally, the tasks are non-homogeneous, often describing a different problem. This problem can be
solved by designing and intelligent scheduler able to schedule such tasks on a distributed computational platform.
The goal of the thesis is:
Study the state-of-the-art approach to computational tasks scheduling. Study various types of optimization problems and
approaches and understand their computational needs. Study the distributed scalable architecture and approaches to
schedule tasks on such architecture. Design a scheduling and load-balancing module able to ingest various optimization
tasks and schedule them with respect to several criteria. Implement the scheduler. Evaluate the scheduler on a number
of scenarios.
Seznam doporucené literatury:
[1] Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
[2] AWS. Load Balancing, User Guide. Amazon. Online.
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/elb-ug.pdf.
[3]Igbal, M. A, Saltz, J. H., & Bokhart, S. H. (1986). Performance tradeoffs in static and dynamic load balancing strategies.
Jméno a pracovisté vedouci(ho) bakalarské prace:
Ing. Ondfej Vanék, Ph.D., centrum umélé inteligence FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalafské prace: 05.02.2019 Termin odevzdani bakalarské prace: 24.05.2019
Platnost zadani bakalarské prace: 20.09.2020
Ing. Ondfej Vanék, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
L podpis vedouci(ho) prace podpis dékana(ky))

Ill. PREVZETIi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana 1z 1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would first like to thank my thesis advisor, Ondfej Vanék, whose office’s
door was always open whenever I ran into a trouble spot or had a question
about my research or writing.

I would like to also thank my colleagues in Blindspot Solutions and especially
to Petr Eichler, whose valuable comment suggestions on my paper inspired
me to improve the quality of the assignment and helped me to overcome the
various challenges I faced during the development.

Finally, I must express my very profound gratitude to my parents and to my
better half for providing me with unfailing support and continuous encour-
agement throughout my years of study and through the process of researching
and writing this thesis.

This accomplishment would not have been possible without them.

Thank you.

Lukas Forst

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 22,2019 .

Czech Technical University in Prague

Faculty of Electrical Engineering

© 2019 Lukas Forst. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Abstrakt

Velké optimalizac¢ni tlohy nejsou jednoduché a pro nalezeni reseni vyzaduji
velké mnozstvi vypocetniho vykonu, stejné jako vypocetniho ¢asu. Proto je
vyzvou je vyTesit paralelné a v co nejkratsim mozném case. Optimalizaéni
problémy nejsou homogenni skupina, ale popisuji ¢asto kompletné odlisSnou
doménu a tedy mohou byt velice riznorodé. Problém exekuce optimaliza¢nich
programu a jejich vykonové narocnosti, lze TeSit za pouziti inteligentniho
planovace, ktery umoznuje naplanovat samotné spusténi tlohy v distribuo-
vaném vypocetnim prostredi.

Tato prace se zabyva navrhem vyvazovace zatéze vyvinutého primo pro opti-
maliza¢ni algoritmy, ktery minimalizuje plytvani zdroji a zvysSuje vykon po-
moci spravného rozdéleni vyuziti mezi vice instanci téchto algoritmii. Prace
analyzuje nejmodernéjsi feseni a technologie, které se pouzivaji k reseni takovych
problému ve velkych infrastrukturdch. Nésledné je navrzeno nové feseni pro
vyrovnavani zatéze specifické pro danou doménu. Price obsahuje matemat-
ickou formalizaci problému optimalizace vyvazovani zatéze a zaroven popisuje
a Tesi dalsi nalezené problémy, jako je napriklad predikce hyperbolickych
casovych Tfad. Nésledné je v praci navrzena architektura na bazi mikrosluzeb
pro systém vyvazovani zatéze a také je dany systém kompletné realizovan.
Zaroven jsme navrhli a implementovali simulace a experimenty, které testuji
implementovany vyvazovac zatéze.

Zavérecna kapitole prace se zabyva vymezenim nezbytnych kroki pro tplnou
produkcionalizaci navrzeného systému vyvazovani zatéze a také nastinuje bu-
douci vyvoj nastroju a knihoven, které byly vyvinuty vedle primarniho systému.

Klicova slova vyvazovani a distribuce zatéze, optimaliza¢ni algoritmy, kom-
binatoricka optimalizace, TASP, OptaPlanner, Kotlin, Ktor, Docker

ix

Abstract

Large-scale optimization problems are non-trivial to solve and require a sig-

nificant amount of computational resources as well as computational time to
find a solution. The challenge is to solve not only a single task but a multitude
of them in a parallel manner. Additionally, the tasks are non-homogeneous,
often describing a different problem. This problem can be solved by designing
and intelligent scheduler able to schedule such tasks on a distributed compu-
tational platform.
This work introduced the load balancer developed explicitly for the optimiza-
tion algorithms, which should minimize resources wasting and increase the per-
formance using correct utilization distribution across the multiple instances of
such algorithms. The thesis analyzes the state-of-the-art solutions and tech-
nologies, that are being used to solve load balancing problems in the large
infrastructures. Subsequently, the new domain-specific load balancing solu-
tion is proposed. The thesis proposes the mathematical formalization of the
load balancing optimization problem and the related challenge, such as hyper-
bola time series prediction. Subsequently, the thesis designs the microservices
architecture for the load balancer and also delivers the complete implementa-
tion of the proposed system. This thesis also proposed and implemented the
simulations and experiments, which evaluates the implemented load balancer.
The final chapter of the thesis addresses out of scope steps for complete pro-
ductionalization of the proposed load balancing system and also outlines the
future development of the tools and libraries, that was developed alongside
the primary system.

Keywords load balancing, optimization algorithms, combinatorial optimiza-
tion, TASP, OptaPlanner Kotlin, Ktor, Docker

Contents

Introduction

1.1

Thesis goals

State of the art

2.1

2.2

Load Balancing
2.1.1 Static Load Balancing
2.1.2 Dynamic Load Balancing
2.1.3 Load Balancing for Optimization Algorithms
Optimization Algorithms,
2.2.1 Linear Optimization
2.2.2 Heuristic algorithms

Problem formalization

3.1

3.2

Formal definition L.
3.1.1 Variables Definition
3.1.2 Resources reconfiguration
3.1.3 Optimization criteria
Resulting problemo

Solution design

4.1

Solution value prediction L.
4.1.1 Hyperbola time series fitting

4.2 Load balancing decisions
4.3 Complete application algorithm
Implementation

5.0.1 Architecture scheme,
5.1 Development stack

5.1.1 Programming Language
5.1.2 Build environment L0000

xi

[\]

~J ot ot Ot

10

11
12

15
17
17
19
19
20

21
21
22
23
23

xii CONTENTS
5.1.3 Runtime environment 29

5.1.4 Framework 30

5.2 Algorithms values prediction 32
5.3 Load balancing decisions with OptaPlanner 33
5.3.1 Formalized definition representation 33

5.3.2 Scheduling Algorithm 34

5.3.3 Implementation 34

6 Experiments 35
6.1 Simulations implementationo 35
6.2 Optimization algorithms data 35
6.3 Simulations 36
6.3.1 Simulation output L. 37

7 Conclusion 39
7.1 Future work 39
Bibliography 41
A List of attachments 45

CHAPTER 1

Introduction

The globalization of the world’s economies is a major challenge to local
industry and it is pushing the manufacturing sector to the transformation
called Industry 4.0 [1]. In order to become more competitive, manufacturers
need to embrace emerging technologies, such as advanced analytics, artificial
intelligence and mathematical optimization to improve their efficiency and
productivity.

Specifically the manufacturing industry sector, which have high production
costs, faces multiple problems, where employing mathematical optimization
can reduce cost or improve the efficiency of the process. Taking as an exam-
ple the car manufacturers, there are many processes, that can be optimized to
reduce their cost or to use needed resources more efficiently, such as internal
logistics, car parts transportation, parts stocking, cars manufacturing and the
allocation of the various types of resources. These optimization challenges
are often solved by the proprietary software systems with included optimiza-
tion engine, where the one problem domain is usually handled by the single
program operating specifically with such domain.

These applications typically have a user interface for the data visualiza-
tion and an engine running an optimization algorithm. Although the data
visualization part of the application does not require powerful hardware, the
immense complexity of the mathematical optimization problems and thus the
performance requirements for such optimization engine solving them, are not
always satisfiable. Moreover, the computer performance is a finite resource
and it costs money paid for the computer components or for the electricity
used. For those reasons, the optimization software systems have often limited
access to computer resources. In addition, this computer performance is not
used all the time, since the typical usage of such application lays mainly in
data visualization, hence the performance, required only when the optimiza-
tion engine is running, is unused.

Using such software architecture seems to be highly inefficient, since the
instances, that are in time ¢ running the optimization algorithm, are over-

1. INTRODUCTION

whelmed and at the same time ¢, the applications, that are not running the
optimization tasks, do not use their powerful computer resources at all.

The potential solution for these problems lays in microservices architec-
ture, where the parts of the applications are independent and able to run
separately. Using this approach enables distributed computing and therefore
outsourcing the demanding optimization engine to more powerful servers. This
approach solves the lack of resources for the optimization engine on the less
powerful servers, but it also introduces a new challenge in the load balancing
of the servers, where the optimization engine is being executed.

