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Abstract
In this work we consider the Mini-
mum Cost Multicommodity Network Flow
(MCMNF) problem as a key problem for
traffic routing. The routing problem is
recurring, it should be solved many times
a day on a daily basis. So we present a
solution that may be successfully used in
the long term. We make use of a periodic
demand pattern, i.e. vehicles’ directions
are in general recurring daily. Our im-
provement is based on column generation
method, that allows us to reuse vehicles
paths from previous days in the solution
process. We achieved a 40% reduction
of computational time, while the optimal
solution is preserved.

Keywords: Network flows, MCMNF,
column generation, traffic routing

Supervisor: Ing. Martin Schaefer

Abstrakt
V této práci se zaměřujeme na problém vý-
počtu nejlevnějších toků jako na klíčový
problém pro řízení dopravního provozu.
Tento problém se řeší pravidelně během
dne, tj. nejde o nalezení řešení jednou, ale
o dlouhodobý proces, ve kterém se po-
řád hledá řešení toho samého problémů
s různými vstupy. Proto představujeme
řešení, které může být úspěšně použito v
dlouhodobém horizontu. Předpokládáme,
že v poptávce existuje periodický vzor,
tj. směr vozidel se obecně opakuje denně.
Naše zlepšení je založeno na metodě gene-
rování sloupců, která umožňuje opětovné
použití cest vozidel z předchozích dnů při
vyhledávání řešení. Dosáhli jsme snížení
výpočetního času o 40% při zachování op-
timality řešení.

Klíčová slova: Toky v sítích, nejlevnější
toky, metoda generování sloupců, řízení
provozu

Překlad názvu: Zjednodušení silničního
grafu pro výpočet nejlevnějších toků
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Chapter 1
Introduction

Nowadays, traffic congestion became a real scourge of humanity. In 2018
every American spent an additional 97 hours travelling, and $87 billion were
lost in total due to traffic jams [9]. There are some general approaches to fight
this problem: road network may be extended, the public transport system
should cover as much area as possible and should be suitable and comfortable
for everyone. Alternative modes of transport, such as bicycles or electric
scooters, should also be promoted - for this purpose rental systems could be
set up. However, these are all expensive long-term approaches. Assuming the
road network and the demand are fixed, we can try to avoid congestion by
routing the traffic.

Figure 1.1: Times Square traffic jam in New York City.
Photo credits: joiseyshowaa from Freehold, NJ, USA [CC BY-SA 2.0]
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1. Introduction .....................................
It is desirable for every driver to avoid congestion, so there are congestion

aware navigation systems that use real-time traffic data to suggest routes
that are possibly not the shortest but the fastest for each driver. So if we
assume that everyone is following the navigation device, leading navigation
providers have the power to influence so much traffic that they can cause
congestion on the other roads. Ideally, we would like to get to the situation
when we have perfect information where all the traffic is going; then we could
plan a route that would be the best response to the current traffic situation.
We are approaching so-called Nash equilibrium, when everyone’s route is the
best with respect to routes of others.

If our goal is to minimise total travel time for all drivers, we may achieve
better result only if we coordinate the drivers, i.e. we are moving from user
equilibrium to system optimum. However, it means that not everybody would
use the fastest route, and some drivers are required to sacrifice and choose
slower routes for the good of the system [14]. In fact, it is unlikely with
the human driver but is feasible in the possible future of transportation,
where mobility becomes a service, and all the demand is served by a fleet of
autonomous vehicles. In this setting fleet could be controlled centrally, and
the routes could be coordinated.

Obviously, congestion is caused by too many vehicles on the same road
at the same time. The relation of density, volume and speed of traffic is
extensively studied research field of congestion modelling. We consider the
simplest threshold congestion model, where number of cars travelling through
a road segment is constrained by a maximum number of cars per time unit.
We refer to this number as a capacity of the road segment. We also assume
that if the number of vehicles on the segment is smaller than its capacity,
the speed on this segment is static (so-called free flow speed). To minimise
total travelling time, we need to know the amount of time required to drive
through each road segment. We may assign the length of the segment divided
by maximum allowed speed as travel time for this segment (assuming that
capacity is not exceeded there). If we are talking about a city, number of
simultaneous requests is vast, and, as we mentioned before, we want to con-
sider all of them at once. So to say, we combine individual requests with the
same origin and destination points and obtain a demand, which consists of a
large number of requests for movement of a certain number of vehicles from
one point (origin) to another (destination). If we represent the road network
as a graph, where nodes are crossroads and edges are road segments between
them, and assign capacity and travel time parameters to each edge, the goal
will be to find a path for each request (origin-destination pair) such that total
travelling time for all paths1 will be minimized and capacity constraint will
be satisfied for each edge2. This formulation naturally leads to network flows

1Travelling time for the path is a sum of travelling times for all edges which it contains.
2Capacity constraint is satisfied if number of paths containing the edge is less than or

equal to its determined capacity value.
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......................................1. Introduction
problem, where we need to find a flow with minimum cost (cost is travel time
in our case). More precisely, we may formulate this task as a Minimum Cost
Multicommodity Network Flow (MCMNF) problem [18].

Not surprisingly, the size of this problem is huge, especially for large cities
such as New York City (NYC). To be more specific, the NYC road net-
work converted to a graph consists of 126 987 nodes and 335 407 edges, that
means more than 1010 of potential origin-destination pairs. If we examine
the yellow taxis’ data [5], which make up only a part of the traffic, there
are more than 107 requests in August 2015, i.e. more than 220 requests per
minute. There are several solutions for the MCMNF problem, but due to the
size of the problem, all of them require much memory and computational time.

We consider the MCMNF problem as a key problem for routing approaches
that would make congestion-free routing possible for large cities. Now its
solution requires significant computational costs, first of all, because of the
size of the problem. So, the purpose of this thesis is to find a way to simplify
the problem so that it is scalable with the size of the city and practically
applicable for the traffic routing. Of course, to defeat traffic jams, it is not
enough to solve this problem only once. As we need to be able to solve it at
every moment for many days, we consider the routing problem to be repeated.
So to say, our goal is not to route vehicles at this particular moment as fast
as possible, but to invent a simplification that helps to solve the repeated
routing problem in the long term. It may require some computations once,
but as a result we obtain a faster way to solve the problem on a daily basis.

