
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 10, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: WebAssembly Approach to Client-side Web Development using Blazor Framework

 Student: Bc. Matěj Lang

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The majority of applications we use every day shifted from the desktop to the web. And with this
transition, there was an explosion of approaches to the client-side development. The most recent
advancement is a WebAssembly technology which allows executing low-level code in a web browser.
A goal of this thesis is to create a proof-of-concept application using this technology and evaluate its
strengths and weaknesses.

Steps to take:

Review the WebAssembly technology and the Blazor framework.
Compare Blazor to the state-of-the-art client-side web development approaches.
Design and create a proof-of-concept application in Blazor.
Evaluate Blazor's strengths and weaknesses and its readiness to develop modern web applications.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Web and Software Engineer-
ing

Master’s thesis

WebAssembly Approach to Client-side

Web Development using Blazor Framework

Bc. Matěj Lang

Supervisor: Ing. Marek Skotnica

7th May 2019

Acknowledgements

In this place I want to thank Bc. Katerina Čerńıková and Mgr. Jakub Klement
for language corrections. I want to thank my master thesis supervisor - Ing.
Marek Skotnica for his patience and advice. CTU, Faculty of Information
Technology also deserve thanks for valuable information and education I got
there. Last but not least I want to thank the management of High school and
College of Applied Cybernetics Ldt. for the possibility to realize the research
here.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 7th May 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Matěj Lang. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Lang, Matěj. WebAssembly Approach to Client-side Web Development using
Blazor Framework. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2019.

Abstrakt

V současné době je mnoho aplikaćı tvořených jako webové aplikace, které
se snaž́ı poskytnout uživateli stejný nebo lepš́ı zážitek jako desktopové ap-
likace. V této diplomové práci jsou shrnuty hlavńı frameworky využ́ıvané pro
tvorbu webových aplikaćı s d̊urazem na jejich komparaci z hlediska náročnosti
učeńı pro programátora, náročnosti na RAM a velikosti stránek stahovaných
webovým prohĺıžečem a též z hlediska popularity v rámci vývojářské komunity.
Hlavńım tématem této práce je technologie WebAssembly s použit́ım Blazor
frameworku pro tvorbu webových stránek. V této práci jsou tedy zkoumány
následuj́ıćı frameworky: Blazor, Angular a Vue.js.

Kĺıčová slova Blazor, MVC u klienta, Webové technologie, Asp.Net, .Net,
.Net Core

Abstract

Nowadays there are many applications developed as web applications which
aspire to provide same or better user experience as desktop applications. Aim
of this diploma thesis is to summarize the most common frameworks used
for web application development and compare them with emphasis on their
learning difficulty, RAM requirements, browser downloading size of web pages

ix

and popularity around community of developers point of view. The core of this
thesis is focused on WebAssembly technology usage with Blazor framework
for web applications development. Examined frameworks in this thesis are:
Blazor, Angular and Vue.js.

Keywords Blazor, Client-side MVC, Web technology, Asp.Net, .Net, .Net
Core

x

Contents

Introduction 1

Motivation and Objectives . 1

Structure . 2

1 State Of The Art Client-Side frameworks 3

1.1 Common features . 4

1.2 Angular . 6

1.3 React . 10

1.4 VueJS . 13

1.5 Summary . 15

2 Review of WebAssembly and Blazor 19

2.1 WebAssembly . 19

2.2 Blazor . 22

3 SPA, MVC and Pages comparison 31

3.1 SPA . 31

3.2 MVC . 32

3.3 Pages . 32

3.4 Summary . 33

4 Proof of Concept - Blazor WebAssembly Classbook 35

4.1 Assignment . 35

4.2 Implementation . 35

4.3 Screenshots . 46

4.4 Diagrams . 50

4.5 Testing . 55

4.6 Summary of this concept . 63

4.7 Summary of the benefits and potential of the Blazor 63

xi

Conclusion 65

Bibliography 67

A Contents of enclosed CD 73

xii

List of Figures

1.1 Github stars comparison of framework 3
1.2 History values of github stars . 4

2.1 Describe combination of many file into one applicatiton page . . . 22
2.2 Timing of client-side Blazor. 26
2.3 Architecture of client-side Blazor. 27
2.4 Timing of server-side Blazor. 28
2.5 Architecture of server-side Blazor. 29

4.1 Comparison of Docker architecture and Virtual machine (VM) ar-
chitecture. (source: Microsoft Docs website[1]) 37

4.2 Scrennshot of NSwagStudio . 44
4.3 Screenshot of timetable . 47
4.4 Screenshot of drawer . 48
4.5 Screenshot of attendance . 49
4.6 Screenshot of lesson info . 50
4.7 Old database from bachelor thesis[2] 51
4.8 Entities in Entity framework (EF) 52
4.9 Database diagram . 53
4.10 User flow diagram . 54
4.11 Google forms questionnaire - first part 55
4.12 Google forms questionnaire - second part for teachers 56
4.13 Google forms questionnaire - second part for developer 57
4.14 Google forms questionnaire - last part. 58

xiii

List of Tables

1.1 Table showing summary of Angular 7
1.2 Summary of compared framework 17

3.1 Summary of architecture . 33

4.1 . 59
4.2 Raw survey data for develpper . 60
4.3 Raw survey data for teacher group 61
4.4 Blazor vs. other web applications 62

xv

Introduction

Thanks to technological progress, it is possible to create most of the applica-
tions as the web.[3] Web applications provide remote access to data and better
security. These applications also enable cooperation and simultaneous work
of several people on the same data. For simplification of web applications de-
velopment, there are emerging many web technologies which are transferring
experience from desktop application development. To support these new tech-
nologies there are also emerging new standards which are being implemented
by browser creators. This implementation is based on the match of the newly
proposed technology with an internal policy of the implementer. If there is
a new standard implemented by the significant majority of the browsers it
enables the use of this new technology in the production environment of the
web application. One of these technologies is WebAssembly which enables
triggering of binary instructions on a virtual machine. This means faster ex-
ecution of operation thanks to the compilation from high-level programming
language to binary form. Single Page Application (SPA)

Last part of this thesis contains proof of concept application for learn-
ing support with Blazor framework. This application extends my bachelor’s
thesis[2] and use Blazor framework.

Motivation and Objectives

Nowadays most of the applications are developed as SPA with the usage of one
of the Client-Side frameworks which will be evaluated in this thesis. These
frameworks have to be used in JS language or in other languages which are
compiled to JavaScript (JS) as TypeScript. This thesis is focused on Blazor
for client-side web application development. This framework is based on
WebAssembly technology which allows running application and library writ-
ten in C# Language directly in the browser. Blazor framework uses a modern
approach to web application development. For example SPA creation and
also brings simplification to programmers who can use C# for developing web

1

Introduction

application behavior both backend and GUI. The aim of this thesis is to de-
scribe the Blazor framework and summarize use in production environment.
This thesis will also include the development of web application in Blazor
framework and problem analysis.

Structure

This thesis is organized as follows:

• In chapter 1 of this thesis, the properties of the three most popular client-
side frameworks are summarized. For each of the selected frameworks,
the following properties are evaluated:

i Learning curve of technology, language and structure of selected
framework.

ii Size needed to be downloaded to the browser to ensure proper func-
tionality of this framework.

iii Existence of developer tools to support the creation of the applic-
ation using these frameworks.

iv The possibility of implementing the framework within the existing
application and customizing user experiences.

v What languages are used with these frameworks.

• In chapter 2 of this thesis is focused on WebAssembly and Blazor usab-
ility for developing web application.

• In chapter 3 of thesis there is comparison of web application development
in SPA, Model-View-Controller (MVC) and Pages technology.

• In chapter 4 of thesis is described using Blazor technology to create
Web application. This sample application will be focused on support of
agenda processes in education. End user of this application will be a
teacher.

2

Chapter 1

State Of The Art Client-Side
frameworks

Based on these articles [4], [5] and Github stars [6] values shown in figure 1.1
below are the most popular web frameworks Vue.js, React and Angular. In
following figure 1.2 history of values for Vue.js, React, Angular and Blazor
is displayed. Stars evaluation for Blazor is disorted because this framework
is really new and doesn’t have a significant history of stable versions. This
framework’s code was at beginning of year 2019 moved to aspnet/AspNetCore
repository. Blazor is described below in section 2.2. Each source code in this
chapter is based on Visual Studio template. Components and pages focused
on desplaying the Blazor functionality were developed by the author of this
thesis.

Figure 1.1: Github stars comparison of framework

3

1. State Of The Art Client-Side frameworks

Figure 1.2: History values of github stars

1.1 Common features

Many of web application framework contains common features which is de-
scribed below.

• Templates

• Components

• Routing

• Services

• Dependency injection

1.1.1 Templates

Many web frameworks prepare templating system for developers. There are
two different types of template system based on style for creating a template.

4

1.1. Common features

The first type of template system is based on HTML which is extended with
markup language defined by web framework. This type of template system
is used by ASP.NET MVC, Angular, React JSX, Vue.js and more. These
types of template system is similar, easy to learn and use but need more
cpu time to process template input and complexity of template parser. Some
frameworks compile a template when construction of web application is star-
ted. The second type of template system builds the whole HTML from a
different language. These types of template system create HTML page from
zero. Learning the language for these systems is difficult because they have
different syntax. The languages which are used for creating a template are,
for example, Slim, Haml, Pug and more. These languages are a lightweight
version of HTML and allow to quickly create an HTML page. The names
of HTML tags are preserved but the attributes and contents of the tag are
written in a lightweight form. In the Pictures 1,2,3 there is an example of the
same HTML page in this language.

1.1.2 Components

Components represent single unit which contains templates. During render-
ing Hypertext Markup Language (HTML) page all custom tags are processed
and replaced with the associated template. The component specifies a custom
HTML tag which can be used in other templates. Some frameworks allow
to attach set of styles represented by Cascading Style Sheets (CSS) or lan-
guage which is compiled into CSS to Component. Another important part of
component is the logic associated with a component. Logic can be written in
many languages. Component can be nested in another component to create a
larger functional unit.

1.1.3 Routing

Routing is technology to map Uniform Resource Locator (URL) path to page.
In many framework routing has capability of mapping parts of URL segment
to property or variable. When URL is requested.

