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Abstract

The thesis deals with quality factor of
air cored inductors and its geometric de-
pendence. The aim is to get acquainted
with the given issue and subsequent imple-
mentation in AToM with available matrix
operators.
All calculations are done for inductors
formed by a well conducting strips in vac-
uum with a focus on canonical structures
such as planar spiral, cylindrical helix,
spherical helix, and toroidal helix.
Triangular meshes of all these structures
have been created by a code developed as
a part of this thesis.
Fundamental bounds on quality factor
of an inductor has also been evaluated
for current supports in a shape of a disc,
square, cylinder, sphere, and torus.
Finally, a comparison of a fundamen-
tal bound to quality factor and of qual-
ity factors of realistic inductors is pro-
vided which allowed to mutually compare
quality of different inductor designs and
opened several questions for further study.

Keywords: air cored inductor, optimal,
quality factor, triangular mesh

Supervisor: doc. Ing. Lukáš Jelínek,
Ph.D.
Faculty of Electrical Engineering,
Czech Technical University in Prague,
Technická 1902/2,
Praha 6

Abstrakt

Práce se zabývá problematikou činitel ja-
kosti induktorů se vzdušným jádrem v
závislosti na jejich geometrii. Cílem je se-
známení se s danou problematiokou a ná-
slednou implementací v nástroji AToM
s pomocí dostupných maticových operá-
torů.
Všechny výpočty jsou provedeny pro in-
duktory tvořené dobře vodivými pásky ve
vakuu se zaměřením na kanonické struk-
tury jako jsou planární spirála, cylindrická
šroubovice, sférická šroubovice a toroidní
šroubovice.
Triangulární mřížky pro všechny tyto
struktury byly vytvořeny pomocí kódu
vyvinutého jako součást této práce.
Fundamentální limit činitele jakosti in-
duktoru byl nalezen pro oblast proudu na
disku, čtvercové desce, válci, kouli a to-
rusu.
Na závěr bylo provedeno porovnání fun-
damentálního limitu čuinitele jakosti a
činitelů jakosti skutečných induktorů, což
dovolilo vzájemné porovnat jakosti in-
duktorů o rozličných tvarech a otevřelo
spoustu otázek pro další zkoumání.

Klíčová slova: induktor s vzdušným
jádrem, optimální, činitel jakosti,
triangulární mřížka

Překlad názvu: Optimální činitel
jakosti induktoru se vzdušným jádrem
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Chapter 1

Introduction

An inductor is a passive circuit element designed to store magnetic energy [1].
Coil and choke are terms, which are also used for inductors [1]. For this prop-
erty this circuit element is widely used throughout the electrical engineering,
most notable examples being power supplies, transformers, radios, TVs, and
electric motors.

In principle, any electric current flowing in a conductor evince inductive
properties, meaning that if electromagnetic field generated by such current
exhibits an excess in magnetic energy, it can be considered as inductor.
However, practical inductors are usually formed into helix or spiral [1, 2], which
at low electrical sizes greatly reduce the electric energy storage. Cylindrical
helix and toroidal helix are the most typical shapes 1.1.

(a) : Solenoid [3]. (b) : Toroid [4].

Figure 1.1: Typical shapes of inductors.

1



1. Introduction .....................................
The most important quantity describing an inductor is inductance which

is a constant of proportionality between voltage across the inductor and the
time rate of change of the current [5, 2]. The unit of inductance is henry
(H), named in honor of the famous American inventor Joseph Henry, who
discovered inductance and constructed an electric motor. His discovery of
electromagnetic induction was made before Faraday, but Henry failed to
publish his findings [1, 2].

The inductance depends on inductor’s dimensions, construction and opera-
tional frequency. The inductance is also commonly modified by introduction
of magnetic materials, this thesis is however solely focused on air cored
inductors. Without magnetic material, the inductance values of practical
inductors range from a few microhenrys, as in communication systems, to
tents of milihenrys, as in power systems [1, 2].

The fact that the inductor is made of a conducting material such as copper,
leads, apart from magnetic energy storage, to dissipation of heat. This
property is called winding resistance. In addition to that, any real inductor
necessarily stores electric energy which is typically described by winding
capacity. Proper designs aims to minimize both these imperfections.

The quality of an inductor’s design is typically judged by a scalar metric
called quality factor commonly called just Q [6]. In this text we will, for the
sake of clarity use term Q-factor, which is a compromise between length and
uniqueness. The most common definition of inductor’s Q-factor is a ratio
of inductor’s reactance and inductor’s resistance, which is equivalent to an
inverse of inductor’s damping factor1.

The aim of this thesis is to study optimality of air cored inductors with
respect to their Q-factor. To that point, thorough discussion of possible
definitions of Q-factor is given in section 2.1.4 and in chapter 4. An important
part of the thesis is also devoted to a development of fundamental bounds on
inductor Q-factor which are then used the judge particular inductor designs.
Proposals for design improvements are given in the end of the thesis.

1Damping factor reciprocal value was termed as Q-factor by Johnson in teens of the
twentieth century. He says that the reason for choosing Q was not the meaning of quality,
but Q was only one letter of the alphabet he had left since the other ones had already been
pre-empted. Other interesting moments of Q’s history can be found in [6].
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Chapter 2

Computational Tools

This chapter briefly introduces tools of mathematical physics used in the
thesis. The first section introduces the resources necessary for the analysis of
an inductor, while the second section shows basics of constrained quadratic
optimization.

