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Abstract

The aim of this thesis is to propose a game theoretic model for adver-

sarial anomaly detection in cybersecurity environment using increasing

latency as primary defender’s action which is in most cases tolerable by

benign users but lethal for malicious hackers. We also propose and evalu-

ate solving techniques using double oracle algorithm in conjunction with

feedforward neural networks modeling defender’s actions and show a real

application of the model to the DNS data exfiltration problem. The

essential contribution originates in providing besides the detection also

follow-up instructions in terms of increased latency and thus filling up

the gap created by lack of research papers about this topic. We managed

to succeed in the proposal of a sufficiently generic model based only on

the data set containing samples of benign users.

Keywords: game theory, adversarial games, increasing latency, cybersecurity

Abstrakt

Ćılem této práce je navrhnout nový herně teoretický model pro adverziálńı

detekce zaměřený primárně na modelováńı zvyšováńı latence jako akce

obránce. Zároveň definujeme a hodnot́ıme postupy určené k vyřešeńı

námi navrženého modelu s pomoćı algoritmu double oracle a neuronových

śıt́ı použitých k modelováńı akćı obránce. Největš́ı hodnotu naš́ı práce

spatř́ıme ve faktu, že mimo detekce anomálíı navrhujeme řešeńı v reálném

čase v podobě zvýšené latence, č́ımž zároveň vyplňujeme prostor zp̊usobený

nedostatkem vědeckých praćı na podobné téma. Mimo jiné námi představený

model je plně generický a závislý pouze na datech normálńıho provozu.

Na závěr ukážeme aplikaci modelu na reálný problém exfiltraćı dat po-

moćı DNS.

Kĺıčová slova: teorie her, zvyšováńı latence, poč́ıtačová bezpečnost
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Chapter 1

Introduction

1.1 Motivation

Security companies often offer ways to detect anomalies in a network

traffic, but the question about what to do next usually remains unan-

swered. The real physical action is left to a client itself or companies’

administrators doing manual inspections.

One of the answers is for example to block the IP address responsible

for the detected anomaly, which is the most common and straightforward

approach. The reason why the blocking approach may be suboptimal is

that an attacker is often able to change his IP address, which means the

whole effort and spent resources for the detection are lost. Also, the

detection is seldom 100% certain and in that case, the blocking action

might leave the companies’ services unavailable for some benign users.

Even if the detection is completely certain there might be users standing

behind the same Network Address Translation as the attacker does. In

that case, the unconditional blocking of the attacker’s IP address limits

the benign users as well.

Another potential answer is to increase latency for the given IP ad-

dress, meaning to respond to the packet or forward the packet slower.

This seems to be a much better choice since the benign user does not

have to necessarily care so much for being a little bit slowed down as long

as he receives the request response. On the other hand, in many cases
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CHAPTER 1. INTRODUCTION

the attacker cares more because usually the attacker needs to send mas-

sive amount of packets during the attacks and thus his ability to perform

successful attack substantially decreases.

One might argue that most of the current anomaly detection solutions

output probability of the connection to be malicious, and therefore this

probability might be used as latency value. Unfortunately, this approach

would not be entirely correct because the cost of slowing the attacker

and the cost of slowing the benign user might vary a lot. For example,

there might be a company doing business in the stock market where

even milliseconds matter, hence slowing the benign user down does more

damage than not slowing the attacker.

Another answer is, for example, redirecting the attacker to honeypots,

which are physical or virtual hosts simulating the attacking environment

to stall the attacker and learn some information by analyzing his be-

haviour. This approach would, of course, limit the benign user the same

way as the blocking approach would, however this way we could at least

learn some useful information about the attacker and the detection effort

would not be thrown away. Nonetheless, redirection to honeypots does

not seem as very generic solution as honeypots simulating different en-

vironment might have different behaviour and also the companies would

need to have access to them.

This elaboration makes us consider solely increasing latency as the

best and most universal answer. However, this approach has not yet been

surprisingly explored. It means further in the thesis we focus primarily

on modeling defence strategy with increasing latency. Also, increasing la-

tency includes the blocking approach as well because slowing the attacker

thoroughly might be interpreted as blocking the attacker.

Finally, the challenging problem is to compute optimal strategy, which

maximizes a trade-off between costs for false positives and increase of net-

work security. For this purpose, we use game theory. We decided to use

game-theoretic approach to model an interaction between the attacker

and a defender because the game theory is a convenient tool for modeling

an environment with adverse actors trying to achieve contradictory goals
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CHAPTER 1. INTRODUCTION

such as cyber security. Also, using game theory, we manage to compute

the optimal strategy even against an adaptive attacker. The reason is

that game theory assumes both players to be completely rational and

the rational attacker would try to shape the attacks in response to the

defender’s algorithm.

Generally, using game theory, we are able to compute optimal strat-

egy such as no actor is able to get more gain by deviating to any other

action. Although to accomplish such result we need to model the at-

tacker and the defender correctly so the environment represents the real

world. Usually, the players have finite sets of actions. However, there

are many ways how to increase the latency, and thus the defender has

an infinite set of actions. That is why we are actually dealing with quite

arduous task.

We accomplish to propose a generic solution and that is why the

number of application examples is almost inexhaustible. Basically, the

application could take place in any adversarial environment within real-

time internet communication. Example use cases might be represented

by scanning network machines’ ports, man in the middle attacks or by

data exfiltration. We also plan to show the example application of our

proposed model, which is the use case of data exfiltration using the DNS

requests, where we show how our model stands using the real world data.

1.2 Goals

The goal of this thesis is to propose a game-theoretic model where we

consider blocking and slowing down (increasing latency) the attacker as

defender’s actions. We focus on modeling general solution which could

be used in many various situations based only on provided data set.

The second part of the thesis is dedicated to designing and imple-

menting algorithms that compute the optimal solution to the proposed

model. Lastly, we experimentally analyze the algorithms’ performance

using synthetic data as well as real data representing DNS traffic within

the CTU network.
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CHAPTER 1. INTRODUCTION

1.3 Thesis Structure

Initially, in Chapter 2, we analyze related work. Furthermore, we de-

scribe terms used in the thesis and their definitions in Chapter 3, so

the reader has all needed background to comprehend content at its full

extent. We describe the notation and fundamentals of game theory in

Section 3.1; then we outline the idea behind Linear programming in

Section 3.2. Lastly, we bring to mind the basics of feedforward neural

networks in Section 3.3.

Further, we introduce our game-theoretic models and propose solv-

ing algorithms in Chapter 4. Firstly we propose a game which models

increasing latency as the defender’s action in Section 4.1. After that,

in Section 4.2, we define a second game which deals only with blocking

approach and discuss differences.

