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Bc. Ondřej Bı́lek

Department of Theoretical Computer Science
Supervisor: Mgr. Jakub Háva
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Abstrakt

Velké organizace čeĺı problémům s integraćı H2O softwaru pro big-data stro-
jové učeńı v prostřed́ı Hadoopu. Hlavńı kritika zmiňuje chyběj́ıćı integraci
s podnikovým zabezpečeńım, chyběj́ıćı kontrolu nad zdroji (CPU, paměť)
a chyběj́ıćı monitoring. Analýza nasazeńı H2O na Hadoopu a podnikových
požadavk̊u vytvořila podklad pro hledané řešeńı.

Na základě výzkumu existuj́ıćıch nástroj̊u bylo rozhodnuto implementovat
aplikaci, která umožňuje Hadoop administrátor̊um nastavit bezpečnou H2O
platformu pro datové analytiky, kteř́ı zde mohou vytvářet a použ́ıvat H2O
clustery. Rámec projektu se následně rozš́ı̌ril o integraci projektu Sparkling
Water, který spojuje H2O a Spark.

Tato práce popisuje implementaci takové aplikace a zaměřuje se na detaily
nasazeńı. Výsledný program, který se jmenuje Enterprise Steam, je nyńı v
produkčńım prostřed́ı několika vysoce postavených amerických firem přes v́ıce
než rok a dále rozšǐruje svoji funkčnost na základě zpětné vazby a dodatečných
požadavk̊u.

Kĺıčová slova Enterprise Steam, Hadoop, YARN, Spark, H2O, H2O.ai,
Sparkling Water, cluster, nasazeńı
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Abstract

Large organizations face problems when integrating H2O software for big-data
machine learning in a Hadoop environment. The main criticism mentions the
lack of integration with enterprise security, lack of resource control (CPU,
memory) and lack of monitoring. Analysis of H2O deployment on Hadoop
along with enterprise specifications formed the basis for a potential solution.

Based on the research of existing tools the conclusion was to implement
an application that enables Hadoop administrators to set up a secure H2O
platform for data analysts to start and access H2O clusters. The scope of
the project subsequently expanded to integrate Sparkling Water project that
connects H2O with Spark.

The thesis describes the implementation of the application and focuses on
deployment details. The resulting application called Enterprise Steam is now
in a production environment of several high-profile American companies for
over a year and keeps expanding based on feedback and feature requests.

Keywords Enterprise Steam, Hadoop, YARN, Spark, H2O, H2O.ai, Sparkling
Water, cluster, deployment
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Introduction

H2O is widely used open-source software for big data analysis that is developed
by the company H2O.ai from Mountain View, California, U.S. The software
is aimed towards all levels of data scientists who can install H2O and use it
on their laptop. However, to tackle the processing of big data, which does not
fit in the memory of a single laptop, H2O needs to be deployed on multiple
computers to form a computational cluster.

Typically, companies store their data over numerous on-premise computers
that form a Hadoop cluster. H2O contains a launcher that starts H2O on the
requested number of Hadoop nodes to create an H2O cluster which is used to
analyze data stored on Hadoop’s distributed file system.

Every time, the data scientist wants to use H2O, they need to use the
launcher to start their personal H2O cluster. The launcher is only a CLI
(Command-line interface) tool.

Current and prospective customers started to demand a supporting en-
terprise platform to meet their internal policies such as enterprise security,
auditing, and monitoring. They also requested an abstraction layer on top
of H2O launcher to streamline the H2O cluster creation in environments with
multiple users.

In February 2018 I joined H2O.ai to take over a beta version of the enter-
prise H2O service called Enterprise Steam to move it into a full release and
add additional features over time.

This thesis initially describes the Hadoop framework and H2O software.
Following chapters introduce us to the Spark cluster computing framework
and H2O’s integration with Spark called Sparkling Water. Next, we analyze
the solution and formalize requirements for the resulting application. Finally,
we describe the implementation and discuss the results.
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Chapter 1
Hadoop

Apache Hadoop at its core is a collection of open-source tools written in
Java that use a cluster of general purpose computers to tackle computational
problems involving large amounts of data. In this chapter, we will introduce
Hadoop and all the associated technologies that concern us when developing
and deploying applications on Hadoop.

1.1 HDFS

At the Hadoop’s core is a distributed storage part known as HDFS (Hadoop
Distributed File System). Its main feature apart from being a distributed file
system is high fault tolerance. A chance of failure is always present when we
store data on general purpose computers, and HDFS handles such situations
gracefully.

To support batch processing and streaming workloads HDFS has been
build for maximum throughput instead of the low latency of data access.
To achieve this speed-up HDFS relaxed some POSIX rules and implemented
WORM (write-once-read-many) access model for files. The idea is that the
WORM is a very efficient data processing pattern because typically the data
is loaded once in full and analyzed multiple times. Thus the time to read the
full data is critical compared to the time it takes to fetch the first record. The
WORM model simplifies synchronization as it guarantees the readers that the
data will not be manipulated once read. Additionally, by moving computation
to data rather than the other way around a significant reduction in network
congestion was achieved [12].

1.2 Architecture

Hadoop comprises of several general purpose computers called nodes running
Hadoop services. The hearth of Hadoop is a group of nodes called Master
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1. Hadoop

Figure 1.1: Hadoop architecture [1]

Nodes. They run essential services such as NameNodes to manage HDFS
storage and Resource Managers for scheduling Hadoop applications. Deploy-
ing and configuring several Master Nodes is necessary to achieve redundancy.
The single point of failure in a Hadoop cluster is the NameNode.

The largest group of nodes are the Worker Nodes where HDFS data is
stored and computation performed. Several services are running on such node.
The DataNode service allows the Name Node to save blocks of HDFS data on
the node. The Node Manager service, on the other hand, enables the Resource
Manager to schedule jobs that can use hardware resources of that node.

A common requirement is to run a MapReduce job or a client application
in the Hadoop cluster. Client applications are different from regular Hadoop
jobs because they need to run permanently, usually exposing some web server
or API endpoint to the user. Placing them on a Worker Node may starve
them of resources and mixing them with the critical infrastructure of Master
Nodes is not safe for the stability of the cluster. That is why there is another
type of node called the Edge Node.

The Edge Nodes, also referred to as Gateway Nodes, run cluster manage-
ment tools and client applications. They are the gateway to the Hadoop cluster
and contain only the essential libraries and Hadoop CLI clients (hadoop, hdfs,
yarn) along with the cluster configuration. Edge nodes are not critical to the
functionality of the Hadoop cluster and users should access the cluster only

4



1.3. MapReduce

through these nodes. Figure 1.1 shows an example of Hadoop architecture.

1.3 MapReduce

So far we have described an array of computers that store data and have
resources to perform computation. Hadoop leverages MapReduce framework
to process parallelizable problems across large datasets stored in HDFS using
the Worker Nodes.

MapReduce framework operates on key-value pairs and composes of three
operations. In the Map phase, each worker uses the map function to process
its data into a set of key-value pairs. In the Shuffle phase, key-value pairs
are redistributed based on the key such that all the pairs with the same key
are on the same node. Finally, during the Reduce phase, each node applies
the reduce function, processing each group of output data per key. Map and
Reduce steps are performed in parallel allowing large server farm to process
petabytes of data in a few hours.

Hadoop exposes this framework via a set of Java interfaces for the user to
implement their MapReduce job. Because MapReduce framework and HDFS
is running on the same set of nodes it allows to efficiently schedule computation
on the nodes where data is already present.

1.4 YARN

YARN (Yet Another Resource Negotiator) was introduced in Hadoop version
2 to help with MapReduce job management. However, it quickly outgrew its
original assignment and now supports any custom applications to be submitted
to YARN. The main idea is to have a global ResourceManager (RM) daemon
and ApplicationMasters (AM) on a per-application basis. NodeManager lives
on each node and reports status to the RM.

RM’s Scheduler is a pure scheduler without any notion of application sta-
tus. It allocates resources based only on the resource requirements of the appli-
cation and available resources reported by the NodeManagers. The Scheduler
is configurable with existing or custom policies to spread the work between
various applications and queues.

RM’s ApplicationsManager accepts job submission and negotiates the first
container for execution of submitted application’s AM. Negotiation of addi-
tional resources from the Scheduler, their status, and progress monitoring is
the responsibility of the AM. Figure 1.2 shows the YARN architecture.

1.4.1 YARN queue

Ideally, Resource Manager would grant any request of a YARN application;
however in the real world, resources are limited, and applications usually need

5



1. Hadoop

Figure 1.2: YARN architecture [2]

to wait to have their requests fulfilled. YARN ships with three basic sched-
ulers: FIFO, Capacity, and Fair. FIFO (first in, first out) scheduler puts
applications in a queue and satisfies their requests in order. Such scheduler is
easy to understand but lacks suitability for more massive, shared clusters.

Capacity and Fair schedulers are based on the concept of YARN queues.
YARN splits all the resources of the Hadoop cluster between YARN queues in
a tree hierarchy where the root queue has access to all the resources. Figure 1.3
shows an example of YARN queue hierarchy.

Hadoop admin defines the capacity split at each level of the hierarchy along
with additional configuration depending on the type of the scheduler. Leaf
nodes of the hierarchy are the actual queues. The YARN queue name is a path
of the queue such as root.dev.team2. Additionally, admins can reserve YARN
queues for specific users or applications according to the intended usage. When
YARN preemption is enabled, higher-priority applications can terminate jobs
with lower priority.

root

dev

team1 team2

prod

Figure 1.3: Example of YARN queues
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1.5. Kerberos

1.4.2 YARN Application

Anyone can create a custom application and submit it to YARN. Such appli-
cations are usually written in Java thanks to the supporting Hadoop libraries
and can implement any custom logic on top of the Hadoop cluster. Appli-
cation Master can spawn any number of YARN containers running a user
process while using resource assigned and governed by YARN.

1.4.2.1 Submitting an Application

1. The flow starts with the Client asking the Resource Manager (RM) for
an application ID and available resources. Application state moves to
NEW and the ID is used later as a crucial identifier for downloading logs,
querying or terminating the application.

2. The Client sends another request to the RM with the application details.
RM accepts the request and saves it to the local store changing the
application status to SUBMITTED and passing it along to the Scheduler.

3. The Scheduler checks if the user is authorized to use the provided YARN
queue and also if it exceeds any limits of that queue. If everything checks
out, the application is scheduled to run, moving it to the ACCEPTED
status.

4. The Application can stay at this point for an extended period of time
if the YARN queue is overloaded or short on resources. When nothing
permits the application from running the RM allocates container for the
Application Master (AM), starts it and moves the application status to
RUNNING.

AM is application specific because it contains application logic and its task
is to negotiate with RM to launch jobs in separate containers. AM monitors
the jobs and reports back to RM. When AM finishes with return code zero, the
application status is set to FINISHED, otherwise FAILED. RM can terminate the
application if it fails to respond for a long time or exceeds allocated resources.
An authorized user can also terminate the job; then its final status would be
set to KILLED.

1.5 Kerberos

Before we talk about the data protection inside the Hadoop environment, we
first need to mention Kerberos. It is an authentication protocol that allows for
communicating over an insecure network in order to prove an identity between
each other. It uses tickets and symmetric key cryptography to do so.

Kerberos realm is the domain over which a Kerberos authentication server
has the authority and consists of the KDC (Key Distribution Center), Services
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1. Hadoop

Figure 1.4: Kerberos authentication flow [3]

and Clients. KDC has two main components, an AS (Authentication Server)
and TGS (Ticket Granting Server). Unix clients use kinit CLI for interaction
with the Kerberos realm. It can obtain, renew and cache the TGT (Ticket
Granting Ticket) used for Client-Service authorization. Following section is
a simple explanation of the Kerberos protocol. Please refer to Figure 1.4 for
visual representation.

1.5.1 Kerberos authentication flow

1. When a Client asks for the TGT from the KDC, a plaintext request is
made containing the user ID. The request does not contain any secrets.
The Client is also prompted for his password which is salted and hashed
into the Client Secret Key and kept in memory.

2. KDC generates the Client Session Key and sends back two messages.
Message A, containing the Client Session Key encrypted with the Client’s
hashed password from the KDC’s database. Message B is the TGT and
contains the Client Session Key in addition to other identifying infor-
mation such as Client ID, ticket validity and Client network addresses
encrypted with the KDC’s Secret Key.

When received by the Client, Message A is decrypted using Secret Key,
and Client Session Key extracted. This process is successful as long
as the Client’s password is correct. The user can not decrypt the TGT
from Message B because it was encrypted using KDC’s Secret Key. TGT
and Client Session Key is enough to negotiate further authorization to
services.
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1.5. Kerberos

3. When accessing Service, the Client sends two messages to the TGS. Mes-
sage C that contains the TGT and service ID. Message D that consists
of client ID and timestamp encrypted by Client Session Key. TGS re-
ceives message C and decrypts it using KDC Secret Key and obtains the
Client Session Key to decrypt the Message D.

4. If the user ID in both messages match, KDC send another two messages
back to the Client. Message E with Client-Service Ticket containing the
user ID and newly generated Client-Service Session Key, all encrypted
by Service Secret Key. Message F with Client-Service Session Key en-
crypted by Client Session Key. The client now has all the information
to authenticate against the Service.

5. When initiating a connection to Service, the Client sends two messages.
Message E with Client-Service Ticket and message G that contains client
ID and timestamp encrypted using Client-Service Session Key. Service
can decrypt the Client-Service Ticket since it was encrypted using Ser-
vice’s Secret Key. Using the Client-Service Session Key the Service can
decrypt Message G to confirm the identity.