The remainder of this work is organised as follows. In Chapter 2 we briefly
review existing problem approaches and techniques, that may be useful.
Then we formulate the necessary theoretical preliminaries and formalise
the MCMNF problem in Chapter 3. We describe the solution of MCMNF
problem, that we use as a base, and introduce our improvements to the
solution algorithm in Chapter 4. Different ways to use our approach, results
of experiments and comparison with a basic solution are presented in Chapter
5. Chapter 6 contains the conclusion.

3
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Chapter 2
Related work

In this chapter, we discuss the ways to solve MCMNF problem and existing
simplification techniques. MCMNF could be understood as a set of single-
commodity network flow subproblems, which may be solved independently.
However, there are general constraints, that force subproblems to interact
with each other. Each subproblem requires sending a certain number of
vehicles from one point to another, and this is a part of the problem, where
subproblems are completely independent of each other. But there is also a
capacity constraint on each edge, which should be taken into account for
all subproblems together, so that total flow (number of vehicles) on each
edge should be less or equal to its capacity. This explains why MCMNF
problem is much more complex than a set of single-commodity network flow
subproblems. MCMNF is naturally defined as a linear program, where total
flow cost is minimised with respect to three types of constraints: capacity
constraint for each edge, mass balance constraint, which is responsible for
difference between input and output flow in each node and non-negativity
constraint for each variable, because flow on edge could not be negative. We
show the exact definition of this linear program in Chapter 3.

2.1 Solution techniques

In general MCMNF problem could be solved by means of a linear program.
The problem is that this program is too large to be solved by common meth-
ods. There are several techniques that allow us to solve large-scale linear
programs, we describe two of them below.

The first technique for solving MCMNF problem is Relaxation algo-
rithm, which is based on Lagrangian relaxation. For each node a weight
(so-called node potential) is determined. On each iteration of the algorithm
Lagrangian relaxation is done by relaxing mass balance constraints, i.e. we
subtract those constraints multiplied by determined weights from the objective
function. Therefore, we do not have to satisfy those constraints, but we are
penalised for violating and rewarded for satisfying them. Penalty or reward
is proportional to the weight of the node and the size of imbalance in this
node. Relaxation algorithm works iteratively and on each step performs one

5



2. Related work.....................................
of two following operations: 1) modifies node potentials if for those potentials
exists a solution with higher objective function value, i.e. moving to solution
with smaller penalty, or 2) replaces already found solution with another, that
is also optimal, but excess in at least one node is decreased, or, in other
words, new solution is less constraints violating in terms of original problem.
On each operation, objective value is increased or remains unchanged with
decreasing of solution infeasibility [1].

The second solution technique is a column generation method, based on
the idea that in the optimal solution only some variables are used, e.g. in
our problem flow on most edges/paths is zero. Problem is then divided into
two parts: restricted master problem (RMP), which is the original problem
but considering only subset of variables (columns in a coefficient matrix) and
the pricing problem, used to determine new variables (columns) which could
potentially improve the solution. The solution algorithm then consists of two
repeated steps: on the first step RMP is solved on the subset of variables,
and its solution is used on the second step to determine new variable(s) to
be added by solving the pricing problem. The steps are repeated until the
optimal solution is found [11].

Some more algorithms for solving this problem are described in [1]. In
[19] is shown, that the column generation method is generally faster than
the relaxation algorithm for the MCMNF problem. There are also other
features of this algorithm, which make it the most suitable for our purposes,
we discuss them in Chapter 4.

2.2 Simplification techniques

In this section, we review existing simplification techniques, which are based
on changing the graph as an input of the algorithm. The rationale behind that
approach is that if we reduce the graph, the solver will need less time to find a
solution. All simplifications may be generally divided into two categories: one
preserves the original solution, the other only resembles it. If edges or nodes,
which are excluded, do not appear in any solution, this solution belongs to
the first category. Such solution is, of course, more reliable, but it can be
costly to calculate such a simplification. The general rule is that it should be
possible to reconstruct the solution in the original graph, and any solution
may be reconstructed this way. We refer to such simplifications as solution
preserving. In the second category structure of the graph may be changed,
some elements may be ignored, so it may not be possible to construct the
same solution as in the original graph. However, the solution in a simplified
graph may be fairly similar to the original one, meaning "relevant" edges are
preserved. It is important not to exclude paths, that may be relatively good
in terms of the problem, i.e. may appear in some solution. We call those
simplifications solution reducing.

6



............................... 2.2. Simplification techniques

One of the examples of the solution preserving simplifications is remov-
ing "useless" edges with respect to each commodity. Algorithm for single-
commodity network flow is introduced in [2] and improved in [12]. The
key idea is to remove edges which do not belong to any simple path from
source to sink node, hence will not be used in the solution. Such edges are
named "useless". The task of finding all useless edges in a directed graph is
NP-complete, so the algorithm removes only part of them. In case of a planar
graph, there is an algorithm which removes all useless edges (introduced in
[2]). However, it imposes restrictions on the graph, that can be bypassed in
case of maximum flow problem by transforming the graph, but this is not
our case. We can naturally expand this algorithm (the first one, without
the requirement of planarity) for multicommodity network flow and remove
edges, that are useless for all source-sink pairs. But due to a large number
of demand pairs and fairly good connectivity of the road network, it is not
rational in our case.

One of the common techniques belonging to the solution reducing category
is to consider only main roads everywhere or on certain segments of the path,
i.e., near the origin and destination node all edges could be considered, but in
the middle of the path only main roads are used. Edges are filtered out based
on the class of the road (highways, freeways etc.) or capacity with respect
to some limiting lower value [8],[10]. This leads to absolute ignorance of
paths containing small streets in the middle of the way. Although this speeds
up the calculations, the lack of some paths makes this method not very reliable.