In Chapter 5, we experimentally analyze the performance of proposed

algorithms. We study the influence of quality of best responses on double

oracle algorithm convergence in Section 5.2. In Section 5.3, the optimal-

ity and scalability of our solving techniques are evaluated using synthetic

data set. In Section 5.4 a case study about the DNS data exfiltration is

presented using real traffic data from the CTU network.

Finally, we conclude the thesis in Chapter 6 and describe an imple-

mentation overview in Appendix A.
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Chapter 2

Related Work

Surprisingly, reviewing the past literature, researchers have not addressed

the problem mentioned in the motivation regarding the latency. A key

problem with much of the related literature is that the vast majority of

papers focus on either attacker or non-attacker classification. As already

mentioned in the introduction this approach can hardly be transformed

to slowing the attacker down by increasing latency.

A tiny similarity might be found in a rate limiting approach. The

rate limiting is used to control the amount of incoming and outgoing

traffic to or from a network given some configuration thresholds like for

example a maximum number of allowed request in a certain time slot[12,

10]. However, rate limiting shares the same problem as the blocking

action as it is fundamentally the same thing after the user exceeds the

threshold.

Nonetheless, usage of game theory to model the environment between

the attacker and the defender has been shown in [16]. L. Dritsoula et al.

offer a game-theoretic approach for the detection of the attackers so the

adaptive attackers cannot shape their attacks in response to the defence.

However, this case also does not consider increasing latency.

Overall the significant lack of research papers about slowing the at-

tacker’s traffic down is one of our motivations to produce this work.
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Chapter 3

Background

3.1 Game Theory

3.1.1 Basic Terminology

We use a notation from Multiagent Systems, a book by Shoham et al.[13].

Definition 3.1.1 (Normal Form Game). Two-player normal form game

G is a triplet G = 〈N,A, u〉 where

• N = { 1, 2 } is a set of 2 players (also called actors) indexed by i.

• A = A1 × A2 is an action profile. Ai represents set of all available

actions for player i.

• u = (u1, u2) is a profile of utility functions. Utility function for

player i is ui : A→ R

Example of the two-player game can be seen visualized as a game

matrix in Table 3.1, where player 1 chooses one of two row actions, and

player 2 chooses one of two column actions. Final payoffs are specified

inside each cell.

Definition 3.1.2 (Strategies). Strategy profile S is denoted as S =

S1×S2, where Si is a set of all probability distributions over actions Ai.

Strategy si ∈ Si is called pure if positive probability is assigned only to

7



CHAPTER 3. BACKGROUND

player 2

player 1
1,2 4,0

1,2 4,0

Table 3.1: An example of normal form game

one action. If more than one action is played with positive probability

we say that the strategy is mixed.

We define s−i as a strategy of player i’s opponent. It means s−1 = s2

and s−2 = s1 given strategy profile s ∈ S.

Definition 3.1.3 (Expected Utility Function). In Equation 3.1, we over-

ride utility functions ui : S → R to express player i’s expected utility.

ui(s) =
∑
a∈A

ui(a)

2∏
j=1

sj(aj) (3.1)

where si(aj) is a probability of player i to play action aj given strategy

profile s ∈ S.

Definition 3.1.4 (Best Response). Given strategy profile s ∈ S we say

that a best response of player i is strategy si ∈ Si such as there is no

other strategy s
′
i ∈ Si for which following Expression (3.2) would be true.

The set of all best responses for given strategy profile s ∈ S and player

i is denoted as BR(s−i).

ui(s
′
i, s−i) > ui(si, s−i) (3.2)

Definition 3.1.5 (ε-Equilibrium). Given parameter ε ∈ R+, strategy

profile s ∈ S is said to be ε-equilibrium if nobody is able to get more

gain than ε by deviating. Formally described in Equation 3.3. If ε = 0

then s is called Nash equilibrium. We denote NE(G) as a set of Nash

equilibria given normal form game G.

ui(s) ≥ ui(s−i, si)− ε ∀i ∈ N, ∀si ∈ BR(s−i) (3.3)

Theorem 3.1.1 (Nash’s Existence Theorem). It can be proven that for

each game with a finite number of players and a finite action profile at

least one Nash equilibrium must exist[2].

8



CHAPTER 3. BACKGROUND

Definition 3.1.6 (Strategic Equivalence). We call two normal form two-

player games strategically equivalent if they possess exactly the same set

of Nash equilibria.

Claim 1. Given real and non-negative parameter k, two normal form two

players games G
′

and G
′′

for which Equation (3.4) is true are strategically

equivalent.

u
′
i(s) = k · u′′i (s) ∀i ∈ N, ∀s ∈ S (3.4)

Multiplication by positive constant k may represent simply a change of

units in the whole game matrix.

Claim 2. Having normal for game Ψ = {{1, 2}, {S1, S2}, {u1, u2}}
if we pair random constants cj to pure strategies sj ∈ S2 and define

∀si ∈ S1 u
′
1(si, sj) = u1(si, sj) + cj then normal form game Ψ

′
=

{{1, 2}, {S1, S2}, {u
′
1, u2}} and original game Ψ are strategically equiv-

alent.[7]

Definition 3.1.7 (Maxmin and Minmax Strategies). Given strategy pro-

file s ∈ S, a maxmin strategy for player i is arg max
si

min
s−i

ui(si, s−i) and

a maxmin value for player i is max
si

min
s−i

ui(si, s−i).

A minmax strategy for player i against player −i is computed as

arg min
si

max
s−i

u−i(si, s−i) and alternatively a minmax value for player −i

is min
si

max
s−i

u−i(si, s−i).

Definition 3.1.8 (Zero Sum Games). Finally, we will refer to zero sum

games which we describe as two-player normal form games where Equa-

tions (3.5) are true.

u1(s) + u2(s) = 0 ∀s ∈ S (3.5)

Fact 1 (Minimax Theorem). Computing Nash Equlibrium of finite zero

sum two-player game is equivalent to finding the maxmin and correspond-

ing minmax strategies[1].

9



CHAPTER 3. BACKGROUND

3.1.2 Double Oracle

Even though finite zero-sum games might be solved using linear pro-

gramming in polynomial time, the same approach cannot be applied for

games with enormously big sets of actions due to performance issues.

That is why we also mention an algorithm called double oracle[8], which

converges to ε-equilibrium. Double oracle is used for games where the

game matrix cannot be effortlessly constructed.

