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Abstract
In the past decades, the usage of electronic communication systems that
influence all areas of human activities massively increased. Low cost and
high effectiveness allow it to be used widely. The massive usage of such
systems in different domains such as industry, smart cities, etc. calls for
developing scheduling methods that are fast, adjustable and reliable. In this
thesis, we formalize the highly critical periodic scheduling problem and de-
sign a Java-based framework that allows easy testing of different scheduling
methods. The main contribution of this thesis is several heuristics suitable
for strictly periodic network communication and comparison of their per-
formance on generated instances.

Abstrakt
V posledńıch několika desetilet́ıch se masivně zvýšilo využ́ıváńı elek-
tronických komunikačńıch systémů, které ovlivňuj́ı všechny oblasti lidské
činnosti. Dı́ky ńızkým náklad̊um a vysoké efektivitě mohou být tyto
modely široce rozš́ı̌rené. Masivńı využ́ıváńı takových systémů v r̊uzných
doménách jako je pr̊umysl, chytrá města (smart cities), atd., volá po vývoji
rozvrhovaćıch metod, které jsou rychlé, přizp̊usobivé a spolehlivé. V této
práci formalizujeme problém vysoce kritického periodického rozvrhováńı.
Dále navrhujeme aplikaci v Javě, která umožnuje jednoduché testováńı
r̊uzných rozvrhovaćıch metod. Hlavńı př́ınos této práce spoč́ıvá v několika
heuristikách vhodných pro striktně periodické rozvrhováńı komunikace
a porovnáńı jejich výkonnosti na vygenerovaných instanćıch.
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1 INTRODUCTION

1 Introduction

Scheduling is a common optimization problem with many applications. Following defi-
nitions in [1, 2], it is a decision-making process used in different areas such as production,
transportation, manufacturing and information technology. The goal of a scheduling process is
to assign time intervals on resources for given tasks while following the predefined constraints.

Resources represent all the available objects for which the schedule is made. Resources
may be of different types like machines, space, communication links, vehicles, school rooms,
etc.

Tasks are jobs to be performed in accordance with their specification. Each task may have
several dependencies (set of tasks that need to be executed in a predefined order), earliest
start time, deadline, duration, and periodicity. Example of such task can be an airplane line,
which goes from London to Prague and then from Prague to Budapest every week, and due
to other usages, the aircraft can be used only on Monday and Tuesday.

Constraints are necessary conditions which ensure the schedule is plausible and fault-free.
Correctly defined constraints are essential for the quality of the solution, and the definitions
can be very complex. Example of such real-life constraint can be a parking slot where two
cars cannot be parked on the same spot at the same time.

Currently, scheduling is widely used for communication in cyber-physical systems. The
cyber-physical system consists of physical devices and links connecting the devices. Links
between the devices allow them to exchange information. Such an exchange of information
between the physical devices is called stream. However, the physical links also have their
limitations and the more communication is distributed between the devices, the more sophis-
ticated algorithm is necessary to control it.

Moreover, in highly critical systems such as automotive, avionics, etc., additional schedul-
ing requirements such as determinism and guaranteed output are demanded [3]. Any distur-
bance of these aspects may have severe consequences and cause undesired effects on safety
(e.g., if the warning of an incoming person in a self-driving car is not delivered on time, the
caused accident can result in people dying).

Typical communication in the network is of a control character – the device is sending
information about its current state which is being transmitted periodically in a regular time
cycle. Apart from that, there are following specifics resulting from the nature of the highly
critical industrial communication:

• Time-triggered – any operation in the system is determined by the globally synchro-
nized clock and depends on the predefined schedule

• No preemption – critical streams cannot be interrupted

• Low end-to-end latency – response time must fit into [release, deadline] time window
representing a fraction of the stream period

• Zero jitter – the variance of the response time must be zero
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1 INTRODUCTION

• Time synchronized – the system is time synchronized with high precision

Apart from the considered scheduler determinism, other used resources like wires, vehicles
or machines must also act deterministically, e.g., be resistant to external influences, etc. This
aspect is not further discussed in this thesis but is considered a necessary condition [3].

As described in [4] the zero jitter periodic scheduling with at least two different periods
is a strongly NP-complete problem. While exact methods like Integer Linear Programming
provide a proved optimal solution, the computational time of such solvers prevents it from
being used for large scale systems.

On the other hand, heuristic methods can provide a feasible sub-optimal solution within
a significantly smaller time frame. The purpose of this thesis is to introduce several heuristic
algorithms that address the described form of the periodic scheduling problem and to compare
their performance on the generated experimental setups. In addition, a graphical user interface
is implemented to easily show schedule, topology, and setup of the solved problem.

The thesis is logically divided into several chapters as follows – Chapter 2 overviews the
related literature and state-of-the-art approaches and provides an introduction to heuristic
methods, exact methods, and possible industrial application. Chapter 3 formally describes the
solved problem. Chapter 4 is the core of this thesis and consists of algorithms designed for
the given problem. Chapter 5 briefly describes the implementation (a full description of the
code – ReadMe, JavaDoc, API definition and the code itself is provided on the enclosed CD).
Chapter 6 describes instance setup, evaluation of the tested algorithms and discussion of the
results. Chapter 7 summarizes the thesis contribution.
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2 BACKGROUND

2 Background

In this section, we describe the concept of Profinet IO IRT [5] standard that is widely used
in industrial communication network and represents one of the possible applications of the
algorithms described further in this thesis. We also describe the concepts of heuristics and
exact methods. In the end, we review heuristic methods published in related literature.

2.1 Ethernet Scheduling

As described in [6] and [3], original Ethernet communication was intended to be event
triggered. Event triggered communication tries to pass streams in the system immediately
as created. However, since there is no time slot prebooked for the transmission, it can easily
happen that the link is already occupied and the task must wait until it can be transmitted.

On the contrary, the usage in hard real-time systems requires deterministic and predictable
behavior. Ethernet was not designed to satisfy these requirements. The ability to guarantee the
event order is not typically implemented in networking protocols such as TCP/IP. Therefore
different standards have been introduced to overcome the hardware shortcomings – here we
briefly describe the Profinet IO IRT standard.

Profinet IO IRT is a hard real-time communication protocol using individual static sched-
ules that are distributed among the network nodes. Special hardware (switch) capable of pro-
cessing these schedules is required. Four different communication classes are defined to serve
different requirements: RT Class UDP, RT Class 1, RT Class 2, and RT Class 3. They differ
in clock synchronization and real-time capability. The communication cycle is divided be-
tween the classes and creates individual communication intervals. Class UDP and Class 1
serve for event-triggered communication and are not suitable for critical traffic. Class 2 is
deprecated and not currently used. Class 3 has the highest priority and allows to implement
the time-triggered concept which is necessary to satisfy the real-time requirements. With
properly synchronized clocks the jitter of the communication cycle is as low as possible.

The algorithms presented in this thesis are implemented for general communication schedul-
ing problem, if applied on Profinet IO IRT standard, it would be necessary to introduce
additional ”safety margin” parameter separating each transmission frame. [6]

2.2 Heuristic Algorithms

Heuristic algorithms are especially useful for problems with a large solution space. In such
problems, searching the whole solution space becomes impossible due to time requirements.
Based on [7], the permutation Flow-shop scheduling problem has n! possible flow order setups
where n is the number of flows (tasks). Considering it takes ≈ 1 ns to schedule each task order
setup, for only 20 tasks it would take around 77 years to compute the solution if exploring every
option. Even though efficient space searching can significantly reduce the number of explored
task setups, the exact algorithms still spend a lot of time searching for the optimal solution.
Therefore, it is often necessary to compromise on optimality to obtain a fast solution.
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2 BACKGROUND

Based on [8], there are three main performance measures for an algorithm:

• Completeness – whenever a solution exists, the algorithm finds it

• Optimality – the algorithm always returns solution of the best objective value

• Complexity – measures the time and memory requirements of the algorithm

In this thesis, we will focus on the time complexity while keeping the optimality and
completeness as close as possible to the solution of exact methods.

According to [1], scheduling heuristic algorithms can be divided into several categories.
They can also use different approaches for creating the schedule and different priority rules.
The priority rules are used for creating the order in which the tasks are added to the schedule.
In this thesis, we follow these paradigms to formally describe the implemented algorithms.

2.2.1 Constructive Heuristics

Constructive heuristics create a schedule from scratch by sequentially adding tasks. Since
tasks have different scheduling difficulty (number of repetitions in the hyper period, duration,
etc.), priority rules are created to determine the order in which the tasks are added to the
schedule. A useful priority rule must maintain precedences – if task a depends on the execution
of task b, task b should be placed before the task a in the priority list.

Many different priority rules are described in [1]. Here we will present a selection of these
rules with corresponding criteria suitable for the scope of this thesis:

• MTS : Most total successors

The number of successors of the given task.

• EST : Earliest start time

The earliest possible start time of the task based on its predecessors.

• LST : Latest start time

The latest possible start time of the task based on its successors.

• MSLK : Minimum slack

The slack in which the task can start = LST – EST.

• RED : Resource equivalent duration

The product of duration and weighted resource requirements.

4/54



2 BACKGROUND

Two main schemes for constructing the schedule are:

• Serial scheduling scheme

The serial scheduling scheme sequentially adds tasks from the sorted priority lists while
keeping the constraints satisfied. It strictly follows the order given by the priority list
and assigns each selected task the lowest possible start time. Simply said – it assigns
start times to tasks. Further, in the text, we refer to this approach as First Fit.