6. As a last step, Service sends the same timestamp found in message G
back to the client encrypted by Client-Service Session Key. When Client
verifies that timestamps match it can then start issuing requests to the
Service.

The protocol is designed so that the Client holds tickets it cannot decrypt
and sends them along with each ticket granting request. Kerberos’s single
point of failure is the KDC. When offline, new users cannot log in and com-
promised KDC allows an attacker to authenticate as any user. Clocks between
Client, Service, and KDC has to be in sync as the protocol relies heavily on
timestamps.

1.5.2 Keytab

A Kerberos principal is a unique identity to which Kerberos can assign tickets.
An authentication is completed only if the principal can provide his password.
TGT have short expiration dates and cannot be kept for later use. Not being
able to hold tickets poses trouble for using Kerberos in scripts or background
tasks as it is unsafe to embed the password in scripts or source code.

Fortunately, Kerberos has files called Keytabs that store Kerberos princi-
pals along with the encrypted keys. In other words, it is a store of Client Secret
Keys. Keytab can then be used instead of the password to obtain the TGT.
Because of that they have to be treated like passwords and securely stored
as anyone with read access on that file can use all the keys inside. Keytabs
should have minimal Unix permissions. They are not tied to any machine and
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1. Hadoop

<property>
<name>hadoop.proxyuser.steam.hosts</name>
<value>steam1.company.net,steam2.company.net</value>

</property>

<property>
<name>hadoop.proxyuser.steam.groups</name>
<value>steamusers</value>

</property>

Listing 1.1: Hadoop impersonation configuration

can be copied around; however if the Kerberos password changes, Keytabs
need to be recreated. Kinit utility supports keytabs.

1.6 Data Protection

Hadoop cluster can be configured to run in a secure mode. In such mode, each
user and each Hadoop service must authenticate against Kerberos. End-users
must authenticate themselves before interacting with any Hadoop service.
Usually using the kinit CLI providing a password or keytab.

A mapping between Kerberos principals and OS’s user accounts has to be
set up. The Kerberos principal then authenticates as a particular OS user and
access its data on HDFS. Data on HDFS can be optionally encrypted on the
wire between the service and the client. HTTP endpoints can be encrypted
with TLS as well.

Some applications running under a single user want to access HDFS and
submit YARN jobs on behalf of other users without having their Kerberos
credentials. Hadoop supports impersonation to enable such use-case [13]. This
feature has to be configured in the Hadoop’s primary configuration file core-
site.xml adding two new properties as seen in Listing 1.1.

This configuration lets user steam connect from steam1.company.net or
steam2.company.net host and impersonate users belonging to Unix group
steamusers. Such submitted application can create a proxy user and ac-
cess HDFS on his behalf. Without this configuration, creation of proxy user
would fail.

1.7 Distributions

Managing all of the Hadoop software is no easy task at all. Keeping the con-
figuration and other moving parts in sync across a large cluster is a tough ad-
ministrative task when armed only with the essential tools included in Apache
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Hadoop. That lead to the birth of Hadoop distributions known as Enterprise
Hadoop. These products bundle modified versions of open-source Hadoop and
build a set of custom tools on top of them to ease the burden of managing
the Hadoop stack. In a sense, Hadoop is just a major component in such
infrastructure.

Enterprise Hadoop distributions include thorough support and user-friendly
interface for managing the cluster. Major Enterprise Hadoop distributors are
Cloudera with its CDH (Cloudera Distribution Hadoop), Hortonworks with
its HDP (Hortonworks Data Platform) and MapR. Almost all Enterprise cus-
tomers are split between those distributions.
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Chapter 2
H2O

This chapter describes the company H2O.ai and its main product H2O, the
open source AI and ML platform. We describe the key components and discuss
the deployment on Hadoop.

2.1 About H2O.ai

H2O.ai is a Silicon Valley-based open source software company. Founded in
2011 by Cliff Click and SriSatish Ambati under the name 0xdata it launched an
open-source software for distributed big-data analysis. Over the year H2O.ai
launched additional products such as H2O 4GPU, Sparkling Water and re-
cently H2O Driverless AI.

As the company grew to its current more than 150 employees, it raised
$73.6M and expanded to more US cities and abroad. The main office is in
Mountain View, California and the second largest one in Prague, Czech Re-
public, currently with more than 20 employees.

The company is active in the open-source community, and its goal is to
democratize Artificially Intelligence for everyone. The recent focus being on
Explainable AI and Automatic Machine Learning with the Driverless AI plat-
form. H2O.ai was named a Visionary among the 17 vendors included in Gart-
ner’s 2019 Magic Quadrant for Data Science and Machine Learning Platforms.
Various machine learning conferences organized by H2O.ai were held across
the world including New York, San Francisco and London.

2.2 H2O

H2O is an open-source in-memory platform for distributed, scalable machine
learning. It is the original product of H2O.ai launched in 2011. H2O-3 is the
third incarnation of H2O and the successor to H2O-2. The H2O platform is
used by over 18,000 organizations globally including companies like PayPal,
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Wells Fargo, PwC, Booking.com, Intel, Capital One and Cisco. GitHub repos-
itory can be found under the following link https://github.com/h2oai/h2o-
3. It supports the following algorithms:

• Supervised

– Cox Proportional Hazards (CoxPH)

– Deep Learning (Neural Networks)

– Distributed Random Forest (DRF)

– Generalized Linear Model (GLM)

– Gradient Boosting Machine (GBM)

– Näıve Bayes Classifier

– Stacked Ensembles

– XGBoost

• Unsupervised

– Aggregator

– Generalized Low Rank Models (GLRM)

– Isolation Forest

– K-Means Clustering

– Principal Component Analysis (PCA)

• Miscellaneous

– Word2vec

Another feature is a Grid (Hyperparameter) Search and more importantly
the AutoML functionality whose goal is to produce a list of best models by
running through algorithms and their hyperparameters for a certain amount
of time.

H2O uses many popular programming languages such as Python, R, Scala,
Java to interface with it as well as RESTful API and Flow notebook/web
interface. An important feature is the ability to run on Cloud, On-Premise
Hadoop or on a Private Cluster. Figure 2.1 shows high level architecture of
H2O.
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2.3. Architecture

Figure 2.1: High level architecture of H2O [4]

2.3 Architecture

An H2O cluster is made of one or more nodes where each node is a single
JVM process. It is recommended to create clusters on fairly symmetric high-
performance machines with good network connections between them. Nodes
rely on the network for communicating with each other. Leader nodes REST
server listens to user commands coming from R, Python or any other sup-
ported API library.

2.3.1 Data Frame, Vectors and Chunks

H2O Data Frame is the basic unit of storage visible to users. It is distributed
across all the nodes and is fluid, allowing addition and deletion of columns as
opposed to the frame being rigid and immutable. The key ingredient is an
atomic Distributed Key/Value store which spreads the data across the cluster.

Importing of user dataset is done in a distributed manner where each
node loads a subset of data. After parsing the data a handle to H2O Frame is
returned to the user. Internally an H2O Frame is a collection of Vectors, each
Vector holding a single column of the dataset. Vectors are store compressed
(usually 2 to 4 times) with fast random access and on-the-fly decompression.
Vector is a collection of roughly thousand of Chunks distributed across the
nodes [14]. Operations on a Vector are parallel and distributed with Chunk
granularity.

Chunk is home to a single node; thus it is a unit of parallel access and
operations on top of it are meant to be single-threaded. It holds around
thousand of elements which form a group of contiguous rows and is compressed
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Figure 2.2: Raw data ingestion pattern [5]

as a whole [15]. Chunk can be spilled to disk when needed. When accessing a
row that is out of the Chunk’s range, it is pulled from the correct Chunk over
the network. Figure 2.2 shows how a dataset is ingested from HDFS into the
H2O cluster.

2.3.2 MapReduce

If all rows need to be accessed from a single node, the entire dataset will
be fetched, most likely leading to swapping, poor performance or Out Of
Memory error. A MapReduce paradigm is used to avoid this. H2O splits
tasks between nodes in a tree pattern. Results are reduced at each node and
return with a single value when all sub-tasks are done. On a node level, the
task is parallelized over local Chunks using Fork/Join [16]. Listing 2.1 shows
an example H2O MapReduce task on a Vector.

In summary, it is a distributed columnar store which is well optimized for
datasets that have a huge number (billions) of rows and a large number of
columns (thousands). It is not very suitable for big sparse matrices since it
stores only rows sparsely.

2.4 H2O Flow

H2O Flow as seen in Figure 2.3 is a web server embedded in every H2O node
and serves as an H2O’s Web UI. It can be used to interactively import files,
build and improve models, make predictions, all via the internet browser.
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Figure 2.3: H2O Flow

Users can create Flows, which are a series of executable cells. Every command
has a user interface to explore all of the parameters to generate commands
correctly as well as monitor the progress of a running command. Flows can be
exported and imported for use on other clusters since H2O Flow’s lifecycle is
tied with the lifecycle of the cluster. Such interface serves as an introduction
to H2O for new users and can be used very productively; however, users
are encouraged to use the Python package or R library to explore all the
possibilities when building H2O models.

Apart from machine learning features, H2O Flow also offers an admin view
of the cluster. Users can monitor all the running jobs as well as cluster status
with details about every machine. The stack trace can be captured to debug
long-running jobs; timeline function lists any communication between nodes
and full H2O logs are downloadable at any point. User can also choose to shut
down the cluster from the Flow UI.

2.5 Productionizing

A powerful feature of H2O is its ability to bring machine learning models into
production quickly. Any model trained within the framework can then be
exported and is easily embeddable in any Java environment and used for real-
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double sumY2 = new MRTask2(){
double map(double x){

return x*x;
}

double reduce(double x, double y){
return x + y;

}
}.doAll(vec);

Listing 2.1: Sample H2O MapReduce task

time predictive scoring in the production environment. There are currently
two formats of exported models, MOJO and an old format called POJO.

Both format’s only compile-time and run-time dependency is the generated
h2o-genmodel.jar. H2O also exports the EasyPredictModelWrapper API to
provide a user-friendly interface in case there is no need for raw speed by
accessing the POJO/MOJO directly.

2.5.1 POJO

POJO (Plain Old Java Object) was the first format for representing trained
H2O models. The generated file is a library that supports scoring and also
includes the base classes from which the POJO is extended. In a simple
example, the POJO is loaded and wrapped in EasyPrecitModelWrapper and
supplied input from the standard input. The compiled source is then used for
scoring.

There are some limitations to POJOs. First, they are not supported for
GLRM, Stacked Ensembles or XGBoost models. Second, since the model itself
is embedded in the source code, the resulting file cannot be larger than 1 GB
because the JAVA compiler will crash with such input.

2.5.2 MOJO

MOJO (Model Object, Optimized) is a second generation and an improved
model storage format. By taking the decision tree out of the POJO and
navigating it using a conventional tree-walking algorithm it was able to go
around the mentioned size issue. New models are also significantly smaller on
disk, around 20 times.

Additionally, after JVM’s JIT compiler has optimized the execution paths
(hot paths), it scores 2 to 3 times faster. During a cold start where the
execution path has not been optimized yet, it performs even faster around 10
to 40 times [17]. MOJOs are created from an H2O model in the very same
way as POJOs.
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2.6 Deployment

The latest release of H2O is always posted at the following URL http://h2o-
release.s3.amazonaws.com/h2o/latest_stable.html. Next steps depend on
the deployment type. Only the standard release ZIP file is needed to run H2O
standalone on a single machine or custom cluster of machines. It bundles the
R and Python libraries but mainly contains the h2o.jar. It is a standard Java
JAR and can be run using the following command java -jar h2o.jar. The
only requirement is Java 7 or higher.

The previous command will start the H2O with default parameters, such
as 1GB of memory, forms H2O cluster of size one and exposes H2O Flow on
localhost along with the REST API. Flow is then used to interact with the
cluster from a browser, or a user can connect to the cluster from Python on R
API. Both of the mentioned APIs contain the h2o.jar and can initialize it on
their own. Thus the step with manually launching the JAR can be skipped if
necessary.

H2O Python package can be obtained directly from H2O, from PyPI
(Python Package Index) or Anaconda Cloud, and the latest version requires
Python 2.7 and 3.5 or higher. Similarly, The H2O R library can be obtained
directly from H2O or CRAN (Comprehensive R Archive Network) and requires
R version 3 or later.

It is not necessary to run H2O on Hadoop unless there is a specific need
for it. Steps for H2O’s deployment on Hadoop slightly differ from standalone
usage. Every distribution of Enterprise Hadoop differs slightly, and H2O has
to be built against the corresponding Hadoop version because of it. The
Hadoop users have to download H2O distribution ZIP matching their Enter-
prise Hadoop version.

At the time of writing H2O supports:

• CDH 4.4 → CDH 6.1

• HDP 2.2 → HDP 3.

• MapR 4.0 → MapR 5.2

• IOP 4.2

The ZIP file contents are the same as in standalone version but contain an
h2odriver.jar instead of h2o.jar. To start H2O on Hadoop, this new JAR
has to be passed to the hadoop command like so: hadoop jar h2odriver.jar
However, this alone is not enough as the driver needs to know how many nodes
and how much memory for each node the user needs. H2O then submits such
job to YARN, and it is up to YARN to allocate such YARN containers or
reject the job.

Many other launch parameters can be passed to h2odriver.jar, but this
is the basic. If the Hadoop cluster is Kerberized (running in secure mode), a

19

http://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
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user has to have a valid Kerberos ticket before submitting the job otherwise
it would get rejected. Starting H2O on Hadoop takes considerably more time
because the process is in the hands of YARN.