The general overview of double oracle algorithm applied to two-player

zero sum game can be seen in Algorithm 1. In Algorithm, Gj represents

game in iteration j and Aj denotes action profile of game Gj . The al-

gorithm starts with 1 × 1 game matrix, which is being expanded every

iteration. Every iteration the game (considering only actions in the cur-

rent game matrix) is solved using any existing techniques (e.g. linear

programming), providing strategy profile s which is used to find best

responses within the original game. If it is not possible for any player

to gain more utility than epsilon by deviating to the best responses, the

algorithm terminates. Otherwise the best responses are added to the

game matrix and next iteration starts.

Algorithm 1 Double Oracle

G1 ← random subgame of G with 1× 1 game matrix

j ← 1

s← NE(Gj)

while (∃i ∈ N : ui(s−i, BR
G(s−i)) > ui(s) + ε) do

Aj+1
i ← Aji ∪ {BRG(s−i)} ∀i ∈ N

j ← j + 1

s← NE(Gj)

end while

return s

10



CHAPTER 3. BACKGROUND

3.2 Linear Programming

A linear program (LP) is defined by a set of real valued variables, a linear

objective function and a set of linear constraints. More formally LP can

be written in a matrix form e.g. as written in Equations (3.6):

maximize wTx

subject to Ax ≤ b

x ≥ 0

(3.6)

where x ∈ Rn is a variable vector, w ∈ Rn is a vector containing the

weights, A ∈ Rm×n is a matrix of constants and b ∈ Rm denotes a vector

of constants as well.

Finally every linear program (also called primal problem) has a cor-

responding dual problem which shares the optimal solution. The dual

problem of above primal problem is shown in Equations (3.7):

minimize bTy

subject to ATy≥ w

y ≥ 0

(3.7)

It can be proven that every linear program can be solved in worst-

case polynomial time[3]. It is useful to realize that all constraints are

linear and thus creating a hyperplanes in a space Rn. Since the objective

function is also linear the feasible region is a convex polytope and a local

optimum is always a global optimum[9].

3.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computing systems markedly in-

spired by biological neural networks. One of the most significant con-

tribution of ANN originates from Universal Approximation Theorem[4],

which says that every continuous function can be approximated using

ANN.

All ANN consist of arbitrary number of layers with also arbitrary

number of neurons in each layer. The most basic ones are called feedfor-

11
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Figure 3.1: Backpropagation process of neural networks

wards taking as input a vector of n features, which are being forwarded

through the neural network and returning an output vector of l features.

Each neuron is adding a weight and each layer adds a bias on top of

it. The idea is to adjust all weights and biases by back-propagating of

gradient descent of custom loss function measuring quality of the output

features given labeled data set. Described process is outlined in Figure

3.1.
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Chapter 4

Game Models

Chapter structure Initially, we introduce a final model which deals

with increasing latency as defender’s action in Section 4.1. Also, we

propose solving algorithms to compute ε-equilibrium in Subsection 4.1.4

and discuss assumptions and limitations in Subsections 4.1.5 and 4.1.6.

Lastly, in Section 4.2, we propose a model taking into account only the

blocking approach to discuss the differences in Subsection 4.2.3.

4.1 Latency Model

4.1.1 Model Definition

Definition 4.1.1. We define an altered normal form game G as a tuple

G = 〈N,A, u, n,D, αb, αm, Cb, Cm, Pm, Pb〉 where:

• N = { a, d } is a set of two 2 players (actors) - an attacker a and a

defender d

• n ∈ N is a dimension of space from which the attacker chooses an

attack. In other words each attacker’s action is a ∈ Rn

• A = Aa × Ad is an action profile where Ai is an action set for

player i. An exact annotation can be observed in Equations (4.1).

13



CHAPTER 4. GAME MODELS

Player’s actions are further described in Subsection 4.1.3.

Aa = [0, 1]n (4.1a)

Ad = { l | l : Aa → [0, 1] } (4.1b)

• D = { d | d ∈ [0, 1]n } is provided data set with k number of features

from Rn representing only benign users.

• In Equation 4.2, we define function hm : [0, 1] → [0, 1], which says

how certain latency affects the attacker’s gain. Function hm takes

latency l ∈ [0, 1] as an input and outputs a number which describes

a severity of this latency. Outputting zero denotes that the attacker

gets no gain if the defender assigns the latency l to the attacker.

Outputting one represents no effect of the latency to the attacker’s

gain.

hm(l) = (1− l)αm (4.2)

By various settings of constant αm ∈ R+ we can change the effect

of latency l to the attacker’s gain. Visualized in Figure 4.1a.

• Similarly we define function hb : [0, 1] → [0, 1] in Equation 4.3,

which says how cost for false positives increases by increasing la-

tency for benign users. The function hb again takes latency l as

an input and outputs a severity of this latency for benign users.

Output one is interpreted as the most severe latency. On the other

hand output zero represents no effect of the latency l at all.

hb(l) = lαb (4.3)

Again, by various settings of constant αb ∈ R+ we can change the

effect of the latency l to the cost for slowing benign users down

with latency l. Visualized in Figure 4.1b.

• Cb ∈ R+ stands for cost for blocking all benign requests. Usually

this number represents cost for denying all requests.

• Cm ∈ R+ stands for paid cost when the attacker manages to per-

form not detected attack in its full extent. Usually this number

expresses real value of the company we try to defend.

14
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• Pm ∈ [0, 1] stands for a portion of malicious requests found in a

traffic collected over some time T . Following expression Pm+Pb = 1

must be true.

• Pb ∈ [0, 1] stands for a portion of benign requests found in a traffic

collected over the same time T . Following expression Pm + Pb = 1

must be true.

• u = ua × ud is an utility profile consisting of payoff functions

ui : A→ R for player i. Each player wants to maximize his payoff

function. Definitions of our utility functions can be seen in Equa-

tions (4.4).

ua(f, l) = +R(f) · hm(l(f)) · Pm · Cm (4.4a)

ud(f, l) =− [R(f) · hm(l(f)) · Pm · Cm]

− [(
∑
d∈D

hb(l(f)) · p(d)) · Pb · Cb] (4.4b)

R(f) =
n∏
j=1

fj (4.4c)

where function p : D → [0, 1] represents probability distribution

over features in provided benign data set D. In Equation 4.4c,

function R : Aa → R denotes the attacker’s reward for playing his

action. See detailed explanation of utility functions in Subsection

4.1.2.