2.1 Electromagnetic Analysis

This section introduces surface electric field integral equation (EFIE) and its
solution via method of moments (MoM). This results in a matrix description
of electromagnetic scattering which is well prepared for optimization. This
section also introduces the metric to be optimized, i.e., Q-factor of an inductor.

2.1.1 Surface Electric Field Integral Equation

This subsection follows [7, 8, 9] and shows the most important steps in
derivation of the surface electric field integral equation (EFIE). All quantities
are assumed to be Fourier’s spectral densities with position vector r and
angular velocity ω being their independent variables. Fourier’s transform is

3



2. Computational Tools .................................
assumed in a form

F̂ (r, t) = 1
2π

∞∫
−∞

F (r, ω)ejωt dt. (2.1)

Since this thesis is solely focused on air-cored cored inductors, only vacuum
surrounding is considered with ε0 denoting permittivity of vacuum and µ0
denoting permeability of vacuum.

The starting point for derivation of EFIE is the vector Helmholtz equation
for magnetic vector potential A(r, ω) [5]

∇2A+ k2A = −µ0K, (2.2)

where k = ω
√
ε0µ0 is a wavenumber and K(r, ω) is a surface current density

flowing on an infinitesimally thin metallic strip Sms. The solution to (2.2)
reads [5]

A(r, ω) = µ0

∫
Sms

K(r′, ω)G(r, r′, ω) dS′, (2.3)

where G(r, r′, ω) denotes free-space Green’s function,

G(r, r′, ω) = e−jk|r−r′|

4π|r − r′| . (2.4)

The electric field produced by current density K reads

Es(r, ω) = −jω
[
A(r, ω) + 1

k2(ω)∇(∇ ·A(r, ω))
]
. (2.5)

Substituting (2.3) into (2.5), the electric field can be written as

Es(r, ω) = −jωµ0

[
1 + 1

k2(ω)∇∇·
] ∫

Sms

K(r′, ω)G(r, r′, ω) dS′. (2.6)

Electric field integral equation is formed by enforcing boundary condition
on tangential electric field on a highly conducting surface [5], namely

Ei
tan +Es

tan = RsK, (2.7)

where Ei is an incident electric field and Rs is a surface resistivity [10],

Rs(ω) =
√
ωµ

2σ , (2.8)

4



............................... 2.1. Electromagnetic Analysis

σ is the material conductivity and µ is its permeability. Subindex tan is
used to isolate vector components tangential to the surface Sms. Boundary
condition (2.7) is to be satisfied at r ∈ Sms, i.e., over the entire conductor
supporting of the current density.

Finally, EFIE can be written as

Ei
tan(r, ω) = Rs(ω)K (r, ω) +

+
(

jωµ0

[
1 + 1

k2(ω)∇∇·
] ∫

Sms

K(r′, ω)G(r, r′, ω) dS′
)

tan

,
(2.9)

which is an integral equation for current density K and which must hold for
r ∈ Sms.

2.1.2 Method of Moments

In this subsection, [9, 7] is followed and method of moments (MoM) is briefly
introduced. The basic idea of MoM is the reduction of operator equations
to a system of linear equations which is then solved by techniques of linear
algebra.

Consider an inhomogeneous linear operator equation

M(f) = g (2.10)

whereM is a linear operator, g is known complex vector function of excitation
and f is an unknown complex vector function to be determined. In order
to solve (2.10), the expansion of function f into a complete set of linearly
independent basis functions {ψn}Nn=1 is carried out,

f =
∑

n

αnψn, (2.11)

where {αn}Nn=1 are unknown coefficients. An example of basis function which
are used in this thesis is shown in section 3.4. Substituting (2.11) in (2.10)
and using the linearity ofM yields∑

n

αnM(ψn) = g. (2.12)

A set of testing functions {ψn}Nn=1, which are identical to basis functions,
is now applied using a inner product,

〈f , g〉 =
∫
S

f∗(r) · g(r)dS, (2.13)

5



2. Computational Tools .................................
which is known as Galerkin method [7]. This results in∑

n

αn〈ψm,M(ψn)〉 = 〈ψm, g〉, (2.14)

which can be written in matrix form,

Υα = χ, (2.15)

where υmn = 〈ψm,M(ψn)〉 and χm = 〈ψm, g〉.

If basis functions are linearly independent, matrix Υ is regular and expan-
sion coefficients α can be obtained as

α = Υ−1χ. (2.16)

2.1.3 Application of MoM to EFIE

This section shows an application of MoM to the EFIE (2.9). The EFIE is
an in-homogeneous linear operator equation with linear operator

M(K) = RsK +

jωµ0

[
1 + 1

k2(ω)∇∇·
] ∫

Sms

KG(r, r′, ω) dS′


tan

, (2.17)

with integration over the support of current density K(r, ω). The excitation
is given by an incident electric field Ei

tan.

Following (2.11), the surface current density is expanded as

K(r, ω) =
NK∑
n=1

In(ω)ψn(r), (2.18)

and Galerkin testing (2.14) is performed. This results in a linear equation
system,

(L + Z)I = V. (2.19)

with matrix elements given by

lm,n = Rs

∫
Sms

ψ∗m(r) ·ψn(r) dS, (2.20)

zm,n(ω) = jωµ
∫

Sms

ψ∗m(r) ·
[
1 + 1

k2(ω)∇∇·
] ∫

Sms

ψn(r′)G(r, r′, ω) dS′dS.