2.7 Security

For Enterprise customers, security is at the utmost importance, and usually,
a product does not touch a production environment without going through a
security review. Since H2O by design works with customer data by it has to
adhere to strict data protection policies.

H2O cluster is a set of H2O nodes that communicate with each other. The
number of nodes that create a single cluster is immutable once the cluster has
launched. H2O node is then a single OS-level process when running standalone
or a YARN container when running on top of Hadoop. Each H2O node exposes
two potential attack vectors. One is the H2O embedded web port which hosts
H2O Flow and the REST API. This port is used by the end-user to access the
cluster. The other vector is the internal communication port which is used for
communication and data transfer between the nodes. Protocol on this port is
proprietary, but an attacker would be able to reverse engineer communication
captured on this path.

Enterprises usually deploy H2O on-premise in their data centers on top of
Hadoop. That is the underlying assumption in the threat model. H2O was not
build to withstand a Denial of Service attack because a single cluster is never
meant to be exposed on the internet or, more importantly, used by more than
one user. Each user needs to start their H2O cluster. That person also needs
to start H2O correctly, supplying the right configuration as by default H2O
launches with no security and provides the additional options to configure it.

2.7.1 Secure configuration

The initial step to secure H2O cluster would be to enable TLS to encrypt
the communication between H2O’s embedded web port and the client. That
is done by passing a Java keystore file containing the certificate as a startup
parameter. Clients then connect to the H2O Flow’s HTTPS endpoint. REST
API is also protected, so HTTPS endpoint has to be used when connecting
using Python or R libraries.

To secure the internode communication an additional parameter has to
be passed during H2O startup. In this mode, the H2O driver submits the
application to YARN along with necessary generated files. Encrypted com-
munication has some performance downsides, slowing operations on the cluster
by approximately 10%. Important to note is that H2O does not support in-
memory data encryption. If memory needs to be swapped to disk, it will do so
in unencrypted form. It is advised to use encrypted drives as a workaround.
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Figure 2.4: H2O on YARN [6]

Previous steps mention only ways how to secure communication; however,
authentication is vital in ensuring only the right user has access to the H2O
Flow or REST API via Python and R. Username and password have to be
sent in an HTTP Basic Auth header to those endpoints. As a reminder, only
one user should use a single cluster, and there are several ways how to set up
H2O authentication.

First one is a Hash File Authentication where a user provides a username,
hashed password and hash used. Only such user can access the cluster. Ker-
beros can be used as well if the path to KDC and Kerberos’s realm is specified.
Another authentication schema is LDAP. It is challenging to set up correctly
but is another option for the Enterprises. Lastly, PAM authentication is sup-
ported.

2.8 Hadoop Integration

As machine learning has progressed from small data to big data a single ma-
chine running H2O is not enough for modern workloads. Most of the enterprise
customers use big server farms and run Hadoop distributions on top of them
while ingesting Terabytes of data from HDFS. One of the essential features
of H2O is the ability to run inside Hadoop and leverage the computing power
inside it. H2O supports ingesting datasets from HDFS natively by loading
them once in parallel into nodes and forming an H2O DataFrame. Figure 2.4
shows how H2O is deployed on YARN.

To run H2O on Hadoop, it essentially means running H2O as an application
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on YARN. For simplicity, the H2O is running as a standard MapReduce job
spawning one mapper per node and no reducers. The H2O cluster does not
rely on any Hadoop MapReduce functionality – it has separate architecture
mentioned above. It only leverages YARN to do resource management and to
ensure nodes can communicate with each other.

2.8.1 Starting H2O on Hadoop

The command hadoop jar h2odriver.jar -nodes 4 -mapperXmx 25g starts
the H2O driver which is used as a bootstrapper that guides the startup process
to completion. This particular commands tries to allocate 4 H2O nodes, each
with 25 GB of memory. The H2O driver is running on the actual machine
which is usually a Hadoop Edge Node. The driver first determines its external
IP address so it can be contacted from other Hadoop nodes. It has its heuristic
for determining the correct network interface if none was specified as a startup
parameter.

The driver then determines the RM address, connects to it and submits
an application. H2O JAR (h2o.jar) with the driver address and additional
configuration is submitted along with it. When the application transitions to
the RUNNING state its Application Master immediately submits a job request
for a number of mappers equal to the number of H2O nodes requested. Those
mappers are separate YARN containers running the H2O JAR and can be
scheduled to run on any Hadoop node. The driver does not know their location
and instead listens for H2O nodes to announce themselves. H2O nodes register
themselves with the driver by asking it for a flatfile.

A flatfile is a text file that describes the topology of the H2O cluster. Each
line contains an IP address and port of a single H2O node. Not every node
has to have an address of every H2O node as long as the graph of the cluster
is connected. That can be checked by constructing a transitive closure of all
flatfiles and making sure there is the same number of addresses as requested
nodes.

From the nodes that registered the H2O driver builds a flatfile and sends it
back to the nodes. Nodes try to contact other nodes in the flatfile and respond
to the driver, indicating the cluster size. This process is repeated when a new
node registers until the desired cluster size has been reached. After that, the
cluster is locked and not accepting any new members. Following a successful
startup, the H2O driver has an option to disown the cluster and exit, finishing
the execution of hadoop jar command. The cluster is kept alive and can be
terminated using an API request to the H2O cluster, or a Hadoop admin can
kill the whole YARN application.
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Chapter 3
Spark

In this chapter, we discuss a different cluster-computing framework called
Spark and how it differs from Hadoop’s MapReduce.

3.1 Introduction

Apache Spark is an open-source distributed cluster-computing framework with
in-memory data processing operating on large volumes of data in motion
(streaming) or at rest (batch processing). Rich High-level APIs in Scala,
Python, Java, R, and SQL allow for ETL, machine learning, analytics or
graph processing.

Thanks to the in-memory nature it excels in complex multi-stage applica-
tions. In general, any Spark application loads some input and creates RDDs,
applies transformations on the RDD and run actions that trigger compu-
tational and return or store the values. Next, we will briefly discuss some
fundamental parts of Spark.

3.2 Resilient Distributed Dataset

RDD (Resilient Distributed Dataset) is at the core of Spark as low-level data
abstraction. RDD holds a collection of records distributed among one or many
partitions residing on multiple nodes in a cluster. They are in-memory and
immutable; any transformations create new RDDs while keeping track of all
the parent RDDs forming an RDD Lineage used in creating a logical execution
plan [7].

Transformations on RDDs are evaluated lazily and triggered only when
an action is executed allowing enough time to optimize the logical execution
plan. Another benefit of RDD Lineage is fault-tolerance because it stores all
the operations applied from last available RDD, so recomputations of damaged
partitions are trivial.
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Figure 3.1: Spark architecture [7]

3.3 DAGScheduler

DAGSchduler is a layer of Apache Spark that transform a logical execution
plan (RDD Lineage) into a physical execution plan. RDD Action triggers
a new Job sent to DAGScheduler. Scheduler computes the execution DAG
(Directed Acyclic Graph) consisting of multiple Stages. Each Stage consists
of several tasks which are then run in a single thread. Single Stage computes a
partial result of Spark Job and can work with partitions from multiple RDDs
based on the dependency graph.

3.4 Architecture

Apache Spark uses Master/Worker architecture where one Driver running
SparkContext accepts user requests and talks to Cluster Manager that man-
ages Workers in which Executors runs. Figure 3.1 shows basic overview of
Spark architecture.

3.4.1 Driver

The Driver is a Java process that contains the SparkContext which is the entry
point to the services of Apache Spark. An application can be a Spark appli-
cation only if it uses the SparkContext at some point. During initialization,
Spark Context creates a connection to the Cluster Manager and sets up the
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Spark services. Once initialized it is ready to create RDDs, run Spark Jobs,
and others, essentially serving as a client of Spark’s execution environment.

The Driver also hosts the DAGScheduler and TaskScheduler that split the
Spark application into tasks and schedules them to run on Executors. Overall,
Driver coordinates workers and their execution of tasks and once it terminates,
so does the Spark application.

Driver does not participate in the computation. However, its memory has
to be scaled according to the job. Memory requirements are meager if the job
uses purely transformers and ends with distributed output action (i.e., save to
database). On the other hand, if some Machine Learning algorithm requires
results to be materialized before broadcasting them for the next iteration the
job depends on the memory of the Driver since .collect or .take operations
deliver data to the Driver.

3.4.2 Executor

Executors are processes responsible for executing tasks in a Spark Job and
are running on the Worker node. It communicates directly with the Driver to
execute tasks, return results and collect metrics. Executors are usually started
at the beginning and run for the entire duration of the application but can be
dynamically allocated as well.

3.4.3 Cluster Manager

The driver communicates with the Cluster Manager (aka Master) when it
needs to create Executors. Cluster Manager negotiates resources with the
cluster and launches Executors. Several Cluster Managers are supporting dif-
ferent cluster types. Currently, Spark can manage clusters on Hadoop YARN,
Apache Mesos, Kubernetes as well as a standalone cluster.

3.5 Spark on Hadoop

As we have seen, Spark is just a computing framework and can be embedded
in a range of existing clusters. Many enterprises store their data on Hadoop
already, and such integration makes Spark a popular option when working
with data on HDFS. Figure 3.2 shows basic overview of Spark on Hadoop
YARN in the cluster mode.

3.5.1 Hadoop MapReduce vs Spark

Since Hadoop’s YARN now supports executing any application and not only
the standard MapReduce what are the Spark differences compared to Hadoop?

The main reason would be the speed. Standard MapReduce in Hadoop
has to persist data back to HDFS after every Map or Reduce stage. Spark
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Figure 3.2: Spark on YARN in the cluster mode [8]

keeps data in memory between stages significantly speeding up iterative com-
putations. Hadoop was built for and is generally faster than Spark in simple
one-pass ETL jobs.

Another reason is the user-friendly high-level API in Spark that enables
data scientists to write data transformation pipelines without an in-depth
knowledge of programming. Spark also has a variety of libraries build on
top of Spark for Machine Learning, graph analysis or streaming, making its
ecosystem very approachable.

3.5.2 Launching Spark on Hadoop

The standard way of launching Spark is through the ”spark-submit” command
that executes a script in any supported language or using one of the Spark
Shells for Scala, Python, and R (spark-shell, pyspark, rspark). These
Spark Shells start REPL (Read-Eval-Print Loop) in the chosen language with
pre-initialized Spark Session and Spark Context and allow the user to work
with the Spark cluster interactively.

There are two deployment modes available for running Spark on Hadoop.
In the client mode, the Driver runs on the same machine that started Spark
either using spark-submit or any of the Spark Shells. In this mode, Hadoop’s
Application Manager still requests the resources, and YARN NodeManager
starts the Executors. In the cluster mode, the Driver no longer runs on the
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client machine but instead inside the Application Master on YARN. That is
desired to decouple entirely from the client machine; however, in this mode,
Spark Shell is unavailable as the Driver is now remote.

When launching through spark-submit, the user has to provide necessary
configuration such as resource allocation for Driver and Executor (cores and
memory). Additionally, YARN queue where the application will be submitted
as well as principal and keytab in case of Kerberized clusters. In cluster
deployment mode all the dependencies have to be shipped with the job.

Java/Scala job submission has to include the path to the main JAR, paths
to JARs containing dependencies and name of the class to run. Python job
submission has to include the main Python file and optionally paths to the
dependencies, or they can point to a prepared Python environment with R
behaving similarly. If a dependency path is specified, it has to be valid on all
nodes.
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Chapter 4
Sparkling Water

As Spark cluster-computing framework gained on popularity and started to be
used for machine learning, it became apparent that it lacks a suitable machine
learning library. Spark MLlib was eventually released, but it came too late
with limited features. This lead H2O.ai to create Sparkling Water as we will
discuss in this chapter.

4.1 Introduction

Sparkling Water is an open-source project that integrates H2O’s machine
learning platform with Spark. It was created by Michal Malohlava and Jakub
Háva and is available on the following URL https://github.com/h2oai/
sparkling-water.

The main idea is to run the already proven machine learning framework
H2O alongside Spark and let users take advantage of the powerful Spark trans-
formations, feed the results into H2O to build a model and make predictions.
Typically the end-user would want to use Spark for data munging with the
help of powerful Spark API and pass the prepared table to the H2O algorithm.

4.2 Architecture

Regular initialized Spark application is easily identifiable because it has han-
dles to SparkSession and SparkContext available as global variables in the
Scala, Python or R environment.

Sparkling Water is meant to be used as a standard Spark application with
added H2O capabilities. In order to do so, an H2O cluster needs to be running
in the Spark cluster and an H2OContext handle created to access the H2O
functionality.

H2OContext is initialized by passing the SparkContext handle and con-
figuration. H2OContext then starts H2O nodes in a manner that depends on
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Figure 4.1: Sparkling Water internal backend [9]

the selected backend and orchestrates them into a cluster. In the end, the
user has two handles, SparkContext to access Spark API and H2OContext to
access the H2O API.

4.2.1 Backends

Sparkling Water backends refer to the way H2O cluster is created in the Spark
cluster.

4.2.1.1 Internal Backend

The default behavior is to start Sparkling water in the internal backend mode.
H2O context tries to discover all the executors and launch H2O nodes directly
inside them. Spark and H2O thus share the same JVM instance, and the
topology of the H2O cluster exactly matches the topology of the underlying
Spark cluster. Internal backend is easy to deploy and suitable for the majority
of the applications. However, it lacks stability for very long running tasks.
Figure 4.1 shows architecture of internal backend.

