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Abstrakt

Tato práce se zabývá problémem rekonstrukce klidové hmotnosti částice známé
jako Higgs̊uv boson pomoćı technik strojového učeńı – neuronových śıt́ı. Je
zaměřena na rozpadový kanál 2`SS+1τhad. V prvńı části je vysvětlen problém
rekonstrukce klidové hmotnosti a popsány některé př́ıstupy k jeho řešeńı.
Daľśı část popisuje fázi rekonstrukce klidové hmotnosti všech částic pomoćı
exaktńıch výpočt̊u a algoritmů. Poté jsou použita data źıskaná během rekon-
strukce ostatńıch částic tt̄H systému. Na r̊uzně velkých datasetech, je natréno-
váno a otestováno několik neuronových śıt́ı pro predikci/odhad klidové hmot-
nosti Higgsova bosonu na úrovni simulace. Nakonec jsou připraveny neuronové
śıtě pro odhad klidové hmotnosti na úrovni detektoru a pro rozlǐseńı signálu
a pozad́ı.

Kĺıčová slova ATLAS, CERN, Higgs̊uv boson, klidová hmotnost, neuronové
śıtě
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Abstract

This thesis deals with the problem of reconstruction of the invariant mass
of the Higgs boson using machine learning techniques – neural networks. It
focuses on the 2`SS + 1τhad decay channel. In the first part, the problem of
mass reconstruction is explained and some used approaches to the problem
are described. The next part describes the phase of reconstructing the invari-
ant mass of all the particles using exact formulas and algorithms. Then, the
data obtained during reconstruction of the other particles of the tt̄H system
are used. Several neural networks are trained and tested on different datasets
to predict/estimate the invariant mass of the Higgs boson on truth level. Fi-
nally, neural networks for estimating the invariant mass of the Higgs boson on
detector level and distinguishing signal events from background are prepared.

Keywords ATLAS, CERN, Higgs boson, invariant mass, neural networks
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Introduction

Apart from the basic elementary particles forming atoms, the Higgs boson is
probably the best known particle by the public. It is a part of the Standard
Model – a theory describing elementary particles and various forces between
them that make up matter. And the Higgs boson is the particle that gives
hope to many physicists to extend the model and make it more precise.

Although the existence of a new particle was predicted in 1960s it took
more than 50 years to confirm the hypothesis, because the observation of
the Higgs boson is complicated. One reason for this long waiting is that the
production of the Higgs boson requires high energy proton-proton collisions
and the Large Hadron Collider, where such collisions can be achieved, was put
in the operation relatively recently (2008).

However, despite all these difficulties, in 2012 two experiments (ATLAS
and CMS) at LHC recorded a new particle which was later identified as the
Higgs boson. Since then many physicists have been focused on its research
and believe that its mass is around 125 GeV/c2.

The goal of this work is to train a neural network that will be able to
reconstruct the invariant mass of the Higgs boson from the final products of
its decay and distinguish signal events from background data in the so-called
tt̄H production. That should enable physicists more detailed and precise
studies of the collisions, which might help to get more information about the
properties of the Higgs boson and the Standard Model.

In the first chapter of this thesis, information about the Higgs boson and
ATLAS experiment is provided. The second chapter is focused on the theory
of neural networks which will be used for developing the invariant mass re-
construction algorithms. The third chapter deals with related researches and
studies about reconstructing the invariant mass of other particles or working
with similar data. Finally, the last chapter presents the results – a neural
network estimating the invariant mass of the Higgs boson and description of
other models which will be later used for distinguishing the signal events from
background data.
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Chapter 1
Searching for the Higgs boson

The Higgs boson is an elementary particle of the standard model of particle
physics. It is important, because it explains the mass characteristics of other
particles.

Since its prediction in 1964 [21, 6], the Higgs boson had not been observed
until 2012. Because of its short lifetime, it cannot be observed directly but it is
possible to detect products (quarks and leptons) of its decay and reconstruct
its characteristics from these products.

In July 2012, the ATLAS and CMS experiments at CERN’s LHC an-
nounced the observation of a new particle with characteristics of the Higgs
boson and confirmed the half century old theory1.

1.1 Standard model

The Standard model of particle physics is the theory describing and classifying
all known elementary particles. In addition, it describes the electromagnetic
forces and strong and weak interactions between the particles (see figure 1.1).

The known elementary particles are:

quarks three pairs of quarks (up-down, charm-strange and top-bottom),

leptons three leptons (electron, muon, τ) with associated neutrinos,

bosons force carriers responsible for particle interactions (W boson, Z bo-
son, photon, gluon and Higgs boson).

1Next year (2013) scientists Englert and Higgs were awarded the Nobel prize in physics
for ”the theoretical discovery of a mechanism that contributes to our understanding of the
origin of mass of subatomic particles, and which recently was confirmed through the discovery
of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s
Large Hadron Collider” [28, 6].
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1. Searching for the Higgs boson
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Figure 1.1: Standard model of particle physics.
Source: https://en.wikipedia.org/wiki/Standard_Model

1.2 CERN

The European Organization for Nuclear Research, established in 1954, located
near Geneva is a research organisation mainly known for operating a network
of particle accelerators, a particle decelerator and especially Large Hadron
Collider (LHC).

Many detectors are part of this network, notably CMS and ATLAS detec-
tors, where the Higgs boson was observed for the first time. You can see the
scheme of the whole complex in figure 1.2.
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1.3. ATLAS Detector
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Figure 1.2: CERN complex.
Source: https://en.wikipedia.org/wiki/CERN

1.3 ATLAS Detector

The ATLAS detector [39] is a multipurpose particle detector build to detect
proton collisions from the Large Hadron Collider (LHC).

1.3.1 Inner Detector

The inner detector is the first part of ATLAS to see the decay products of
the collisions, so it is very compact and highly sensitive. It consists of three
different systems of sensors all immersed in a magnetic field parallel to the
beam axis. The Inner Detector measures the direction, momentum, and charge
of electrically-charged particles produced in each proton-proton collision [14].

1.3.2 Calorimeter

Calorimeters measure the energy a particle loses as it passes through the
detector. It is usually designed to stop entire or ”absorb” most of the particles
coming from a collision, forcing them to deposit all of their energy within the
detector.

Electromagnetic calorimeters measure the energy of electrons and photons
as they interact with matter. Hadronic calorimeters sample the energy of
hadrons (particles that contain quarks, such as protons and neutrons) as they
interact with atomic nuclei [13].

