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Abstract

Multi-Body Structure from Motion (MB-
SfM) is a problem of 3D reconstruction
of objects in a scene, which is not static.
The MBSfM problem has not yet been
solved in general. We propose a solution
to a relaxed version of the problem, where
the images depict several static configura-
tions of the scene and the number of the
objects is limited to two.

We show in this thesis that this relaxed
MBSfM has a practical usage because in
some cases the reconstruction of an ob-
ject can be stabilized, using a background.
When the object is placed on the back-
ground and multiple sequences of differ-
ent configurations of the scene are taken,
the object can be reconstructed and seg-
mented from the background with the
method proposed in this thesis.

Keywords: structure from motion ,
multi-body, two-body, 3D reconstruction,
SfM, MBSfM, dynamic scene

Supervisor: doc. Ing. Tomáš Pajdla,
Ph.D.
Aplikovaná algebra a geometrie CIIRC,
Jugoslávských partyzánů 1580/3,
Praha 6

Abstrakt

Trojdimenzionální rekonstrukce více po-
hybujících se těles (MBSfM) je problém
rekonstrukce scény, která není statická.
Tento problém zatím nemá obecné řešení.
V této práci navrhujeme řešení relaxované
verze tohoto problému, kde je scéna zachy-
cena v několika statických konfiguracích
a počet objektů je omezen na 2.

Dále v této práci ukážeme, že řešení to-
hoto relaxovaného problému má praktické
využití, protože v některých případech
může být trojdimenzionální rekonstrukce
objektu stabilizována přítomností pozadí
ve scéně. Pokud je objekt umístěn na po-
zadí a tato scéna je vyfotografována v
několika statických konfiguracích, může
být tento objekt zrekonstuován metodou
popsanou v této práci.

Klíčová slova: struktura z pohybu, dvě
tělesa, 3D rekonstrukce, SfM, MBSfM,
dynamická scéna

Překlad názvu: Trojdimenzionální
rekonstrukce dvou pohybujících se těles
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Chapter 1

Introduction

1.1 Motivation

Structure from Motion [1] is a problem of reconstruction of a 3D model of a
scene from a set of images which depict this scene. The case, where the scene
is static, is well understood and implemented in many pipelines, such as [2]
[3] [4].

Multi-Body Structure from Motion (MBSfM) is the case of a dynamic
scene, where the objects may move between the images. This problem has on
the other hand not yet been solved in general. We have relaxed the problem
in such way that the number of the moving objects is limited to 2 and the
images depict several static configurations of the scene. The objects may
move between the different configurations.

The motivation behind this task is that a hypothesis exists, that the presence
of a background in a scene may improve the quality of a 3D reconstruction of
an object. In this case, one of the objects is the background and the other
one is the object which we want to reconstruct.

The task described in this section would be able to reconstruct the object
together with the background and to separate the background from the object.
Our intention was to perform a couple of experiments, which would prove the

1 ctuthesis t1606152353



1. Introduction .....................................
functionality of the method and show for which objects the method improves
the results of the reconstruction.

1.2 Thesis structure

In Chapter 1 the problem is formulated. In Chapter 2 some important
concepts, such as representation of rotation in 3D or representation and
registering of the cameras, are introduced. In Chapter 3 the State of the
Art in the Structure from Motion and in motion segmentation is reviewed.
A solution to the problem, which is introduced in Section 1.3, is proposed
In Chapter 4. This solution is evaluated on real data in Chapter 5. In the
same chapter we compare the models reconstructed by our method with the
models reconstructed by the State of the Art single body pipeline.

1.3 Problem formulation

The scene consists of a single object on a static background, and it has been
captured by multiple image sequences (takes). Each of the takes captures the
scene in a static configuration and the object moves between the takes. The
task is to reconstruct the object as well as the background and to segment
the points belonging to the object and to the background.

take a sequence of images of a static configuration of the scene

k number of takes

(Ai,j ,
−→
b i,j) motion of the object between the configurations captured by the
takes i, j

Xi
B a point from the background in the configuration captured by take i,

the background is static, therefore ∀i∀j : Xi
B = Xj

B

Xi
O a point from the object in the configuration captured by take i, the

object moves according to (Ai,j ,
−→
b i,j), so ∀j : Xj

O = Ai,jX
i
O +
−→
b i,j

{Ii}ni=1 a sequence of images of the scene

ti a take to which the image Ii belongs

ctuthesis t1606152353 2



.................................... 1.4. Contributions

Take 1 Take 2 Take 3

I1

X1
O

Xt
B

X2
O

I3
I2

Xs
B

X3
O

I4

I5

X3
B

Figure 1.1: An example of the input scene; k = 3, n = 5, t1 = 1, t2 = 2, t3 =
2, t4 = 3, t5 = 3, the point is connected with the camera if the camera observes
the point

1.4 Contributions

In this thesis, we propose a solution to the problem where two objects are
captured in several static configurations and the task is to reconstruct both
objects and to distinguish between them. Usually, one of the objects is a
background and the second one is the object which we want to reconstruct.
To our best knowledge there is no algorithm which solves this particular
problem. The concepts introduced in this thesis can be used in a more general
version of Multi-Body SfM.

We also demonstrate on real data, that in some cases the reconstruction of
an object with a background using our method has better properties than
the reconstruction of the same object without the background using a State
of the Art method. We also show in the thesis that models of some objects,
which the State of the Art method cannot reconstruct, can be reconstructed
using our method.
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Chapter 2

Frequently used concepts

2.1 Representation of rotation in 3D

Different representations of rotation in space exist, each of which has its
advantages and disadvantages. Transformations between the representations
can be found in [5].

Rotation matrix. As the rotation of vectors in R3 is a linear transformation,
it can be represented by a matrix R ∈ M3,3. R is a full rank orthogonal
matrix with determinant equal to 1. Representation by the matrix is suitable
for operations with the rotations, as the vector −→x can be rotated easily
performing R−→x . Compound rotation can as well be easily obtained by
multiplication of the rotation matrices. This representation is however not
suitable for clustering, storing and viewing, as 9 numbers are necessary to
determine the matrix.

Euler vector. (or angle-axis representation) is a vector −→e ∈ R3. The
direction of the vector is the axis of the rotation and the norm of the vector is
the angle of the rotation in radians. This is the minimal representation of the
rotation and is therefore suitable for clustering and storing of the rotations,
as well as for the viewing of the vectors because they belong to the 3D space.
It is however not suitable for operations with the rotations as they are more
complicated with the Euler vectors than with the rotation matrices.

5 ctuthesis t1606152353



2. Frequently used concepts ...............................
2.1.1 Norm of the rotation

The norm of the rotation is the angle of the rotation. It can, therefore, be
computed as the norm ||−→e || of the Euler vector which represents the rotation.

2.1.2 Distance between two rotations

There are different ways to compute the distance between two rotations R1,
R2. We compute it as the norm of the rotation R3 = R−1

2 R1. In order to do
that the rotation R3 has to be converted to the Euler vector form.

2.2 Camera representation

A pinhole camera model [1] is a model of a camera consisting of the camera
centre −→c and the projective plane π onto which the points are projected.

f focal length of the camera; the distance between the centre −→c and
the projective plane π

(−→o , α) the image coordinate system; −→o is the origin of the projective plane
(therefore −→o ∈ σ), α is the basis of the plane, for standard cameras
α is orthonormal but it is not a condition

(−→c , β) the camera coordinate system; the centre of the system is the centre
of the camera −→c , the first two vectors from the basis β are identical
with the basis α and the last one is the vector −→o −−→c .

(−→O, δ) the world coordinate system; −→O is a

Xδ a 3D-point in the world coordinate system

Xδ the point Xδ in the camera coordinate system

p a projection ray; a line connecting the point X with the camera
centre C

−→x a 2D point in the image coordinate system which is the projection
of the point Xδ

ctuthesis t1606152353 6



................................ 2.2. Camera representation

The projection of a point Xδ in the world coordinate system is realized in
two steps. At first, the point is transformed to the camera coordinate system,
then the projection is found as an intersection of the ray p with the projective
plane π. The projection is then represented in the image coordinate system.

Transformation of the point Xδ in the world coordinate system to the point
Xβ in the camera coordinate system is an affine transformation R3 → R3,
it can, therefore, be performed by multiplication of a matrix P ∈ M3,4

by homogeneous coordinates of the point X. The matrix P is the camera
projection matrix and it can represent the camera.

Xβ =

x1
x2
x3

 = P

[
Xδ

1

]
(2.1)

The form of the basis of the camera coordinate system β ensures that the
3D-points on the projective plane π have the third coordinate equal to 1 and
the first two coordinates are equal to the representation of the point in the
image system (−→o , α), so the coordinates are the homogeneous coordinates of
the representation of the 2D-point in the image system.

The intersection of the ray p with the plane π can be obtained by multi-
plication of the point Xβ by a scalar σ such, that the point σXβ is on the
projective plane π. Because of the property of the system (−→c , β) is the scalar
σ equal to z:

−→x =
[
x1
x3
x2
x3

]
(2.2)

The transformation of the points from the coordinate system can be decom-
posed into the transformation to the coordinate system with the orthonormal
basis whose last vector is orthogonal to the projective plane and with the
center in the point −→c , the camera matrix −→c can, therefore, be decomposed
into:

P = KR
[
I| − −→c

]
(2.3)

, where K is the camera calibration matrix [1], R is the rotation of the camera
and −→c is the centre of the camera.

7 ctuthesis t1606152353



2. Frequently used concepts ...............................
2.3 PnP

PnP is a procedure which registers a camera onto a set of 3D points with
n correspondences between the 3D points and the 2D features on the image [1].

The simplest type of the PnP algorithm is P6P which requires 6 points
to compute the matrix P . The camera matrix P is stacked into a vector −→P
which is used as the vector of unknowns. Each correspondence between a
point and a feature generates two linear equations which are derived from
equations (2.1), (2.2), one equation for each element of the feature −→x .

Because the matrix P has 12 elements, at least 12 linearly independent
equations are required to find it. These equations can be generated from 6
correspondences. More advanced versions of PnP exist which require fewer
correspondences. If the camera is calibrated, only 3 correspondences are
required to compute the pose.

ctuthesis t1606152353 8



Chapter 3

State of the art

3.1 Structure from Motion

Reconstruction of static scenes is a well-understood problem. Two main
approaches to it exist, namely incremental SfM and global SfM. There are
different SfM pipelines, such as Bundler [2], COLMAP [3] or OpenMVG[4].
Among these pipelines, we have chosen COLMAP as the base of our method.
The most common approach is the incremental SfM, which consists of the
following steps: feature extraction and matching, the initial pose calculation,
camera registration, point triangulation, and bundle adjustment.

3.1.1 Feature extraction and matching

At first, features, such as SIFT [6], are found in each of the images. Corre-
sponding features in a pair of images are matched using nearest neighbor search
on the descriptors of the features. In the exhaustive matching, the matches
are found between all pairs of images, therefore the matching has quadratic
complexity. Other variants of matching exist, which have linear complexity
and therefore are better suited for large datasets. Transitive matches (tracks)
may be used in order to increase the number of the tracks. Maset, Arrigoni
and Fussielo [7] use eigendecomposition to maximize consistency of the tracks.

9 ctuthesis t1606152353



3. State of the art....................................
Usually, many mismatches occur among the matches, so two-step filtering

is applied. In the first step such matches are rejected, whose Lowe ratio [6]
is too high. Lowe ratio is a ratio of the nearest neighbor and the second
nearest neighbor in the space of the descriptors. The second step is geometric
filtering. Fundamental matrix [1] is fitted to the matches using RANSAC
[8] and only the inliers to the model are retained. In COLMAP [3] both the
fundamental matrix and the homography are fitted to the data and selects
the model which has more inliers.