• Parallel scheduling scheme

The parallel scheduling scheme works with the sorted priority list as well. In contradis-
tinction to the serial scheme, it iterates over free start times. It selects the lowest possible
start time and then searches through the priority list to find the first possible task to be
assigned to this start time while keeping the constraints satisfied. Simply said – it assigns
tasks to start times.

2.2.2 Improvement Heuristics

Improvement heuristics enhance already created schedule obtained by a constructive
heuristics. Different operations depending on the problem specification and optimization cri-
teria are performed to find a local optimum. As in any optimization problem, it is necessary
to prevent getting stuck in a loop. Some of the used techniques are genetic algorithms, simu-
lated annealing, and tabu search.

2.3 Exact Algorithms

Exact algorithms are complete and optimal. We will introduce two approaches suitable
for solving the scheduling problem – Constraint Programming (CP) and Integer Linear Pro-
gramming (ILP). Since we use the CP mainly for enhancing our heuristics, we will use its
version that is faster but does not guarantee optimality. On the other hand, the introduced
ILP model guarantees optimality if provided sufficient time. Hence, we will further use the
ILP method to compare the objective value of our other algorithms.

2.3.1 Constraint Programming

Based on [2], scheduling is a Constraint Satisfaction Problem (CSP) which is a problem
requiring a search for a feasible solution that satisfies all the predefined constraints. It is
defined as a triple of:

• X = {x1, ..., xn} – a set of decision variables

• D = {D1, ..., Dn} – a set of allowable values for each variable

• C = {C1, ..., Cm} – a set of constraints
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2 BACKGROUND

Each variable from xi ∈ X can be assigned only a value ai belonging to its domain Di ∈ D.
The value assignment (xi = ai, xj = aj , ...) is subject to constraints defined in C. For each
constraint, we can define a consistency checking function f such that fi(x1, ..., xn) = 1 if and
only if the constraint Ci is satisfied. An assignment that satisfies all Ci ∈ C is called feasible.
An assignment where all variables are instantiated is called complete. Otherwise, we call the
assignment partial. A solution of CSP is a feasible and complete assignment.

In the scheduling problem, the variables represent the tasks that are to be scheduled, and
the domains represent their possible start times. Hence, the domains are finite sets of discrete
values. The constraints are binary and work over each pair of tasks.

The CSP is typically solved via a tree search algorithm where each node represents a partial
assignment of variables and reduced domains D′ = {D′1, ..., D′n} where D′i ⊆ Di. Each time
a variable is assigned, the node creates a new branch and performs a consistency check. In case
the consistency check fails, the node is not further explored. The algorithm stops when it finds
the first complete and feasible assignment or if all nodes were explored without finding such
an assignment.

It is important to note that the näıve algorithm has a big branching factor – if all domains
Di had the same size then the number of all different complete assignments would be |Di|n
where n is the number of variables.

The CSP tree search algorithm is complete because it finds the solution each time it exists
(assuming we have enough time and resources for the computations). However, it is not
optimal since it returns the first found solution. If needed, the algorithm can be improved
in a way that allows adding an objective function [2], but we do not use this technique and
rather use the techniques allowing us to find the first complete solution as quickly as possible.

There are many different CSP techniques helping to speed up the näıve tree search. Fur-
ther, we will describe – Backtracking, Backjumping, and Backmarking.

Backtracking is used for a depth-first search that assigns values to variables one by one
and when a conflict occurs (the domain of some unassigned variable is empty), the algorithm
backtracks to the most recently assigned variable. The pseudocode is shown in Algorithm 1.
Line 9 of the algorithm performs a forward checking. Forward checking is a procedure in which
we reduce domains of variables that have not yet been assigned based on the currently assigned
variable’s value. In case this step results in some of the variables having an empty domain,
a feasible solution does not exist for the current partial assignment, and the algorithm needs
to backtrack.

Conflict-Directed Backjumping (CBJ) is a more efficient version of backtracking. While
in backtracking, the algorithm returns to the previous level of the tree, the backjumping
method can jump right to the assignment that caused the current failure. More specifically,
we create a conflict set conf(xi) for each variable xi ∈ X. Each time we try to assign xi
some value from its domain and the assignment fails due to consistency checks, we add the
variable xj that caused conflict to the conflict set of xi. After we unsuccessfully try to assign
xi every value from its domain, we backjump to the most recently assigned variable xh from
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2 BACKGROUND

Algorithm 1 Backtracking algorithm for CSP by Russell and Norvig [9]

1: procedure backtracking-search(csp)
2: return backtrack({}, csp)
3: procedure backtrack(assignment, csp)
4: if assignment is complete then return assignment

5: var ← select-unassigned-variable(csp)
6: for value ∈ order-domain-values(var, assignment, csp) do
7: if value is consistent with assignment then
8: add{var = value} to assignment
9: inferences← inference(csp, var, value)

10: if inferences 6= failure then
11: add inferences to assignment
12: result← backtrack(assignment, csp)
13: if result 6= failure then return result

14: remove {var = value} and inferences from assignment

15: return failure

the conflict set of xi and update the conflict set of xh:

conf(xh)← conf(xh) ∪ conf(xi) \ {xh}

This update helps us to keep information about the conflicting variables. [9]

Backmarking is a method introduced by Gaschnig [10]. In this method the results of con-
sistency checks are saved and reused after the algorithm backtracks; this helps to avoid un-
necessary constraints rechecking.

As introduced in Kondrak and van Beek [11], both of the methods can be combined. More-
over, in [12], Vlk shows an iterative version of the combined Conflict-Directed Backjumping
with Backmarking (CBJ BM ). Later on, in Section 4.4, we will elaborate on this exact al-
gorithm while creating a more sophisticated heuristics. In the mentioned chapter, we also
describe the CBJ BM more thoroughly and provide pseudocode.

2.3.2 Integer Linear Programming

Integer Linear Programming (ILP) is a special case of Constraint Satisfaction Problem
where all variables are discrete and constraints linear. The ILP is given by matrix A ∈ Rm×n

and vectors b ∈ Rm and c ∈ Rn. The goal is to find a vector x ∈ Zn such that Ax ≤ b and
cTx is maximized. [1]

Even though the exact methods are not the core of this thesis, an ILP model was imple-
mented as a reference solution for the heuristics and is further described in Section 4.2.
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2 BACKGROUND

2.4 Related Work

In [13], Pira proposes an improvement heuristic following the game theory paradigm. As in
game theory problem where two players take turns, changing their strategies based on the
current knowledge, the algorithm updates schedule partitions to optimize their quality.

Minaeva et al. [14] address the problem by creating a constructive heuristic that sequen-
tially adds tasks to the schedule based on priority order. In the case of the infeasibility of the
given task, a reason graph is used to help with the backtracking. After this step, the schedule
is optimized by local neighborhood search using ILP.

Syed and Fohler [15] present a search-tree pruning heuristic based on job response-time.
The heuristic searches for groups of symmetrical sub-schedules and uses only one sub-schedule
from the group in the searching process (tree pruning technique). They emphasize the fact
that pruning of infeasible search-tree paths is as important as looking for new feasible ones
and use Parallel Iterative Deepening A* to create the schedule.

Finally, Bansal creates a divide-and-conquer heuristic in his master thesis [16]. Contrary
to most of the algorithms in the literature, he proposes a decentralized approach aiming
mostly at large-scale networks. Following the divide-and-conquer paradigm, the schedule for
each link is created separately, and then the schedules are completed together. However, from
the text, it is unclear how the algorithm treats conflicts among the pre-created schedules.

There are several different approaches to consider when designing a heuristic algorithm.
From the literature described above, it is clear that any introduction of backtracking signifi-
cantly increases the time for which the solver runs. Therefore, we decided to focus on one pass
heuristics that don’t use any backtracking and their power lies in creating the order in which
the streams are added to the schedule. This concept was partially introduced in [14] but was
not deeply explored. Further, we apply the knowledge gained from the one pass heuristics
and design Conflict-Directed Backjumping and Backmarking search method proposed in [12]
which is using dynamic granularity to speed up the searching.
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3 Problem Statement

The problem statement is motivated by communication in industrial networks and is for-
mulated as follows: Scheduling strictly periodic transmission over network links where each
stream has a predefined path and links have different weights corresponding to transmission
speeds. To adapt to the real-life situation we use time lags on nodes and links modeling the
transmission and fabric switching delays in the industrial systems [6]. Note that the domains of
the parameters, such as transmission duration, are integral which corresponds to real schedul-
ing of production where the model is discretized, usually to a unit corresponding to a common
network clock granularity.

3.1 Network Model

The network is modeled as a simple connected directed graph G = (V, E), where V is a set
of nodes (network devices) and E is a set of links representing connections between the nodes.

Each node vi ∈ V is specified by its time lag vi.l ∈ N0. Each link ek = (va, vb) ∈ E
is specified by its time lag ek.l ∈ N0, weight ek.w ∈ N, origin ek.from ∈ V, and target
ek.to ∈ V. The link weight represents a link speed coefficient. The network is full duplex,
meaning that (va, vb) ∈ E ⇐⇒ (vb, va) ∈ E .

Figure 1: Visualization of the network and communication model

3.2 Communication Model

A stream is a periodic transmission from the origin node to the target node throughout the
network. A set of all streams is denoted by S. Each stream sj ∈ S is specified by its duration
sj .p ∈ N, release date sj .r ∈ N0, deadline sj .d̃ ∈ N, period sj .T ∈ N, origin sj .org ∈ V,
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and target sj .trg ∈ V. Streams may have different periods resulting in common hyper period
HP ∈ N which is the least common multiple (LCM ) of all periods.

We denote the route of the stream sj as Rj where Rj = (ej1 , ..., ejn) is a sequence of links
that are visited on the way from sj .org to sj .trg. The last edge from the sequence Rj is denoted
Rj,last. The stream instance sekj represents the stream sj routed through the link ek.