4.1.2 Utility Functions

We see in Equation (4.4a), that the attacker wants to maximize all his

features since part of his payoff function is a product of his action fea-

tures. However, the attacker still tries not to be detected - minimize

gotten latency - in order to get maximum payoff. This setup seems to

be reflecting the real world in case we choose proper features. Finally,

the attacker’s payoff is also multiplied by portion of malicious requests in

real world Pm as well as constant Cm to take into consideration count of

real malicious requests and the potential gain the attacker might obtain.
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(a) Constant αm describing the

attacker’s gain lost based on

increasing latency

(b) Constant αb describing cost of

increasing latency for benign

requests

Figure 4.1: The effect of several values of constants αm and αb.

Secondly, in Equation (4.4b), we might observe that the utility of the

defender consists of negative value of the attacker’s utility to “punish”

the defender for not detecting the attacker. Second part of the defender’s

utility is a false positive part which is increasing by marking benign data

as malicious. As the result the defender tries to find a compromise in

slowing the attacker and benign users.

The effect of increasing latency for either malicious or benign requests

is various for various values of constants αm and αb. Formally this defi-

nition can be seen in Equations (4.1a) and (4.1b). This variation is also

shown visually in Figure 4.1. We chose parabolas to model this relation-

ships, because we find parabolas to be finely general. What it means is

that special cases such as when the attacker needs to be notably slowed

or false positives need to be reduced to zero are easily modeled by setting

these constants appropriately. For example, if we think that the attacker

does not mind being slowed for the reason that he still carries out suc-

cessful attack, we set constant αm closed to zero. On the other hand

by setting constant αb close to zero we say that benign users must not

be prominently slowed even at the cost of letting the attacker perform

rewarding attack.
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4.1.3 Players’ Actions

We see in Equations (4.1), that the attacker chooses a feature point which

is represented by set of features ∈ Rn between 0 and 1. The attacker must

try to choose the features as highest as possible, because his reward is

defined with the product of these features in Equation (4.4c).

On the other hand, the defender chooses a function which assigns

latency l ∈ [0, 1] to each feature point. The output l = 0.0 might be

interpreted as doing nothing (not increasing latency at all) and l = 1.0

as blocking given input features.

4.1.4 Solving the Game

Solving the game in the form as it was defined is not a trivial task mainly

because of two major reasons. The first is that we are dealing with a

general sum game for which the problem of computing Nash equilibrium

is PPAD-complete[11]. The second concern originates from the fact of

having action sets with infinite dimensions, which means that the entire

game matrix cannot be constructed. Due to these problems we need to

transform the original game to a zero sum game to ease computing of

the Nash equilibrium.

Definition 4.1.2 (Transformed Zero Sum Game G′). We denote a trans-

formed zero sum game G′ as almost identical to G except that G′u is

slightly altered and can be seen in Equations (4.5).

ua(f, l) = +R(f) · hm(l(f)) + (
∑
d∈D

hb(l(d)) · p(d)) · C (4.5a)

ud(f, l) = −R(f) · hm(l(f))− (
∑
d∈D

hb(l(d)) · p(d)) · C (4.5b)

C =
Pb · Cb
Pm · Cm

(4.5c)

Theorem 4.1.1. Original game G and transformed game G′ are strate-

gically equivalent.

Proof. We prove strategic equivalence of games G and G′ in three steps.
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(i) Firstly, in Equation (4.6), we define constant cl for each pure strat-

egy l ∈ S2. Then by applying Claim 2 to original game G we get

transformed strategically equivalent game Γ with utility functions

defined in Equations (4.7). In other words we added the false pos-

itive part also to the attacker’s utility.

cl = (
∑
d∈D

hb(l(d)) · p(d)) · Pb · Cb (4.6)

ua(f, l) = +R(f) · hm(l(f)) · Pm · Cm

+ [(
∑
d∈D

hb(l(d)) · p(d)) · Pb · Cb] (4.7a)

ud(f, l) =− [R(f) · hm(l(f)) · Pm · Cm]

− [(
∑
d∈D

hb(l(d)) · p(d)) · Pb · Cb] (4.7b)

(ii) Secondly, according to Claim 1, we multiply both utility functions

in Equations (4.7) with
1

Pm · Cm
∈ R+ and receive strategically

equivalent game G′ with utility functions defined in Equations (4.8)

ua(f, l) = +R(f) · hm(l(f)) + (
∑
d∈D

hb(l(d)) · p(d)) · C (4.8a)

ud(f, l) = −R(f) · hm(l(f))− (
∑
d∈D

hb(l(d)) · p(d)) · C (4.8b)

C =
Pb · Cb
Pm · Cm

(4.8c)

(iii) Finally since original game G is strategically equivalent to game Γ

and Γ is strategically equivalent to G′ we are allowed to say that

original game G and final game G′ are also strategically equivalent.

We managed to get strategically equivalent zero sum game G′ and

that is why we might solve this game and use the outcoming Nash equi-

libria strategies in original game G. We successfully moved from PPAD-

complete problem to P-class problem.
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Linear programming may be used to solve finite zero-sum games by

solving a minmax strategy as stated in background Chapter 3, nonethe-

less the dimension of strategy profile A ∈ G′ is not finite, thus the only

way to use LP is to discretize both players’ action sets for better perfor-

mance in exchange for optimality loss. The question then arises as how

much we need to discretize in order to keep good trade-off between the

performance and the optimality.

For example, we can see a definition of the minmax strategy for dis-

cretized game with n = 2 in Equation (4.9a) where we discretize each

axis in R2 space from zero to one by one-hundreths points. In this case

we assign to the attacker gain equalled to exact product of his discretized

features. Even though, for maximum correctness the region around dis-

cretized features should be taken into account as well. However, we aim

to use this solving technique primarily for optimality comparison with

double oracle approach and that is why we find this definition satisfac-

tory.

min
θ∈Θ

max
sTa ∈ST

a

∑
x∈AT

a

∑
l∈L

[θ(x, l) · sTa (x) · hm(l) ·R(x)]+

+ (
∑
d∈D

∑
l∈L

θ(d, l) · p(d) · hb(l)) · C (4.9a)

X = { 0, 0.01, 0.02, . . . , 0.98, 0.99, 1 }

ATa = X2 is a set of discretized attacker’s actions

STa is set of all probability distributions over actions ATa (4.9b)

L = { 0, 0.25, 0.5, 0.75, 1 } is set of discretized latencies

Θ = { θ | θ(x, l) ∈ R+ determines probability of playing

latency l ∈ L against features x ∈ ATa ;
∑
l∈L

θ(x, l) = 1 }

(4.9c)

Finally the precise minmax problem in Equation (4.9a) might be

solved in polynomial time by solving linear program defined in Equation

(4.10).
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min V

s.t.
∑
l∈L

θ(x, l) · hm(l) ·R(x)+

+
∑
d∈D

∑
l∈L

θ(d, l) · p(d) · hb(l) · C ≤ V ∀x ∈ ATa∑
l∈L

θ(x, l) = 1 ∀x ∈ ATa

∀l ∈ L θ(x, l) > 0 ∀x ∈ ATa

(4.10)

Double oracle algorithm is a better approach to solve the gameG′ ,
because double oracle is able to compute ε− equilibrium even in games

with infinite action sets. Nevertheless, at the same time there are some

challenges which need to be encountered. We need to figure out how to

find attacker’s and defender’s best responses.