5
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1. Searching for the Higgs boson

Figure 1.3: ATLAS scheme.
Source: https://cds.cern.ch/images/CERN-GE-0803012-01

1.3.3 Muon Spectrometer

Muons are particles that usually pass through the Inner Detector and Calorime-
ter undetected. The muon spectrometer identifies and measures the momenta
of muons [16].

1.3.4 Magnets

The magnet system of ATLAS bends particles around the various layers of
detector systems, making it easier to contain the tracks of particles. The
main sections of the magnet system are: Central Solenoid Magnet, Barrel
Toroid and End-cap Toroids [15].

1.4 Decay channels

Decays of the Higgs boson can happen in seven ways during tt̄H production.
Those are represented by the final state of the system and are called decay
channels. Each channel is characterized by its decay products – the number
and flavour of charged leptons and number of hadronically decaying τ .

1`+ 2τhad one light lepton
two hadronically decaying τ lepton candidates,

6
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1.4. Decay channels

2`SS + 1τhad two same-charge light leptons
one hadronically decaying τ lepton candidate,

2`OS + 1τhad two opposite-charge light leptons
one hadronically decaying τ lepton candidate,

3`+ 1τhad three light leptons
one hadronically decaying τ lepton candidate,

2`SS two same-charge leptons
zero hadronically decaying τ lepton candidates,

3` three light leptons
zero hadronically decaying τ lepton candidates,

4` four light leptons
zero hadronically decaying τ lepton candidates.

It can be easily seen (figure 1.4 from [1]) that these channels are mutually
exclusive – it cannot happen that one event covers two or more channels.

The study of these channels should bring more insight into the Higgs boson
characteristics and lead to improvement of the Standard model of particle
physics.

Figure 1.4: Decay channels.
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Chapter 2
Artificial neural networks

In this chapter, the reader can find basic information about neural networks –
their inspiration in biological world as well as formal definitions and maths that
make them work. (activation function, loss functions or error backpropagation
algorithm).

In the last section, various types of NN are presented.

2.1 Origin

Artificial neural networks (ANNs) are computational models inspired by bio-
logical brain and nervous system. Just like in case of the biological nervous
system, the basic unit of ANN is called neuron.

Their similarity is shown in figure 2.1 and summarized in table 2.1. Each
artificial neuron has n inputs. Each input has a weight which was assigned dur-
ing learning phase of the network (or is random at the beginning). Weighted
inputs are summed, passed into activation function which produces output
value. This value becomes the input of selected neurons in next layer of the
network or the output of the network in case of last layer.

Table 2.1: Comparison of a biological and an artificial neuron.

Artificial neuron Biological neuron
Inputs Dendrites
Outputs Axons
Sum function Neuron body
Activation func-
tion Nucleus

Weights Synapses
strength

9



2. Artificial neural networks

Figure 2.1: Comparison of biological and artificial neuron.
Source: https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-

a8b46db828b7

Table 2.2: Comparison of a biological and an artificial network.

Artificial NN Biological NN
specialized able to learn different tasks
tree structure (except recurrent
NN (see section 2.2.3)) complicated topology

different learning and evaluat-
ing phases

non-stop learning and evalua-
tion

gradient descent (see algo-
rithm 1) for adjusting weights unknown

2.2 Formal definitions

In this section formal definitions of neuron, neural network and their parts
can be found.

2.2.1 Neuron

Formally, neuron is a mathematical function with n+ 1 inputs. Signal on the
first input x0 is usually assigned a value – bias (b). Remaining n inputs are
actual inputs that depend on the outputs of neurons in previous layers.
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2.2. Formal definitions

Output of ith neuron can be computed:

yi = ϕ

(
n∑
j=1

wij ∗ xj + b

)
(2.1)

where ϕ is the activation function. We denote its argument (term between
parentheses) as ξ and call it potential of the neuron.

2.2.1.1 Activation function

Activation function defines the final output of the neuron. It takes the values
computed by multiplying weights and inputs and maps them into the cho-
sen range ((0 . . . 1), (0 . . .∞), . . . ). Follows a compendium (and a table 2.3
summarizing) of basic activation functions, more can be found at [18, 33].

Identity (linear) function is usually used in input layers of neural networks.
It can either linearly transform the input or leave them unchanged (figure 2.2).

−3 −2 −1 0 1 2 3

−2

0

2

x

y

Identity

Figure 2.2: Identity/Linear activation function

Rectified Linear Unit is similar to linear function but allows only non-
negative outputs. All values lower than zero become zero (figure 2.3).

Softplus is a smooth approximation to ReLU. It is differentiable at and
around zero (figure 2.4).

Step function acquiring only two values (0and1) and its differentiable ap-
proximation – logistic sigmoid (figure 2.5).

2.2.2 Neural network

Formally, a neural network is a tuple (N,C,X, Y,w, t), where:

N is a set of neurons (non-empty),

11



2. Artificial neural networks
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Figure 2.3: ReLU activation function

−3 −2 −1 0 1 2 3

0

2

4

x

y

Softplus

Figure 2.4: Softplus activation function

E ⊆ N ×N is a set of oriented edges going between neurons (non-empty),

X ⊂ N is a set of input neurons (non-empty),

Y ⊂ N is a set of output neurons (non-empty),

w : E 7→ R is a weight function,

t : N 7→ R is a network bias function.

Usually, the set Y contains one node (one target variable), but in case of
more than one target variable, the set can be arbitrarily large.
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2.2. Formal definitions
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Figure 2.5: Sigmoid activation function
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Figure 2.6: Neuron scheme.

2.2.2.1 Training

Training of neural network consist of a forward pass, when the neurons simply
count their outputs according to equation

y(x1, . . . , xn) = ϕ
(
f(w0 + w1x1 + w2x2 + . . .+ wnxn)

)
. (2.2)

Then the error is computed and the algorithm continues by doing the
backward pass and weights in the whole network are adjusted.

The adjusting of weights comes when a batch of selected size is processed.
The size of one batch affects memory used (larger batch – more memory) in
the process, speed of training and accuracy of the gradient estimation – see
sections 2.2.2.2 and 2.2.2.3.

The length of training is set in number of so called epochs. One epoch is

13



2. Artificial neural networks

Table 2.3: Activation functions.

Name Formula Notes

Identity y = x
No change to weighted
inputs.