(2.21)

6



............................... 2.1. Electromagnetic Analysis

and with excitation vector

vm(ω) =
∫

Sms

ψ∗m(r) ·Ei
tan(r, ω) dS. (2.22)

For a spatially independent surface resistivity Rs, the matrix L can be
further rewritten as RsΓ, where Γ is the Gram matrix [11]. The elements of
the impedance matrix zm,n can also be simplified. Using identities of vector
analysis, the ∇∇· term can be moved towards basis functions which yields

zm,n(ω) = jωµ
∫

Sms

∫
Sms

[
ψ∗m(r) ·ψn(r′) +

− 1
k2(ω)∇ ·ψ

∗
m(r)∇′ ·ψn(r′)

]
G(r, r′, ω) dS′dS.

(2.23)

an expression which is much simpler to implement [7].

Multiplying (2.19) from left by Hermitian (conjugate) transpose of I and
comparing this formula with complex Poynting theorem [9],

IH (Z + L) I = IHV, (2.24)

reveals that the cycle mean power lost in heat can be calculated as

Plost = 1
2IHLI, (2.25)

the cycle mean radiated power can be calculated as

Prad = 1
2IHRI, (2.26)

and that the cycle mean reactive power can be calculated as

Preact = 2ω(Wm −We) = 1
2IHXI, (2.27)

where matrices R and X abbreviate real and imaginary part of matrix Z,
respectively, and Wm,We stand for cycle mean magnetic and electric energy.

Another bilinear form of interest is the cycle mean stored energy [12], which
can be expressed as

Wstored = Wm +We = 1
4IH∂X

∂ω
I (2.28)

which in connection with (2.27) generate expressions for cycle mean magnetic
energy

Wm =
Wstored + 1

2ωPreact

2 = 1
8IH

(
∂X
∂ω

+ X
ω

)
I = 1

4ω IHXmI, (2.29)

7



2. Computational Tools .................................
and cycle mean electric energy

We =
Wstored −

1
2ωPreact

2 = 1
8IH

(
∂X
∂ω
− X
ω

)
I = 1

4ω IHXeI. (2.30)

2.1.4 Inductor Q-factor

In most general terms, Q-factor can be defined as a ratio of desired energy
contained in the device (for example magnetic energy in an inductor) and
undesired energy (for example energy dissipated in heat),

Q = 2πWuse
Wun

. (2.31)

In the case of an inductor a common way is to denote magnetic energy as
the desired energy, while to consider dissipated energy and radiated energy as
undesired. This leads to two most commonly used Q-factors of an inductor [13],
namely,

Q1 = Preact
Prad + Ploss

= IHXI
IH(R + L)I (2.32)

and
Q2 = 2ωWm

Prad + Ploss
= IHXmI

IH(R + L)I . (2.33)

Although commonly used in practice, Q-factors (2.32) and (2.33) suffer from
ignoring electric energy generated by the inductor. Considering, however, the
basic functionality of an inductor, its electric energy should be considered
as undesired and according to (2.31) it should appear in the denominator of
Q-factor. To this point, we define Q-factor

Q3 = 2ωWm

Prad + Ploss + ω

2πWe
= IHXmI

IH
(

R + L + 1
4πXe

)
I
. (2.34)

as an alternative to (2.32) and (2.33). Section 4.1 shows a comparison of all
three definitions and a corresponding discussion.

2.2 Optimization

As will be shown in section 4.2, it is often interesting to ask, what the highest
possible value of a given Q-factor for a given current support is (thus for given

8



.....................................2.2. Optimization

matrices R,X,L,Xe,Xm) with assumption, that current I can be arbitrary.
In order to find such optimal Q-factor, the quadratically constrained quadratic
program [14, 15] is defined in this section and its solution via application of
Lagrange multipliers is also shown.

2.2.1 Quadratically Constrained Quadratic Program

All inductor Q-factors defined in section 2.1.4 are written as a ratio of bilinear
forms

IHAI
IHBI

, (2.35)

where A, B are, at least in principle, positive definite matrices [16]. In order
to maximize inductor Q-factor, optimization problem

max
I

IHAI
IHBI (2.36)

must be solved. This problem is equivalent to a quadratically constrained
quadratic program [14, 15],

max
I

IHAI, subject to IHBI = 1, A � 0, B � 0. (2.37)

2.2.2 Solution via Lagrange Multipliers

This subsection introduces the Lagrange multipliers method [14, 15], which
is used to solve (2.37).

Lagrange function corresponding to a single constrained optimization (2.37)
reads [14, 15]

L(I, λ) = IHAI− λ(IHBI− 1) = IH(A− λB)I + λ, (2.38)

where λ is so-called Lagrage multiplier. The theory of constrained optimization
then proves, that stationary points of Lagrange function are also stationary
points of the original optimization problem. In order to find these stationary
points, a complex gradient operator [17] is applied to (2.38) which leads to

0 = ∇̃I∗L(I, λ) = (A− λB)I. (2.39)

The stationary points of Lagrange function (2.38) have thus solutions to a
generalized eigenvalue problem

AI = λBI (2.40)

9



2. Computational Tools .................................
The eigenvectors of (2.40) are defined up to a multiplication constant, there-
fore it can be assumed that normalization

IHBI = 1. (2.41)

is enforced. This normalization also implies that optimization constraint (2.37)
is satisfied at all stationary points. If (2.40) is left multiplied by IH and
normalization (2.41) is used, the maximized quadratic form reduces to

IHAI = λ (2.42)

in every stationary point. This implies that the solution to (2.37) is given by
the largest eigenvalue of (2.40).