Next example of a solution reducing algorithm is described in [17]. Its key
idea is to define a measure function for the paths and preserve the best paths
between all pairs of nodes. Common examples are preserving the maximum
flow (i.e., maximum path capacity between each two nodes, where capacity
of the path is a minimum of its edges’ capacities, remains the same) or the
cheapest path (i.e. minimum cost of the path between any two nodes remains
the same, where the cost of the path is the sum of its edges’ costs). However,
none of these approaches fully describe our problem, as we need to preserve
both costs and capacities. If we restrict to the shortest1 paths, the capacity
of remaining edges may not be sufficient to solve the problem so the original
solution may not fit into a pruned graph. Similarly, if we use a maximum flow
parameter to prune the graph, we may remove the cheapest edges with small
capacities, belonging to the original solution. Furthermore, this approach
does not guarantee any better solution, as we are focused on preserving
maximum flow, which is not necessarily in the solution, because edges with
bigger capacities may have higher costs.

There are also some simplification techniques that can be categorised as
solution reducing and can be used, for example, in network design, but are
not applicable to our problem. We give two examples of such simplifications

1From now on, we use the term "shortest" for the cheapest path in terms of edges’ costs.

7



2. Related work.....................................
based on the idea of identifying a set of important nodes and somehow
preserving connectivity between them. This approach is similar to clustering,
described in Chapter 4. But in case we want to preserve information about
edges’ costs and capacities, such complete restriction to a subset of nodes is
undesirable. First algorithm based on element-connectivity is described in
[4]. A subset of graph’s nodes is called "terminals", and element-connectivity
between two nodes is measured as a number of paths which do not have joint
edges or non-terminal nodes. Then a reduced graph is computed by removing
or contracting edges between non-terminals, while element-connectivity is
preserved for each pair of terminals. As a result, non-terminals make up an
independent set, i.e., there are no edges between them. This approach is
perfect for analysing the structure of a graph between some important nodes
when other nodes do not matter, but is not applicable in our case, because
with contracting and removing edges all edges between non-terminals we lose
the structure of the graph, which is necessary to solve our problem. Another
example of such simplification is described in [15]. This simplification tries
to preserve shortest paths’ distances with the graph restricted to a smaller
set of nodes. Its key idea is based on determining gate nodes, which are used
to reconstruct the shortest path between each pair of nodes. With some
threshold ε > 0 each pair of nodes is called local if the distance between them
is lower than a threshold and non-local otherwise (if a path between those
nodes exists). Gate nodes are chosen so that for every non-local pair of nodes
there is a path that consists only of gate nodes (except start and end nodes),
every two consecutive nodes in a path are local and path length (i.e. the
sum of distances between consecutive nodes) equals original distance between
start and end nodes. We can say that gate nodes are showing the topology of
the graph. Then some edges which do not contribute to any shortest path
are removed. The major drawback of this approach is that it is defined on an
unweighted and undirected graph, which makes it impossible to use in our
case. Also, the shortest paths are not enough to solve the MCMNF problem,
as they do not necessarily hold all the vehicles that need to be sent.

8



Chapter 3
Preliminaries

In this chapter, we give two definitions of network flows: in addition to the
standard definition, we introduce a definition using paths, which is more
useful for the purposes of this thesis. We also formulate the Minimum Cost
Multicommodity Network Flow (MCMNF) problem as a linear program in
both cases.

3.1 MCMNF (basic formulation)

First, let us define a MCMNF problem. Given a graph G (road network in
our case) and a demand M (set of requests giving number of vehicles going
from some origin to destination per time unit), we want to find a flow f with
a minimum cost which describes movements on graph’s edges for each request.
Here we are dealing with so-called steady-state flow, i.e., given input is not
changing over time, demand is static. So, given requests may be interpreted
as a constant load between origins and destinations. Our goal is to compute
so-called output flows - routing policy for all vehicles. As the demand is
static, we do not consider vehicles’ movements in time, i.e. capacity of each
edge gives the number of vehicles that could go through it per time unit.

3.1.1 Network flow definition

G = (V,E, c, σ) is a directed graph with capacitated edges, where V is the
node set and E ⊆ V × V is the edge set. Nodes correspond to road junctions
and edges to road links. The capacity of road links is denoted by c : E → R>0
where c(e) corresponds to the capacity of the road link e, measured in the
number of vehicles per time unit. Each road link, in addition, has a cost per
unit, which is defined by σ : E → R>0 and may be understood for example
as fuel consumption or travel time on this link.

Demand M = {(si, gi, di), i = 1, ..., |M |} is a set of tuples (si, gi, di) where
si and gi is an origin-destination pair, si, gi ∈ V and di gives number of
vehicles to be routed per time unit.

9



3. Preliminaries .....................................
For each component of the demand we are looking for a flow fi : E →

Z≥0, i = 1, ..., |M | which satisfies the laws of network flows and fulfils the
demand (inspired by [6]):

∑
e∈E−(v)

fi(e) =
∑

e∈E+(v)
fi(e), for all v ∈ V \{si, gi}, i = 1, ..., |M |

(3.1)∑
e∈E−(si)

fi(e) + di =
∑

e∈E+(si)
fi(e), for all i = 1, ..., |M | (3.2)

∑
e∈E−(gi)

fi(e) =
∑

e∈E+(gi)
fi(e) + di, for all i = 1, ..., |M | (3.3)

|M |∑
i=1

fi(e) ≤ c(e), for all e ∈ E (3.4)

Here and beyond we assume that sum over an empty set equals zero. Meaning
of laws is worded as follows: (3.1) stands for equality of input and output
flow in each node except for origin and destination. (3.2) and (3.3) give
that required amount of flow coming out from origin node and coming into
the destination. (3.4) shows that capacity constraints should be respected.
E−(v) and E+(v) stands for incoming and outgoing edges for the node v ∈ V
respectively.