H2O does not support high availability, therefore if any node crashes, the
entire cluster fails. Spark executors are meant to be expendable, and it is not
uncommon to see one fail. Such failure does not pose any danger to the Spark
application as executor can be restarted and data reconstructed. On the other
hand, H2O cluster cannot recover from the failure.
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Figure 4.2: Sparkling Water external backend [9]

4.2.1.2 External Backend

External backend exists to solve the stability issues by starting H2O nodes
outside of the Spark executor. Sparkling Water can connect to any existing
H2O cluster or launch its own H2O cluster. The topology of the H2O cluster
has to be specified as it does not need to be symmetrical with Spark executors.
Executors do not run any H2O functionality and be dynamically scheduled
without harm. Figure 4.2 shows architecture of external backend.

There are downsides to the external backend as well. Because Spark and
H2O no longer share the same JVM instance the data transmission can no
longer be direct but over the network resulting in communication overhead
that can be noticeable on jobs that frequently exchange data between Spark
and H2O.

Lastly, normal distributions of H2O (h2o.jar) does not contain classes
required by Sparkling Water or to run on Hadoop. Therefore, users have to
download h2odriver.jar for standalone Spark or corresponding H2O version
as described in section 2.6.
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4.3 Data Sharing

Data imported to Spark are of DataFrame, DataSet or RDD type. Spark
can work with such format, but H2O does not understand it. Data imported
to H2O are of H2OFrame type and stored in chunks inside the H2O clus-
ter. Sparkling water offers conversion between Spark’s DataFrame/RDD and
H2O’s H2OFrame.

When converting from H2OFrame to RDD or DataFrame, the H2OFrame
is merely wrapped to provide an API that is similar to RDD. Therefore, Spark
can work with this data as it was imported through Spark in the first place. No
data is duplicated; instead served directly from the underlying H2OFrame [18].

On the other hand, when converting from Spark RDD or DataFrame to
H2OFrame, H2O needs to load the data into the H2O cluster and parse it to
form the H2OFrame. The processing time depends on the Sparkling Water
backend. As described above external backend needs to transfer data across
the network as opposed to the internal backend where Spark and H2O share
the memory space.

H2O internally has only a limited amount of types (Numeric, Categorical,
String, Time, UIID). Mapping is done between H2O types and SQL or Scala
types in a way that preserves the precision.

4.4 Deployment

Sparkling Water mimics Spark in the way it offers the Spark Shell. Users
need to set path to Spark directory and run sparkling-shell for Scala en-
vironment or pysparkling for Python environment. REPL is started in the
corresponding language with running SparkSession and Sparkling Water de-
pendencies. User can interact with the cluster normally and at any point start
the H2OContext and use it to convert data and run H2O algorithms.

RSparkling is the R package for Sparkling Water. It is an extension of
on top sparklyr package and serves as an interface to H2O distributed ma-
chine learning algorithms on Spark, using R. Sparkling Water does not of-
fer rsparkling shell, but anyone can run it using their R environment with
sparklyr, rsparkling and h2o packages installed.
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Chapter 5
Analysis

In this chapter, we talk about problems with deploying H2O on Hadoop in
large enterprises, analyze the current state and formulate a desired state. We
explore existing software and express formal requirements for an application
that could address the problems.

5.1 Current state

Using H2O on a single computer is easy and valid use-case when the dataset
is small enough. To unleash the true potential of H2O, it needs to run on
Hadoop which brings another layer of complexity. The complexity revolves
mainly around the infrastructure and configuration. Small teams, power users
and longtime H2O users usually need little time to set up H2O on Hadoop
correctly.

However, over time H2O found its way into enterprises with a large volume
of users and Hadoop resources. These companies soon identified problems with
H2O unique to such environments.

5.1.1 Problems with H2O on Hadoop

The typical way of using H2O on Hadoop would be to launch it manually.
The data scientist would first need to have a right VPN connection to access
the Hadoop cluster and then connect to a Hadoop edge node over SSH. As a
next step, the user would have to locate the H2O driver and go through the
documentation to construct a correct configuration for H2O driver that starts
the H2O cluster.

Getting the command right might take a couple of attempts or require the
attention of Hadoop administrator. The amount of resources (CPU/memory)
the user requests is limited only through the YARN queue or not at all. Users
commonly make mistakes and request an unnecessarily large amount of re-
sources. When the cluster is up, the user finds an IP address and port of the
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H2O node from the output of the H2O driver and connects to it using the H2O
Python package or R library.

Using default configuration, H2O does not protect the REST API of the
cluster and lets anyone access it. At this point, anyone can log in if they
have the IP address and port of the cluster. Users always go with the path
of least resistance and do not care about setting authentication unless there
is a mechanism that forces them to do so. Leaving the cluster unprotected is
dangerous. For example, a user can import a confidential dataset inside his
cluster unaware that other users can access his cluster and read the dataset.

When the H2O cluster starts up, it stays active with allocated cluster
resources until it is shut down. Commonly, users forget to shut the cluster
down which leads to overloaded Hadoop nodes that are unable to serve other
jobs. Hadoop administrators do not know which H2O nodes are active and
which are idle and need to spend much time investigating which clusters can
be safely terminated.

As we can see, it is not a trivial process to launch the H2O cluster, wast-
ing the time of Hadoop users and Hadoop administrators. Some enterprises
develop a suite of Bash scripts that automate the process. The scripts are
usually quite restrictive and prone to errors because the authors are not ex-
perts in H2O. Authoring such scripts is also a time-consuming process and is
a barrier in more widespread adoption.

5.1.2 Problems with Sparkling Water on Hadoop

Sparkling Water in the internal backend is an extension on top of an ordinary
Spark cluster. Most of the configurations, apart from securing the H2O nodes,
are inherited, and therefore Sparkling Water on Hadoop does not suffer from
all the issues mentioned above. However, with the external backend, we are
back at step one.

5.2 Desired state

Soon, it became clear that there is a need for an enterprise-grade tool to
support H2O and Sparkling Water deployments.

The on-premise tool would need to form an abstraction layer on top of H2O
to relief administration efforts and provide a user with an easy way of using
H2O. It would also need to satisfy strict security and privacy requirements
of large corporations. The tool has to offer next-level operational efficiency
in AI environments with out-of-box security, resource control, and resource
monitoring. Data Scientists should be able to freely and safely practice data
science in their H2O cluster.
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5.3 Existing solutions

Initially, we have looked over existing solutions to investigate if there is any
existing software that could satisfy the requirements.

5.3.1 IBM Spectrum Conductor

IBM Spectrum Conductor [19] is a platform for deploying and managing
Apache Spark, Anaconda and other application frameworks and services on
a shared cluster. It is made for multi-tenant enterprise environments, both
on-premises and in the cloud.

It is a full-featured solution, with all the enterprise capabilities. However,
it does not have H2O support out of the box which can be added by preparing
Docker images and launch scripts. On the other hand, Sparkling Water is an
officially supported integration.

5.3.2 BlueData

BlueData [20] offers Big-Data-as-a-Service platform with a secure multi-tenant
architecture either on-premises, in the public cloud, or a hybrid model. It
specializes in containerized environments where applications are spun up as
Docker containers. The included App Store contains pre-configured Docker
images available for one-click deployment. Customers can create their own
Docker images using BlueData templates, in order to add their preferred
frameworks and applications to the App Store.

BlueData just added official support for H2O and Sparkling Water. The
functionality was not available when this analysis took place. The BlueData
platform is compelling; however, it requires customers to commit to container-
ization architecture which is a deal breaker for many enterprises.

5.3.3 Qubole

Qubole [21] is a powerful cloud-native data platform, but the absence of on-
premise capabilities quickly disqualified the solution.

5.4 Enterprise Steam

After the initial analysis, we have quickly discovered that there is a need to
develop an in-house application to support H2O deployments on Hadoop. The
application would help us to maintain full control over the H2O ecosystem and
assist customers with quick H2O adoption.

The product got the name Enterprise Steam. Appendix A shows a datasheet
that expresses the initial application requirements before the implementation
began. Next, we will formalize the application requirements.
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5.4.1 User roles

There are two main roles described below.

5.4.1.1 Data Scientists

Data Scientists are users that start, monitor and stop H2O clusters. Their job
is to provision the cluster and then use it to practice data science. They are not
Hadoop experts and they are not interested in the underlying infrastructure.

5.4.1.2 Hadoop Admins

Hadoop administrators monitor H2O clusters and make sure the infrastructure
can support the workloads of data scientists. They manage the authentication,
authorization of data scientists and any other configuration.

5.4.2 Requirements

Following requirements need to be implemented in order for the application
to satisfy the required goals. The requirements evolved, but this was the main
idea for the application.

5.4.2.1 R1: Start clusters

The user needs to have the functionality to start an H2O cluster from the
application using a minimum set of parameters.

5.4.2.2 R2: Manage clusters

The user and administrators need to be able to stop a cluster when needed.

5.4.2.3 R3: Monitor clusters

Administrators need to see running H2O clusters, how much resources they
are consuming and whether the cluster is idle or not. They also need a way
to terminate the cluster.

5.4.2.4 R4: Access clusters

The user needs a way how to access H2O Flow from the application and
connect to the cluster using Python package and R library.

5.4.2.5 R5: Resource control

Administrators should be able to specify which H2O versions are available and
limit the resources users can consume.
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5.4.2.6 R6: Manage users

Administrators need to manage authentication and authorization of users from
the application.

5.4.2.7 R7: On-premise deployment

Most of the enterprises do not accept any cloud solutions for security or privacy
reasons.

5.4.2.8 R8: Web UI

We wanted to move from the command line to a browser. Administrators
should be able to perform most of the work from the browser and users have
to have the capability to start and manage H2O clusters, and access H2O Flow
from there as well.

5.4.2.9 R9: Multi-tenancy

We need to prevent users from accessing each other’s H2O clusters (and data).

5.4.2.10 R10: Network isolation

We wanted to isolate users from the Hadoop environment so there would be
no need to use VPN or SSH to a Hadoop node. The users should be able to
access their clusters even on the outside of the Hadoop firewall/network.

5.4.2.11 R11: Security

Strong emphasis on security. LDAP/AD authentication, TLS encryption,
Role-based Access Control, secured H2O clusters, Kerberos integration.

5.4.2.12 R12: API access

Every user action that can be done inside the Web UI needs to be available
from Python and R API as well.
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Chapter 6
Implementation

This chapter focuses on the implementation part of Enterprise Steam. We
discuss important decisions and software-engineering aspects of the imple-
mentation as well as technical challenges encountered on the way. We will
also highlight how requirements changed in the face of customers, and the
general progression of the solution in time. Represented is the current release
of Enterprise Steam 1.4.8, dated April 15th, 2019.

6.1 Technology stack

At the beginning of every application development lies a critical decision on
what technologies are going to be used. The decision should be a function
of the suitability of that technology in building the application. However, in
small teams and startup environments, it is not always the case. Those teams
prefer familiar technologies to have the proof of concept available as soon as
possible and to have the shortest time to market.

6.1.1 Backend

In the case of this application, a Java backend would be the first choice be-
cause H2O and Spark are written in JVM languages and H2O team already
has much experience with Java and Scala development. On the other hand,
this application would be developed by a separate team, and Java usage was
not necessary since Hadoop can be interfaced using its CLI (Command-line
interface) on the host machine.

6.1.1.1 Go

Go programming language was selected to implement the application back-
end. It is a statically typed, compiled programming language with a focus
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on simplicity. Go was designed at Google and is syntactically close to C, but
more high-level and with memory safety and garbage collection.

Supported paradigms include imperative programming, object-oriented
programming without inheritance and functional programming. The rich stan-
dard library supports all aspects of common programming paths. Go also
treats concurrency as a first class citizen providing tools to run a concurrent
functions in lightweight threads called goroutines and synchronize them with
channels as an alternative to locks.

Go is an excellent tool for writing APIs from scratch and hosting small
applications. Along with the novelty of emerging language, those were the
main reasons in picking Go to implement application backend.

6.1.2 Database

The application has data to persist, and another step is to find a suitable
database to store them. The volume of data for such application is low, and
the data are very structured and clearly defined by their relationship. There
was no reason to venture into the realm of NoSQL databases that thrive with
unstructured data.

The application is supposed to be deployed on-premise on the customer’s
hardware. Usually, that would require the customer to set up a traditional
database and provide connection details. This additional setup adds time
and complicates cases when the customer wants to try the product before
committing.

Traditional databases are stored as files on the file system of the database
host, managed with a database process and accessible over the network. In
the case of this application, we would like to set up and host the database
directly to avoid any setup from application’s administrators.

6.1.2.1 SQLite

SQLite was built exactly for that purpose. It is a serverless, self-contained
SQL database engine that requires no configuration. SQLite does not have
a server process. Instead, it writes directly to the file system as standard
disk files. A complete SQL database is contained in a single file in a cross-
platform format. SQLite library has bindings in most of the programming
languages including Go, and the database can be queried a using an ordinary
SQL statements.

6.1.3 Reverse Proxy

The reverse proxy is a type of proxy server that receives requests and retrieves
resources from one or more servers on behalf of the user. These resources are
then returned to the client and appear as if they originated from the proxy
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server itself. The main aspect when choosing the right reverse proxy server
was reliability.

6.1.3.1 HAProxy

HAProxy is a solution that offers high availability, load balancing and proxying
for HTTP and TCP applications. It is widely used and suited for very high
traffic applications. Good reputation and reliability influenced the decision to
employ HAProxy.

On the other hand, HAProxy might seem like an overkill. The application
would not be serving more than hundreds of concurrent users and did not
need any other functionality apart from the reverse proxy. The application
would also need to manage the HAProxy process through the haproxy CLI
to supply and reload the configuration. Still, HAProxy was used in the initial
implementation because of the reasons stated.