Rectifier (ReLU) y = max(0, x) Zero (when x ≤ 0) or lin-
ear.

Softplus y = ln(1 + ex)

In some sources ([33])
also called SmoothReLU.
This functions is
smoother near x = 0.

Step function y =
{

1 if x ≥ θ
0 if x < θ

Output of neuron is 1
once a threshold θ is
reached.

Sigmoid y = 1
1 + e−x

Smoother (and dif-
ferentiable) than step
function.

one forward pass and one backward pass of all the input samples. It is easy
to see, that with more epochs of training it takes longer time to finish, but on
the other hand, it is possible to achieve better accuracy of the model.

2.2.2.2 Loss function

Once the output of the final neuron is known, two cases may occur:

1. the output (predicted value) matches the expected value (label) – no
error,

2. the output (predicted value) differs from the expected value (label) – in
that case, the error needs to be quantified.

Depending on whether the NN is solving regression or classification prob-
lem, different loss functions (L) are used.

In case of classification, one of the most used loss functions is Cross En-
tropy [20].

Equation 2.3 is generic formula for computing entropy for single sample in
dataset with K classes, where y(k) is the real probability that the sample be-

14



2.2. Formal definitions

longs to class k, ŷ(k) is the same probability computed by the neural network.
ε is usually added to ensure the term in logarithm is not equal to zero.

K∑
k

−y(k) log (ŷ(k) + ε) (2.3)

For binary classification, we get the following equation (2.4).

−
(
y log(ŷ + ε) + (1− y) log(1− ŷ + ε)

)
(2.4)

And for the entire dataset:

L = − 1
n

n∑
i=1

[
y(i) log(ŷ(i) + ε) + (1− y(i)) log(1− ŷ(i) + ε)

]
(2.5)

In case of regression problems, where the desired output is a value from
R, mostly Mean Squared Error (MSE, equation 2.6) or Mean Squared Loga-
rithmic Error (MSLE, equation 2.7) are used (y is the actual value, ŷ is the
predicted value, n is number of inputs).

MSLE is usually used when we do not want to penalize huge differences in
the predicted and the actual values when both predicted and true values are
huge numbers [20].

L = 1
n

n∑
i=1

(y(i) − ŷ(i))2 (2.6)

L = 1
n

n∑
i=1

(
log(y(i) + 1)− log(ŷ(i) + 1)

)2 (2.7)

Another possible function (especially when dealing with large values) is
Mean Absolute Percentage Error (MAPE, equation 2.8).

L = 1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (2.8)

For further information about other loss functions see [20, 5].

2.2.2.3 Backpropagation

Now, when we have metrics to compute the error, the neural network can learn
from its mistakes (supervised learning). It will do so by adjusting weights by
algorithm called error backpropagation, which used method called gradient
descend [32].

Backpropagation algorithm traverses the graph representing the neural
network backwards (layer by layer), computing loss gradient in each layer
(see figure 2.7) and adjusting the weights of inputs for each neuron (see algo-
rithm 1).
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2. Artificial neural networks

How much the weights are adjusted is influenced by hyper-parameter called
learning rate. If the learning rate is low, the algorithm converges slowly, but
the risk of missing any local minima is also lower. So, proper setting of this
parameter is very important. However it is hard to do so analytically, so
common practice is to try more values and select the best one.

y
(l)
i

y
(l+1)
1

...

y
(l+1)
m(l+1)

δ
(l+1)
1

δ
(l+1)
m(l+1)

Figure 2.7: Backpropagation of errors through the network.
.

Algorithm 1: Error backpropagation algorithm for a layered neural
network represented as computation graph G = (V,E) [36].

1. For a sample (xn, y∗n), propagate the input xn through the network to
compute the outputs (vi1 , . . . , vi|V |) (in topological order).
(a) Given a topological sort V = (vi1 , . . . , vi|V |), sequentially compute

the layers’ outputs, also denoted by vij .
(b) Then y(xn;w) = vi|V | is the network’s output.

2. Compute the loss Ln := L(vi|V | , y∗n) and its gradient

∂Ln
∂vi|V |

. (2.9)

3. For each j = |V |, . . . , 1 compute

∂Ln
∂wj

= ∂Ln
∂vi|V |

|V |∏
k=j+1

∂vik
∂vik−1

∂vij
∂wj

. (2.10)

where wj refers to the weights in node ij .
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a) b) c)

Figure 2.8: Perceptron possibilities, a) A linearly separable problem, b) A
nonlinearly separable problem, c) The XOR problem.

2.2.3 Types of networks

In this section, the basic types of NN are described. Beginning with the sim-
plest ”NN” called perceptron, continuing with its evolution multilayer percep-
tron and ending with specialized more complex convolutional networks.

2.2.3.1 Perceptron

Perceptron is the simplest neural network consisting from one neuron only.
Due to its simplicity, its possibilities are limited to linearly separable problems
– it creates a hyperplane2 separating the two group of samples.

In figure 2.8 are three examples. First one (a) can be solved by perceptron
without error, in second (b) perceptron could find a solution with only one
miss-labeled sample but in third example (c) which shows XOR (exclusive or)
problem with only four possible samples, perceptron always fails in separating
the samples although it is an easy function/logical operation3.

2.2.3.2 Multilayer perceptron

To distinguish data that are not linearly separable, we need multilayer percep-
tron (MLP)4. It is fully connected (each neuron from every layer is connected
to all neurons in following layer) and consists of three types of layers:

Input Neurons in input layer for ”reading” input. They have linear ac-
tivation function – they only pass the input data to first hidden
layer.

Hidden At least one in each MLP, neurons have nonlinear activation func-
tion.

2Hyperplane is a subspace whose dimension is one less than that of its ambient space.
In case of 2-dimensional space, the hyperplane has only 1 dimension – it is a line.

3XOR in boolean logic conjunctive form: (x̄+ ȳ) · (x+ y)
4MLP is not a single perceptron with multiple layers but network with many percep-

trons/neurons organized in layers.
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2. Artificial neural networks

Output Output layer of at least one neuron.

In figure 2.9 you can see a multilayer perceptron with one hidden layer.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Output

Figure 2.9: Multilayer perceptron.

2.2.3.3 Recurrent neural network

Recurrent neural network (RNN) differs from FNN by allowing loops – con-
nection going to the same neuron or previous layers. It is mostly used for
tasks, where context is important – text recognition (current word depends
on the rest of the sentence). For more information about RNN see [37, 40].