3.1.2 Linear program

Most of existing solutions deals with MCMNF problem as a linear program,
so it is a good moment to formulate it. In fact, it is not necessary to
consider the flow for each demand component separately. It is sufficient to
find a flow on each edge, while three types of constraints should be satisfied:
capacity constraint for each edge, mass balance constraint for each node and
non-negativity constraint for flow. Mass balance constraint stands for the
difference between input and output flow in a node. Their difference should
correspond to the difference between sum of demands for which the node is a
destination and sum of demands for which the node is an origin. If a node is
not an origin or destination for any demand, both differences should be zero.
The problem could be stated as follows (based on [1]):

minimize
∑
e∈E

σ(e)xe

subject to
xe ≤ c(e), for all e ∈ E∑
e∈E−(v)

xe −
∑

e∈E+(v)
xe = b(v), for all v ∈ V

xe ≥ 0, for all e ∈ E

10



................................3.2. Formulation using paths

where b(v) stands for the mass balance in the node v and can be computed
as follows:

b(v) =
∑

(s,v,d)∈M

d −
∑

(v,g,d)∈M

d (3.5)

Variable xe stands for the flow on edge e.

3.2 Formulation using paths

In this section, we introduce another definition of flows on the graph, which is
fairly natural while we are looking for a path for each request. This definition
is based on the idea that every vehicle going from origin to destination node
goes by some simple path1, and routes of all vehicles could be described as
a set of paths between origin and destination nodes. In this case, flow fi is
not a mapping on edges, but on paths. That is to say, for every simple path
fi : Pi → Z≥0, i = 1, ..., |M | gives amount of flow on this path, where Pi

stands for the set of all possible simple paths between origin si and destination
gi. Amount of flow, given by fi, is the same for all edges along the path. We
define the set of paths which contain an edge e as N(e), the set of paths
coming into the node v (going through or ending in it) as Ein(v) and the set
of paths coming out of the node v (going through or starting in it) as Eout(v).

N(e) = {p | e ∈ p ∧ ∃ i : p ∈ Pi}

Ein(v) =
⋃

e∈E−(v)
N(e), Eout(v) =

⋃
e∈E+(v)

N(e)

Laws of the network flows must be similarly satisfied for this formulation:

|M |∑
i=1

∑
p∈Ein(v)∩Pi

fi(p) −
|M |∑
i=1

∑
p∈Eout(v)∩Pi

fi(p) = b(v), ∀v ∈ V (3.6)

|M |∑
i=1

∑
p∈N(e)∩Pi

fi(p) ≤ c(e), ∀e ∈ E (3.7)

where b(v) is node’s mass balance defined in (3.5). Meaning of laws remains
the same: (3.6) shows that required amount of flow should come out from
each node, and come into each node, i.e. difference of input and output flow
in each node should be equal to the difference of demands, for which this
node is destination and origin node respectively. (3.7) corresponds to capacity
constraints, i.e. the sum of flows going through each edge should be less or
equal to its capacity.

1Simple path is a path in which all nodes are distinct.
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3. Preliminaries .....................................
Linear program using path model does not require any major changes,

except that variables stand for flow amount on paths, not edges:

minimize
∑
p∈P

∑
e∈p

σ(e)xp (3.8)

subject to ∑
p∈N(e)

xp ≤ c(e), for all e ∈ E (3.9)

∑
p∈Ein(v)

xp −
∑

p∈Eout(v)
xp = b(v), for all v ∈ V (3.10)

xp ≥ 0, for all p ∈ P (3.11)

where P =
⋃|M |

i=1 Pi is a set of all simple paths between some origin-destination
pair from the demand.

This formulation of the linear program has an advantage that the solution
on the graph is easy to reconstruct: as output we get the number of vehicles
that should be sent by each path. In contrast, in the edge model, as a result,
we receive only amount of flow on each edge, and are additionally required to
reconstruct the flow for each demand element. However, in edge model |E|
variables and |V |+ 2|E| constraints are presented, while in path model there
are |P | variables and |E| + |V | + |P | constraints. Number of simple paths
in the graph is huge, even if we consider only a subset of them (P consists
of paths between origin-destination pairs). It is nearly impossible to solve
the problem in the path model until we are using column generation method,
which allows to consider only a subset of paths and iteratively generate new
paths when needed.

12



Chapter 4
Solution

In this chapter, we explain the evolution of our approach. We also describe
the column generation technique, which is used by MCMNF solver that we
have been given, in greater detail. As we mentioned before, we need to solve
the problem repeatedly on a daily basis. Thus, we call the solver for each
time slot to find a solution. Our purpose is to improve this solver by re-using
paths which were computed for previous time slots. Our simplification may
be classified as solution preserving, as we do not remove any elements of the
graph completely. Its key idea is that solver receives a set of paths that are
likely to be used in the solution, so it is not needed to recompute them in
each solver run.

4.1 Naive approach

Now we describe the evolution of our approach: where it comes from, and
why a path model described in Section 3.2 is useful to MCMNF problem.
First, we describe a naive problem-solving approach, on which we are based,
and which is improved in Section 4.3.

In the absence of capacity constraints, the shortest paths from origin to
destination node for each demand component are sufficient to solve the prob-
lem. If those paths are not sufficient in reality (i.e., some capacity constraints
are violated), we keep as many vehicles as possible while not exceeding any
capacity value and look for the second shortest path, trying to route remaining
vehicles by it and so on. However, this might not help at all, if those two
shortest paths overlap in the bottleneck (i.e., they have a joint edge with
exceeded capacity), or help only partially if some constraints are still violated,
and we have to find the next shortest path. By continuing such approach, we
get an iteratively increasing set of paths on which we are trying to route the
vehicles.

As we said before, we consider the routing problem to be repeated. Given
that, repeated computation of the shortest paths between nodes is not desir-
able.