To find the defender’s best responses we need to first find out how

to even represent defender’s actions. So far we know that it should be

a function l : Aa → [0, 1]. There are plenty of options such as Support

Vector Machine (SVM)[6] or clustering using n-dimensional ellipsoidal

prototypes[5] or others [14, 15]. Nevertheless, we decided to go with

artificial neural networks mainly because of the possibility to model every

continuous function as we mentioned in background Section 3.3. This

means every defender’s action l ∈ Ad is actually a neural network which

takes n features as an input and outputs a predicted latency.

Even though in theory there is a viability to approximate every con-

tinuous function using neural network, many challenges rise up during

the effort to do so. Those are mainly implementation details (see im-

plementation overview in Appendix A) but they substantially affect the

final performance since double oracle algorithm expects discovery of true

best response in every iteration of the algorithm. That is why one of our

experiments (Experiment 5.2) focuses on analyzing how quality of best

responses influences convergence of double oracle algorithm.

A labeled data set containing all used classes is usually needed for

supervised learning of neural networks, however when we train our neu-

ral networks we are actually searching for a best response given some
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strategy profile s ∈ S describing the attacker’s features. Thus, we might

use these features as malicious training data in each iteration of double

oracle. Finally, to really converge to best responses we use negative de-

fender’s utility function as neural networks’ loss function. This way by

minimizing the loss function we maximize defender’s utility function.

As an unbiased evaluation of training models there are often used

validation data sets to avoid overfitting (i.e. learning training features

extremely good but fail every other classification). However, in our case

we are searching for a best response given precise attacker’s features,

that is why we do not actually need validating data set to train our

neural networks. Another reason is that we assume our benign data set

to contain sufficient number of records to fully represent benign users

(see assumptions in Subsection 4.1.5).

The last complication originates from searching for the attacker’s best

response. One way is to again discretize the attacker’s action set and then

go through all the actions and simply choose the best one. This approach

is formalized in Equation (4.11) using attacker’s discretized actions from

Equations (4.9b). Expression sd(x) represents a probability of defender

playing action x given strategy profile s ∈ S.

max
aa∈AT

a

∑
x∈Ad

ua(aa, x) · sd(x) (4.11)

Nevertheless, discretizing the attacker’s action set is far away from

ideality as traversing the whole space of actions Xn and choosing the

best one is computationally unrealistic for n > 2. One approach would

be to discretize the attacker’s actions more sparsly in order to compute

the best response for n > 2. Although, we assume that in that case the

attacker’s best response would not be the best one.

Alternatively we might utilize a similar idea neural networks use and

that is gradient descent. Each time we search for the attacker’s best

response we create initial vector of k random actions, calculate their

utilities given defender strategy profile sd and update those actions using

gradient descent to approach the attacker’s maximum payoff. Finally,
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after a certain number of updates, we choose an action providing the

best utility as the best response.

Finally we introduce variables εa, εd ∈ R+ which we use in the ter-

mination condition of double oracle. The variable εa states how much

the attacker’s best response must be better than the value of Nash equi-

librium to continue to the next iteration of the algorithm. Similarly

the variable εd determines how much better the defender’s best response

must be.

4.1.5 Assumptions

Our model assumes both players to be completely rational and possess-

ing entire game information when making decisions. There is also an

assumption for provided data set to be the purest as possible, meaning

without any malicious requests and with a sufficient number of records

to represent all benign users. The fact of using data set containing only

benign requests might be considered an advantage of our model for spe-

cific use-cases, because we realize that getting labeled data set often

complicates the situation.

4.1.6 Limitations

On the other hand, we as well recognize limitations of our model. Firstly,

the model gets stochastic in its goal when setting both constants αm and

αb contradictorily. That is for example in situation when specifying that

the attacker receives extremely huge gain when he is not substantially

restricted and at the same time the defender pays non trivial cost for

any restriction of benign users. This setup is for exmaple represented by

setting both constants αm and αb close to zero.

Secondly, one must be careful when trying to set already mentioned

constants αb and αm to the edge of its range. The reason is that in

order to train defender’s neural networks properly we need to use de-

fender’s utility function as loss function we are minimizing in training

phase. That way we might witness exploding gradients during the back-

propagation because the derivative of the loss function gets extremely
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big. Fortunately this issue is solvable by setting and changing a learning

rate in the training phase appropriately, however the attention must be

paid.

Lastly, somebody could see the limitation that there is no way to

force false positive rate to be less than some constant. For example to

say that the model would limit maximum 5% of all benign users. On the

other hand we offer completely different approach of setting costs and

that way our model computes the solution in which false positive rate is

actually the best one in the given environment if all constants were set

properly. To truly force some false positive rate user would have to run

multiple setups and finally choose the one with the most satisfying false

positive rate.

4.2 Blocking Model

4.2.1 Model Definition

Definition 4.2.1. Similarly as latency model we define a blocking model

as an altered normal form game B = 〈N,A, u, n,D,Cb, Cm, Pm, Pb〉 where:

• N,n,D,Cb, Cm, Pm, Pb shares the same definition as in game G

defined in Subsection 4.1.1.

• A = Aa×Ad is an action profile where Ai is an action set for player

i. See notation in Equations (4.12).

Aa = [0, 1]n (4.12a)

Ad = { l | l : Aa → {0, 1} } (4.12b)

• u = ua × ud is an utility profile consisting of payoff functions ui :

A → R for player i. Each player wants to maximize his payoff
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function. See definitions in Equations (4.13).

ua(f, l) = +R(f) · (1− l(f)) · Pm · Cm (4.13a)

ud(f, l) =− [R(f) · (1− l(f)) · Pm · Cm]

− [(
∑
d∈D

l(d) · p(d)) · Pb · Cb] (4.13b)

R(f) =

n∏
j=1

fj

where function p : D → [0, 1] represents a probability distribution

over features in provided benign data set D.