Figure 1 depicts sample network communication. There are seven nodes and six links
in the network. Two streams s0 and s1 are sent from node5 to node6 and from node3 to node6
respectively. This results in having 4 stream instances {se50 , s

e6
0 , s

e3
1 , s

e6
1 } in the network. Routes

of the streams are equal to R0 = (e5, e6) and R1 = (e3, e6).

The scope of the schedule is a hyper period. This results in HP/sj .T periodic repetitions
of the stream instance. After completing the first hyper period, the schedule repeats itself,
and it would be redundant to enlarge the scheduler time scope.

Since we are dealing with zero jitter scheduling, it is not theoretically necessary to use other
granularity of the stream because each periodic repetition of the stream instance is determined
by its first occurrence. However, for the clearness of the notation, we will denote the reoccurred
stream instance as sekj,l where l ∈ {0, ..., HP

sj .T
− 1}.

Figure 2: Gantt chart of the sample instance

Figure 2 shows a sample schedule of the instance proposed above. In this example,
s0.T = 500 µ s and s1.T = 2000 µs resulting in a hyper period equal to 2000 µs. In the vertical
axis, each line of the Gantt chart represents the schedule of one network link. The horizontal
axis represents discrete time in microseconds. In the schedule, we can see reoccurred stream
instances depicted as single colored rectangles. In total, there are eight reoccurred stream
instances for s0 (it repeats four times in the hyper period and transmits over two links) and
2 reoccurred stream instances for s1 (it occurs only once in the hyper period and transmits
over two links).
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3.3 Scheduling Problem

The goal is to find a periodic schedule for each link in the network. Our approach is to as-
sign a valid value to each reoccurred stream instance marking its start time sekj,l.φ ∈ N0. The
start time assignment is subject to several constraints described below.

1. Zero Jitter Constraint

All reoccurred stream instances of each stream are strictly periodic, meaning there
is zero jitter between period instances.

∀sj ∈ S, ∀l ∈ {1, ...,HP/sj .T − 1},∀ek ∈ Rj : sekj,l.φ = sekj,l−1.φ+ sj .T (1)

2. Link Constraint

No link can be occupied by more than one stream at the moment.

∀ek ∈ E , ∀sekj,l, s
ek
h,i, (j, l) 6= (h, i) :

sekj,l.φ+ sj .p · ek.w ≤ sekh,i.φ ∨ s
ek
h,i.φ+ sh.p · ek.w ≤ sekj,l.φ (2)

3. Precedence Constraint

The stream can be processed only after it is fully prepared on the current node.

∀sj ∈ S, ∀h ∈ {1, ..., len(Rj)− 1} :

s
eh−1
j

j,0 .φ+ sj .p · eh−1j .w + eh−1j .l + (eh−1j .to).l ≤ s
ehj
j,0.φ (3)

4. Release & Deadline Constraint

The transmission interval for each reoccurred stream instance must fit into the
[release, deadline] interval for the given period. Taking into consideration the prece-
dence constraint (3), it is enough to check whether the first stream instance of the
stream sj starts after the release time and the last stream instance of sj finishes before
the deadline. Moreover, due to the zero jitter constraint (1), it is enough to check it only
in the first period of sj .

∀sj ∈ S : s
Rj,0

j,0 .φ ≥ sj .r (4)

∀sj ∈ S : s
Rj,last

j,0 .φ+ sj .p ·Rj,last.w +Rj,last.l ≤ sj .d̃ (5)

11/54



3 PROBLEM STATEMENT

3.4 Scheduling Objective

We are minimizing the sum of the end-to-end latencies of all streams.

min
∑
sj∈S

s
Rj,last

j,0 .φ+ sj .p ·Rj,last.w +Rj,last.l − s
Rj,0

j,0 .φ (6)
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4 Proposed Solution

In this chapter, we describe the proposed algorithms and provide pseudocode for better
understandability. Two baseline algorithms were implemented to measure the quality of the
algorithms – ILP (exact method) and Random Heuristic.

The algorithms are evaluated by two different quality measures – schedulability and ob-
jective value reached in the given time limit. Schedulability describes whether a consistent
solution was found, meaning that all reoccurred stream instances have start time assigned and
all constraints are satisfied. The usage of the time limit is especially important for the exact
method to ensure that it finishes within a reasonable time. The calculation of the objective
value is shown in the equation (6). The goal of the proposed algorithms is to be faster than
the exact ILP method and to yield better results (with respect to schedulability or objective
value) than the random method.

It is important to understand that ILP is a complete method – in case it proves that the
instance is not schedulable, no other method can find a solution. Similarly, in case the instance
is schedulable, and ILP proves optimality, no other solution would have lower objective value.
However, in the case a time limit is set, and ILP is preempted, the currently best solution
is yielded. Since it did not search the whole solution space, it gives us no guarantees about
the optimality of the solution.

Paths for all streams were precomputed by breadth-first search algorithm to correspond
to the first found paths with the lowest number of links.

4.1 Schedulability Conditions

A necessary condition for the schedulability of the problem is that utilization of no link
in the network exceeds 100 %. Let us denote Sek as a set of all streams routed through the
link ek. Then the following condition must apply:

∀ek ∈ E : util(ek) ≤ 1

where

util(ek) =
∑

si∈Sek

(ek.w · si.p)
si.T

(7)

4.2 Integer Linear Programming

As described in Section 2.3.2, Integer Linear Programming solves optimization problem
on discrete variables and linear constraints. To apply it to our problem, all the constraints
must be linearized to be in a form aTx ≤ b where b is a constant, a is a vector of constant
values and x is a vector of variables.
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Constraints (1), (3), (4) and (5) are already in a linear form. The only constraint that
needs to be linearized is Link Constraint (2) which is in a disjunctive form. It can be modeled
using a big-M (a positive large enough constant) and a binary variable y ∈ {0, 1} so that
it can ”switch off” one of the inequalities.

Let us substitute

x1 ← sekj,l.φ

x2 ← sekh,i.φ

a← sj .p · ek.w
b← sh.p · ek.w

The variables x1, x2 represent start times for reoccurred stream instances. Then Link
Constraint (2) for one valid triplet of {ek, sekj,l, s

ek
h,i} is represented as x1 +a ≤ x2∨x2 +b ≤ x1.

Using a big-M notation:

x1 + a ≤ x2 +M · y
x2 + b ≤ x1 +M · (1− y)

and the derived Link constraint is:

∀ek ∈ E , ∀sekj,l, s
ek
h,i, (j, l) 6= (h, i) :

zekj,l,h,i ∈ {0, 1}
sekj,l.φ+ sj .p · ek.w ≤ sekh,i.φ+M · zekj,l,h,i
sekh,i.φ+ sh.p · ek.w ≤ sekj,l.φ+M · (1− zekj,l,h,i)

Since the scope of the schedule is a hyper period (HP ), no start time can be larger than
the hyper period and we can use it as big-M (M = HP ).

4.3 One Pass Heuristics

One Pass Heuristics are methods that perform one iteration to create a schedule based
on a priority sequence of streams (Algorithm 2). In such heuristics, streams are sequentially
added to the schedule, and in case any of the streams cannot be placed to the schedule, the
heuristics discard the instance and yield ”no solution.” A well-sorted sequence of the streams
is crucial for the method success rate. Since the minimized objective is the end-to-end latency,
Equation (6), we are attempting to place the streams as early to the schedule as possible which
corresponds to the serial scheduling scheme described in Section 2.2.1.

4.3.1 First Fit Methods

There are two main approaches to adopt for the first fit method: scheduling streams and
scheduling stream instances. The first approach is called First Fit Streams (further referred
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Algorithm 2 One Pass Heuristic

1: procedure schedule(problemInstance)
2: PQ← priorityQueueInit(problemInstance)
3: schedule← createScheduleF irstF it(PQ)
4: return schedule

to as FFS) and is described in Algorithm 3. It creates a priority queue containing the streams
(the prioritizing rules will be discussed in the text below) and then polls (removes from the
top of the queue) streams from the priority queue one after another and places all stream
instances of the currently processed stream to the first available time slot in the schedule.

The second approach is called First Fit Stream Instances (further referred to as FFSI)
and is described in Algorithm 4. It also starts by creating the priority queue but this time the
queue consists of stream instances, not the whole streams. This means that stream instances
of the same stream are not necessarily placed right next to each other in the queue. How-
ever, as mentioned in Chapter 2, it is necessary to keep precedences in between the stream
instances. If the stream instance a is dependent on stream instance b, the stream instance b
must be placed above the stream instance b in the priority queue. On the other hand, schedul-
ing single stream instances provides more variability, allowing us to simply (with not much
computational cost) update the priority queue. FFSI proceeds similarly as FFS – it takes
stream instances from the priority queue and places them to the first available slot in the
schedule. Additionally, each time a stream instance is placed to the schedule, the priority
queue is updated (in the case the currently placed stream instance affected the criteria value
of other stream instances in the queue).

Both of the approaches use list freeSlots while searching for an empty space for the
current stream instance. Each link has one instance of this list that corresponds to the sequence
of free intervals, e.g. {0−10, 40−150, 180−200}. Considering this sample list, it would mean
that we can schedule stream instance of duration at most 10 to the first slot, stream instance
of duration at most 110 to the second slot, etc. In the worst case, the length of the list is HP/2
which corresponds to unit-length slots separated by unit-length space.