1.1.4 Services

Services contain function, event, properties, constants and other future which
is needed by web application. It can represent database connection, Api cli-
ent, state storage and many more. Services are shared through the whole web
application for easy communication between any component in application.
Any component in application can hook on event which is provided by ser-
vice. Some frameworks provide service through dependency injection which is
described below. Other frameworks use Service store which provides service
to component.

5

1. State Of The Art Client-Side frameworks

1.1.5 Dependency injection

Dependency injection is a technique used in object programming. Where one
object can be passed to another. Object which is passed is called service and is
passed to client. Where client is a method or an object requiring service from
dependency injection. Dependency injection contains three types of service:
Transient, Scoped and Singleton.

1.2 Angular

Angular technology has two generations. The first generation was angularJS.[7]
Second generation formally known as Angular2.[8] This framework is de-
veloped by Google INC and is the most popular client-side framework for
developing SPA which is designed for the large web applications. Angular is
written in TypeScript language. The architecture of this framework is sep-
arated into Component, Modules, Services, and Routing. The component
in angular contains functionalities and view templates which are a combina-
tion of HTML and Angular markup. Angular markup provides data binding
between HTML and functionalities which are scripted in TypeScript. Angular
also contains modules which group multiple components into a single function
unit. Modules can contain a component, services and another module in one
unit. Angular module declare compilation context contains all components
and service.

Angular is a powerful tool and framework usable to create application as
Gmail or Google Docs, but learning this technology is difficult because it has
many features which developer needs to know and learn before he starts using
this technology.[9] Beginner developer needs to learn JavaScript for Node.js
and web application. Then developer must learn Node.js Command line in-
terface (CLI) for creating, compiling and starting application. Node.js con-
tains package manager named Node.js package manager (NPM). Angular tool
and framework downloaded trought NPM contains Angular CLI. Another ne-
cessary knowledge is Typescript language. It is also necessary to know the
standard languages for creating websites such as HTML, CSS and JS.

In Angular version 7 size about 86KB compressed by gzip.[10]

Angular has many developer tools which can help in developing and de-
bugging web application. For example Angular Augury [11] is an extension
to web browser which can inspect component tree. Angury can log event and
fire any event defined in component. With this extension developer can trace
dependency injection.

Angular provides simplification to modifying Document object model (DOM).
For example:

• Rendering content of variable in Angular template using {{ variable }}
directive.

6

1.2. Angular

• Render collection of items using *ngFor attribute.

• Event binding with attribute (click)=”method()”

• Two-way binding with tag attribute [(ngModel)]=”variable”

Angular is a colossal tool and technology usable to create large web applic-
ation but implementing angular in existing application will be complicated.
Angular has complex architecture whose manual handling is difficult. Sum-
mary of Angular is showed in section 1.2.

Learning curve High

Size ∼86KB

DevTools Angular Augury

Languages TypeScript

Table 1.1: Table showing summary of Angular

1.2.1 Example of Todos

There is simple hello world template created from visual studio. Only explain-
ing code is show in source codes below.

1 <!doctype html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <title>Angular</title>

6 <base href="/">

7

8 <meta name="viewport" content="width=device-width, initial-scale=1">

9 <link rel="icon" type="image/x-icon" href="favicon.ico">

10 </head>

11 <body>

12 <app-root>Loading...</app-root>

13 </body>

14 </html>

Source Code 1.1: This is base html page.

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-root',

5 templateUrl: './app.component.html'

6 })

7 export class AppComponent {

7

1. State Of The Art Client-Side frameworks

8 title = 'app';

9 }

Source Code 1.2: First component contains app tag definition.

1 <body>

2 <app-nav-menu></app-nav-menu>

3 <div class="container">

4 <router-outlet></router-outlet>

5 </div>

6 </body>

Source Code 1.3: Template for app tag.

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';

5 import { RouterModule } from '@angular/router';

6

7 import { AppComponent } from './app.component';

8 import { NavMenuComponent } from './nav-menu/nav-menu.component';

9 import { HomeComponent } from './home/home.component';

10 import { CounterComponent } from './counter/counter.component';

11 import { FetchDataComponent } from './fetch-data/fetch-data.component';

12

13 @NgModule({

14 declarations: [

15 AppComponent,

16 NavMenuComponent,

17 HomeComponent,

18 CounterComponent,

19 FetchDataComponent

20],

21 imports: [

22 BrowserModule.withServerTransition({ appId: 'ng-cli-universal' }),

23 HttpClientModule,

24 FormsModule,

25 RouterModule.forRoot([

26 { path: '', component: HomeComponent, pathMatch: 'full' },

27 { path: 'counter', component: CounterComponent },

28 { path: 'fetch-data', component: FetchDataComponent },

29])

30],

31 providers: [],

32 bootstrap: [AppComponent]

33 })

34 export class AppModule { }

8

1.2. Angular

Source Code 1.4: Module for app component.

1 import { Component,Input } from '@angular/core';

2

3 @Component({

4 selector: 'app-todo-component',

5 templateUrl: './todo.component.html'

6 })

7 export class TodoComponent {

8 @Input() item: object;

9 public onChange(event) {

10 debugger;

11 }

12 }

Source Code 1.5: Todo tag represented by todo component.

1 <div>

2 <input style="display: inline" type="checkbox" [(ngModel)]="item.done" />

3 <div style="display: inline" [ngStyle]="{ 'display': 'inline',

'text-decoration': (item.done ? 'line-through' : '') }">↪→
4 {{item.description}}

5 </div>

6 </div>

Source Code 1.6: Template for Todo component.

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-todos-component',

5 templateUrl: './todos.component.html'

6 })

7 export class TodosComponent {

8 public items = [{description:"Hello",done:false}];

9 public addItem(description: string) {

10 this.items.push({ description: description, done: false });

11 }

12 public f(item) {

13 return !item.done;

14 }

15 }

Source Code 1.7: Todos page definition.

9

1. State Of The Art Client-Side frameworks

1 <h1>Todos</h1>

2

3 <div>

4 <app-todo-component *ngFor="let item of items" [item]="item">

5 </app-todo-component>

6 <input #newItem (keyup.enter)="addItem(newItem.value)"

(blur)="addItem(newItem.value); newItem.value='' ">↪→
7 <button (click)="addItem(newItem.value)">Add</button>

8 {{ items.filter(f).length }}/{{items.length}}

9 </div>

Source Code 1.8: Template for Todos page.

1.3 React

React is JavaScript library for building User interface (UI). React is developed
by Facebook Inc. Part of React is the possibility to use the better template
system called JSX. JSX is XML like syntax used in JavaScript file. JSX is
described below. In many ways, React is similar to Angular as component-
based, designed for large application and when using JSX needs to pre-process
JavaScript file.

There are two methods of pre-procesing(compiling) JSX. The first method
is similar to Angular, so that Node.js is used to compile JSX into plain Javas-
crip. The second method is based on runtime compilation in browser. For
runtime compilation can be used Babel or other runtime compilation that has
React JSX capabilities.[12]

React learning the curve is flatter than in Angular. Developer using An-
gular need to learn only JavaScript, HTML and CSS.

With React is almost every time used Redux state management. According
to Redux website[13] ”Redux is a predictable state container for JavaScript
apps. It helps the developer to write applications that behave consistently,
run in different environments (client, server, and native), and are easy to test.
On top of that, it provides a great developer experience, such as live code
editing combined with a time traveling debugger.”

1.3.1 Example of Todos

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1,

shrink-to-fit=no">↪→
6 <meta name="theme-color" content="#000000">

7 <base href="%PUBLIC_URL%/" />

10

1.3. React

8 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">

9 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">

10 <title>React</title>

11 </head>

12 <body>

13 <noscript>

14 You need to enable JavaScript to run this app.

15 </noscript>

16 <div id="root"></div>

17 </body>

18 </html>

Source Code 1.9: Main html file.

1 import React, { Component } from 'react';

2 import { Route } from 'react-router';

3 import { Layout } from './components/Layout';

4 import { Home } from './components/Home';

5 import { Todos } from './components/Todos';

6 import { Counter } from './components/Counter';

7

8 export default class App extends Component {

9 static displayName = App.name;

10

11 render () {

12 return (

13 <Layout>

14 <Route exact path='/' component={Home} />

15 <Route path='/counter' component={Counter} />

16 <Route path='/todos' component={Todos} />

17 </Layout>

18);

19 }

20 }

Source Code 1.10: App component.

1 import React, { Component } from 'react';

2 import { Todo } from './Todo';

3

4 export class Todos extends Component {

5 static displayName = Todos.name;

6

7 constructor (props) {

8 super(props);

9 this.state = { todos: [{done:false,description:"Ahoj"}],

newDescription:"" };↪→
10 this.addNewTodo = this.addNewTodo.bind(this);

11 this.handleChange = this.handleChange.bind(this);

11

1. State Of The Art Client-Side frameworks

12 }

13

14 addNewTodo() {

15 const newTodos = this.state.todos.slice();

16 newTodos.push({ done: false, description: this.state.newDescription

});↪→
17 this.setState({

18 todos: newTodos,

19 newDescription: ""

20 });

21 }

22 handleChange(event) {

23 this.setState({ todos: this.state.todos.slice(), newDescription:

event.target.value });↪→
24 }

25

26 render() {

27 const items = [];

28 for (let i in this.state.todos) {

29 items.push(<Todo key={i} value={this.state.todos[i]}></Todo>);

30 }

31 return (

32 <div>

33 <div>

34 {items}

35 </div>

36 <input type="text" value={this.state.newDescription}

onChange={this.handleChange} />↪→
37 <button onClick={this.addNewTodo}>Add</button>

38 {this.state.todos.length}/{this.state.todos.length}

39 </div>

40);

41 }

42 }

Source Code 1.11: Todos page definition.