There are two major differences comparing to the previous latency

model. Firstly the defender is now doing a classification instead of con-

tinuous regression, because a defender’s action is now a binary function

classifying each attacker’s features either as malicious (1 = blocking) or

benign (0 = no blocking). Secondly, there are no αm and αb constants,

because they are no longer needed.

The utility functions are also similar as in previous model except that

the attacker’s payoff (or the defender’s punishment) is also binary and

the attacker either gets his outcome or he receives payoff equaled zero in

case of classified as malicious.

4.2.2 Solving the Game

Using completely the same procedure as in deriving the game G′ in Seub-

section 4.1.4 we are allowed to infer strategically equivalent game B′ from

B with utility functions defined in Equations (4.14).

ua(f, l) = +[R(f) · (1−l(f))] + (
∑
d∈D

l(d) · p(d)) · C (4.14a)

ud(f, l) = −[R(f) · (1−l(f))]− (
∑
d∈D

l(d) · p(d)) · C (4.14b)

C =
Pb · Cb
Pm · Cm

(4.14c)

We observe that game B′ looks almost the same as game G′ except

that the defender’s action sets differ. In G′ the defender’s actions classify

24



CHAPTER 4. GAME MODELS

1 0 1

0 1 1

0 0 0

a1 = a3 =

prob. 30% 0.3 0.7 0.1

0 0.3 0.3

0 0 0

⇐⇒
0 1 1

0 0 0

0 0 0

a2 = prob. 100%

prob. 70%

Table 4.1: Equivalent transformation of mixed strategy to pure strategy

attacker’s features continuously (latency in range between 0 and 1) but

in game B′ the defender’s classification is binary.

Nonetheless, if we look in the Tables 4.1 (matrices represent classi-

fication of regions in a plain by defender’s actions a1, a2 ∈ Ad), we can

see that every defender’s mixed strategy using binary classification may

be transformed to a pure strategy if we allow continuous classification.

The same way every pure strategy using continuous classification might

be transformed to a mixed strategy of actions with binary classification.

The strategic equivalence (defined in Definition 3.1.6) is defined by

exactly the same set of Nash Equilibria. Since we are able to model every

binary classification strategy with continuous classification strategy and

vice-versa without loss of generality, we are able to upgrade defender’s

actions to continuous classification. By applying this approach we obtain

a new game which is strategically equivalent to the original one.

Definition 4.2.2. To sum this up, final altered blocking model Bf looks

the same as B except that action profile A and payoff functions u, which

can be seen in Equations (4.15); (4.16), slightly differ.

Aa = [0, 1]n (4.15)

Ad = { l | l : Aa → [0, 1]}
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ua(f, l) = +[R(f) · (1−l(f))] + (
∑
d∈D

l(d) · p(d)) · C (4.16)

ud(f, l) = −[R(f) · (1−l(f))]− (
∑
d∈D

l(d) · p(d)) · C

C =
Pb · Cb
Pm · Cm

We managed to get the blocking model to the state where we may skip

the elaboration about computing Nash equilibrium due to the reasons

mentioned in following Subsection 4.2.3.

4.2.3 Discussion

We skipped the description of solving technique because we realize our

final blocking model Bf defined in Definition 4.2.2 and final latency model

G′ defined in Definition 4.1.2 differ only in constants αm and αb. In fact

our blocking model is a special case of game G′ with constants αm =

αb = 1. It means that our latency model finely generalizes the problem.

That is why we did not want to literally rewrite the solving Subsection

4.1.4, because this approach might be applied in the exact same way to

solve our blocking model.
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Experiments

5.1 Experiments Settings

All experiments were run on hardware with 4-cores at a 2.7GHz fre-

quency, 8GB RAM and graphics processing unit Nvidia Tesla T4 using

Google cloud platform. For implementation details, we refer the reader

to see Appendix A.

5.2 Influence of Best Response Quality on Dou-

ble Oracle Convergence

We use double oracle algorithm, which assumes that the truly best re-

sponses are found in each iteration of the algorithm. However, since we

are using neural networks to model the defender’s actions, it gets chal-

lenging to train accurate best responses. That is why we want to examine

how this fact limits us and see how the convergence of double oracle algo-

rithm is changing upon searching for the defender’s best responses with

different quality.

The approach of how we manage to receive worse or more accurate

best responses is primarily by adjusting a number of learning epochs

during which we train each neural network. Hence, we wish to inspect

how the convergence of double oracle applied to game G′ is changing

when using the defender’s neural networks modeled with various learn-
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αb = 3 Pb = 0.99 Cb = 5 · 102 εd = 10−3

αm = 1 Pm = 10−2 Cm = 1 · 104 εa = 10−3

Table 5.1: Values of constants used in Experiments 5.2 and 5.3

(a) 2D synthetic distribution (b) 2D normal distribution

Figure 5.1: Generated data sets used in Experiments 5.2 and 5.3.

ing epochs. We start with 2000 learning epochs and increase to 30000

epochs by 4000 steps. We assume that neural networks trained with more

learning epochs represent superior best responses. Also, we realize that

different architecture of neural network substantially influences the pro-

cess of learning. That is why we run this experiment for a shallow neural

network with 5 neurons and a deep neural network with 35 neurons (the

network with only a single hidden layer is conventionally called shallow,

while the ones with two or more hidden layers are called deep).

For this experiment we use random constants values defined in Table

5.1. Even though values of these constants are not crucial for the devel-

opment of this experiment. Finally, as data set representing benign users

we use generated normal distribution visualized in Figure 5.1b.

As metrics for evaluating how the convergence of double oracle is

changing we use a final value of the game and elapsed time until the

game converges.

5.2.1 Results

Figures 5.2 show means with 95% confidence intervals of game value

convergence and we can observe that in almost all setups we ended up
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(a) The convergence of game value

using deep neural network with 35

neurons

(b) The convergence of game value

using shallow neural network with

5 neurons

Figure 5.2: Convergence of game value using normal distribution data

and various numbers of learning epochs

with exactly the same value. The result is pleasantly surprising because

we see that we might actually use fewer learning epochs and still solve

the game in a way as if we would utilize huge neural networks with many

learning epochs and thus save a lot of computational time.

For comparison we may notice how elapsed time increases for big

neural networks and many learning epochs in Figure 5.3a . Time the

game takes to converge becomes actually crucial when approaching to

many learning epochs as we can see that we did not even manage to

compute all setups of learning epochs for deep neural network and rather

stopped at 22000.

One might argue that the extra time consumption is obvious and is

caused basically by extra time needed for neural network training phase.

Of course there is an extra time needed to train each neural network but

also double oracle algorithm takes extra time to converge as we might

spot in Figure 5.3b, where we witness that likewise the iterations of

double oracle increase.