Algorithm 3 FFS – First Fit Stream

1: procedure createScheduleFirstFitStream(PQ)
2: schedule← initialize empty schedule for each link
3: freeSlots← initialize all links available throughout whole hyper period
4: while !PQ.empty() do
5: stream← PQ.pop()
6: for streamInstance ∈ stream do
7: start = findFirstSlotForAllPeriods(streamInstance)
8: if start == -1 then return null
9: addToSchedule(streamInstance, start, stream.period)

10: removeFromFreeSlots(streamInstance, start, stream.period)

11: return schedule
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Algorithm 4 FFSI – First Fit Stream Instance

1: procedure createScheduleFirstFitStreamInstance(PQ)
2: schedule← initialize empty schedule for each link
3: freeSlots← initialize all links available throughout whole hyper period
4: while !PQ.empty() do
5: streamInstance← PQ.pop()
6: start = findFirstSlotForAllPeriods(streamInstance)
7: if start == -1 then return null
8: addToSchedule(streamInstance, start, stream.period)
9: removeFromFreeSlots(streamInstance, start, stream.period)

10: updatePQ(streamInstance, start, PQ)

11: return schedule

4.3.2 Priority Queue Ordering

As we mentioned above, the way in which the priority queue is sorted is very important –
simply for the reason that one stream instance that cannot fit into the schedule causes the
whole heuristic to fail. The priority queue is sorted by the lowest value of the first criterion
and then in case of a draw by the lowest value of the second criterion. Since we quickly noticed
that the deadline of the stream strongly affects the scheduling process, we decided that it will
always play a role in one of the criteria.

More specifically, we designed two slightly different criteria that are using the deadline.
The EDF (earliest deadline first) criterion corresponds to the value of sj .d̃, and DF (deadline
first) corresponds to the value of the deadline with lowered granularity dsj .d̃/100e. Lowering
the granularity of the deadline enables aggregating values that are close by to the same
criterion value, and then the heuristic rule can more likely decide by the second criterion.

As a complement to these two deadline criteria, six other criteria were implemented.
These criteria are formally described in Tables 1 and 2. The criteria values are calculated
based on different parameters like stream period, duration, utilization of the resources, num-
ber of precedences or earliest/latest start time. Method est(sekj ) is used to calculate the
earliest start time of stream instance sekj with respect to its predecessors and release time.
Method lst(sekj ) is used to calculate the latest start time of sekj with respect to its successors
and deadline. Both of the methods are defined recursively using the stream path definition
Rj = (Rj,0, ..., Rj,i, ...Rj,last).

est(s
Rj,i

j ) =

{
est(s

Rj,i−1

j ) + sj .p ·Rj,i−1.w +Rj,i−1.l +Rj,i−1.to.l if i ≥ 1

sj .r if i = 0

lst(s
Rj,i

j ) =

{
lst(s

Rj,i+1

j )−Rj,i.w · sj .p−Rj,i.l −Rj,i.to.l if i 6= last

sj .d̃−Rj,last.w · sj .p−Rj,last.l if i = last

In total, we have two criteria suitable for FFS and four criteria suitable for FFSI. The
following criteria use streams for calculating the criterion value. The criterion Most Required
Time (MRT) calculates the minimal end-to-end latency (the minimal time it takes to transfer
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the stream from the origin to the target node throughout the network). The minimal end-to-
end latency is subtracted from the hyper period to ensure that the stream with the largest end-
to-end latency has the highest priority. The criterion Resource Equivalent Duration (RED)
is similar to MRT with the difference that the stream transmission duration on each link is
multiplied by a utilization coefficient determined by the given link.

The following criteria use stream instances for calculating the criterion value. The criterion
Most Total Successors calculates the number of stream instances of the same stream that
need to be scheduled after the current stream instance. The value is subtracted from the
total number of links to ensure that the stream instance with the most successors has the
highest priority. Since this value does not change throughout the scheduling process, the
priority queue is not being updated. The formal definition uses stream instance id which

is calculated based on stream path definition as id(s
Rj,i

j ) = i. The criterion Earliest Start
Time (EST) calculates the earliest possible start time based on the release time of the stream
and duration of the preceding stream instances. This value is updated each time a preceding
stream instance is scheduled. The criterion Latest Start Time (LST) calculates the latest
possible start time based on the deadline of the stream, the stream instance duration and the
duration of the succeeding stream instances. The criterion Minimum Slack (MSLK) calculates
the length of the interval during which the stream instance can start based on EST and LST.

As already mentioned above, the heuristic rule is created by two criteria and has one of the
three following structures:

• 1. EDF, 2. Complement Criterion

• 1. Complement Criterion, 2. EDF

• 1. DF, 2. Complement Criterion

When creating all the possible rules corresponding to these structures (3 possible struc-
tures, 6 possible complement criteria) we end up with 6 · 3 = 18 one pass heuristics in total.
We do not consider the rule structure 1. Complement Criterion 2. DF since it would yield
very similar results as 1. Complement Criterion, 2. EDF rule structure.

Shortcut Rule name
Criterion calculation

MRT Most Required Time
HP −HP/sj .T ·

∑
ek∈Rj

(ek.w · sj .p+ ek.l + ek.to.l) +Rj,last.to.l

RED Resource Equivalent Duration
10 ·HP −

∑
ek∈Rj

d10 · util(ek)e · (ek.w · sj .p+ ek.l)

Table 1: List of complement criteria for sj and FFS scheduling

4.3.3 Complexity Analysis

For analyzing the complexity, we use common knowledge that the complexity of adding
an element to priority queue is O(log n) and retrieving an element from the queue is O(1).
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Shortcut Rule name Criterion calculation

MTS Most Total Successors |E| − (|Rj | − id(sekj ))

EST Earliest Start Time est(sekj )

LST Latest Start Time lst(sekj )

MSLK Minimum Slack lst(sekj ) - est(sekj )

Table 2: List of complement criteria for sekj and FFSI scheduling

Further, we use graph diameter d which corresponds to the maximum eccentricity in the
graph, i.e., the length of the longest shortest path between any two nodes in the network
graph. Other complexity parameters are the number of streams in the network |S|, hyper
period HP and the maximal period of any stream in the network T . Since we will often work
with expression |S| · d corresponding to the maximal total number of stream instances in the
network, we will substitute this expression as |SI|.

The complexity analysis of FFSI follows the pseudocode described in Algorithm 4. The steps
of the algorithm that require non-linear time are: priority queue initialization and iterating
over all stream instances while searching for a free slot and updating the priority queue.
We will calculate the complexity of the algorithm from the complexity of these steps.

Initialization of the schedule and freeSlots has linear complexity and is negligible com-
pared to the priority queue initialization. In the iteration cycle, popping an element from
the priority queue is O(1) and methods addToSchedule(...) and removeFromFreeSlots(...)
work with time slots already found by method findF irstSlotForAllPeriods(...) and their
time complexity is constant.

The complexity is calculated as follows:

• Priority queue init: |SI| · log |SI|+ |SI| ≈ O(|SI| · log |SI|)
The member |SI| · log |SI| corresponds to inserting all stream instances to the priority
queue. The member |SI| corresponds to calculating the criteria value which is linear
with respect to the total number of stream instances in the network.

• Iterate over all stream instances: |SI|

– Find free slots: (T/2) · (HP/2) ≈ O(T ·HP )
The method goes through all the free slots in the list corresponding to the first
periodical occurrence of the stream instance – the largest possible start time
is at most T − 1. The number of visited slots while searching for the correct slot
is at most T/2. Then it goes through the rest of the time slots in the lists and
checks if there are the required free time slots available for the other reoccured
stream instances in the hyper period. The total number of the time slots checked
can be at most HP/2.

– Update priority queue: 2 · (d− 1) + (d− 1) · log |SI| ≈ O(d · log |SI|)
The method removes all the predecessors or successors (based on criterion type)
of the currently scheduled stream instance from the priority queue. Since there are
at most d stream instances in each stream, the total number of such predecessors
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or successors can be at most d − 1. Then we update the criterion value of these
removed stream instances which is again linear. Finally, we return them to the
priority queue with complexity O((d− 1) · log |SI|).

Then the complexity of FFSI:

O(|SI| · log |SI|+ |SI| · (T ·HP + d · log |SI|))
≈ O(|S| · d · (log(d · |S|) + T ·HP + d · log(d · |S|)))
≈ O(|S| · d · (T ·HP + d · log(d · |S|)))

For FFS algorithm, the queue has only S members. The number of iterations is then S,
and finding of free slots runs d times because we need to assign a start time to each stream
instance of the stream. This results in the time complexity of O(|S| · (log |S|+ d · T ·HP )).

The complexity of the algorithms depends on the values of T , HP , d and |S|. Hence, the
algorithms belong to pseudo-polynomial complexity class. However, we must mention that
especially the step find free slots works with a very pessimistic upper bound on the size of the
freeSlots list. In reality, the runtime of these methods is very low as described in Chapter 6.

4.3.4 Random Heuristic

The random heuristic is the second baseline method used for evaluating the performance
of the other heuristics. The implementation is rather straightforward, it uses the First Fit
Stream (FFS) method and priority queue where the criterion is equal to a random number.

4.4 Multiple Pass Heuristics

Multiple pass heuristics are methods that perform several iterations over the sequence
of streams, usually by using some form of backtracking. We based our multiple pass heuristics
on the CBJ BM exact method described in Section 2.3.1. Moreover, we enhanced the method
by several techniques introduced in the text above – priority rules, est and lst functions, and
enlarged granularity of the time units. The multiple pass heuristic is shown in Algorithm 5.
The contributions to the original code are marked by a comment in the Algorithm. In the
following paragraphs, we will first describe the specifics of the CBJ BM iterative method pro-
posed by [12] and secondly show the applied heuristical enhancements in detail. Furthermore,
we have implemented both the original version of the algorithm CBJ BM and the multiple
pass heuristics and compared their performance in Section 6.2.3.