2.2.3 Maximization of Q-factor

When methods of setion 2.2.2 are applied to Q-factors defined in section 2.1.4,
their maximum attainable values can be evaluated. Taking A = Xm and
B = R + L + Xe/ (4π) as an example, section 2.2.2 claims that the highest
eigenvalue of the generalized eigenvalue problem

XmI = λ

(
R + L + 1

4πXe

)
I. (2.43)

corresponds to the maximum value of Q-factor Q3.

10



Chapter 3

Discretization of Inductor Structures

This chapter contains description of structures used to model inductors. Sec-
tion 3.1 introduces triangularization and its implementation in MATLABr [18],
subsequent sections 3.2, 3.3 show meshes which are used in this study. RWG
functions [8], which are employed as basis and testing functions within MoM,
are introduced in section 3.4.

3.1 Mesh Generation Tools

In order to use RWG basis functions, a triangular mesh of the described
surface is needed. This section introduces two software tools written in
MATLABr [18]. The first is a strip mesh generator1, which is used to
generate triangular mesh of strips build along arbitrary parametric curves in
three dimensions which describe windings of studied inductors. The second
is AToM which is used for triangularization of patches and to build basis
functions.

1The strip mesh generator was developed by the author of the thesis. Owing to its
unique capabilities, it will, in a future release, become a part of Antenna Toolbox for
MATLAB (AToM) [19] package, an electromagnetic simulation tool developed at the
department of electromagnetic field at CTU FEE Prague.

11



3. Discretization of Inductor Structures...........................
3.1.1 Strip Mesh Generator

Strip mesh generator assumes a strip created along a predefined curve in
three dimensional space. The curve is described by its parametrization, which
is accompanied by a chosen width and normal vector to the plane of the strip.
The curve creates the central line of the strip. The triangularization begins
with a longitudinal segmentation of the strip into a user defined number of
trapezoids. Finally, triangles are created by division of these trapezoids.

Apart from a user defined parametrization, this tool includes a list of
predefined strip structures which are shown in section 3.3 as triangularized
inductor structures. An example of a particular realization is shown in
figure 3.1. An example of a user-defined parametrization of a strip is shown

Figure 3.1: An example of an ellipsoidal helix.

in listing 3.1. This particular parametrization generates strip plotted in
figure 3.2.

Listing 3.1: Example of a parametric strip to be meshed as defined in
MATLABr [18].

%% def
a=2;
b=3;
c=2*pi;

% required
points=@(x) [a*cos(c*x), b*sin(c*x), 0*x]; % curve
along=@(x) [−c*a*sin(c*x), c*b*cos(c*x), 0*x]; % curve derivation
normal=@(x) [0*x−1, 0*x, 1+0*x]; % vector perpendicular to vector

% perpendicularly traversing the strip
width=@(x) 0.5*(1+8*(x−0.5).^2); % width of strip

% optional
ind.Ncells=2; % trapezoids per strip width
ind.Npoints=20; % number of curve points

12



............................ 3.2. Meshes for Evaluation of Bounds

Figure 3.2: The result of a parametric strip defined in listing 3.1.

3.2 Meshes for Evaluation of Bounds

This section shows surfaces which are used for evaluation of fundamental
bounds on Q-factor of an inductor. The following surfaces are taken into
account:..1. a cylinder,..2. an ellipsoid,..3. a torus,..4. a circle,..5. a rectangle.

All these canonical surfaces can be seen as supports for realizable inductors
introduced in section 3.3, namely: cylindrical helix, ellipsoidal helix, toroidal
helix, circular spiral and rectangular spiral.

The discretization of a circle and a rectangle has been performed in AToM.
Triangularizations of a sphere and a cylinder have been made using an in-house
code provided by Miloslav Čapek.

Triangularization of torus has been made by a MATLAB code prepared for
this thesis. To that point, a triangularized planar square patch [1 mm× 1 mm]
is prepared with square pixels each consisting of two triangles. Nodes of
triangles are afterwards mapped onto the torus by a vector function of two
parameters,

r(t1, t2) =

(a− h cos(2πt1)) cos(2πt2)
(b− h cos(2πt1)) sin(2πt2)

h sin(2πt1)

 , t1, t2 ∈ [0, 1] , (3.1)

where [a, b] are toroidal semi-axes and h is the radius of the torus tube.
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3. Discretization of Inductor Structures...........................
3.3 Mesh for Realizable Inductors

Real inductor structures corresponding to their canonical supports introduced
in section 3.2 are presented in this section. Following structures are prepared:..1. Cylindrical helix,

r(t) =

a cos(2πft+ ϕ)
b sin(2πft+ ϕ)
h(t− 0.5)

 , t ∈ [0, 1] , (3.2)

where [a, b] are x and y semi-axes of cylindrical base, h is the height
of the helix, f is the number of turns and ϕ is the cylindrical angular
variable. A particular example of a cylindrical helix is shown in figure 3.3.