1 import React, { Component } from 'react';

2

3 export class Todo extends Component {

4 static displayName = Todo.name;

5

6 constructor (props) {

7 super(props);

8 this.state = { done: props.value.done, description:

props.value.description };↪→
9 this.handleChange = this.handleChange.bind(this);

10 }

11

12 handleChange(event) {

13 debugger;

12

1.4. VueJS

14 this.setState({ done: event.target.checked, description:

this.state.description });↪→
15 }

16

17 render() {

18

19 return (

20 <div>

21 <input style={{ display: 'inline' }} type="checkbox"

value={this.state.done} onChange={this.handleChange} />↪→
22 <div style={{ display: 'inline', 'textDecoration':

(this.state.done ? 'line-through' : '') }}>↪→
23 {this.state.description}

24 </div>

25 </div>

26);

27 }

28 }

Source Code 1.12: This is Todo component.

1.4 VueJS

Vue.js is an incrementally adoptable ecosystem that scales between a library
and a full-featured framework.[14] This simple progressive framework is suit-
able for building reactive UI. This framework adopts best practice from other
frameworks - easy template creation, UI separated to components and has
virtual DOM. Vue.js can be used without node.js and any compilation on
server-side or client-side. Development web applications using vue.js is much
simplier then Angular and React. This framework can be added to existing
frameworks incrementally.

Beginner developer who wants to use Vue.js must only know HTML. CSS
and JS.

1.4.1 Example of Todos

1 @{

2 ViewData["Title"] = "Home Page";

3 }

4

5 <div id='app-root'>Loading...</div>

6

7 @section scripts {

8 <script src="~/dist/main.js" asp-append-version="true"></script>

9 }

Source Code 1.13: Main html file.

13

1. State Of The Art Client-Side frameworks

1 import Vue from 'vue';

2 import { Component } from 'vue-property-decorator';

3

4 @Component({

5 components: {

6 MenuComponent: require('../navmenu/navmenu.vue.html'),

7 TodoComponent: require('../todos/todo.vue.html'),

8 }

9 })

10 export default class AppComponent extends Vue {

11 }

Source Code 1.14: App component file.

1 import Vue from 'vue';

2 import { Component, Prop } from 'vue-property-decorator';

3

4 @Component

5 export default class TodoComponent extends Vue {

6 @Prop() item: any;

7 }

Source Code 1.15: Definition of todo component.

1 <template>

2 <div>

3 <input style="display: inline" type="checkbox" :checked="item.done"

@change="(t)=>{item.done=t.target.checked}" />↪→
4 <div :style="{ display: 'inline', 'textDecoration': (this.item.done ?

'line-through' : '') }">↪→
5 {{item.description}}

6 </div>

7 </div>

8 </template>

9

10 <script src="./todo.ts">

11 </script>

Source Code 1.16: Definition template for todo component.

1 import Vue from 'vue';

2 import { Component } from 'vue-property-decorator';

3

4 @Component({

5 components: {

6 TodoComponent: require("./todo.vue.html")

14

1.5. Summary

7 }

8 })

9 export default class TodosComponent extends Vue {

10 items = [{ description: "Hello", done: false }];

11 newItem = { description: "", done: false };

12

13 public addItem(description: string) {

14 this.items.push({ description: description, done: false });

15 this.newItem.description = "";

16 this.newItem.done = false;

17 }

18 public f(item: any) {

19 return !item.done;

20 }

21 }

Source Code 1.17: Definition of todos page.

1 <template>

2 <div>

3 <h1>Todos</h1>

4

5 <div>

6 <todo-component :key="item" v-for="item in this.items"

:item="item">↪→
7 </todo-component>

8 <input @keyup.enter="addItem(newItem.description)"

v-model="newItem.description">↪→
9 <button @click="addItem(newItem.description)">Add</button>

10 {{ this.items.filter(f).length }}/{{this.items.length}}

11 </div>

12 </div>

13 </template>

14

15 <script src="./todos.ts">

16 </script>

Source Code 1.18: Definition template for todos page.

1.5 Summary

Table below 1.2 shows summary of web development frameworks.
Learning curve is a metric which defines how hard is to learn something.
In this thesis is the object of learning specific web application development
framework. For purpose of this metric were defined three stages of learning:

• Easy - simple to start. This stage can be done in ∼hour.

15

1. State Of The Art Client-Side frameworks

• Medium - there is a need to install some prerequisites and learn archi-
tecture of the framework.

• Hard - there is a need to learn many new features and install prerequis-
ites.

Size of the application is a value which is equal to the quantity of bytes which
must be downloaded from the server to the browser while the application is
starting. This value is recorded by Chrome browser with disabled cache and
cleared all site data. This value is an average from 5 attempts. Transfer
compression is not applied on this data. In real application is library and
assets cached in browser and only changed data are downloaded.

RAM usage is a metric describing how many bytes are consumed by tab.
To measure this value is Chrome browser with task manager used. This value
is an average from 5 new tabs.

Browser developer tool shows name of tool to help developer to find bugs
in the component or other part of the application.

Github stars is simple metric which shows how many github users like
some repository or topic.[6] In the following table 1.2 are repository stars
used. History of this metric is shown in the figure 1.2 below.

Another source of data for comparison is last Stack Overflow annual De-
veloper Survey. ”Stack Overflow’s annual Developer Survey is the largest and
most comprehensive survey of people who code around the world. Each year,
we field a survey covering everything from developers’ favorite technologies to
their job preferences.”[15]

16

1.5. Summary

Angular React Vue.js Blazor

Learning
curve

Hard1 Medium Easy Medium

Size
of

application
4.2MB 2.2MB 1.1MB 5.2MB

RAM
usage

51MB 39MB 32MB 156MB

Broser
developer

tool

Angular
Augury

React
developer

Tools

Vue.js
devtools

None 2

Main
language

TypeScript JavaScript JavaScript C#

Github
stars

47541 128007 137056 7920

Stack
overflow
survey

Broadly used 30.7% 31.3% 15.2% Unknown3

Loved 57.6% 74.5% 73.6% Unknown3

Wanted 12.2% 21.5% 16.1% Unknown3

Included
in

base
framework

Dependency
injection

Yes No No Yes

Routing Yes No No Yes
Template
rendering

Yes Yes Yes Yes

1 is hard because there are many included features which developer must known
and use while web application development. According to Fluin (2019) [16] this
difficulty may be removed in Angular version 8.

2 there is Visual Studio and Chrome developer tools but it is not comparable to
each other.

3 value is unknown because there is no data for evaluation

Table 1.2: Summary of compared framework

17

Chapter 2

Review of WebAssembly and
Blazor

2.1 WebAssembly

WebAssembly[17] is designed for writing modern web application. WebAssembly
is standardized by World Wide Web Consortium (W3C) and fis supported
by all major web browsers. WebAssembly is a compact bytecode instruc-
tion format which can be run in web browser. WebAssembly batecode is
run in Stack-based virtual machine which is included in web browser. Devel-
opment of WebAssembly technology started in 2015. First preview version
of WebAssembly was released on March 2017. The first release is focused
on writing c/c++ source code and compiling to WebAssembly (WASM) byte
code. In next WebAssembly release support of Garbage Collection was added.
Support of Garbage Collection is necessary for higher programming languages
such as Java, C# and more. Section 2.1.3 contains simple example of a code
which prints ”Hello world” into browser debug console. This is the simpli-
est program that can be written and it shows how WebAssembly works. In
section 2.1.4, compilation and combination of many languages to create func-
tional application with web assembly is described.

2.1.1 Use cases

• Audio video processing

• Games

• Virtual reality (VR)

• Machine learning

• Other application where hight performance required

19

2. Review of WebAssembly and Blazor

2.1.2 Pros and cons

Acording to WebAssembly Core Specification there are some pros and cons of
WebAssembly.[18]

+ Speed of execution code is almost as fast as native code performance.[19]

+ Safety of running the code is ensured by a sandboxed virtual machine.

+ Hardware independence provides portability to modern architectures
and platforms such as desktop, mobile devices and embedded systems.

+ Platform-independence provides ability to run in stand-alone Virtual
machine (VM), embedded in browsers, or integrated in other environ-
ments.

− Speed of development web application is much smaller than in JS
worse because there is the worst debugging tool and therefore, compila-
tion is needed.

− Cannot manipulate with DOM directly from WebAssembly. For
DOM manipulation JS Interop must be used.

2.1.3 Hello world example

Simple Hello World application in C and webAssembly. This example can by
tested on WebAssembly studio[20].

1 <body>

2

3 <script src="./main.js"></script>

4 </body>

Source Code 2.1: This is part of index.html

1 #define WASM_EXPORT __attribute__((visibility("default")))

2

3 /* External function which is implemented in JavaScript. */

4 extern void putstr_js(char* str,char count);

5

6 /* simple function which is exported to JavaScript. */

7 WASM_EXPORT int main(void) {

8 putstr_js("hello world",11);

9 }

Source Code 2.2: This is main file for compilation

20

2.1. WebAssembly

1 (module

2 (type $t0 (func (param i32 i32)))

3 (type $t1 (func))

4 (type $t2 (func (result i32)))

5 (import "env" "putstr_js" (func $putstr_js (type $t0)))

6 (func $__wasm_call_ctors (type $t1))

7 (func $main (export "main") (type $t2) (result i32)

8 i32.const 1024

9 i32.const 11

10 call $putstr_js

11 i32.const 0)

12 (table $T0 1 1 anyfunc)

13 (memory $memory (export "memory") 2)

14 (global $g0 (mut i32) (i32.const 66576))

15 (global $__heap_base (export "__heap_base") i32 (i32.const 66576))

16 (global $__data_end (export "__data_end") i32 (i32.const 1036))

17 (data (i32.const 1024) "hello world\00"))

Source Code 2.3: This is compiled main.c into text version WASM

1 let x = '../out/main.wasm';

2

3 let instance = null;

4 let memoryStates = new WeakMap();

5

6 let s = "";

7 fetch(x).then(response =>

8 response.arrayBuffer()

9).then(bytes =>

10 WebAssembly.instantiate(bytes, {

11 env: {

12 putstr_js: function (c,count) {

13 let s=String.fromCharCode.apply(null, new

Uint8Array(instance.exports.memory.buffer).slice(c,c+count));↪→
14 console.log(s);

15 }

16 }

17 })

18).then(results => {

19 instance = results.instance;

20 document.getElementById("container").textContent = instance.exports.main();

21 }).catch(console.error);

Source Code 2.4: This is JavaScript main.js

2.1.4 WebAssembly compilation process

The source code of the program which is meant to be used in the browser
must first be compiled into a WebAssembly. This compiled code is stored in

21

2. Review of WebAssembly and Blazor

a binary form that is then downloaded to the browser. It is then linked to the
browser using WebAssembly.instantiate shown in source code 2.4.