The core of the CBJ BM algorithm is the while cycle, which is iterating over the se-
quence of stream instances sInsts until all of them are scheduled or the solution is not found.
The algorithms workflow is similar to the CSP backtracking algorithm shown in Algorithm 1 –
stream instances are sequentially being assigned start times from their domains, and in case
there is a collision, the algorithm backtracks to the previously assigned stream instance. Ad-
ditional features specific to CBJ BM are applied. The original values of variables that are
not initialized in the pseudocode are zero or empty set.
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4.4.1 Backjumping

The field conf [siID] consists of the stream instances that conflicted with sInsts[siID].
In case the algorithm finds a conflict, the set conf [siID] is updated (line 21), and the next
startT ime is selected for the current stream instance. In case it is necessary to backtrack
(line 31), we select the highest-indexed stream instance j from the conflict set and backjump
to it. This backjump allows us to skip the backtracking steps that would result in a redun-
dant search; but at the same time no feasible solution is skipped. However, the reason why
sInsts[siID] could not be scheduled may be even some earlier scheduled stream instance than
sInsts[j]. Therefore the conflict set conf [j] is updated to contain all the plausible causes.

In case there is no stream instance in the conflict set of the currently scheduled stream
instance, there may be two different scenarios. Firstly, the domain of the stream instance was
empty, then the problem instance is infeasible. Secondly, we backtracked to siID = 0 and
could not find a start time that would result into a feasible solution. Then, if we are working
with step = 1, the scheduling problem is infeasible. Otherwise, if step > 1, the problem may
be infeasible or we may skip some solution.

4.4.2 Backmarking

The field Mark is a |sInsts| × HP array initialized to 0. Each time there is a conflict
we update the array so that the Mark[siID][startT ime] corresponds to the lowest-indexed
stream instance preventing the startT ime from being assigned to the sInsts[siID].

The field BackTo is |sInsts| × HP array initially set to 0. The field
BackTo[siID][startT ime] corresponds to the lowest-indexed stream instance which
was reassigned after the current sInsts[siID] was assigned with startT ime.

These two fields help to reduce the number of consistency checks. The condition on the
line 12 is called type A saving, it checks for a particular start time and stream instance, whether
there is a variable for which the consistency checks already failed and still has the same value.
In such a case, it would not make sense to continue because we know there is a conflict.
The for loop on the line 19 is called type B saving. In this case, the BackTo[siID][startT ime]
field represents up to which index the consistency checks already passed and we do not need
to recheck them.

4.4.3 Heuristic Enhancements

To reduce the domains of the variables we use the est(sekj ) and lst(sekj ) functions introduced
in Section 4.3.2. This reduction allows us to speed up the searching because only plausible
start times (with respect to constraints (3), (4) and (5)) are contained in the domains of the
stream instances. The variable nextStart[siID] represents the first plausible start time from
the domain that can be assigned to stream instance with siID and is equal to either est(sekj )
or the latest successfully assigned startT ime with added step for the given stream instance
sInsts[siID]. The upper bound on stream instance variable domain is set by lst(sekj ). Since
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we are trying to minimize the end-to-end latency, we do not try to apply any domain ordering,
because similarly as in the first fit methods introduced in the text above, we are trying to place
the stream instance to the first available time slot.

When we calculate the startT ime (line 5), the algorithm either just backtracked to this
place or we proceeded forward from the previously assigned variable. In case the algorithm
backtracked, we already calculated the start time before and we will now use its updated
value that is saved in nextStart[siID]. In case we proceeded forward, the nextStart[siID]
variable is initialized to zero and we need to calculate the earliest meaningful start time to
avoid the redundant searches. The start time is set to est(sInsts[siID]), which may be further
influenced by the already assigned preceeding stream instances of the same stream. We add
such stream instances to the conflict set of siID.

At the beginning of the algorithm, we sort the stream instances based on one of the
well performing one pass heuristics. The corresponding criteria would be DF and MRT.
Since MRT is criterion suitable for scheduling streams and in the CBJ BM algorithm we
are scheduling stream instances, we added the third criterion equal to the id of the stream
instance in the stream instance sequence for the given stream id(sekj ). This ensures that the
stream instance precedences are kept in the created priority queue. Such sorting positively
impacts the scheduling process because it helps to reduce the search time (see Section 6.2.3).

To speed up the search (which is necessary especially for large problems), we use a larger
time granularity introduced by variable step. This implies a domain reduction that can pos-
sibly skip some solution (the algorithm is not complete) but on the other hand, it enables us
to search the solution space faster. We evaluated three different methods for calculating the
step size based on:

1. stream instance sekj duration: dek.w · sj .p/100e – we call this method CBJ BM D

2. stream instance sekj period: bsj .T/500c – we call this method CBJ BM P

3. scheduling progress: 1 + b30 · siID/|sInsts|c – we call this method CBJ BM ID

As a result of the applied enhancements, the consistency checking can be vastly reduced.
The only constraint we need to check is the link overlapping, Constraint (2). Constraint (1) can
be skipped because we are scheduling the whole stream instance at a time, which is enforcing
the zero jitter by deriving the start times of the respective reoccurred stream instances from
the first periodical occurrence. Constraint (3) can be skipped because of the fact that we are
always scheduling stream instances of the same stream in order that is keeping the precedences
and we are using the est(sekj ) function for domain reduction. Constraint (4) does not need to be
checked because it is already integrated in the est(sekj ) function used for domain reduction.
Similarly, Constraint (5) is also part of the domain reduction in the lst(sekj ) function.

Additionally, we implemented the algorithm with step = 1 (called CBJ BM ) and also the
algorithm based on the original pseudocode in [12] (referred to as CBJ BM NOH where NOH
stands for ”no heuristic”) to compare the performance of the multiple pass heuristics with their
exact version. The CBJ BM NOH algorithm uses random sorting that keeps stream instance
precedences, and the stream instances domains are represented by the interval [sj .r, sj .d̃].
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Algorithm 5 Heuristic based on Conflict-Directed Backjumping with Backmarking by [12]

1: procedure Cbj-bm-based-heuristics(sInsts) returns the solution or false
2: sInsts← sort(sInsts, {DF,MRT, ID}) . One pass sorting
3: siID ← 0
4: while siID < |sInsts| do
5: if nextStart[siID] == 0 then
6: startT ime, conflicts← getEstAndConflicts(sInsts, siID)
7: confSet[siID]← confSet[siID] ∪ conflicts
8: else
9: startT ime← nextStart[siID]

10: successful← false
11: while ¬successful ∧ startT ime ≤ lst(sInsts[siID]) do . Reduce domains
12: if Mark[siID][startT ime] < BackTo[siID][startT ime] then
13: confSet[siID]← confSet[siID] ∪ {Mark[siID][startT ime]}
14: step← getStep() . Larger time granularity
15: startT ime← startT ime+ step
16: continue
17: sInsts[siID]← startT ime
18: fail← false
19: for j ← BackTo[siID][startT ime] to siID − 1 do
20: if ¬Consistent(sInsts[j], sInsts[siID]) then
21: confSet[siID]← confSet[siID] ∪ {j}
22: Mark[siID][startT ime]← j
23: fail← true
24: break
25: if ¬fail then
26: Mark[siID][startT ime]← siID − 1
27: successful← true

28: BackTo[siID][startT ime]← siID
29: step← getStep() . Larger time granularity
30: startT ime← startT ime+ step

31: if ¬successful then
32: if confSet[siID] == ∅ then return false

33: j ←Max(confSet[siID])
34: confSet[j]← confSet[j] ∪ confSet[siID] \ {j}
35: for k ← j + 1 to |sInsts| − 1 do
36: for v ← 0 to HP − 1 do
37: BackTo[k][v]←Min(BackTo[k][v], j)

38: while siID > j do
39: nextStart[siID]← 0 . Reduce domains
40: confSet[siID]← ∅
41: siID ← siID − 1

42: else
43: nextStart[siID]← startT ime
44: siID ← siID + 1

45: return sInsts
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5 Program

The algorithms were implemented in Java 8 and designed in a way that aggregates methods
common for several solvers and hence allows easy adding of new solver algorithms. General
workflow of the implemented program is shown in Figure 3. Proposed algorithms implement
the step Schedule; otherwise, the framework is common for all solvers.

Check Solution

from Protocol Buffer classes initialize inner problem representation

Load Problem Instance

Schedule
assign start times using specified solver

check correctness of the solution (all constraints satisfied)

Save Output Protocol Buffer

Load Input Protocol Buffer
consisting of network topology and communication definition

consisting of schedule found for each link

Figure 3: Workflow of the proposed program

The ILP model was implemented using the Gurobi Optimizer [18] which is a mathematical
programming solver known for good performance and easily understandable API. This solver
also provides useful outputs about the quality of the solution such as upper bound on distance
from the optimum.

The Maven build system is used to build the project. Both input and output data are kept
in the Protocol Buffer format, which is a language-neutral tool for serializing structured data.
The Protocol Buffer definitions were compiled using protoc 3.7 compiler into Java classes.
The JavaDoc documentation was autogenerated using Idea IntelliJ. Since the JavaDoc does
not support Protocol Buffer format, tool protoc-gen-doc was used for API documentation.

Suitable Java graphical environments for plotting custom graphs are rather scarce. Most
of the available libraries are outdated, not very well documented or contain too advanced
features for a simple GUI. In the end, Graph Stream library was used for viewing the net-
work topology, and JFreeChart library was used for the implementation of the Gantt chart.
Otherwise, the GUI is based on Java Swing.