2.2.3.4 Convolutional neural network

Convolutional neural networks (CNNs) are used for visual imagery (image
recognition). They are similar to MLPs, but use more types of layers []:

convolutional Most important part (hence the name) of CNN consisting of
filters – neurons with small receptive field covering only few
pixels of the image. During the forward pass, the filter is
convolved across (”scans”) the whole image (previous layer).
This way, feature maps are produced.
The idea behind this concept is, that neighbouring pixels are
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2.2. Formal definitions

related and should be processed together, whereas processing
pixels from opposite parts of the image is wasting CPU time.

ReLU Removes negative values (see section 2.2.1.1).

pooling This layer splits 2-dimensional input into non-overlapping
rectangles and chooses the maximum value (in case of max
pooling). Also called downsampling. The idea here is, that
the exact location (pixel) of a feature is less important than
its rough location (left upper corner, middle, etc.).

fully connected Processes the output in similar way as non-convolutional MLP
and classifies the image.

Figure 2.10: Convolutional NN – example.
Source: https://cdn-images-1.medium.com/max/2400/1*vkQ0hXDaQv57sALXAJquxA.jpeg

These layers (except the fully connected in the end) are usually chained
(see figure 2.10). The number of repetitions can depend on the size of the
original image the layer is created for and also on the details it should be able
to recognize. Other important hyper-parameters are the size of the receptive
field in convolutional layer,

For more information about CNNs see [22, 37].

2.2.3.5 Other types

The selection of described NN types is not taxative, but covers the main con-
cepts which many other types of NN build on. You can get more information
about other types of NN in literature mentioned earlier in this chapter or
here: [37, 26].
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Chapter 3
Related research

In this chapter, the reader can find information about invariant mass, different
ways of its reconstruction both in terms of different particles and different
methods.

3.1 Invariant mass

Particle physicists use the word ”mass” to refer to the quantity (sometimes
called ”rest mass”) which is proportional to the inertia of the particle when it
is at rest – it is the part of the mass that is independent of the motion (speed,
momentum) of the particle [17, 24].

It is measured in GeV/c2 and calculated from the energy of the particle
(E), its momentum (~p) and the speed of light (c) using the following formula:

m = 1
c2

√
E2 − p2c2 (3.1)

With this equation, the invariant mass of arbitrary detectable particle can
be easily computed – when the particle is detected, we know its momentum
and energy and the speed of light is a constant.

But not all particles can be observed (which is the case of the Higgs boson),
so their masses have to be reconstructed from products of their decay. These
particles’ vectors are first added together and then the equation 3.1 is applied
to the new composite vector.

However, in the case of the Higgs boson, even some of the decay products
(neutrinos) cannot be detected, so when the equation 3.1 is used, the com-
puted invariant mass is lower than real invariant mass because of the missing
(undetected) energy and to get a better estimation, more complex methods
have to be used.

21



3. Related research

3.2 Other particles

As was pointed above, the problem of the invariant mass reconstruction is not
limited only to the Higgs boson. It is a feature of every elementary particle,
so it has been studied before on other particles.

In [4] the invariant mass of τ lepton pair is reconstructed using neural net-
works. Apart from using basic characteristics of decay products (pT , η, φ, E) as
the input for the neural network, they also use precomputed invariant masses
of the final products and information about missing energy.

Conventional approach ([3, 25, 35]) is making use of the angular distance
of the two particles coming from mutual parent particle:

∆R =
√

(∆η)2 + (∆φ)2 (3.2)

This is commonly used to tell, which of two or more particles of the same
type comes from the same parent particle as the ”sibling” particle5 and which
one is from other part of the decay system.

3.3 Other channels

Since the Higgs boson has multiple decay channels, its invariant mass recon-
struction has already been studied ([2]) despite its existence has been con-
firmed for relatively short time.

In [19] one of the channel (Hbb̄) is studied. In this case, the reconstruction
of the invariant mass is easier, because b quarks are detectable, so it is not
burdened by missing energy. Although this study deals with different channel
and is using different machine learning technique (BDT), it still brings useful
insight for studying the 2`SS + 1τhad channel.

3.4 2`SS + 1τhad channel

The reserach of [35] focuses on the H → ττ channel and studies the kinematics
of the events – details of the decay process of the particles. Also, it deals with
the composition of the missing energy (the ratio of contribution from the three
neutrinos coming from the Higgs boson and the one coming from the antitop
quark).

Apart from the missing energy, the correct assigning of leptons, quarks
(non-b jets) and bottom quark (b jets) is an important problem to solve –
more on this topic in section 4.4.

For better understanding, figure 3.1 shows a Feynman diagram of the
2`SS + 1τhad channel. Both top quarks are decaying into bottom quarks and

5Sibling particles are those sharing the same parent particle.
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3.5. Summary – feature selection

W bosons. In case of the hadronic top quark, it further decays into two quarks,
in case of the leptonic top quark, it decays into a lepton-neutrino pair.

The other lepton of the same charge (requirement of the channel) comes
from the Higgs boson (H → ττ). Since one τ must be hadronic (another
channel requirement), it decays into two quarks. Remaining products of the
H → ττ system are three neutrinos.

t̄

t

H

W−

W+

τ+

τ−

W+

W−
g

g

ν`

`−

b̄

ν`

`−

ντ

q̄

q
ντ

q̄
q
b

Figure 3.1: tt̄H system decay – 2`SS + 1τhad channel

3.5 Summary – feature selection

Based on the studies mentioned above [3, 25, 19], what seems to be the best
approach is using precomputed invariant masses of final products (quarks
and leptons) and do not add the detailed attributes (pT , η, φ, E), because the
invariant mass already contains this information6.

Also, adding another feature – the angular distance of related particles
(coming from same parent or sharing the same grandparent) can help improve
the accuracy of the estimations.

Adding information about total energy missing in the system is also help-
ful.

Another good practice is precomputing not only the invariant masses of
the final products, but also of the different parts of the decay system even in
case missing energy.

6Invariant mass is computed using energy and momentum of the particle which can be
obtained by transformations (see section 4.1.1.1) of pT , η, φ, E.

23





Chapter 4
Implementation

This chapter describes the approaches used to analyse the datasets and in the
end, the results are presented. Reader can also find pseudocodes of the most
important algorithms here.