Figure 3.3: Meshed cylindrical helix...2. Ellipsoidal helix,

r(t) =

a
√

1− 4(t− 0.5)2 cos(2πft+ ϕ)
b
√

1− 4(t− 0.5)2 sin(2πft+ ϕ)
h(t− 0.5)

 , t ∈ [0, 1] , (3.3)

where [a, b] are x and y ellipsoid semi-axes and all other parameters are
the same as for cylindrical helix. A particular example of an ellipsoidal
helix is shown in figure 3.1...3. The parametrization of a toroidal helix, with a representative example
shown in figure 3.4, reads

r(t) =

[a− h cos(2πft+ ϕ)] cos(2πt)
[b− h cos(2πft+ ϕ)] sin(2πt)

h sin(2πft+ ϕ)

 , t ∈ [0, 1] , (3.4)

14



............................. 3.3. Mesh for Realizable Inductors

where [a, b] are x and y ring semi-axis, h is the radius of torus tube, f
number of turns and ϕ is the tube angular variable.

Figure 3.4: Meshed toroidal helix...4. Parametrizations of linear and logarithmic spiral are shown in the fol-
lowing.

(a) : Classical linear spiral. (b) : Equidistant gap linear spiral.

Figure 3.5: Comparison of the classical and the equidistant gap linear spiral.

. Classical linear spiral,

r(t) =

a(t(1− h) + h) cos(2πft+ ϕ)
b(t(1− h) + h) sin(2πft+ ϕ)

0

 , t ∈ [0, 1] , (3.5)

where [a, b] are the outer semi-axes and h is the ratio of inner and
outer semi-axis. Particular example is shown in the left panel of
figure 3.5.. Equidistant gap linear spiral,

r(t) =

(b(1− h)(t− 1) + a) cos(2πft+ ϕ)
b(t(1− h) + h) sin(2πft+ ϕ)

0

 , t ∈ [0, 1] , a > b.

(3.6)
Inequality a > b makes the function dual in x and y axes. Particular
example is shown in the right panel of figure 3.5.
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3. Discretization of Inductor Structures...........................
. Parametrization of a logarithmic spiral, with a particular example

shown in figure 3.7, reads

r(t) =

aebt cos(2πft+ ϕ)
aebt sin(2πft+ ϕ)

0

 , t ∈ [0, 1] , (3.7)

where a is the radius in the beginning of the spiral and b is the
factor controlling exponential growth of the spiral...5. Rectangular spiral, with a representative example shown in figure 3.6.

The parametrization of a rectangular spiral contains a loop over piece-
wise defined functions and it is thus not shown explicitly. The parameters
controlling this parametrization are outer edge length in x and y direction
which are denoted as a and b, number of turns f and ratio between the
inner and outer edge length which is denoted as h.

(a) : Classical rectangular spiral. (b) : Equidistant gap rec. spiral.

Figure 3.6: Comparison of the classical and the equidistant gap rectangular
spiral.

In order to form inductors from strips defined in this section, a meshed
connection between the beginning and the end of the strip is needed (An
exception being toroidal helix which already forms a closed loop). This
connection has been implemented for all parametrization discussed above.
An example of the connection bridge in the case of a logarithmic spiral is
shown in figure 3.7.
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.............................. 3.4. Basis and Testing Functions

Figure 3.7: Meshed logarithmic spiral with a bridge forming a closed galvanically
connected loop.

3.4 Basis and Testing Functions

In this section, Rao-Wilton-Glisson (RWG) triangular functions2 [8] are
introduced. Within this thesis, RWG functions are used as basis and testing
functions in MoM solution to EFIE which was shown in section 2.1.3.

An RWG function is defined for a triangular mesh as follows,

ψn(r) =



Ln

2A+
n
ρ+

n (r), r ∈ T+
n

Ln

2A−n
ρ−n (r), r ∈ T−n

0, otherwise,

(3.8)

where T+
n and T−n is a pair of adjacent triangles sharing a common edge en

with length Ln. The geometrical representation of used parameters is shown
in figure 3.8. Vector ρ+

n (r) is oriented towards the vertex V+
n , i.e.,

ρ+
n (r) = V+

n − r; r ∈ T+
n , (3.9)

while, vector ρ−n (r) points away from the vertex V−n , i.e.,

ρ−n (r) = V−n − r; r ∈ T−n . (3.10)

The elements of impedance matrix Z (2.23) indicates the necessity of
evaluation of the basis function divergence. Its computation can be performed

2RWG function is the most commonly used basis function in MoM solution to EFIE
since its introduction in 1982 [7].
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3. Discretization of Inductor Structures...........................

en
V−

n V+
n

ρ−
n ρ+

n

T−
n T+

n

Figure 3.8: Illustration of RWG function.

by using cylindrical coordinate system with V+
n or V−n at the origin [7]. This

results in

∇ ·ψn(r) =



−Ln

A+
n
, r ∈ T+

n

Ln

A−n
, r ∈ T−n

0, otherwise.

(3.11)

The final form of matrix elements (2.20) and (2.23) is reached by substitut-
ing (3.8) and (3.11) to appropriate relations. Computation of all mentioned
matrices with RWG functions is implemented in AToM [20].

3.4.1 Antenna Toolbox for MATLAB

Antenna Toolbox for MATLAB (AToM) [19] presents a unique tool for analysis
and synthesis of planar electromagnetic structures which is being developed
at the department of electromagnetic field at CTU FEE in Prague3. The
most significant functionality of AToM used in this thesis is the evaluation of
matrices introduced in section 2.1.3. AToM furthermore offers a feeding via
delta gap voltage source which is used to excite realistic inductors. Lastly,
this thesis extensively uses plots of surface current density which were made
by plotting tools of AToM.