Java Lombok plugin (allowing auto-generation of methods like getters, setters, etc.) was
used to make the implementation more transparent. To install the program, it should be suf-
ficient to have Java 8, Gurobi 8.1 (licensed) and Maven installed and build the code using the
enclosed pom.xml.
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To process the results, we created a Python script new stats.py with automated figure
plotting. The script assumes folders aggregating instances with the same meta parameters
(the folders are indexed in ascending order). Example usage of the script would be python

new stats.py 3000 3360 28 > stats.txt, which would process the results of 28 different
solver methods from folders with indexes from 3000 to 3360 and redirect the text output
to file stats.txt. The figures would be saved to folder fig/. The code is written in Python
3.7, and used libraries are Matplotlib and Pandas.

Further, we show the package structure of the code and describe the content of the
packages. Detailed documentation can be found on the enclosed CD in JavaDoc format.
There are five runnable classes – Main for running the scheduler, ParallelScheduler

running larger experiments, InstanceGenerator for local generation of a few instances,
ParallelGenerator for a parallel generation of experiment datasets and GUI which allows
solving one selected instance by one selected method and view its schedule, topology, and
setup.

cz.cvut.ciirc ...............main classes like ProblemInstance and Scheduler

data format ................ autogenerated classes from .proto definitions

data format definitions ................protocol buffer definitions of API

exceptions .................................................custom exceptions

generator .....................instance generator and parameters constants

gui .................. runnable GUI class and all the necessary components

helper ....................common static methods such as IO handling, etc.

network and traffic model .......classes for inner problem representation

scheduling ........................abstract solver classes, solution class

baseline methods .....................ILP, RandomHeuristic, exact CBJ BM

helper classes ..................... classes such as LinkTimeSlots, etc.

multi pass .....................................all multi pass heuristics

one pass ..........................................all one pass heuristics

5.1 User Manual

This brief user manual will guide the user throughout the program usage without any need
to modify the code. Please note that the following path definitions follow Linux convention,
adapt them to your system accordingly. To be able to run the ILP solver, you must have
Gurobi installed.

1. Create a custom named folder CUSTOM FOLDER and place the scheduler.jar into this
folder. Create folder CUSTOM FOLDER/instances/instance dirID.

2. In the created folder, define you protocol buffer input file called instance fileID.pb.
As of May 2019, the protocol buffer can be generated in Java, Python, Objective-
C, C++, Dart, Go, Ruby, and C#. The input file must follow the .proto definitons
contained in data format definitions and described in API documentation.html.

3. Run java -jar scheduler.jar from your CUSTOM FOLDER to start the program.
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4. Select the instance you would like to solve and press Open.

Figure 4: Manual step 1 - Choose the file

5. Select the desired solver from the list and press Solve. Wait until the instace is solved.

Figure 5: Manual step 2 - Choose the solver

6. Press Topology to view the network topology of the instance.

Figure 6: Manual step 3 - View the topology
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7. Press Schedule to view the schedule of the instance. Zoom in the Gantt chart to have
a closer look. If desired it is possible to have labels added to each frame in the Gantt
chart as shown in Figure 2. To do so set GUIConstants.showLabels = true in the code.

Figure 7: Manual step 4 - View the schedule

8. Press Instance info to view the overview of the input data.

Figure 8: Manual step 5 - View the instance

9. Press Reset to change the instance or press Change solver to use different solver for the
same instance.
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6 Experiments

To evaluate the proposed algorithms we conducted experiments on artificially generated
data. The generation methodology is described in the following section. Moreover, we compare
the performance of selected methods (with a high enough percentage of scheduled instances).

6.1 Experiments Setup

We evaluated the proposed algorithms on randomly generated instances suitable for highly
critical Ethernet communication. We generated schedulable instances of various sizes and
topologies with the aim to have instances with sequentially growing average link utilization
allowing us to test both easily and hardly schedulable instances.

In this chapter we will use additional terminology for the network nodes – end systems are
network nodes that are connected to the rest of the network by one duplex link only (e.g., leaf
of a tree graph), switches are any other network nodes that are not end systems (i.e., node
acting as an intermediate for other nodes). Time units used in experiments are microseconds.

The instance generation can be simplified into two main steps – topology generation
of all the network nodes and connections between them and communication generation of all
streams that are sent between the end systems.

The topology generation was inspired by Craciunas et al. [19] who designed several
industrial-sized topologies for time-triggered scheduling in distributed systems. We run the
experiments on three topology sizes, SMALL, MEDIUM, and LARGE, ranging from a couple
of switches to several tens of switches (see Table 4). The topologies are of three different
types – TREE, RING, and LINE. Example middle sized topologies of each type are depicted
by our GUI in Figures 9a, 9b and 10 respectively. In total, we have nine different topologies
to test on.

(a) Middle sized TREE topology (b) Middle sized RING topology

Figure 9: Sample middle sized TREE and RING topology
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Parameters of nodes and links in the network are chosen to suit the Ethernet commu-
nication problem and are similar to [19]. Link weight ek.w is set to 1 for links between two
switches and 10 for links between the switch and end system, representing physical Eth-
ernet link of speed 1 Gbit/sec and 100 Mbit/sec respectively. Similar as in [6], the link
time lag ek.l is set to 1 µs for all links, representing the propagation delay which is equal
to wire length/speed of light and the node time lag is set to 10 µs for all nodes.

Figure 10: Middle sized LINE topology

The communication generation depends on the topology – Streams are generated to be sent
between the end systems. In RING and TREE topology, a stream can be sent between any
two end systems. In LINE topology the communication takes place only between one specified
end system (control unit) and the other end systems.

The streams have a different period sj .T which is uniformly chosen from one of the three
predefined period sets (for one generated instance, one period set is used) with values ranging
from 1 ms to 16 ms and hyper period not larger than 16 ms. All period sets are shown
in Table 3.

periodSet periods (µs) HP (µs)

P1 {1000, 2500, 5000, 10000} 10000
P2 {5000, 7500} 15000
P3 {2000, 4000, 8000, 16000} 16000

Table 3: Period sets

To model communication of different complexity, the total number of reoccurred stream
instances rsi was adjusted.

rsi =
∑
sj∈S

HP

sj .T
· |Rj | (8)

We set upper and lower bound on rsi for each topology type and size as shown in Table 4
and iterate from lower to upper bound with a step size equal to the interval size divided
by 20 resulting in 20 different communication complexities for each topology. Upper bound
ub on rsi was set experimentally for each combination of topology size and topology type
as the maximum number of frames for which the generator yielded a schedulable instance
in a reasonable time (in order of hundreds of seconds). Lower bound lb was set as lb = ub

10 for
each setting.
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topMode topSize numSwitches numEndSystems lb on rsi ub on rsi

TREE SMALL 1 6 60 600
TREE MEDIUM 7 36 1600 16000
TREE LARGE 21 64 2000 20000
RING SMALL 2 6 200 2000
RING MEDIUM 6 36 1600 16000
RING LARGE 14 70 2000 20000
LINE SMALL 1 4 160 1600
LINE MEDIUM 5 31 800 8000
LINE LARGE 13 66 1800 18000

Table 4: Parameters of different topologies

The stream duration is set randomly to correspond to an Ethernet packet of size
125–1500 bytes transmitted through the 1Gbit/s network. Release time sj .r and deadline
sj .d̃ are randomly set so that the interval [sj .r, sj .d̃] covers 15–40 % of the period sj .T and
the interval is large enough to cover the sum of transmission durations over all reoccurred
stream instances on the path of the stream.

Summarized we have four different parameters defining one instance folder
{topologySize, topologyMode, periodSet, rsi} resulting in 3 · 3 · 3 · 20 = 540 folders
in total. Each folder consists of 100 instances with the same quadruple of these parameters
– the instances differ in the generated communication which is partially random. The main
generation cycle is shown in Algorithm 6.

Algorithm 6 Benchmark generator

1: procedure GenerateBenchmarks
2: for all topologySizes do
3: for all topologyModes do
4: for all periodSets do
5: lb, ub, step← get(topologyMode, topologySize)
6: for rsi← lb, ub, step do
7: for i← 1, numInstances do
8: topology ← GenTopology(topologyMode, topologySize)
9: streams← GenStreams(topology, periodSet, rsi)

10: if !valid(streams) then
11: discard(streams, topology)

The pseudocode for communication generation is described in Algorithm 7. The streams
are generated using a first fit heuristic approach described in 2.2.1. The generator keeps an on-
line schedule of so far generated streams and updates it each time a new stream is generated.
The streams are generated until the desired rsi bound is reached or the instance generation
is not possible for given parameters (and generated random numbers).

A priority queue fromToPQ (Algorithm 7, line 6) is used for choosing origin and target
nodes of the streams. Items in the queue consist of quadruple origin, destination, current
period and the last usage. Before the communication generation starts, the fromToPQ is ini-
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Algorithm 7 Communication generator

1: procedure GenStreams(topology, periodSet, rsi)
2: rsiID ← 0
3: streams← {}
4: HP ← lcm(periodSet)
5: schedule← initialize empty schedule for all links
6: fromToPQ← initialize priority structure
7: while rsiID < rsi do
8: curP ← select period based on rsiID
9: if fromToPQ.peek().period > curP then

10: return null
11: curPeekPQ← fromToPQ.pop()
12: path← find a path from curPeekPQ.org to curPeekPQ.trg
13: success← TryToPlace(curP , path, schedule, streams, topology)
14: if success then
15: rsiID ← rsiID + (HP/curP ) ∗ length(path)
16: fromToPQ.insert(curPeekPQ, curP, rsiID)
17: else
18: nextP ← select next period from the periodSet
19: fromToPQ.insert(curPeekPQ, nextP, rsiID)

20: return streams

tialized with all possible combinations of end systems, the lowest period from the period set
and negative random number (for the last usage). The top of the priority queue is an element
with the lowest current period and in the case of a draw the element with the lowest last usage.
The lowest current period represents the lowest period for which the stream of given origin
and target can theoretically be placed to the schedule. The last usage is a timestamp (repre-
sented by a current number of reoccurred stream instances in the network) marking the last
usage of the given origin – target combination. Initializing the last usage to a random number
ensures that the priority queue is different each time it is initialized. The fromToPQ structure
guarantees that the communication generation stops in a finite time (Algorithm 7, line 10)
and that the streams are as uniformly distributed as possible between different combinations
of origin and target end systems.