We assume that the surprising result is caused by overfitting the best

responses when using too many learning epochs. What it means is that

the smart defender keeps finding best responses which classify exclusively

current attacker’s actions as malicious. That is why attacker has a lot
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(a) Required time for double oracle

algorithm to converge

(b) Number of iterations double

oracle needs to converge

Figure 5.3: Duration of double oracle algorithm

free space where he is able to deviate and that is why it takes more it-

erations for double oracle algorithm to converge in order for defender to

score all crucial spots with positive latency. Figures 5.4 showing the game

value convergence within all iterations confirm our hypothesis. Alterna-

tively in Figure 5.7 we are able to see some examples of best responses

when training neural network with 22000 or 2000 epochs and differentiate

overfitting when using 22000 learning epochs compared to 2000 epochs.

Another valid argument says that values εa and εd are set too big

and that is the reason we cannot distinguish when using good best re-

sponses, because with lower values of εa, εd the bigger accuracy would

be detectable. That might be true but we do not think that difference

±10−3 in game value would be striking and causing superiorly better

results.

Finally the origin might be embedded in our data set being extremely

easy to learn. That is why we tried to run the same setup with more

synthetic data shown in Figure 5.1a and received results visualized in

Figure 5.8. We notice that shallow neural networks start having issues

finding sufficient best responses, however the deep neural networks still

have no problems even with 2000 learning epochs.

To sum this experiment up we unfortunately did not manage to run

the experiment with very unlikely distributed data for which even deep

neural network would fail having constant results. That is why we cannot
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Attacker’s best response

Iteration’s Nash Equilbria

Defender’s best response

(a) Convergence of game using 2000 learning epochs

Attacker’s best response

Iteration’s Nash Equilbria

Defender’s best response

(b) Convergence of game using 22000 learning epochs

Figure 5.4: Convergence of game values within each iteration using

deep neural network
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Figure 5.5: Sample of best responses using 2000 learning epochs

Figure 5.6: Sample of best responses using 22000 learning epochs

Figure 5.7: Visual example of best responses using either few or many

learning epochs
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Figure 5.8: Convergence of game value using synthetic data and various

numbers of learning epochs

conclude that similar results would happen for all data sets. We only

show that the fact of not training truly best responses does not have

to necessary influence correctness of the final result when using double

oracle algorithm and that our 35 neurons neural network seems sufficient

for all normal data sets.

5.3 Performance of Proposed Solving Methods

In this experiment we want to examine a scalability and an optimality

of our double oracle solving technique applied on our proposed model.

As metrics to evaluate this experiment we intend to use a final zero-sum

game value and required time to converge. The plan is to inspect the

performance for n = {2, 3} using configuration in Table 5.1 and data set

visualized in Figure 5.1b representing normal distribution.

In order to fully analyze the performance we wish to compare the

final results with results received from application of discretized linear

programming also mentioned in solving Subsection 4.1.4.

5.3.1 Results

Final results may be seen in Table 5.2. We observe that our double

oracle technique stands perfectly in terms of optimality, because when we

33



CHAPTER 5. EXPERIMENTS

dim. solver

Defender’s

classification

latencies

Attacker’s

actions

per one axis

Zero-sum

game

value

Elapsed

time

(min)

n = 2

LP L = {0, .25, .5, .75, 1}
x = {0..1}
|x| = 50

0.2448
0.99

±0.02

DO L = [0, 1]
x = {0..1}
|x| = 50

0.2354
56.38

±13.90

DO L = [0, 1] x = [0, 1] 0.2353
48.71

±7.60

n = 3

LP L = {0, .25, .5, .75, 1}
x = {0..1}
|x| = 50

N/A > 1 day

DO L = [0, 1]
x = {0..1}
|x| = 50

N/A > 1 day

DO L = [0, 1] x = [0, 1] 0.16
149.59

±20.27

Table 5.2: Result of Experiment 5.3 examining scalability and

optimality of our solving algorithms. DO stands for double oracle and

LP stands for Linear Programming

discretize the attacker’s actions the same way as in linear programming

approach we receive lower zero-sum game value. It means the defender

gets better utility, and thus modeling the defender’s latency classification

continuously with neural networks work fine.

Regarding the scalability we discover that the linear programming

approach stands much better for n = 2. However, when we scale to

n = 3 we did not even manage to compute the results for discretized

attacker and had to stop the experiment setups after one day. One way

would be to discretize less but we opine that in that case the results

would not be accurate and thus not suitable for comparison. In this case

we note that our solution scales much better and outputs more accurate

results since both the defender’s and the attacker’s actions are modeled

continuously.
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5.4 Case Study - DNS Data Exfiltration

Finally, we would like to apply our model to some real world problem

and see how it practically goes. We managed to obtain traffic records

about the DNS requests within the CTU network. Thus, we try to focus

on the DNS data exfiltration.

DNS stands for the Domain Name System and de-facto represents a

phone book of the internet. An IP address is assigned to almost every

host in the internet but IP addresses cannot be easily memorized so

majority of people use hostnames instead and let the DNS to translate

each hostname to its unique IP address.

Since DNS is fundamentally the core part of the internet functionality,

the DNS requests are generally not regulated or blocked and that is why

hackers might use these requests to smoothly exfiltrate private data from

any network[17].

5.4.1 Settings

In order to run our model we need to first figure out values of constants

for our game and compute features out of the DNS logs from the CTU

network.

Constants are set according to the Table 5.3. We opine that if the

attacker exfiltrates the data his gain decreases linearly with increasing

latency since he is able to proportionally the latency transmit less data,

that is why the constant αm is set to one. We also think of the CTU

network as not so important in providing such reliable service not to be

able to increase a latency for the DNS requests of some benign users and

that is the reason we set αb = 2.5. From the same reason we also set

constant Cm much higher than Cb, because we think that the potential

data breach would be more painful than increasing the latency for some

benign users’ DNS requests.

Lastly, we need to think of the features. Scoring each DNS request

in real time would be computationally too expensive and also probably

not accurate, because the attacker could exploit this fact and send many
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αb = 2.5 Pb = 0.999 Cb = 5 · 104 εd = 10−3

αm = 1 Pm = 1 · 10−3 Cm = 5 · 106 εa = 10−3

Table 5.3: Values of constants for case study Experiment 5.4

smaller requests. That is why evaluating bigger time slots per each IP

address seems more reasonable. We assume that each IP address belongs

solely to either malicious or benign user. Choosing proper time slots

might be topic for a discussion but for our experiment we use 5 seconds

time slots and compute following features:

• An average length - we compute the average length as mean

of lengths of all queries inside a given time slot divided by 255

(maximum length of DNS query).