3.1.2 Initial reconstruction

Among the images, an initial pair is selected. Fundamental matrix is fitted
to the matches using RANSAC. The relative pose of the cameras from the
initial pair is computed from the fundamental matrix [1]. With the knowledge
about the relative pose of the two cameras, the points are triangulated from
the matches.

3.1.3 Incremental reconstruction

As the initial reconstruction has been performed, positions of some 3D points
are known. Correspondences between the 2D features and the 3D points are
obtained from the matches between the features. A new camera is registered
towards the existing point cloud using the PnP (Section 2.3). The newly
found camera pose enables the triangulation of new points, so the point
cloud grows and new cameras can be registered towards it. This procedure
is repeated until there are non-registered cameras which can be registered
towards the point cloud.

3.1.4 Bundle adjustment

Errors arise during the reconstruction and they accumulate, so they can easily
become unsustainable. In order to prevent this, Bundle Adjustment[9], which
minimizes the sum of squares of reprojection errors, is performed. Bundle
Adjustment is performed after every step of the incremental reconstruction.
In COLMAP [3], global bundle adjustment is performed only after the model
grows beyond a given threshold, otherwise, a local bundle adjustment, which

ctuthesis t1606152353 10



................................. 3.2. Motion segmentation

improves only the limited number of cameras, is performed, so the time
complexity of the reconstruction is better.

3.2 Motion segmentation

In the motion segmentation problem, motion tracks between two or more
images are given, and the task is to split the tracks into groups that move
together. The problem is strongly connected to the Multi-body Structure
from Motion. If all motion groups were correctly determined, the MBSfM
problem would be reduced to the static scene reconstruction. On the other
hand, if the transformations of the cameras towards each of the motion groups
were known, it would be easy to determine which point belongs to which
group. The problem is that the segmentation and the models have to be
found simultaneously. Different approaches to the problem exist.

3.2.1 Algebraic methods

One group of the algebraic methods is based on matrix factorization. These
methods describe the motion segmentation as a subspace clustering problem.
Among these methods belong for example [10] and [11], which perform the
factorization via SVD.

R. Vidal et. al. [12] have proposed The Multibody Epipolar Geometry,
where the multibody fundamental matrix is a sequence of fundamental matri-
ces. A point which is inlier to this model fulfills the epipolar constraint for at
least one of the fundamental matrices. The Multibody epipolar constraint
leads to a set of polynomial equations, which is solved using GPCA. This
solution however cannot be applied if erroneous matches occur. Rao et.
al. [13] have proposed an algebraic method which is able to deal with the
erroneous matches. The method is based on the merging of the points such
that the coding length of the model is minimized using Agglomerative Lossy
Compression. Rao et. al. have proposed a Hybrid Perspective Constraint
[14], which can describe both planar and perspective motions.
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3. State of the art....................................
3.2.2 Random sampling methods

These methods are based on drawing random minimal samples and computing
models such as homography or fundamental matrix from the samples. The
random sampling methods are not as elegant as the algebraic methods but
they are more universal and usually perform better, especially if gross outliers
are present. The methods can be divided into two groups: consensus analysis
and preference analysis.

The simplest method from the consensus analysis group is the sequential
RANSAC. [15] The model with the highest support is selected using RANSAC
[8] and further motions are found from the outliers to this model. The problem
of this method is that it greedily extracts the matches which belong to the
object, so in the case of overlapping models, the matches may be assigned to
a model to which they do not belong. Multi-RANSAC [16] finds the models
simultaneously, rather than sequentially. K. Schindler and D. Suter [17]
generate the random samples and after discarding the worst ones they select
the actual motions with Taboo search in order to avoid the greedy approach.

Preference analysis is a method dual to the consensus analysis. Preference
sets of the points are examined instead of the residuals of the models. W.
Zhang and J. Kosecka [18] examine the histograms of the residuals of the
points. Peaks in the histogram belong to the individual motions. J-Linkage
[19] and T-Linkage [20] are methods which cluster the points in the space of
their residuals using the linkage clustering. They differ in the distance which
they use for the clustering.

In Random Cluster Model Simulated Annealing (RCMSA) [21] larger than
minimal samples are used to compute the hypotheses. Graph-cut approach is
used, where the problem is solved using the simulated annealing approach.
In [22], L. Magri and A. Fusiello decompose the preference matrix (matrix
whose columns are the residual vectors of the points) as the sum of a low-rank
matrix and a sparse one (noise) using Robust PCA. The low rank matrix is
then factorized using Nonnegative Matrix Factorization. In [23], X. Xu, L-F
Cheong and Z. Li. find simultaneously different models such as fundamental
matrix, homography and affinity. They use the fact that if two points belong
to the same homography group, they belong to the same epipolar group,
etc. The motions are clustered iteratively via Subset Constrained Multi-View
Spectral Clustering.
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........................... 3.3. Reconstruction of dynamic scenes

Sometimes it is difficult to perform the segmentation, as degenerate situa-
tions exist where two independent motions can be explained with a single
fundamental matrix.

3.2.3 Other methods

Another motion segmentation methods exist, which belong neither to the
algebraic group nor to the random sampling one. These methods are based for
example on the optical flow [24] or on an iterative approach inspired by EM
[25]. After the rise of the neural networks, semantic segmentation methods
have also been developed [26].

Growing homographies is an approach similar to the random sampling.
From each match, an affine transformation is computed, which is subsequently
refined to the form of a homography using inliers to the transformation. F.
Šrajer [27] uses the Planar Homology concept to merge the homographies
which have arisen from the same motion.

3.3 Reconstruction of dynamic scenes

The most of the motion segmentation methods concentrate on the segmenta-
tion between 2 images. K Schindler, D Suter and H Wang [28] have proposed
a method for n-view MBSfM. They draw random samples for each pair of
subsequent images and after filtering of the worst models they link the models
to create chains, which describe the motion in the whole sequence. The chains
are selected with the maximum likelihood criterion. The method is more
suitable for videos than for general image sets. Method [13] works with a
matrix of tracks, so it is able to work with n views.

Little has been done in the actual reconstruction of the dynamic scenes
(MBSfM), so the problem still remains unsolved in general. YASFM [27] is
a pipeline, which performs a motion segmentation and is, therefore, able to
reconstruct multiple objects from the dynamic scenes. However, it is shown
in [29], that YASFM is not able to reconstruct the scenes described in Section
1.3.
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3. State of the art....................................
COLMAP [3] is not able to reconstruct dynamic scenes, however it contains

tools for MBSfM, such as the matching which supports multiple models. The
filtering of the matches is then performed with the sequential RANSAC.
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Chapter 4

Proposed solution

4.1 Reconstruction of the takes

At first, the matches are found between each pair of images. The option
multiple_objects is selected, so correct matches between points from both
the object and the background are retained during the verification step.
Each take is reconstructed individually in a standard Structure from Motion
pipeline COLMAP [3]. The take from which the reconstruction has been
obtained is the anchor take of the reconstruction. After a sparse point cloud
is obtained from the anchor take, cameras from other takes are registered
onto the point cloud via sequential PnP.

Sequential PnP is a procedure, where the camera is registered onto the
points using a RANSAC PnP, and the outliers to the found camera pose are
reused for further registration. This procedure is repeated until no pose with
satisfactory support is found. Therefore it is possible that multiple camera
poses are registered from a single camera.
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4. Proposed solution...................................
RANSAC_PnP(M, r) is a procedure that performs registration of a camera

using a set of 2D to 3D correspondencesM, the number of iterations of the
RANSAC algorithm is r, the output of the procedure is the registered pose
P . Find_Inliers(P,M) outputs a subset I ⊆M of inliers to the pose P .

Algorithm 1: Sequential PnP
input :M a finite set of correspondences between 2D features and 3D

points
m minimal number of inliers for a pose
r number of the iterations of RANSAC

output :P a finite set of camera matrices
P ← ∅ ;
while |M| ≥ m do

P = RANSAC_PnP(M, r);
I ← Find_Inliers(P,M);
if |I| ≥ m then
P ← P ∪ {P};
M←M\ I;

else
break;

end
end

The idea behind this is that cameras from takes different from the anchor
take have different poses towards the static background and towards the
object, therefore in the ideal case the sequential PnP should find one pose
towards the background and another one towards the object. The points
belonging to the object as well as those belonging to the background can be
recognized as the inliers to these poses.

The motion of the object between the anchor take and the take to which
the image belongs (the second take) can also be computed from the poses of
the camera towards the background and the object which have been found
using the sequential PnP.
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.............................. 4.1. Reconstruction of the takes

(a)

(b)

(c)

Figure 4.1: Example of different results of the sequential PnP, points with the
same color are observed by the same camera. The cameras have been registered
in the order green, red, yellow.
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4. Proposed solution...................................
Second take Anchor take

P

XO

XB

X1
O,β

PB

PO

X2
O,β

XB

Figure 4.2: Example of a camera after the sequential PnP registration onto the
anchor take.

4.2 Object motion calculation

XO - arbitrary 3D point from the object
P - a camera from the second take which observes the point XO−→x - projection of the point XO on the camera P
X1
O,β - reconstruction of the point P in the anchor take reconstruction

β - basis of the anchor take reconstruction
A - matrix of rotation of the object between the anchor take and the second
take−→
b - translation of the object between the anchor take and the second take
X2
O,β - new position of the point X1

O,β after movement of the object from the
anchor take configuration to the second take configuration; for every point it
holds true: X2

O,β = AX1
O,β +

−→
b

PB - camera matrix of the camera P registered on the background points of
the anchor take reconstruction
PO - camera matrix of the camera P registered on the object points of the
anchor take reconstruction

If the camera P from the second take is registered on the object points
from the reconstruction of the anchor take, it projects the object points from
the anchor take onto the same 2D points onto which they were projected in
the configuration of the second take. Particularly this means that −→x is a
projection of the point X1

O,β onto the camera PO
If the camera P from the second take is registered on the background points
from the reconstruction of the anchor take, its position is the same as it was
in the second take. This means that if the object points were transformed to
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............................... 4.2. Object motion calculation

the position in which they were in the second take, they would be projected
onto the same 2D points onto which they were projected in the second take.
This implies that −→x is a projection of the point X2

O,β onto the camera PB.

The following equation must therefore hold true:

σ1PO

[
X1
O,β

1

]
= σ2PB

[
X2
O,β

1

]
(4.1)

We can introduce new symbols for rotation, center and camera calibration
matrix for cameras PO and PB and write this equation as

σ1K
[
RO −RO−→c O

] [
X1
O,β

1

]
= σ2K

[
RB −RB−→c B

] [
AX1

O,β +
−→
b

1

]
(4.2)

After elimination of K and rewriting the equation into the polynomial form

σ1ROX
1
O,β − σ1RO

−→c O = σ2RBAX
1
O,β + σ2RB

−→
b − σ2RB

−→c B (4.3)

Because the equation has to hold true for all X1
O,β, it holds true also for

X1
O,β = 0, which implies that the following two equations are also valid:

− σ1RO
−→c O = σ2RB

−→
b − σ2RB

−→c B (4.4)

σ1RO = σ2RBA (4.5)

We can easily find the relative rotation A from the latter equation as

A = σ1
σ2
R−1
B RO

Because A, R−1
B and RO are all rotation matrices, σ1 = σ2 and therefore we

can write

A = R−1
B RO (4.6)

−RO−→c O = RB
−→
b −RB−→c B (4.7)

We can find translation
−→
b as

−→
b = −→c B −R−1

B RO
−→c O = −→c B −A−→c O (4.8)

In Figure 4.1 it is shown that in the sequential PnP order of the objects
towards whose points the poses are calculated is arbitrary. That means that
apart from the true motions, the inverted ones (motion of the background if
the object is considered static) can be calculated. Also, we can see in Figure
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4. Proposed solution...................................
4.1(c), that not all points from the background have to be detected in the
first iteration and an additional pose towards the background could be found.
As these points belong to the same object, the detected poses will be almost
identical and therefore the motion computed from these camera pairs will be
near to the zero motion. Later we will show that this can be quite disturbing
and we have to deal with these zero motions. The PnP registration can also
be completely wrong, which results in relative motions which are wrong, as
well.