3Author of the thesis is a member of AToM’s development team.
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Chapter 4

Results

This chapter shows the major findings of this thesis. Particular realization
of inductors are assessed in section 4.1. Performance of these inductors is
then compared with the corresponding fundamental bounds in section 4.2.
Lastly, section 4.3 proposes and tests inductor modifications for Q-factor
enhancement.

4.1 Realizable Inductors

Realizable inductors are addressed first and their performance is compared
based on Q-factor definitions given in section 2.1.4. All evaluations in this
section are carried out for surface resistivity Rs = 0.01 Ω, that approximately
models a copper strip at frequency 1.4 GHz [10, 21]. The particular value of
the used surface resistivity is however of low significance, since all presented
results are normalized such as to minimize its effect. The normalized Q-factor
used in this chapter reads

RsQ

Z0ka
, (4.1)

where electrical size ka is used instead of angular frequency ω, with a being the
radius of the smallest sphere circumscribing the structure [22]. The impedance
of vaccum used in (4.1) is defined as [23] Z0 =

√
µ0/ε0. At small electrical

sizes ka → 0, where all Q-factors defined in section 2.1.4 asymptotically
behaves as Q→ ωL/R, where L is the self-inductance of the inductor and R
is the resistance of the inductor, it can be observed that normalization (4.1)
provides quantity that is independent of material, frequency and number of
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4. Results .......................................
turns of the underlying inductor. This normalized Q-factor can thus, at small
electrical sizes, be used as an absolute metric judging how the particular shape
of an inductor (planar spiral, cylindrical helix, etc.) affects the Q-factor.

As examples, the normalized Q-factors of inductors formed by a cylindrical
helices with radii 0.5 mm, heights 1 mm, six and three turns, strip widths
0.13 mm and 0.24 mm, are shown in figure 4.2. The surface current densities
evaluated at electrical size ka = 10−3 are shown in figure 4.1.

(a) : With 6 turns. (b) : With 3 turns.

Figure 4.1: Current density on cylindrical helices for ka = 10−3.

Figure 4.2: Q-factor of cylindrical helices shown in figure 4.1.
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................................. 4.1. Realizable Inductors

Figure 4.2 shows that cycle mean radiated and electric energy is negligible
at small electrical sizes and that depicted normalized Q-factors are just weakly
dependent on frequency. In contrast, when electrical size is higher, and inter-
turn capacities starts the store considerable amount of electric energy, the
three definitions of Q-factor posed in section 2.1.4 start to behave differently.
Particularly, the Q-factor Q1 starts to suffer from the vicinity of the resonance
of the inductor and stops to show the “quality” of an inductor. The same
is true for Q-factor Q2 which also does not penalize electric energy. Due to
these drawbacks, only Q-factor Q3 is used in the rest of the result section.

Another important thing which confirms figure 4.2 is that Q-factors does
not significantly depend on number of turns. The reason for this behaviour is
that, on the one hand, if the number of turns is increased, the self inductance
is also increased, but on the other hand, the strip is lengthened, which causes
more significant energy dissipation in heat.

Collecting the above mentioned observations, the normalized Q-factors of
all realizable inductors studied in this thesis are shown in figure 4.3, their
parameters are in table A.1 and current densities in figures A.1a – A.5a.

Figure 4.3: Comparison of Q-factors of different inductor structures.

For the chosen metric of Q-factor Q3 (2.34), the figure clearly indicates
that the best performance is provided by inductors in a form of cylindrical
and spherical helix. Q-factors of all planar inductors is considerably worse,
the best (linear spiral) being almost twice lower in Q-factor than volumetric
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4. Results .......................................
inductors. A notable exception from this rule is a toroidal helix, whose
Q-factor is poor. The reason for this behavior is explained in next section.

4.2 Bounds

Fundamental bounds on Q-factor gives the highest possible Q-factor that
can be realized with a given current support. Therefore, if a Q-factor of an
inductor is compared to a fundamental bound corresponding to its support,
the result shows how effectively the realized inductor uses the given shape. In
addition, the normalization by a fundamental bound also removes material
and frequency dependencies since the fundamental bound on Q-factor and
the Q-factor of a realized inductor are evaluated for the same material.

In this thesis, the fundamental bound on Q-factor is evaluated according
to section 2.2.3. The task of finding the largest eigenvalue of the underlying
generalized eigenvalue problem is solved via build-in MATLABr [18] function
as shown in listing 4.1.

Listing 4.1: Q-factor Q3 eigenvalue problem implementation in MATLABr [18].
[Ivec,QoptList(1,ika)] = eigs(Xmmat,(Rmat+Lmat+Xemat/(4*pi)),1,'la'); % bound

In this way a fundamental bound on Q-factor has been found for all sur-
faces described in section 3.2. The optimal current densities can be seen
in figures A.1b – A.5b, the proportions of canonical structures correspond
to realized inductors in table A.1. The fundamental bounds of Q-factor
generated by these optimal currents were subsequently used to normalize
Q-factor from figure 4.3. These normalized curves are plotted in figure 4.4.