HTML

CSS

Javascript

C/C++/Others Document
Object
Model

Javascript
Virtual machine Compiler

Wasm
byte code

Javascript
Compiler

Browser

Figure 2.1: Describe combination of many file into one applicatiton page

2.2 Blazor

Blazor is an experimental .NET web framework using C#, HTML and Razor
that runs on WebAssembly in the browser.[21] This framework is designed and
created by Microsoft. Blazor is SPA framework for developing interactive user
friendly application. Blazor’s name is a combination of Browser and Razor.
Razor is Markup Language extension used for web templating. Razor allows
to embed C# or VB.Net into web pages.

Blazor provides Common Intermediate Language (CIL) runtime to browser.
In this runtime, any .Net Standard library can be run such as Newtonsoft.Json
(JavaScript Object Notation (JSON) serialize/deserialize library), EPPlus
(create or modify Excel spreadsheets) and all other library. [22] Library sent
to browser is .Net Standard Dll file it is not recompiled or pre-processed to a
different language.

Any dll compiled as .Net Standard library is runtime loadable. This feature
provides customization of downloaded size depending on needed components
and functionalities. But this feature could be potentially security risk because
it is vulnerable to malicious code to client browser injections. This is the same
as Cross-site scripting (XSS) but on high level programming language.

Blazor contains all features used by most web application.

22

2.2. Blazor

• Parameters

• Event handling

• Data binding

• Routing

• Dependency injection

• Layouts

• Templating

Even though this thesis is focused on client-side Blazor technology there
is another alternative to run Blazor on server. It is Server-side Blazor and it
is described below in section 2.2.4.

Blazor is component-based technology as well as Angular, React and Vue.js.
Component is defined in Shared folder and written in cshtml or with Code-
Behind. Component file name is used as name of HTML tag.

2.2.1 Example of Todos

In 2.8 was created simple page which contains collection of todo. Todo item
class that is provided in todo component which is shown in 2.9 source code.
Todos pages has url ”/todos” which is defined by @page directive.

In file which is shown below in source code 2.5 is defined app component
and linked Blazor runtime. This component is the main element of the Blazor
application.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8" />

5 <meta name="viewport" content="width=device-width">

6 <title>BlazorTodos</title>

7 <base href="/" />

8 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

9 <link href="css/site.css" rel="stylesheet" />

10 </head>

11 <body>

12 <app>Loading...</app>

13

14 <script src="_framework/components.webassembly.js"></script>

15 </body>

16 </html>

Source Code 2.5: This is main html file.

23

2. Review of WebAssembly and Blazor

App component is simple file containing only router definition. This com-
ponent contains HTML and may also contain other components which will be
placed in all pages in the application.

1 <Router AppAssembly="typeof(Program).Assembly" />

Source Code 2.6: App component define only router.
Listing 2.7 contains layout for all pages in Blazor application. This layout

is combined with page and index.html into HTML document.

1 @inherits LayoutComponentBase

2

3 <div class="sidebar">

4 <NavMenu />

5 </div>

6

7 <div class="main">

8 <div class="content px-4">

9 @Body

10 </div>

11 </div>

Source Code 2.7: Default page layout in MainLayout.cshtml

1 @page "/todos"

2 @using BlazorTodos.Shared

3 <div>

4 @foreach (var t in todos)

5 {

6 <todo Value="@t" OnChangeEvent="@(StateHasChanged)"></todo>

7 }

8 <input type="text" bind="@newDescription" />

9 <button onclick="@(()=> AddNewTodo())">Add</button>

10 @(todos.Count(t=>!t.Done))/@(todos.Count)

11 </div>

12

13 @functions{

14 List<TodoData> todos = new List<TodoData>();

15 string newDescription = "";

16 int i = 0;

17 protected override void OnInit()

18 {

19 todos.Add(new TodoData("Test"));

20 base.OnInit();

21 }

22 private void AddNewTodo()

23 {

24 todos.Add(new TodoData(newDescription));

25 newDescription = "";

24

2.2. Blazor

26 }

27 }

Source Code 2.8: Page contains colection of todo.

1 @using BlazorTodos.Shared

2 <div>

3 <input style="display:inline" type="checkbox" bind="@_done"/>

4 <div

style="display:inline;text-decoration:@(Value.Done?"line-through":"")">@Value.Description</div>↪→
5 </div>

6

7 @functions{

8 private bool _done {

9 get { return Value.Done; }

10 set { Value.Done = value; OnChangeEvent?.Invoke(); }

11 }

12 [Parameter]

13 private TodoData Value { get; set; }

14 [Parameter]

15 private Action OnChangeEvent { get; set; }

16

17

18 }

Source Code 2.9: Todo component
At the beginning of year 2019 Blazor framework was moved from separately

developed source code to main line of ASP.Net Core. This step suggests that
Microsoft believe the potential of Blazor technology.This step prompts that
this framework could be the next step in Web development.During April 2019
Microsoft released Blazor as preview.

One programming language used for all purposes from microcontroller
(NETMF continued by TinyCLR) to browser client-side application (Blazor).

2.2.2 Pros and cons

[23]

+ Speed of execution code is almost as fast as native code performance.

+ Safety of the running code is ensured by a sandboxed virtual machine.

+ Hardware independence provides portability to modern architectures
and platforms such as desktop, mobile devices and embedded systems.

+ .NET Ecosystem existing ecosystem of .NET libraries.

+ Speed of development web application with existing code is rapid.

25

2. Review of WebAssembly and Blazor

− Size of downloaded content to the browser is huge. Size is around 6MB.

− Official state of this technology is experimental and unsupported.

2.2.3 Blazor client-side

In client-side Blazor whole web application is running in browser. The follow-
ing figure 2.2 shows the sequence of browser communication with Blazor and
server. Architecture of client-side Blazor is described in figure 2.3 below. This
architecture is based on running .Net Application on Mono Common Lan-
guage Runtime (CLR). Mono is open-source project providing CLR to Linux
and other platforms including Microsoft Windows.[24] Now is Mono developed
by Xamarin(a Microsoft subsidiary) and .Net foundation. Original author of
Mono project is Ximian.[25] Mono CLR is compiled to WASM.

Figure 2.2: Timing of client-side Blazor.

26

2.2. Blazor

Figure 2.3: Architecture of client-side Blazor.

First scenario shows application which is downloaded to browser and run
offline. There is only one contact with server when the server downloads the
application. After that it can be stored in Random access memory (RAM)
and run without network connection such as Timer application, Clock and
many more.

Second scenario describes regular client-side application with some re-
quests to server. In this scenario asynchronous computing is shown during
waiting for data from server. Network communication is provided by browser
engine.

Client-side Blazor can modify DOM or invoke JS function at any time.
Client-side Blazor provides many benefits:

• Processing on client side reduces the server load.

• No server-side .Net is required.

• Can be run offline without internet connection.

• Graphical user interface (GUI) response is faster in comparison to re-
loading whole page.

2.2.4 Blazor server-side

During its development, Blazor was known as Razor components. It is sim-
ilar to client-side version with only a few differences. First difference is that
WASM is not required. All DOM manipulation is invoked from server. Same

27

2. Review of WebAssembly and Blazor

Blazor application can be run either client-side or server-side. The browser
notifies Blazor with every event which is fired in browser trough SignalR
connection.[26] SignalR is a technology useful for creating stable connection
between server and client. SignalR tries to use many protocols to establish the
connection.[27] Appropriate timing diagram and architecture is shown below
in figure 2.4 and 2.5

Server-side Blazor is not working without stable connection. Server can
control browser over SignalR during established connection. When the con-
nection losts client-script of SignalR it tries to reconnect. The event onclose
is called after four attempts and connection is then lost. The developer must
predict this situation and application must be prepared for this situation.

Figure 2.4: Timing of server-side Blazor.

28

2.2. Blazor

Figure 2.5: Architecture of server-side Blazor.

29

Chapter 3

SPA, MVC and Pages
comparison

According to Microsoft documentation website ([28]) developers should use
SPA architecture when:

• Your application must expose a rich user interface with many features.

• Your team is familiar with JavaScript and/or TypeScript development.

• Your application must already expose an API for other (internal or pub-
lic) clients.

Or developers should use traditional web applications when:

• Your application’s client-side requirements are simple or even read-only.

• Your application needs to function in browsers without JavaScript sup-
port.

• Your team is unfamiliar with JavaScript or TypeScript development
techniques.

3.1 SPA

Single Page Application is modern architecture providing ability to create user
friendly environment. In SPA architecture the whole application is loaded dur-
ing the start. According to technology used in the application all styles,template
and function can be downloaded and cached. After this SPA can run in off-
line mode. When application needs more data it connects to Application
Programming Interface (API) on server and get it.

31

3. SPA, MVC and Pages comparison

3.1.1 Pros and cons

+ Fast reaction on user input

+ Fat client reduce server load

+ Native feeling from application

− Requires broad knowledge before starting the development of ap-
plication

3.2 MVC

Model-View-Controller architecture provide technology to develop large web
applications. This architecture separates application into three parts. Model
part contains business logic which means entities and their logic. Second part
is View. View contains template and code providing render functionality.
And last part is the controller which connects it all together. Every request
is routed through routing process to action in controller. The controller is
selected according to url in the request. Action is a method that contains
data retrieving, processing and invoke rendering (View or data serialization).

3.2.1 Pros and cons

+ Resource oriented architecture - every controller represents one re-
source

+ Complex routing for this architecture

+ Better testability of each part

− Cpu load of server is high because every request must render page

3.3 Pages

Pages are simple web architecture. Page represents one screen of website. In
most cases page has only one route defined as relative path to root of web
folder. Custom routing in pages architecture is not necessary. Page usually
contains a template and logic in one file. There are many programming lan-
guages focused on pages architecture such as PHP, Perl, C# (Web Forms and
now Razor pages) and many more. This architecture is the best approach for
small application which is read only or has simple input form. This architec-
ture can be used as base for SPA. This architecture is not very suitable for
web API application.