According to equations (4.6), (4.8) we have computed relative motions
between all such camera pairs P1, P2 where both cameras have arisen from
the same sequential PnP, therefore they share the image and the take, onto
which they have been registered. We can see from the equations that one
camera pair is enough for finding the relative motion.

Because for every a, b all cameras from the take a registered onto a recon-
struction of the take b observe the same motion, relative motions found in
this way will cluster around true values of the relative motions from take b to
a. In order to make the clustering easier, the computed motions are inverted
in the case that b < a.

Computed relative rotations and translations are in the coordinate system
of the reconstruction of the anchor take, onto which the cameras are registered.
For further processing of the relative motions it is necessary to bring them
all to the same coordinate system.

4.3 Bringing the motions into the same
coordinate system

All calculated motions are in the coordinate system of the reconstruction
of the anchor take, onto which the cameras have been registered. In order
to cluster and verify the motions, they have to be transformed to the same
coordinate system. To do so we have to find transformations between the
coordinate systems first.
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...................4.3. Bringing the motions into the same coordinate system

(a) (b)

Figure 4.3: Euler vectors (a) and translations (b) calculated from a dataset
consisting of 8 takes. The situation is before the transformation into the same
coordinate system. Clusters of motions are observable.

4.3.1 Description of the basis transformation

β′ - origin coordinate system
β - target coordinate system
X ′β′ - arbitrary 3D point in the origin coordinate system
Xβ - point X ′β′ in the target coordinate system
Pβ′ - camera matrix in the origin coordinate system
Pβ - camera matrix in the target coordinate system
B - change of basis matrix from β′ to β, because both bases are orthonormal,
it has form of B = σR where σ is a scalar and R is a rotation matrix.−→
o′ β - origin of the β′ coordinate system in the β coordinate system
Then every point in the origin coordinate system can be transformed to the
target system as follows:

Xβ = BX ′β′ +
−→
o′ β = σRX ′β′ +

−→
o′ β (4.9)

−→x - projection of the 3D point onto the camera
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4. Proposed solution...................................
Origin Target

Pβ′

X ′β′

β′
Xβ

Pβ

β

The 3D point is projected onto the same point on the camera in both
reconstructions, so the following holds true:

−→x = σ1Pβ

[
Xβ

1

]
= σ2Pβ′

[
X ′β′

1

]
(4.10)

For some scalars σ1, σ2. We assume that both pictures have been taken with
the same camera K. We introduce α = σ1

σ2
, Rβ , −→c β as rotation and center of

matrix Pβ and Rβ′ , −→c β′ as rotation and center of matrix Pβ′ and write

αK
[
Rβ −Rβ−→c β

] [
σRX ′β′ +−→o ′β

1

]
= K

[
Rβ′ −Rβ′

−→c β′

] [
X ′β′

1

]
(4.11)

α(Rβ(σRX ′β′ +−→o ′β)−Rβ−→c β) = Rβ′X ′β′ −Rβ′
−→c β′ (4.12)

ασRβRX
′
β′ + αRβ

−→o ′β − αRβ−→c β = Rβ′X ′β −Rβ′
−→c β′ (4.13)

This equation has to hold true for every X ′β′ , so following two equations must
be valid:

ασRβR = Rβ′ (4.14)

αRβ
−→o ′β − αRβ−→c β = −Rβ′

−→c β′ (4.15)

Because Rβ , R and Rβ′ are all rotation matrices, in order for the first equation
to be valid, ασ must be equal to 1, so

α = 1
σ

(4.16)

We can therefore write:
R = R−1

β Rβ′ (4.17)

Rotation between coordinate systems can be found with one camera pair.

The latter equation can be multiplied by σ:

Rβ
−→o ′β −Rβ−→c β = −σRβ′

−→c β′ (4.18)
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...................4.3. Bringing the motions into the same coordinate system

We introduce new symbols −→t β = −Rβ−→c β and −→t ′β′ = −Rβ′
−→c β′ and write:

Rβ
−→o ′β +−→t β = σ

−→
t ′β′ (4.19)

Rβ
−→o ′β − σ

−→
t ′β′ = −→t β (4.20)

This equation can be rewritten in a element-wise form:R11 R12 R13
R21 R22 R23
R31 R32 R33


o1
o2
o3

− σ
t′1t′2
t′3

 = −

t1t2
t3

 (4.21)

If we know more such camera pairs, this can be written as a following system
of linear equations: 

R11 R12 R13 −t′1
R21 R22 R23 −t′2
R31 R32 R33 −t′3

...



o1
o2
o3
σ

 =


t1
t2
t3
...

 (4.22)

Translation and scale between the coordinate systems can be found with at
least two camera pairs.

Figure 4.4: Euler vectors of the rotations between coordinate systems of three
reconstructions. The clusters of the vectors are observable.

23 ctuthesis t1606152353



4. Proposed solution...................................
4.3.2 Clustering of the basis transformations

For each pair of takes a, b, a 6= b, all such camera pairs (Pa, Pb) are generated,
that the camera Pa is a camera from the take a in the reconstruction of the
take a, therefore in its anchor take and the camera Pb is the same camera
registered onto the take b, or vice versa, the camera Pb is a camera from
the take b in the reconstruction of the take b and the camera Pa is the same
camera registered onto the take a. These pairs can be found using a function
Select_Pairs(M,a, b). In order to compute the basis transformation from
the reconstruction of the take a to the reconstruction of the take b, we use
cameras Pa as Pβ′ and Pb as Pβ and follow the equations from the previous
paragraph.

The problem is that both cameras registered towards the background points
and towards the object points exist. Transformations between the bases of
reconstructions a, b differ depending on the fact whether the background or
the object is considered to be static. Therefore we cannot just take a set of
all camera pairs (Pa, Pb) and compute the transformations but the pairs have
to be clustered first.

As the transformation can be found with two camera pairs, we have utilized
a RANSAC algorithm which randomly generates pairs of the camera pairs and
from them calculates the hypothesis for the basis transformation according
to the equations (4.17), (4.22) using the least squares method. For each pair
of pairs inliers to their hypothesis are found among all camera pairs (Pa, Pb)
and the hypothesis with the biggest support is selected while its inliers build
a new cluster. Outliers to the selected hypothesis are reused in the following
iteration and the RANSAC algorithm is repeated until all camera pairs are
in some cluster. Rotation of the cluster is then found as the median of the
Euler vectors and translation is found by the equation (4.22) with the least
squares.

Select_Pairs(M,a, b) selects the pairs of cameras where a is the ori-
gin take and b is the target take. Reverse(M) reverses the pairs from
the set M. Random_Pair(M) selects a random pair from the set M.
Find_Rotation((Pa,1, Pb,1)) returns the rotation calculated according to equa-
tion (4.17), Find_TS((Pa,1, Pb,1), (Pa,2, Pb,2), Ra,b,1) returns the translation
and scale calculated according to (4.22). Find_Inliers(S, Ra,b, −→o a,b, σa,b)
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...................4.3. Bringing the motions into the same coordinate system

finds inliers to the transformation (Ra,b,−→o a,b, σa,b) from the set S according
to the procedure described in this section.

Algorithm 2: Cluster bases
input :S a finite set of camera pairs

a the origin take
b the target take
r number of the iterations of RANSAC

output : C a finite set of finite sets (clusters) of camera pairs
S ← Select_Pairs(M,a,b);
C ← ∅;
while |S| > 1 do
Ibest = ∅;
for i← 1 to r do

(Pa,1, Pb,1)← Random_Pair(S);
(Pa,2, Pb,2)← Random_Pair(S);
Ra,b ← Find_Rotation((Pa,1, Pb,1));
(−→o a,b, σa,b)← Find_TS((Pa,1, Pb,1), (Pa,2, Pb,2), Ra,b,1);
I ←Find_Inliers_Basis(S, Ra,b, −→o a,b, σa,b);
if |I| > |Ibest| then
Ibest ← I;

end
end
C = C ∪ {Ibest};
if Ibest = ∅ then

break;
end

end

Inlier recognition

In order to use the RANSAC algorithm, a procedure for inlier recognition
has to be chosen. The randomly selected hypothesis consists of two camera
pairs (Pa,1, Pb,1), (Pa,2, Pb,2). Each camera can be represented according to
Section 2.2 as Pt,i = Kt,i ∗ [Rt,i −Rt,i−→c t,i]. We want to check whether a pair
(Pa,3, Pb,3) is consistent with this hypothesis. In order to be so, both rotation
and translation has to be consistent.

We can see from equation (4.17), that rotation can be checked with one
camera pair. We therefore calculate Ra,b,3 = R−1

b,3Ra,3 and then we find
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4. Proposed solution...................................
distance D between Ra,b,3 and Ra,b,1 = R−1

b,1Ra,1 using a procedure in Section
2.1.2. This distance is in radians and therefore scale-invariant and thus the
rotational consistency can be checked by comparison of the distance D with
a fixed value, which can be a parameter of the pipeline. If the rotation is
inconsistent, the camera pair is rejected. Otherwise, we follow to checking of
the translational consistency.

According to the equation (4.22) we compute the origin −→o a,b and scaling
σa,b from camera pairs (Pa,1, Pb,1) and (Pa,2, Pb,2). If the transformation
is consistent with the pair (Pa,2, Pb,2), it will transform centre −→c a,3 of the
camera Pa,3 to the centre −→c b,3 of the camera Pb,3. So we transform the
point −→c a,3 according to equation (4.9) as −→c ′a,3 = σa,bR1

−→c a,3 +−→o a,b and we
compare it with −→c b,3. Translation, however, is not scale invariant, so we use
the apical angle concept. We compute the center of mass −→m of the points
from the reconstruction of the take b which are visible by the camera Pb,3
and then we find the angle between vectors −→c ′a,3 −−→m and −→c b,3 −−→m. If the
angle is smaller than a fixed value (which can again be a parameter of the
pipeline), the pair (Pa,3, Pb,3) is accepted as an inlier, otherwise it is rejected.

Find_Centre(P ) returns the centre of the camera P , Angle(−→x , −→y ) returns
the angle between the vectors −→x ,−→y . Point_Of_Mass(P ) returns the point
of mass of the points observed by the camera P .

Algorithm 3: Find inliers basis
input :S a finite set of camera pairs

(R,−→o , σ) the hypothetical basis transformation
trot rotational threshold
ttrans translational threshold

output : I a finite set of inliers I ⊆ S
I ← ∅;
foreach (Pa,3, Pb,3) ∈ S do

R3 ← Find_Rotation((Pa,3, Pb,3));
if Dist(R, R3) ≤ trot then
−→c a,3 ← Find_Centre(Pa,3);−→c ′a,3 ← σR−→c a,3 +−→o ;
−→c b,3 ← Find_Centre(Pb,3);−→m ← Point_Of_Mass(Pb,3);
if Angle(−→c ′a,3 −−→m, −→c b,3 −−→m) ≤ ttrans then
I ← I ∪ {(Pa,3, Pb,3)}

end
end

end
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...................4.3. Bringing the motions into the same coordinate system

4.3.3 Verification of the basis transformations

We have found clusters of the camera pairs and their corresponding transfor-
mations. But we still need to group the transformations between different
coordinate systems, as we want to transform all motions to the same coor-
dinate system and we need that the transformations are either all towards
the background or all towards the object. In order to do so, we use the
verification via cycles of the transformations of length three.