In this thesis, we would like to present the load balancer specifically devel-
oped for the optimization algorithms, which should minimize resources wast-
ing and increase the performance using correct utilization distribution across
the multiple instances of such algorithms. In the first chapters, the thesis
analyzes the state-of-the-art solutions and technologies, that are being used
to solve load balancing problems in the large infrastructures. These tech-
nologies are evaluated and the new domain-specific load balancing solution is
proposed. The thesis then transforms and formalizes the load balancing op-
timization problem into an integer linear programming problem. The related
challenges arising from the problem formalization, such as hyperbola time se-
ries prediction, are defined and the solutions for such problems are proposed.
Subsequently, the thesis designs and evaluates the microservices architecture
for the load balancer and also delivers the complete implementation of the
load balancer. This thesis also proposed and implemented the simulations
and experiments, which evaluates the implemented load balancer.

In the last chapter, the future work is addressed and the steps, for moving
the load balancer into the production environment, are proposed. Apart from
the planned steps for the load balancer system, the last chapter outlines the
future of the developed tools and libraries.

1.1 Thesis goals

To summarize the previous introduction, the main goals of the thesis were
set as follows.

Study the state-of-the-art approach to computational tasks
scheduling

This thesis extensively studies and describes the state of the art algorithms
used for computational task scheduling and load balancing in section 2.1. It
also presents technologies used to solve such problems. The difference between
the state-of-the-art load balancing strategies and why the thesis proposes and
implements the new technology instead of using the existing one is presented
in section 2.1.3.

1.1. Thesis goals

Study various types of optimization problems and approaches and
understand their computational needs

The thesis brings an overview of and describes various optimization prob-
lems, techniques, and algorithms that are being used in real-life situations to
solve diverse industries problems in section 2.2.

Study the distributed scalable architecture and approaches to
schedule tasks on such architecture

The distributed architecture study is presented in section ?7. This sec-
tion also introduces the overall distributed architecture of the load balancer
including the simulation module.

Design a scheduling and load-balancing module able to ingest
various optimization tasks and schedule them with respect to
several criteria

The complex problem of the load balancing of the optimization tasks is
formalized in chapter 3. Based on the problem formalization, solution design,
including the final load balancing algorithm, is introduced in chapter 4.

Implement the scheduler

The load balancing module design from chapter 4 is used for load bal-
ancing module implementation in chapter 5. The very same chapter contains
an overview of the module architecture in section 7?7. The architecture was
designed to keep future infrastructure development in mind and thus, few out
of scope future steps were outlined in section 7.1.

Evaluate the scheduler on a number of scenarios

The chapter 6 describes the way, how the scheduler and the load balancing
system was tested. It also describes in section 6.2 how the runtime data of
optimization algorithms were collected. The next section 6.3 presents the
scheduler evaluation.

Apart from the original goals of the thesis, which were set in the assignment,
many out of scope and future goals arose during the formalization, research,
and implementation. These goals and overviews how to achieve them are
outlined in section 7.1.

CHAPTER 2

State of the art

2.1 Load Balancing

Load balancing is a technique for a division of processing work in the
distributed environment of execution units ! to deliver faster service with
higher efficiency. It improves the distribution of workloads across the whole
environment and thus balances resources usage while maximizing throughput
and minimizing response time. Load balancer is typically either dedicated
hardware device or software program.

A hardware load balancer is a dedicated hardware device which dis-
tributes network traffic across a cluster of servers [2]. These devices are used
mainly in the data centers to ensure equal distribution of traffic between the
application servers. The main benefit of using hardware load balancer is zero
balancing overhead on the host machines, because all decisions are made on
dedicated hardware specially developed for such tasks.

A software load balancer is a program operating on the application server
with the same aim as a hardware load balancer. The main advantage of the
software load balancing is that it can be heavily customized and deployed to
its server. This paper will discuss only the software load balancing approach.

In general, software load balancing algorithms can be classified as either static
or dynamic.

2.1.1 Static Load Balancing

Static load balancing is an approach where system information is provided
a priori and load balancer does not use performance information about exe-

In general, the execution unit can be CPU, network links, storage devices or other
devices, in this paper execution unit or also referred as execution node or as host is a computer
executing assigned job

2. STATE OF THE ART

cution node 2, to make distribution decisions. The performance possibilities
and the load of the execution point (or node) are not taken into account when
decision - where to execute the current task - is being made, because load-
balancing decisions are made at compile time. When a decision is made, no
other interaction with executing node, regarding the current task, is being
made. In other words, once the load is allocated to the execution node, it
cannot be transferred to another node. The static load balancing method is
to reduce the overall execution time of a concurrent program while minimizing
the communication delays [3]. The main advantage of static load balancing
methods is mainly the fact that there is minimal communication delay be-
tween system nodes and therefore execution overhead is minimized to almost
zero. For that reason is static load balancing mainly used in the fields, where
server response is crucial such as serving a web page.Also, the implementa-
tion of some static load balancing algorithm is straightforward, since the used
methods are elementary.

The main disadvantage of static load balancing is that it does not take
into account the current state of the system when making a decision. This
could potentially lead to performance issues in the whole system because some
nodes can be overloaded, although others are not working at all.

Another drawback of this approach is that hardware resources are allocated
only once in the execution time. Since optimization jobs are very heteroge-
neous, they sometimes have different power requirements during the execution.
For example TASP? uses only one thread when creating a feasible plan in the
first algorithm iteration - this task relays only on single core performance.
However, when the first iteration is completed, all following can be done by
multiple threads, therefore it could be useful to execute the first iteration on a
machine with better single core performance and then transfer the algorithm
into a device focused on multithreading execution. This is something that can
not be done while using static load balancing.

Following static load balancing algorithms are commonly used.

First Alive

First alive or also called Central Manager algorithm uses the concept of a
primary server and backup servers [4]. All tasks are scheduled to be executed
on the primary server unless the central server is down. Then the load will
be forwarded to the first backup server. This algorithm has almost zero levels
of internal process communication, which leads to better performance when
there are lots of smaller tasks.

2Execution node - Server executing task which is being scheduled by the load balancer.
In our case, this task is solving an optimization problem by the solver.

3Task and Asset Scheduling Platform - proprietary optimization software developed
by Blindspot Solutions, described in section 2.2.2

6

2.1. Load Balancing

Round Robin

Round Robin algorithm which distributes workload evenly to all nodes. It
is being done in round-robin order, where the load is distributed to each node
in circular order without any priority. Round Robin is easy to implement
and as well as First alive algorithm has almost none inner communication
overhead. This algorithm performs best when tasks have equal, or at least
similar, processing time.

Weighted Round Robin

Weighted round robin algorithm maintains a weighted list of servers and
forwards new connections in proportion to the weight, or preference, of each
server. This algorithm uses more computation times than the round robin
algorithm. However, the additional computation results in distributing the
traffic more efficiently to the server that is most capable of handling the request

[4].

Threshold Algorithm

Threshold algorithm - execution nodes keep a private copy of the system’s
load when the load state of a node exceeds a load level limit, the node sends
message to all remote nodes that it is overloaded. If the local state is not
overloaded, then the load is allocated locally. Otherwise a remote node, that
is not overloaded, is selected and if no such node exists it is also allocated
locally. This algorithm has low interprocess communication and a large num-
ber of local process allocations. The later reduces the overhead of remote
process allocation and the overhead of remote memory access, which leads to
performance improvements [5].

Least Connections

Least connections algorithm maintains a record of active server connections
and forward a new connection to the server with the least number of active
connections [4]. This can be generally useful while having many concurrent
requests, that can be dispatched quickly.

Randomized Algorithm

The randomized algorithm uses a random selection of the execution node
without having any information about it.

2.1.2 Dynamic Load Balancing

Unlike static load balancing algorithms, dynamic algorithms use runtime
state information to more informative decisions while distributing the jobs.

7

2. STATE OF THE ART

They monitor changes on the system workload and take it into account when
the decision, where to execute a job, is being made. The process of monitoring
the system is not stopped after the execution job started and if circumstances
change, job execution can be transferred to another system node, which then
proceeds with execution.

While many different load balancing algorithms have been proposed, there
are four basic steps that nearly all algorithms have in common [6].

1. Monitoring workstation performance (load monitoring)
2. Exchanging this information between workstations (synchronization)

3. Calculating new distributions and making the work movement decision
(rebalancing criteria)

4. Actual data movement (job migration)

Dynamic load balancing algorithms can be divided into two groups based
on their control form, or in other words, where load balancing decisions are

made [6].

e Centralized - a single node in the network is responsible for all load
distribution

e Distributed - all nodes ale equal

While in the centralized scheme are decisions made in one master workstation,
in a distributed scheme, the load balancing algorithm runs on all nodes and
each node balances itself. FEach of this approach has its ups and downs, the
centralized scheme can be the potential performance bottleneck since it relies
on one system node, on the other hand distributed scheme has communication
overhead, because it requires broadcast communication between all algorithm
instances.