6.1.3.2 Go Reverse Proxy

The standard library of Go Programming language includes reverse proxy
as a handler that takes an incoming request and sends it to another server,
proxying the response back to the client. It gives absolute control over the
request, allowing modification of the payload on the way to the server and
also modifying the response on the way back to the client. It was later added
to the application as an experimental reverse proxy to potentially eliminate
the need for HAProxy.

6.1.4 Frontend

Frontend part of the application was not the main focus of the project. The
UI was not supposed to be the state of the art but to only support the func-
tionality of the backend. We will mention the frontend implementation, but
the main focus of this chapter will be on the backend part.

6.1.4.1 React

React was chosen as a frontend library mainly because it was familiar and in
a mature state. The goal was to build all the components in the initial design
and then use them for additional features over time.

React is a JavaScript library used for building user interfaces. It is based
around the concept of reusable components that can be stacked together.
Components, like HTML elements, receive a list of attributes, called props.
At its core, a simple component is just an ordinary JavaScript function that
accepts those attributes and returns JSX.

React components return JSX that in turn renders HTML representa-
tion of that component. JSX is a JavaScript extension that allows writing
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Figure 6.1: React Lifecycle Methods diagram [10]

JavaScript that looks like HTML. At runtime, JSX is translated to regu-
lar JavaScipt that calls React functions to create DOM (Document Object
Model) elements. The developer can decide not to use JSX and create ele-
ments directly; however, that becomes untenable with nesting components.
Any JavaScript expressions can be wrapped into curly braces and embedded
into JSX. However, control statements like if and others can not be used.

Function components are fine for simple uses, but the main benefit of
React comes when constructing components as JavaScipt classes. To do so,
we only need to define a class that extends React.Component and implements
the only instance function called render(). Every time the class is used in
another component’s render function, React will instantiate an object from
this component and use it to render a DOM element in the DOM tree. We
learned that attributes could be passed to components. In the class approach,
attributes are received as an instance properties called props. Class functions
can be defined and used anywhere, including as the returned JSX output in
the render function.

React components can have private state stored in the state property. It
cannot be changed directly but only through the React API this.setState.
The internal state of a component usually changes as a result of a user action,
for example, a click of a button triggers function that changes the component
state. Setting state using React API has a reason. React needs to keep track
of changes inside the component so it can react to them accordingly.

A React component is re-rendered when its state changes or when it re-
ceives new props from its parent component. It would be ineffective to con-
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struct an entire DOM of the page on every change so React computes the
difference between the current components and its previous version to execute
efficient DOM operations to synchronize them. The name does not suggest
that, but setState is an asynchronous request to the React scheduler to up-
date the state and render the component again.

React component class also includes lifecycle functions that fire on impor-
tant events during the component life. When new props appear, or new state is
set getDerivedStateFromProps triggers, and the developer has the chance to
update the state based on the props received. Next, shouldComponentUpdate
triggers containing the future props and future state. By comparing them
with the current state and props, the developer can decide whether to render
the component or not.

Finally, the component is rendered, and componentDidUpdate triggers
which is used as an opportunity to operate on the DOM when the component
has been updated. Figure 6.1 shows a diagram of React lifecycle methods.

6.1.4.2 Redux

A hot topic when implementing React applications is how to manage the state.
Components have local state, but they may need to update their parent’s state
on some occasions. Child components cannot interact with parent components
directly. The only thing they receive from them are the props. These props
can hold functions and give child components an option to update the parent.
In this approach, the state is usually held in the top level component and
propagated further using props.

It is a correct application of state store; however, it may cause unnecessary
complexity in larger applications. Props need to be drilled through multi-
ple layers of components, are hard to track and become problematic during
refactoring. Recently React addressed this issue with their Context API that
provides a way to pass data through the component tree without having to
pass props down manually at every level. This API was not available at the
start of the development.

Instead, Redux was chosen as a state-store for this application. It is a
predictable state container for JavaScript apps. It can be used with any
framework and provides official bindings for React.

Redux applications have a single source of truth where the state of the
application is stored in a single object tree. That makes them easy to debug
and visualize. Redux state is read-only, and the only way to update it is to
emit an action that describes what happened. Reducers receive the actions
and replace the current state with a new version. This way every change is
recorded and easily debuggable. Reducers are meant to be pure functions,
dependent only on the action and not the current state.

In a React component, the Redux state is mapped to props and trigger a
standard update whenever changed. Additionally, component functions can
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dispatch actions to update the state store.

6.1.4.3 TypeScript

TypeScript is a superset of JavaScript to make it scale in larger applications
and repair shortcoming of its design. It offers static typing with compile-time
type checking, classes, interfaces, generics, enumerated types, tuples and more.
Internet browsers do not understand TypeScript, so TypeScript programs has
to be transcompiled to JavaScript. React, and Redux are both JavaScript
libraries but offer TypeScript declaration files to make their APIs type safe.

Typescript was chosen for this application to make the developer life more
comfortable and to combine nicely with type-safe backend. It is always better
for the compiler to catch errors instead of the application failing at runtime.

6.2 Architecture

Before diving down to implementation details let’s introduce the high-level
architecture of the application. The machine where the application is installed
needs to be a Hadoop edge node that has two ports mapped to the outside
of the Hadoop firewall and into the corporate network. The application binds
to those ports, exposing the API and Web server on one port and cluster
connections on the other port. Web UI, Python package and R library are
used to authenticate to the application and manage clusters.

All of the started H2O clusters are proxied behind one of the ports and
available only to authenticated and authorized users. Figure 6.2 shows the
application architecture for deploying H2O clusters. Other parts of the appli-
cation architecture are described later.

6.3 Reverse proxy

The application serves content from multiple H2O and Sparkling Water clus-
ters started by users. Clusters can have their API endpoints on any Worker
Node of the Hadoop cluster and on any port of that node.

One of the applications requirements is to shield users from the Hadoop
network. However, the application only has one port available for all the
clusters. This requires to employ reverse proxy which proxies different URLs
on a single host to different clusters in the Hadoop network. The reverse proxy
runs as separate process and is configured by the main application.

The separation of the reverse proxy into a separate process has the benefit
of permanent uptime of the cluster connection even though the main service
is down for maintenance or upgrades. However, this only affects clients that
are already authenticated as fetching the cluster connection details requires
the main service to be running.
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Figure 6.2: Application architecture for H2O clusters

6.4 Database Abstraction Layer

The database is managed solely by the application logic and has several layers
to help the development. Some of the layers are custom, and some use existing
libraries.

6.4.1 Database Driver

Go has a package in its standard library that provides a generic interface
around SQL-like databases. The package alone is not enough and has to
be used along with a database driver. SQLite has several drivers, and for
this application, we are using the most prominent one github.com/mattn/
go-sqlite3.

Standard database drivers only relay the SQL queries to the database pro-
cess and return results. SQLite is unique because it has no database process
as mentioned before. Therefore the entire database logic has to be embedded
in the driver. For a project with a scale of SQLite (200,000+ lines), reimple-
menting the entire library in Go is not an option. Fortunately, Go supports
Cgo which lets Go packages call C code. SQLite driver in Go imports the
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SQLite C library and appropriately binds the functions. The only downside is
more complicated compilation as GCC has to be present on the build system.

6.4.2 Initialization

For the first time, the application has to be started using a special argument
that will run the application’s one-time setup. The user is prompted for
username and password that will be the application’s administrator account.
SQLite database driver is loaded, and connection string specified pointing at
the database file. Database driver creates the database file if it does not exist
and imports the schema.

6.4.2.1 Secure Password Ingestion

To securely read the password from the terminal and not print it back to the
user we have to set up a safer environment. The first step is to use the system
call SYS_IOCTL with the file descriptor of standard input to get the terminal
instance, modify its configuration and set it back.

There are several terminal flags set in this new terminal configuration.
First of all, the ECHO flag is turned off so that the input is not echoed to the
user. The terminal is also put in canonical mode with the ICANON flag so that
the input is available only after it was terminated with EOF (end of file), new
line or similar. The ISIG flag aborts the input when a signal is detected, and
ICRNL flag interprets carriage returns as new lines — altogether creating a
safe environment for the user to type their password and have it secured until
they choose to submit it.

The terminal configuration is saved before its modification and restored
back after the password has been captured.

6.4.3 Schema

Schema is stored as multiple constant strings in the application source code.
They are a series of a CREATE TABLE statements to prepare the database. The
schema itself is not particularly interesting; it makes modest use of foreign
key constraints, and only data types are TEXT, INTEGER and DATETIME. Most
columns are not nullable. Some foreign key specifications have ON DELETE
CASCADE to automatically delete corresponding records in the child table.

Along with the schema strings, Go struct types have to be created for
every table. Go structs are just typed collections of fields. Struct fields can
optionally have string literals placed afterward. Those are called tags, and
they add meta information that can be used by the current package or an
external one.

Every database table has a corresponding struct definition typed to match
the column type and field tags that matches the column name.
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6.4.4 Scanning

At some point, fetched raw database rows have to converted to Go structs
and passed back to the caller. This action is called scanning and requires
the developer to specify which fields hold which columns of the fetched row.
Generally, there is one scan function for every table. For a large number of
tables, there would have to be much boilerplate code.

The github.com/variadico/scaneo tool generates scan functions from
the struct definitions. This CLI tool takes the path of a Go file that contains
the struct definitions, parses it and generates Go code using Go template.

6.4.4.1 Go parser

Go programming language is self-hosting, meaning the compiler can compile
its source code. As a result, the Go parser is included in the standard library.
The scaneo tool takes advantage of that to infer struct names and fields from
the source code.

6.4.4.2 Go templates

Go template is a standard library package to implement data-driven templates
for generating textual output. Templates can also be used for generating
HTML output that is safe against code injection. An author creates a generic
template and applies a Go struct with specific content onto it. The result is
a generic text merged with specific text. The scaneo tool uses templates to
generate the Go source code that performs scanning.

6.4.4.3 Go generate

Programs that write other programs are important elements in software engi-
neering and Go allows us to run them before the build process. It is called go
generate and it works by looking for special comments in the Go source code
and running the commands found there. These commands can generate code
that is necessary for the build phase such that go generate can be immedi-
ately followed by go build. As an example, the following comment if present
in the source code runs the scaneo tools with a parameter that expands to
the path of the current source file: //go:generate scaneo $GOFILE

6.4.5 CRUD

One of the most common interactions with the database are CRUD (Create,
Read, Update, Delete) operations. Rows can be added to a table by providing
all the non-nullable columns. Rows can be updated by providing a primary
key and updated columns. Rows can be deleted by providing the primary key.
Finally, rows can be read, either individually by providing a primary key or
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in a batch using a condition. Some applications do not need any additional
database operations.

The logic with all of the CRUD operation is the same, only the table
changes. We can make use of code generation to prepare all the CRUD func-
tions for all the tables. A custom code generator called crudr was written
to do so. It uses the same approach as scaneo and parses the Go source
code containing the struct definitions to compose a Go source code that im-
plements CRUD operations using Go templates. To recognize which columns
hold primary keys a struct field tag has to be set.

Resulting CRUD function can be used directly in the handlers and code-
generation makes it effortless to introduce new columns or tables.

6.4.6 Database migrations

The database schema is not immutable. Over the time updates are introduced
that may add tables and columns. Some updates may make more significant
changes. In order to have the database synchronized with the application, it
has to be properly migrated.

Every time the application is launched, it compares the database version
embedded in the source code to the database version stored in the database.
If they do not match a migration or series of migrations has to be performed.
There is a migration routine for every increment in database version. It con-
tains SQL code that gets executed before the application can start serving
requests.

The migration routines are only specified when the version increases. Cur-
rently, the application does not support migrating the database down. In the
future, it can support it in the very same way as migrating up.

6.5 Authentication

The application requires authenticated access to establish the identity of the
users and later serve them data that they are authorized to access. The
application supports creating users manually and storing their credentials.
However, enterprises have their identity managers and typically want users to
access the application with the enterprise credentials instead of creating new
ones.

6.5.1 Session token

The application’s login page is the only endpoint that is publicly accessible
and is used to authenticate users. User credentials are validated, and a se-
cure session token is issued that has to be used for future requests on secured
endpoints. This token contains values, namely user ID, and user name. Ses-
sion tokens cannot be forged because their values are validated using HMAC
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against a stored signature. That means that anyone can read the values stored,
but they cannot be changed because the signature would not match.

Currently, a secure hash key is generated on every application startup
thus invalidating any current tokens. By persisting the hash key, we could
keep session tokens across application reloads. Session tokens are returned
to the user in the form of HTTP cookies. The cookies are issued with the
HttpOnly flag to prevent access from JavaScript’s Document.cookie API and
Secure flag to only transport them over the HTTPS protocol. The cookie
also contains an expiration date.

Secure endpoints require a session token to be present inside a cookie of
the request. Session token establishes the user identity which is propagated
into the handlers.

6.5.2 Local authentication

The application supports local user identities. Credentials for those identities
are saved in the database. Passwords are sent in plain text over HTTPS and
then hashed and salted on the serverside before storing them in the database.
Passwords are hashed using bcrypt package that implements Provos and
Mazières’s bcrypt adaptive hashing algorithm.

6.5.3 LDAP authentication

6.5.3.1 Single sign-on

SSO (Single sign-on) allows a user to log-in with a single user ID and password
to multiple related, yet independent software systems. Enterprises make heavy
use of SSOs because it has significant benefits for them. It reduces password
fatigue from having multiple username and passwords and also lowers risk
when integrating 3rd-party applications since passwords are stored externally.