32

3.4. Summary

3.3.1 Pros and cons

+ Simple routing for this architecture

+ Easy understanding

+ Fast for creating simple GUI

− Cpu load of server is same as in MVC application

3.4 Summary

SPA MVC Pages

Server
CPU
load

Low High High

Client
CPU
load

High Low Low

Knowledge
requirements1

High Medium Low

Representative

Angular
React+Redux

Blazor
Vue.js

Asp.Net MVC
PHP Nette

Ruby On Rails

Pure PHP

Asp.Net WebForms
Asp.Net Razor Pages

1 Quantity of additional knowledge required

Table 3.1: Summary of architecture

33

Chapter 4

Proof of Concept - Blazor
WebAssembly Classbook

4.1 Assignment

Aim of this chapter is to create replacement of application which is the content
of my Bachelor thesis [2]. Application in the Bachelor thesis is written in Java
for Android. This application cannot be run on Windows, Linux or other
mobile or desktop Operating system (OS). This proof of concept shows the
way how to create multiplatform application in simple programming language
when using modern web trends.

The application will be a replacement for Classbook developed in my bach-
elor thesis[2]. The Classbook is the application which supports daily agenda
in a specific high school in Hradec Králové. According to complexity of pro-
cesses in the school there are many requirements on specific functionalities.
This application must contain functionalities for timetable, classification and
student administration. This application will be designed for teacher. The
teacher needs to have simple, fast and easy to use tool to fill the attendance
form with ability to add delay to those students who will arrive late to the
lesson. Then the teacher needs to be able to add description of the lesson
which is another requirement on the application. The last function of this
application should be student classification so the teacher should be able to
administrate marks in appropriate class in appropriate subject.

4.2 Implementation

The whole application is developed and implemented on Microsoft technolo-
gies. Application is divided into four parts that together create a functional
unit.

The first part is GUI implemented with client-side Blazor. GUI commu-

35

4. Proof of Concept - Blazor WebAssembly Classbook

nicates with API trough Hypertext Transfer Protocol (HTTP)(S) communica-
tion. After application is downloaded to browser all communication is realized
over JSON serialization.

API part is developed as ASP.NET MVC Core application that provides
Create, read, update and delete (CRUD) operation from database to GUI.

Database part is implemented in Microsoft SQL Server.

The last part is communication with Identity provider (IDP).This commu-
nication is mandatory because this application is primarily designed for High
school and college of applied cybernetics Ltd.[29] which has and uses the IDP.
Each part of application is described in detail below. Even though school’s
main language is Czech, native English speakers are also teaching there and
they use the application as well, so it must contain multi-language support.

4.2.1 Docker

Docker is a tool to automate the deployment of applications as portable and
standalone containers that can be run in the cloud or locally. This tool provide
lightweight virtualization. The comparison of Docker and standard VM ar-
chitecture is visible from following figures 4.1a and 4.1b. Docker container
may represent one application or service which is started standalone. Every
Docker container is created from Docker image with additional configuration
such as mounted volume, network communication and resource limit(Central
processing unit (CPU), Memory). Docker image contains library and bin-
ary file to run the application. Docker images are created by Dockerfile that
defines how to combine library and binary file. It is step by step cookbook for
creating the image. This thesis includes Dockerfile for creating Docker image
for all part without IDP.

There are some additional docker images for production use of this thesis
which are not included in this thesis such as firewall, revers proxy and Domain
name service (DNS). This services are also running in Docker.

All parts of this application that need to run on the server run in the
Docker as container.

36

4.2. Implementation

(a) Standard architecture of Virtual
Machines

(b) Docker architecture

Figure 4.1: Comparison of Docker architecture and VM architecture. (source:
Microsoft Docs website[1])

4.2.2 GUI

GUI is developed in project InformacniSystemCore.Blazor.Client that is
part of InformacniSystemCore.Blazor solution. In this solution is Inform-
acniSystemCore.Blazor.Server that provide simple http server for providing
Blazor.Client app to browser. The whole application GUI is optimalized for
mobiles because this application may replace previous mobile application. Due
to the size of the application, there is a need of initialization of CLR so there
was add a simple loading screen into index.html(source code 4.1). This loading
element will be replaced after application is loaded.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8" />

5 <meta name="viewport" content="width=device-width">

6 <title>InformacniSystemCore.Blazor</title>

7 <base href="/" />

8 <!-- <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" /> -->

9 <link href="css/site.css" rel="stylesheet" />

10 </head>

11 <body>

12 <app>

13 <div class="splash-screen">

14

15 <div class="loading-text">

16 Načı́tánı́

17 </div>

37

4. Proof of Concept - Blazor WebAssembly Classbook

18 <div class="dots">

19 *

20 *

21 *

22 *

23 *

24 *

25 *

26 *

27 </div>

28 </div>

29 </app>

30

31 <script src="_framework/components.webassembly.js"></script>

32 <script>

33 window.getOrientation = () => {

34 return screen.orientation.type;

35 }

36 window.addEventListener("orientationchange", (e, d) => {

37 DotNet.invokeMethod("InformacniSystemCore.Blazor.Client",

"OrientationChanged", screen.orientation.type);↪→
38 });

39 </script>

40 </body>

41 </html>

Source Code 4.1: Index html with splash screen

Content of App component is replaced with MainLayout shown in source
code 4.2. This layout contains component NavMenu which includes navbar(top
menu) and drawer(side menu). Next what the MainLayout include is @Body.
@Body is RenderFragment defined in LayoutComponentBase and represents
content of displayed page. RenderFragment is a delegate that is invoked by
each page refresh. Last part included in MainLayout is component Dialogs.
Dialogs component shown in (source 4.3) represent any displayed dialog win-
dow. NavMenu contains dynamic part that can be replaced by page. For
example timetable page replaces dynamic part with date selector or search
input.

38

4.2. Implementation

1 @inherits LayoutComponentBase

2 <div class="sidebar">

3 <NavMenu />

4 </div>

5

6 <div class="main">

7 <div class="content">

8 @Body

9 </div>

10 </div>

11 <Dialogs></Dialogs>

Source Code 4.2: MainLayout of this application

1 @inject DialogService dialog

2 <div class="dialogs-container" style="@dialogStyles" onclick="@(()=> {

dialog.Hide(); })">↪→
3 <div class="backdrop"></div>

4 @dialog.CurrentDialogRender

5 </div>

6

7 @functions{

8 public string dialogStyles { get; set; } = "display:none";

9 protected override void OnInit()

10 {

11 base.OnInit();

12 dialog.ShownChanged += (s, e) =>

13 {

14 Console.WriteLine(e);

15 dialogStyles = (!e ? "display:none" : "");

16 StateHasChanged();

17 };

18 }

19 }

Source Code 4.3: Dialogs components

During the first rendering, the user account validity is checked. When the
user account is not valid, user will be redirected to login through IDP. When
the user account is valid user will be redirected to \timetable. Timetable page
contains lessons for day or lessons for week depending on mobile orientation.
Orientation of device cannot be obtained from Blazor so there is a need to use
JavaScript Interop.

Another problem that has occurred is animation events. The first attempt
to solve the problem was using ”ontransitionend” event but this was still re-
cognized as error by intelliSense. According to website: ”IntelliSense is a
code-completion aid that includes a number of features: List Members, Para-
meter Info, Quick Info, and Complete Word. These features help developers
to learn more about the code they are using, keep track of the parameters

39

4. Proof of Concept - Blazor WebAssembly Classbook

they are typing, and add calls to properties and methods with only a few
keystrokes.” [30] Fortunately, this error does not prevent compilation. Using
this event, an animation is created to open the side menu.

Drawer component shown in source code 4.4 is an interesting component
representative because it contains both C# logic and HTML template with
razor directives. In this component dependency injection through @inject
directive is used.

1 @inject Microsoft.AspNetCore.Components.Services.IUriHelper helper

2

3 <div ontransitionend="@transitionEnd">

4 <div class="backdrop @State.ToString().ToLower()" onclick="@Toggle"></div>

5 <div class="drawer @State.ToString().ToLower()">

6 <div class="logo">

7

8 </div>

9 <div class="line"> </div>

10 <AccountInfo></AccountInfo>

11 <div class="menu">

12 <Menu Item="@menu"></Menu>

13 </div>

14 </div>

15 </div>

16 @functions{

17 [Parameter]

18 private DrawerState State { get; set; } = DrawerState.Closed;

19

20 protected override void OnInit()

21 {

22 helper.OnLocationChanged += locationChanged;

23 }

24 public void locationChanged(object sender,string newlocation)

25 {

26 Console.WriteLine("Ahoj svete");

27 if(State!=DrawerState.Closed)

28 State = DrawerState.Closing;

29 StateHasChanged();

30 }

31

32 private Menu.MenuItem menu = new Menu.MenuItem("", "","")

33 {

34 Items = new List<Menu.MenuItem>()

35 {

36 new Menu.MenuItem("timetable.svg","Timetable","/timetable"),

37 new Menu.MenuItem("test.svg","Marks","/fetchdata"),

38 new Menu.MenuItem("study.svg","Students","/students"),

39 }

40 };

41

42 private void transitionEnd()

43 {

44 if (State == DrawerState.Opening) State = DrawerState.Opened;

40

4.2. Implementation

45 if (State == DrawerState.Closing) State = DrawerState.Closed;

46 }

47

48 public void Toggle()

49 {

50 if (State == DrawerState.Closed || State == DrawerState.Closing)

51 State = DrawerState.Opening;

52 else

53 State = DrawerState.Closing;

54 StateHasChanged();

55 }

56

57 enum DrawerState

58 {

59 Opening,

60 Opened,

61 Closing,

62 Closed

63 }

64 }

Source Code 4.4: Drawer components
AccountInfo is component that is used to show state of Account such as

Full name and Role. In this component, my resource manager for multi-
language support is also used .

MyResourceManager is based on standard ResourceManager but there
is an unknown problem with multiple language. When is created multiple
Resource file but only one is compiled. I resolve this problem with little
trick. I customize file naming of resource. For my resource manage is pattern
name.resx for default and name ISO Language Code.resx for ”ISO Language
Code Table”. In this application there is Base.resx with Czech language re-
source and Base en-US.resx with English language resource.