4.1 Software

Crucial software and its versions used:

ROOT 6.14.04

Python 3.6.4

Numpy 1.14.0

Pandas 0.22.0

TensorFlow 1.7.0

Keras 2.2.4

4.1.1 ROOT

ROOT is a data analysis framework developed by CERN [10], written mostly
in C++. It is one of the most used software tools in particle physics. Some
of its biggest advantages and the reasons for its firm position in the field are:

histograms Histograms are easy to create and work with as ROOT pro-
vides a large number of functions/methods to get the most of
histograms [7].

root files In particle physics experiments, the detector often output large
datafiles with hundreds of attributes/columns. But each scientist
usually needs to work with only a small fraction of the columns.
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If these data were saved in CSV or similar files, they would have
to read the whole file and select only a small portion of columns.
ROOT and its TTree class enables to load only specified columns
efficiently [12].

intergation As ROOT is written in C++, it can be used in C++ code, but
it is also inegrated with other ”data science languages” like R or
Python (extension PyROOT) [8, 9].

In this work, ROOT (PyROOT) was only used in the first phase, when
working with original datasets and selecting attributes/features which were
later used for training the neural networks.

4.1.1.1 TLorentzVector

TLorentzVector is a four-vector class7 used for description of momentum and
energy of particles in a spherical coordinate system [11].

The primary method used to set these properties is SetPxPyPzE.
However, the detector output (and used dataset) does not contain these

variables, but only transverse momentum (pT ), energy (E), azimuthal an-
gle (φ) and pseudorapidity η, which is the spatial coordinate describing the
angle (θ) of the particle relative to the beam axis (polar angle)[41].

To compute the cartesian momenta (px, py, pz) from pT , φ, η, these conver-
sions need to be used:

• px = pT ∗ cosφ

• py = pT ∗ sinφ

• pz = pT ∗ sinh η

For convenience, the TLorentzV ector class contains also the method called
SetP tEtaPhiE and the conversions are done automatically while the object
is being created. The function to compute the invariant mass is also part of
this class (see equation 4.1).

minv =
√
e ∗ e− px ∗ px − py ∗ py − pz ∗ pz (4.1)

4.1.2 Python

To ensure compatibility with packages listed below, Python version 3.6.4 was
used.

Pandas, Numpy Packages almost necessary for scientific computing with
Python [29, 30].

7Class representing a vector consisting of four components.
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4.2. Data

Keras, TensorFlow Keras is a popular high-level neural networks API. It is
(among others) capable of running on top of TensorFlow
– open-source software library developed by Google for
dataflow programming and is used for machine learning
applications – mostly neural networks [23, 38].

4.2 Data

The dataset contains 787 988 records – events. Each event describes one
collision and subsequent decay of individual particles. For this description,
there are 1338 attributes. However, most of them are not useful for analysing
2`SS + 1τhad decay channel (see 1.4).

4.3 Truth level

Truth level data are the easiest to work with. They are Monte Carlo samples
generated by PYTHIA8.

The decay structure is saved in several vectors with prefix m_truth_. What
data are stored in the vectors used for analysis is explained in the following
list:

m truth pt Transverse momenta of the particles.

m truth eta Pseudorapidity of the particles (see section 4.1.1.1)

m truth phi Azimuthal angle of the particles.

m truth e Energy of the particles.

m truth pdgId Particle codes (see section 4.3.1).

m truth barcode Unique IDs of the particles.

m truth parents Barcodes of particles’ parents.

m truth children Vector of barcodes of particles’ children.

4.3.1 Particle codes

To distinguish individual types of particles, the Particle Data Group (PDG9)
particle codes are used [27, 31].

The particles that are important for the analysis have the following codes
in the PDG standard:

8PYTHIA is a simulation program for high-energy physics events like elementary particle
collisions [34].

9Particle Data Group is an international collaboration of particle physicists.
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1 down quark,

2 up quark,

3 strange quark,

4 charm quark,

5 bottom quark,

6 top quark,

11 electron (lepton),

12 electron neutrino,

13 muon (lepton),

14 muon neutrino,

15 τ (lepton),

16 τ neutrino,

24 W boson,

25 Higgs boson,

111, 211 mesons (particles made up of two quarks),

− sign all of the particles above have their antiparticles with the same PDG
standart code with ”− ” sign.

Redrawing the Feynman diagram described in previous chapter (figure 3.1)
and using these codes, we get:
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Figure 4.1: tt̄H system decay – 2`SS + 1τhad channel, with PDG codes.

4.3.2 Algorithm

The provided Monte Carlo data were stored in the root file in a tree-like way
(each particle had its parent’s barcode and non-leaf particles had list of their
children’s barcodes). To be able to work with the data, I created class Node,
where I stored basic attributes of particles (pt, eta, phi, e) as well as their
particle codes, its indexes in the original file and lists of their children.

Then I was able to find the particles I needed and build tree structures
representing parts of the Feynman diagram. First, I go through the list of
particles to find the root particle (top quark (6), antitop quark (-6) or Higgs
boson (25), see 4.3.1 for details), which is saved into an object named node.

After finding the root particle, recursive method find children (see algo-
rithm 2) is called. As a result, a tree structure representing the particle life is
saved in a tree with root in the node object.

With this tree structure, following tasks are much easier – computing the
invariant mass of arbitrary node (particle). You can see the algorithm for this
task here (3).

But before the invariant mass reconstruction algorithm is needed, we must
make sure, that the event is part of 2`SS + 1τhad decay channel. To do so,
method check channel is used.

For the sake of simplicity, the code is not presented here but it can be
found in source codes folder. It recursively traverses the tree of the Higgs
boson decay and counts the number of quarks, leptons and neutrinos in its
leaves.
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Algorithm 2: Recursive method find children for searching prod-
ucts of particle decay and building a tree structure representing the
particle life.

Input : Vector pdgID, vector barcode, vector children barcodes,
number of particles n

Output: Root of the decay tree – in object node
1 for child in children barcodes[self.i] do
2 for i from 0 to n− 1 do
3 if child == barcode[i] then
4 new node := Node(pt[i], eta[i], phi[i], e[i], pdgID[i], i)
5 new node.find children(pdgID, barcode, childrenbarcodes, n)
6 self.children.append(new node)
7 end
8 end
9 end

10 return self

Since one τ is supposed to decay hadronically and the other one leptoni-
cally, the needed numbers are:

• 1 lepton

• 2 quarks

• 1 lepton associated neutrino

• 2 Tau associated neutrinos

Similar procedure is applied to the top quark and anti-top quark branches.

top quark Must decay into two quarks and one bottom quark.

anti-top quark Must decay into one bottom quark, one lepton and one
neutrino associated with the lepton.