We have three takes a, b, c together with their basis transformations and
the corresponding clusters of camera pairs. If a vector in the first coordinate
system is transformed to the second coordinate system, then to the third
coordinate system, and then back to the first coordinate system, the resulting
vector is equal to the original vector. This forms a constraint for coordinate
change matrices which change the coordinates in a cycle.

Ra,b - rotation between bases of takes a, b
σa,b - scale between first and second basis
−→o a,b - origin of the first basis in the second coordinate system
Rb,c - rotation between second and third basis
σb,c - scale between second and third basis
−→o b,c - origin of the second basis in the third coordinate system
Rc,a - rotation between third and first basis
σc,a - scale between third and first basis
−→o c,a - origin of the third basis in the first coordinate system

xa - arbitrary point in the first coordinate system
xb - point xa in the second coordinate system
xc - point xa in the third coordinate system

Transformations between the points:

xb = σa,bRa,bxa +−→o a,b (4.23)

xc = σb,cRb,cxb +−→o b,c (4.24)

xa = σc,aRc,axc +−→o c,a = σc,aRc,a(σb,cRb,cxb +−→o b,c) +−→o c,a
xa = σc,aRc,a(σb,cRb,c(σa,bRa,bxa +−→o a,b) +−→o b,c) +−→o c,a

xa = σc,aRc,aσb, cRb,c(σa,bRa,bxa +−→o a,b) + σc,aRc,a
−→o b,c +−→o c,a
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4. Proposed solution...................................
xa = σc,aRc,aσb,cRb,cσa,bRa,bxa + σc,aRc,aσb,cRb,c

−→o a,b + σc,aRc,a
−→o b,c +−→o c,a

(4.25)

In order for the last equation to be valid, Rc,aRb,cRa,b must be equal to
the identity matrix, σc,aσb,cσa,b must be equal to 1 and
σc,aRc,aσb,cRb,c

−→o a,b + σc,aRc,a
−→o b,c +−→o c,a must be equal to 0.

From all existing cycles of the clusters we want to select those which satisfy
this condition (the consistent cycles) and reject the other cycles. To do so,
we compute values
Rcy = Rc,aRb,cRa,b
σcy = σc,aσb,cσa,b
tcy = σc,aRc,aσb,cRb,c

−→o a,b + σc,aRc,a
−→o b,c +−→o c,a

The cycle of the transformations is then marked as consistent, if it satisfies
following conditions:

..1. Norm of the rotation Rcy (Section 2.1.1) has to be smaller than a
threshold value...2. Distance of σcy from 1 has to be smaller than another threshold.

A condition for tcy cannot be a single threshold because the translation
is not scale invariant, so apical angle is again used. For each camera in the
cluster which belongs to the reconstruction c the apical angle between the
average point of the camera m and a point m+ tcy has to be lower than yet
another threshold. All these thresholds can be parameters of the pipeline.

After the consistent cycles are found, a graph is built whose vertices are
the clusters of the camera pairs. There is an edge between the clusters if
there exists a consistent cycle which contains both clusters. This graph
splits into connected components, one of the components should contain basis
transformations towards the background, another one should contain basis
transformations towards the object.
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4.3.4 Transformation of the motions

We have verified the clusters via cycle consistency and divided them into
connected components. For each connected component we create another
graph but this time the vertices represent the takes and there is an edge
between the vertices a, b if a cluster exists in the connected component
which relates bases of reconstructions of takes a, b. The edge has a weight
of 1

Rcy
where Rcy is the rotational consistency of the most consistent cycle

among those which contain a cluster relating takes a, b. Such cluster and its
corresponding basis transformation is assigned to the edge.

To obtain transformations between all takes, it is sufficient to have a
spanning tree of the second graph and transformations between takes which
are not connected can be computed transitively. In this case, the minimum
spanning tree of the second graph is used.

We have selected the central take as the one with the highest degree in the
spanning tree of the second graph and we want to transform all computed
motions to the coordinate system of the central take. In order to do so,
we need to know how the computed rotation and translation of the object
behaves under the change of the basis.

β′ - origin basis
β - target basis
B - change of basis matrix from β′ to β, because both bases are orthonormal,
it has form of B = σR where σ is a scalar and R is a rotation matrix.−→
o′β - origin of the β′ coordinate system in the β coordinate system
X1
β′ - arbitrary 3D point from the object in the origin coordinate system

X2
β′ - new position of the point X1

β′ after moving the object to a position in
the second take; point is in the origin coordinate system
Aβ′ ,

−→
b β′ - rotation and translation of the object in the origin coordinate

system
X1
β - point X1

β′ in the target coordinate system
X2
β - point X2

β′ in the target coordinate system
Aβ ,
−→
b β - rotation and translation of the object in the target coordinate system
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Origin take Target take

X1
β′

X2
β′

XB

β′
X1
β

X2
β

XB

β

It holds true:
X2
β′ = Aβ′X1

β′ +
−→
b β′ (4.26)

X2
β = AβX

1
β +
−→
b β (4.27)

X1
β = σRX1

β′ +−→o ′β (4.28)

X2
β = σRX2

β′ +−→o ′β (4.29)

We can see that both second and fourth equations are equal to X2
β, we can

therefore write:

AβX
1
β +
−→
b β = σRX2

β′ +−→o ′β
Aβ(σRX1

β′ +−→o ′β) +
−→
b β = σR(Aβ′X1

β′ +
−→
b β′) +−→o ′β

Aβ(σR)X1
β′ +Aβ

−→o ′β +
−→
b β = σRAβ′X1

β′ + σR
−→
b β′ +−→o ′β

The equation must be valid for every X1
β′ , which means:

Aβ(σR) = σRAβ′ (4.30)

Aβ
−→o ′β +

−→
b β = σR

−→
b β′ +−→o ′β (4.31)

We can express relative rotation in the target basis from the first equation as:

Aβ = RAβ′R−1 (4.32)

We can see that transformed relative rotation can be obtained only with
relative rotation between the coordinate systems, we do not need to find the
translation nor the scale between the coordinate systems.
We can express relative translation in the target basis from the second equation
as: −→

b β = σR
−→
b β′ +−→o ′β −RAβ′R−1−→o ′β (4.33)
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If there is a direct connection between the origin and the central takes in
the spanning tree, we can directly transform the translation and the rotation
according to the equations (4.32), (4.33) using the transformation assigned to
the edge connecting the takes. If there is no such connection, we can follow
the path from the origin take to the central take in the spanning tree and
transform the rotation and the translation sequentially.

(a) (b)

(c) (d)

Figure 4.5: Euler vectors (a), (b) and translations (c), (d) calculated from a
dataset consisting of 8 takes. Images (a), (c) depict the situation before the
transformation, images (b), (d) depict the situation after the transformation.
The object was always rotated around the vertical axis which is observable in
(b).

4.3.5 Zero motions removing

Due to the multiple registration of a camera towards the points (Figure 4.1)
of the same object, zero motions arise among the calculated motions of the
object which is observable in Figures 4.7(b), 4.7(d). However these motions
can make a problem in a following cyclic verification of the motions (Section
4.5.1), so we need to dispose of them. In order to do that we use spectral
clustering to discover clusters of the zero motions.
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4. Proposed solution...................................
We use multi-view spectral clustering [30], [23] by the kernel addition to
get clusters of points which are distinguished by both rotation and translation.
The clustering using the RANSAC would not be sufficient because in some
cases the cluster of the zero motions appears to have too high extent. Figure
4.7(b) The rotational distance between two motions is computed according to
Section 2.1.2 and the translational distance between the points is computed
using the Euclidean distance between the translations. The distances D are
converted into affinities A using a transformation A = 1

D . The normalized
Laplacian [30] is used in order to eliminate the scaling of the translations. The
final kernel is computed as a sum of both Laplacians. Because the number of
all motions is too high to perform eigendecomposition effectively, the motions
are divided according to the origin and final takes of the motions. The number
of clusters k is equal to the number of eigenvalues which are lower or equal
to 1 while the maximum eigenvalue is 2 because of the normalization. The
k-means algorithm is used to obtain the clusters from the first k eigenvectors.

(a) (b)

(c) (d)

Figure 4.6: Examples of results of the spectral clustering of the clusters. Only
rotations are depicted.

All clusters are then tested on the distance from zero. For rotation, the norm
(Section 2.1.1) of the median Euler vector among the motions in the cluster is
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used and the median translation has to be lower than a fixed fraction of the
median distance from cameras from the central take to the points which they
observe. If both rotation and translation are near enough to zero, the whole
cluster is removed. According to Figure 4.7 this procedure is able to remove
the cluster of the zero motions. If the zero cluster is split like in Figure 4.6(b),
both zero clusters are removed.

(a) (b)

(c) (d)

Figure 4.7: The Euler vectors (a), (b) and the translations (c), (d) of the object
motion. Images (a), (c) depict the situation before the removing, images (b), (d)
depict the situation after the removing.

4.4 Motion clustering

We have transformed the motions into the same coordinate system and re-
moved the zero motions. We can, therefore, follow to clustering the motions.
The main purpose of the clustering is that although the zero motions have
been eliminated, there are motions, which have been computed from pairs
where the first camera has been registered towards the background points
and the second one has been registered towards the object points, as well
as motions which have been computed from pairs where the sequential PnP
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performed in the reversed order and pairs where one or two cameras have
been registered wrongly. We want to distinguish these groups of cameras
from each other in order to distinguish the points which the cameras observe.

Similarly to the clustering of the basis transformations, we use RANSAC
but unlike that, one camera pair is sufficient to compute the motion according
to equations (4.6), (4.8), so this time the hypothesis consists of one motion
only. Because of a small total number of hypotheses, they do not have to be
drawn randomly but all hypotheses can be checked.

The motions are divided into subsets Sa,b according to their original and
target takes a, b, a < b and they are clustered separately. For each motion
A1,
−→
b 1 in the subset Sa,b, its support is computed as the number of inliers

to this motion from the set Sa,b. The motion with the highest support is
selected and together with its inliers it builds a new cluster. Outliers to the
motion are reused in the next iteration and the procedure is repeated until
all motions are in some track.

The clusters are then represented by a single Euler vector and a single
translation vector. Both are medians of the motions in the cluster.
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Algorithm 4: Cluster motions
input :S a finite set of transformed camera pairs

a the origin take
b the target take

output : C a finite set of finite sets (clusters) of camera pairs
S ← Select_Pairs(M,a,b);
C ← ∅;
while |S| > 0 do
Ibest = ∅;
foreach (Pa,1, Pb,1) ∈ S do

Ra,b ← Find_Rotation((Pa,1, Pb,1));
−→
t a,b ← Find_Translation((Pa,1, Pb,1));
I ←Find_Inliers_Motions(S, Ra,b,

−→
t a,b);

if |I| > |Ibest| then
Ibest ← I;

end
end
C = C ∪ {Ibest};
if Ibest = ∅ then

break;
end

end

4.4.1 Inlier recognition

As well as at the clustering of the transformations of the coordinate systems,
a procedure for inlier recognition has to be chosen. The hypothesis consists of
one motion (A1, b1) which has been computed from a camera pair (P1,1, P2,1).
We want to check whether a motion (A2, b2) is consistent with this hypothesis.
In order to be so, both the rotation A and the translation b have to be
consistent.