13



4. Solution .......................................
We may want to store all possible simple paths ordered by their costs, but

it is impossible in practice due to graph size. If we knew in advance, which
paths we would need, we could consider only those, but, of course, it is also
impossible. We may compute some small number (e.g., 10) of shortest paths
for every pair of nodes and hope that this number of paths would always
be enough to solve the problem. However, if it would not, we are dealing
with congestion and we have no ability to construct an optimal solution.
In this situation, we may want to add some paths to our set, and there is
nothing stopping us from saving them for further use in case the similar
situation appears. Our solution is based on the idea of saving used paths
and reusing them in further computations. This approach suggests using
column generation technique, which solves the optimisation problem using
some subset of variables and iteratively increases this set until the optimal
solution is found. Variables denote paths in our case. Using this technique,
we may pass the set of stored paths to the solver at the start of computation,
so there is no need to recompute them.

4.2 Column generation technique

Key idea of column generation technique [11] applied to MCMNF problem is
based on iterative addition of paths between each origin-destination pair in
demand. First, we take the shortest paths for every pair and use only them to
fulfill the assignment (i.e. send a needed amount of flow through each path).
Most likely there will be overloaded edges (i.e. total flow on the edge violates
its capacity). We adjust the cost of each edge so that overloaded edges have
higher costs and will less likely be chosen in the shortest path. Then we
recompute the shortest paths for each origin-destination pair and add them
to paths we have found before. Then MCMNF problem is solved using only
this set, and overloaded edges are found. We repeat those steps until the
optimal solution is found, i.e. there are no overloaded edges or possibility to
improve the solution.

We will now formulate this technique more formally. As we mentioned in
Section 2.1, this is an improvement of linear programming solution, so we
should start with the definition of the linear program (LP). However, our
formulation, given in Section 3.2, is not very convenient for this method:
(3.10) constraint, which stands for the difference of input and output flow in
each node, should be recomputed whenever we are adding a new path for
each node in this path. This constraint can be reformulated so that for each
demand element there is a required amount of flow, which should be equal to
the sum of flows over all paths considered for this demand:∑

p∈Pi

fi(p) = di, for all i = 1, . . . , |M |

14



............................. 4.2. Column generation technique

Also, we could not solve given program straightforward using column gen-
eration method, because restricted master problem (RMP), where we use
only subset of paths, is infeasible most of the time (we have strict capacity
constraints, and it is quite possible, that given set of paths is not sufficient
with respect to edges’ capacities). Therefore, we should add an overflowing
variable for each edge, i.e. capacity on the edge may be exceeded, but it is
penalised proportionally to the exceeding flow on this edge and penalty value
is much bigger than any possible total flow cost. With this formulation, RMP
is feasible all the time, and its optimal solution refers to the least capacity
violating flow (or minimum cost flow, if the solution with no overflowed edges
exists).

So, LP could be reformulated as follows:

minimize
∑
p∈P

∑
e∈p

σ(e)xp +Npenalty

∑
e∈E

fe (4.1)

subject to
∑

p∈N(e)
xp − fe ≤ c(e), for all e ∈ E (4.2)

∑
p∈Pi

xp = di, for all i = 1, . . . , |M | (4.3)

xp ≥ 0, for all p ∈ P (4.4)
fe ≥ 0, for all e ∈ E (4.5)

Here xp stands for the amount of flow on path p and fe is overflow on the
edge e, i.e. allowed number of vehicles going through this edge in addition
to its capacity, and Nnumber is a penalty for each vehicle on overflowed edge,
which does not fit in its capacity. Dual LP is constructed as follows:

maximize
∑
e∈E

c(e)ye +
|M |∑
i=1

dizi

subject to ye ≤ 0, for all e ∈ E
zi ∈ R, for all i = 1, . . . , |M |∑
e∈p

ye + zi ≤
∑
e∈p

σ(e), for all p ∈ Pi, i = 1, . . . , |M |

ye ≥ −Npenalty, for all e ∈ E

In the beginning subset of paths consists of the shortest paths for each
origin-destination pair. All overflowing variables are presented, i.e. we are
restricting only set of paths’ variables xp. On each iteration of the algorithm,
RMP is solved with a subset of variables (paths), then a solution of pricing
problem for each origin-destination pair (PPi) helps us to determine variables
that should be added, based on dual values of RMP solution. In our case it
means that costs of edges are recomputed based on values of dual variables ye,
which correspond to capacity constraint (4.2): they indicate which constraints
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4. Solution .......................................
are active (for inactive constraints corresponding dual values are zero). Pricing
problem for each demand element is defined as follows:

PPi({ye}e∈E) := argmin
p∈Pi

∑
e∈p

σ(e)− ye

In fact, as ye is non-positive, we are increasing the cost of edges where
capacity constraints are active (i.e. those edges are overflowed or on the verge
of its capacity), and then looking for the shortest paths contained in Pi, i.e.
going between origin and destination for i-th demand element, with respect
to new costs. Found paths for each origin-destination pair are then added to
the set of variables P .

Algorithm 1: Column generation
1 P ←

⋃|M |
i=1 PPi(0)};

2 do
3 ({x∗i }, {ye}) = RMP(P );
4 newcols← False;
5 for i← 1 . . . |M | do
6 p← PPi({ye}) ;
7 if p 6∈ P then
8 P ← P ∪ {p};
9 newcols← True;

10 end
11 end
12 while newcols;
13 return {x∗p} ;

4.3 Improved approach

Back to naive approach described in Section 4.1, we now see that it is very
simplified. There we do not consider the interaction between demand ele-
ments. For example, we may not want to consider the second shortest path
between some origin and destination, if it overlaps with the first shortest path
for other origin-destination pair in some bottleneck edge, or we want to find
a trade-off in using these paths. Column generation method deals with this
problem by recomputing the costs: bottleneck edge in the example will have
higher cost, and the path containing it probably will not be chosen.