• An average entropy - we compute the average entropy as mean

of entropies of all queries inside a given time slot divided by 5.8 (a

maximum entropy for the dns query given its maximum length and

allowed characters).

• A number of requests - computing this feature is a little bit

tricky since we need all features to be normalized between 0 and 1

but there is not any guarantee for maximum number of the DNS

queries in the 5 seconds time slots. Thus, we decide by our point

of view for the maximum to be 250 and value of this feature to be

number of all the DNS request inside the given time slot divided

by 250.

5.4.2 Results

Double oracle algorithm converged after 52 iterations and 73.5 minutes.

Final ε-equilibrium produces 1.7h false positive rate which we acknowl-

edge as a great result considering we do not have any fix constraint for

precise false positive rate.

Unfortunately we are not allowed to publish any raw queries from

the DNS logs. However, the most constrained benign time slot by final
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average length average entropy number of requests probability

25.5 3.6 94.35 28.1%

25.5 3.54 122.4 17.5%

38.25 3.24 66.3 15.9%

33.15 4.26 63.75 11.1%

140.25 3.84 22.95 6.7%

35 2.76 153.0 6.6%

25.5 3.36 155.55 4.2%

255 5.8 250 3.9%

Table 5.4: Denormalised attacker’s final ε-equilbria actions with

probability greater than 3% from DNS case study Experiment 5.4

ε-equilibrium is set of following features (0.11, 0.60, 0.89) scored with

latency 75%, which might seem like a lot but as our false positive rate

says it is nothing compared to all other benign requests. Also this benign

user still eventually receives his response, and that is where we see our

most important contribution.

The attacker’s most played actions from ε-equilibrium mixed strategy

are shown denormalised in Table 5.4 where we observe that the attacker

ends up sending many small requests with mostly big entropy.

5.4.3 Discussion

We found out that the fact of having all attacker’s features normalised in

the range from zero to one might complicate the application of our model

when the maximum value of the features is questionable. Fortunately this

limitation is solvable by just determining the ceiling; nonetheless, extra

care must be taken when we compute the features.

Restating the results we observe that the proposed solving technique

outputs optimal value and scales favourably. As a highlight of our exper-

iments, we state the result of our first experiment. We managed to show

that the double oracle algorithm does not necessarily need truly best

responses in order to converge smoothly and find ε-equilibrium, which
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we perceive as a remarkable discovery for practical future usage of our

model.
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Conclusion

In this thesis, we propose a general sum game between the defender

and the attacker where we consider increasing latency as the defender’s

action. We manage to transform the game to zero sum game and propose

solving technique using double oracle algorithm to compute ε-equilibrium.

We experimentally show that modeling the defender’s actions as artificial

neural networks does not diminish the optimality of the final solution. In

fact, the double oracle algorithm in conjunction with defender’s neural

networks produces more optimal results than applying linear program-

ming approach to discretized game.

One of our most significant contributions inheres in having a generic

solution which is able to model all kinds of specific use-cases by proper

configuration. Another advantage is that our solution needs data set

with only benign users because usually getting labeled data set with all

used classes is the most challenging task. Also, our model ensures that

even the adaptive attacker cannot shape his attacks to perform a better

attack. The reason is that the game theory provides us such solution

that no player is able to get more gain by deviating.

Overall the approach with slowing the attacker’s traffic down seems

like superiorly better approach than the blocking approach. However,

the topic of increasing latency is quite vast and yet unexplored; thus,

further work needs to be done. For example, the defender’s actions do

not have to be modeled using neural networks, and other approaches
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might be tested. Future work should also concentrate on modeling the

solutions with increasing latency even for specific use-cases.

To sum our work up, we succeeded in fulfilling the goals of the the-

sis and propose a game-theoretic model and implementation, which ex-

perimentally show positive results. One of our future step to validate

practical usage of our work is to apply the model to real traffic using for

example modified routers.
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Appendix A

Reference Implementation

A.1 Implementation Overview

The implementation was written in Python 3.7. For further details, we

refer the reader to see the source code located in the attachments of the

thesis. To run the source code locally, follow instructions written in a

root folder in a file readme.md.

To implement the defender’s actions, we used a machine learning

library PyTorch. The architecture of each neural network consists of lin-

ear layers with ReLu activation functions. As a last activation function

used in the output layer we used activation function called SoftClip in-

troduced in [18]. The reason is that SoftClip looks similar to Sigmoid,

but converges faster, so we are able to model even zero/one latency.

For precise implementation of defender’s actions see source code in file

src/neural networks/network.py.

A.2 List of Attachments

• A CD with the reference implementation. The real data set repre-

senting benign users within the CTU network is not submitted due

to privacy reasons.
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List of Used Symbols

Game Theory Generally

A = A1 ×A2 Action profile

Ai Action set for player i

BR(s−i) Set of player i’s best responses given strategy profile s

G = {N,A, u } Normal form game

N A set of players within a game

S = S1 × S2 Strategy profile

Si Set of all probability distributions over actions Ai

u = u1 × u2 Profile of utility functions

ui : A→ R Utility function for player i

ui : S → R Utility function taking strategy profile as input for player i

Models’ Symbols

αb ∈ R+ Constant describing severity of increasing latency to benign

user used in function hb

αm ∈ R+ Constant describing how increasing latency affects the attacker

used in function hm

X Set of attacker’s one-axis descretized actions
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Θ Discretized set Θ = { θ | θ(x, l) ∈ R+ determines probability of

playing latency l ∈ L against features x ∈ Xn}

εa Constant determining minimal required improvement of attacker’s

best response payoff compared to Nash equilibria value to consider

it as a new action

εd Constant determining minimal required improvement of defender’s

best response payoff compared to Nash equilibria value to consider

it as a new action

C =
Pb · Cb
Pm · Cm

Constant unifying other constants

Cb ∈ R+ Cost for blocking all benign users (benign value)

Cm ∈ R+ Cost for letting attacker perform not detected attack in its full

extent (malicious value)

hb : [0, 1]→ R Function describing how latency increases costs for false

positive classifications

hm : [0, 1]→ R Function describing how latency affects attacker’s gain

L Set of discretized latencies available for defender’s classification

N = { a, d } Set of the players - the defender d and the attacker a

n ∈ N Dimension of attacker’s actions/features

Pb ∈ [0, 1] Value representing portion of benign requests in a certain time

slot compared to the malicious requests

Pm ∈ [0, 1] Value representing portion of malicious requests in a certain

time slot compared to the benign requests
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