We find distance Dr between the rotations A1 and A2 using a procedure
in Section 2.1.2. This distance is in radians and therefore scale-invariant
and thus the rotational consistency can be checked by comparison of the
distance Dr with a fixed value, which can be a parameter of the pipeline. If
the rotation is inconsistent, the camera pair is rejected. Otherwise, we follow
to the checking of the translational consistency.
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In order to check the translation, we use the apical angle once more. We

find distance Dt between the translations t1 and t2 as the Euclidean distance.
If the distance Dt is smaller than a fixed fraction of the distance from the
center of the camera P1,1 to the median −→c of the points which are observer
by this camera. Both points were transformed to the coordinate system of
the central take before the checking of the translation.

4.5 Motion verification

We have found clusters of the motions between the pairs of takes. We assume
that all computed motions which belong to the same cluster have arisen from
the same physical motion, which can be either a motion of the object on the
static background if the first camera was registered towards the points from
the background and the second one towards the points from the object, or it
can be the inverse motion if the cameras were registered in the reversed order
(the motion would correspond to the motion of the background towards the
static object).

In order to detect the points which belong to the background and to the
object, we need to group the clusters of the motions throughout all pairs of
takes. We need the motions from the camera pairs where the first camera has
been registered towards the background to be in one group and the reversed
motions to be in the reversed group. The erroneous motions should belong
to none of these groups.

Like at the verification of the basis transformations we use the verifica-
tion via cycles of the transformations. We have discovered that unlike the
verification of the basis transformations, the verification via 3-cycles has
not shown to be sufficient in this case because between some takes no cam-
eras could be registered towards the object points, especially if the angle
of the rotation of the object between these takes is too large and so there
are not enough points from the object which are observed by cameras from
both takes. This was not a problem at the verification of the basis trans-
formations as the whole operation could be performed only with cameras
registered towards the background and with the cameras from the anchor take.
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4.5.1 Condition for consistent cycles

If we move the object from the original position in the first take to a position
of the second take, then from a position in the second take to a position in the
third take and then from the position in the third take back to the original
position in the first take, a position of an arbitrary point on the object will
be equal to its original position. From this a condition for cycles of length 3
can be derived.
X1 - Original position of a point.
X2 - Point X1 after its movement from the first to the second take
X3 - Point X2 after its movement from the second to the third take
A12 - Rotation from the first to the second take
b12 - Translation from the first to the second take
A23 - Rotation from the second to the third take
b23 - Translation from the second to the third take
A31 - Rotation from the third to the first take
b31 - Translation from the third to the first take
We assume that all points, rotations and translations are in the same coordi-
nate system. Relationships between the points are as follows:

X2 = A12X1 + b12
X3 = A23X2 + b23
X1 = A31X3 + b31

It can therefore be written

X1 = A31(A23X2 + b23) + b31 = A31(A23(A12X1 + b12) + b23) + b31 =
A31A23(A12X1+b12)+A31b23+b31 = A31A23A12X1+A31A23b12+A31b23+b31
From this equation the constraint for consistency of the cycles of the length
3 can be derived as:

A31A23A12 = I (4.34)

A31A23b12 +A31b23 + b31 = 0 (4.35)

If the length of the cycle is n, we have a sequence of takes {ti}n+1
i=1 where

tn+1 = t1 in order for the takes to form a cycle. The corresponding sequence
of translations and rotations is {Ati,ti+1 , bti,ti+1}ni=1, where Aa,b is a rotation
from take a to take b and ba,b is a translation from take a to take b. The
point Xt1 is gradually transformed as follows:

Xti+1 = Ati,ti+1Xti + bti,ti+1 (4.36)
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Because after the object is moved back to the first take, its position has to
be equal to the original position, the following has to hold true:

Xtn+1 = Xt1 (4.37)

This equation is used as a translational condition for cycle consistency. A
point is transformed gradually by all motions in the cycle and the final position
Xtn+1 has to be near enough to the original one Xt1 . Before checking this
condition, an easier rotational condition stemming from the same equation is
applied:

Ati,ti+1 · ... ·At2,t3 ·At1,t2 = I (4.38)

This product of matrices is obtained and converted into an Euler vector. The
norm of this vector has to be small enough for the cycle to be consistent. If
it is so, a condition from equation (4.37) is used to accept or discard the cycle.

This is the place where the occurrence of the zero motions would be the
most problematic. Not only would an arbitrary sequence of zero motions be
accepted as a consistent cycle but a sequence of one forward motion (first
camera registered towards the background points, second camera towards
the object points), one backward motion (cameras registered in the reversed
order) and one zero motion would be accepted, too. This would group to-
gether the forward and the backward motions, which is an unacceptable result.

4.5.2 Chordal completion

We need to verify cycles of the motions whose length can be longer than
three. Trying all possible cycles would however not be a task with poly-
nomial complexity. We, therefore, use an algorithm based on the chordal
completion of a graph to discover the chordless cycles which form the cycle
basis of the graph in order to check their consistency. If two consistent cycles
from the cycle basis share an edge, the sum of these cycles is consistent, as well.

A graph is built where the vertices represent the clusters of the motions.
Each of the clusters has assigned two takes, the initial one and the final
one. There is an edge between those clusters which share exactly one of
the takes and therefore the motions they represent can be combined into
one compound motion. These edges are the original edges and they do not
have any predecessor. The graph without any added edges is the original
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graph. We want to find all chordless cycles in this original graph. In or-
der to do that we fill these cycles with additional chords until they are fully
connected and then we can discover the original cycle and check its consistency.

1, 2 2, 3

3, 4

4, 55, 6

1, 6 2, 6

Figure 4.8: An example of a graph of the clusters. The labels of the vertices
are the numbers of the initial and the final takes of the clusters they represent.
The valid cycles are ((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6)), ((1, 2), (2, 6), (1, 6)).
The invalid cycles are ((1, 2), (2, 3), (2, 6)), ((1, 6), (2, 6), (5, 6))

A triplet of vertices can be a subset of a cycle if it does not contain multiple
vertices corresponding to the same pair of takes, as in the cyclic transforma-
tion each take can be visited only once except for the first one which is the
last one as well. The triplets satisfying this condition are inserted in a queue.
Then until the queue is empty or no new chord can be added and no cycle
can be verified remove the triplets from the queue.

Once a triplet is removed, the count of the existing edges between the
vertices in the triplet is detected. The only possible values are 0, 1, 2, 3. If
the count is 0 or 1, the triplet is returned back to the queue, as nothing can
be done with it yet. If the count is 2, the missing chord is added to the graph
and the triplet is assigned to the chord as its predecessor. The two other
edges are assigned to the triplet as its predecessors. If the count is 3, the
original cycle can be discovered and verified, all three edges are predecessors
of the triplet.

The procedure is not optimal in the terms of number of operations as some
cycles can be discovered more times, as the chordal completion algorithm has
a greedy nature and is not optimal.

Add_Edges(V , E) adds edges from E to a graph represented by an adjacency
matrix V , Valid(E) returns true if edges from a set E can build a valid cycle.
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1, 2 2, 3
3, 4

4, 5

5, 66, 7

1, 7

Figure 4.9: An example of a cycle after the chordal completion. Red edges are
the chords. Red arrows lead from the chord to the 3-cycle which is its predecessor.
Blue arrows lead from the 3-cycle to the edges which are its predecessors.

Check_3((Ri, ti), (Rj , tj), (Rk, tk)) checks the cycle of length 3 according
to equations (4.34), (4.35). Check_N(C) checks the cycle C of length N
according to equations (4.37), (4.38).

Algorithm 5: Init graph
input :n number of the motion clusters

{ai, bi}ni=1 a sequence of takes of the clusters, ai < bi
output :G adjacency matrix of the initial graph V ∈Mn,n

G← 0n,n;
for i← 1 to n do

for j ← i+ 1 to n do
if ai = aj and bi = bj then

Gi,j ← −2 ;
Gj,i ← −2 ;

else if ai = aj or ai = bj or bi = aj or bi = bj then
Gi,j ← 0 ;
Gj,i ← 0 ;

else
Gi,j ← −1 ;
Gj,i ← −1 ;
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Algorithm 6: Chordal completion
input :n number of the motion clusters

{Ri, ti}ni=1 a sequence of motions belonging to the clusters
{ai, bi}ni=1 a sequence of takes of the clusters, ai < bi

output :V adjacency matrix of the verified graph V ∈Mn,n

V ← 0n,n;
G← Init_Graph(n, {ai, bi}ni=1);
pos← 1;
T ← ();
Q← empty queue;
for i← 1 do

for j ← i+ 1 do
for k ← j + 1 do

if Gi,j 6= −2 and Gj,k 6= −2 and Gi,k 6= −2 then
Tpos ← (i, j, k);
Q.enqueue(pos);
pos← pos+ 1;

end
end

end
end
while Q not empty do

pos← Q.dequeue;
(i, j, k)← Tpos if Gi,j ≥ 0 and Gj,k ≥ 0 and Gi,k ≥ 0 then
E ← Check_Cycle((i, j, k), G, {Ri, ti}ni=1, T );
V ← Add_Edges(V , E);

else if Gi,j ≥ 0 and Gj,k ≥ 0 then
Gi,k ← pos;

else if Gi,j ≥ 0 and Gi,k ≥ 0 then
Gj,k ← pos;

else if Gj,k ≥ 0 and Gi,k ≥ 0 then
Gi,j ← pos;

else
Q.enqueue(pos);

end
end

Cycle discovering

If the 3-cycle consists only of original edges, it can be directly checked on
the consistency. Otherwise, the original edges are discovered via DFS. The
edges from the cycle are inserted into the stack. Once an edge is removed
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from the stack, it is controlled whether it is an original edge or an additional
chord. If it is an original edge, it is saved to a set of edges. If it is an
additional chord, it has a predecessor cycle. The other two edges from this
predecessor cycle are also inserted to the stack. The search finishes when the
stack is empty and the set of edges contains all edges which belong to the cycle.

Algorithm 7: Check cycles
input : (i, j, k) ids of the clusters in the cycle

G adjacency matrix of a graph
{Ri, ti}ni=1 a sequence of motions of the clusters
T a sequence of triplets of clusters

output : E set of the verified edges
E ← ∅;
if Gi,j +Gj,k +Gi,k = 0 then

if Check_3((Ri, ti), (Rj , tj), (Rk, tk)) then
E ← { (i, j), (j, k), (i, k) };

else
Q← empty queue;
Q.enqueue((i, j));
Q.enqueue((j, k));
Q.enqueue((i, k));
while Q not empty do

(i, j)← Q.dequeue;
if Gi,j = 0 then
E ← E ∪ {(i, j)};

else
pred← Gi,j ;
(a, b, c)← Tpred;
if i 6= a or j 6= b then
E ← E ∪ {(a, b)};

if i 6= a or j 6= c then
E ← E ∪ {(a, c)};

if i 6= b or j 6= c then
E ← E ∪ {(b, c)};

if not Valid(E) then
E ← ∅;

else
C ← Build_Cycle(E , {Ri, ti}ni=1);
if not Check_N(C) then
E ← ∅;
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These edges have to be tested whether they can build a valid cycle and
eventually sorted to build one. A valid cycle is a sequence of motions
{Ati,ti+1 , bti,ti+1}ni=1 where t1 = ti+1 and no other takes in the sequence
{ti}n+1

i=1 repeat. The reason for discarding the cycles with repeating takes
is that a sequence of forward motions (Ax,y, bx,y), (Ay,z, by,z) followed by a
sequence of backward motions (A′z,y, b′z,y), (A′y,x, b′y,x) could be a discovered
cycle. This cycle would pass the condition from equation (4.37), but if it
did, the forward and backward motions would be connected, which should
not happen. The cycle is however not valid, as the take y repeats in it. An
example of a cycle which is not valid is the cycle (1, 2), (2, 3), (2, 6) in Figure
4.8.