Periods are distributed uniformly with respect to the number of reoccurred stream in-
stances rsi. The period set is sorted from the lowest to the largest value. The period curP for
the currently generated stream is selected based on the progress of already placed reoccurred
stream instances in the schedule which is corresponding to the ratio rsiID/rsi. Please note
that since rsi is calculated as in Equation (8), the actual number of added reoccurred stream
instances of the period T ∈ Pi is not equal to rsi/|Pi| but belongs to the interval

(
rsi

|Pi|
− HP

T
· d, rsi
|Pi|

+
HP

T
· d
)

where d is the longest path between any two end systems in the network.
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In case there is no combination of origin and target nodes that would allow us to place
the stream with period curP, the instance is discarded. The stream with parameters origin,
target, period is valid only if it is possible to place it to the current schedule using the first fit
approach 2.2.1 so that it meets all constraints (2)–(5) – in pseudocode procedure TryToPlace

(Algorithm 8). In case the stream placement is possible, the online schedule is updated. Oth-
erwise, the stream payload is being iteratively decreased. After reaching the lower bound for
the stream transmission duration, the current stream is discarded and different combination
of origin and target is chosen from the priority structure.

Algorithm 8 Placing stream in the schedule

1: procedure TryToPlace(curP, path, schedule, streams, topology)
2: duration← randomStreamDuration(1, 12)
3: while duration > 0 do
4: schedule← placeF irstF it(curP, path, schedule, streams, topology, duration)
5: if valid(schedule) then
6: return true
7: else duration← duration− 1

8: return false

6.2 Results

To test the proposed algorithms on generated instances, we implemented all of them
in Java 8, and for the ILP model we used Gurobi solver version 8.1. To ensure the same envi-
ronment for both ILP and the other algorithms, the number of threads that Gurobi is allowed
to use was set to one. The experiments were run on a system with 4x Intel R© Xeon R© CPU
E5-2690 v4 @ 2.60GHz with 14 cores (56 cores in total) and in total 251GB of RAM. We set
the time limit to 60 seconds per one solver. Note that the problem instance initialization (data
loading, etc.) is not included in this time limit and is done in order of seconds. The problem
instances were run in parallel on 56 threads. The parallelization was done in a way that allows
the solvers to run without any common resources, only the call to create Gurobi environment
is locked for synchronization safety reasons. In general, compared to single thread execution,
the delay of one solver resulting from the parallelization is negligible.

6.2.1 Structure of Generated Instances

Due to the large number of input parameters, the difficulty of each instance is hard
to estimate. However, we can still point out some trends based on the results of the first
experiment. Each instance is influenced by several factors.

Firstly, we point out the topology type and size which influences the importance of bot-
tleneck link. We call the link a bottleneck when it gathers significantly more communication
traffic (i.e., the link has high utilization) than most of the links. Such bottleneck link then
determines the throughput of the whole network. For LINE topology, the bottleneck is easy
to determine. Since all communication includes the control unit, the bottleneck link is the
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one connecting the control unit to the rest of the network. This topology is extreme in a way
that all streams in the network cross the bottleneck link. For TREE and RING topologies,
the bottleneck link is not that clear and depends on the distribution of streams among end
systems. In Figure 11, we can see the average and maximal link utilization of all instances.
We can see that the average and maximal utilization do not have the same distribution. This
is caused by the fact that some of the links transfer more traffic than the other links. For this
reason, we will need to analyze each topology type and size separately because the number of
rsi in the network does not necessarily correspond to the instance difficulty. In Appendix C
we can see the utilization for each topology type and size separately.
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Figure 11: Link utilization of all topologies

Secondly, the period set can be described by the number of periods, the average value
of the period, the hyper period and if the periods are harmonic or not. All of these factors
influence the instance difficulty. Table 5 shows the dependence of the number of scheduled
instances on the period set. We say that the instance is scheduled if there was at least one
method that found a solution. The most successful was the harmonic set P3 with 99.37 %
of scheduled instances. On the other hand, set P1 which is not harmonic and has four different
periods, had only 71.27 % of scheduled instances.

periodSet periods (µs) HP (µs) scheduled scheduled (%)

P1 {1000, 2500, 5000, 10000} 10000 12829 71.27
P2 {5000, 7500} 15000 16012 88.96
P3 {2000, 4000, 8000, 16000} 16000 17886 99.37

Table 5: Number of scheduled instances based on period set

6.2.2 One Pass Heuristics

The first experiment was performed on one pass heuristics and the baseline methods.
In Table 6 we can see the results. Each heuristic is called by its criteria – e.g., RED EDF
is a heuristic where the first criterion is the Resource Equivalent Duration and the second
criterion is the Earliest Deadline First.
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method scheduled avg time [s] best obj

EDF MRT 40345 0.03 9836
EDF RED 40343 0.06 9706
DF RED 40267 0.06 3556
DF MRT 40199 0.03 3742
DF EST 20918 0.01 807
DF LST 20871 0.01 199
LST EDF 20804 0.01 190
EDF EST 20796 0.01 324
EDF LST 20788 0.01 301
EDF MTS 20785 0.01 315
DF MTS 20385 0.01 413
ILP 18885 48.53 18769
MTS EDF 12811 0.01 242
MRT EDF 9102 0.00 7
EST EDF 7631 0.01 133
RED EDF 3657 0.03 1
RANDOM 3352 0.00 197
DF MSLK 136 0.00 0
EDF MSLK 117 0.00 1
MSLK EDF 96 0.00 0

Table 6: Performance of One Pass Heuristics and Baseline methods

Three performance measures were taken – the number of scheduled instances, the average
running time and the number of best objective values. As a reminder, we must mention that
all of the instances were generated in a way that ensures they are schedulable (i.e., some
solution exists for each one of them).

In total, we generated 54000 instances, which means that the most successful method
EDF MRT solved 74.7 % of the instances. The other similarly successful methods
(74.4–74.7 %) were alternations of the aforementioned method. The most successful method
that has a complement criterion as the first priority value was LST EDF with 38.5 % of sched-
uled instances. The only criterion that seems useless for our problem is MSLK. This may
be caused by the fact that it diminishes the release time and the deadline of the stream.
Our baseline methods ILP and Random Heuristic scheduled fewer instances than most of the
heuristic methods. The success rate of ILP was 34.9 %, and the success rate of RANDOM
was 6.2 %.

The number of best objective values is calculated as a sum of the instances where the
method obtained the best objective value among others. If more methods obtained the best
objective value for some instance, all of these methods get a score point. As expected, the ILP
did very well in this performance measure – for 34 % of instances, it found a solution with the
lowest objective value. As we mentioned earlier, the ILP is a complete and optimal method.
However, we can see that there is a 0.9 % difference between the scheduled and best objective
instances. This is caused by the Gurobi solver, which may return a sub-optimal solution in
case the time limit is reached. The performance of the heuristics with respect to the best
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objective metric was similar as for the number of scheduled instances – none of the heuristics
was exceptional in this performance measure.

The average running time for all heuristics was in the order of hundredth of a second.
The average running time for the ILP was 48.53 seconds. However, it is important to point
out that as opposed to heuristics, the ILP did not return the first feasible solution but instead
continued in searching for the optimal one. This is partially causing the larger running time
of the ILP. However, it is clear that the heuristics run much faster.

6.2.3 Multiple Pass Heuristics

We based our multiple pass heuristics on the best performing one pass heuristic DF MRT.
Table 7 compares the original CBJ BM NOH implementation with the enhanced implementa-
tion CBJ BM and the implementations skipping some domain values CBJ BM D, CBJ BM P
and CBJ BM ID.

method scheduled avg time [s] best obj

CBJ BM D 44981 15.32 17026
CBJ BM 44931 15.38 9340
CBJ BM P 41780 14.35 507
CBJ BM ID 40731 15.35 456
ILP 18885 48.53 18738
CBJ BM NOH 4637 55.01 466
RND 3352 0.0 12

Table 7: Performance of Multiple Pass Heuristics and Baseline methods

The most scheduled instances were obtained by CBJ BM D heuristics. It found a solution
for 83.3 % instances. The complete version CBJ BM obtained comparable results with 83.2 %
of scheduled instances. The reason why these two methods behave similarly is that the step
size for CBJ BM D is one for stream instances passing between switches. Hence, these two
methods act the same on stream instances between switches. The step size for stream instances
passing between end systems and switches is between one and twelve – the step size is affected
by the stream transmission duration and the link speed. The other two heuristics do not
perform significantly worse with 75.4–77.4 % of scheduled instances. However, they do not
show better results than the CBJ BM D heuristic for any combination of instance parameters.
The original implementation without the heuristical enhancement found a solution for 8.58 %
instances.