Based on the selection criteria listed above and using the algorithms de-
scribed, 13 673 events were selected for further analysis.

4.3.3 Dataset features

Based on the information summarized in chapter 3, these features were se-
lected for each event:

met met, met phi missing energy characteristics,

r w jets distance between quarks coming from the W boson,
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Algorithm 3: Method reconstruct mass for computing invariant
mass of the system from leaf nodes.

Input : Tree structure representing part of the Feynman diagram of
the event (self)

Output: Invariant mass of the system
1 if self.children then
2 tlv := TLorentzV ector()
3 flag := True
4 for child in self.children do
5 if flag then
6 tlv := child.reconstruct mass() flag := False
7 end
8 else
9 tlv := tlv + child.reconstruct mass()

10 end
11 end
12 return tlv

13 end
14 else
15 tlv := TLorentzV ector()
16 tlv.SetP tEtaPhiE(self.pt, self.eta, self.phi, self.e)
17 return tlv

18 end

r w b jet distance between the W boson and the bottom quark,

r higgs jets distance between quarks in the Higgs boson branch,

top q 1 mass invariant mass of a quark in the top quark branch,

top q 2 mass invariant mass of a quark in the top quark branch,

top b mass invariant mass of the bottom quark in the top quark
branch,

top w mass invariant mass of the W boson in the top quark
branch,

top mass invariant mass of top quark,

higgs q 1 mass invariant mass of a quark in the Higgs boson branch,

higgs q 2 mass invariant mass of a quark in the Higgs boson branch,

higgs q comb mass invariant mass of combined quarks in the Higgs bo-
son branch,
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higgs lep mass invariant mass of lepton in the Higgs boson branch,

higgs mass visible visible part of the invariant mass of the Higgs boson,

tau mass invariant mass of τ ,

antitau mass invariant mass of anti-τ ,

tau visible mass visible part of the invariant mass of τ ,

antitau visible mass visible part of the invariant mass of anti-τ ,

antitop lep mass invariant mass of lepton in the antitop branch,

antitop b mass invariant mass of b quark in the antitop branch,

antitop mass invariant mass of the antitop quark,

antitop mass visible visible part of the invariant mass of the antitop quark,

higgs mass invariant mass of the Higgs boson – target variable.

However, all of these features will not be available when working with the
detector level data. That is why some of these features have ”visible” in their
names. It means that the value was computed only from the particles that
can be detected (excluding neutrinos). But the data are still useful, because
they will serve for testing NN and tuning their hyper-parameters.

4.4 Detector level

In case of the detector level, creation of the dataset, which will be later used
as input for the neural network, is more complicated. There are three main
reason for this:

• The values obtained from the detector are inaccurate (measurement un-
certainty).

• The dataset contains less information about the detected particles than
in case of the truth values from simulator – the particle codes are un-
known and only few groups of particles are distinguished

– jets (”traces of quarks”)
– leptons
– neutrinos (they pass the detector without interaction)

• The total detected energy of the system is lower than the real energy,
because of the undetectable particles.
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4.4.1 Algorithm

Since there are some conditions that the event must meet to be part of 2`SS+
1τhad channel, the algorithm (4) starts by checking these (2 b jets, 2 non-b
jets, 2 same-charge leptons and 1 hadronic τ). After that, it can assign the
non-b jets to the top quark branch, then checks both b jets to find the one
which most probably (based on the the invariant mass of it and the other
non-b jets) comes from the top quark.

The other b jet is then assigned to the antitop branch and both leptons are
checked. Since there is missing energy caused by the neutrino, the algorithm
does not select the lepton based on the invariant mass, but based on the
distance between the lepton and the b jet (see equation 4.2). The other
lepton is then assigned to the Higgs boson branch and all needed features can
be computed and saved.

∆R =
√

(∆η)2 + (∆φ)2 (4.2)

Algorithm 4: Steps of the algorithm for extracting features on de-
tector level dataset.

1. Divide the jets into two groups – b jets and non-b jets.

2. Check whether the needed conditions are met:
(a) 2 b jets,
(b) 2 non-b jets,
(c) 2 same-charge leptons,
(d) 1 hadronic τ .

3. Assign the non-b jets to the top quark branch.

4. Check the b jets (invariant mass after combining with non-b jets) and
assign them to the top quark and the antitop quark branches.

5. Check the leptons (their distances from b jet) and assign them to the
antitop quark and the Higgs boson branches.

6. Compute all needed features (see section 4.4.2).

4.4.2 Dataset features

The features names and description remains the same as in case of truth
level. Most features remained, but those affected by the missing energy of
undetectable neutrinos had to be omitted.
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met met, met phi missing energy characteristics,

r w jets distance between quarks coming from the W boson,

r w b jet distance between the W boson and the bottom quark,

top q 1 mass invariant mass of a quark in the top quark branch,

top q 2 mass invariant mass of a quark in the top quark branch,

top b mass invariant mass of the bottom quark in the top quark
branch,

top w mass invariant mass of the W boson in the top quark
branch,

top mass invariant mass of the top quark,

higgs q comb mass invariant mass of combined quarks in the Higgs bo-
son branch,

higgs lep mass invariant mass of lepton in the Higgs boson branch,

higgs mass visible visible part of the invariant mass of the Higgs boson,

tau visible mass visible part of the invariant mass of τ ,

antitau visible mass visible part of the invariant mass of anti-τ ,

antitop lep mass invariant mass of lepton in the antitop branch,

antitop b mass invariant mass of b quark in the antitop branch,

antitop mass visible visible part of the invariant mass of the antitop quark,

higgs mass invariant mass of the Higgs boson – target variable.

4.5 Reconstruction of the invariant mass

In this section two approaches to the reconstruction of the invariant mass are
described.

4.5.1 Exact formula

Using exact formula (see section 4.1.1.1) is how the label higgs mass is ob-
tained. This formula also serves for computing invariant masses of other par-
ticles and creating histograms of 13 673 samples that were selected from the
original dataset.
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4.5. Reconstruction of the invariant mass

4.5.1.1 Truth level

On truth level, the exact formula should be precise, because all the data
(information about all particles) is available and there should be sharp peaks
around the following values:

• 80.38 GeV/c2 – W boson

• 174.98 GeV/c2 – top quark

• 125.09 GeV/c2 – Higgs boson

As it is clear from the histograms (see figures 4.2, 4.3, 4.4 and 4.5), the
peaks around mentioned values are visible. This confirms successful recon-
struction of the invariant mass of the particles.