Timetable page shown in source code 4.5 is used TimetableDay component
that receive parameter Day. TimetableDay component represent one day of
week and contains all lesson for this day and logged teacher. Min and Max
parameter define first and last hour shown in day. This parameter binding
is one way of binding which means only data from Timetable component
is sent to TimetableDay component. Blazor.Server project is Asp.Net Core
application compiled and runned in Docker container.

1 @page "/timetable"

2 @inject DeviceState state

3 @inject ApplicationState AppState

4 <div class="timetable">

5 <div class="date">

6 </div>

7 <div class="days">

8 @if (Orientation == Orientation.Landscape)

41

4. Proof of Concept - Blazor WebAssembly Classbook

9 {

10 @for (int i = 0; i < 5; i++)

11 {

12 <TimetableDay Day="@StartOfWeek.AddDays(i+1)" Min="@Min"

Max="@Max"></TimetableDay>↪→
13 }

14 }

15 else

16 {

17 <TimetableDay Day="@SelectedDate" Min="@Min"

Max="@Max"></TimetableDay>↪→
18 }

19 </div>

20 </div>

21 @functions{

22

23

24 private Orientation Orientation { get; set; }

25 private DateTime SelectedDate { get; set; } = DateTime.Now.Date;

26 private DateTime StartOfWeek =>

SelectedDate.AddDays(-(int)SelectedDate.DayOfWeek);↪→
27 private int Min { get; set; } = 7;

28 private int Max { get; set; } = 19;

29 protected override void OnInit()

30 {

31 Orientation = state.DeviceOrientation;

32 base.OnInit();

33 state.OnOrientationChanged += OrientationChanged;

34 AppState.DynamicActionBar = (t) =>

35 {

36 var seq = 0;

37 t.OpenElement(seq++, "div");

38 t.AddAttribute(seq++, "class", "date-info");

39 t.AddAttribute(seq++, "onclick", () =>

40 {

41 Console.WriteLine("OpenDialog");

42 });

43 t.AddMarkupContent(seq++," <div>" +

44 " <div>" +

45 " "+SelectedDate.ToString("dddd")+"" +

46 " </div>" +

47 " <div>" +

48 " "+SelectedDate.ToString("d.M.yyyy") +

49 " </div>" +

50 " </div>" +

51 " <div>" +

52 " */" +

53 " </div>");

54 t.CloseElement();

55

56 t.OpenElement(seq++,"a");

57 t.AddAttribute(seq++, "class", "prev");

58 t.AddAttribute(seq++, "onclick",

BindMethods.GetEventHandlerValue<UIMouseEventArgs>(↪→

42

4.2. Implementation

59 ()=> {

60 Console.WriteLine("tmp");

61 prev();

62 }));

63 t.AddContent(seq++, "<");

64 t.CloseElement();

65

66 t.OpenElement(seq++,"a");

67 t.AddAttribute(seq++, "class", "next");

68 t.AddAttribute(seq++, "onclick",

69 BindMethods.GetEventHandlerValue<UIMouseEventArgs>(next));

70 t.AddContent(seq++, ">");

71 t.CloseElement();

72

73 };

74 }

75 private void OrientationChanged(object sender, Orientation newOrientation)

76 {

77 this.Orientation = newOrientation;

78 Console.WriteLine(Orientation);

79 StateHasChanged();

80 }

81 private void prev()

82 {

83 SelectedDate = SelectedDate.AddDays(-1);

84 StateHasChanged();

85 }

86 private void next()

87 {

88 SelectedDate = SelectedDate.AddDays(1);

89 StateHasChanged();

90

91 }

92 }

Source Code 4.5: Timetable components

4.2.3 API

Because I want to provide access to API for student. I create API completely
separated from Blazor application. API is created with ASP.NET MVC Core
technology and there are public documentation for this api generated by Sweg-
ger library.

For authentication and authorization to API is used JSON Web Token
(JWT) and IDP. IDP is used only for action generating token. JWT is used for
other action. Client must refresh token after token expires. Token expiration
is set to 5minutes. Refresh token can be invoked when expiration time is in
45 minutes from now.

I choose simple CRUD operation on this API documented by Swegger.
There are many generators that can create client for API documented by

43

4. Proof of Concept - Blazor WebAssembly Classbook

Swegger. NSwagStudio(figure 4.2) can generate client for TypeScript and C#.
I choose this generator because it can create client based on HttpClient for
Swagger API. HttpClient is injected to generated client trough constructor.
Api is running in Docker container based on Microsoft/dotnet image.

Figure 4.2: Scrennshot of NSwagStudio

44

4.2. Implementation

4.2.4 Database

Database for this application is combination of ASP.Net identity database
and My custom design. This custom design is created using database first
methods. As database engine Microsoft SQL Server is used. In my architec-
ture I used Microsoft SQL Server 14.0.3035.2 running on Ubuntu GNU/Linux.
This server is running in Docker container that provides portability and better
maintenance.

Connection to database is done through Entity framework (EF). EF is
Object relational mapping (ORM) that provide access to database via .Net
objects.[31] Base object is called Context and provide Structured query lan-
guage (SQL) connection. In context class is referenced entity class where one
entity class represent one database table.

4.2.5 IDP

IDP is a service that provides user authentication. This service provides Single
sign on (SSO) for user. For communication with IDP is used Security asser-
tion markup language (SAML). SAML is standadized protocol for SSO. In
this application Shibboleth IDP is used as server and as client it is library
Sustainsys.Saml2.AspNetCore2.

4.2.6 Features of Blazor

In this proof of concept, some features are added even though, they do not
solve the assignment but they are at least interesting. In page /ref is ex-
ample of using reflection in Blazor. In solution InformacniSystemCore.Blazor
is created project TestReflection that contains logic compiled in library. This
TestReflection library is downloaded to Blazor application and loaded. With
class Activator is created instance of Ref class. This feature is shown in source
code 4.6.

1 @page "/ref"

2 @inject HttpClient http

3

4 <h1>Reflection</h1>

5 @functions{

6

7 protected override async Task OnInitAsync()

8 {

9 var ns = await

http.GetByteArrayAsync("http://localhost:63458/_framework/netstandard.dll");↪→
10 AppDomain.CurrentDomain.Load(ns);

11 var data = await

http.GetByteArrayAsync("http://localhost:63458/_framework/_bin/TestReflection.dll");↪→
12 //var assembly=System.Reflection.Assembly.Load(data);

13

45

4. Proof of Concept - Blazor WebAssembly Classbook

14 var assembly=AppDomain.CurrentDomain.Load(data);

15 Console.WriteLine(assembly.FullName);

16 Console.WriteLine("loaded");

17 var type = assembly.GetTypes().First(t => t.Name.Contains("Ref"));

18 Console.WriteLine("type founded");

19

20 Console.WriteLine(type.Name);

21 var r= Activator.CreateInstance(type, true);

22 Console.WriteLine("Instance created");

23

24 Console.WriteLine(type.GetProperty("Name").GetValue(r));

25 }

26 }

Source Code 4.6: Reflection page

4.3 Screenshots

Design proposal for this application is based on output of the project which
was part of course User Interface Design at Czech Technical University in
Prague.

46

4.3. Screenshots

(a) Portrait timetable screenshot (b) Landscape timetable screenshot

Figure 4.3: Screenshot of timetable

47

4. Proof of Concept - Blazor WebAssembly Classbook

(a) Portrait drawer (b) Landscape drawer

Figure 4.4: Screenshot of drawer

48

4.3. Screenshots

(a) Landscape student attendance
screen

(b) Landscape student delay dialog

Figure 4.5: Screenshot of attendance

49

4. Proof of Concept - Blazor WebAssembly Classbook

(a) Portrait lesson info screen (b) Portrait lesson info screen

Figure 4.6: Screenshot of lesson info

4.4 Diagrams

4.4.1 Database

In figure 4.8, there is visualisation of database entities. This database is
based on database from bachelor thesis shown in figure 4.7 but there are
many improvements. In this application, small subset of all entities is used .
This subset is shown in figure 4.9.

50

4.4. Diagrams

Figure 4.7: Old database from bachelor thesis[2]

51

4. Proof of Concept - Blazor WebAssembly Classbook

Figure 4.8: Entities in EF

52

4.4. Diagrams

Figure 4.9: Database diagram

53

4. Proof of Concept - Blazor WebAssembly Classbook

4.4.2 User flow diagram

Figure 4.10: User flow diagram

54

4.5. Testing

4.5 Testing

For testing, I chose two groups of people to come in contact with Blazor.
The first group is teachers who use the original application. Because Blazor
WebAssembly Classbook does not yet have the potential to fully replace the
original mobile application, user testing is primarily focused on the user ex-
perience in this application compared to the mobile application. The second
addressed group are programmers who already have some experience with this
framework and have experience with some of the other frameworks mentioned
in this work. For this group, the questionnaire is focused on creating an ap-
plication in Blazor. Most of these people are closely connected to High school
and College of Applied Cybernetics Ldt and are fully informed about Blazor
technology and its progress. These two groups then answered the final series
of questions about the comparison of Blazor with other web pages.

Application and Blazor framework test result were collected using Google
Forms.

Figure 4.11: Google forms questionnaire - first part

55

4. Proof of Concept - Blazor WebAssembly Classbook

Figure 4.12: Google forms questionnaire - second part for teachers

56

4.5. Testing

Figure 4.13: Google forms questionnaire - second part for developer

57

4. Proof of Concept - Blazor WebAssembly Classbook

Figure 4.14: Google forms questionnaire - last part.