The best objective values were (apart from ILP) obtained by CBJ BM D heuristics.
If we remove all methods except for CBJ BM D and CBJ BM from the statistics, we obtain
best objective values 26313 (48.7 %) and 22615 (41.9 %) respectively. This is significantly bet-
ter than the difference in the number of scheduled instances. The rationale may be that larger
step size sometimes skips the first available time slot for the given stream instance. The larger
the transmission duration of the stream instance is, the more available time slots it may skip.
This allows shorter (in transmission duration) stream instances to fit into the empty gap.
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Hence, the end-to-end latency of the shorter stream instances may be lower. Nevertheless,
this hypothesis would need a deeper exploration of the results to confirm it.

The time performance for all heuristic CBJ BM based methods is similar (14–16 s).
The CBJ BM NOH method timed out on most of the instances, and it is also reflected
on the average solving time 55 s.

6.3 Discussion

To have a clear visual interpretation of the results, we have chosen to plot only results for
the best performing one pass heuristic EDF MRT, the best performing multiple pass heuristic
CBJ BM D and the ILP method. However, it is possible to run the enclosed plotting script
python new stats.py 7000 7540 25 > results.txt on any other combination of methods
if needed. The figures showing the performance measures of the selected methods for each
topology type and size can be found in Appendices D – G.

Another interesting performance measure can be found in Appendix E where we show the
dependence of success rate (percentage of scheduled instances) on the average and maximal
link utilization of the instance. We can see that the maximal link utilization is a slightly
better indicator of instance difficulty.

Generally speaking, ILP performs very well on small instances with low maximal link
utilization (up to 40 %). Since it also finds the optimal solution, it does not make much
sense to compete with ILP on such instances. On the other hand, for larger or more utilized
networks it is beneficiary to use the heuristic methods. We can see that for large instances, the
CBJ BM D success rate 85.2 % was significantly better than the ILP success rate of 12.0 %.

Further, we compare objective values of ILP and CBJ BM D on instances where ILP
found an optimal solution. The average objective value of the solution found by CBJ BM D
was 101.7 % higher than of the solution found by ILP. We could improve this measure
by introducing a version of CBJ BM D that is optimal and it will be one of the directions for
the future work.

If we compare the results of the best multiple pass (83.3 % success rate) and the best one
pass heuristics (74.7 % success rate), we find out that the introduction of backtracking allows
us to have 8.6 % better difference in the percentage of scheduled instances. In Table 6 we see
that the run time of one pass heuristics is negligible as opposed both to ILP and CBJ BM
based methods. Hence, we could run all of the implementented one pass heuristics and then
choose the one that yielded the best solution for the given instance. In such case, the success
rate of the combined one pass heuristics would be 78.7 %.
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7 Conclusion

The aim of this thesis was to propose several heuristics for highly critical periodic schedul-
ing and to compare their performance. The main focus has been taken on developing methods
that are fast and reliable as well as on developing an easily extensible code. We proposed
25 different methods that can be divided into three categories. Firstly, we developed an exact
ILP-based method which allowed us to compare the performance of the proposed heuristics
as well as to double-check their correctness. Secondly, we designed several one pass heuris-
tics based on the first fit approach and the order in which the schedule is created. Lastly,
we applied the knowledge gained from the one pass methods and constructed backtracking
methods based on Conflict-Directed Backjumping with Backmarking.

The experimental results have shown that the proposed heuristics report more than two
times better results in the number of scheduled instances than the baseline ILP method.
Especially for harder instances, with respect to the topology size and the total number of rsi
in the network, they have shown their importance. The main shortcoming of the experiment
would be that it was performed on artificially generated data. Even though we tried to design
the instance generator as unbiased as possible, it would certainly be beneficial to run the
experiments on a real dataset.

Further, we developed a graphical user interface that allows to intuitively run the frame-
work on a single instance and to visually display the results. We defined an API for both
input and output data format. The API together with GUI allows the framework to be
used as a standalone program. Another important part of the code is the postprocessing
script which interprets the obtained results of experiments and automatically plots figures.
The proposed script will ease up the future work on the project.

In the future, we would like to further develop the proposed multiple pass heuristics and
to speed up the search. We could enhance the implemented CSP techniques for example
by deeper forward checking. We could also explore other combinations of the one pass heuris-
tics and CBJ BM, some of the proposed one pass rules allow dynamical priority queue sorting
which could be even more beneficial when combined with the CSP backtracking. The goal
would be to find out if the overhead of the additional techniques is effective with respect
to the decreased search space size. A deeper exploration should be given to determining the
step size in CBJ BM based heuristics.

Another interesting area of focus would be the analysis of the instance difficulty. More
specifically, defining the input parameters that influence the chance of the instance to be sched-
uled the most. The attention given to the deeper exploration of input parameters could also
result in developing a metaheuristic that would choose the solver method based on the in-
stance parameters.

37/54



7 CONCLUSION

38/54



REFERENCES

References

[1] Erik L. Demeulemeester and Willy S. Herroelen. PROJECT SCHEDULING, A Research
Handbook. KLUWER ACADEMIC PUBLISHERS, 2002.

[2] Michael L. Pinedo. Scheduling - Theory, Algorithms, and Systems. Springer, fifth edition,
2016.

[3] Brendan Galloway and Gerhard P. Hancke. Introduction to Industrial Control Networks.
IEEE Communications Surveys & Tutorials, 15(2):860–880, 2013.

[4] J.H.M. Korst, E.H.L. Aarts, J.K. Lenstra, and J. Wessels. Periodic multiprocessor
scheduling. Memorandum COSOR. Technische Universiteit Eindhoven, 1990.

[5] Profibus Internationa. Application layer protocol for decentralized periphery and dis-
tributed automation, specification for profinet, iec 61158-6- 10/fdis. Technical report,
Profibus International, 2007.
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Appendices

Appendix A CD Content

Table 8 lists names of all root directories and files present on enclosed CD.

Name Description

experiment 1 Instances and results of the performed experiment
instances Sample instances for experimenting with the GUI, processing scripts
JavaDoc Documentation of the source code
program Location of scheduler.jar which is a runnable GUI
thesis-code Source code of the project
API documentation.html API documentation of input and output ProtoBuffer files
Brejchova BP.pdf Text of the bachelor thesis
ReadMe.html Guide for project installation

Table 8: CD Content
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Appendix B List of Abbreviations

Table 9 lists abbreviations used in this thesis.

Abbreviation Meaning

API Application programming interface
CBJ Conflict-Directed Backjumping
CBJ BM Conflict-Directed Backjumping with Backmarking
CBJ BM D CBJ BM with step size based on the duration
CBJ BM ID CBJ BM with step size based on scheduling progress
CBJ BM NOH CBJ BM implementation based on the original pseudocode
CBJ BM P CBJ BM with step size based on stream period
CPU Central processing unit
CSP Constraint satisfaction problem
DF Criterion earliest deadline with lower granularity
EDF Criterion earliest deadline
EST Criterion earliest start time
FFS First fit streams algorithm
FFSI First fit stream instances algorithm
GUI Graphical user interface
HP Hyper period
ILP Integer Linear Programming
IRT Isochronous real time
LST Criterion latest start time
MSLK Criterion minimum slack
MTS Criterion most total successors
PQ Priority queue
RED Criterion resource equivalent duration
RSI Total number of reoccurred stream instances
RT Real-time
UTIL Link utilization

Table 9: List of abbreviations
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APPENDIX C AVERAGE AND MAXIMAL UTILIZATION OF LINKS

Appendix C Average and Maximal Utilization of Links
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(c) Link utilization of small line topology
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(d) Link utilization of medium tree topology
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(e) Link utilization of medium ring topology
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Figure 12: Average and maximal link utilization of small and middle sized topologies
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Figure 13: Average and maximal link utilization of large topologies
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Appendix D Percentage of Scheduled Instances
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(c) Scheduled instances for small line topology
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(d) Scheduled instances for medium tree topology
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(e) Scheduled instances for medium ring topology
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Figure 14: Scheduled instances for small and middle sized topologies
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(a) Scheduled instances for large tree topology
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Figure 15: Scheduled instances for large and all topologies
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Appendix E Success Rate Based on Link Utilization
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(a) Success rate for avg utilization – small topology
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(b) Success rate for avg utilization – medium topol-
ogy
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(c) Success rate for avg utilization – large topology
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(d) Success rate for avg utilization – tree topology
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(e) Success rate for avg utilization – ring topology
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Figure 16: The percentage of scheduled instances based on average link utilization
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(a) Success rate for max utilization – small topology
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(b) Success rate for max utilization – medium
topology
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(c) Success rate for max utilization – large topology
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(d) Success rate for max utilization – tree topology
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(e) Success rate for max utilization – ring topology
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(f) Success rate for max utilization – line topology

Figure 17: The percentage of scheduled instances based on maximal link utilization
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Appendix F Average Running Time
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(a) Average running time for small tree topology
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(b) Average running time for small ring topology
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(c) Average running time for small line topology
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(d) Average running time for medium tree topology
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(e) Average running time for medium ring topology
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(f) Average running time for medium line topology

Figure 18: Average running time for small and medium topologies
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(a) Average running time for large tree topology
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(b) Average running time for large ring topology
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(c) Average running time for large line topology

Figure 19: Average running time for large topologies
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Appendix G Best Objective Value Score
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(a) Best objective score for small tree topology
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(b) Best objective score for small ring topology
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(c) Best objective score for small line topology
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(d) Best objective score for medium tree topology
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(e) Best objective score for medium ring topology
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(f) Best objective score for medium line topology

Figure 20: Best objective score for small and middle sized topologies
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(a) Best objective score for large tree topology
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(b) Best objective score for large ring topology
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(c) Best objective score for large line topology

Figure 21: Best objective score for large topologies
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