The main advantage of dynamic load balancing is that it allows changing
execution node in runtime. For that reason, it is possible to change hardware
characteristics according to the job execution phase. For example, execute
initial phase of optimization algorithm on the machine with powerful single
core performance and then move the job to the computer with multiple, less
powerful, cores to let it run in parallel. Also as a result of runtime scheduling,
dynamic load balancing algorithms tend to provide significant improvements in
performance over static algorithms. However, this comes at the additional cost
of collecting and maintaining load information [6]. For that reason, dynamic
load balancing suites better for long running tasks, which can be managed
and distributed better than for fast queries.

8

2.1. Load Balancing

Dynamic load balancing strategies

There are three major parameters which usually define the strategy a spe-
cific load balancing algorithm will employ. These three parameters answer
three important questions [6]:

1. Who makes the load balancing decision?
2. What information is used to make the load balancing decision?
3. Where the load balancing decision is made?

Question number 1 is answered based on whether a sender-initiated or
receiver-initiated policy is employed. In sender-initiated policies, congested
nodes attempt to move work to lightly-loaded nodes. In receiver-initiated
policies, lightly-loaded nodes look for heavily-loaded nodes from which work
may be received [6].

The question ‘What information is used to make the load balancing deci-
sion, is answered by following policies - global and local. When the algorithm
uses global policy, the load balancer uses the performance profiles of all exe-
cution nodes connected to the network. When using local policy, only local
4 nodes are taken into account while creating a performance profile of the
system.

The last parameter - ‘where the load balancing decision is made‘ - is an-
swered by used control form, as mentioned previously, dynamic load balancing
algorithms are divided into two groups based on their control form - central-
ized and distributed.

I would like to present two general dynamic load balancing algorithms - Central
Queue Algorithm and Local Queue Algorithm.

Central Queue Algorithm

Central queue algorithm is based on centralized receiver-initiated load bal-
ancing strategy. It uses a cyclic FIFO queue on the main host to store new
activities® and unfulfilled requests. New activity request is inserted into the
queue, and there it is stored until some execution node picks it up.

Whenever a request for an activity (which is sent by executing node in
the case when its load has fallen below a specified threshold) is received by
the queue manager®, it removes the first activity from the queue and sends it
to the requester. If the queue is empty, the request is buffered, until a new
activity is available. If a new activity arrives at the queue manager while there

4Workstations are usually divided into groups, in this context local means in the same
group of workstations

5 Activities - jobs to be executed, in our case optimization job

5Queue manager - central server which manages queue

2. STATE OF THE ART

are unanswered requests in the queue, the first such request is removed from
the queue, and the new activity is assigned to it.

When an execution node load falls under the threshold, the local load
manager sends a request for a new activity to the central load manager (which
manages the central system queue). The central load manager answers the
request immediately if a ready activity is found in the queue, or queues the
request until a new activity arrives [7].

Local Queue Algorithm

Local queue algorithms use distributed receiver-initiated strategy.

Its main feature is that it supports dynamic process migration.This al-
gorithm in the first step uses the static allocation of all new processes - all
processes are allocated to under loaded hosts. In the second step, the process
migration is initiated by a host when its load falls under predefined threshold”.
In such case, the execution node attempts to get several processes from remote
hosts. It randomly sends requests with the number of local ready processes
to remote load managers. When a load manager receives such a request, it
compares the local number of ready processes with the received number. If
the former is greater than the latter, then some of the running processes are
transferred to the requester and an affirmative confirmation with the number
of processes transferred is returned. [7]

Local queue algorithm is a distributed load balancing algorithm where
each execution node requests a new activity when it is underloaded. The
main advantage of using such an algorithm is the fact that there is no central
point, where all requests are managed and distributed to another segment of
the system. For that reason is this particular algorithm copes and performs
well under an increased or expanding workload.

2.1.3 Load Balancing for Optimization Algorithms

In general, load balancing algorithms don’t use information about what
exactly is being executed on the execution nodes. This is because they are
working mainly on the network layer and thus don’t need that information.
Also, they are mainly designed to be generic - to be used with any system and
to be suitable for every environment. From the load balancer point of view,
everything behind load balancing layer of the system is a black box.

Because there is no knowledge about the algorithms operating on the ex-
ecution nodes, load balancing algorithm can not make fully informed decision
about the job execution. However, this paper focus on the load balancing and
execution scheduling of optimization algorithms, therefore, unlike generic load
balancing solutions, proposed load balancer have the information about exe-
cution algorithms on the host machine and thus, the load balancing decision

" This threshold can be defined by the user, and it is an input for the algorithm

10

2.2. Optimization Algorithms

is more informed. More informed load balancing decisions could potentially
lead to better performance and costs reduction as well as higher capacity of
the whole system.

Since load balancer is aware of algorithms running on the hosts, it can
take into account execution criteria which can be specified (such as execution
time) or at least estimated (how much memory will be needed according to the
domain size) in advance to make even more informed balancing decision when
scheduling the job execution. This is also the main difference between the
generally used and existing load balancing software and a solution proposed
in this paper.

2.2 Optimization Algorithms

In this section, the thesis presents various optimization techniques and
existing solvers implementations, that can be used to solve such optimization
problems.

2.2.1 Linear Optimization

Linear optimization (or linear programming) is a method to achieve the
best outcome in a mathematical modelwhose requirements are represented
by linear relationships. The algorithms are widely utilized in company man-
agement, such as planning, production, transportation, technology, and other
issues.

The main benefit of linear optimization is that it provides the best pos-
sible solution, because optimization algorithms are guaranteed to provide an
optimal solution. Although almost everything can be represented as a linear
problem, linear programming solvers could be unable to provide a solution
since, in most cases, computation time grows exponentially. Even though
there are solvers that can provide e (partial) solution,this solution can be
(and in most cases is) unusable because it is not optimal at all.

There are plenty of linear programming solvers available. We want to highlight
the following two optimization Kkits.

GLPK

GNU - GNU Linear Programming Kit is a software package intended
for solving large-scale linear programming (LP), mixed integer programming
(MIP), and other related problems. It is a set of routines written in ANSI
C and organized in the form of a callable library [8]. Although originally is
GLPK written in C programming language, there is an independent project,

11

2. STATE OF THE ART

which provides Java-based interface for execution of GLPK via Java Native
Interface. 8

Google OR-Tools

Google OR-Tools - OR-Tools is an open source software suite for op-
timization, tuned for tackling the world’s toughest problems in vehicle rout-
ing, flows, integer and linear programming, and constraint programming [9].
Tools contain Glop, which is Google’s custom linear solver. One of the most
significant advantages of Google OR-Tools is an API supporting multiple pro-
gramming languages - C++, Python, C#, and Java.

2.2.2 Heuristic algorithms

Heuristics algorithms (or HA) are designed to solve optimization prob-
lems faster and more efficient fashion than Linear Optimization methods by
using different kinds of heuristics and metaheuristics. In exchange for that,
algorithms sacrifice optimality, accuracy, precision, and completeness. Thus
the solution provided by HA is not guaranteed to be optimal. HA are often
used to solve various types of NP-complete problems such as Vehicle Routing,
Task Assignment, Job Scheduling, or Traveling Salesmen Problem. Heuristic
algorithms are most often employed when approximate solutions are sufficient
and exact solutions are necessarily computationally expensive [10].

The main advantage of heuristic algorithms is that they provide a quick
feasible solution. Because the implementation of HA is easier than LP and
they provide at least a feasible solution for optimization problems, they are
solving; they are widely used in organizations that face such optimization
problems. The main downside of HA is the fact that they can’t guarantee
that the found solution is the optimal one.

, We want to mention two implementations of heuristics algorithms - Opta-
Planner and TASP.

OptaPlanner

OptaPlanner is an open source generic heuristics based constraint solver.
It is designed to solve optimization problems such as Vehicle Routing, Agenda
Scheduling, etc. While solving an optimization task, it combines and uses
various optimization heuristics and metaheuristics such as Tabu Search or
Simulated Annealing.

OptaPlanner is written in pure Java and runs on JVM. Therefore it can
be used as a Java library.

8Java Native Interface - Interface provided by the Java platform to run and integrate
non-Java language libraries

12

2.2. Optimization Algorithms

TASP

Task and Asset Scheduling Platform is a lightweight framework developed
by Blindspot Solutions [11] designed to solve a large variety of optimization
and scheduling problems from the area of logistics, workforce management,
manufacturing, planning, and others. It contains a modular, efficient planning
engine utilizing the latest optimization algorithms. TASP is delivered as a
software library to be used through its API in applications which require
powerful scheduling capabilities.

It is written in Kotlin which runs on JVM. Therefore it can be easily used
as a library to any JVM based project.

13

CHAPTER 3

Problem formalization

The problem with the implementation of optimization algorithms in ap-
plications is that their performance requirements are quite high and are fully
utilized only while working. The optimization algorithm is not running all the
time and for that reason hardware resources are mainly unused. These unused
resources could be potentially used by another instance of the algorithm or
can be shut down completely to reduce hosting costs. Also adding more time
to the job execution does not always bring a better solution but it certainly
costs more.

The figure 3.1 displays standard case, when the application is deployed on
the server. Because the application uses an optimization algorithm, the server
must be powerful enough to deliver suitable results. This also means, that
the server resources must be allocated to the application and to nothing else,
which leads to resource wasting.