On the other hand, SSO increases impact when the credentials are stolen as
they provide access to multiple services. Therefore, SSO should be combined
with multi-factor authentication (one-time tokens or smart cards).

6.5.3.2 Active Directory

Most of the enterprises use some central place to store usernames and pass-
words. Active Directory (AD) provides LDAP/X.500-based directory-based
identity-related services and is Microsoft’s implementation of a directory ser-
vice. There are many other implementations of a directory service.

6.5.3.3 Directory service

Directory service consists of objects that are either resources or principals (ac-
counts, groups). Each object represents a single entity, has a set of attributes
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Figure 6.3: Example LDAP domain

and is identified by a canonical name (CN). A schema defines the attributes,
which means that there can be objects of different types. For example, a group
object has an attribute that holds IDs of group members and an attribute that
specifies the group name.

Objects that are stored in a single database represent a domain. Domain
names are simar to DNS names such that the distinguished named (DN) of
the 0xdata.loc domain is dc=0xdata,dc=loc. DN of an object obj1 in the
first level of 0xdata.loc domain is cn=obj1,dc=0xdata,dc=loc. The DN is a
unique identifier of an object within the domain.

Objects within a single domain can be further grouped into organizational
units (OU). These bring hierarchy to a domain and can resemble the organi-
zation’s structure, geography structure or anything else. Figure 6.3 shows an
example of a domain.

6.5.3.4 LDAP

Lightweight Directory Access Protocol (LDAP) is an industry standard ap-
plication protocol to access and manage directory information services over
the IP network. LDAP/X.500-based directory services implement this proto-
col and applications can use the protocol to make queries against the service.
All information is transmitted using Basic Encoding Rules (BER) which is a
self-describing and self-delimiting format for encoding ASN.1 data structures.

The LDAP client can make several types of requests to the server. First,
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Figure 6.4: LDAP configuration in Enterprise Steam

the client has to bind to authenticate and specify the protocol version. Then,
the client can search the directory or add, modify and delete entries. LDAP
can communicate securely using its TLS extension.

6.5.3.5 Configuration

This application uses LDAP to communicate with the customer’s LDAP server
to check if users are allowed to access the application and validate their pass-
word against the LDAP server. The application has to be configured by the
LDAP admin who has to supply the relevant information. Figure 6.4 shows a
configuration for the domain shown in Figure 6.3.

As a first step, the application needs to bind to the LDAP server. LDAP
admin has to provide server Host and Port. If the LDAP server does not
allow anonymous bind requests, the DN of a user that can read entries (Bind
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DN) and his password (Bind DN Password) is required.
When authenticating, the user naturally enters the username, unaware of

the DN. The application needs to know the base DN under which the users are
located (User Base DN). The base DN usually points to an OU that contains
all user objects. Additional filter (User Base Filter) can be applied to reduce
the number of users that can access the application. Since the schema of a
user object can differ, the admin has to specify the attribute of the user object
that holds the user name (User Name Attribute).

The basic configuration allows any users that match the base DN and
filter to access the application. In large enterprises that can be undesirable
and LDAP admins may want to restrict the application to certain LDAP
groups. Name of those groups (Group Names) and their base DN (Group
Base DN) is required to access them. From the group object, we need to
know the attribute that holds the group name (Group Name Attribute)
and attribute that holds the member IDs (Static Member Attribute).

6.5.3.6 LDAP login

The LDAP login flow is the following. First, the application receives the user
name and password. Application binds to the server using the Host, Port,
Bind DN and Bind DN Password. Next, a query is executed that tries
to find an object in User Base DN that matches the User Base Filter
and the User Name Attribute of that object contains the user name. The
query must return a single user object.

If the group setting is configured, another query looks under the Group
Base DN for objects which Group Name Attribute equals to Group
Names and Static Member Attribute that contains the user name. Lastly,
the DN of the user found in the first step is used to perform a bind using
the received password. When the bind is successful, the user’s identity is
established. Results can be optionally cached for a set amount of time to
reduce the load on LDAP servers.

6.5.4 SAML authentication

During the LDAP login flow, the plaintext password is still intercepted by the
application because it is entered on the application’s login page. To completely
decouple authentication from the application a different technology has to be
used.

6.5.4.1 SAML

SAML is an open standard to exchange authentication and authorization data
between an identity provider (IdP) and a service provider (SP). The SP re-
quests an authentication assertion from the IdP. Based on the assertion, the
SP can let the user access the service. Primary use is in the Web SSO when the
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Figure 6.5: SAML 2.0 flow [11]

user enters his credentials in a secure website managed by the organization,
and the SP only receives the assertion.

There are two types of flows for authorization using SAML. SP initiated
SSO begins with a user accessing a protected resource. SP’s SSO handler
intercepts the request and determines the user needs authentication before
accessing the resource. SP is aware of the IdP login page and sends a redirect
response back to the user’s browser. User is taken to the IdP login page and
enters the credentials. IdP creates an assertion and sends the user back to
the SP that validates the assertion and grants access. Figure 6.5 shows SP
initiated SAML 2.0 flow.

IdP initiated SSO is a little simpler. The flow starts on the IdP portal
where a user clicks on a link referencing the protected resource. Still, on the
IdP portal a user enters the credentials and after that is sent to the SP with
the generated assertion.

6.5.4.2 Configuration

In order to prevent users from forging assertion, the SP has to establish trust
with the IdP. The IdP generates metadata that contains its location and public
keys among others. SP also needs to provide its public keys. The keys are
used to decrypt the assertions and validate the signatures.
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Figure 6.6: User access token

Assertion can contain values and pass any information to the SP. For this
application, the assertion has to contain the user name and group name. The
attributes are not standardized and need to be specified in the configuration.

6.5.5 Access tokens

Python and R API clients for this application need to authenticate against the
server as well. SAML SSO is for web only and would prevent users from logging
in through the API clients. To solve this issue, a user can generate access token
after logging in the application through the browser as seen in Figure 6.6. The
token can be used instead of the password when authentication through the
API clients. Tokens also come in handy in scripts where the user does not
want to reveal the real password when LDAP authentication is active.

6.6 Authorization

In systems working with resources, an identified user cannot have access to
all resources or actions. Access control systems work by reading the policy
definition and enforcing it when users request access to resources. There are
many access control models which come with their positives and negatives.

6.6.1 Role-based access control

This application implements Role-based access control (RBAC) to restrict
resource access to unauthorized users. RBAC is designed around roles and
privileges. Within the application, roles are created for various functions.
Roles contain permissions to perform certain operations. Users are assigned
roles and through them gain permissions to perform a particular function.
Permissions are not assigned directly to users, users gain permissions through
their roles which simplifies common administrative operations.
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Figure 6.7: User management

6.6.2 Role managment

The database is initialized to contain two roles, admin with all permissions
and the standard user with permission suitable for general end-user. Admin
can create additional roles with custom permission sets.

The implementation consists of two tables, one for mapping role IDs to
permission IDs and another to map identity IDs to role IDs. When handling
the request, we can easily check if the user has permissions to perform the
action. Additionally, we keep track of resources creates by the user by using a
separate table. When accessing said resources, the application automatically
checks if the user is authorized to do so.

6.6.3 User managment

When creating local users, the admin can choose which roles to assign them.
When LDAP or SAML is active, users are imported automatically and as-
signed a role that they belong to. On the user management page, users can
be manually edited to assign them particular roles, profiles or change the au-
thentication method as shown in Figure 6.7. Users can be disabled to prevent
them from logging in and re-enabled later on.

55



6. Implementation

6.7 H2O integration

The main functionality of this application is to launch H2O clusters. When a
user logs into the application, they see the list of their running clusters and
have an option to start a new one.

6.7.1 Startup parameters

As a first step, the user has to select a cluster profile. Profiles are mentioned
in section 6.9. As a next step, the user has to fill startup parameters for
the cluster. Most of the parameters are related to the resources allocated by
the cluster. Figure 6.8 shows the screen where users enters the parameters
and starts the H2O cluster. Following is the list of the parameters and their
explanation.

• Cluster name is a unique name of the cluster. It can be later used for
example to retrieve a connection handle of the cluster in the API.

• H2O version lets users select which version of H2O to use from the
versions that were uploaded by the administrator as mentioned below in
subsection 6.7.2.

• The number of nodes specifies how many nodes the H2O cluster needs
to have. When launching on Hadoop that many mappers will be started
and try to form the H2O cluster.

• Java memory per node specifies how much JVM memory will be
allocated for H2O on each node.

• YARN virtual cores per node define how many virtual cores will
be assigned to the YARN container running the job. A virtual core is
YARN’s abstraction of actual cores. One virtual core usually represents
one physical core so the application should request the number of cores
it can saturate. If the parameter is unset, the YARN will decide and
assign a default number of YARN virtual cores to the YARN container.

• H2O threads per node specify how many threads are started for the
H2O’s low-priority batch work queue. The parameters can also be left
unset to use a default number of threads according to the number of
cores.

• Extra memory specifies how much more percent of memory will be
allocated in the JVM outside of Java heap. The extra native memory is
used for algorithms like XGBoost.

• Maximum idle time and maximum uptime are used to specify the
time limits for the cluster. If one of them is exceeded, the cluster is
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Figure 6.8: Screen for launching H2O clusters
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Figure 6.9: H2O and Sparkling Water engines

forcefully shut down. These measures are needed to stop users from
holding Hadoop cluster resources with inactive clusters.

• Leader node ID specifies the ID of the node that will receive commands
from the user. Usually, the first node should assume the role of the
leader, but users may want to change that in order to reproduce models
that were trained with a different leader node in the past.

• YARN queue specifies the queue name where the job will be submitted.
Users may be forced to choose between pre-defined queues or they input
the queue name. The parameter can be left unset to submit to a default
queue.

6.7.2 Engine

User has the option to choose between multiple versions of H2O. The admin
has control over the available versions in his configuration overview. To reg-
ister a new H2O version the admin has to upload the ZIP archive of H2O
distribution built for the corresponding Hadoop version. The application re-
ceives the ZIP file and extracts the H2O driver JAR, Python client, and R
client. The H2O version number is read from the archive and saved into the
database along with paths of the other artifacts. Now the engine can be used
by any user to launch H2O clusters. Admins can later delete engines to curate
which H2O versions are being used. Figure 6.9 shows a page for managing
H2O and Sparkling Water engines.
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6.7.3 YARN config

H2O driver and Hadoop accept many startup parameters, but this application
only sets the minimal necessary amount when launching the cluster. Some-
times, there are reasons to set other parameters. The application supports
specifying additional parameters in the admin configuration. These config
entries are set globally, and any new cluster will use these parameters. Ex-
isting clusters are not affected. The global parameters can even override the
parameters set by the application if necessary.

6.7.4 Starting H2O clusters

When the user submits a request to launch a cluster the parameters are vali-
dated and passed to the command builder. The role of the command builder
is to create a Hadoop command that launches the H2O driver that submits
H2O to YARN.

Command builder merges the global configuration with the user configura-
tion, adds the path to the H2O driver and sets impersonation for the current
user. When Kerberos is enabled, principal and keytab file are passed as well.
The application generates a password for the H2O cluster, saves it to the
database and exports the hashed password into a hash file. The password is
set to protect the cluster from an unauthorized access. Path to the hash file
is added to the command making the H2O cluster password protected after it
launches. Finally, the command is executed and monitored.

If there are any errors, they are parsed out of the H2O driver output
and presented to the user. The administrator can see the full log file on the
application host machine. If the launch is successful and the H2O driver exits
with status code zero an IP address of one of the nodes is parsed out of the
driver output. The application tries to contact the API endpoint of the node
to pick up an address of the leader node.

If the node is responding, the cluster has successfully formed, and the IP
address of the leader node is added to the reverse proxy configuration. Users
can now access H2O Flow from the cluster page. The cluster is password pro-
tected and would normally require a password when connecting to it. However,
since the user is authenticated to the application and authorized to access the
cluster, the application adds the cluster password it holds in database to basic
authentication header when proxying the request thus requiring no additional
input from the user.

6.7.5 Monitoring H2O clusters

The application has two sources of truth when monitoring the H2O cluster.
One option is to monitor the application status through YARN, and the other
is to get information directly from the H2O API. The yarn command has to
be executed in order to collect application status from YARN. In the case
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Figure 6.10: Overview of H2O and Sparkling water clusters

of Kerberized clusters, a valid ticket is required before executing the yarn
command. The application has principal and keytab and uses kinit to obtain
the ticket.

YARN status is the source of truth and if the YARN application is reported
to be down, the application will match the internal status and inform the
user. When the application is running, the H2O cluster API endpoint is used
to collect information periodically. The information is presented to the user
on the cluster detail page and also used to determine if the cluster exceeded
the maximum uptime or maximum idle time. Figure 6.10 shows the main
screen that has details about H2O and Sparkling Water clusters launched by
the user.

6.7.6 Hadoop helper

Stopping the cluster is an action that cannot be done using the hadoop or
yarn commands. The commands do not support impersonation, preventing
the steam user from terminating jobs of other users. The only way right now
is to use a hadoop command to submit a small application that authenticates
as the proxy user and shuts down the cluster on his behalf. We call this
application a Hadoop helper. Because the Hadoop API keeps changing, the
Hadoop helper has to be built for each Hadoop version. The application does
not ship with all of them, so they need to be downloaded from the application
download page and uploaded through the admin configuration page.
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6.7.7 API clients

Majority of the users connect to the H2O cluster from the Python or R API.
Normally they would directly connect to the cluster, but now the application
sits between them and the cluster. The h2osteam Python package and R
library addresses the issue and provides a way to authenticate against the
application to access and manage the clusters. The Python package and R
library can be downloaded from the application’s download page.