This interaction between demand components may vary in time. Thus,
final set of used paths depends on the given demand. Therefore, we come up
with the idea of making use of periodic demand patterns. For example, on
weekday mornings majority of people go to work from residential districts to
office areas, and backwards in the evenings. For each time slot information
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.................................. 4.3. Improved approach

about the same time slot from the previous days is used for presumptive
calculations of paths that may be engaged in movements, i.e. may appear in
the solution. We pass set of those paths to the solver, which uses them for
routing. Solver may in addition generate new paths if needed. Set of used
paths is then expanded with new generated ones and may be used in the next
day.

The set on which we are trying to solve MCMNF problem consists of paths
between origins and destinations. Solver iteratively expands this set until an
optimal solution is found. As a result, we receive a set of origin-destination
paths on which optimal solution exists, i.e. fleet can be routed with minimal
cost. We save this set and provide the next solver instance with it. While
only paths from origin to destination may be used to solve the problem,
the instance chooses only needed paths from a given set (i.e. going from
some origin to destination in its demand). Thus the first solver iteration is
computed on a bigger set of paths (basic solver uses only set of the shortest
paths instead), and an optimal solution may be found on this iteration. If
this did not happen, solver iteratively expands its set of paths until a solution
is found. After the solution was found, we expand the set of paths with the
new generated paths and pass it on to the next solver instance.
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Chapter 5
Implementation and evaluation

In this chapter, we describe the obtained results and compare a basic solver,
which uses the column generation technique, with our improved one, which
in addition uses results from previous runs to speed up the calculations. We
also present the different ways in which improved solver can be used.

First, we describe implementation details and used data in Section 5.1.
Then, in Section 5.2 we check the periodicity of the demand. That is to
say, demand has a periodic pattern, e.g. directions of vehicles at 8 am on
Monday, August 3 in general correspond to those at 8 am on Monday, August
10. Finally, we use this knowledge to present different approaches of using
our solver for repeated routing in Section 5.3.

All code is written in Python 2.7, using OSMnx [3] and NetworkX [7]
libraries.

5.1 Data

In this section, we describe the data we have used. Records from NYC
Yellow taxis are used as a demand, considering tiny part of NYC (1.6 km
× 1.6 km square area). Graph, downloaded using OSMnx, is presented as
MultiDiGraph from NetworkX library. We use clustering to decrease the
number of different origin-destination pairs in the demand. As we solve a
steady-state flow problem, we collect all requests from some time interval and
use them as a demand for the solver.

5.1.1 Trips data

As a demand to test solver on, we use data from NYC Yellow taxi trip records
freely accessible on the official web of NYC Taxi & Limousine Commission
[5]. We store it in a PostgreSQL database [16] with the PostGIS extension
[13] to allow spatial operations on it (e.g. looking for the nearest node in
the graph for a given location). It is worth mentioning that nowadays exact
pickup and dropoff locations are not published, and there is access only
to taxi zone number from 1 to 263, which are not accurate enough for our
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5. Implementation and evaluation .............................
purposes. Because of it, we use data from 2015, where information is complete
(i.e. pickup and dropoff coordinates are present). CSV file with trips for a
given month may be downloaded from [5], the structure of the file is also
published there. In this work data from August, September and October 2015
is used. First, we import CSV file as a table to our database, then we remove
incomplete rows, where either pickup or dropoff longitude or latitude equals
0. To allow further interaction with data we create columns pickup_geo and
dropoff_geo with corresponding Geography objects [13].

5.1.2 Road network

The task of converting city map to the road network graph is quite compli-
cated. Fortunately, there is a python library OSMnx, which allows converting
OpenStreetMap street network into MultiDiGraph from NetworkX. Further-
more, it does correction and simplification of the topology, which helps in the
further graph’s analyse [3].

We operate with a tiny part of the NYC streets for test purposes. It is an
area around the Empire State Building, 800 meters in each of cardinal direc-
tions, which we downloaded as a graph using OSMnx and then restricted to the
biggest strongly connected component to avoid the absence of paths between
nodes, 15 of 191 nodes (7.9%) were deleted. The examined area is shown on
Figure 5.1, nodes that were deleted due to strong connectivity are marked red.

Coordinates of the nodes are stored in the database to allow further
operations with trips data. We filter out requests from trips data where
pickup or dropoff point is not lying in the examined area.

5.1.3 Clustering

Key idea of our algorithm is a repetition of the approximate drive direc-
tions. We also mentioned that we may reuse only paths for the same origin-
destination pair. For better performance of our algorithm, we introduce
clustering of the graph nodes, i.e. we choose a number of clusters and di-
vide nodes into groups using K-means algorithm. The central node is then
found in each cluster as the nearest node to the centroid. Then for each of
pickup and dropoff locations we find the nearest node from chosen central
nodes. All nodes are still present in the graph and used for routing, but
requests are made only between cluster centres, e.g. two neighbouring houses
are considered as a single point of departure. In our case, we divide nodes
into 30 clusters using ST_ClusterKMeans function from PostGIS [13] (an av-
erage of 5.9 nodes in a cluster). Chosen central nodes are shown on Figure 5.2.

As a result, we are dealing with the graph with 176 nodes and 330 edges,
demand consists of 932 995 requests distributed over three months (initially
there was 34 140 319 valid requests for the whole NYC).
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........................................ 5.1. Data

Figure 5.1: Examined area: deleted nodes (red) due to strong connectivity

Figure 5.2: Clustering: chosen central nodes (red)
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5. Implementation and evaluation .............................
5.2 Demand distribution

First, we examine demand distribution over days and hours to test our theory
of periodic demand patterns. As can be seen in Figure 5.4, the number of
requests is weekly recurring. On Figure 5.5 we sum up the number of requests
in each two-hour interval over three months for each day of the week. It can
be seen that distributions for business days are fairly similar, while demand
values are varying depending on the time interval. It indicates that the same
periodic demand pattern may exist on different business days. So we came
up with the idea to reuse paths from the same time intervals on all business
days, e.g. paths used at 8-10 a.m. on Monday will be used for the same
time interval on Tuesday etc. From now on, we consider only weekdays in
our experiments. Weekends may be explored separately, and it is required to
test if movements on Saturdays are similar to movements on Sundays. Of
course, demand’s periodicity is just a hypothesis. If it turns out to be true,
our algorithm will work well.