Figure 3.1: Problem visualization

The next figure 3.2 visualizes scenario when the load balancer is used.
Instead of using powerful servers for each of the applications, it is enough to use
a small server or even deploy multiple applications on the one machine. This
can be done thanks to the outsourcing of the optimization jobs to the external
servers with more computational power. The circles are optimization jobs

15

3. PROBLEM FORMALIZATION

Computational resources in cloud

al

<— Scheduled optimization jobs

Load Balancer

Figure 3.2: Problem visualization with the load balancer

triggered by the corresponding colored applications and are being executed
on the different servers in the cloud.

Moreover, as can be seen in the figure 3.2, these servers do not need to
be allocated all the time. Most resources providers, such as AWS [12] or
Azure [13] allow to reallocate hardware on the fly. This leads to potentially
significant cost savings and ultimately to the more effective infrastructure.

16

3.1. Formal definition

3.1 Formal definition

Following definition implies, that it can be represented as an Integer Linear
Programming (ILP) problem. Although, it is not entirely formalized, it is only
mechanical work to transcript all implications into equations. For that reason,
and better readability, we left the implications.

3.1.1 Variables Definition

Following indexes, inputs and variables are used in the optimization crite-
ria.

Indexes

e j - index used to identify something related to the execution job, in real
world this is most likely job id, located in the right upper corner - z7,
set of all jobs in the system is represented by J

e 7 - index used to identify resources, written in the left upper corner -
"x, set of resources is represented by R

e ¢ - right bottom index represents time - x;

Input

Input which is specified before executing optimization job by the user
outside of the system. When the new execution job is requested - this is done
by the user, or client application, the following data should be provided.

e DJ - maximal duration of the job execution which cannot be exceeded

e PJ - maximally used resources cost per job, or in other words highest
possible price paid for the job execution which cannot be exceeded

There are also constants defined before load balancer startup.
e "¢ - the cost of the using particular resources per one time unit

Each of the previously mentioned variables must be non-negative.

Program Output

Apart from the result of the underlying optimization algorithm, following
data are returned to the user after successful job execution.

e TV - time taken, duration of the actual job execution

e (CJ - resource costs, how much money was paid for the job execution

17

3.

PROBLEM FORMALIZATION

Variables

18

e v} - value (i.e. cost of the scheduled plan) of the job j at the time ¢ Value

is greater than zero, and it is non-increasing during the time.
Vi, j vl ngﬂ >0 (3.1)

It is non-increasing because optimization, algorithms return always best
found solution, so when worse solution, than currently best one, is found,
returned is still the best solution found.

’"a:g - represents assignment of the resources r at time ¢ to job j

"el ={0,1} (3.2)

Each x is either 1 = indexed resources are assigned to the job at given
time or 0 = given combination does not have assignment. We assume
that each job has only one such assignment at one time, which effectively
means that this job is executed on the single computation node. This is
defined by the following constraint:

Vit Y el <1 (3.3)
reR

’"A{ - enhancement of the value v with resources r on the job j per time
t.

TA ="l = vy T (3.4)

It is improvement of the solution value v which can be achieved by

using resources r at time t. This value is always non-negative since

optimization algorithm always stores best found solution, and therefore

Vi, t,r : "Al > 0. "z] ensures that only resources, that are actually
used, are taken in account.

S{ - reward for improving solution value until time ¢ per job j. Accu-
mulation of enhancements "A] through all resources 7 and time units ¢.

SP=3" 3" A (3.5)

t rer

C’g - defines how much execution of job j cost from the beginning of the
execution until time ¢. Sum of all allocated resources for their time for

a particular job. ‘ ‘
Cl=>"> Tc-Ta (3.6)
t reR

Because Cg is defined as sum and "c is non-negative, it is true that
Vit Cf 11> C}. The input of the program specifies maximal cost paid

3.1. Formal definition

for job execution as a P7, therefore it must be enforced by the system
that this cost will not be exceeded. This constraint can be defined as
follows.
. & .
Vt,j: PP<Cl = Y Y Tal=0 (3.7)
t+1 reR

Which effectively means that when cost of job execution C’tj has reached
maximal defined cost P7, no resources can be assigned to this job.

e ¢ - time, it is not only index but also variable, there are also constraints
regarding time - since client application can specify deadline to job D7,
there must be an additional constraint for job execution in a matter of
resources assignment.

[e.9]
Vi,ji D)<t =) Y "zl =0 (3.8)
t+1 réR
When maximal time is exceeded, no additional resources can be assigned
to the job execution, which could be defined by following constraint.

3.1.2 Resources reconfiguration

The system should be capable of changing resources assignment per job
in the runtime. This will help to distribute performance according to the
load of the current node across the whole network. Unfortunately, it is not
always possible to reconfigure resources assignment while scheduling is being
performed. Therefore there must be at least one-time unit, between different
resources assignment, where no resources are assigned to the job. In other
words, if resources reconfiguration is triggered in time ¢ then Y, .5 "2z] = 0.
This can be formalized as:

ZrmgzlerER:%{—rm{HZO (3.9)
reER

3.1.3 Optimization criteria

The main goal of the system is to minimize the outcome value of the
underlining optimization algorithm and at the same time to minimize the cost
of used resources. We can optimize a single job or sum of outcomes from
all jobs in the system at once. The first approach provides a possibility to
control and optimize the outcome of a particular job, which is an advantage
for a single client (job owner), but it does not necessarily mean that it is
optimal for the whole system and vice versa. Optimization criteria for the
single job at particular time ¢ is then maximization of the weighted difference
between the value enhancement reward and cost paid for the enhancement,
which can be described by the following equation.

max crit] = aS) — (1 — a)CY 0<a<l1 (3.10)

19

3. PROBLEM FORMALIZATION

For optimization of system-wide resources and costs, all jobs execution opti-
mization is then defined like a weighted sum of all rewards per jobs lowered
by sum of all resources costs across the set of all jobs.

maxcritt:ozZSg—(l—a)ZC'g 0<a<l1 (3.11)
JjeJ Jj€J

Based on the previous equation, it is possible to define time independent
optimization criterion.

[e.¢]
max crit = Z crity (3.12)
t

3.2 Resulting problem

Proposed formal definition (3.1) implies that problem is integer linear prob-
lem with job execution cost as its main optimization criteria. These problems
are solvable by various types of mixed integer linear programming solvers.
Linear optimization and its characteristics are outlined in previous section
2.2.1.

However, apart from load balancing decisions, the problem brings another
challenge in time series prediction during the job executions. This problem
arises because algorithm, by definition presented in section 3.1, estimates en-
hancement of the job’s solution value when the job uses particular resources in
the next period. In other words, the algorithm needs to estimate the impact
of using particular resources in the next period on solution value function de-
Velopment Therefore in time ¢ it needs to estimate value of the solution value
function v} 41 The definition in section 3.1 describes it as "A] variable. Based

on the TAJ value, the reward for improving solution value Sg is computed.
This reward is then used when the load balancing decisions are being made
to reflect the suitability of the current execution plan solution.

20

CHAPTER 4

Solution design

The presented problem can be solved using many possible approaches, We
have decided to use mathematic optimization for running algorithms values
predictions and heuristic algorithm for load balancing decisions.

4.1 Solution value prediction

To have the most informed decisions while creating load balancing de-
cisions, algorithm creating these decisions needs to be able to estimate the
impact of assigned resources to the development of the solution value of the
job. Therefore in time ¢ it needs to estimate value of the solution value func-
tion vz +1- The definition in section 3.1 describes this estimated impact as ’"Ag

variable. The reward for improving solution value Sg is then computed based
on this "AJ value. This reward is then used when the load balancing decisions
are being made to reflect the suitability of the current execution plan solution.

Unfortunately, it is practically impossible to predict the values exactly.
For instance, heuristics and metaheuristics optimization algorithms are usu-
ally stochastic and therefore there is no guarantee that they eventually find
a better solution than the current one. That said, the only thing that is
guaranteed is that the solution value function of the job overtime period is
monotonically non-increasing. Empirically, the convergence of the solution
value towards an optimal solution has hyperbolic shape. This assumption was
made after the analysis of the runtime solution value data from the optimiza-
tion algorithms described in section 6.2. In addition, the script, which is able
to visualize, the solution value function during the time was developed. This
Python script is part of the implementation and can be found in the scripts
folder inside the root of the project.

Moreover, it is not possible to use the time as x axis, because it would
not be possible to extract information about how adding more available per-
formance will modify the predicted solution value function of the job. For

21

4. SOLUTION DESIGN

that reason, it is better to use the number of iterations, that optimization
algorithm performed, instead of the time unit.

4.1.1 Hyperbola time series fitting

The generic equation for expressing the hyperbola function on the two-
dimensional graph is the following.

b

a+ =
xr+c

y (4.1)

Where a, b, c are parameters and x, y are axis values. For usage in a computer
algorithm, it is better to transform the equation into the form, where there is
no division. Apart from the better performance in favor of multiplication [14],
it is possible that the state when x = —c occurs. If there is the division, the
resulting value will be infinity, which breaks the next algorithm iterations.
Instead, it is better to use the following form, where there is no division
and 0, as a result, is not a problem for the following algorithm iterations.

ar +ac+b—yc=vyzx (4.2)

Since the solution value prediction should be computed as fast as possible,
it was decided to use the mathematics optimization approach transforming
the problem into non-linear least squares problem.