A user logs in using the same credentials or optionally using an access
token. Then the user has the option to start the cluster or to get a connection
handle of an existing cluster using the cluster name as a unique identifier. The
connection handle contains the proxy address with an appropriate relative
path and user name and password. This config can be passed directly to
h2o.connect to initiate the connection and users can use the H2O API to
interact with the cluster.

6.8 Sparkling Water integration

The initial version of this application was shipped with the support for H2O
clusters only. After a while, some companies were interested in supporting
Sparkling Water. That became the next implementation goal.

6.8.1 Challenges

As we discussed in chapter 4 deploying Sparkling Water cluster is a little bit
more complicated. The main difference is that the Sparkling Water API has
no connect function. Sparkling Water interpreter creates the cluster from a
new Spark session and destroys the cluster once the interpreter finishes. There
is no notion of a running cluster that can be abandoned and later reconnected.
We wanted Sparkling Water clusters to feel the same way as H2O clusters.

Another challenge was that normally Spark users need to login to the
Hadoop edge node and start Sparkling Water cluster from there. The driver
runs on the edge node, and users can directly talk to the driver. In this
implementation, only the application runs on the edge node and proxies the
user request to the cluster. The user is suddenly separated from the driver
that now runs in the YARN container, so we needed a way for a user command
to reach the Spark driver.

6.8.2 Apache Livy

We found out that the team behind Apache Livy identified the same problem
and is solving it with their Livy server. Livy enables multi-tenant submission
of Spark jobs from web apps without any Spark client installed. Multiple
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Figure 6.11: Architecture of Sparkling Water integration

users can interact with the Spark cluster remotely, concurrently and in a
fault-tolerant fashion.

The Livy server runs on the Hadoop edge node and exposes a REST API
to its consumers. This allows us to have long-running Spark Contexts and
interact with the Spark Context remotely via a simple REST interface. Behind
the scenes when Livy creates a new Spark Session, it initializes a Livy Context
in the driver that communicates with the Livy server. User commands are
proxied via the Livy server to the Livy Context, executed, and results are
sent back.

This application bundles and manages the Livy server. We have imple-
mented the Livy REST API client to communicate with it. This way, we can
start a Spark Session and even attach files to make them accessible on the
driver. Inside the created Spark session, we can start Sparkling Water to get
both Spark Context and H2O Context ready. Users that connect to the Spark
session do not need to import or initialize anything else and can start using
the session right away. Figure 6.11 shows the architecture of Sparkling Water
integration into the application.

The setup from the application admin perspective is minimal. The ap-
plication only needs to know the location of the Spark installation, Hadoop
configuration and Java Runtime Environment 8. Figure 6.12 shows Sparkling
Water configuration screen for administrators.
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Figure 6.12: Sparkling Water global configuration

6.8.3 Jupyter notebook

With Livy, we have solved the issue of remote Spark sessions. Now we need
an environment that users can access to interact with the cluster. We wanted
a notebook environment because it would allow us to have a complete web
experience for the user without the need for a command line. We also wanted
to support Python, Scala, and R as languages that interact with the Spark
cluster.

Jupyter is very familiar notebook environment that allows creating web
notebooks that contain live code, equations, visualizations, and narrative text.
Jupyter is widely used in the data science world and is very easy to use for the
users. We could embed Jupyter notebooks in the application, but we needed
a way how to connect the live code in the notebook with the Spark session
through the Livy server.

6.8.3.1 Sparkmagic

Sparkmagic project under the Jupyter incubator organization provides a set
of Jupyter kernels that can interactively work with remote Spark clusters
through Livy. Initially, it looked like a great fit, but it did not offer the cluster
persistence feature. Sparkmagic would start a brand new cluster for every
new Jupyter notebook and terminate the cluster when the notebook kernel
stopped.

In order to get around that, we had to fork the project and make changes
to the kernel. Now the cluster does not start with a new notebook, and
the cluster does not get terminated when leaving the notebook. Sparkmagic
provides an API endpoint that lets us bind one Jupyter notebook to one Spark
session. The problem now was how to give that functionality to the user. It
could be easily embedded in the applications web UI, but we felt like the user
should be able to bind Spark session to the notebook directly in the notebook.
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Figure 6.13: Jupyter notebook using Pysparkling kernel

To enable that we had to create an extension to Jupyter notebook that
would talk to the application to retrieve the list of running clusters and let the
user select which cluster they want to bind the current notebook to. It would
also let the user choose which language they want to use in the notebook
(Python, Scala or R). We also added a status indicating the cluster connec-
tion. Figure 6.13 shows a Jupyter notebook with Pysparkling kernel that is
connected to a remote Spark session.

6.8.4 JupyterHub

As a next step, we needed to bring the Jupyter notebook to the multitenant
environment of this application. Each user needed to have their environment
with notebooks that no one else could access. JupyterHub is a multi-user
version of the Jupyter notebook and allows to have separate Jupyter environ-
ments on the same server. It is highly customizable and served our needs very
well.

We set up JupyterHub to start alongside the main application. Notebooks
of each user are persisted on the file system, and the server is managed through
the JupyterHub API. The application has administrator access and can man-
age the users. Since no Jupyter notebook code gets executed on the host as it
is all sent to the Livy server for evaluation on a worker node, we did not need
to set up any execution environment on the edge node.
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Figure 6.14: Screen for launching Sparkling Water clusters

6.8.5 Startup parameters

The startup parameters for Sparkling Water cluster are slightly different from
H2O clusters. There are two sets of parameters, one for each Sparkling Water
backend. In the internal backend, H2O inherits most of the executor settings
since it runs inside it. In the external backend, H2O runs outside the execu-
tors and needs to be configured separately. Figure 6.14 shows the screen for
launching Sparkling Water cluster in internal backend mode. The parameters
for the internal backend are shown below.
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• Cluster name uniquely identifies the Sparkling Water cluster.

• Sparkling Water version is a dropdown menu to select which version
of Sparkling Water to use.

• Driver cores and driver memory specifies the resources of the driver.

• The number of executors, executor cores and executor memory
specifies the resources of the executors.

• H2O threads per node specify the number of threads for H2O and
can be left unset to use a default value that will match the number of
driver/executor cores.

• Startup timeout allows the user to select how long to wait for the
cluster to start up before failing.

• YARN queue lets the user choose or specify which YARN queue to
use for this job.

• PySpark Python path lets the user choose which Python virtual envi-
ronment to use. Enterprises usually have multiple Python environments
with different packages installed for different purposes.

• Spark properties can be used to pass additional configuration to Spark
when starting the Spark session.

External backend configuration contains all of the above and adds H2O
nodes and H2O memory per node parameters.

6.8.6 Engine

In a similar fashion to H2O engines, the admin has to first upload the Sparkling
water distribution ZIP before the users can launch Sparkling Water clusters.
Sparkling Water distribution contains the main Sparkling Water JAR, Python
package, and R library. These artifacts are extracted, and their location saved
along with Sparkling Water version number to the database.

In order to run Sparkling Water in the internal backend, only the Sparkling
Water JAR is needed. The JAR contains a version of H2O, so no other artifacts
are needed. The external backend needs the H2O engine of the same version as
in the Sparkling Water, so both engines have to be present to start Sparkling
Water in the external backend.

Both engines also have to present when the user wants an R session to
be active. We needed the R libraries from both H2O and Sparkling Water to
properly set up the interpreter.
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6.8.7 Starting Sparkling Water clusters

When users send a request to launch a Sparkling Water cluster, the startup
parameters are validated and passed along to prepare the Spark session con-
figuration. The configuration contains the cluster name, user impersonation,
hash file to secure the H2O cluster, Kerberos principal and keytab and other
details.

A few files have to be uploaded to the Spark session; it is the Sparkling
Water JAR, Sparkling Water Python package with dependencies, Sparkling
Water R library and the hash file. For external backend, the H2O driver JAR
has to be uploaded and for R session, the H2O R library as well. The request
is prepared and sent to the Livy server.

Livy server starts a new Spark session configured as requested and returns
the ID of the session. In this Spark session, we need to start Sparkling Water.
We send a Scala code that imports the Sparkling Water JAR and starts the
Sparkling Water cluster. This will create a global variable in the session that
holds the H2O Context. Next, we retrieve the IP address of the H2O node for
later use. Now, the Sparkling Water is running, but only the Scala interpreter
knows about it. We send a Python code to connect to the Sparkling Water
cluster and to get the H2O Context handle.

Setup for R session is a little more complicated. Sparkling Water R li-
brary requires sparklyr as backend, and by default, Livy starts only the
rspark backend. To make this work, we need to initialize the sparklyr gate-
way in Scala session in a separate thread. In the R session, we load H2O and
Sparkling Water R library and connect to the sparklyr backend and retrieve
the H2OContext.

When Scala, Python and R interpreters all hold the Spark Context and
H2OContext the Sparkling Water cluster has started. Sparkling Water clus-
ters are not proxied using HAProxy but instead rely on the reverse proxy
in the Go standard library. This reverse proxy also handles the JupyterHub
access.

6.8.8 API clients

Users that do not prefer the Jupyter notebook can still use the h2osteam
Python package to start and interact with the Sparkling Water cluster. The
authentication and management part is the same as with just the H2O clusters.
The only difference is in the interaction with the cluster. In H2O the users use
the H2O package to connect to the cluster and use it directly. Here the users
enter an interactive session which is a REPL that sends all the command to
the Livy server for evaluation and returns the result.
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6.9 Cluster profiles

Initially, the application would let the users define any cluster startup param-
eters. This way users had total freedom and could start a cluster that uses as
many resources as the YARN queue would let them. Problems started to arise
when users would allocate excessive resources, leave clusters running unused
or start new clusters without shutting down the previous ones.

6.9.1 Templates

Feedback was suggesting that a templating feature might be necessary. Users
would have access to several templates which contain predefined sets of startup
parameters. User would just choose the template and start the cluster. Appli-
cation admins could set up templates for different use cases (small, medium,
large clusters) and assign them to corresponding users.

We felt like templates might be too restrictive as some jobs require fine-
tuning of parameters and some power users still wanted to be in control. At
the same time, we wanted admins to be able to set up templates in a situation
where it is necessary.

6.9.2 Cluster profiles

We came up with cluster profiles. Profiles are set up by the administrator and
impose constraints on every single cluster launch parameter. Every parameter
has its minimum, maximum and default value. Default values are important
for users that do not want to bother or do not have the knowledge to do the
fine-tuning. When launching the cluster, users can see the constraints and
whether they are exceeding them.

In a special case when minimum and maximum constraint is the same, the
user choice is locked to that value mimicking the template feature. In this
implementation, some parameters can be locked and other adjustable by the
user. We felt like that would give admins the highest level of flexibility.

Profiles are also imposed in the Python package and R library. Users can
preview and select which profile to use to launch the cluster. Then users have
to specify only the parameters that are different from the default value as long
as they are within the constraints of the profile.

6.9.3 Shared parameters

There are three different cluster profile types, one for H2O and one for each
Sparkling Water backend. Each profile type has a different set of parameters,
corresponding to what cluster it is launching. However, some meta parameters
are shared across them.

A profile can contain a list of YARN queues and force the user to pick one
from the dropdown menu. Hadoop administrators are therefore certain where
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the application gets submitted. Profiles limit the resources consumed by one
cluster; however, there was no limitation on the number of running clusters.
We added an option to limit the number of running cluster per profile per
user.

Shortly after introducing profiles the companies wanted a tool to help
them assign profiles to users because they always had to go to the user profile
page and manually assign it there. Customers already had users assigned to
particular internal groups so it would be appropriate to use this information.
We added a feature that would let admins specify which LDAP or SAML
groups have access to each profile.

As for preventing the users from leaving their clusters running for an ex-
tensive period of time, we have implemented a profile parameter that would
impose a limit on the maximum running time of the cluster and on maximum
idle time of the cluster. Figure 6.15 shows and example of H2O cluster profile.

6.10 RPC

The application handles requests from different clients; it can be the web client,
Python client or R library. Implementing the clients in TypeScript, Python,
R and keeping them synchronized with the server would require much manual
effort. We had to look at an automated solution to this problem.

6.10.1 RPC framework

We needed a simple RPC framework that would allow us to generate clients
and server with ease. There are many existing solutions. One of the more
popular ones is gRPC which is more suitable for service to service communi-
cation and uses a custom protocol over HTTP/2. Not all browsers support
HTTP/2 which is a dealbreaker for use case within this application. There
is also no official support for R. The RPC framework would need to work on
HTTP/1.1 with simple client logic.

We decided to go with gorilla/rpc package that uses HTTP/1.1 and
standard POST requests. The data payload is JSON encoded and based on
the method name in the payload routed to the corresponding handler. Clients
can quickly implement sending requests just by correctly encoding the data
into JSON.

6.10.2 Service definition

The application has to provide a service definition that defines all the mes-
sages, their input, and their output. Such definitions serve as a single source
of truth and are used to create the clients and server handlers. Popular seri-
alization format Protobuf has its own Proto language to define the messages.
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Figure 6.15: Editing H2O cluster profile
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6.11. Building, packaging and installation

Our RPC framework only supports the JSON encoding, so we had to create
our service definition format.

The generator would be written in Go, so we wanted the service definition
to be easy to work with. We went with Go structure types that can be easily
parsed as we tried with other helper tools. All of the messages are stored
in one big struct type. Field names define the message names, and the field
type holds another struct type with input and output fields. Input and output
fields are separated with a dummy field. This gives us a comprehensive service
definition that can be used to generate clients and server.