58

4.5. Testing

Number Question
Q1 How long have you been developing web applications? (years)
Q2 How did you get to know Blazor?
Please, compare development in Blazor with SPA, MVC or Pages application development
Q3 UI creation
Q4 Data access in UI
Q5 Work with database (how to get data form UI to database)
Q6 Program structure
Q7 Speed of build
Q8 Simplicity of web application development
Please, compare development in Blazor with desktop application development
Q9 UI creation
Q10 Data access in UI
Q11 Work with database (how to get data from UI)
Q12 Program structure
Q13 Speed of build
Q14 Simplicity of web application development

Table 4.1

59

4. Proof of Concept - Blazor WebAssembly Classbook

ID
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
Q

11
Q

12
Q

13
Q

14
1

5
W

eb
p
ag

es
2

1
3

1
3

2
3

2
4

2
3

2
2

3
M

y
fr

ie
n

d
to

ld
m

e
a
b

ou
t

it
2

1
2

1
1

1
2

1
2

1
1

1
3

2
W

eb
p
ag

es
3

2
2

2
1

1
2

2
2

2
1

1
4

5
W

eb
p
ag

es
1

3
3

2
1

1
2

2
2

3
1

1
5

3
A

t
sc

h
o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

1
1

1
1

1
1

1
1

1
1

1
1

6
9

W
eb

p
ag

es
2

2
2

1
1

1
3

3
3

1
1

1
7

6
M

y
fr

ie
n

d
to

ld
m

e
a
b

ou
t

it
2

2
2

1
1

1
2

2
2

1
1

1
8

3
A

t
sc

h
o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

1
2

3
2

1
1

1
2

3
1

1
1

9
5

M
y

fr
ie

n
d

to
ld

m
e

a
b

ou
t

it
1

1
1

1
1

1
1

1
1

1
1

1
10

8
I

d
on

’t
re

m
em

b
er

2
2

2
2

2
2

2
2

2
2

2
2

11
8

I
d

on
’t

re
m

em
b

er
3

3
3

2
1

1
3

3
3

2
1

1
12

1
A

t
sc

h
o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

1
1

1
1

1
1

1
1

1
1

1
1

13
6

W
eb

p
ag

es
1

1
1

1
1

1
1

1
1

1
1

1
14

4
I

d
on

’t
re

m
em

b
er

2
2

2
2

2
2

2
2

2
2

2
2

15
15

I
d

on
’t

re
m

em
b

er
2

2
2

2
2

2
2

2
2

2
2

2
16

20
I

d
on

’t
re

m
em

b
er

1
1

1
1

1
1

1
1

1
1

1
1

17
1

A
t

sc
h

o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

2
1

2
2

1
2

1
1

1
1

1
1

18
2

A
t

sc
h

o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

3
2

5
3

4
4

2
2

2
2

2
2

19
8

M
y

fr
ie

n
d

to
ld

m
e

a
b

ou
t

it
1

1
2

2
4

5
1

1
2

2
5

3
20

6
W

eb
p
ag

es
1

1
3

2
2

1
1

2
4

3
3

2
21

3
A

t
sc

h
o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

3
3

2
2

3
2

3
1

2
3

2
1

22
2

A
t

sc
h

o
o
l

-
d

u
ri

n
g

th
e

le
ct

u
re

3
3

3
3

3
3

2
2

3
2

1
3

T
a
b

le
4.

2:
R

aw
su

rv
ey

d
at

a
fo

r
d

ev
el

p
p

er

60

4.5. Testing

ID
Turn on
speed

Response
time

Simplicity
of

daily agenda filling
Clarity Design

23 1 1 1 1 2
24 2 2 3 2 3
25 1 1 1 1 3
26 1 1 1 1 1
27 1 1 2 2 2
28 2 2 2 2 2
29 3 3 3 3 3
30 1 1 1 1 1
31 2 1 1 1 2
32 1 1 1 1 1
33 1 1 1 1 1
34 1 1 2 2 2
35 1 1 1 1 2
36 1 1 1 1 1
37 3 3 3 3 3
38 2 2 2 2 2
39 1 1 1 3 2
40 1 1 1 1 1
41 2 2 2 2 2
42 2 2 2 2 2
43 2 1 2 1 2
44 1 1 1 1 1
45 3 3 2 2 2
46 4 2 3 1 4

Table 4.3: Raw survey data for teacher group

4.5.1 Summary of testing

From aquired data there are some indication that blazor can be good election
for internal Information system.

From acquired data it is possible to say that developers who filled this form
are satisfied with Blazor technology. Surprisingly there are both - junior and
even really experienced developers- excited about this new technology. Most
of these developers appreciate the simplicity of web application development,
speed of build and program structure.

61

4. Proof of Concept - Blazor WebAssembly Classbook

Developers
ID Loading speed Response time Overall impression
1 1 1 1
2 2 1 2
3 2 2 2
4 1 1 2
5 1 1 1
6 2 2 2
7 1 1 1
8 1 1 1
9 1 1 1
10 2 2 2
11 2 2 2
12 1 1 1
13 1 1 1
14 2 2 2
15 2 2 2
16 1 1 1
17 1 1 2
18 4 2 2
19 2 2 1
20 2 3 2
21 3 2 2
22 1 1 2

Teachers
23 2 2 2
24 1 1 1
25 2 2 3
26 3 3 3
27 2 2 2
28 2 2 3
29 3 3 3
30 1 1 1
31 2 2 2
32 1 1 1
33 1 1 1
34 1 1 2
35 1 1 2
36 1 1 1
37 3 3 3
38 2 2 2
39 2 2 2
40 1 1 1
41 2 2 2
42 2 2 2
43 1 1 3
44 1 1 1
45 2 2 3
46 3 3 3

Table 4.4: Blazor vs. other web applications

62

4.6. Summary of this concept

4.6 Summary of this concept

This proof of concept is not fully completed application. There are many
problems that must be resolved before this application can be used.

• GUI is optimalized only for mobile but sometime teacher wants to access
from Personal computer (PC). Sometimes GUI is lagged and ugly.

• In proof of concept, reading and changing marks for student is not real-
ized. And in real application I will replace API on technology Asp.Net
MVC with OData because OData simplify communication and develop-
ing server side API.

• Next problem is size of this application which can be resolved by setting
browser cache using Expires and Cache-Control or by Last-Modified and
ETag headers.

• Additional feature which can be implemented is Service worker (SW).
SW provide offline abbility for application. SW can control traffice sent
to server because it sits between web application and server. SW can
cache CRUD operation when application is offline. After reconnect to
network all operation can be synchronized to server. SW must be written
in JS.

4.7 Summary of the benefits and potential of the
Blazor

Web developers respond quickly to the development of Blazor. Companies
such as Telerik are implementing some of there user components for Blazor.

Big advantage of Blazor is the possibility to use the code and libraries that
are written in the .Net Standard.

Another advantage is the ability to share code (library) containing meth-
ods, classes and complete logic with other web architecture.

Next big advantage for beginner web developers is that he doesn’t have to
learn another programming language to be able to develop web application.
Another advantage is the similarity with previous technologies released by Mi-
crosoft like Asp.Net MVC and Razor pages. There is also a lot of community-
based extensions such as access to browser LocalStorage and many more.
Some Blazor extension can be found on github AdrienTorris/awesome-blazor
repository. [32]

The potential of Blazor is mainly in the possibility of replacing technologies
for GUI development.So besides using Blazor separetly as client-side or server-
side there is a potential to run it as native application. In this case there are
some first attemps to use it this way for example in Ionic technology. [33]

63

4. Proof of Concept - Blazor WebAssembly Classbook

This attemp of using Ionic technology with Blazor framework was named
Bionic.[34]

I see another potential in a simple development with the help of the Visual
Studio development environment, which is one of the best Integrated Devel-
opment Environmentr (IDE) for development and debugging.

64

Conclusion

The aim of my thesis was to explore WebAssembly and Blazor framework.
This review is in the chapter 2. From parameters explored in this thesis it is
possible to say that WebAssembly and Blazor has the potential to be leading
technologies in the future of the web application development.

Comparison of Blazor and Big three of client-side web development tools
and framework is in chapter 1 and chapter 2.2. In short, Blazor takes many
good features of the other web frameworks but also gets a few drawbacks such
as its memory requirements.

A part of this thesis is application that may show the way how to create
web application in Blazor. This application is described in chapter 4 and
source code is included on the attached CD-ROM. It is also possible to follow
the development of this application at gitlab of target school [35] and [36].

Blazor’s strengths and weaknesses and its readiness to develop modern
web applications is described in chapter section 2.2.

A quick summary at the conclusion. In this thesis, multiple frameworks
and tools for creating web application were analyzed and were compared to
Blazor technology. The analysis shows that each of the picked frameworks is
suitable for different uses.

Vue.js is currently the most growing framework and is suitable for the
simplest web application. Vue.js can be simply added to existing application
to extend user interface. Vue.js has the smallest size compared to others but
doesn’t have a router in it. I would prefer Vue.js to improve the usability
experience with regular web apps such as Asp.Net MVC or Asp.Net Pages.

Angular framework is complex and provides many features to help de-
veloper create user-friendly application but when application is done without
Angular, it is too expensive to extend this application with Angular. This
framework is good for big projects like information systems.

React framework is something between Vue.js and Angular. This frame-
work can be used on existing projects and has many features which help
developer to create big user-friendly application. JSX templation system is

65

Conclusion

really easy to use and can help to fix some errors which will appear during
development.

This master thesis is about WebAssembly and Blazor technology that has a
lot changes during the writing of this thesis. Now is server-side Blazor released
in stable version with .net core 3.0. Server-side Blazor contains component
prerendering which helps search engines to crawl site. It can be used on
production website without any problems. Client-side Blazor is in preview
state so that it can be used in internal information systems because there is
missing prerendering and search engines cannot crawl web site content. This
problem can be suppressed by site manifest and sitemaps. Web sites created
by client-side Blazor are not so much bigger than the sites written in Angular
or other big framework.

Blazor framework has the potential to become main framework for web
development but there are still some mistakes which must be resolved.

66

Bibliography

[1] Cesardelatorre. What is Docker? Aug 2018. Available from: https:

//docs.microsoft.com/en-us/dotnet/standard/microservices-
architecture/container-docker-introduction/docker-defined

[2] Lang, M. Elektronická tř́ıdńı kniha. Bachelor’s thesis, Czech Technical
University - Faculty of Informatics, June 2014. Available from: https:

//dspace.cvut.cz/handle/10467/23280

[3] Inc., R. The Future of JavaScript in the Front End World. Aug
2018. Available from: https://medium.com/@rangleio/the-future-
of-javascript-in-the-front-end-world-2544c1814e2

[4] Goel, A. 10 Best JavaScript Frameworks to Use in 2019. Mar
2019. Available from: https://hackr.io/blog/10-best-javascript-
frameworks-2019

[5] Sviatoslav, A. The Best JS Frameworks for Front End. Available
from: https://rubygarage.org/blog/best-javascript-frameworks-
for-front-end

[6] About stars. Available from: https://help.github.com/en/articles/
about-stars

[7] Freeman, A. Pro AngularJS. Berkeley, CA New York, NY:
Apress,Distributed to the Book trade worldwide by Springer, 2014, ISBN
978-1430264484.