The comparison depicted in figure 4.4 qualitatively differs from that shown
in figure 4.3 and offers several important observations:

. Except for the cylindrical helix, all inductors do not use the given current
support effectively, the most notable example being toroidal helix, where
optimal current density dramatically differs from current density on
toroidal helix.. The best current support for an inductor with respect to a Q-factor is
given by a sphere, while the worst is given by a rectangle.
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.....................4.3. Inductor Modifications for Q-factor Enhancement

.With no exception, the efficiency of magnetic energy storage decreases
rapidly with increasing electrical size.

Figure 4.4: Comparison of Q-factors of realized inductors with Q-factor bounds.

4.3 Inductor Modifications for Q-factor
Enhancement

The aim of this section is to modify realized inductors in order to mitigate
some of the deficiencies discussed in previous section. To address this, an
attempt is made to modify inductor strip such as to better approximate the
current density defining the fundamental bound. In addition, an interesting
question could be asked, is dependence of fundamental bound on proportions
of underlying structure?

The first modification concerns the cylindrical helix. Figure A.1b shows a
surface current density of an optimal current existing on a cylindrical surface
while the current existing on a realized cylindrical helix inductor is shown
in A.1a. Clearly, the fundamental bound suggests that current density should
be maximized in the central part of cylinder and minimized on the top and
bottom of the cylinder. To approach this a modified parametrization of the
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4. Results .......................................
cylindrical helix is proposed

r(t) =


a cos(2πft+ ϕ)
b sin(2πft+ ϕ)

c(t 3√4− 3√0.5)3 + t− 0.5
2

 , t ∈ [0, 1] , (4.2)

where parameters are the same entities as in the original parametrization of
the cylindrical helix. Furthermore, strip width is also defined by a parametric
function,

w(t) = w0(4(1− d)t2 + 4(d− 1)t+ 1), t ∈ [0, 1] , (4.3)

where w0 is the width of the strip at the beginning and end of the helix, while
d describes a ration of strip width in the beginning of the helix and the strip
width at the center of the cylinder. Particular parameters can be found in
table A.1.

The current density on the modified cylindrical helix is shown in figure A.6a.
Visually, the current density resembles that of the fundamental bound better.
Unfortunately, this modification actually worsened the Q-factor as can be seen
from figure 4.5, the reason most probably being the increased ohmic losses in
the central region of the helix. A question on an optimal parametrization of
a cylindrical helix with which the realizable Q-factor will attain its highest
possible value thus remains opened.

Figure 4.5: Q-factor comparison of the modified cylindrical helix from fig-
ure A.6a and of the original cylindrical helix. The Q-factor corresponding to the
fundamental bound is also shown.
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.....................4.3. Inductor Modifications for Q-factor Enhancement

Contrary to cylindrical helix, if linear spiral was considered as a modification
of a logarithmic spiral, the Q-factor would be increased. This might imply
that the optimal physically realizable inductor is reached by a structure with
a constant strip width and equidistant gap between inductor turns. This
hypothesis can easily be tested on a spherical helix which does not show an
equidistant gap. Would the Q-factor be increased, if the spherical helix was
drawn with equidistant gap between strips? The new parametrization of a
spherical helix reads

r(t) =


a sin(πt) cos(2πft+ ϕ)
b sin(πt) sin(2πft+ ϕ)

− c2 cos(πt)

 , t ∈ [0, 1] . (4.4)

The answer to the question of Q-factor change is unclear, because the mod-
ification decreases Q-factor at smaller electrical sizes ka, while increases
Q-factor at higher electrical sizes, which can be seen from figure 4.6. It is
also important to mention that comparing with the fundamental bound, this
change is minor. Current density on the modified spherical helix1 is plotted
in figure A.6b and particular parameters used in the evaluation can be found
in table A.1.

Figure 4.6: Q-factor comparison of the modified spherical helix from figure A.6a
and of the original spherical helix. The Q-factor corresponding to the fundamental
bound is also shown.

The inductor modifications, which applied in order to increase its Q-factor,
1In this particular realization, the strip does not terminate on the z axis, because the

curvature near this axis is immense, which invalidates mesh by triangles overlap.
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4. Results .......................................
has been unsuccessful a decreases it. This implies the difficulty of geometrical
optimization. It indicates a necessity of physical understanding of effects
decreasing the Q-factor of realistic inductors. Future work would be focused
on this topic.

Another interesting question touched upon this section is a dependence of
fundamental bound on proportions of underlying structure. In this respect,
only the Q-factor bound of a sphere is universal. In the case of say cylinder, it
is not clear what the best ratio of cylinder’s diameter to its length which would
maximize Q-factor bound is? In order to find an answer, golden section search
method [24, 25] has been applied to this optimization task. The resulting
optimal ratio2 of cylinder’s diameter to its length is 1.26. The fundamental
bound on Q-factor of a cylinder for a varying ratio of diameter and length is
plotted in figure 4.7.

Figure 4.7: Q-factor bound of a cylinder in dependence on cylinder’s diameter
d and length l for ka = 10−3.

2As a further work, two dimensional golden section search [25] could be applied to find
the optimal strip width and number of turns for the found optimal ratio in an effort to
reach probably the best cylindrical helix inductor.

26



Chapter 5

Conclusion

The aim of the thesis was to get acquainted with quality factor of air cored
inductors and the way of their computation and optimization. The task was
divided into individual steps.

Firstly, the computational tools of mathematical physics such as surface
electric field integral equation (EFIE), method of moments (MoM) and
quadratic programming were introduced and subsequently used to evaluate
Q-factor of an inductor. Quadratically constrained quadratic program was
used to find fundamental bounds of provided Q-factors.