In case of the Higgs boson (figure 4.5), the small left tail can be explained
by various random photon emissions that may be causing the missing energy
in the system. The missing right tail is also the reason why this plot does not
have a Gaussian curve fit.
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Figure 4.2: Reconstructed invariant mass of the W boson (from the top quark)
– truth level.

4.5.1.2 Detector level

Unlike in the case of the truth level, the exact formula cannot give precise
results (peaks around expected values), because of the missing energy. That
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Figure 4.3: Reconstructed invariant mass of the top quark – truth level.

is why the neural networks (or other machine learning algorithms) need to be
used.

In preparation for the detector level testing, two neural networks were
created. The neural network created during the research on the truth level
will be used with minor modifications of the code. The second prepared neural
network is a classifier that will be trained to distinguish the signal events from
background data. Skeleteons of both neural networks’ codes can be found on
the enclosed CD.

4.5.2 Neural networks

In this section, the process of training neural network and tuning its hyper-
parameters is described. In first phase, the neural networks work only with
truth level data to estimate the invariant mass of the Higgs boson and repro-
duce its histogram presented in section 4.5.1.1.

4.5.2.1 Truth level – results

First, different neural networks topologies (varying in number of neurons in
each layer, number of layers and activation and loss functions) were tested
on full truth dataset (working with all features listed in section 4.3.3). Also
different hyper-parameters (loss function, learning rate, batch size, number of
epochs) were tuned using cross validation.
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Figure 4.4: Reconstructed invariant mass of the antitop quark – truth level.

Detailed results can be find on enclosed CD, only few interesting results
will be shown here:

As can be seen in figure 4.6, the convergence is relatively fast (5-10 epochs),
but the result (percentage error) depends on the splitting the dataset to train
and validation parts.

Next figure 4.7 shows how bigger batch size influenced the convergence.
After changing the batch size from 2000 to 5000 (other parameters were left
unchanged), it took almost two to three times more epochs to converge (com-
pare with figure 4.6).

As a result, the best topology and parameters (in terms of percentage
error on the reconstructed invariant mass of the Higgs boson and training
time) were chosen and were subject to further analysis with usage of different
datasets10 (see table 4.1).

In figure (4.8), the cross validation of the best network is shown. The
mean loss on training sample was around 1.5 %, in case of validation sample,
the mean loss was slightly higher (with mean around 1.75 %). No overfitting
was recorded.

10While working with the different datasets, also some other topologies and hyper-
parameters were tested. Although they occasionally provided better results, they were not
significantly better than the chosen network, so they were not tested thoroughly.
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Figure 4.5: Reconstructed invariant mass of the Higgs boson – truth level.

Table 4.1: Selected hyper-parameters.

Parameter Value
learning rate 0.01
batch size 2000
number of epochs 100
activation function ReLU
loss function MAPE

network topology
two hidden layers with
2*dimension of data and
dimension of data neurons

train/test split 70:30
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(a) Figure shows the changes of mean percentage error during the training
phase of the neural network on 5 different validation splits.
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(b) Average over the results of the 5 splits from figure 4.6a.

Figure 4.6: Dependence of mean percentage error on different splits of the
training dataset.
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(a) Figure shows the changes of mean percentage error during the training
phase of the neural network on 5 different validation splits.
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(b) Average over the results of the 5 splits from figure 4.7a.

Figure 4.7: Slower convergence with larger batchsize.
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(a) Figure shows the changes of mean percentage error during the training
phase of the neural network on 5 different validation splits.
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(b) Average over the results of the 5 splits from figure 4.8a.

Figure 4.8: The best configuration from different networks and hyper-
parameters settings.
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After having chosen the network topology and hyper-parameters, a series
of tests on six neural networks was performed. These test are described here
and summarized in table 4.2 in the end of this section.

The first network was trained on the whole dataset containing full infor-
mation about all three branches of the Feynman diagram of the Higgs boson
decay (23 features).

Since it had the most (all) information about the event, it predicted the
closest estimations with mean absolute percentage error around 2.4 %.

In the figure 4.10a, there is a visible peak around value 124 GeV/c2 which is
close to the expected mass of 125.09 GeV/c2. It does not copy the distribution
of the values computed by the exact method – it has a tail on the right side
(unlike the histogram of exact method). This confirms that the network is
not overfitted and also has not learned to predict one value.

Figure 4.10b, shows the distribution of errors. It is, as expected, centered
around 0, with high peak.

Figure 4.9 visualizes the importance of individual features. The model is
trained, tested once (to get benchmark results), but after that, one by one,
each feature column is noised (multiplied by a random number from normal
distribution (µ = 1, σ = 0.1)) and the change of the target (predicted) value is
measured. Edges of the rectangles represent first and third quartile, whiskers
represent minimum and maximum of all of the data. Results are sorted from
the most important feature (bottom) to the least important one (top).
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Figure 4.9: Feature importance – full truth dataset
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).
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(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.10: Invariant mass of the Higgs boson – full truth dataset.
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The second network was trained on the visible part of the truth dataset
containing information about all three branches of the Feynman diagram of the
Higgs boson decay. Unlike the first network, this one does not have access to
information about neutrinos (which cannot be detected), so it cannot compute
the masses of some particles and it has to operate only with the ”visible” part
of the mass (20 features).

This model still had enough information (though it lost the most important
feature ”antitop mass” and had to work with its visible part) to provide good
estimations with mean absolute percentage error around 2.5 %.

In the figure 4.12a, there is still a visible peak around value 124 GeV/c2,
but the deviation is higher. This matches the expectations – the network lost
the most important feature and had less information to work with.

Figure 4.12b shows the distribution of errors and figure 4.11 shows features
sorted by their importance.
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Figure 4.11: Feature importance – visible part of the truth dataset.
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).
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(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.12: Invariant mass of the Higgs boson – visible part of the truth
dataset.
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The third network was trained on the detector available part of the truth
dataset containing information about all three branches of the Feynman di-
agram of the Higgs boson decay. Unlike the second network, this one does
not have access to information about jets coming from the Higgs boson, be-
cause they are already included in τ information in the output of the detector
(although technically, they can be detected), so again, the network has less
information than in the previous case (17 features).