We have a set of edges. Each edge has two adjacent vertices, an initial
one and a final one. The task is to build a valid cycle from these edges. At
first, an arbitrary edge is selected and added to the sequence. Among the
remaining edges, such edge is selected that one of its adjacent vertices is
the final edge of the sequence. If the vertex is the final vertex of the edge,
the edge has to be reversed and the motions belonging to the vertices are
reversed, too. After all the edges have been inserted into the sequence, we
test whether it is a valid cycle and if so, the conditions (4.38), (4.37) are used
to check the consistency of the cycle. This time however the thresholds are
not fixed but they depend linearly on the length of the cycle because longer
cycles have higher uncertainty.

Algorithm 8: Build cycle
input : E set of edges

{Ri, ti}ni=1 a sequence of motions of the clusters
output :C sequence of motions which builds a valid cycle
C ← ();
last← −1;
pos← 1;
while E 6= ∅ do

foreach (a, b) ∈ E do
if last = −1 or last = a then

Cpos ← (Ra, ta);
pos← pos+ 1;
last← b;
E ← E \ (a, b);

else if last = b then
Cpos ← (R−1

a ,−R−1
a ta) pos← pos+ 1;

last← a;
E ← E \ (a, b);
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4.5.3 Clustering of the motion clusters

A subgraph of the original graph is created only with those edges which
belong to some consistent cycle. This results from the fact that if the pairs
of the cameras in all clusters have been registered in the same order, the
motions assigned to the clusters should build a consistent cycle. Potential
clusters of clusters correspond to each connected component of the graph.
There is however a possibility that a cycle is verified as consistent, although
the motions belong to different objects. This can happen for example due to
erroneous motions.

If the connected component contains clusters (Ai,j , bi,j), (A′i,j , b′i,j) of mo-
tions whose initial and final takes i, j are both equal and the distance of the
clusters is too high, the component is considered to be inconsistent. If it
contains an inconsistent 3-cycle, it is inconsistent, too. The distance between
the clusters is detected by the same procedure which is applied for inlier
recognition at the clustering of the motions but the thresholds are higher.
An inconsistent component is split into components which are consistent via
multi-view spectral clustering. The affinities in the first Laplacian are calcu-
lated from the rotational consistency condition (4.38) and the affinities in the
second Laplacian are calculated from the translational consistency condition
(4.37). The final kernel is the sum of these Laplacians. The spectral clustering
is performed without normalization because it gives a better splitting. The
initial number of clusters is 2 and it is incremented until the clustering gives
only consistent clusters. Among the found clusters of clusters, the one is
selected, which contains the highest number of camera pairs. The cameras in
the clusters in the selected cluster of clusters are used to distinguish the 3D
points.

4.6 Track building and segmentation

We know which cameras observe the points belonging to the background and
which observe the points belonging to the object. Before we classify these
points, tracks are built from the points so the points can be classified in all
reconstructions, not just in those reconstructions where they are directly
observed by a camera from the cluster. A track contains points from different
reconstructions which have been reconstructed from the same observations
and therefore represent the same real point.
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4.6.1 Track building

A graph is built whose vertices are the 3D points from all reconstructions.
Two 3D points X,Y from different reconstructions a, b are connected by an
edge if there is a 2D feature in some image, which observes the 3D point X in
the reconstruction a and the 3D point Y in the reconstruction b. The weight
of this edge is equal to the number of such 2D features. Each connected
component of the graph is a tentative track. It is however possible due to
mismatches, that points reconstructed from different real points are connected
in the graph and therefore should occur in the same track.

A track is inconsistent if it contains multiple 3D points from the same
reconstruction. If a track is inconsistent, it is split via the spectral clustering.
The Laplacian of the graph is used directly without changes. The initial
number of clusters is 2 and it is incremented until the k-means clustering of
the eigenvectors of the Laplacian gives only consistent tracks.

4.6.2 Track segmentation

The motions in the clusters verified according to equations (4.37), (4.38) have
been calculated from two cameras. The first camera was registered towards
the background points and the second one towards the object points. After
the cameras were registered, no further points were triangulated. Therefore
for each camera pair (Pa, Pb) in the cluster the points observed by the first
camera Pa should belong to the background and the points observed by the
second camera Pb should belong to the object.

The cameras which are on the first position some pair in the cluster build
the group Ga, the cameras on the second position build the group Gb. For
each track, a score is introduced with 0 as the initial value. If the track
is observed by a camera from the group Ga, its score is increased. If the
track is observed by a camera from the group Gb, its score is decreased. The
tracks with a positive score are assigned to the background, the tracks with a
negative score are assigned to the object and the tracks whose score is zero
are ignored.
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(a)

(b)

(c)

Figure 4.10: Reconstructions of a single take after the segmentation of the
points. Points which do not belong to background nor to the object are not
shown.
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4.7 Merging of the reconstructions

4.7.1 Order of the merging

The number of common points from the object between the reconstructions of
takes i, j is noi,j , the number of common points from the background between
the reconstructions i, j is nbi,j . A graph is built whose vertices are the takes.
The weight of the edge between the vertices i, j is wi,j = min(noi,j , nbi,j). If
the weight should be zero, the edge does not exist. The first two takes in the
order are the takes a, b which are adjacent to the edge with the highest weight.
One of these takes is selected as the reference take. These two vertices are
collapsed afterward. Weight of the edges between this collapsed vertex {a, b}
and an another vertex c is w{a,b},c = wa,c + wb,c.

The take which is connected to the collapsed vertex with the edge with the
highest weight is selected. This take is added as the next one in the order
and it is merged with the collapsed vertex in the same way as the vertex was
originally collapsed. This is repeated until all vertices are collapsed or there
is no vertex connected to the collapsed vertex.

The order is determined greedily, however it is not necessary for each
reconstruction to have common points with the reconstruction of the reference
take.

4.7.2 Merging of the points

The final coordinate system is the system of the reference take r. The other
reconstructions are transformed to this system in the given order. For each
take two transformations are necessary, one for the object points and another
one for the background points. TOr,s is a set of all tracks from the object which
contain points in both the reference take and in the take s which is to be
transformed. POs is a sequence of points from the take s which are contained
in a track from TOr,s. {psi , pri }ni=1 is a sequence of pairs of corresponding points
from Tr,s. The first point is from the take s, the second point is from the take
r. The task is to find the scale, rotation and translation which transforms
each psi to its corresponding pri as pri = σRpsi + −→t . The transformation is
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found using the least squares algorithm [31].

The centroids Cs of the points from {psi}ni=1 and Cr of the points from
{pri }ni=1 are found and sequences {p′is}ni=1, {p′ir}ni=1 are obtained by subtracting
the centroids from the points from the sequences. For each i the scale σi is
obtained as:

σi = ||p
′
i
r||

||p′is||
(4.39)

The estimated scale transformation σs,r from the take s to the reference take
is the median from the sequence {σi}ni=1.

The sequence {p′′i s}ni=1 is obtained from the sequence {p′is}ni=1 by multi-
plication of the vectors p′i by the scale σs,r. Ps is a matrix whose rows are
the vectors from the sequence {p′′i s}ni=1, Pr is a matrix whose rows are the
vectors from the sequence {p′ir}ni=1. The task is to find a rotation R which
transforms the rows from Ps to the rows from Pr such that the square of the
errors

∑n
i=1||Rp′′i s − p′ir||2 is minimized. The least squares estimate of such

matrix is obtained by:
H = P Ts PR (4.40)

The resulting matrix H however may not be a rotation. In order to get the
nearest rotation, SVD is used to make the eigenvalues equal to 1.

USV T = H (4.41)

ROs,r = UV T (4.42)

For each i the translation −→o i is obtained as:

−→o i = −→p ri − σs,rROs,r−→p si (4.43)

The estimated translation −→o Os,r is the median of the vectors {−→o i}ni=1.

The transformation of the background σs,r, RBs,r,−→o Bs,r is computed analo-
gously from the set TBr,s of all tracks from the object which contain points
in both the reference take and in the take s. All points from the take s are
transformed according to the estimated transformations and they are added
to the reference take r. The points from the following takes are transformed
using the references to the original points as well as to the points which have
been added to the reference take during the merging of one of the previous
takes.
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Figure 4.11: Points merged from 8 reconstructions of takes.

4.7.3 Calculation of the object motion from the
transformations

s the take from whose coordinate system we transform

r the reference take to which we transform

(σs,r, RBs,r,−→o Bs,r) transformation of points of the background from the take s
to the reference take r

(σs,r, ROs,r,−→o Os,r) transformation of points of the object from the take s to
the reference take r

Xs
O a point from the reconstruction s from the object

Xs
B a point from the reconstruction s from the background which is on

the same position as the point Xs
O: Xs

O = Xs
B

Xr
O the point Xs

O transformed by (σs,r, ROs,r,−→o Os,r)

Xr
B the point Xs

B transformed by (σs,r, RBs,r,−→o Bs,r)

(Ar,s,
−→
b r,s) motion of the object from the take r to the take s

(As,r,
−→
b s,r) motion of the object from the take s to the take r
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Take s Reference take r

Xs
O = Xs

B = Xs
Xr
B

Xr
O

The points Xs
O, Xs

B are on the same position, they can be replaced by a
single point Xs, therefore we can write:

Xr
B = σs,rR

B
s,rX

s +−→o Bs,r (4.44)

Xr
O = σs,rR

O
s,rX

s +−→o Os,r (4.45)

If the object was transformed from the position in the take r to the position
in the take s, it would be on the same position where Xr

B is.

Xr
B = Ar,sX

r
O +
−→
b r,s (4.46)

Ar,s(σs,rROs,rX +−→o Os,r) +
−→
b r,s = σs,rR

B
s,rX +−→o Bs,r (4.47)

This equation has to hold true for all X, therefore also for the zero vector,
therefore:

Ar,s
−→o Os,r +

−→
b r,s = −→o Bs,r (4.48)

Ar,sσs,rR
O
s,r = σs,rR

B
s,r (4.49)

As the scaling σs,r is the same for the transformation of the object points
and the background points, Ar,s can be found from equation (4.49) as:

Ar,s = RBs,r(ROs,r)−1 (4.50)
−→
b r,s can be found from equations (4.48) and (4.50) as:

−→
b r,s = −→o Bs,r −RBs,r(ROs,r)−1−→o Os,r (4.51)

The inverse motion (As,r,
−→
b s,r) transforms each point back to the original

position:
Y = As,r(Ar,sY +

−→
b r,s) +

−→
b s,r (4.52)

This has to hold for every Y , so:

0 = As,r
−→
b r,s) +

−→
b s,r (4.53)
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I = As,rAr,s (4.54)

From equations (4.53), (4.54) the inverse motion (As,r,
−→
bs,r) can be found as:

As,r = A−1
r,s = ROs,r(RBs,r)−1 (4.55)

−→
b s,r = −As,r

−→
b r,s = −ROs,r(RBs,r)−1(−→o Bs,r −RBs,r(ROs,r)−1−→o Os,r) (4.56)
−→
b s,r = −→o Os,r −ROs,r(RBs,r)−1−→o Bs,r (4.57)

4.7.4 Merging of the cameras

Ps a camera in the reconstruction of the take s

PBr the camera after the transformation to the reference take towards the
background points

POr the camera after the transformation to the reference take towards the
object points

I image from which the camera Ps arises

t take from which the camera Ps and therefore also the image I arises

s the reconstruction onto which the camera P has been registered

d descent of the camera P ; if s = t, the camera is in the anchor take, so
d = A, otherwise the camera has been registered using the sequential
PnP. If it was registered towards the background, then d = B, if it
was registered towards the background, then d = O

Rs rotation of the camera Ps in the original position

−→c s centre of the camera Ps in the original position

RBr rotation of the camera PBr in the coordinate system of the reference
take r towards the background points

−→c Br centre of the camera PBr in the coordinate system of the reference take
r towards the background points

ROr rotation of the camera POr in the coordinate system of the reference
take r towards the object points

−→c Or centre of the camera POr in the coordinate system of the reference take
r towards the object points
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At first, the cameras are transformed to the reference take r to the position

towards the background. The procedure of the transformation of the camera
Ps to PBr however differs depending on t, s and o.

s = r; d ∈ {A, B}

The camera is already in the desired position, no transformation is necessary.

s 6= r; d ∈ {A, B}

The camera is in another coordinate system.