Non-linear least squares problems are often solved by the algorithms based
on iterative estimate improvement. The example of these algorithms is the
Gauss-Newton algorithm [15] and the Levenberg-Marquardt algorithm [16].
The second mentioned non-linear algorithm is more robust than the Gauss-
Newton, because of the Marquardt parameter [16], which means that in many
cases it finds a solution even if it starts very far off the final minimum.

Using the Levenberg—Marquardt algorithm means, that it is necessary to
know the derivation of the function, the algorithm is trying to fit in. Derivation
of the used function 4.2 is then following.

fl(x)=(c+x,1,a—1) (4.3)

As the target values, are used = - y. As the parameters, that Leven-
berg—Marquardt algorithm is trying to fit in are used a, b, c.

22

4.2. Load balancing decisions

4.2 Load balancing decisions

To make the most informed load balancing decisions while scheduling mul-
tiple optimization jobs, the application uses dynamic scheduling with a cen-
tralized node running the load balancing algorithm.

The application also takes advantage of knowing the exact maximal time
of an execution thanks to the input parameter D7 defined in section 3.1.1.
Also, because of this parameter, it is possible to create scheduling decisions
for a much larger time horizon, because the algorithm is aware of the future
workload.

The definition formalized in section 3.1 implies that it is possible to use
integer mixed integer linear programming solver, because the problem itself is
defined as an integer linear programming problem. That is indeed possible,
but after careful consideration, we rather decided to use a heuristic approach.
The main reason for selecting this type of optimization algorithm is, that it
provides suitable results during the whole runtime. This could be very handy
when the time for load balancing decisions is tight and in such case, the mixed
integer linear programming solver would not have enough time to provide a
suitable solution, because the one, it provided would not be optimal at all.

The optimization solver, which was chosen for the application, was previ-
ously mentioned (2.2.2) heuristics optimization engine OptaPlanner. Unlike
TASP (2.2.2), the OptaPlanner is open sourced. The implementation based
on OptaPlanner is described in section 5.3.

4.3 Complete application algorithm

The load balancing algorithm phases are divided into scheduling rounds.
Each scheduling round produces a new execution plan. The execution plan is
created for a specified scheduling horizon, this horizon is the period, which is
limited by the time ¢ + 1 and the t,,4,, Which defines the end of the execution
plan and where the ¢ is the time of execution. In other words, each schedul-
ing round, executed in time ¢, produces the scheduling plan with scheduling
horizon from ¢ + 1 to t;,4.. The scheduling horizon can be configured in the
scheduling properties described in chapter 5. The length of the scheduling
window can be configured as well.

The formalized algorithm is then presented in the algorithm 1. The job
related properties D,T, P and C are the very same variables defined in the
section 3.1. The functions mentioned in the algorithm are described in the
algorithm detailed description listed below the algorithm itself. The function
predict is related to the step described in the step 4 and the function schedule
to the step 5.

23

4.

SOLUTION DESIGN

AW N =

© w N o O

10

Input: @ - queue with jobs to schedule
Q: jobs queue;

J: set of jobs;

P: predictions;

E: execution plan;

J < Q.poll();

J' + J filter(job — job.D > job.T A job.P > job.C);
J" < convert(J');

P <+ predict(J");

E < schedule(J", P);

E' « convert(E);

Result: @ is empty

Output: E’ - execution plan

24

Algorithm 1: Load balancing algorithm

1. Poll jobs from the jobs queue.

e The incoming jobs from API are stored in the queue, until the new
scheduling round is engaged.

2. Analyze and filter jobs, that are not relevant for the current scheduling

round.

e Filtered out are the jobs, whose execution time exceeded the max-
imal possible execution time D7 or whose cost has exceeded the
maximal cost P7.

3. Convert received jobs into the inner data representation.

e The data must be converted from the data transfer objects struc-
ture to the OptaPlanner domain representation.

4. Create predictions based on the solution value of the jobs and on the

history of the load balancing decisions.

e The process of making the predictions is described in section 4.1.

5. Produce execution plan using OptaPlanner scheduling.

e The scheduling is limited to the amount of time defined as schedul-
ing window. When the scheduling reaches the scheduling window
(for example 60 seconds), it is stopped.

6. Convert created plan into time schedule and send them back to the

client.

7. Engage the next scheduling round and go to the step 1.

CHAPTER 5

Implementation

In this chapter, we would like to present the technologies that were used
while implementing the previously described load balancer. During the de-
velopment, base package of the application was named OLB , which is an
acronym for Optimization Load Balancer. In the following pages, the devel-
oped application is called this way.

Although this paper goals aim solely on the scheduler and introducing
the new load balancing strategy, the architecture keeps in mind the future
work outlined in section 7.1. Therefore the system’s architecture is based on
the idea of cooperating microservices, where each service has control over a
specific part of the infrastructure.

Microservice architecture is a software design architectural style that struc-
tures an application as a collection of loosely coupled services that are orga-
nized around the system’s business capabilities [17] and are independently
deployable with enabled continuous delivery [18]. Microservice architectural
design also helps the system’s better horizontal scalability by using multiple
instances of one microservice and the orchestration module.

5.0.1 Architecture scheme

Scheme 5.1 visualizes only system’s core architecture. However, the whole
design keeps in mind future infrastructure development proposed in section
7.1. The implementation itself was developed accordingly and used technolo-
gies and techniques are described in the following sections.

Core component, which is responsible for scheduling and load balancing,
is composed of API, converter, predictions, and scheduler module.

e API module implements common core interface OlbCoreApi and is re-
sponsible for scheduling requests handling. Actual implementation of
API interface is class OlbCoreApilmpl .

25

5. IMPLEMENTATION

Scheduling_ Microservice

Core
Scheduling Server {l {l

Converter
% Task Queue
Scheduler
O ’{@— —%

Task Predictions
API| Wrapper

Figure 5.1: Microservice architecture with scheduling core

e Converter module is used to convert received input data into scheduler’s
inner data representation and then back to common data transfer ob-
jects. This converter is implemented as a class InputToDomainConverter .

e Scheduler module contains constraints, evaluator and scheduling system
based on OptaPlanner solution (described in section 5.3). Scheduler
module consist of multiple packages, constraints - containing all con-
strains for scheduling algorithm, domain with defined scheduling do-
main for OptaPlanner, evaluation which includes evaluator calculating
planning score and solver package with factory initializing OptaPlan-
ner scheduling core.

Scheduling server provides HI'TP API access to the core and serves as the
microservice base. The server module is based on Ktor framework (described
in section 5.1.4) that runs under the hood and provides HTTP functionality.,
The server API uses binary serialization and accepts data transfer objects
used in the solutions. This serialization approach was chosen because of the
number of interfaces and loosely coupled data objects, that are being used in
the application.

Simulations architecture

Simulations module (project module simulations) is designed as another
microservice to simulate future load balancing system’s behavior. Following
figure 5.2 shows the architecture of the module.

Input data are generated by the input generator module, which can be
found, for example in DomainBuilder class. Algorithm values are parsed

26

5.1. Development stack

Simulations Microservice

Simulations {l

Algorithm
values
generator

) Remote AP| Wrapper {l _CO D_

Input
— generator

Simulation
executor

Figure 5.2: Simulations module scheme

from the file in class DataParser and the corresponding model is created on
top of them in JobWithHistoryFactory .

Remote API wrapper is used to create a connection between remote mi-
croservice, with scheduling API, and simulation. For the simulation module,
the connection seems to be synchronous. It is because there is a blocking queue
used to store and answer the calls between these two microservices. Thanks to
this solution, simulations can be run in a microservices mode as well as locally
without any additional effort needed. Remote scheduling solution is imple-
mented in the project module remote—scheduler . Local simulations can be
found for example in OnePlanningRoundMain or ExecutionConfiguration
classes.

5.1 Development stack

The development stack is based on the Java platform, targeting primarily
JVM 11 but including backwards compatibility with JVM 8. However, the
traditional Java platform programming language Java was not used.

5.1.1 Programming Language

The OLB' is not bound to the single technology, which could limit the
development stack and for that reason, we had a free choice while choosing
the programming language used for the OLB implementation.

9Java Virtual Machine - runtime environment for Java byte code
100ptimization Load Balancer, name of the application

27

5. IMPLEMENTATION

OLB is programmed in the programming language Kotlin. This cross-
platform, statically typed, the general-purpose programming language is de-
veloped by JetBrains [19]. Kotlin is 100% interoperable with Java because it
uses JVM as its runtime and it is compiled to the Java Bytecode. Apart from
the Java Bytecode, it can also be compiled to JavaScript or native code. [19]
The main advantage of Kotlin is its aggressive and robust type inference,
meaning that for the most of the time, it is not necessary to specify used
data type since Kotlin compiler can infer it from the context. [19] It results in
concise language syntax and therefore to the faster development in general.