This model lost only three less important features, so the estimations did
not get much worse – mean absolute percentage error was around 2.6 %.

In the figure 4.14a, there is still a visible peak around value 124 GeV/c2,
but the deviation is again slightly higher than in the case of the full dataset
but lower than in the case of the previous dataset with more information. This
may mean that one of the features that were in the previous dataset does not
contribute to better results but makes them worse.

Figure 4.14b shows the distribution of errors and figure 4.13 shows features
sorted by their importance.
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Figure 4.13: Feature importance – detector available part of the truth dataset.
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).

15 10 5 0 5 10 15 20
invariant mass [GeV/c2]

0

200

400

600

800

1000

1200

1400

sa
m

pl
es

[#
]

Gaussian fit
= 1.083
= 1.195

Histogram of differences between real and predicted values,
detector level available dataset

Gaussian fit
errors

(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.14: Invariant mass of the Higgs boson – detector available part of
the truth dataset.
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The fourth network was trained on the dataset containing full information
about only the Higgs boson branch of the Feynman diagram of the Higgs
boson decay (12 features).

Although this model lacks almost half of the features, the estimations of
the invariant mass of the Higgs boson remained relatively precise – mean
absolute percentage error was around 3.3 % (1 % worse than the first network
working with the full dataset).

In the figure 4.16a, the peak is still centered around the expected value,
however, the deviation has doubled.

Figure 4.16b shows the distribution of errors and figure 4.15 shows features
sorted by their importance.
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Figure 4.15: Feature importance – full truth dataset (Higgs branch).
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).
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(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.16: Invariant mass of the Higgs boson – full truth dataset (Higgs
branch).
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The fifth network was trained on the visible part of the truth dataset
containing information about only the Higgs boson branch of the Feynman
diagram of the Higgs boson decay (10 features).

In case of this model, we can observe the first significant drop in the
accuracy of estimations – mean absolute percentage error was around 10.2 %.

In the figure 4.18a, the peak is significantly lower and shifted to lower
values (120 GeV/c2) and the deviation is approximately five times higher
than in the previous case.

Also the distribution of errors in the figure 4.18b is much wider. Figure 4.17
shows features sorted by their importance.
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Figure 4.17: Feature importance – visible part of the truth dataset (Higgs
branch).
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).
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(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.18: Invariant mass of the Higgs boson – visible part of the truth
dataset (Higgs branch).
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The sixth network was trained on the detector available part of the truth
dataset containing information about only the Higgs boson branch of the Feyn-
man diagram of the Higgs boson decay (7 features).

As expected this model with the least features available provided the worst
results – mean absolute percentage error was around 21.0 %.

In the figure 4.20a, the peak is 10 GeV/c2 (around 110− 115 GeV/c2) off
and the deviation is approximately five times higher than in the previous case.

Also the distribution of errors in the figure 4.20b is even wider that in the
previous case (with some cases reaching error of over 100 GeV/c2). Figure 4.19
shows features sorted by their importance.
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Figure 4.19: Feature importance – detector available part of the truth dataset
(Higgs branch).
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(a) Comparison of the values predicted by the neural network (blue) and the
values computed by exact method (orange).
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(b) Errors – differences between values computed by exact method and values
predicted by the neural network.

Figure 4.20: Invariant mass of the Higgs boson – detector available part of
the truth dataset (Higgs branch).
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Table 4.2 summarizes the results on the truth level. As expected, the error
is increasing with decreasing number of available features. For the purpose
of further analysis, the third row is the most important, because ”detector
available part” is the same dataset (in terms of number and type of features)
that will be available on the detector level.

Table 4.2: Summary of the truth level results.

Dataset Features Error µ [GeV/c2] σ [GeV/c2]
full 23 2.37 % 126.06 1.06
visible part 20 2.53 % 123.89 1.14
detector available part 17 2.63 % 126.06 1.09
full (Higgs branch) 12 3.26 % 127.74 2.34
visible part (Higgs branch) 10 10.21 % 121.59 11.36
detector available part
(Higgs branch) 7 21.00 % 113.13 30.50

4.6 Further research

Next part of the research will be focused on estimating the invariant mass of
the Higgs boson on the detector level. For this, the neural networks trained
on the truth level dataset will be used once the events from the detector level
dataset will be prepared for studying.

After that, another neural network – classifier will be trained to differen-
tiate signal events from background events. The skeleton of the network is
already prepared and can be used once the datasets are prepared.

Another idea for future research, that might bring better results, is study-
ing the photon emissions that influence the total energy of the decay system.
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Conclusion

There are several outputs of this thesis. First, the algorithm for selecting
events belonging to the 2`SS+1τhad channel and extracting selected features.

Another output is the group of three neural networks. Out of them, one
has been fully tested – the regression model estimating the invariant mass of
the Higgs boson on the truth level. Six modifications of this neural network
have been trained and tested on datasets with varying number of features.

One of these models is suitable for estimating the invariant mass of the
Higgs boson on the detector level (it is trained on the part of the truth level
dataset that is also available on the detector level and its estimations are
accurate enough).

This network will be tested on the detector level. In the future, the in-
variant mass reconstruction on the detector level could be used in a neural
network classifier and contribute to increasing the signal/background ratio.
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Appendix A
Acronyms

ANN Artificial neural network

ATLAS A Toroidal LHC ApparatuS

BDT Boosted Decision Trees

BP BackPropagation

CERN European Organization for Nuclear Research (French: Conseil Eu-
ropéen pour la Recherche Nucléaire)

CMS Compact Muon Solenoid

CNN Convolutional Neural Network

CSV Comma-Separated Values

FNN Feed-forward Neural Network

GeV GigaelektronVolt

LHC Large Hadron Collider

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error

NN Neural Network

PDG Particle Data Group

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

XOR eXclusive OR
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Appendix B
Contents of enclosed CD and

GIT repository

Following directory tree describes the contents of enclosed CD and GIT repos-
itory at https://gitlab.fit.cvut.cz/urbanp13/masters-thesis---petr-
urban.git.

readme.txt .................. the file with CD/GIT contents description
data..........................................the directory of datasets
src.......................................the directory of source codes

preprocessing....the directory of source codes for feature extraction
nn..................the directory of source codes for neural networks
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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