As we have 30 cluster nodes, maximum number of demand elements is
30∗29 = 870. In fact, an average number of demand elements in the two-hour
interval is 358, i.e. about 40% of possible origin-destination pairs occurs on
average in the examined interval. More detailed distribution could be seen in
Figure 5.3, where we compute an average number of origin-destination pairs
in each two-hour interval, considering only weekdays.

Figure 5.3: Average number of origin-destination pairs (weekdays)
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................................. 5.2. Demand distribution

Figure 5.4: Number of requests on each day (red bars show weekends)

Figure 5.5: Total number of requests for each day of the week in given time
interval over three months
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5. Implementation and evaluation .............................
5.3 Evaluation

We should determine a capacity value for each edge to get relevant results.
We do not have any data on road occupancy, and taxis represent only a part
of the traffic, so we decided to determine it experimentally. It is obvious that
this value should be proportional to the number of lanes on a given road
segment. We determine the capacity scale so that the problem is solvable
most of the times. Obviously, it is not possible to determine the value which
meets two conditions at once: feasible solution for the problem should exist,
but the shortest paths should not be sufficient to solve the problem (in this
case basic solver needs only one iteration to find the solution, we can not
improve it). It can be seen for example from demand distribution on Figure
5.5, that there are much less requests at night than in the morning rush hours.
Thus, we have chosen the value so that for most time intervals (excluding rush
hours and night calm) the conditions are met. In case of infeasibility solver
will find the solution which is the least capacity violating due to overflow
variables described in Section 4.2. Capacity value for each edge is a number
of lanes there multiplied by capacity scale. We use capacity scale 100 in
following experiments.

As we said before, we work with existing solver that solves the MCMNF
problem using the column generation technique described in Section 4.2, as
the implementation of such a solver is not a purpose of this work. Our goal
is to improve it so that MCMNF problem is solved faster in the long term.
So to say, we want to speed up calculations in total, while we are looking for
the solution in each time interval on each day. We are doing so by reusing
previous results.

To introduce the solver, we compare its result with a shortest paths ap-
proach: for each weekday we computed the shortest path between origin
and destination for each request and used it for routing. We chose 8 am
- 10 am interval as morning rush hours, where it is not possible to avoid
congestion, but it is possible to reduce it, and 12 pm - 2 pm interval, where
the solver is able to avoid congestion at all, while the shortest paths approach
is not sufficient. On the Figure 5.6 we show average roads load for each of
approaches in each interval. Color of the edge corresponds to the average
number of cars on this edge divided by its capacity. It can be seen that the
shortest paths approach could not completely get rid of traffic jams in both
cases (traffic jams occur when the value on the edge exceeds 1), while the
solver was able to reduce the congestion in the first case and completely get
rid of it in the second.
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......................................5.3. Evaluation

(a) : The shortest paths, 8am - 10am (b) : Solver, 8am - 10am

(c) : The shortest paths, 12pm - 2pm (d) : Solver, 12pm - 2pm

Figure 5.6: Average roads load

(a) : 8am - 10am (b) : 12pm - 2pm

Figure 5.7: Number of iterations basic vs. advanced solver
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5. Implementation and evaluation .............................
Now we compare our solver, improved by reusage of previously computed

paths, with the original one. We measure computational time and number of
solver iterations (i.e. how many times new shortest paths were computed for
all demand pairs). This will give us better idea of the quality of our solution,
as the finding the RMP solution on each iteration is usually a bottleneck
for a large problem, however, in our testing scenario size of the problem
is quite small, so the auxiliary computations (e.g. initializing the solver)
takes considerable time compared to the calculation of the shortest paths.
Also number of iterations could be used to determine a simplification level.
We define it as a percentage "improvement", i.e. ratio of difference between
number of iterations of basic and advanced solver and number of iterations
of basic solver in percents.

simplification level = basic iterations− advanced iterations
basic iterations ∗ 100%

First, we measure the number of iterations in each weekday for the same
time intervals: 8 am - 10 am and 12 pm - 2 pm. Result can be seen on the
Figure 5.7. We refer to our improved solver as "advanced", and "basic" is the
solver without any changes. It can be seen, that number of iterations has
dropped significantly, and improved solver mostly needs only one or two iter-
ations to solve the problem, i.e. known paths are (almost) sufficient to route
vehicles. Simplification level is 67% in the first and 63% in the second interval.

Now we examine different approaches of re-using data. It is possible, that
our hypothesis is wrong, and it makes no sense to reuse only data only from
the same time intervals - any reusage will be successful. To test that, we
compared three possibilities of re-using data: daily reusage (i.e. use data from
the same hours from the previous days, paths from 8am-10am in Monday
are used for 8am-10am interval in Tuesday), hourly reusage (i.e. use data
from the same data from previous time intervals, paths from 8 am - 10 am
on Monday are used for 10 am - 12 pm on Monday) and overall reusage (use
all paths computed before, iterate over all time intervals).

Iterations Time [min] Paths Simplification level [%]

Basic solver 3669 75.4 0 0

Daily reusage 1449 44.1 25012 61
Hourly reusage 2524 71.2 2438.4 31
Overall reusage 1055 56.0 4319 71

Table 5.1: Comparison of different approaches

We summarise the result in Table 5.1, where we show a number of itera-
tions, total solver time and a number of stored paths for different approaches.
Values are summarised over all time intervals in three months (August -
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......................................5.3. Evaluation
October), only weekdays are considered. In daily reusage paths are stored
for each two-hour interval, and a total number of stored paths grows with
the number of days. For hourly reusage number of stored paths increases
throughout the day, but all of them may be deleted at the end of the day, as
we do not use them in the next days. So, in the table we show an average
number of stored paths at the end of the day. In overall reusage number of
paths increases after each solver run, however, quite quickly the number of
paths reaches the level, after which new paths are rarely added. Evolution of
the number of paths could be seen in Figure 5.8.