Another great advantage is Kotlin’s null safety. Kotlin compiler dis-
tinguishes between non-nullable types and nullable types and enforces null
checks'' when the object has a nullable data type. This feature effectively
leads to fewer problems in the code and drastically reduces Null Pointer Fx-
ceptions'? during the runtime.

5.1.2 Build environment

The application uses Gradle as its build automation system. It was chosen
mainly because its incrementally build system, that works by tracking input
and output of tasks, including files changes tracking, and only running tasks,
that are necessary and thus reducing the required time to build the project.
Also, it processes only these files that were changed between tasks execution.
Another reason we choose Gradle was that it is preferred build system for
Kotlin.

The preferred approach to assemble the application is to use Docker and
build it as the Docker image, which can be then run inside the Docker con-
tainer.

Docker build environment

To keep the build clean and reusable on almost every operating system
and machine setup we decided to use multistage Docker build'® which
uses different base docker images for the build and the run phase. Since
OLB targets the JVM 11 environment and uses Gradle as its build system,
gradle:5.4.0-jdk11-slim is used as base image for build stage. This image
contains all necessary Gradle build tools while having a smaller size than the
common Gradle Docker image. Even smaller (in terms of size) are alpine
based docker images. Alpine is the smallest possible Linux core, which is
widely used in the full range of Docker base images. Alpine is focused on the
smallest possible size of the image, while having all the necessary tools built

11 Check whether the object being used has not null value

12Exception raised when code access reference that has null value

3Docker is a technology that performs operating-system-level virtualization, meaning
that it uses hosts operating system kernel

28

5.1. Development stack

in. Unfortunately, there were (at the time of development) no official JVM 11
alpine images since there is no official stable OpenJDK!* 11 build for Alpine
Linux.

5.1.3 Runtime environment

The preferred runtime environment is a Docker system, where the appli-
cation image runs inside the created docker container.

Docker runtime environment

The build application files are copied from the Docker build stage to the
Docker runtime stage. As the runtime base image in the multistage build was
used openjdk:11-jre-slim image, because it is an official OpenJDK 11 Docker
image and therefore it is declared as stable.

Because there was used gradle application plugin while building the appli-
cation, startup scripts were generated by the Gradle. These scripts are then
used to start the application itself inside the Docker container.

When starting the whole application, multiple services must be started
up. Therefore, because of the containerized environment, where containers
can not access each other, multiple containers must be started, and the virtual
network connecting them must be created. This process can be automated
using Docker Compose.

Docker Compose

Docker Compose [20] is an application for defining, running and managing
multi-container Docker applications. It automatically creates Docker networks
as well as Docker volumes. With writing down the definition of multiple
Docker applications to the one Docker Compose configuration file, it is possible
to create robust microservices architecture, which can be built or started using
a single command.

Thanks to the created Docker networks, containers can communicate with
each other using Docker Compose service names, therefore they do not need
to know specific IP address they have.

Docker Compose is used in the implementation of OLB since it is designed
with microservices architecture in mind. There are two services - Scheduling
server and Scheduling client. Scheduling server provides the ability to schedule
process execution on the various computers and contains all core algorithms.
Scheduling client is an example application which uses the ability of scheduling
server. There are implemented various simulations, which are being executed
by scheduling client.

11 Open-source implementation of the Java Platform, Standard Edition

29

5. IMPLEMENTATION

5.1.4 Framework

Because of the overall microservices architecture of the project, a web
framework was needed. There are many Java-based web frameworks that
could be used. We would like to present two of them - Spring Boot, which is
a traditional and widely used web framework for all kind of Java web applica-
tions and Ktor - relatively new, lightweight Kotlin framework build upon the

Kotlin Coroutines!®.

Spring Boot

Spring Boot [21] is an open source Java Spring-powered web framework. It
takes an opinionated view of the Spring platform, meaning that Spring Boot
automatically configure Spring and 3rd party libraries whenever possible, and
therefore enables usage of it to broader audience. It is highly dependent
on the starter templates feature which provides pre-configured templates for
various types of web applications. This, for example, allows the user to start
with already working web server and thus simplify the start of the application
development [22]. Spring Boot contains comprehensive infrastructure support
for developing enterprise monolith web applications as well as micro services
[22].

Ktor

Ktor [23] is an open source web framework for building asynchronous
servers and clients in connected systems such as web applications and HTTP
services. It designed for quickly building web applications with minimal effort
and it doesn’t impose a lot of technical constraints such as logging, persistent,
serializing, dependency injection etc. [24] It is developed by the same company
as Kotlin is, JetBrains.

The final decision was to use Ktor as the web framework, mainly because
of its very light implementation and native Kotlin support. Also, for such a
project, the features of Spring would not be fully utilized and therefore, the
complexity of Spring could potentially slow down the entire application.

Because Ktor by default does not contain any dependency an injection
framework, We decided to use lightweight DI'® framework Koin [25]. This
framework is written in Kotlin and have its own DSL!'” for the dependency
specification, which is very handy for the medium-sized project.

15Way of asynchronous or non-blocking programming that generalize subroutines for non-
preemptive multitasking with using suspended/resumed task execution

Dependency Injection

"Domain Specific Language

30

5.1. Development stack

Route discovery library

The default way, how to create a HT'TP endpoint (Ktor calls them routes),
which can handle HTTP requests is registering it within the Application

context. The Application context is accessible by its instance that is given
to the user when the Ktor is being started. This means that no route can be
registered without using an instance of Application .

During the development of the application and using Ktor framework, we
decided that the proprietary way of registering routes was not something we
would like to be using, mainly because it did not allow to have pure class serv-
ing only as a route without having to inject the Application instance. Also,
since the routes must be registered during the application startup, using the
new class for each route would mean to create an instance of the class and exe-
cuting the method to register the routes manually. Another reason we did not
like the Ktor default approach was that we prefer to inject class dependencies
using the construct injection instead of using the setters injection.

e Constructor dependency injection - using the constructor of the class to
set all instances of the objects, that class uses. The main advantage is
that the instance of the class is always in a valid state because it has all
dependencies resolved during the instance creation.

e Setter dependency injection - the dependent objects are provided by
the setter methods. This gives the freedom to manipulate the state of
the dependency references at any time. However, it is possible to use
the instance without setting the dependencies which could lead to the
undefined behavior or the Null Pointer Exceptions

To solve this Application instance dependency and to enable constructor
dependency injection approach, we decided to implement a simple library
which would solve this issue for us. We came up with a different way how to
register various types of application’s routes using the annotations, reflection
and dependency injection strategy.

Preconditions for successful usage of the library are the following:

e Koin [25] - dependency injection framework which is used for resolving
dependencies needed in the routes

e Reflection library [26] - library used for runtime lookup for classes with
specific annotation

e Using the @Route annotation on the class that is meant to be route,
the class has to also inherit from RouteBase

e Registering all necessary routes dependencies in Koin modules during
the application startup

31

5. IMPLEMENTATION

e Provide base package name where routes are placed.

Following algorithm is used to find and register all routes used in the project.

Input: Package name, where all routes are stored
1 routes < find all classes annotated as @Route in provided package
name;
for route in routes do
dependencies < obtain dependencies needed for creating instance
of route;
routelnstance < create instance of route using dependencies;

w N

(LI

register routeInstance in instance of Application ;

6 end
Output: All routes are registered and ready to use

The implementation of the simple route is then following:

@QRoute
class HelloRoute(sr: Service) : RouteBase("hello") {
init {
route {
get {
call .respond(sr.sayHello ())
}

}

The route is automatically instantiated and registered by the Routes discovery
library. The programmer does not need to handle it by himself.

For the library startup, we designed a builder class using fluent builder
pattern ApplicationDependencyBuilder . Usage of this class can be found in

the ServerStarter.kt .

5.2 Algorithms values prediction

The implementation of the Levenberg—Marquardt algorithm is not the aim
of this paper, for that reason, the application uses Java compatible library,
which contains implementation Levenberg—Marquardt algorithm and provides
the way, how to use it.

OLB uses two different libraries Apache Commons Mathematics Library
[27] and Mathematical Finance Library [28]. Both libraries have custom wrap-
per which implements HyperbolicRegression , abstract class and they can be
exchanged in the application when decided. The reason, there are two dif-
ferent implementations and two different libraries, is that their performance

32

5.3. Load balancing decisions with OptaPlanner

can differ in distinguish scenarios. By default, the Mathematical Finance
Library is used, because it provides better results in runtime predictions'®.

The implementations can be found as ApacheHyperbolicRegression class for

Apache Commons Mathematics Library and FinMathRegression class for
Mathematical Finance Library.

5.3 Load balancing decisions with OptaPlanner

Scheduling system implementation uses OptaPlanner library core in ver-
sion 7.19.0.Final [29] and it is crucial part of the core module and appli-
cation itself.

5.3.1 Formalized definition representation

In this section, the thesis describes mapping between formalized problem
definition proposed in section 3.1 and actual implementation in the code.

Fach job, which is indexed in definition as j, implements Job inter-
face and the main implementation, used in the core while scheduling, is
the PlanningJob class. Input variables D’ and P7 are then specified as a

JobParameters property of the Job interface.