Origin take s Reference take r

XO

Ps

XB

PBr

XO

XB

The transformation to the reference take is performed according to the
equations (4.17), (4.18) as:

RBr = Rs(RBs,r)−1 (4.58)

RBr
−→c Br = RBr

−→o Bs,r + σs,rRs
−→c s (4.59)

−→c Br = −→o Bs,r + σs,r(RBr )−1Rs
−→c s (4.60)

The transformation (σs,r, RBs,r,−→o Bs,r) transforms the points from the back-
ground in the coordinate system s to the points in the reference take r. The
camera in the transformed pose (RBr ,−→c Br ) therefore observes the points from
the background in the reference take, which is the desired result.
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s 6= r; o = O; t = r

The camera comes from the reference take r but it has been registered onto
another reconstruction towards the object points.

Origin take s Reference take r = t

Ps

XO

XB

XO

POr = PBr

XB

The pose of the camera POr observing the object points in the reference take
transformed by (σs,r, ROs,r,−→c Os,r) can be computed according to the equations
(4.17), (4.18):

ROr = Rs(ROs,r)−1 (4.61)

ROr
−→c Or = ROr

−→o Os,r + σs,rRs
−→c s (4.62)

−→c Or = −→o Os,r + σs,r(ROr )−1Rs
−→c s (4.63)

The pose of the transformed camera is towards the object points. But because
the camera arises from the reference take, the pose towards the object and
the background in the reference take is the same, so RBr = ROr ,

−→c Or = −→c Br .

s = r; o = O; t 6= r

The camera is already in the target coordinate system, but it registered
towards the object. It has to be moved to the position where it would observe
the background points.

53 ctuthesis t1606152353



4. Proposed solution...................................
Take t Reference take r = origin s

Pt

Xt
O

Xt
B

Xr
O

PBr

Ps = POr

Xs
O

XB

The camera Ps observes a point X on the position Xr
O where it is in the

reference take. If the camera was registered towards the background, it would
observe the point on its original position Xs

O.

Xs
O = Ar,tX

r
O +
−→
b r,t (4.64)

Where Ar,t,
−→
b r,t are calculated according to equations (4.55), (4.57). Rotation

and centre of the camera registered towards the background points can be
found according to equations (4.6), (4.7) as:

RBr = RsA
−1
r,t = RsAt,r (4.65)

RBr
−→c Br = RBr

−→
b r,t +Rs

−→c s (4.66)
−→c Br =

−→
b r,t + (RBr )−1Rs

−→c s (4.67)

s 6= r; o = O; t 6= r

The camera does not come from the reference take, so the transformation
(σs,r, ROs,r,−→c Os,r) does not bring the desired result. This case can however be
solved as a combination of the two previous cases.

Take t Origin take s Reference take r

Pt

Xt
O

Xt
B

Xs
O

Ps

Xs
B

Xr
O

PBr

POr

Xr
B

ctuthesis t1606152353 54



............................. 4.7. Merging of the reconstructions

If the camera Ps is transformed with (σs,r, ROs,r,−→c Os,r) according to equations
(4.61), (4.63) to the reference take r, the transformed camera POr observes
the object points of the reference take on the same features where the original
camera Ps observed the object points in the take s.

ROr = Rs(ROs,r)−1 (4.68)

−→c Or = −→o Os,r + σs,r(ROr )−1Rs
−→c s (4.69)

This converts the problem to the previous one where the task is to transform
the camera POr observing the object to the camera PBr which observes the
background. This can be done according to the equations (4.65), (4.67) where
Ar,t,

−→
b r,t are calculated according to equations (4.55), (4.57):

RBr = ROr A
−1
r,t = ROr At,r (4.70)

−→c Br =
−→
b r,t + (RBr )−1Rs

−→c s (4.71)

Camera averaging

After all the cameras are transformed to the reference take r to the pose
towards the points from the background, all cameras which arise from the
same image I should have the same pose.

AI is a set of all transformed cameras PBr which arise from the image I.
RI is rotation calculated as the median of the Euler vectors which represent
the rotations RBr of the cameras from AI , −→c I is camera center calculated
as the median of the centers −→c Br of the cameras from AI . All cameras from
AI can therefore be merged to one camera PI with pose (RI ,−→c I) and whose
observations is a union of all observations from all cameras from AI

If the take t from which the image I arises is the reference take r, the
camera PI observes points from both the background and the object, therefore
the merging is finished. But if t 6= r, the camera PI observes only the points
from the background. In this case the camera needs to be split into two
cameras PBI , POI , where PBI observes the background and POI observes the
object.
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The pose of the camera PBI is the same as the pose of the camera PI . The

pose of the camera POI is the pose towards the object. It can therefore be
calculated from the pose of the camera towards the background PI as the
inverse of the equations (4.65), (4.67) which compute the pose towards the
background from the pose towards the object:

ROI = RBI Ar,t (4.72)

ROI
−→c OI = RBI

−→c BI −RBI
−→
b r,t (4.73)

−→c OI = A−1
r,t (−→c BI −

−→
b r,t) (4.74)

The observations of the camera PI are split in such way, that the camera
PBI observes the points which belong to the background and the camera POI
observes the points which belong to the object.

4.8 Bundle adjustment

The merged reconstruction is used as an input for the final bundle adjustment
so it can be further improved. The bundle adjustment is not a standard
one which is used in the single body pipelines, because there are specific
constraints between some cameras.

k number of takes from which the reconstruction has been merged

r the reference take

{Ii}ni=1 sequence of the images from which the reconstruction has been created

ti take from which the image Ii arises

{XB
i }mi=1 sequence of the 3D points

di descent of the 3D point; di = O if the point is from the object and di = B
if the point is from the background

(Ar,t,
−→
b r,t) motion of the object from its position in the take r to its position

in the take t

PBi camera which arises from the image Ii and observes the points from the
background

(RBi ,
−→c Bi ) pose of the camera PBi
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POi camera which arises from the image Ii and observes the points from the
object; if ti = r, then POi = PBi , otherwise must according to equations
(4.72), (4.74) hold true ROi = RBi Ar,ti ,

−→c Oi = A−1
r,ti(
−→c Bi −

−→
b r,ti)

{Oi}li=1 sequence of the observations; an observation Oi is a triplet (xi, pi,
−→
f i)

where xi is index of the 3D point which is observed, pi is index of the
camera which observes the point and

−→
f i is a 2D feature onto which the

point is projected;

Parameters of the BA are all 3D points {Xi}mi=1, the poses of the cameras
{PBi }ni=1 which observe the background points and the motions
{(Ar,t,

−→
b r,t)}kt=1,t6=r. Poses of the cameras {POi }ni=1 are not parameters as

they can be computed from the cameras PBi and from the motions (Ar,t,
−→
b r,t)

and because we want to ensure that the motion of the object from the take t
to r computed using equations (4.6), (4.8) is the same if computed from any
camera pair arising from the take t.

The task is to find such parameters which minimize the sum of squares of
the reprojection errors over all observations

argmin(
d∑
i=1
||
−→
f i − qi||

2
) (4.75)

Where qi is the projection of the point Xxi onto the camera PBpi
if dxi = B

and the projection of the point Xxi onto the camera POpi
if dxi = O. The

projections are found according to Section 2.2.

Two different iterative approaches to the BA have been tried. The first
one is the classical gradient descent which improves all parameters in each
iteration. The other one is alternating minimization, where in the first
iteration the cameras are fixed and the points are improved and in the next
one the points are fixed and the cameras are improved; this is repeated until
convergence. These approaches are evaluated in Section 5.4.
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4.9 Filtering of the reconstruction

This is an arbitrary step, which may improve the quality of the reconstruction
in the case of a high number of misclassified points in the reconstruction.

If a point is misclassified (arises from the background but is assigned to
the object or vice versa), it will probably be observed by some of the cameras
with a high reprojection error. This method requires a threshold t and the
points, whose reprojection error after the projection onto an arbitrary camera
is greater than t, are removed from the reconstruction.

This method works correctly only if the cameras are estimated correctly,
otherwise it would remove the correctly classified points, as well, which would
make the quality of the reconstruction worse. From the same reason a high
threshold t is used, which still removes the most of the misclassified points.
The filtering may be performed before or after the BA.
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Chapter 5

Experiments

5.1 Overview of used objects and backgrounds

In order to prove that our method works well, we have selected several objects
and we have created a dataset of images for each of the objects. We have
selected appropriate backgrounds for the objects according to [29]. Each
dataset is divided into 4 to 8 takes, each of which depicts a static configuration
of the object towards the background, as it is described in 1.3.

Object Background Takes Images Special Figure
Daliborka Nissan GTR 8 338 NONE 5.1(a)
Lycan Nissan GTR 8 140 NONE 5.1(b)

Colosseum Peugeot 908 8 294 NONE 5.1(c)
Vatican Peugeot 908 8 270 NONE 5.1(d)
Ganesha Peugeot 908 4 160 Only translation 5.1(e)
Salt lamp Seat Ibiza 8 330 Translucent 5.1(f)
Buddha Peugeot 908 8 300 Shiny 5.1(g)
Pillow Seat Ibiza 8 278 Repetitive 5.1(h)

Transformer Audi S8 8 329 NONE 5.2(a)
Ship Audi S8 8 277 NONE 5.2(b)

Catalog Seat Ibiza 5 150 Planar 5.2(c)
Lego Seat Ibiza 4 264 Repetitive, Planar 5.2(d)

Table 5.1: Properties of the datasets.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Images taken from the datasets, which are used for reconstruction.
Part 1.
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(a) (b)

(c) (d)

Figure 5.2: Images taken from the datasets, which are used for reconstruction.
Part 2.

5.2 Qualitative results of the method

Except for the Buddha dataset, the datasets have been successfully recon-
structed by our method. Table 5.2 and figures 5.3, 5.4 depict the results of
the reconstructions. The blue points belong to the object and the red ones to
the background. According to Section 4.6.2 the only criterion to label the
background and the object is the order of the sequential PnP registration.
The registration can be arbitrary, so the labels of the background and the
object can be swapped, which actually happened at the datasets 5.4(a), 5.4(c),
5.4(f).

The table shows whether the background and the object have been swapped
as well as numbers of the points from the object and from the background. If
the labels of the background and the object have been swapped, Points Obj.
is the number of points from the true object, which has been labeled as the
background.
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The reconstruction of the Buddha dataset has failed probably due to the

lack of features on one side of the object so the sequential PnP could not
register towards the object and the cyclic check could not be performed.