[8] Sanctis, V. ASP.NET Core 2 and Angular 5 : full-stack web development
with .NET Core and Angular. Birmingham, UK: Packt Publishing, 2017,
ISBN 978-1788293600.

[9] Freeman, A. Pro Angular 6. London: Apress, 2018, ISBN 978-
1484236482.

67

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://dspace.cvut.cz/handle/10467/23280
https://dspace.cvut.cz/handle/10467/23280
https://medium.com/@rangleio/the-future-of-javascript-in-the-front-end-world-2544c1814e2
https://medium.com/@rangleio/the-future-of-javascript-in-the-front-end-world-2544c1814e2
https://hackr.io/blog/10-best-javascript-frameworks-2019
https://hackr.io/blog/10-best-javascript-frameworks-2019
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://help.github.com/en/articles/about-stars
https://help.github.com/en/articles/about-stars

Bibliography

[10] RFC2616: Hypertext Transfer Protocol. Available from: https://

www.rfc-editor.org/rfc/rfc2616.txt

[11] Angular Augury. Available from: https://augury.rangle.io/

[12] Mardan, A. React quickly : painless web apps with React, JSX, Redux,
and GraphQL. Shelter Island, NY: Manning Publications Co, 2017, ISBN
978-1617293344.

[13] Getting Started with Redux · Redux. Available from: https://

redux.js.org/introduction/getting-started

[14] Hanchett, E. Vue.js in action. Shelter Island, NY: Manning Publications
Co, 2018, ISBN 978-1617294624.

[15] Stack Overflow Developer Survey 2019. Available from: https://

insights.stackoverflow.com/survey/2019

[16] Fluin, S. A plan for version 8.0 and Ivy. Feb 2019. Available
from: https://blog.angular.io/a-plan-for-version-8-0-and-ivy-
b3318dfc19f7

[17] Rourke, M. Learn WebAssembly: Build web applications with nat-
ive performance using Wasm and C/C++. Packt Publishing, sep
2018, ISBN 1788997379. Available from: https://www.xarg.org/ref/
a/1788997379/

[18] WebAssembly Core Specification. Apr 2019. Available from: https://

webassembly.github.io/spec/core/bikeshed/index.html

[19] Haas, A.; Rossberg, A.; Schuff, D. L.; et al. Bringing the Web Up to Speed
with WebAssembly. SIGPLAN Not., volume 52, no. 6, June 2017: pp.
185–200, ISSN 0362-1340, doi:10.1145/3140587.3062363. Available from:
http://doi.acm.org/10.1145/3140587.3062363

[20] Lang, M. Project on WebAssembly Studio site. Available from: https:

//webassembly.studio/?f=ik2138pme4e

[21] Sharma, A. Blazor Quick Start Guide: Build web applications us-
ing Blazor, EF Core, and SQL Server. Packt Publishing, 2018, ISBN
9781789341300. Available from: https://books.google.cz/books?id=
VOh1DwAAQBAJ

[22] Himschoot, P. Blazor Revealed: Building Web Applications in
.NET. Apress, 2019, ISBN 1484243420. Available from: https:

//www.amazon.com/Blazor-Revealed-Building-Applications-NET/
dp/1484243420

68

https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.rfc-editor.org/rfc/rfc2616.txt
https://augury.rangle.io/
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://blog.angular.io/a-plan-for-version-8-0-and-ivy-b3318dfc19f7
https://blog.angular.io/a-plan-for-version-8-0-and-ivy-b3318dfc19f7
https://www.xarg.org/ref/a/1788997379/
https://www.xarg.org/ref/a/1788997379/
https://webassembly.github.io/spec/core/bikeshed/index.html
https://webassembly.github.io/spec/core/bikeshed/index.html
http://doi.acm.org/10.1145/3140587.3062363
https://webassembly.studio/?f=ik2138pme4e
https://webassembly.studio/?f=ik2138pme4e
https://books.google.cz/books?id=VOh1DwAAQBAJ
https://books.google.cz/books?id=VOh1DwAAQBAJ
https://www.amazon.com/Blazor-Revealed-Building-Applications-NET/dp/1484243420
https://www.amazon.com/Blazor-Revealed-Building-Applications-NET/dp/1484243420
https://www.amazon.com/Blazor-Revealed-Building-Applications-NET/dp/1484243420

Bibliography

[23] Guardrex. Introduction to Blazor in ASP.NET Core. Available from:
https://docs.microsoft.com/en-us/aspnet/core/client-side/spa/
blazor/?view=aspnetcore-3.0

[24] Mono. Available from: https://www.mono-project.com/

[25] Easton, M. J. Cross-platform .NET development : using Mono, Port-
able.NET, and Microsoft .NET. Berkeley, Calif: Apress, 2004, ISBN 978-
1590593301.

[26] Vemula, R. Real-time web application development : with ASP.NET
Core, SignalR, Docker, and Azure. Berkeley, CA New York, NY:
Apress,Distributed to the Book trade worldwide by Springer, 2017, ISBN
978-1484232699.

[27] Aguilar, J. SignalR programming in Microsoft ASP.NET. Redmond,
Wash: Microsoft Press, 2014, ISBN 978-0735683884.

[28] Ardalis. Choose between traditional web apps and single page
apps. Available from: https://docs.microsoft.com/en-us/dotnet/
standard/modern-web-apps-azure-architecture/choose-between-

traditional-web-and-single-page-apps

[29] Sš a Voš aplikované kybernetiky s.r.o. Available from: https://

www.kyberna.cz/

[30] Gewarren. C# IntelliSense - Visual Studio. Available from:
https://docs.microsoft.com/cs-cz/visualstudio/ide/visual-
csharp-intellisense?view=vs-2019

[31] Smith, J. Entity Framework core in action. Shelter Island, NY: Manning
Publications Co, 2018, ISBN 978-1617294563.

[32] AdrienTorris. AdrienTorris/awesome-blazor. May 2019. Available from:
https://github.com/AdrienTorris/awesome-blazor

[33] Cheng, F. Build mobile apps with Ionic 4 and Firebase : hybrid mobile app
development. New York, New York: Apress, 2018, ISBN 978-1484237748.

[34] Bmsantos. bmsantos/bionic. Oct 2018. Available from: https://

github.com/bmsantos/bionic

[35] Lang.Matej/mSIS repository. Available from: https://

gitlab.kyberna.cz/Lang.Matej/msis

[36] Lang.Matej/schoolApi repository. Available from: https:

//gitlab.kyberna.cz/Lang.Matej/schoolapi

69

https://docs.microsoft.com/en-us/aspnet/core/client-side/spa/blazor/?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/client-side/spa/blazor/?view=aspnetcore-3.0
https://www.mono-project.com/
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/choose-between-traditional-web-and-single-page-apps
https://www.kyberna.cz/
https://www.kyberna.cz/
https://docs.microsoft.com/cs-cz/visualstudio/ide/visual-csharp-intellisense?view=vs-2019
https://docs.microsoft.com/cs-cz/visualstudio/ide/visual-csharp-intellisense?view=vs-2019
https://github.com/AdrienTorris/awesome-blazor
https://github.com/bmsantos/bionic
https://github.com/bmsantos/bionic
https://gitlab.kyberna.cz/Lang.Matej/msis
https://gitlab.kyberna.cz/Lang.Matej/msis
https://gitlab.kyberna.cz/Lang.Matej/schoolapi
https://gitlab.kyberna.cz/Lang.Matej/schoolapi

Acronyms

API Application Programming Interface. 31, 32, 36, 43, 44, 63

CIL Common Intermediate Language. 22

CLI Command line interface. 6

CLR Common Language Runtime. 26, 37

CPU Central processing unit. 36

CRUD Create, read, update and delete. 36, 43, 63

CSS Cascading Style Sheets. 5, 6, 10, 13

DNS Domain name service. 36

DOM Document object model. 6, 13, 20, 27

EF Entity framework. xiii, 45, 52

GUI Graphical user interface. 27, 33, 35–37, 63

HTML Hypertext Markup Language. 5, 6, 10, 13, 22–24, 40

HTTP Hypertext Transfer Protocol. 36

IDE Integrated Development Environmentr. 64

IDP Identity provider. 36, 39, 43, 45

JS JavaScript. 1, 6, 13, 20, 27, 39, 63

JSON JavaScript Object Notation. 22

71

Acronyms

JWT JSON Web Token. 43

MVC Model-View-Controller. 2, 32

NPM Node.js package manager. 6

ORM Object relational mapping. 45

OS Operating system. 35

PC Personal computer. 63

RAM Random access memory. 27

SAML Security assertion markup language. 45

SPA Single Page Application. 1, 2, 6, 22, 31, 32

SQL Structured query language. 45

SSO Single sign on. 45

SW Service worker. 63

UI User interface. 10, 13

URL Uniform Resource Locator. 5

VM Virtual machine. xiii, 20, 36, 37

VR Virtual reality. 19

W3C World Wide Web Consortium. 19

WASM WebAssembly. 19, 21, 26, 27

XSS Cross-site scripting. 22

72

Appendix A

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

ComparsionWebFrameworksSamples.......implementation sources for
comparsion

InformacniSystemCore.Blazor ... implementation sources for Blazor
InformacniSystemCore..............implementation sources for Api
Docker...docker files
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

73

	Introduction
	Motivation and Objectives
	Structure

	State Of The Art Client-Side frameworks
	Common features
	Angular
	React
	VueJS
	Summary

	Review of WebAssembly and Blazor
	WebAssembly
	Blazor

	SPA, MVC and Pages comparison
	SPA
	MVC
	Pages
	Summary

	Proof of Concept - Blazor WebAssembly Classbook
	Assignment
	Implementation
	Screenshots
	Diagrams
	Testing
	Summary of this concept
	Summary of the benefits and potential of the Blazor

	Conclusion
	Bibliography
	Contents of enclosed CD