6.10.3 Generating clients and server

To generate clients in Typescript, Python, R and server handlers in Go we
created a piping utility. This utility does not parse the Go source code as
mentioned before. The service definition is more complicated and can contain
nested types. Such relations are hard to analyze just from the source code.
We had to use reflection to analyze the service definition.

Reflection in Go is an ability to manipulate objects with arbitrary types
during run-time. We use reflection to examine the service struct definition
and extract all the input and output fields. Once we have a definite structure,
we can start generating code. Each language has its own Go template to start
with. We have to convert Go types to types of other languages and prepare
JSON encoding for every message. The generated server has an interface
containing every message, and the application only compiles when all handlers
are implemented.

The process of generating clients and server preserves the type safety, and
if the schema changes, we can regenerate clients, server and any errors are
caught during the compilation. Code generation again saves much time and
prevents copy-paste errors.

6.11 Building, packaging and installation

Over the months, the application grew in size and started bundling other
services. The main goal was to have a predictable, reproducible build that
can be packaged, installed and run on a variety of Linux distributions.

6.11.1 Build

The main distribution target was Red Hat Enterprise Linux (RHEL) as this
is the standard Linux distribution in the commercial market. We targeted
RHEL 7 and RHEL 6 even though it is approaching the end of life. Another
distribution target was Ubuntu, and we chose Ubuntu Precise (12.04) to match
the Linux kernel version between minimal supported Linux distributions.
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6. Implementation

Ubuntu and RHEL have separate Docker images used for the build. Both
images are based on the minimal supported version. Each image has to have
tools used to compile the entire project. One of the requirements is Node JS
version 8 or higher which is used to build the website. We also need a GCC
compiler and Go version 1.10 or higher to build the server.

In order to run Jupyter notebook and JupyterHub, we need Python version
3.5 or higher. That poses an issue since RHEL 6 does not contain any Python
3 version and there is no Python 3 downloadable package for RHEL 6. Linux
administrator can manually install the required version of Python, but we felt
that it would be a very high requirement that could affect the adoption of
the product. Instead, we build Python 3.5 from the source inside the Docker
image. As the last step, we copy the application source code inside the image.

The new Docker images are then used to build multiple parts of the appli-
cation. In the first step, the web application is built using NPM and Webpack
to produce bundle.js and index.html files. Next, we build the server and
bundle the frontend into the server binary. That allows us to serve the files
directly from memory instead of the file system. At this time we have the
server binary; however, we are still missing other services that are bundled
with the server.

Next step is to build secondary parts of the application. We clone and build
the forked sparkmagic project and our custom Jupyter notebook extension
along with an official release of Apache Livy. We also download and build
configurable-http-proxy which is a JupyterHub dependency and download
the node binary to run it.

The application needs to create a Python virtual environment which runs
the JupyterHub and Jupyter notebook. At this point, we create a new vir-
tual environment from the previously built Python 3.5, activate it and install
JupyterHub and Jupyter notebook inside the environment. We also install our
custom Jupyter extension and Sparkling Water JupyterHub kernels. As the
last step, we package the Python virtual environment with the application.

6.11.2 Packaging and installation

The application has to be one installable package that the Linux admin can
install on the system and upgrade when new releases come out. RHEL uses
RPM packages while Ubuntu uses DEB packages. To build packages in both
formats, we used FPM which is a tool to help build packages for multiple
platforms.

Before actually building the package we had to assemble an archive that
has all the parts of the application in the right place. The archive is put
together in a way that when installed, it extracts the server binary under
/opt/h2oai/steam and other parts of the application in the subdirectories.
The configuration file is placed in the /etc/steam directory. We also specify
install scripts that are executed in some stages of the package installation.
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6.12. Documentation

Before the installation, we create a new system user and group called steam
and after installation change ownership of all the application files to that user.
Before upgrading, the application is automatically stopped then immediately
restarted.

6.11.2.1 SysVinit

SysVinit is the original Linux init system that runs as the first process to
bring the Linux system up. On Ubuntu and RHEL 6 we use SysVinit to start
and stop the application. We do that by placing an ordinary Bash script
in the /etc/init.d directory. This Bash script can be used to start, stop
and retrieve the status of the application. When the application is started
the script places the application PID in the /var/run directory in order to
monitor the status and to know what process to kill when the application has
to stop.

6.11.2.2 systemd

Systemd is a software suite that among other things manages user processes.
On RHEL 7 we use systemd to start, stop and monitor the application. In
SysVinit we had to prepare a Bash script that had to contain all the logic to
start and manage the process. With systemd, we only need to provide a basic
configuration that contains the location of the binary and name of the user
that starts the process. We can even let systemd restart the application if it
shuts down unexpectedly.

In the end, after building and packaging the application we have RHEL 6
RPM package, RHEL 7 RPM package, and Ubuntu DEB package.

6.12 Documentation

A project of this size has to have good documentation for administrators and
end users. We use Sphinx documentation generator which is very popular in
the Python community. H2O uses Sphinx across all its products, and we even
have a custom color scheme in the yellow colors of H2O.

The documentation source uses the RST format which is rich enough to
satisfy all the needs of technical documentation. Compiling the documentation
source produces PDF documents and HTML representation that we host on
our documentation page http://docs.h2o.ai/.

Documentation is split into two parts. The first part focuses on installing
and setting up the application. It is intended for the administrators that want
to install the application for the first time and set it up for the end-users. It
goes over installation steps and basic configuration in detail and with pictures
where necessary. We continually improve the documentation based on the
feedback we receive. The latest version of the installation documentation can
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6. Implementation

Figure 6.16: Jenkins pipleline dashboard

be found on the following page: http://docs.h2o.ai/enterprise-steam/
latest-stable/docs/install-docs/_build/html/index.html

The second part of the documentation focuses on the end-user. It talks
about how to login to the application, start and manage the clusters. It also
contains documentation for Python package and R library. The latest ver-
sion of the user documentation can be found on the following page: http://
docs.h2o.ai/enterprise-steam/latest-stable/docs/user-docs/_build/
html/index.html

6.13 Continous integration

At H2O we use Jenkins to automate builds and do continuous integration.
This application has a Jenkinsfile that allows us to build, package and release
the application. Figure 6.16 shows a dashboard of the Jenkins pipeline that
automates the release. Whenever we want to trigger a release, we command
Jenkins and select a GIT branch from which the release is built.

First, Jenkins prepares the Docker image and then uses it to produce
RPM and DEB packages. As a next step Jenkins builds the documentation
in the HTML and PDF format. Jenkins also builds the Python package and
R library. As the last step, we construct a simple HTML download page
that has links to download all the parts of the software and links to the doc-
umentation. In the end, all build artifacts are uploaded to a public AWS
S3 bucket and link to the download page is published on the H2O.ai web-
site. When the build finishes successfully it is tagged in the project’s GIT
repository. The link to the download page of the latest version of this applica-
tion can be found on this page https://s3.amazonaws.com/steam-release/
enterprise-steam/latest-stable.html.
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Conclusion

The goal of the initial effort was to implement an enterprise platform for
deploying and managing H2O clusters on Hadoop. This was accomplished
with a full release of Enterprise Steam in April of 2018.

The release featured a multitenant service secured by LDAP authentication
with a web UI and Python/R API client libraries. Through this interface,
users could start and monitor H2O clusters in Kerberos protected Hadoop
environment. The application securely submits requests to YARN on behalf
of authenticated users (impersonation). The release also included thorough
documentation and a Jenkins pipeline for automated and reproducible release.

Over the next year, the platform evolved based on the feedback of the users.
Currently, it supports SAML authentication and can launch Sparkling Water
clusters as well. Administrators can newly create profiles that control the
parameters of launched clusters. Cloud deployment capabilities are currently
under development.

Nowadays, Enterprise Steam is used by companies such as Paypal, Mas-
tercard, AT&T, Wells Fargo, Equifax or Aetna. The software also passed a
comprehensive security review from Citibank and is being utilized in their
environment. In total, approximately hundreds of data scientists and Hadoop
administrators rely daily on this application.

Next evolution of Enterprise Steam will focus on better UI/UX experience
and efforts to unify the whole H2O ecosystem by managing deployments of
Driverless AI which is a platform for automatic machine learning.
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Enterprise Steam
Secure, Self-Service Artificial Intelligence Environments with Comprehensive IT Control

Enterprise Steam is a service to securely start and 
connect to H2O YARN jobs in a Hadoop environment.  
Encouraging adoption among Data Science users is 
a key goal, so ease of use is paramount.  Key user 
personas include Data Scientists, Hadoop Admins, 
Enterprise Architects, and IT Security Specialists.  
Enterprise Steam offers security, resource control and 
resource monitoring out-of-the-box in a multi-tenant 
architecture so that organizations can focus on the core 
of their data science practice.

Enterprise Steam equips the stakeholders in AI 
practices with the capabilities required to perform their 
tasks without interfering with each other.  Simply put, 
Enterprise Steam enables streamlined H2O adoption 
in a secure manner that complies with company policy.  
Administrators can easily control, monitor and measure 
H2O usage.  This further enables use cases such as 
internal chargeback, internal cloud deployment, and 
H2O Platform as a Service (PaaS).

Enterprise Steam provides the following benefits to 
Artificial Intelligence (AI) practitioners:

Data Scientists

• Self-Service
• Enterprise Steam provides easy R/Python APIs 

and a Web UI for starting H2O YARN jobs.
• Without having to become Hadoop experts, Data 

Scientists can manage H2O clusters and connect 
to them using a stable service at a known IP 
address and port.

• Familiar Interface
• Data Scientists can work in the comfort of familiar 

environments such as RStudio and Jupyter 
notebooks, without ever needing a terminal 
prompt.

• No SSH to Hadoop edge node required.
• Data Scientists can work directly from their 

laptops on the insecure side of a firewall.

Hadoop Admins, Enterprise Architects, IT Security 
Specialists

• Security
• Enterprise Steam enforces full control of H2O 

YARN job security for administrators automatically 
without having to rely on the Data Scientist.

• Enterprise Steam provides role-based Access 
Control for Admin Users and Standard Users.

• Encrypted connections (SSL/TLS).
• LDAP and Active Directory login authentication.
• Kerberos authenticated YARN job submission.
• Enterprise Steam offers the ability to put Hadoop 

clusters behind a firewall.
• Multi-Tenancy

• Enterprise Steam is multi-tenant and prevents 
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Figure 1: Enterprise Steam Deployment Diagram
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Data Science users from accessing each other’s 
H2O jobs (and data).

• Resource Control – Enterprise Steam allows Hadoop 
admins to:
• Control which H2O versions are available.
• Specify which YARN queue to use.
• Cap the resources the Data Scientist can use.
• Stop H2O jobs via a convenient Web UI.

• Resource Monitoring
• Enterprise Steam provides Hadoop admins with 

monitoring capabilities to find dormant jobs tying 
up memory.

• Enterprise Steam provides mechanisms for H2O 
usage measurement to enable chargeback and 
compliance use cases.

Tel: +1.650.227.4572 @h2oaihttp://www.github.com/h2oaisales@h2o.ai

About H2O.ai
H2O.ai is focused on bringing AI to businesses through software. Its flagship product is H2O, the leading open source platform that makes 

it easy for financial services, insurance and healthcare companies to deploy machine learning and predictive analytics to solve complex 

problems. More than 9,000+ organizations and 80,000+ data scientists depend on H2O for critical applications like predictive maintenance 

and operational intelligence. The company accelerates business transformation for 107 Fortune 500 enterprises, 8 of the world’s 12 largest 

banks, 7 of the 10 largest auto insurance companies and all 5 major telecommunications providers.

Follow us on Twitter @h2oai. To learn more about H2O customer use cases, please visit http://www.h2o.ai/customers/. Join the Movement.

Key Benefits
• Next level operational efficiency in your 

AI environments with out-of-box security, 
resource control, and resource monitoring

• Data Scientists can freely and safely practice 
data science in their own H2O cluster since 
Enterprise Steam is multi-tenant

• Enterprise Steam enables new operation 
models such as internal chargeback, internal 
cloud deployment, and H2O Platform as a 
Service (PaaS)

License
• Annual Commercial License

System Requirements

• OS: Ubuntu 12.04 and up; RHEL 6.7 and up

• Hadoop Distro: All CDH, HDP and MAPR 
distributions from the last 2 years [Adding 
Support for new versions is typically very fast 
(within days).]

• Databases: SQLite or Postgres SQL [Support 
for additional databases to be added upon 
customer request.]
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Appendix B
Acronyms

AI Artificial Intelligence

HDFS Hadoop Distributed File System

YARN Yet Another Resource Negotiator

SW Sparkling Water

MR MapReduce

AM Application Master

RM Resource Manager

K/V Key/Value

CoxPH Cox Proportional Hazards

DRF Distributed Random Forest

DNN Deep Neural Network

GLM Generalized Linear Model

GBM Gradient Boosting Machine

GLRM Generalized Low Rank Models

PCA Principal Component Analysis

POJO Plain Old Java Object

MOJO Model Object Optimized

REST Representational State Transfer

API Application Programming Interface
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B. Acronyms

JVM Java Virtual Machine

JIT Just In Time Compiler

DOS Denial Of Service

DDOS Distributed Denial Of Service

KDC Key Distribution Center

TGS Ticket Granting Server

TGT Ticket Granting Ticket

AS Authentication Server
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Appendix C
Contents of enclosed CD

README............................the file with CD contents description
src...................................the directory of the source codes

enterprise-steam.......the directory of the application source code
thesis.......... the directory of the LATEX source codes of the thesis

DP Bilek Ondrej 2019.pdf...............the thesis text in PDF format
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