Dataset Figure Points Obj. Points Bck. Swapped
Daliborka 5.3(b) 15904 16553 NO
Lycan 5.3(d) 10286 8138 NO

Colosseum 5.4(b) 23535 25990 NO
Vatican 5.4(d) 17175 15282 NO
Ganesha 5.4(f) 19199 10528 YES
Salt lamp 5.4(h) 2322 24235 NO
Pillow 5.5(b) 92166 18335 YES

Transformer 5.5(d) 2070 12606 NO
Ship 5.5(f) 4665 9879 NO

Catalog 5.5(h) 5047 8421 YES
Lego 5.6(b) 354 7765 NO

Table 5.2: Results of the reconstructions.

(a) (b)

(c) (d)

Figure 5.3: Reconstructed datasets, Part 1.

ctuthesis t1606152353 62



............................5.2. Qualitative results of the method

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Reconstructed datasets, Part 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Reconstructed datasets, Part 3.
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(a) (b)

Figure 5.6: Reconstructed datasets, Part 4.

Quality of the models which have been successfully reconstructed differs.
The main reason for the lower quality of the reconstruction is the lower density
of features, which is especially apparent at the Transformer dataset depicted
in Figure 5.2(a). An interesting result is the reconstruction of a planar object
"Catalog" which is depicted in Figure 5.2(b). The object "Lego" in Figure
5.2(b) could not be reconstructed with the default settings of COLMAP, it
was however reconstructed with a lowered threshold for minimal inlier ratio
in the PnP registration, which allowed registration of the images towards the
object.

5.3 Comparison to the single body SfM

Apart from the datasets which depict the object on some background, we have
reconstructed some of the objects without any background in the classical
single body SfM COLMAP [3]. The motivation was to determine whether
and eventually in which cases can the presence of the background actually
help with the reconstruction of the object. The numbers of the images in
the datasets are given in Table 5.3. The models reconstructed with the
background have been adjusted using the alternating minimization, which is
proven to be more suitable in Section 5.4.

For each object, we compare two models, first of which has been recon-
structed with the background using our method, while the second one has
been reconstructed without the background using a standard SfM pipeline.
The parameters which we compare are the number of reconstructed points,
the median reprojection error, and the quality of the reconstruction (e.g.
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Dataset MBSfM Single body

Colosseum 294 326
Vatican 270 304
Ganesha 160 187
Salt lamp 330 302
Pillow 278 275

Transformer 329 290
Ship 277 294

Catalog 150 151
Lego 264 307

Table 5.3: Number of images from which the object is reconstructed

Figure 5.7: Example of an image from the single body dataset without the
background.

whether all parts of the object have been reconstructed). Table 5.4 shows the
numbers of points and Table 5.5 shows the reprojection errors.

Dataset MBSfM MBSfM filtered Single body
Colosseum 23535 22932 49418
Vatican 17175 17094 38833
Ganesha 19199 19192 34539
Salt lamp 2322 2320 10049
Pillow 92166 86351 198728

Transformer 2070 2037 14372
Ship 4665 4636 20571

Catalog 5047 4466 10143
Lego 354 90 -

Table 5.4: Number of points from the object
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It is apparent from Table 5.4 that the object reconstructed with the back-
ground using our method has usually fewer points than the same object
reconstructed without the background. The possible reason for this is that
only the points towards which a camera has been registered in the sequential
PnP can be recognized to belong either to the background or to the object.
Therefore some of the points which have been reconstructed with the back-
ground are not present in the final reconstruction. Another possible reason
may be that the features on the object are ignored because of stronger features
on the background. For some of the objects, the images in the dataset without
the background outnumber the images in the dataset with the background
(Table 5.3), but the difference is too low to make such a difference in the
numbers of the points.

The most significant difference in the numbers of points is at the objects
which have a low density of the features such as the Salt lamp, the Transformer
(Figure 5.8(a), 5.8(b) ) and the Ship. The difference at the objects which
have a higher density of features is less significant and visually unrecognizable.
(Figure 5.8(c) 5.8(d))

(a) (b)

(c) (d)

Figure 5.8: Comparison of the models reconstructed with and without the
background. The models on the left side have been reconstructed with the
background.
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Dataset MBSfM MBSfM filtered Single body

Colosseum 3.2662 3.2085 1.4825
Vatican 3.4622 3.4427 1.7924
Ganesha 0.8209 0.8208 1.8522
Salt lamp 4.1629 4.1610 1.8889
Pillow 1.0564 0.9710 2.3420

Transformer 6.3239 6.1637 2.6443
Ship 6.0914 6.0112 1.7392

Catalog 2.0319 2.0035 2.8318
Lego 20.4614 7.2846 -

Table 5.5: Median reprojection error EO

For the majority of the objects, the reprojection error of the reconstruction
with the background is higher than the error of the reconstruction without
the background. The exceptions are the Ganesha, the Catalog and the Pillow.

5.3.1 Planar objects

Our method allows a reconstruction of planar objects by placing them onto
a non-planar background. The object with the background are then recon-
structed as a general object and we can afterward separate the object from
the background. This has been demonstrated on the object "Catalog", whose
reconstruction can be seen in Figure 5.9(a). However, the single-body pipeline
COLMAP managed to reconstruct the dataset, as well (Figure 5.9(b)).

(a) (b)

Figure 5.9: Comparison of the models of the "Catalog" object reconstructed
with and without the background. The model (a) has been reconstructed with
the background.
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5.3.2 Repetitive objects

In most cases, the reconstruction without the background has higher a number
of reconstructed points and lower reprojection errors at the same time. In
some cases, however, our method can perform better. One of these cases are
objects with repetitive patterns.

According to Table 5.5, a repetitive object "Pillow" is one of the objects
which have lower reprojection error after the reconstruction with the back-
ground, than without the background.

Objects "Daliborka" and "Vatican" contain repetitive patterns (Figure 5.10).
These patterns could be reconstructed using our method. Figure 5.11 shows
that the repetitive back side of the Vatican object has been reconstructed
better with the background than without it.

(a) (b)

Figure 5.10: Examples of repetitive patterns on "Daliborka" (a) and "Vatican"
(b).

(a) (b)

Figure 5.11: Comparison of the reconstruction of the back side of the "Vatican"
object. The model (a) has been reconstructed with the background.

The object "Lego" is repetitive and almost planar, and therefore it is difficult
to reconstruct. The standard single body pipeline failed to find the initial
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pair of cameras and therefore could not reconstruct the object. Our method
managed to reconstruct the object, as the relative pose could be found using
the points from the background. This model is shown in Figure 5.12

Figure 5.12: Model of the "Lego" object.

5.4 Review of approaches to the Bundle
Adjustment

In Section 4.8 we have proposed two approaches to the bundle adjustment,
namely the gradient descent and the alternating minimization. We are
interested in the median reprojection error E, as well as in the partial
reprojection errors EO, EB. EO is calculated only from the observations
of points which belong to the object and EB is calculated only from the
observations of the points which belong to the background. If the labels of
the background and the object have been swapped, EO is calculated from the
true object, which has been labeled as the background.

For each dataset, we compare the values E,EO, EB of the model before the
adjustment, after the adjustment using the gradient descent, and after the
adjustment using the alternating minimization in order to determine which
of the approaches is more appropriate. Table 5.6 shows values for E, Table
5.7 shows EO and Table 5.8 shows EB. The best value is bold; if the error
after the adjustment is worse, the value is red.
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Dataset Original Gradient Alternating
Daliborka 3.4294 1.8704 1.5888
Lycan 2.3397 2.0448 1.3930

Colosseum 5.9503 3.4171 2.6892
Vatican 6.6690 3.2737 2.8050
Ganesha 2.8834 1.4558 1.3600
Salt lamp 8.9735 2.3805 2.4062
Pillow 7.8455 1.4150 1.4340

Transformer 15.9971 2.2689 2.2509
Ship 11.3332 2.8786 2.8458

Catalog 9.8959 4.8998 4.5814
Lego 9.6033 2.0808 2.0773

Table 5.6: Overall median reprojection error E

Dataset Original Gradient Alternating
Daliborka 2.4018 3.3470 2.1918
Lycan 1.6981 3.5872 1.6719

Colosseum 3.3818 5.7818 3.2662
Vatican 3.5849 5.7980 3.4622
Ganesha 1.9734 0.8508 0.8209
Salt lamp 3.4133 7.4074 4.1629
Pillow 6.9275 1.0436 1.0564

Transformer 6.9450 9.2377 6.3239
Ship 6.5760 9.2265 6.0914

Catalog 5.5661 2.3659 2.0319
Lego 50.6459 20.7596 20.4614

Table 5.7: Median reprojection error EO of the object

According to Table 5.6 the alternating minimization outperforms the gra-
dient descent in the most cases. In addition to that, Table 5.7 shows, that
in 7 of 11 cases the partial error EO is made worse by the gradient descent.
The same thing happens only at one dataset in the case of the alternating
minimization. Therefore the alternating minimization is more suitable for
our purpose.
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Dataset Original Gradient Alternating
Daliborka 4.7270 1.2718 1.2373
Lycan 3.3340 1.1679 1.1408

Colosseum 9.4377 2.3787 2.3417
Vatican 10.4341 2.5497 2.5125
Ganesha 7.5913 5.8102 4.4917
Salt lamp 9.5084 2.2928 2.3459
Pillow 13.8701 36.6333 6.7692

Transformer 16.8831 2.0978 2.0942
Ship 13.6002 2.3304 2.3812

Catalog 14.5464 8.1427 9.4299
Lego 9.4550 2.0490 2.0440

Table 5.8: Median reprojection error EB of the background

Yet another advantage of the alternating minimization is that the recon-
struction is naturally stabilized during the bundle adjustment, as in each step
either the cameras or the points are fixed.
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Chapter 6

Future work

We have solved a relaxed version of the MBSfM problem, where the number of
the objects is limited to 2 and the images depict several static configurations
of a scene and it is known which image belongs to which scene. This algorithm
can be improved in many ways.

In order to dispose of the dependence on the thresholds in the clustering
phase, the uncertainties of the cameras can be utilized. In that case, a series
of experiments would have to be performed to show which of the options, or
the combination of both, would perform better.

The solution can be generalized in such a way, that the number of moving
objects would be arbitrary. In that case, it would be challenging to handle
the situations where some of the objects remain static between some of the
takes, while the other ones move. The algorithm can be improved such that it
would be able to assign the images to their takes, so the labels of the images
would not be necessary.

In order to improve the quality of the reconstruction, new points could
be triangulated from camera pairs which do not belong to the same object.
Many points have been reconstructed but they have not been assigned to the
object nor to the background. An additional labeling of these points can be
performed.
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The sequential PnP can be replaced by another motion segmentation

method. This algorithm can as well be used in a general version of the
MBSfM.

ctuthesis t1606152353 74



Chapter 7

Conclusion

In this thesis we have proposed a solution to the problem introduced in Section
1.3, where the task is to reconstruct a scene consisting of two objects. This
scene is captured by multiple takes, which depict different static configurations
of the scene. We have implemented the method as an extension of a COLMAP
pipeline [3] and we have demonstrated its functionality on real data.

We have reconstructed several objects using our method, where the back-
ground served as the second object. In most cases the reconstruction of
an object with a background using our method produces a model, which is
worse than the model reconstructed in a single-body pipeline without the
background. We have however shown, that for some objects, especially the
planar ones or the objects which contain repetitive structures, our method
produces better models than the single-body SfM pipeline.
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