Detailed heatmaps with a number of iterations and ratio between basic
and advanced solver in each time interval could be found in Appendix B.

It is evident that daily reusage approach works much better than hourly
reusage. The reason is that solver does not always compute ordinary shortest
paths, because costs are changing during iterations. So chosen paths depend
on the interaction between demand components at this moment, which vary
at different times of the day. Thanks to the obtained results, we can say
that our theory is correct, and there are actually periodic patterns in the
demand.Overall reusage also works, but spent time is higher, as we use all
stored paths (over 4000) even for "small" intervals, where shortest paths (i.e.
one path per demand element) are sufficient for the solution.
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(a) : Daily reusage

(b) : Hourly reusage

(c) : Overall reusage

Figure 5.8: Number of stored paths
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Chapter 6
Conclusion

In this thesis, we are supposed to present a simplification for a Minimum
Cost Multicommodity Network Flow problem. We decide to move away from
the general graph simplification techniques and focus on a specific problem.
That is, we do not try to come up with a technique that would be useful for
all kinds of graph algorithms. Since the task of traffic routing is currently
quite acute, we focus on applying MCMNF problem to it and assume that
the demand is in general predictable based on data from previous days. We
choose the column generation method as the most appropriate one for our
idea and presented an improvement for the solver based on this method. We
simplify the graph as an input of the solver passing only subset of graphs’
paths, leaving the solver to generate additional paths if needed. Thus, we
also make the problem easier for the solver, as it does not need to generate
paths it has been given.

Our improvement helps to solve everyday routing problems effectively,
taking only 60% of time used by the existing column generation solver to
find the solution and reducing number of solver iterations by 60%. There
are at least two possibilities to use it depending on what is more important:
runtime or required memory. If we use daily reusage of paths, we will achieve
a shorter runtime, but are required to store used paths for each time slot.
Conversely, if we use overall reusage, it will take more time to achieve the
solution (75% of basic solver time), but the number of stored paths will be
almost 6 times less for the two-hour intervals. Moreover, optimal solution will
be always found with our improvement, i.e. we are not sacrificing optimality
for computational time.
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6. Conclusion......................................
6.1 Future work

There are a few things that may be addressed in future work:. Some days may be out of the picture. For example, it may be a public
holiday or a huge social event. In this case, we store paths that are
unlikely to be used in the future. To avoid it, usage of stored paths may
be examined, and paths that are not used for several consecutive days
should be removed.. Evolution of the number of stored paths should be examined on a larger
dataset. Will the number of paths in overall reusage always stop growing
at relatively small values? Testing on a larger dataset may also show
some new interesting dependencies and repeatabilities, as more scenarios
of taxi usages will be covered (we considered an area smaller than 3km2

in the centre of the city, which definitely does not include for example
shopping trips).. Taxi rides data are quite one-sided. If a dataset contained data on
all trips, including personal and company vehicles, rented cars, were
available, the results would be noteworthy. We are guessing that periodic
demand pattern will be found there, too.
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Appendix B
Figures

In this appendix we present detailed results in comparison of three different
approaches: daily reusage, hourly reusage and overall reusage. We used three
months’ data for testing, however, for better legibility, we show the results
for each month separately.

Let us consider the first solvers’ comparison figure as an example. In Figure
B.1 we see a comparison of basic and improved solver on all two-hour intervals
on weekdays in August.

First heatmap shows the number of iterations required for basic solver to
find a solution in each interval. Maximum it needed 14 iterations in 6 am - 8
am interval on August 11th. It could also be seen, that in the night (0 am
- 6 am) one iteration is sufficient to solve the problem. This is because the
demand is little at this time.

Next heatmap shows the number of iterations required for improves solver
to find the same solution. Maximum it needed 9 iterations, always in the
morning rush hours (8 am - 10 am). In 6 am - 8 am interval on August 11th
it needed only 5 iterations in contrast to basic solver, which needed 14.

The last heatmap shows ratio of two previous ones, i.e. ratio of the number
of iterations of the improved solver to the number of iterations of basic one.
It could be seen, that "1" (which means that the improved solver could not
reduce the number of iterations) appears mostly on intervals, where basic
solver has already needed only one iteration, i.e. there is nothing to improve.
Those situations appear mostly at night or in the first day, where is no stored
paths to use for improvement.

One should not be surprised by the values greater than 1 in ratios (e.g.
in Figure B.4c): the number of iterations depends on chosen paths, and
this process is not fully deterministic. That is why the number of iterations
may vary between two runs of the solver. However, this difference (in our
experience) does not exceed 1.
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.1: Daily reusage (August)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.2: Daily reusage (September)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.3: Daily reusage (October)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.4: Hourly reusage (August)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.5: Hourly reusage (September)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.6: Hourly reusage (October)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.7: Overall reusage (August)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.8: Overall reusage (September)
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(a) : Basic solver iterations

(b) : Advanced solver iterations

(c) : Ratio advanced/basic

Figure B.9: Overall reusage (October)
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Appendix C
CD content

/
bachelor_thesis.pdf: text of this work
src: directory containing all source codes used in this work

data: directory with used graphs
part.gpickle: a graph on which all experiments were

conducted
small_example.gpickle: a smaller graph for introduction

purposes
readme.pdf: a quick guide to the source code
query.sql: necessary commands to fill in the trips

database
download_graph.py: a script for downloading the graph on

which all experiments were conducted,
storing it into the database and
filtering the trips data

shortest_paths.py: a script applying a shortest paths
approach to the graph

run_solver.py: a solver we have been given with
improvements we made (described in the file)

small_example.py: a script which shows possibilities of
our code base without having to create a
database of trips

analyze_demand.py: a script for examining demand
distribution

analyze_multidays_interval.py: comparison of the shortest
paths approach, basic and
advanced solver

analyze_multidays.py: comparison of the basic solver and
three different approaches: daily,
hourly and overall reusage

load_save_utils.py: auxiliary functions for retrieving the
demand, storing and loading graphs

plot_utils.py: auxiliary functions for plotting
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