Resources r are implemented as a sealed class Resources composing of
CpuResources and MemoryResources . Resources belong to resources pools,
which can be imagined as physical computers or a virtual machines. Resource
pools then carry information about the cost "¢ of the underlying resources.
The pools are represented as a ResourcesPool interface.

Class JobValue represents a solution value of the job during time vf and
can be found as a property in the interface JobWithHistory . A job, that
has some historical information (like a solution value of the job during the
time and the scheduling data). Solution value of the job related informa-
tion uses AssignmentsEvaluation during scheduling to compute reward for

scheduler with value Sg. Resources cost Cg value is used in the cost con-
straint CostEvaluation for comparison with P7. In the similar constraint
TimeEvaluation , t value is compared with D7 to check, whether all specified
constraints are satisfied.

Scheduling output is always AllocationPlan . It contains job domain, re-
sources domain, the overall cost and created time schedule. From the latest,
values 77 and C7 can be computed very easily, therefore are not present di-
rectly in the interface as properties.

18 There is a Python code, which can provide graphs from values predictions, please see
plot_predictions .py and pw.forst.olb.simulation.prediction package.

33

5. IMPLEMENTATION

5.3.2 Scheduling Algorithm

The OptaPlanner scheduling itself has two main phases. Construction
heuristics that tries to build an initial solution in a finite length of time. This
partial solution is not always feasible, but it is found in a relatively short
time, and then it is passed to the next scheduling phase. Local search with
metaheuristics that can enhance the partial solution found in the previous
phase.

OptaPlanner contains various types of construction heuristics (i.e. first fit,
weakest fit and strongest fit) as well as local search metaheuristics such as hill
climbing, tabu search and simulated annealing. As the best combination of
construction heuristics and local search proved to be first fit with tabu search.

The First Fit algorithm cycles through all the planning entities, initializing
one planning entity at a time. It assigns the planning entity to the best
available planning value, taking the already initialized planning entities into
account. It terminates when all entities have been initialized [30].

The Tabu Search metaheuristics search is based on the local search opti-
mization method and enhances it by worse step strategy, when at each step
worsening moves can be accepted if no improving move is available. Besides,
prohibitions are introduced to discourage the search from coming back to
previously-visited solutions [31].

5.3.3 Implementation

The scheduling implementation can be found in module core. The con-
straints are placed in the package pw.forst.olb.core. constraints . OptaPlan-

ner related implementation is placed inside the pw.forst.olb.core.domain

package and the plan solution evaluator in pw.forst.olb.core.evaluation pack-
age.

All custom constraints should implement CompletePlanEvaluation or
PlanEvaluation interface. That way, they can be used in custom score evalua-
tor, which is then used to generate the score of the given plan. The constraints
stored in collections of previously mentioned interfaces and evaluated at once,
when the plan is submitted. Thanks to this solution, additional constraints
can be added or removed very easily.

As an input for the scheduling algorithm interface SchedulingProperties
is used. This interface defines properties necessary for the scheduling infras-
tructure such as maxTimePlanningSpend which explains how long can the
application run the scheduling or cores , describing how many cores in the
computer can algorithm utilize by spawning scheduling threads.

The OptaPlanner scheduler instance is created by custom factory imple-
mentation OptaPlannerSolverFactory and uses base configuration defined in

solverConfiguration.xml file.

34

CHAPTER 6

Experiments

In this chapter, we would like to present, how we tested the load balancer.
The simulations were designed to reflect the real-life situations and to simulate
the most common usage of the load balancer.

6.1 Simulations implementation

To test the load balancer, there are two modules, that contain simulation
code used for testing - simulation and remote—scheduler module. The simu-
lation engine and all simulation use cases are located in the simulation module.
The second mentioned module contains the server, which runs simulations on
the remote API. This is especially useful when testing the whole scheduling
environment and it is as closest as possible to the real-life environment, which
should be based on the microservices architecture.

Both simulation can be started up locally using SimulationExecutor or
using docker—compose inside the microservices runtime environment. Input
data for the tests are created randomly, based on the number of scheduled
jobs and given planning horizon (how much steps ahead should scheduler
count with). The number of scheduled jobs can be easily edited directly in
code. For the simulation data and the input configuration please refer to
OnePlanningRoundSimulation and RuntimeSimulation classes.

6.2 Optimization algorithms data

For the proper testing environment, the real runtime data of the opti-
mization algorithm were needed. We decided to use TASP (mentioned in
subsection 2.2.2) as heuristic algorithm, which execution could be potentially
scheduled by the instance of the optimization load balancer. We did not im-
plement a new TASP instance, instead, we used examples from Stochastic
Dynamic Vehicle Routing Problem master’s thesis by Petr Eichler [32].

35

6. EXPERIMENTS

These instances solve the real-life vehicle routing problem and mainly for
that reason are ideal for the testing purposes. We slightly modified the code
from the thesis for observation purposes and added the time measuring func-
tionality, which tracked the time between the algorithm’s iterations and the
current solution value of the job in each iteration.

In overall, we executed and measured 56 different instances of TASP. The
observations can be found in jobs-data/input folder inside the implementa-
tion project and they are being used in the simulations, where the simulation
module randomly selects one file with runtime data for each job and assigns
it to the job, that is being scheduled. The data are then effectively used as
input data for the load balancer.

6.3 Simulations

There are two main randomized simulation scenarios inside the simulation
module (module described in 5.0.1). The first simulation is designed to be
static. It creates only one execution plan and then it shut downs. The second
simulation reflects the presumed production environment and is described in
figure 6.1.

Simulation process

2 ; &
S Generate jobs [«
g)
[e]
=
c
o Evaluate and Continue in
= display plan simulation?
= Generate
£ solution values
(72}
o \ 4
1
[«]
(&) Create

execution plan

Figure 6.1: Simulation process

e Generate jobs - simulation randomly create new optimization jobs,
which should be scheduled by the core. It also generates their scheduling
parameters.

e Generate solution values - simulation uses the solution values func-
tions, generated by the TASP (2.2.2) algorithm as described in section

36

6.3. Simulations

6.2. The data files are randomly assigned to the particular jobs, there-
fore each job represents unique TASP instance and has unique solution
value during time.

e Create execution plan - simulation executes plan creation by calling
the core API. The process of plan creation is described in section 4.3.

¢ Evaluate and display plan - simulation engine uses evaluator to check
for the constraint violations and then prints the result into the log. It
also prints the text representation of the plan into the standard output.
An example of such plan in text representation can be seen in listing 77.

6.3.1 Simulation output

Simulation’s output (produced execution plan) is printed to standard out-
put. Data displayed in the table 6.2 are a formalized output produced by
the simulation with ten jobs being scheduled at once. The optimization jobs,
which were scheduled in the table 6.2, have their parameters displayed in the
table 6.1. The parameters can be visualized by the application as well, please
refer to the file AllocationsPlanExtensions.kt .

Table 6.1: Table with the input and output parameters of the jobs

1 j] 0 1 2 3 4 5 6 7 8 9 |
D7 | 638 650 373 371 519 624 621 407 322 725
PI] 75 52 96 51 34 144 103 46 18 29
T7[600 540 120 360 460 600 420 300 120 540
C7 274 40.84 29.6 2654 19.8 30.54 15.74 27.78 148 19.3

The variables D, P,T and C are defined in section 3.1 and represents fol-
lowing data related to the one job.

e DJ - maximal duration of the job execution which cannot be exceeded

e PJ - maximal used resources cost per job, or in other words highest
possible price paid for the job execution which cannot be exceeded

e T7 - time taken, duration of the actual job execution

e C7 - resource costs, how much money was actually paid for the job
execution

The following data output in the table 6.2 is the result of the first schedul-
ing window (how does the load balancing algorithm work is described in section
4.3).

Time axis shows time units (¢ value described in section 3.1). Second,
vertical axis visualizes resources. r value is in the format z.y where the x

37

6. EXPERIMENTS

Table 6.2: Simulation data output

| & J0 1 2 3 4 5 6
1.1]1

[
(]

IS =1 NG
~N OO N
© O N
N W
© o|lw —
© [~ ot
o ov o) =
o oo —
o | R|w©
ol wlow o

9
2.1,.J 0
)

value is the resources provider (explained in section 5.3.1), and y is one usage
unit - meaning that it could be one physical core or for example percentage
of the shared processor. In the implementation, this value is called CPU core,
but in fact, it is dimensionless value expressing usage of some system resources.

Each cell contains either number or is empty. The number is job ID and
indicates that this resource is allocated to the job with displayed ID. This is
effectively "z value explained in section 3.1.1.

Total plan cost is the sum of all particular costs of all jobs - their resources
allocations. Therefore this is the cost of the created execution plan.

38

CHAPTER 7

Conclusion

All goals of this thesis were fulfilled. This thesis analyzed the state-of-
the-art solution for the load balancing systems in section 2.1. It brought an
overview of various optimization problems, techniques, and algorithms that
are being used to solve diverse problems in section 2.2.

The thesis described and formalized the problem of the load balancing of
optimization algorithms in chapter 3. The solution to the formalized problem
was then proposed in chapter 4. The main goal of the thesis was then fulfilled
in the following chapter 5, where the implementation of the new system was
described. This implementation is attached to the thesis.