Second, tools for generating triangular mesh of common inductor structures
were developed.

Lastly, Q-factors of common air-cored inductors were evaluated and com-
pared with corresponding fundamental bounds. This induced several im-
portant questions with respect to the improvement of realizable inductors.
Geometric optimizations attempts to achieve this improvement were unsuc-
cessful.

Future work would be focused on triangularization of parametric surfaces.
The idea is to transform the surface from a three dimensional space to a
plane, mesh it in two dimensional space and subsequently map the mesh
back to three dimensions. The triangularization should be done with respect
to surface parameter derivatives, which give relation between distance in
plane and in original surface, to ensure better quality of mapped mesh. This
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5. Conclusion......................................
idea has been already applied to triangularization of torus. Another field
of interest for future work would be geometrical optimization of inductors.
Of primary importance in this task is a physical understanding of what
effects degrades the performance of realistic inductors when compared to
corresponding fundamental bounds. Finally, an interesting field of study
concerns Q-factor bound in presence of volumetric current densities.
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Appendix A

Current densities

This appendix contains current densities on structures used in chapter 4,
inductor’s parameters are stated in table A.1.

Inductor struct. Fig. a b h f ϕ w1

[mm] [mm] [-,mm] [-] [rad] [mm]
Cylindrical helix2 A.1a 0.50 0.50 0.87 6 0 0.13
Spherical helix A.2a 1.00 1.00 1.00 7 0 0.30
Toroidal helix A.3a 2.00 2.00 1.00 12 0 0.50
Linear spiral3 A.4a 0.88 0.88 0.15 4 0 0.12
Logarithmic spir.4 A.4b 0.20 1.55 - 3 0 0.12
Rectangular spir. A.5a 1.00 1.00 0.20 5 - 0.07
Modified cyl. h.5 A.6a 0.50 0.50 0.83 7 0 [0.05,0.17]
Modified sph. h. A.6b 1.00 1.00 1.00 7 0 0.40

Table A.1: Parameters of the realized inductors.

1w is the width of strip.
2Cylindrical helix’s total high is h + w = 1 mm.
3Linear spiral total outer radius is 1 mm.
4Logarithmic spiral total outer radius is aeb + w/2 .= 1 mm.
5Modified cylindrical helix’s total high is h + w0 = 1 mm and its width w(t) is in the

interval for all t ∈ [0, 1].
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A. Current densities ...................................

(a) : Cylindrical helix. (b) : Bound.

Figure A.1: Current density on a cylinder for ka = 10−3.

(a) : Spherical helix. (b) : Bound.

Figure A.2: Current density on a sphere for ka = 10−3.

(a) : Toroidal helix. (b) : Bound.

Figure A.3: Current density on a torus for ka = 10−3.
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(a) : Linear spiral. (b) : Logarithmic spiral.

(c) : Bound.

Figure A.4: Current density on a circle for ka = 10−3.
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A. Current densities ...................................

(a) : Rectangular spiral. (b) : Bound.

Figure A.5: Current density on a rectangle for ka = 10−3.

(a) : Modified cylindrical helix. (b) : Modified spherical helix.

Figure A.6: Current density on modified helices for ka = 10−3.
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Appendix B

Provided MATLAB Functions and Scripts

B.1 Important Functions and Scripts

. strip2mesh\mesh.strip_mesh.m generates triangular mesh along a strip de-
fined point by point, an example of its use is shown in strip2mesh\pbp_def.m.. strip2mesh\own_parametric_strip.m generates triangular mesh along a
strip defined by parametric functions, an example of its use is shown in
strip2mesh\parametric.m, which is shown in listing 3.1.. strip2mesh\curve_strip_to_mesh.m generates triangular mesh along pre-
defined strips, which are shown in section 3.3, an example of its use is
shown in strip2mesh\disp_strip.m.. strip2mesh\toroid.m generates triangular mesh on a toroid.. inductor_Qfactor.m computes all defined Q-factors for realizable inductor
structures and Q-factor Q3 bound for corresponding structure. The
triangular meshes and position of delta gap voltage supply are prepared
in mat-files. Figures 4.2 – 4.6 have been created by combination of its
outputs.. cyl_opt.m computes the Q-factor Q3 fundamental bound accordingly to
the cylinder’s ratio of diameter and length, subsequently it generates the
chart in figure 4.7.. cyl_opt_gold.m computes optimal ratio of cylinder’s diameter to its length
by golden section search method [24, 25], whose result is in section 4.3.
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B. Provided MATLAB Functions and Scripts ........................
B.2 Content of CD-ROM

. strip2mesh.+curves. +specifications
. bridge_generator.m
. curve_control.m
. curve_definitions.m
. curve_step.m
. equidistant_parameter.m. cylindrical_helix.m. linear_spiral.m. logarithmic_spiral.m. rectangular_spiral.m. spherical_helix.m. toroidal_helix.m.+mesh. mesh_correction.m. strip_mesh_generator.m.+utilities. norm_row.m. curve_strip_to_mesh.m. own_parameteric_strip.m. disp_strip.m. parametric.m. pbp_def.m. toroid.m. cyl_opt_fun.m. cyl_opt.m. cyl_opt_gold.m. inductor_Qfactor.m. cylinder.mat. cylinder3turns.mat. linear.mat
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. logarithmic.mat.modCyl.mat.modSph.mat. rectangle.mat. sphere.mat. torus.mat
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