The solution with 6767 lines of Kotlin code!'® proved, that it is possible to
use it as a load balancing algorithm for optimization algorithms.

7.1 Future work

To achieve production ready load balancing system, an execution module,
which would transform the created plan into physical actions such as running,
stopping and moving the jobs between the physical execution nodes, is needed.

Infrastructure development

As soon as the previously mentioned execution module is implemented,
the application can be deployed into a real-life environment. The proposition
is to make optimization algorithms running as Docker containers and the exe-
cution module would operate with Docker machines, which would be running
on the execution nodes. In this way, the assigned resources would be very
easily changed on one execution node. Migration to the next execution node
would not be a problem as well, since the containers could be wrapped and
transported through the network.

197 ines provided by find . —name "*.kt "| xargs cat | we —1 bash command in the root
folder of the project

39

7. CONCLUSION

Another infrastructure related feature is the full JSON-enabled REST API.
Currently, only binary serialization is supported. In the future, full REST with
JSON as its transport format should be supported.

Routes discovery library

Routes discovery library was very handy during the development of the
application’s server parts and we believe that this way of routes registration
in Ktor would suit to many developers as well.

Therefore we would like to refactor it from the base project and create an
open source project which will ensure future library development. We would
like to also make it more generic, because right now, it depends on specific
Ktor and Koin version. Although Ktor dependency is necessary since it is
library developed specifically for Ktor, Koin should be replaced by a generic
way, how to obtain dependencies for routes.

Extension functions

During the application development, we created and tested many Kotlin
extension functions. In general, these functions are not domain specific and for
that reason, we decided that we will publish them as well as Routes discovery
library. These extensions could be useful when starting a new project, because
they are able to perform many operations in the single line of Kotlin code.

40

Bibliography

B. Marr, “What is industry 4.07 https://www.forbes.com/sites/
bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super—
easy-explanation-for-anyone/. [Online; accessed 18-May-2019].

A. Networks, “Hardware load balancer.” https://avinetworks.com/
glossary/hardware-load-balancer/. [Online; accessed 30-January-
2019].

D. S. K. Ramesh Prajapati, Dushyantsinh Rathod, “Comparison of static
and dynamic load balancing in grid computing,” International Journal
For Technological Research In Engineering, 2015.

IBM, “Algorithms for making load-balancing decisions.”
https://www.ibm.com/support/knowledgecenter/SSOH2Y_7.7.0/
com.ibm.dp.doc/1bg_algorithms.html. [Online; accessed 29-January-
2019].

A. G. Payal Beniwal, “A comparative study of static and dynamic
load balancing algorithms,” International Journal of Advance Research
in Computer Science and Management Studies. [Online; accessed 29-
January-2019].

Malik, Shahzad, “Dynamic load balancing in a network of workstations,”
95.515 F Research Report, 2000.

S. Sharma, S. Singh, and M. Sharma, “Performance analysis of load bal-
ancing algorithms,” World Academy of Science, Engineering and Tech-
nology, vol. 38, no. 3, pp. 269-272, 2008.

A. Makhorin, “Glpk (gnu linear programming kit).” https://
www.gnu.org/software/glpk/. [Online; accessed 16-January-2019].

41

https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://avinetworks.com/glossary/hardware-load-balancer/
https://avinetworks.com/glossary/hardware-load-balancer/
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/lbg_algorithms.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/lbg_algorithms.html
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

BIBLIOGRAPHY

42

Google, “About or-tools.” https://developers.google.com/
optimization/. [Online; accessed 16-January-2019].

Papanikolaou, A., A Holistic Approach to Ship Design: Volume 1: Opti-
misation of Ship Design and Operation for Life Cycle. Springer Interna-
tional Publishing, 2018. 296-301.

“Blindspot solutions s.r.o..” http://www.blindspot.ai.

“Amazon web services.” https://aws.amazon.com/. [Online; accessed 7-
May-2019].

“Microsoft cloud computing services.” https://azure.microsoft.com/.
[Online; accessed 7-May-2019].

J.-A. LeFevre and J. Morris, “More on the relation between division and
multiplication in simple arithmetic: Evidence for mediation of division
solutions via multiplication,” Memory & Cognition, vol. 27, pp. 803-812,
Sep 1999.

S. Gratton, A. S. Lawless, and N. K. Nichols, “Approximate gauss—
newton methods for nonlinear least squares problems,” SIAM Journal
on Optimization, vol. 18, no. 1, pp. 106-132, 2007.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of the society for Industrial and Applied Mathemat-
ics, vol. 11, no. 2, pp. 431441, 1963.

D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Inter-
national Journal of Open Information Technologies, vol. 2, no. 9, pp. 24—
27, 2014.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEFFE
Software, vol. 33, no. 3, pp. 42-52, 2016.

“Kotlin reference.” https://kotlinlang.org/docs/reference/. [On-
line; accessed 7-May-2019].

“Docker compose reference.” https://docs.docker.com/compose/
overview/. [Online; accessed 7-May-2019].

“Spring boot reference.” https://spring.io/projects/spring-boot/.
[Online; accessed 7-May-2019].

“Spring boot github reference.” https://
github.com/spring-projects/spring-boot/tree/
5aeb31700df8e15d1aa625b987ecca9338ba7c2c. [Online; accessed
7-May-2019)].

https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.blindspot.ai
https://aws.amazon.com/
https://azure.microsoft.com/
https://kotlinlang.org/docs/reference/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://spring.io/projects/spring-boot/
https://github.com/spring-projects/spring-boot/tree/5aeb31700df8e15d1aa625b987ecca93385a7c2c
https://github.com/spring-projects/spring-boot/tree/5aeb31700df8e15d1aa625b987ecca93385a7c2c
https://github.com/spring-projects/spring-boot/tree/5aeb31700df8e15d1aa625b987ecca93385a7c2c

Bibliography

23]
[24]

[25]

[26]

[31]

32]

“Ktor web.” https://ktor.io/. [Online; accessed 7-May-2019].

“Spring boot github reference.” https://api.ktor.io/1.1.5/. [Online;
accessed 7-May-2019].

“Koin github repository” https://github.com/InsertKoinI0/koin/
tree/50929af636d1956a45882b795a29ace00eeac49d. [Online; accessed
7-May-2019].

“Reflection library github repository.” https://github.com/ronmamo/
reflections/tree/084cf4a759a06d88e88753ac00397478c2e0ed52.
[Online; accessed 7-May-2019].

“Apache commons mathematics library.” https://commons.apache.org/
proper/commons-math.

“Mathematical finance library” https://github.com/finmath/
finmath-1ib.

“Optaplanner documentation.” https://docs.optaplanner.org/
7.6.0.Final/optaplanner-docs/html_single/. [Online; accessed
11-May-2019].

“Construction heuristics.” https://docs.optaplanner.org/7.6.0.Final/
optaplanner-docs/html_single/#constructionHeuristics. [Online;
accessed 11-May-2019].

F. Glover, “Tabu search—vpart i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190-206, 1989.

P. Eichler, “Stochastic dynamic vehicle routing problem,” Master’s thesis,
Czech Technical University in Prague, Czech Republic, 2018.

43

https://ktor.io/
https://api.ktor.io/1.1.5/
https://github.com/InsertKoinIO/koin/tree/50929af636d1956a45882b795a29ace00eeac49d
https://github.com/InsertKoinIO/koin/tree/50929af636d1956a45882b795a29ace00eeac49d
https://github.com/ronmamo/reflections/tree/084cf4a759a06d88e88753ac00397478c2e0ed52
https://github.com/ronmamo/reflections/tree/084cf4a759a06d88e88753ac00397478c2e0ed52
https://commons.apache.org/proper/commons-math
https://commons.apache.org/proper/commons-math
https://github.com/finmath/finmath-lib
https://github.com/finmath/finmath-lib
https://docs.optaplanner.org/7.6.0.Final/optaplanner-docs/html_single/
https://docs.optaplanner.org/7.6.0.Final/optaplanner-docs/html_single/
https://docs.optaplanner.org/7.6.0.Final/optaplanner-docs/html_single/#constructionHeuristics
https://docs.optaplanner.org/7.6.0.Final/optaplanner-docs/html_single/#constructionHeuristics

APPENDIX A

List of attachments

1. CD with implementation described in chapter 5

45

	Introduction
	Thesis goals

	State of the art
	Load Balancing
	Static Load Balancing
	Dynamic Load Balancing
	Load Balancing for Optimization Algorithms

	Optimization Algorithms
	Linear Optimization
	Heuristic algorithms

	Problem formalization
	Formal definition
	Variables Definition
	Resources reconfiguration
	Optimization criteria

	Resulting problem

	Solution design
	Solution value prediction
	Hyperbola time series fitting

	Load balancing decisions
	Complete application algorithm

	Implementation
	Architecture scheme
	Development stack
	Programming Language
	Build environment
	Runtime environment
	Framework

	Algorithms values prediction
	Load balancing decisions with OptaPlanner
	Formalized definition representation
	Scheduling Algorithm
	Implementation

	Experiments
	Simulations implementation
	Optimization algorithms data
	Simulations
	Simulation output

	Conclusion
	Future work

	Bibliography
	List of attachments

